UNIVERSITY JOF
e ras University of Nebraska at Omaha

Omaha DigitalCommons@UNO

Student Work

10-1-2000

Development of an Abstract Graph Partitioning Model Using the
Maple V Computer Algebra System.

Christopher J. Augeri

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Recommended Citation

Augeri, Christopher J., "Development of an Abstract Graph Partitioning Model Using the Maple V
Computer Algebra System." (2000). Student Work. 3539.
https://digitalcommons.unomaha.edu/studentwork/3539

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for
inclusion in Student Work by an authorized administrator
of DigitalCommons@UNO. For more information, please
contact unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/studentwork
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/3539?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3539&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

Development of an Abstract Graph Partitioning Model

Using the Maple V Computer Algebra System

A Thesis
Presented to the
Department of Computer Science
and the
Faculty of the Graduate College
University of Nebraska
In Partial Fulfillment
of the Requirements for the Degree
Master of Arts
University of Nebraska at Omaha
by
Christopher J. Augeri

October 2000

UM! Number: EP74737

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

~ Dissertation Publishing

UMI EP74737
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code

ProQQuest

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 - 1346

THESIS ACCEPTANCE
Acceptance for the faculty of the Graduate College,
University of Nebraska, in partial fulfillment of the
requirements for the degree Master of Arts, University

of Nebraska at Omaha.

Commuittee
Heshaw Al Compoter Jticnce
Name Department/School
Gt %///ZQ forZ £
Azad /lzac/w\qm_SL\ CoOm Ou{*er Sciendce

Chairperson __ ~f1++— \>{/ ;j .

Date 7/27/00

Abstract

Graph partitioning involves decomposing a relational graph into smaller graphs, subject
to domain-specific parameters and constraints. There are a number of application areas to
include database querying, map coloring, job allocation, VLSI design, and parallel
processing. The primary goal is to unify a portion of these concepts, allowing discussion

and execution at a more common and abstract level.

There are many facets to graph partitioning. Typical areas include the number of
partitions, the size of a partition, number of inter-partition connections, and the amount of
replication involved. These and many other factors must be considered when generating a

partitioning algorithm. We propose an abstract graph partitioning model, the AGPM.

This model includes structures for modeling the parameters, constraints and goals when
partitioning. From this abstract model, we develop two new graph-partitioning
algorithms. The first is a ~~-way bounded partitioning using genetic techniques. The other
is a hierarchical method based on graph centers. We compare both of these algorithms

against domain-specific methods from VLSI Design and Parallel-Processing Scheduling.

For analysis, we use a broad cross-section of graphs used current research. We also .
demonstrate applications with other domains and graphs. All research was conducted
within the C/C++, Tcl/Tk and Maple V development environments. Primary development
was done with Maple V, demonstrating its usefulness as a simulation and experiméntal

research tool across both the mathematics and computer science fields.

i

Acknowledgment

To Mom and Dad, whose love of learning gave me the heart to complete this
work. For Roxanne, Andrew and Joshua, whose motivation made writing this work
bearable, patience made it enjoyable, and support made it a reality. Without them, the
early mornings and late nights would have been a tunnel with no end.

My adviser, Dr. Hesham H. Ali, tolerated my wandering over various aspects of
partitioning and implementation, in addition to providing direction and scope. Dr. Azad
Azadmanesh, in addition to asking necessary questions, continually checked on when I’d
éver finish. Dr. G. Griffith Elder provided some hope of other potential uses, and brought
a level of formality I would not of otherwise obtained or necessarily attempted.

Also deserving of recognition is Dr. Margaret P. Gessaman, my analysis instructor
and unofficial adviser over the last few years. Thanks go to Dr. Hossein Saiedian, who
pointed out when I was missing the forest for the trees. Kirby Bohling provided assistance
regarding C++ templates and other points of the language. Andrew Stalcup provided the
edge data used in the United States map coloring, along with supportive interest.

My most heartfelt gratitude goes to the people of MEDICIS at the Polytechnique,
France, whose resources made the level of experimentation we achieved possible. A
special thanks goes to Teresa Gomez-Diaz and Joel Marchand of MEDICIS, whose
support assisted completion of our computations.

This work is also offered in memoriam to Eugene L. Lawler, whose 1967 paper

inspired my efforts. For those not mentioned, I offer my apologies and sincere thanks.

1.

i1l

Table of Contents

INtrOAUCHON ...ttt e e 1
1.1, ReSearch ODJECIIVE.....ueieeeeciiiieiicieeeeiceeee e ecsree e e erete e e e s e e e s s sereae s s anneee s sssae s 3
1.2. Previous Research.......ccccooviiiviicciiiniinneiiitc s 11

Fundamental Terms and Conceptsccoovvveiiiivieeirriieeeeriseeeeees e eseeee s 12
2.1. Graph Theory Fundamentals..........cccocorveiniiiniiiiiiniiiiiis e, 13
2.2. Partitioning Specific CONCEPLSccvvurerrrirriiererieesiiienseeessse s seresssenessseee e 17
2.3. Problem Definition......ccccccvviiiiiiceiiinirence e 20
2.4. Problem COmMPIEXILY ...cceeeeieirrreeiiiiiiierireee s ssrrreessererereesssnseeesesnnnnesssssmssesssas 22
2.5. Input, Control and Output MELIICScccvveerrrreriiiriiessiie et 25

Background Research...........coooviiiiiiiiiiiiiiniceeece et 29
KT DR 0)/ 4% (<) O 29
3.2. Problem Categories and SCOPE........cvvervirrriieiriieeeritre et re e sssree e 30
3.3, Prior to Mid-19708...cccuceiiieeceee ettt s 32

3.4. Partitioning in VLSI DeSign......ccceecviimiiiiiiniieieeniiieie e 35

v

3.5. Partitioning in Parallel Processingccccoeceevueversienienieninneeneenen. ST 40

The AGPM and Developed AlZOrithms..........ccovveeeiiieiriiiieiieee et eeeiie e 44
4.1. Abstract Graph Partitioning Model...........cccccoovieeviieiciiireeeceeerree e 44
4.2. GEA: Genetic and Evolutionary Algorithm...........ccooeiiiiin 46
4.3. CTR: Center-Based AlZOTIthm.......ccccooeviiriiiiiiiiniiieeeeee et 60
4.4. RAN: Random Iteration Algorithm...........cccooeiiiriiiiiiiiee i, 65

ReSUIS ANALYSIS ..ot 66
5.1, OVEIVIEW ittt ettt sttt e ae e s e s ae s e sabaeaas 66
5.2, Graph FAmIlIEsccoocccvieeiiiiiriieeeseeeeeereee et ertee e e e e e eaae e 71
5.3, MEDICIS......oieet ettt st sttt st st e 83
5.4. Sample Partitioning Resultscccccoceeiiriiriiieiceeeeceeee et 84
5.5. Space and TimEccceecuieeoiieiieeieeeieceette et eeeie e st ere e s b s e s e e e sraeeas 92
5.6. Replication (|V|), Components (K), and Partitions (k)........ccceccevrcueeriennnennne. 94
5.7. Cross-Algorithm Category ANalysisc..ccoveeeieerirnneeeceiieie e 95

5.8. CTR Variants AnalysiS.......cocceerriiireiieniienieenieeecerreee e e e 101

5.9. GEA Variants ANalYSisccccceveeerieiierisenieniieseeeeitesecesee s seeesneesee
5.10. PaX € 34\Y BN T:3410) (PO
6. CONCIUSIONS ...eouviiiieieitieciietterter ettt ettt sab e sbae s besne b s sbb e s enesaa s sns s e naes
6.1, FUture DIrECtionS....ccocueuveiiriieeireiieeeereeertesieeesetesntesseeeseses s ae st e ssaeesaneesanesane
6.2. Additional Graph SOUICTEScccceerveieriiieiriieeirreeernae e sereeeseseesssnresssanessssses
6.3. Alternative APPLICALIONScceecviieeiieeeiiiecicieeeiree s eeeesreeessseessenraesssseesesseens

6.4. Final Thoughts

7. References..............

A. Visual Depiction of

...

...

TRESIS STIUCLUIE .ottt eeeeeeeee e e e ens

B. Project & Reference Research System (PRRS).......cooviiiiiiiiiiiiiciiiiccene,

C. GraphPar Functions

1. Introduction

I first became aware of graph partitioning in a VLSI (Very Large Scale Integration)
Circuit design course during the spring semester of 1998 [37]. Within the VLSI design
field, partitioning is used when a specified circuit is too large for the available hardware.
This partitioning can occur at the chip, board and system levels. For instance, within a
modem, the encryption, decryption and compression circuits may be too large to fit on a
single chip. Thus the designers may manually decompose these onto two separate chips.
Designers may also have to allocate chipé to boards, or at a higher level, boards to
systems. There are many design factors to consider and automated partitioning allows in-

depth consideration of these factors.

Limitations when decomposing a circuit include the available space per device (e.g. a
chip), the number of pins on the device and the delay encountered when going between
two physical devices. All of these factors must be taken into account when mapping a
circuit to the available technology, and a hand-designed solution will not suffice,

especially as the circuit size increases.

Perhaps the most significant material learned during this time was an intense emphasis by
both the text and instructor on abstracting the graph from the circuit, at least for purposes

of partitioning and other operations performed when designing circuits. In other words, at
times the technology took a back seat to the graph and mathematical theoretic concepts in

order to develop successful techniques of developing the circuit. For our purposes, we

treated the circuit as a graph and essentially, “ignored” that we were working with and
modeling a circuit. My specific project for this course involved developing a working

version of the Best Predecessor algorithm, later modified and used in this research.

An algorithm is a plain-language version of a routine used to process a set of data,
“...especially an established, [finite] recursive computational procedure...” [53]. It is
essentially the computer scientist’s version of a how-to manual. This initial
implementation made me aware of fundamental issues regarding partitioning and
demonstrated limitations of this algorithm. The Best Predecessor algorithm also
incorporates the concept of replication, wherein it is faster to do the work on more than

one device in order to minimize the completion time.

Algorithms eventually lead to actual computer programs. These programs will often have
several, perhaps thousands or more, of related tasks to complete in order to reach the end
of the program. In many cases, some of these steps may be performed concurrently, e.g.
one person can work on the roof while another puts in floorboards. This type of
concurrency is what drives the demand for parallel processing. However, some of these
tasks must be executed sequentially, e.g. the frame must be built before the floor or roof

can be laid.

I became aware of other partitioning applications in parallel processing during an
advanced computer architecture course [5]. In parallel processing, partitioning is used to

decompose a program task graph and allocate subtasks to multiple processing units.

Primary concerns are the direct path adherence, or linearity, of the partitioning and the
inter-processor communication delay. It is necessary to ensure the schedule maintains the

original graphs' dependencies.

In elementary terms, partitioning involves the subdivision of related tasks or objects into
distinct groupings with a minimum of overlap, and communication. It is the scientific
study of divide-and-conquer techniques. This research shall enable mapping of the

studied domain onto graphs so the problem may be solved in an abstract form.

Other domains, besides those already mentioned include allocating fixed amounts of
money, materials or other resources to various individuals or places. A delivery company
manager would be interested in maximizing the number of cartons per truck and
minimizing delivery times. Map coloring, to be discussed later, may also be worded as a
partitioning problem [4: 250-268, 15]. Knowledge and database researchers have also
~expressed interest in partitioning [39, 29]. Any time a goal involves grouping a set of
items, partitioning is a useful tool.

1.1. Research Objective

The primary objective is to form a collective body of knowledge across a broad spectrum
of domains requiring partitioning functions, known as the Abstract Graph Partitioning
Model, or AGPM. At this time, we are unaware of a cohesive effort to unify concepts
found in different areas of application. Additionally, two general-purpose heuristic
techniques, CTR and GEA, shall be developed and compared against two existing

domain-specific algorithms, BPD and DSC. These algorithms are all used to partition

graphs of varied structure and size. The partitions are controlled by a number of values

for several control parameters.

Also developed during this research was a script-based GUI front-end, GraphOp, to join
together various aspects of this research: graph generation, graph partitioning and graph
visualization. A prototype graph visualization tool was also experimented with, based on
Ousterhout’s sample script [26]. Also included is a discussion of three graph visualization
tools used in this research. The final contribution of this research is the Project &
Reference Research System, PRRS, used to track the various readings cited in the
references. The final product is a well-developed partitioning code base, GraphPar,

developed in the Maple V mathematical research package.

1.1.1. Abstract Graph Partitioning Model (AGPM)

Partitioning is usually presented in the context of domain-specific. As in many human
endeavors, it is often possible to classify certain approaches based on one or more criteria.
This allows for both broader application of the techniques, along with presenting a
unifying framework and providing a natural discussion and education pattern. The
primary goal is to provide a graph partitioning model allowing researchers to discuss
graph partitioning on common ground. It is assumed the domain may be suitably
represented via a directed acyclic graph. A directed acyclic graph is one such that once
arriving at a certain point there is no path linking back to it. This is desirable, as it greatly

simplifies both the problem definition and algorithm development.

A domain is defined as a collective body of knowledge in a specific field of study. For
instance, VLSI design, parallel processing, product delivery and education may all be

- considered individual domains. In general, there are often specific factors that
characterize a domain when a need for partitioning arises. The goal is to expose areas of

overlap between these domains, shedding new light on current problems.

The net effect of such a model is to drive cross-field discussion of graph partitioning and
to permit analysis and comparison of various algorithms. With sufficient future
development, it allows classification by properties of the partitioning rather than the
domain. It further allows us freedom to see areas of partitioning needing future research
and transfer knowledge across domains. The AGPM is designed to provide a robust
tailoring for domain-specific partitioning. This model shall provide the framework that
allows problem formulation, algorithmic formulation and results analysis across multiple

domains.

1.1.2. Developed Algorithms

Two new general-purpose approaches for graph partitioning, based on the AGPM, are
presented. The first method, GEA, is based on genetic and evolutionary modeling
techniques. While these techniques exist and have been used for partitioning, a new
encoding scheme was developed, providing greater freedom of exploration and ease of

analysis. Genetic techniques use a string of data to represent a problem solution, also

known as an individual. A set of individuals is referred to as a population and an iteration

a genetic algorithm is known as a generation.

Via a set of genetic operators, strings are manipulated to permit a controlled, random
exploration of the potential solution space. The search space is formally defined as the set
of all potential solutions. With problems such as graph partitioning, this search space is
too large to exhaustively examine in a reasonable period of time. Any selected solution
must be evaluated for both feasibility and quality. In some genetic algorithms, evaluation

of feasibility and quality may overlap.

The second algorithm, CTR, is a multi-phase algorithm incorporating existing ideas in
graph centers. Each vertex is measured according to its distance from the vertices. These
values are recorded and used to assign other vertices to a set of subgraphs, where each
subgraph is initially assigned a single vertex. All k-vertex combinations are tested to

determine the true graph centers.

Intuitively, it is desired to group items that are “close” in order to minimize the number of
inter-partition edges, thus minimizing the delay. There are a number of center types and
techniques for determining them. One aspect of the research involved determining

suitable center metrics to determine the seed vertices for a partition.

1.1.3. Comparative Analysis

The performance of the developed algorithms is compared against the performance of two
existing algorithms. The algorithms chosen for comparison are the dominant sequence
clustering algorithm, DSC, from Gerasoulis and Yang [3], used in parallel processing;
and the best predecessor algorithm, BPD, from Wong and Rajaraman [11], used in VLSI
design. All algorithms are tested in both the parallel processing scheduling and VLSI

design domains.

DSC involves zeroing edge delays along the current critical path via a top-down trace [3].
Working bottom-up, the BPD algorithm works begins with the primary outputs,
replicating vertices if there is predecessors not present in a pre-determined subgraph.
These subgraphs are determined via a pre-processing step. This approach may require a
post-processing step for node reduction; however, it does provide an optimal solution for

a single constraint [11].

The comparative analysis involves a set of 124 unique graphs, categorized by structure
and the number of vertices. Each algorithm run was controlled by a combination of two
partitioning domains, two inter-partition delay values, and three partition sizes.
Additionally, a control algorithm, RAN, executed the root mean square processing time
of the otfler algorithms. While some combinations proved computationally infeasible,

over 11,000 data points were obtained.

The results analysis for these computations includes a comparison of the constraints and
domains an algorithm is best designed for, its time and space requirements, the maximum
delay observed, and the level of replication required. Additionally, these results are used
to compare not only algorithm families but also variants of both the GEA and CTR
algorithms. All results were computed on the heterogeneous server farm operated by the

French research lab, MEDICIS [33].

1.1.4. Support Tools

The primary support tool was the early development of the Project and Reference
Research System. This is a Relational Database Management System, or RDBMS,
allowing the tracking of people, projects and references. It allows direct links to personal
contact information, personal notes on papers or other references, along with project
tracking, to include a project journal. All of this information is cross-referenced, allowing
a person to find persons and all items or projects worked on by that person. All
interaction is via user forms and implemented in Microsoft Access 95/97. Screen shots of

this research tool are available on pages A:7-9.

Graph visualization, an important area in its own right, was necessary to get a better
picture of certain results. An initial attempt was made towards developing an automated
graph visualization tool. However, development time proved excessive and unnecessary.
The decision was made to use existing products. Examples and discussion of the selected
graph visualization tools are provided. All the systems considered provide at least one

means of automatic graph layout, and in some cases, visual partitioning support. Battista

and his co-authors describe many of the algorithms used by these layout tools in their

outstanding text, Graph Drawing [22].

The automated computational geometry systems used are GraphLet, from the University
of Passau, Germany [36]; GraphViz, developed at AT & T Bell Labs Research [47]; and a
demonstration application based on the software library of Tom Sawyer Software [54].
These systems respectively represent a non-profit educational institution, a commercial
research laboratory and a commercial software company. They provided a broad sample
of available graph visualization tools and demonstrate the importance of their use in the

study of graph partitioning.

1.1.5. Software Develbpment Lifecycle

Histqﬂcally, this research evolved through several rapid application development
iterations. The first attempt involved the existing work from the original project
incorporating one partitioning algorithm and a rudimentary graph generator developed in
C. The file format used in this version was too simple to allow in-depth research.
Furthermoré, the graph generator only controlled edge density, weight and node weights.

It had no provision for the generation of specific graph classes.

The generator was first converted to a pure C++ version. This was done to facilitate
having a robust class structure, capable of handling a large category of graphs. This was
originally intended to encompass multi-layer graphs and replication, both internally and

externally to a specific partition. A large portion of this implementation was done,

10

however, the development overhead for a rapid application development environment

was too high.

During this time, experimental progress was made with a multi-functional Tcl/Tk applet,
GraphOp. This included interfaces to directly modify text files, launch graph
visualization and partitioning tools and interact with a random graph generator. An
attempt was also made to develop a graph visualization tool (GVT), based on Tcl/Tk.
However, GraphOp and this other GVT are currently considered prototypes, given our

final development choice, Maple V.

Maple V is a symbolic computer algebra system [32]. Although performance of at least 1-
2 orders of magnitude was sacrificed, gained was an existing graph abstract data type and
environment more suited to algorithm development and experimentation. Furthermore,
using Maple V forced the author to think in mathematical terms versus application

implementation.

While some execution-time difficulties occurred with Maple V, it proved a worthwhile
learning experience and demonstrates the usefulness of general-purpose mathematics
computing software in a research environment. Another graph theoretic study based on
the doctoral thesis research of »several authors is presented in Network Reliability:
Experiments with a Symbolic Algebra Environment [12]. A visual depiction of the thesis

structure and its development is available in Appendix A.

11

1.2. Previous Research

Examination of the current literature base suggests the need for a general graph
partitioning model. The original objective was to develop a fairly complete taxonomy of
graph partitioning algorithms and derive the model after this taxonomy was completed.
Realizing this was too large an undertaking, the goal was scaled back to analyze a smaller
set of literature, develop an initial model based on key partitioning characteristics, and

leave the taxonomy for further research.

Most authors capably illustrate the domain of interest for their partitioning, however,
lesser effort has been made to present an abstract partitioning model. There are at least

three reasons for developing such a model:

Understand when to use a specific partitioning method.

Provide a unifying framework for practitioners in different domains.

3. Provide a backdrop against which more comprehensive analysis can be
performed.

N =

This model provides both the foundation and objective of this research. It is based on
examination of graph partitioning efforts in the domains of VLSI design and parallel
processing. Additional discussion is also made in workshop job allocation, map coloring,
database querying, and knowledge base systems. This literature spans approximately 40

years, from 1960 - 2000.

12

2. Fundamental Terms and Concepts

Why graphs? Graphs are a tool that can represent any group of items and their
relationships (or lack thereof). Though perhaps not so obvious, graphs are everywhere in
daily life. A subway map, a biological dichotomous key and a genealogical family tree are
all examples of graphs. A graph is a way of identifying unique objects and the
relationships amongst them. Dependent on the domain, both objects and relationships

may have a number of attributes associated with them.

In today’s increasingly connected world, graphs are gaining in both their role and
importance. As society becomes increasingly information-centric, there is a desire,
regardless of the domain, to divide, or partition this information. Graphs are a natural tool
to model this information. Thus drives the need for dividing, cutting and decomposing

these graphs into partitions.

Of course, mathematicians are very precise people, and have formal definitions for all
elements and properties of graphs. Furthermore, the operations performed on graphs may
also be formally described. Armed with these formal definitions, properties and

operations, it is possible to define both new problems and new operations.

Although not a comprehensive treatment, the following section should facilitate
comprehension of the research. This material is available in any combinatorics [41],
graph theory [25] or discrete math [28] textbook, amongst others. Basic definitions and

operations are defined, followed by terms and concepts necessary for graph pértitioning.

13

For those familiar with graph theoretic terms and concepts, the remainder of this chapter
is unnecessary, although sections 2.2 — 2.5 cover terms and concepts directly related to
partitioning.

2.1. Graph Theory Fundamentals

A graph, G = (V, E), consists of 7, a nonempty set of vertices, and E, a set of unordered

pairs of distinct elements of 7, called edges. In the example, ¥'= {1,2,3} and E = {(1, 2),

(2, 3), (1,3)}.

Figure 2-1
The elements of 7 and £ may have assigned values. For instance, each vertex in /' may
represent a town, and the value its’ population, while the value assigned to each edge in E
represents the distance between the vertices in V. Such values or attributes create
weighted vertices and weighted edges. Creating some values, V= {(1, 5000). (2, 7500),

(3,50000)} and E = {(2, 1, 3.5), (2, 3, 6.0), (1, 3, 1.7)}. Note drawings are not to scale.

14

5,000

3.5 1.7

7,500 50,000

6.0

Figure 2-2
Graphs without directed edges are also known as simple graphs. A directed graph, or
digraph, is similar, except E is a set of ordered pairs of distinct elements of ¥ called
edges. When drawing a digraph, the edges will have an arrow pointing towards the pair's
second element. This is‘ indicated below, where V= {(1, 5000). (2, 7500), (3, 50000)} and

E={(2,1,3.5),(1,3,1.7), 3,2, 6.0)}:‘

Figure 2-3
Figure 2-3, contains what is known as a cycle. In other words, can endlessly traverse
Towns #1, 2 and 3 without reaching a final stopping point. A cycle, in both the undirected
and directed forms, permits the return to a previously visited vertex via the existing
edges. A graph without any cycles is called an acyclic graph. Directed acyclic graphs, or

DAGs, simplify many of the operations in graph theory. In our research, although the

15

underlying simple graph may have cycles, the digraph shall not. Removal of (3, 2, 6.0)

renders figure 2-3 acyclic, as seen below:

5,000

35 1.7

7,500 50,000

Figure 2-4
The directed, acyclic condition may also be worded as: for all x in E, x = (u, v), u <> v

and if (u, v) is in E then (v, u) is not in E; if there is a directed path in E from u to v there

is not a directed path from v to u.

Another area related to graph simplification is transitivity. If one may reach a vertex via
another vertex, it is redundant to have a direct connection to it. Increased transitivity is
needed when redundant connections are necessary amongst vertices, while reduced or no
transitivity when cost or simplicity is a concern. All graphs used in this research shall be
made intransitive. Removing the edge (2, 3, 6.0) from the left image below becomes the

intransitive graph on the right.

16

5,000

35 1.7

7,500 50,000

Figure 2-5 Figure 2-6
A path is a distinct ordering of directed edges in E, indicating the edges necessary to
follow from the starting node, u, to the ending node, v. If there exists at least one path for
any vertex v from at least one primary input to at least one primary output, and the
underlying simple graph has a path between every pair (u, v), then the graph is connected.
If there exists any two nodes # and v and no path exists between them, the graph is

independent. In our research, we work solely with intransitive, connected, directed acyclic

graphs.

The number of vertices in ¥V is represented by |V]. The degree of a node in an undirected
graph is the number of edges connected to it. In Figure 2-1, each vertex has a degree of 2.
The number of edges in E, shown by |E], is exactly one-half of the total degree. Thus %2(2

+ 2 + 2) = 3. This is easily observed, as each edge has two vertices.

In a directed graph, the in-degree is the number of edges leading to the node and the out-
degree is the number of edges leading away from a node. The vertex degree is the sum of
the in-degree and the out-degree. A vertex with an in-degree of 0 is considered a primary

input, while those with out-degrees of 0 are considered primary outputs. In Figure 2-6,

17

vertex #2 1s a primary input, while the destination; vertex #3 is a primary output. Vertex
#1 is considered an internal vertex and in this route has an in-degree and out-degree equal

to 1, with a degree of 2.

A subgraph is considered a subset of G, G, containing V; and E;. A subgraph is a graph by
definition, and all terms, definitions and operators may be applied to it. For Figure 2-6,

two potential subgraphs are G=(V={1,2}, E={(2,1,3.5)}) or G=(V={3}, E= {}).

2.2. Partitioning Specific Concepts

This section defines graph-theoretic terms and concepts directly related to partitioning.
These partitioning qualities and metrics are used in both determining partitioning
parameters and objectives, as well as analyzing the results. All readers are encouraged to

review this section, as some definitions may be unique to this research.

2.2.1. Definitions
A partition is the complete allocation of a graph, G to a set, P containing & sub-graphs of
G. If G; and G; are sub-graphs of G and G; is equivalent to Gj, then i =j. Furthermore, P

also contains a set £p, where Ep, contains those edges outside of any partition. An

example partition is P = {(V; = {1, 2}, E; = {(2, 1)}), (V2= {3}, E:= {}), Ep= {(1, 3)}}.

18

Figure 2-7

In this example, all of ¥; and E;, along with Ep, are disjoint. This type of partition is said
to be non-replicated. When replication is allowed, the sub-graphs and Ep may not be
disjoint. It is assumed a vertex may only bé represented within each sub-graph a single
time. Thus, if there are M partitions, a vertex may only exist M times. Edge replication
may be considerably higher, howelver, it is only necessary to ensure all dependencies are

observed.

The fields most thoroughly analyzed were circuit decomposition and parallel processing.
In circuit decomposition, a circuit is decomposed into M sub-circuits, each with a
specified component and connector limit, with an emphasis on minimizing the maximum
delay at any one primary output. Within the field of parallel processing, a task graph is
decomposed into M graphs, with no vertex or edge limits, such that each CPU, M, 1s kept
occupied and the total delay is minimized. This distinction shall become clearer,

especially when discussing linearity.

As an alternative problem, when creating a map coloring, the objective is to divide the

map into M partitions, where M is the number of available colors, such that the amount of

19

each color in area is balanced and the total length of adjacent borders of the same color is
minimized. It has been previously proven by Appel and Haken four colors are sufficient,
however, finding such a coloring can be difficult [25]. A sample map-coloring problem

shall be discussed later.

Granularity is a metric measuring the work accomplished in a partition relative to
communication cost. If granularity decreases, work is being allocated to subgraphs in
smaller amounts. As granularity increases, larger subgraphs are being created, however,
the potential for parallelism decreases. Depending on the domain, one may request a

certain level of granularity [3].

Closely related to granularity is the concept of linearity. A subgraph may be considered of
the following types: linear or non-linear. Linearity may have several methods of
expression, however, it essentially measures whether a subgraph contains a set of -
dependent vertices forming a single path or a set of independent vertices forming several
paths. For example, the graph on the left is linear, while the graph on the right is both

non-linear 'and disconnected [3].

Figure 2-8 Figure 2-9

20

Granularity and linearity identify important differences between VLSI design and parallel
processing. We use them here simply to demonstrate that their end objectives are

different and why we chose them as our two primary domains of interest.

We did not directly measure granularity or linearity in our analysis. However, analysis is
done with respect to the structural family a graph belongs to and graph densities. It was
also necessary to form linear partitions as a post-processing step when analyzing
partitions within the parallel processing domain. For simplicity, we assume there are no
fan-in or fan-out limitations. In other words, an input or output can handle any number of
connections necessary to it.

2.3. Problem Definition

Although we have described basic graph theory and partitioning concepts, we must have a
problem we are studying. However, we must be cognizant of both the algorithms we are
studying and the AGPM we are developing. Thus, there are several variants of
partitioning we shall consider. The basic partitioning problem, often referred to as k-way
balanced partitioning, involves the division of a graph into & subgraphs. The only
constraint is the number of vertices, |V], must be divided as equitably as possible, with a

maximum difference of one [51].

There is no consideration given to the number of edges between these subgraphs,
although there is a common objective of minimizing delay at the primary outputs. A
modification to this basic problem include the special case of k = 2, often referred to as

bi-partitioning. Certain approaches use bi-partitioning techniques to achieve a k-way, or

21

multi-way partitioning. Additional modifications to the basic partitioning problem
include:
1. Delay Minimization
a. maximum delay
b. total delay
c. average delay
2. Cut (JE]) limits
a. k-way limits
b. pre-specified limits
3. Vertex (|V]) limits
a. non-balanced
b. weight limits
4. k=0
5. Replication

The minimization objective is an optimization goal. The domain of interest will drive the
optimization goal and thus the delay metric selected. Additionally, certain domains, e.g.
VLSI Design, may have cut limitations for the subgraphs. This will reduce the feasible
solution space, although some algorithms may not have a mechanism to directly
incorporate this. Modifications of the vertex limits including allowing non-balanced
partitions, e.g. |Vi| > |V]/ k. Alternatively, rather than assuming each vertex has a weight
of one, each vertex may have an independent weight that is used to control the number of

vertices in a subgraph.

Loosening of the problem constraints includes unrestrained partitioning, or k = co. The
complete extension of this would place every vertex in its own subgraph. Thus, all edges
would become inter-partition edges, subject to the inter-partition delay. Additional
loosening of constraints also allows for vertex and/or edge replicaﬁon. While this may

help achieve delay minimization, it must be deemed suitable for the domain of interest.

22

These various problem definitions are presented to demonstrate several concepts. One,
there are obviously extensive variations of the partitioning problem. There are one or
more domains that may have their partitioning needs met by each of these variants.
Furthermore, it helps demonstrate the necessity of the AGPM, so that we successfully
describe the problem, the constraints and optimizations goals, and thus select the
appropriate algorithm. The algorithms, and the subsequent analysis, match up these

problem definitions with each other.

24. Problem Complexity

Defining the problem brings with it the question of how complex is the problem. The
reason graph partitioning algorithms are so critical is its' inherent complexity. Complexity
is often analyzed from two perspectives, space and time. It is an attempt to measure how
much memory or how long, respectively, an algorithm requires to arrive at a final
solution. More specifically, we are concerned with the total number of solutions for a
given problem. As it turns out, graph partitioning problems have an eXtremely large
number of potential solutions. In addition, evaluating the quality of these solutions is a

time-consuming process.

Problems are generally divided into two categories, P and NP. P presents those problems
and algorithms considered to be polynomial on a traditional computing device. For
instance, sorting algorithms are typically considered to be within P. If we designed a

sorting algorithm that examined every permutation to determine if a specific solution was

23

sorted, it would be considered NP. NP refers to those problems that are non-polynomial

on traditional computing devices.:

P, or polynomial, problems and algorithms are generally considered feasibly computable
on current computing devices (for reasonably sized data sets). Graph partitioning belongs
to the special class of problems referred to as NP. The reason is we are attempting to
optimize for the delay through the graph. Furthermore, partitioning belongs to a special
category referred to as NP-hard. Specifically, evaluation of a particular solution is
computable in time P. However, since the number of solutions is in NP, while evaluation
is in P, partitioning is considered NP-complete. Since we are optimizing for delay, we
must concern ourselves with the NP aspect of partitioning. At this point we transition
from NP-complete to NP-hard [37, 51]. Although we can describe a machine that can
solve a NP problem in time P, none have yet to be constructed. Quantum computing is

considered a step in this direction [21].

Bui and Moon report that even the bi-partitioning problem for general and bipartite
graphs is also NP-hard (bi-partitioning is considered to be simpler than k-way) [51].
Bipartite graphs are those that may have the vertices placed two groups, such that no
members of either group are adjacent to members of the same group. In the figure below,
and used earlier, note city #1 has had its shading removed. It is only adjacent to cities #2

and #3, neither of which is adjacent to each other.

24

Figure 2-10

Bui and Moon also report that even finding approximate solutions for general graphs and
planar graphs are NP-hard [51]. Planar graphs are those graphs that can be drawn without
any edges overlapping each other. For instance, although the complete graph of four
vertices is normally as a non-planar graph, it may be drawn as a planar graph. The

complete graph of six vertices is not planar, however. The following images clarify this.

Ny
ZaVaN

A

Figure 2-11 (non-planar) Figure 2-12 (planar) Figure 2-13 (non-planar)
There are several ways to approach the NP-hard complexity of graph partitioning. In
some cases, it becomes feasible to loosen the restrictions, e.g. not to limit the problem to
k-way partitions or not require balanced partitions. Other scenarios may allow special
conditions, e.g. vertex replication. This essentially increases the number of potential

solutions. However, it also increases the number of ways to reach an optimum [30].

2.5. Input, Control and Output Metrics

The following metrics outline the ones forming the A GPM's foundation.

25

Category Metric Description
Gy Input Graph
2.(deg(G)) [roots|, (primary inputs & outputs)
Input min ((a,...,b)sr) imin delay along any path
max ((a,...,b)qr) imax delay along any path
Graph |E| number of edges (including replicas)
. 2 Ewt sum of edge weight || delays
Metrics \'4 number of vertices (including replicas)
2Vt sum of vertex delays
2Vt sum of vertex weights
P Partition Family (e.g. Circuit or Schedule)
Execution P, Partition Algorithm (e.g. BPD or DSC)
C max cut/partition (including [root vertices|)
Control M max vertex weight/partition
Parameters K number of desired partitions
D inter-partition delay (constant)
Dinax max delay along any path (worst case)
k(G) number of components in partitioned graph
max (deg(P)) Imax cut/partition (including roots)
2 (deg(P)) sum of partition cuts
min ((a,...,b)s) imin delay along any path
Output max ((a,...,b)qr) imax delay along any path
|E| number of edges (including replicas)
Partitioning YEwt sum of edge weight || delays
Metrics |P] number of partitions
V| number of vertices (including replicas)
2Vt sum of vertex delays
2 Vi sum of vertex weights
(V) standard deviation of partition vertex weight sums
max (2Vy,) imax of partition vertex weight sums .
O4(n) & O¢n) iprocessing space (bytes & seconds)

26

The previous table defines three basic categories of graph metrics: input graph metrics,
execution control parameters and output partitioning metrics. These categories are used to
facilitate both the development of the AGPM and a black-box approach for analysis.
Within each category we find several key metrics and parameters critical to graph
partitioning research. Additionally, this table synthesizes the mathematical symbols used
in the multiple readings we have perused. We shall now entertain a brief discussion of

each.

Within the input graph metrics category, there are nine values used to distinguish between
graphs. Before analysis, each graph was given a unique name, Gy. We then determined the
number of primary inputs and outputs, »(deg(G)), where a primary input has no inputs
and a primary output has no outputs. We then determined the minimum and maximum
delay from any primary input to any primary output, min ((a,...,b)sr) and max ((a,...,b)q),
respectively. The total number of edges, [E|, and the sum of their delays, Y Ey:, completed
the edge analysis. Similarly, we found the total number of vertices, |V|, and the sum of the

delays and weights, 2.Vg4 and >V, respectively.

There are seven execution control parameters. The first two contain the application
domain, Py, and the algorithm, P,, used to partition the graph. C specifies the maximum
subgraph cut, including primary inputs and outputs. M is the maximum vertex weight per
subgraph. If the vertex weights are equal to one, M is also equal to |V|. K is the number of
desired partitions, as in k-way partitioning. In our implementation, k may determine C

and M or vice versa, depending on the problem specification. D is the inter-subgraph

27

delay when connecting vertices in two distinct subgraphs. Dy, is @ worst-case metric that

assumes all edges are inter-subgraph edges. Thus, Dyay is equal to [E| * D + 2 V.

The output partitioning metr{cs cover a wide range of measurements and are also the most
plentiful. There are a total of fifteen metrics, some of which are new; others are
partitioning-specific versions of input and execution metrics. The number of components,
k(G), in the resulting partition identifies the number of distinct, independent subgraphs in
the final solution. The maximum partition cut, max (deg(P)), identifies if an algorithm
observed the limit imposed by the execution control parameter, C. The minimum and
maximum path delays, min ((a,...,b)q;) and max ((a,...,b)a), respectively, are the

optimization goals of graph partitioning.

The number of edges, |E|, and its related metric, 3 E,., or edge weight sums, are provided
to measure edge results independently. The number of partitions, |P|, is used to determine
if an algorithm observed any k-way constraints imposed on it. The vertex metrics are
some of the most valuable, as almost every partitioning variant has some vertex limit. The
number of vertices (per partition), |V|, includes any replicated vertices. The summed
vertex delay and weight values, 2 V4 and 2V, are also on a per partition basis. All of
these may used in variants limiting the number or weight of vertices per subgraph. The
standard deviation of vertex weights, g(Vy.), is useful for those domains needing
balanced subgraphs. The maximum vertex weight sum was used most extensively in our

own analysis compared to other vertex limits.

28

The final two metrics are raw measurements of the processing space and time, O4(n) and
O¢(n), used by a given algorithm during a partitioning run. The space is measure in bytes
of data and is considered as the total amount of data processed. It is not an indication of
any data concurrency requirements. Time is measured in seconds and is considered as
user time only, not any machine activities to support the algorithm's execution. Both are
measured for the duration the algorithm executes, not including any graph pre-processing

or metric collection post-processing phases.

29

3. Background Research

This review of existing literature was originally intended to be a significant portion of the
results. Due to the quantity of literature available, this was scaled back to a level
sufficient to permit the development of and demonstrate the need for the abstract graph
partitioning model, or AGPM. Thus, instead of a formal taxonomy, various domains and
algorithms are reviewed and used to develop the AGPM.

3.1. Overview

The objective of the AGPM is to be able to characterize an algorithm by a number of
characteristics. Most authors capably illustrate the domain of interest for their partitioning
algorithm, however, lesser effort has been made to present an abstract partitioning model.
This model will provide the foundation of the research. After developing this model, it is
possible to analyze existing approaches and develop new ones based on the AGPM.
Recalling the three primary reasons for developing the model, it helps to...

1. understand when to use a specific partitioning method.

2. provide a unifying framework for practitioners in different domains.

3. provide a backdrop against which more comprehensive analysis can be performed.
The background research is divided into two main eras. Prior to the mid-1970s, many
solutions focused on integer-programming techniques. Much of this early work was on a
smaller scale, perhaps even performed by hand, and had an emphasis on circuit

decomposition. After this time, until the early 1990s, research is aimed more at problem-

specific, solution building, refining techniques. This is also during the time when large

30

parallel processing systems began to be developed, removing the need for hand-solved

solutions and permitting study of larger problems.

In recent years, interest seems to be moving towards a hybridization of these approaches,
e.g. a random search algortithm combined with a deterministic computation component.
As of this writing, a comprehensive literature base of journal articles, doctoral theses,
texts and research reports have been reviewed.

3.2. Problem Categories and Scope

From Wilson and Watkins’ text on introductory graph theory, a categorization of graph-
theoretic problems is obtained [25]. They suggest the following groupings: existence,

construction, enumeration and optimization problems. An example of each of these

follows:
N
1. Existence: is it possible to partition this graph with balanced, linear partitions?
2. Construction: assuming it exists, how can such a partition be constructed?
3. Enumeration: how many such partitions are there?
4. Optimization: of these, which have the minimum number of partition

interconnections? .

When developing an algorithm, each of these categories must be considered at some
point. Although an algorithm may be developed, it is wise to determine if the
development effort is warranted by the difficulty of the problem. To this end, the
following formulae are provided to show the staggering number of solutions a
combinatoric problem such as graph partitioning may have. These formulae hold

assuming vertex and edge replication is not allowed. Two derivations of this formula are

31

provided. The first is based on the multinomial theorem as presented in Grimaldi’s text,

Discrete and Combinatorial Mathematics, [41]:

k
P=— . Z(m(l,x) mg)=n
=1

((m("”‘)!)"(i'y) ‘ m(z-,y)‘)’ st

1

Figure 3-1
The second formula assumes the k-way partitioning problem is being solved, wherein

there are a fixed number of balanced partitions. It was developed Russo and his
colleagues while employed at IBM’s Thomas J. Watson Research Center [44, 5]. For
cases where » mod & # 0, » is incremented until » mod £ = 0.

n!
(n/k)™ k!

Figure 3-2
Using either formula, if n =11, k=4 and m = {(3,3), (2,1)}, there 15,400 unique

partitioning solutions (7 is increased to 12 for Russo’s formula, m = max(m; x).

!
P== ,: n!
L] ((m(i,x)!) “ 'm(i,y)!) sz
_ 1! 1
(@) -3)(2) 1) ~(12/4)° -4
39,916,800 _ 479,001,600
6y -6)(2)' 1) T 6’24
39,916,800 _ 479,001,600
T 1,296-2 216-24
= 15,400

=15,400

Figure 3-3 (Grimaldi) Figure 3-4 (Russo)

32

The number of bi-partitions of a 100 vertex graph is on the order of 10°°, while a 1,000
vertex graph has 10°% solutions. A 4-way partition increases these to 10°® and 10°”’
solutions, respectively. As discussed earlier, although partitioning is NP-hard, these

numbers give an example as to how fast the solution set grows [50, 55, 8, 52, 24].

3.3, Prior to mid-1970s

We begin the background reference with Breuer’s comprehensive survey of computer
design automation [35]. He presents seven categories of design automation, with the area
of interest being “physical implementation”. Within this category, several specific

problems are listed, with suggested solutions for many. The ones of interest are:

1. The partitioning of the network into portions, each of which can be
implemented on at least one standard circuit card type.

2. The assignment of each portion of the network to an available circuit type
on a card.

3. The assignment of circuit card types to backboards (motherboards).

Breuer prefaces all mentioned algorithms by identifying each as either exhaustive search
or approximate solution algorithms. The single optimal algorithm he identified is
Lawler’s, although it is deemed infeasible for many problems as the problem size is often,

[now], in the thousands and millions of vertices.

An approximation heuristic used by one algorithm Breuer cites uses integer programming
techniques, however, it does not fully examine the search space. Specifically, once a
component is allocated to a partition, it is not moved. Alternatively stated, the solution is

monotonically non-decreasing. This serves to limit the search space. Some of these

33

algorithms use multiple runs, varying input orders via some criteria or random order as

their guiding heuristic.

A key point is the absence of graph-theoretic problem treatment. This becomes important
as the problem sizes continue to grow [37, 44, 35]. Lawler, Levitt and Turner’s algorithm,
based on creation of all possible single-output rooted subgraphs, published in 1969,
indicates the beginning of a paradigm shift [17]. As the designs and algorithms become
more complex, a more abstract structure, notably graphs, becomes important. This is
evident not only in contrast to Lawler’s earlier work, but also as compared to

contemporary researchers of the late 1960s and 1970s [18].

Kernighan and Lin’s classic bi-partitioning technique dominates the 1970s. This
technique further defines the transition from an engineering focus to a graph-theoretic
emphasis, as evidenced in their title, An Efficient Heuristic Procedure for Partitioning
Graphs [56]. The K & L algorithm randomly forms a bi-partition, and then iteratively

swaps previously unmoved vertices until no delay reduction may be observed.

Additionally, as the K & L algorithm begins with a random partition, it further marks a
departure from deterministic to probabilistic algorithms. Fiduccia and Mattheyses, and
then Krishnamurthy presented significant improvements to the K & L algorithm [7, 4].
The K & L algorithm, along with its variants, is often used in bi-partitioning, or 2-way
partitioning, and k-way partitioning. Sherwani indicates bi-partitioning is used recursively

for multi-way partitioning [37: 171].

34

Around the mid-1980s, additional stochastic techniques begin to appear. Stochastic
techniques have a random operation as their core operating heuristic. Sherwani provides
solid exposition on many of these techniques, to include simulated annealing and
simulated evolution. Simulated annealing finds solutions based on an algorithm that
imitates the process used to purify metals and other substances. Simulated evolution
algorithms are designed to imitate life processes to gu’ide itself to a solution. Both of these
processes mimic their natural counterparts in a guided, yet random, manner. He concludes
by saying they both tend to produce a better solution than other approaches. However,

they respectively take more time and space to do so [37: 171].

Sherwani’s writing also mentions the concept‘of vertex, or component replication, as
presented in Kring’s efforts [9]. However, he indicates Kring’s algorithm is the first to
use replication. Russo and his colleagues demonstrated the usefulness of vertex
replication as early as 1971 [44, 5]. Furthermore, Eugene Lawler’s efforts of the 1960s

also incorporate replication [18, 17].

Russo’s proposed algorithm is a two-phase algorithm. During the first phase, it increases
the granularity of the graph by grouping closely attached vertices. Then, the modified
graph is incrementally allocated to a set of subgraphs, based on their distance and the
partitioning constraints. In some cases, replication is permitted. Thus, the partitioning is
grown around topologically distant vertices. An analogy may be made to watching salt

crystallize during super-saturated cooling. However, the algorithm is non-improving,

35

therefore, if an incomplete partition is formed, it is suggested to adjust the critical net

selection of the first phase.

While we have presented a summary introduction to graph partitioning, we shall now
focus our attention on the two domains and reference algorithms chosen for comparison
purposes. As mentioned earlier, we shall examine both Lawler et al’s original algorithm
and the more recent version we used. Additionally, the parallel processing algorithm,

dominant sequence clustering, shall be discussed in the subsequent section.

3.4. Partitioning in VLSI Design

In VLSI design, partitioning is used to subdivide a circuit into multiple circuits. This is
done when a circuit is too large for a single device. A device may be a module, IC
(integrated circuit), PCB (printed circuit board) or other comparable object. A circuit, for
these purposes, is equivalent to a graph, and more specifically a directed, acyclic graph, or
DAG. The resulting sub-circuits are considered a partition. A gate is equivalent to a

vertex and a net is used to refer to an edge(s).

A key concept to note is independent circuits located on the same device do not have to
wait for other independent circuits located in the same device to execute prior to their
execution. In other words, independent circuits may execute in parallel. Therefore, non-
linear sub-graphs would be of more interest in this domain. Additionally, in contrast to
many others, the algorithm we have chosen directly handles k-way partitioning, rather

than a recursive bi-partition.

36

The work done by Eugene Lawler and his colleagues during the 1960s developed what is
known as the Unit Delay Model, or UDM. In this model, delay within a subgraph of a
partition is considered negligible. Additionally, the delay through any gate is considered
to be zero and the delay between subgraphs, or clusters, is set at a unit, hence the model’s
name. This algorithm, Best Predecessor (BPD), and its successors, consist of a three-

phase routine [11, 18, 17].

First, the delay is identified between a gate and all its ancestors. Based on this delay, each
vertex is taken as a root of a subgraph. Then, the closest predecessors, in terms of delay,
are added to the subgraph until subgraph constraints are violated. There are |V] optimal
subgraphs formed, one for each vertex. In the final phase, beginning with the primary
output with the longest delay, direct ancestors of the current subgraph are added from this

pre-computed set of subgraphs.

Each subgraph may only be added once, however, an individual vertex may be present in
more than one subgraph, thus allowing replication to occur. Vertex replication may be
reduced during post-processing. The algorithm generates an optimal partitioning solution

(with replication), given there is only a single constraint, e.g. vertex weight limits.

The general delay model, or GDM, developed by Sangiovanni-Vincentelli, Murgai and
Brayton, expands upon the UDM. They set forth three rules that define the GDM [40]:
1. Each gate may have a unique delay, V.

2. No delay exists between gates in the same subgraph.
3. A constant delay, D, exists between gates in different subgraphs.

37

The GDM allows for the modeling of more realistic circuits and equipment. For instance,
a long wire length within a device may be a delay factor. This may be modeled by
inserting dummy vertices with the delay value of the wire length. Additionally, this model
can be tailored to handle the circuit design abstraction we are modeling, be it chip, board
or device level. This model is used by Rajaraman and Wong to extend Lawler’s

algorithm. The core remains, and the UDM may be implemented by the GDM [11].

However, if we examine the typical results of the BPD algorithm, two items may be
noted. One, there is a significant amount of vertex replication involved. Additionally, the
algorithm successively adds linear branches to a subgraph until its limits are violated, e.g.
the number of gates. This may be used as input to the AGPJM, i.e. one can specify whether

replication or linearity is allowed in the final partitioning.

The following images depict a sample graph, ISCAS C17, and its optimum 4-way
partitioning. ISCAS C17 was provided to attendees of the 1985 International Symposium
on Circuits and Systems [19, 13]. The graph contains 11 vertices and 10 edges, with a
maximum delay of 6, along paths {CFHK, CFIK, EIK}. It contains five primary inputs,
{A, B, C, D, E} and two primary outputs, {J, K}. ISCAS C17 is a bipartite, planar graph
and was discussed in Rajamaran and Wong's paper on BPD using the GDM [11]. We

will use it to introduce each of the algorithms used in this research.

Figure 3-5 (ISCAS C17, GraphViz)

7 3

Figure 3-6 (Optimal C17 Partitioning, GraphViz)

() B

38

39

The following images show the BPD results for [V| =3 and D = 3, using the ISCAS C17
circuit. The intermediary stage of BPD, showing all the subgraphs generated prior to their
final selection, is also provided. BPD's selection order of the pre-determined subgraphs
was [J, K, F, D, G, E]. The subgraphs {A, B, C, G, H, I} were not used in the resulting
partition. Note that vertices {A, B, G} are present in multiple subgraphs. This serves to
reduce the delay, at the expense of circuit space. BPD achieves its delay minimization by
ignoring the k-way limits and allowing replication, although it will observe |V] and |E|

limits of a A-way partitioning.

A B C D E"- H I

0 0 B:l’o B:l’o
J
e @ L1 @ H:1,1 I1,2

Figure 3-7 (BPD: Intermediate Solution)

40

Q

|3 (3 M%% \3

H:1, 1

1,1

Figure 3-8 (BPD: Final Solution)

3.5. Partitioning in Parallel Processing

In the parallel processing domain, the mapping of terminology is similar to that of VLSI
design. A task graph is a graph of the tasks and their dependencies. Tasks are equivalent
to nodes and edges are synonymous with dependencies. The term grain is often used
instead of sub-graph. The size of a grain is often compared to the amount of inter-
processor communication. Fine-grained graphs tend to involve a greater amount of
communication, while large grained graphs, at the risk of decreased parallelism, uses less
communication. Granularity is given excellent treatment in the paper by Lewis and

Kruatrachue, and in Kruatrachue’s doctoral dissertation [49, 6].

41

Another significant point of Kruatrachue’s research is that execution time partitioning
may yield better results than an engineered decomposition by the programmer(s). A
dynamic approach to increasing the granularity of tasks is presented by the 1991 paper of
Mohr and colleagues [16]. They also advocate the automated approach over the
programmer-engineered approach. However, they require the designer or programmer to
explicitly determine what may be decomposed, while leaving the technique of the
decomposition to the run-time environment. Their research also identifies various pitfalls

of current dynamic methods.

Our selected algorithm, dominant sequence clustering, places heavy emphasis on both
linearity and granularity of the partitioning. Recall that linearity dictates to what extent
sequential tasks are being performed on an individual computational device. Non-linear,
or independent circuits, may still be used in parallel processing. However, the sum of
their execution must be less than or equal to the communication cost of waiting for

another node to perform the work in parallel.

In other words, if the execution cost of two dependent tasks is 5 time units (TU), each and
the communication cost is 8 TU, it would make sense to cluster these tasks together. If,
however, the communications cost is 4 TU, it would be more appropriate to assign these
tasks to different processors to maximize parallelism. The dominant sequence algorithm
accommodates this by assuming there is an unlimited number of processing devices to

allocate work to [3].

42

DSC functions in the following top-down manner. It assigns the computation that would
suffer the maximum delay to the current CPU. Based on this assignment, it recomputes
the new dominant sequence. Additionally, a free list of nodes whose ancestors are
assigned, and a partially free list of nodes who have at least one ancestor assigned are
updated with their new delay times. The algorithm then chooses the best node to assign

from the free list to a processor.

This process continues, where nodes from the free list are iteratively assigned until all
vertices are assigned to a subgraph (processor). When vertex allocation to the current
processor would increase computation time, a new subgraph is created, as the algorithm is
assigning these computations to a new CPU. However, DSC currently has no provision to
replicate computations on a CPU. Furthermore, the algorithm is not guaranteed to
partition the graph, as it may determine the best schedule is to have one processor
perform all the computations. The following image shows the DSC results for the ISCAS

C17 graph with D = 3.

The order of processing by DSC for this graph was [C, B, F, E, I, D, H, K, A, G, J].
Although not stated earlier, DSC's vertex processing sequence must be a topological sort.
However, DSC may add a vertex to different subgraphs during each iteration. Note that
the DSC algorithm does not observe | V] limits. This is due to DSC's assumption that there

are an infinite number of processors.

C

e

B

43

/
po

®
S

Figure 3-9 (DSC)

44

4. The AGPM and Developed Algorithms

Our historical development focuses on general graph partitioning principles, such as
linearity and granularity, to demonstrate the key differences between our chosen domains
of interest, VLSI circuit design and parallel processing scheduling. This chapter
introduces the key concepts of the AGPM in light of this historical discussion. In addition,
we propose two new algorithms, GEA, a genetic and evolutionary algorithm; and CTR, a

graph-center determining algorithm.

4.1. Abstract Graph Partitioning Model

During his conclusion, Breuer states, “Most of the problems associated with the physical
implementation of logic have been solved, though refinements of these solutions continue
to be made”. Given the more than 200 papers being produced in this arena as of
Sherwani’s 1995 text, there were a lot of refinements necessary, or not all the problems
were solved. It is for this reason we propose the AGPM. The AGPM’s intent is to provide
a framework for partitioning algorithm selection regardless of the application domain. We
present both mathematical and language specifications that allow this decision-making

process to occur.

Reasons of justification for the AGPM include the nature of graphs, precedents in other
graph theoretic fields, and precedents within partitioning. The definition ofa graph, in

applied language may be defined as a set of objects and the relationships, or absence

45

thereof, between them. Thus, in the applied sense, a graph itself is an abstract model. It

then follows that manipulators of an abstraction are themselves abstract [25: 1-29].

As for precedents in other graph theoretic fields, the recent text on automated graph
drawing presents a means to classify graph drawing parameters and techniques [22].
Furthermore, the development of graph-theoretic approaches to circuit design is one of
the primary factors leading to the developmental explosion of recent years. In
partitioning literature, we observe several models, two of which prompted the creation
of the AGPM, the UDM (Unit Delay Model) and GDM (General Delay Model), from the

BPD algorithm [11, 18, 17, 40].

The UDM and GDM, however, are both designed for the VLSI design domain. The
objective of the AGPM is to step back and define a model that may then be applied and
extended for a particular domain. The AGPM is not an algorithm, but rather a framework

to determine an appropriate algorithm. Sherwani suggests five key criteria when
)

partitioning circuits [37: 148-150]:

Partition Number: number of partitions

Partition Size: maximum number of vertices/partition

Delay: delay between partition subgraphs

Partition Interconnections: number of edges between partition subgraphs
Terminal Count: area available for interconnections/device

DA W

All of these issues become metrics in the broader scope of the AGPM. The AGPM
defines three broad classifications that define its framework:
1. Input Graph Métrics

2. Algorithm Control Parameters
3. Output Partitioning Metrics

46

Sherwani’s criteria predominantly center on the latter two, with no development of the
first classification we propose. Sherwani’s criteria, along with the additional metrics
shown in section 2.2.2, provide the AGPM framework. These categories allow full

adjustment to all aspects of the graph partitioning process.

The AGPM is not self-limiting, but rather is considered an open architecture model. This
allows inclusion of new metrics and exclusion or modification of existing metrics within
the model. The metrics and control values of these classifications may be either real-
numbered or Boolean values. For instance, we may classify an algorithm as “allows” or
“does not allow” replication to occur. However, other metrics, such as the graph density,
or |[E|/ |V] (the number of edges relative to the number of vertices), results in a real-

numbered value.

4.2. GEA: Genetic and Evolutionary Algorithm

Genetic algorithms are a considered to be a combination “...of directed [guided or
controlled] and stochastic [random] search.” [57: 16]. Genetic algorithms are considered

extremely useful and robust in large, complex search spaces. [57: 16, 42: 18].

Application domains that have successfully used genetic and evolutionary algorithms
include: knowledge base partitioning, game playing, scheduling, wire routing, map
coloring and others [42]. The first successful genetic algorithm was used to model gas
pipeline distribution control [42]. Genetic algorithm methods and terms are based on the

biological world they imitate.

47

Genetic algorithms typically consist of the five components identified by Michalewicz.
They are:

A genetic representation for potential problem solutions

Parameter values, e.g. population size and operator usage probabilities
A method to form the initial population (population seeding or creation)
Genetic operators that form a population’s offspring

A fitness function, simulating the environment

Al N e

These five components form the core of the genetic algorithm. The bulk our discussion
involves the development of variants of each of these components. This discussion will

also further illustrate how genetic algorithms simulate the biological life cycle.

The term genetic, or evolutionary, algorithm encompasses a broad range of stochastic
biological-modeling algorithms. Typically, a solution instance is referred to as a
chromosome, and each generation will contain a population of at least one chromosome.
Classification of a chromosome is done via a schema that, during analysis is able to group
various potential solutions. The initial population is generated either via a simpler
heuristic method or random assignment. Operators in a genetic algorithm are then used to
manipulate a population and form a new generation. Standard operators include mutation
and crossover. A costing function is formulated to evaluate an individual based on

various criteria.

Since genetic algorithms are designed to model the processes of life, we define an
individual as a single problem solution. An initial pool of individuals, or population, is
formed. This population forms a generation. Each generation is allowed to simulate life

via a set of operators. These operators allow offspring to form via a variety of methods.

48

During each generation, a selection rule(s) is used to select the next generation’s
population. Individuals who are not selected are disposed, although most algorithms do

not prevent a rebirth of these individuals via a future operator computation.

A biological species is considered to have a unique genetic makeup. This includes the
number of chromosomes, the size of these chromosomes and the mapping of traits to
various positions on these chromosomes. It is now well known that chromosomes consist
of the arrangement of four nucleic acids in a sequential string pair. This protein encoding
is then translated by cellular biology to control the organism’s traits. In simple organisms,

only a single chromosome is present.

This single chromosome model shall be used for our genetic algorithm. The encoding
technique must be chosen as to suitable represent the problem, while being robust enough
to allow operators to modify it in such a way as to create new and feasible individuals.
Encoding techniques are typically a fixed length array of values. These values may be of
various data formats, e.g. binary, integer, floating point, alphabetic or others. In addition,
the order, distance and relative values of these array elements are important in various
domains, depending on the encoding scheme. For instance, a scheduling algorithm would
typically be concerned with the order of the array elements, as would the traveling

salesman problem.

Historically, two encodings are typically used in partitioning: group number encoding and

permutation with separators encoding. With group number encoding, the value of each

49

array position indicates the subgraph that vertex belongs to. From the following example,
we have P =[AAB]. Vertices #1 and #2 are assigned to partition 4, while vertex #3 is
assigned to partition B. Permutation with separators encoding would encode this as

[21 _3]or[12 3].

Figure 4-1

The separator used here, ¢ ’, could be any character, perhaps even the name of the
subgraph, e.g. [1243B]. Note that the order within the array range positions for a

subgraph is irrelevant.

Our encoding scheme is a combination of both of these encoding schemes, called graph
and group separator permutation encoding. We maintain a pair of arrays. The first array
contains a permutation of the graph’s vertices. The second array contains a list indicating
the relative separator positions. By using the relative, rather than the absolute positions,
we are able to use the same genetic operators on both arrays. For Figure 4-1, the encoding
might be {[1,2,3], [2,1]}, {[2,1,3], [2,1]} or {[3,1,2], [1,2]}. This encoding allows easier

implementation of partitioning constraints and operator flexibility.

50

Furthermore, the encoding allows us tremendous flexibility with k-partitioning variations.
We may set ranges on the upper and lower limits for these |V] limits of a subgraph, as
long as the sum of these values is equal to |V] of the input graph. Partition types include:

1. k-balanced: min = max - 1, max =[|V]/ k|

2. k-min/max: (to force some usage) min = 1, max = +oo

3. k-unlimited: (may be better not to partition) min = 0, max =+
For instance, with the group number encoding method, we may have to scan the entire
array to determine the vertices in a specific subgraph. Additionally, qertain operators
could corrupt an individual by violating the number of vertices in a specific subgraph.
With the permutation with separators encoding, if one needs to extract the information for
a specific subgraph, a scan of the array must be conducted, as the separator positions are

unknown. Also, as with the group number encoding, special checks have to be

incorporated into the operators, lest they violate partitioning constraints.

The optimal ISCAS 17 partitioning better illustrates the different encoding methods:

ISCAS 17 Vertex List [ABCDEFGHIJK]

Group Number Encoding [12234213434]
Permutation w/Separators [AG;BCF;DHJ;EIK;]
Graph & Group Separator Permutation ([AGBCFDHJEIK], [2333])

We can see how group number encoding places the corresponding sub-graph indicator in
the respective vertex position. Permutation with separators reorders the vertices and then
adds separators in between subgraphs. The Graph and Group Separator Permutation is

similar, however, it places the sizes of the subgraphs in a separate array.

51

Although the permutations show the vertices ordered within a subgraph, this is not
necessary. It is only done to facilitate comparing the encodings. As we can see, to

determine the vertices in the third subgraph we would have to do the following:

Group Number Encoding: Scan entire array for the value ‘3’
Permutation w/Separators: Scan array for 3™ ¢;* separator
Graph & Group Separator Perm.: Values before 3™ position of 2 array

Furthermore, if we randomly change a value (e.g. mutation) the following might occur:

Group Number Encoding;: Only swap, as might violate |V] limit
Permutation w/Separators: Separators swap may corrupt array
Graph & Group Separator Perm.: Can swap any values in either array

These limitations make it difficult to manipulate the vertices in a specific subgraph, even
within the |V] constraints for the specific k-way partitioning being solved. Graph and

Group Separator Permutation encoding does so, with less time and space requirements.

Now that a suitable encoding scheme has been established, it is necessary to form a
population. Various methods have been suggested, however, random creation of
individuals has turned out to be the most useful [51, 34]. With group number encoding, a
value within the subgraph range is randomly assigned, assuming the |V] limit has not been
violated. For permutation with separators, a random vertex permutation is obtained and

separators are inserted at legal positions within the array.

A similar operation is used for our encoding technique, where the vertex list is a
permutation of the sorted node name list and the M-values are stored in a second,
independent array. Additionally, one individual in the genesis population was a

topological sort of the input graph. A topological sort of a DAG ensures that all ancestors

54

include various crossover routines and mutations. We also introduce migration as a

unique operator.

Operators are also rated on an intelligence, or domain awareness scale. A low-awareness
operator will simply compute a random operation, i.e. base its change on a pseudo-
random number generator. More intelligent operators will incorporate the constraints,
parameters and goals of the final solution. They may include macro and micro-levels of
information. Furthermore, the incorporation of this domain-awareness may be explicit or

implicit. [57, 42, 23].

The mutation operator used, PairSwas, had low domain-awareness knowledge. PairSwap
allows specification of two mutation rates, V; and k;, on a single parent and generates a
single offspring. V; controls the number of random vertex swaps obtained. K, was
specifically created for the new encoding method. It allows specification of the number of
random subgraph size swaps. Once any pair of elements, vertices or subgraph sizes, were
swapped, they are eliminated from further mutation. This limits the mutation rate to 50%,
although we used much lower than this. An example mutation, with V, =k, = 0.50, 1s:

[BCDEAFGHIJK], [3323]) (Topological sort for ISCAS 17)

(
([BCDEAFGHIJK], [3323]) Pool: [ABCDEFGHIJK]
([ICDEAFGHBJK], [3323]) Pool: [ACDEFGHJK]
([ICEDAFGHBJK], [3323]) Pool: [ACFGHJK]
([ICEDGFAHBJK], [3323]) Pool: [CFHJK]
([ICEDGJAHBFK], [3323]) Pool: [CHK]

([IHEDGJACBFK], [3323]) Pool: [K],Done w/vertex mutations

([IHEDGJACBFK], [3323]) Pool: [3323]
([IHEDGJACBFK], [2333]) Pool: [33]
([IHEDGJACBFK], [2333]) Pool: [],Done with |V| mutations

SR ICHONOIEOHONONONONOI L

([IHEDGJACBFK], [2333]) (Final offspring)

55

As the example shows, if a pair is used in a mutation, it is removed from the mutation

pool, thus allowing each vertex to move only once in a generation.

The intent of mutations is to fine-tune an existing good solution, while the disruption
caused by this example mutation is rather large. Crossover or other operators normally
handle large disruptions in genetic material. The primary intent of crossover is to merge
pieces of existing high-quality solutions, with the hope they will produce good, “healthy”

offspring.

We selected two existing crossover methods to use with our encoding technique. Both
crossover operators have been used with graph partitioning using other encoding methods
[57:258,42:110-111]. The two crossover operators selected were partially mapped
crossover (PMX), and order crossover (OX). These particular crossover operators
incorporate the desired disruptiveness sought after with crossover operators, while

generating feasible offspring.

Both PMX and OX use two parents to generate offspring. Both operators then select two
random cut points. Data between these two cut points is then inserted in the same position
into the empty offspring arrays. The PMX operator then adds any vertices in P, not
already in C;. Remaining conflicting vertices are then added based on their mappings
between C;, Py, and P,. The M-values for the_ subgraphs were assigned based on the
parent generating more genetic material to a child. The following example should clarify

this procedure.

P1=

P>

Cutpoint; = 3,
Cutsize = 5,

Cl'—'
C2=

C1=
C2=

C1=
C2=

([ABCDEFGHIJK],
([BCDEAFGHIJK],
vl =

([xxxDEFGHxxx],
([xxxEAFGHxxX],

([BCxDEFGHIJK],
([xBCEAFGHIJK],

([BCADEFGHIJK],
([DBCEAFGHIJK],

56

[3323])
[3233])

Cutpoint, = 8
11,

thus C;[M] = P;[M]

[3233])
[33231])

[32331])
[3323])

[3233]), D -> E, E
[3323]), A -> E, E

The OX operator is similar in operation, however, as its name implies, it desires to

preserve the order of vertices from the second parent. After exchanging the data between

the cut points, starting to the right of the cut point, data is copied, looping around when

the end of the chromosome is reached. Vertices already present in the offspring are

skipped. A similar example, for the OX operator and using the same parent strings,

follows:
P; = ([ABCDEFGHIJK], [3323}])
P, = ([BCDEAFGHIJK], [3233])
Cutpoint; = 3, Cutpoint, = 8
Cutsize =5, |V| = 11, thus C;[M] = P;[M]
C, ([xxxXDEFGHxxx], [3233])
C, = ([xxxEAFGHxxx], [3323])
Cq ([BCADEFGHIJK], [32331)
C, = ([BCDEAFGHIJK], [3323])

Comparing the two operators, we see it is possible for them to generate the same answer.

57

The low-rate mutation operator, coupled with the partial order preservation characteristics
of the crossover operators, can lead to population stagnation, where any of these operators
tend to only create offspring that are relatively close in nature. This problem can be
compared to the issues raised with inbreeding of a particular species strain. To alleviate

this stagnation and solution localization, we introduce the “migration” operator.

Recalling how the original population is created, we decided it was best to simply
randomly generate a set of individuals. Within each generation, we simulate individuals
migrating to the existing population by simply creating new ones. They are created in the
same random manner as the original population. This process may actually be reworded
as a worst-case 100% mutation. In other words, it may be viewed as generating a
permutation of any individual. As with mutation and crossover, a ratio operator relative to

the population size also controls migration.

We now have the capability to encode a solution, create a population, control the number
of generations and generate these generators via operators. We must know establish a
method of evaluating these individuals. This method is normally called a costing or
fitness function. It determines, based on a defined environment, the fitness of a particular
individual. In other words, if we had two fish, one freshwater and one saltwater, they

would score different fitness values based on the environment’s salinity.

Some genetic algorithms evaluate fitness explicitly and some evaluate it implicitly. An

explicit fitness function would not allow the freshwater fish to be included in the next

58

generation,; if it indicated it could not handle the salinity level of the current environment.
It would not allow any accommodation for how much salinity it could handle. An implicit
fitness function, on the other hand, would allow it to survive, however, it would rate it

poorly.

The GEA algorithm uses a 3-valued implicit fitness function based on the edge cut,
maximum delay and subgraph vertex weights. For each of these values, a maximum and
contribution factor value was determined. The sum of the three contribution factors must

_ equal one. Furthermore, if the actual divided by the maximum was greater than one, this
value was added to the function, otherwise the product of the ratio and contribution factor

was added. The formal equation is:

4

Ca/Cm>1’Ca/Cm Da/Dm>1’Da/Dm Wa/Wm>1’Wa/Wm
“le,/c.<1c,/C, *C, |D,/D,<1,D,/D,*D, |W,/W,<LW, /W, *W,
C; +D; +W; =1

Assuming an individual is fully feasible and meets the environmental or domain
constrains, the value of G, <= 1, with smaller values indicative of better solutions. This
cost function allowed us to experiment with VLSI Design, Scheduling, Equal Piles, and
Map Coloring problems. The equal piles version was used to determine experiment

distributions on different machines, based on the number of vertices in the graph.

After evaluating a population, or at least new offspring formed during a generation, we
must have some method of selecting a new population. One of the primary selection

methods is elitism. Based on elitism, we select a certain number of individuals based on

59

the allowed population size. The remaining individuals are selected via a number of
methods. In GEA, we also specify a parental selection rate that allows us to force a
number of parents selected, with the remaining individuals chosen from offspring not

selected during the elitism phase.

The following table and drawing depict the solution obtained by GEA for the ISCAS C17
circuit. You may observe the differences of the three encoding schemes rather readily.
Although the new encoding scheme takes up more memory, if an array data structures is
used, information on the partition is much more readily accessible. Additionally, no
conversions are necessary to identify what vertex is in what partition. It is also not

necessary to scan the entire array to determine a partition's members.

ISCAS 17 Vertex List [ABCDEFGHIJK]
Group Number Encoding [12234313434]
Permutation w/Separators [AG;BCF;DHJ;EIK;]
Graph & Group Separator Permutation ([AGBCFDHJEIK], [23331])

OO O
G

()7

0’ /

Figure 4-4 (GEA Partitioning of ISCAS C17)

60

4.3. CTR: Center-Based Algorithm

Our second algorithm, CTR, is based on graph center metrics. The proposed algorithm
was a recursive algori;hm involving determining a graph center, extract a subgraph based
on this center, and repeat this process until all vertices were allocated to a subgraph.
However, after our historical literature review, we decided to extend the efforts of F.
Harary and F. Buckley [20] and C. Lenart [10]. To understand the approach, we shall first

define several center-related concepts.

The intuitive idea in CTR is suppose a graph is a pictorial representation of some physical
object and the vertices are potential grip points. A balanced k-center is a set of vertices in
this object, which if physically grasped at these k-center grip points, balances the load.
For example, a 4-center of a large box might be the four corners of the box. Similarly, if
the vertices in four subgraphs of a partitioning were all “close” to a pre-determined vertex

in their respective subgraphs, the partitioning would be a good partitioning.

Center distances may be measured in a several means. We shall concern ourselves with
two specific measurements, eccentricity and status. Eccentricity of a vertex is defined as
the longest shortest path :f‘rom the vertex, v, to all other vertices in the graph. The
eccentricity is often provided in tabular format. Each row and column intersection defines
the distance between that 'pair of vertices. The status is the sum of the eccentricities for a

given vertex, v.

62

Note [A=1,B =2, ... K= 11]. The following pages are results for ISCAS C17 using the

described CTR variants (RMS represents Root Mean Square, or the square root of the

average of the squared data values):

max (RMS (dy))

Eccentricity Metric Name Abbreviation
min (X dy) Summed Minimum SIN
max (X dy) Summed Maximum SAX

min (RMS (dy)) RMS Minimum RIN
RMS Maximum RAX

Figure 4-5 (SIN: Summed Minimum Eccentricity)

A

e

T

Figure 4-6 (SAX: Summed Maximum Eccentricity)

63

G

Figure 4-7 (RIN: Root Mean Square (RMS) Minimum Eccentricity)

C

C:,1

F:1,2

A

1
AN

B:1,0

G:1,0

ALl

Figure 4-8 (RAX: Root Mean Square (RMS) Minimum Eccentricity)

64

65

4.4. RAN: Random Iteration Algorithm

The random iteration algorithm is rather simple. Its' function is to serve as a control
algorithm for the other algorithms under study. The encoding scheme we created for the
GEA algorithm is used as the underlying solution format. However, instead of
maintaining a large population and generating offspring, a random permutation string is
selected every iteration, to include the initial string. This is compared to the current best
solution found. The iterations continue until either a specific number of iterations have

been achieved or a time limit observed.

After conducting the runs of all the comparison algorithms under study, RAN is set to
execute under a given scenario for the root mean square (RMS) execution time of the
other algorithms. Other time limits are possible, however, this seemed the most suitable.

A minimum of a single iteration will always be conducted.

As a side note, the RAN algorithm is essentially GEA with a generational time limit,
population size of one migration of one, mutation and crossover offspring rate of zero and
elitism rate of 1.0. RAN also uses the same evaluation criteria as GEA, and thus has
similar flexibility when it comes to potential application domains. Samples of RAN

output are provided in the results analysis.

5. Results Analysis

5.1. Overview

Our results encompass a survey of graph visualization tools, along with in-depth
discussion of the experimental graphs used and the partitioning results. During the
original work done on the Best Predecessor algorithm, other than manually drawing the
results, we had no means of visually depicting the results obtained. Additionally,
experiments were conducted on a large cross-section of related graph families,
representing a number of domains. Primary study was focused on graph families

representative of the VLSI design and parallel processing domains.

During the intermediate stages of our research, we had attempted to develop a Tcl/Tk

66

GUI applet. The intent behind this applet was to link the graph generators, text editing of

the input and output files, and a graph visualization tool, or GVT. While the first two
objectives were obtained, development of a GVT was well beyond the scope of this

research. However, a need still remained to directly view the resulting partitions.

We focused considerable attention on utilization of existing GVTs. Several GVTs were
considered, to include on-line Java, UNIX, Macintosh, and DOS-based applications. In
the end, we settled on three specific GVTs. These three applications are:

1. GraphViz: industry research automated graph drawing tool [47]

2. GraphLet: university research Tcl/Tk application [36]
3. Tom Sawyer Software: industry commercial product [54]

67

These tools greatly facilitated our understanding of both the input graphs and the resulting
partitions. Additionally, they helped guide intuitive insights in development of the

AGPM.

These tools represent a cross-section of graph visualization and graph theory. GraphViz
provides both command-line and GUI modes. The GUI is built on a proprietary, but
extensible scripting language. It is made freely available by a commercial research
laboratory. Although the GUI required a 3-button pointing device, e.g. mouse for full
functionality, it still offered the poorest user interface. However, the input file format was
extremely robust, although it did not permit pre-determined vertex positions. If a desired
graph was obtained, it had to be saved in either postscript printer or screen bitmap
formats. GraphViz is the only application to provide native partitioning support, while
offering reasonable performance in both speed and the size of graphs it is able to handle.

It became our tool of choice for all post-partitioning analysis.

GraphLet, like GraphOp, is a Tcl/Tk applet. It combines compiled applications with the
graphic scripting capability of Scriptics’ Tcl/Tk. This tool offered the broadest number of
automated graph drawing algorithms, along with a number of other graph metric and
analysis tools. It is developed under a continuing project at the University of Passau,
Germany. The researchers at this institution are also assisting in the development of a
standard graph description language. However, this tool offered the slowest performance

and no post-partitioning drawing capability.

68

The commercial package, Tom Sawyer, was not a pre-packaged application but rather a
set of Application Programming Interface, or API, calls, offered with both a C/C++ and
Java Software Development Kits (SDK). This enables extensive end-user customization.
Budget restrictions for our research limited our evaluation of Tom Sawyer to a
demonstration developed with these APIs by Tom Sawyer Software Company. The GUI
was complete and functional, while the layout algorithms were the fastest observed.
However, partitions were only indirectly supported, while graph files were several times

larger relative to the others.

Our primary development environment, Maple V, did provide rudimentary graph drawing
support. It provided a choice of a single concentric arrangement and layered concentric or
linear arrangements. However, the automation level was low, as it was necessary for us to
specify what vertices would be in what layer and their order of appearance within each

layer.

The images below show the ISCAS C17 graph as drawn by Maple V and the three GVTs.
Although difficult to see, Maple V provides a fair amount of control over the resulting
image, a large portion of it must be done via user commands, e.g. the rotate command
was used to obtain the image in the Maple V sample. The differences in the capabilities of
the other GVTs are readily apparent. Although GraphViz was our final choice, the
interface requires a high degree of user knowledge. For example, one must be cognizant
of the node property names when working with GraphViz, while GraphLet and Tom

Sawyer provide property templates.

71

5.2. Graph Families

Our experimental graphs were based on previous research. There are three families:

1. Caterpillar: line of n vertices with m inputs and outputs [51]

2. Geometric Grid: equally spaced square of Jn * In vertices [23, 48]
3. Random Geometric: » random vertices, connected if within ¢ units [23, 51]

The caterpillar family consists of a set of nodes along a central path, along with an equal
number of primary inputs and outputs attached to each. The geometric grid family
consists of a specified number of vertices spaced equally apart on a 1 by 1 unit square.
They are connected based on a pre-determined edge pattern and geometric adjacency. The
random geometric family consists of a specified number of vertices randomly placed in
the same 1 by 1 unit square. However, these vertices are connected if within a distance ¢.
In other words, for each vertex, all vertices located within a circle of radius ¢ are

connected.

Precedence, or head - tail determination is based on the vertex numbers, where a lower-
numbered vertex is always the head and a higher-numbered vertex is always the tail. This
eliminates the potential for cycles. After each graph is constructed, a transitive reduction

is performed, where any direct edges between a head and tail vertex are removed if the

tail vertex has an inherited relationship to the head vertex.

After construction, but before the experiment runs are conducted, each graph has its node
names randomly permuted. This helps eliminate any algorithmic bias for graphs where
only a lower-numbered node may be a head vertex in a given relationship. The following

pages provide samples of 81-vertex Caterpillar, Geometric Grid-S and Grid-X graphs.

72

Caterpillar

T BITIE

Figure 5-5 (Maple V) Figure 5-6 (GraphViz)

Geometric Grid-S

0.81

]
0.6

0‘4'_

0.21

0 02 04 06 08 1

Figure 5-7 (Maple V) Figure 5-8 (GraphViz)

73

Geometric Grid-X, Original

m
g
S
.m
:
ENNNNNNNNE
BV B NN NNNNNNE
11 NN
=2 8 NN L
) © =
o DD
DODNNNY
o INININN NN e
i R R T,
e e = & o e = = =

Figure 5-12 (GraphViz)

Figure 5-11 (Maple V)

74

For the random geometric graphs, there were four variants we used. They are all based

on the formula d = IT * |V] * £, where ¢ = radius of the circle from the vertex, v, the |V] is

the number of vertices in the graph, and d is the number edges per vertex. The following

table summarizes the values used for these variants.

t d Comments
2 constant distance,
1 0.1 701 variable density
= (0'11V| iable dist
= variable distance,
2 a |V| (0) 1)‘V| constant density percentage
= /(0.1)/7
ez
= ”—V‘ variable distance,
3 | | 72 constant density value
-]
=x(/z)|V| constant distance
4 s _ IVI/” variable density, for [V'|=1,d =t =1/z

The below charts demonstrate the t and d values relative to v for each of the four variants.

04-

0.3
02-

0.1

800 1000

Figure 5-13 (Maple V, |V] vs. t)

400
300
200
100 -
—
0 200 400 500 800 1000

Figure 5-14 (Maple V, |V] vs. d)

83

points. There were several thousand other data points obtained, but not used in this

analysis.

For the partitionings not producing a schedule, a simple scheduling heuristic was used,
based on the resulting partitioning. For each partition in the solution, a topological sort,
based on the vertex delays is generated. For vertices in the same partition with no edge
between them, where one precedes the other in the delay-based topological sort, an edge

is added.

5.3. MEDICIS

Success in this research may be largely attributed to the cluster located at the Ecole
Polytechnique in France, called MEDICIS. This is a heterogeneous collection of
machines, operating systems and software available to those performing mathematics-
oriented academic research. This cluster is managed by LSF from Platform Computing
[31]. The primary computing machines used were (6) Compaq Alpha-based XP 1000
servers and (6) dual-Intel Pentium II servers. Development work was primarily performed
on Windows 95 & NT workstations, along with test partitionings. Additionally, an Alpha-
based server, Apollo, at the University of Nebraska at Omaha, provided testing and

execution of the CTR and RAN algorithms.

84

5.4. Sample Partitioning Results

The next set of images displays the resulting partition obtained for each of the [V| = 81
graph variants and for each partitioning family. The upper left image on each page is the
original graph. GraphViz generated all the images of these sample results. These pages
provide a guide on how the resulting partitionings aesthetically appear for a given graph

family.

There are many facets of each algorithm apparent. The BPD algorithm generates a large
amount of vertex replication. The assumption of DSC that there are an unlimited number
of subgraphs is readily apparent, along with an occasional decision that no partitioning is
necessary. CTR, largely as a side-effect of its construction method, often creates
aesthetically pleasing results. GEA and RAN both tend to be rather messy in their
appearance, but as will be seen later, do occasionally find smaller delays than the other

algorithms.

95

5.7. Cross-Algorithm Category Analysis

Based on the problem definition we were examining, coupled with the nature of the
domains and algorithms compared, we selected five key comparisons. These key
comparisons are each measured relative to the percentage of minimum delays for the
respective algorithm category. If more than one result for a specific category was
available, the minimum result for that sample was used. Variants of the CTR and GEA
algorithms are examined using the same comparisons in subsequent two sections,
respectively. The five key comparisons used are:

Graph Family

D: 10 & 1,000

Domain: Circuit & Schedule

|E| and [V| Partition Limits
Density: [E|/ [V|

Al o e

Each graph provided summarizes the 828 possible partitioning for the algorithms used.
Each pair represents the total and unique percentages for each algorithm. Although not
always significantly variant, they are provided for completeness and to indicate how often
an algorithm generates a unique minimum. The resulting data was first converted from a
text file to a Microsoft Access database. Specific queries were then executed, and the
results transferred to Microsoft Excel. These imported query results were then used to
generate the graphs shown on the following pages. A short discussion is included on each
page, summarizing the visual depiction of the data shown on that page. There are many

other metrics obtained and possible, however, they are not all included here.

Graph Family vs. % Min Dy

—

100%

/“\

90% - N 7N

80% - e "\ // \\
whd 70‘%) \\\) 4 \\
(] 60% +—— N < ;;/ \\\ .]
S 50% | N A A _— L
= 40% - | Y — e
2 309 | S P

20% e

10% — 7"/.7 : -

0% . R ‘

Cat GeoGS GeoGX GeoT1 Geol2 GeoT3 GeoT4

—+—BPD ~a— CTR -+~ DSC —— GEA - RAN| Graph Family

Figure 5-88 (Total)

70%

60% |- S -
= 50% | S N - —
Q N _/ AN
AN - AN
o/ | : ve -
.E 40 /o \,\«/ /\&\ /,J/*
= 30% |- - S ,. .
- / . ,/
s> 20% | / -
10% /\\-/(.\ |
o, o —

Graph Family

Cat GeoGS GeoGX GeoT1l GeoT2 GeoT3 GeoT4

| —+—BPD —#—CTR —+~DSC —GEA - RAN!

Figure 5-89 (Unique)

The graph family proves to be one of the most distinguishing metrics when classifying
partitioning algorithms. Notably, BPD outperforms DSC on circuit-simulation graphs.

CTR averages approximately 10% of the findings, with GEA and RAN each contributing

a negligible amount. Additionally, BPD finds 30% of the total minimums for the
Geometric Grid—-Square graphs, yet none of the unique minimums. Note that DSC and

BPD do not observe [V| and [E| limits.

97

Algorithm Category vs. % Min D, (Circuit & Schedule)

100%
90% - e
80% +— - e —
70% 4 e IV
60% \
50%
40% -
30% -
20%
10%

0%

% Min Dt

BPD CTR DSC GEA RAN
Algorithm Category

——Circ —=—Sched -+~ Total |

Figure 5-90 (Total)

 70%
60% —
50%
40%
30%
20%
10%

0%

% Min Dt

BPD CTR DSC GEA RAN

r> ——Circ —a— Sched — dea

Figure 5-91 (Unique)

As 1s observed, DSC reports the best results. However, BPD performs exceptionally well
when evaluating a graph and its results partitioning as a circuit. This was expected, as it
was designed for circuit partitioning. CTR appears best for schedule determinations;
however, we expected it to perform better with circuit partitionings. GEA and RAN
essentially tie for last place. A subsequent paper might compare based on the graph's
granularity and linearity metrics.

98

Algorithm Category vs. % Min D; (D =10 & D =1,000)

70%
60%
50% |—

40% N K /' /
.\« //
30%

20% —_—a
N

10%

0% T :
BPD CTR DSC GEA RAN

% Min Dt
//.

10 —a—1000 -+ Total| Algorithm Category

Figure 5-92 (Total)

70%
60% - N
50%
40% -
30%
20% A
10%
0% -

% Min Dt

BPD CTR DSC GEA RAN
N Algorithm Category

——10 —=—1000 -+ Total |
—_—

Figure 5-93 (Unique)

These graphs depict the best performance of each algorithm for the two inter-partition
delay variants, D = 10 and D = 1,000. GEA and RAN both appear to be affected to a
minor extent when D = 10 (representing a small inter-partition delay). However, none of
our other data provides any indication of a reason for this difference. The significant
difference in DSC is most likely attributable to its assumption of an infinite number of
clusters, creating more delay paths.

99

Algorithm Category vs. % Min D, (E-Split & V-Split)

 80%
7070]
60% —
50%
40% | —
30%
20% |—
10%
0%

% Min Dt

BPD CTR DSC GEA RAN

—e—E=1,V=2 —a—E=2, V=1 o E22, V=2
——E=77,V=238 - E=160, V=400 —— Total

(Algorithm Category

Figure 5-94 (Total)

 80%
70%
60% | E— S
50%
40%
30%
20% | e - \
10% |- | N e
0% "

% Min Dt

BPD CTR DSC GEA RAN

—+—E=1,V=2 —a— E=2, V=1 et E=2, V=2
——E=77,V=238 - E=160, V=400 —— Total

W Algorithm Category

Figure 5-95 (Unique)

E and V represent the |E| and |V| limits for a partition. When E = 77 and V =238, we are

simulating mapping to Xilinx's Spartan FPGA family. For E = 160 and V =400, we are

mapping to Lucent's Orca 2 FPGA family. Overal, E=2,V=2; E=160, V=400; E =

2, V=1,E=77,V=238;and E =1, V=2, are the easiest to hardest limits to partition.
DSC comes in second, and third, for some E and V limits. GEA and RAN are relatively

unaffected by the partition limits.

100

Algorithm Category vs. % Min D; (|E|/ |V|)

100%
90% | : e
80% | — :

70% ~
60%
50%
40%
30%
20%
10% =
0% [[[—
075 100 125 150 175 200 Total

[E| / VI

% Min Dt

——BPD -=+-CTR -4 DSC ——GEA = RAN/

Figure 5-96 (Total)

100% -
90%
80% |
70% |
60% | == -
509/0 I - T e T m\\
40% RS ™
30%
20%
10%

0%

% Min Dt

1.75 2.00 Total

|—+—BPD —=—CTR -—4+-DSC ——GEA - RAN| |E| 'Y |]

Figure 5-97 (Unique)

The clear differentiation between various density levels should come as no surprise, as
the graph family also had significant impact on an algorithm's performance. We have
another reversal, when the density is 1.75 — 2.00, as BPD drops from 40% of the total
minimums to 0% of the unique minimums. Additionally, the CTR, GEA and RAN
algorithms offer relatively similar total and unique performance. It is important to recall
CTR took less execution time than RAN and GEA.

101

5.8. CTR Variants Analysis

The results of CTR used in the previous section were the best results for each particular
graph and control parameter limits combination. The CTR algorithm had four variants
used to obtain these results. These variants determined what the first vertex in each sub-
graph would be. All variants used the same eccentricity data. The variants are:

RAX: Root Mean Square (RMS) Maximum Eccentricity

RIN: Root Mean Square (RMS) Minimum Eccentricity

SAX: Summed Maximum Eccentricity
SIN: Summed Minimum Eccentricity

PO~

Although the CTR algorithm has no explicit [E| limits currently, it was extremely
successful in adhering to them with the selected test graphs. Overall, of the 3,312 test
cases obtained by the CTR algorithm variants, only 1.2% (40) of them failed to observe
the |E| limits desired for the test. More importantly, the most successful of the four
variants, RIN, had no violations of the [E| limits. RAX failed both by itself and in
conjunction with SAX and SIN. However, SAX and SIN never failed in the same
scenario. In order of increasing violations, the variants had the following |E| limit

violations: RIN (0), SAX (4), SIN (12), RAX (24).

Additionally, the only cases where the CTR variants failed to observe the |E| limits was in
the dual bi-partitioning case (E-split =2, V-split = 2). Eight graphs were affected by this:
GeoGX_16, GeoT1 100, GeoT2 16, GeoT2_9, GeoT3 16, GeoT4_25, GeoT4_36 and
GeoT4 _64. Note that no Caterpillar or Geometric Grid-Square variants had any violations

of |[E| limits by the CTR algorithm. The following reflects the same analysis as before .

102

Graph Family vs. % Min D,

100% -

90%
80% %\
70% | —

60% - /\\

7

50%
40% +——
30% |
20%
10% -

0% T T T T T T
Cat GeoGS GeoGX GeoT1 GeoT2 GeoT3 GeoT4

Graph Family

% Min Dt

—+RAX —#—RIN —a—SAX —»—SN]

Figure 5-98 (Total)

70%
60% - -
50%
40%
30%
20%
10%

0% -

% Min Dt

Cat GeoGS GeoGX GeoT1 GeoT2 GeoT3 GeoT4

| Graph Family

| +—RAX —+-RN -+ SAX —SN]

Figure 5-99 (Unique)

From this graph, we are able to observe that SIN is the preferred variant for the
Caterpillar and Geometric Grid-Square and Geometric Touch-3 graph families. The RIN
variant dominates in the Geometric Grid-X and Geometric Touch-1/2/4 graph families.
Both SAX and RAX, average 10% or below (unique). They are only close to
outperforming RIN and SIN in the Caterpillar (total) and Geometric Grid-X (unique)
scenarios.

103

Algorithm Category vs. % Min D, (Circuit & Schedule)

100%
90% , -
80% - ~ — —
70% -
60% E—

50%

40% - —
30% - - -
20%
10%

0% 1 ‘
RAX RIN SAX SIN

| Algorithm Category

[——Circ —s=—Sched & Totegj*I

% Min Dt

Figure 5-100 (Total)

70%
60%
50%
B 40% |
2 |
= 30% .

52 20% T) .

10% e R D
f/
0%
RAX

RIN SAX | SIN
Algorithm Category

| ——Circ —=—Sched -+ Total |

Figure 5-101 (Unique)

For the total number of minimums, all four variants are better with circuit results than
schedule results. However, in terms of the unique results, they each find more unique
results for schedule than circuit domains, except for RAX. However, CTR performed
better on the schedule domain in the cross-algorithm category of the previous section. For
the total number of results, SAX is better with circuit graphs and RIN with schedule
graphs. RIN is preferred for unique results.

104

Algorithm Category vs. % Min D (D=10 & D=1,000)

RAX RIN SAX SIN

Algorithm Category

—~—10 -=—1000 - Total]

Figure 5-102 (Total)

70%
60% |
50% | —]
40% -

30% | : -
20% -
10% | .=

0% ' »
RAX RIN SAX SIN

% Min Dt

— Algorithm Category

——10 —=—1000 « Total |

Figure 5-103 (Unique)

All four variants obtain tightly clustered results, regardless of the relative inter-partition
delay value. RIN has nearly a 10% lead , followed by SIN, RAX and SAX. Essentially,
the inter-partition delay value does not have an impact on the variant's partitioning
results.

105

Algorithm Category vs. % Min D, (E-Split & V-Split)

% Min Dt

075 100 125 150 175 200 Total
[E[/ V]

. ——RAX -—=RN -+ SAX —»SN |

Figure 5-104 (Total)

100%
90% - - —
80% | -]
70% :
60% | — R

50% - |
40 OA) - R - /\ |
30% -

20% /<>< ¥.

0% -

% Min Dt

0.75 1.00 1.25 1.50 1.75 2.00 Total

—~—RAX RN --S5AX —%SN | |E|/|V|

Figure 5-105 (Unique)

As in the cross-algorithm category analysis, the density factor has an impact on the
performance of the CTR variants. It has a relation to the graph family comparison,
although it is different. RIN and SIN are the clear leaders for the {1.25, 1.75,2.00} and
{0.75, 1.00. 1.50} density values, respectively. This is true for both the total and unique
results values except for when the density is approximately 1.00.

106

Algorithm Category vs. % Min D¢ ([E|/ |V))

80%
70% |
60% -
50% 1
40% |
30% |
20% -
10% - -
0%

% Min Dt

RAX RIN SAX SIN

——E=1,V=2 —w— E=2, V=1 ot E22,V=2
——E=77,V=238 - E=160, V=400 —— Total ‘

Algorithm Category

Figure 5-106 (Total)

80%

700/0 1) B

60% | :

50% |- e

40% |

30% -]

20% | e , o

10%
00/0

% Min Dt

RAX RIN SAX SIN

——E=1,V=2 —=—E=2, V=1 ~e-E=2,V=2 |
s E=77,V=238 - E=160,V=400 -»—Total

Algorithm Category

Figure 5-107 (Unique)

These results are somewhat unusual. For the total percentage minimum D, values, RIN is
the leading variant, followed by RAX, SAX and SIN. However, for the unique percentage
minimum D, values, RIN, followed by SIN, RAX and SAX is the order. Notably, the SIN
variant outperforms RIN when |E| = 77 and |V| = 238.

107

5.9. GEA Variants Analysis

As with CTR, the GEA algorithm also was tested with four different variants. However,
while the CTR variants affected the seed vertex for a partition, essentially a pre-
processing stage, the GEA variants where primary algorithm variants. Although there
were a number of parameters to experiment with, the two selected were the crossover
operator used and the level of elitism. For each parameters, there are two values,

providing four variants.

The crossover operators used were the PMX (permutation) and OX (order) operators. The
two elitism values used were E = 0.50 and E = 0.75. Thus, for the current generation,
parents and offspring, 50% and 75% of the best individuals, respectively, were selected.
For both variants, 25% were randomly selected from the remaining parent individuals.
When E = 0.50, the other 25% were selected from the remaining offspring of the current
generation. The combined variants are:

1. oxE50:0X/E=0.50

2. oxE75:0X/E=0.75

3. pmxE50 : PMX/E=0.50

4. pmxE75: PMX/E=0.75
As we have seen, the GEA algorithm experienced relatively poor performance relative to
the others. However, it is also the only algorithm to evaluate complete solutions every
iteration and observe the |E| and |V| limits. It is also the one most likely to observe a
relative significant speed improvement if converted to a compiled language. Additionally,

it is flexible, as we were able to use its' encoding scheme for the RAN algorithm, a load-

balancing solution for our experiments and the map-coloring sample provided later.

108

Graph Family vs. % Min D

e o o S]
100%

90% -
80% | — —
70% ' -
60%
50%
40%
30%
20% +
10% +
0%

% Min Dt

Cat GeoGS GeoGX GeoT1 GeoT2 Geol3 GeoTl4
Graph Family

| —— OXE50 —#— OXE75 ~a— pmxE5S0 —e— pme?a

Figure 5-108 (Total)

70%
60% - ; —]
50% 1—]
40%
30% -
20% -
10% -
0% ‘ ; \ \ ‘ T

Cat GeoGS GeoGX GeoT1 GeoT2 GeoT3 GeoT4
Graph Family

% Min Dt

| —+—OXE50 —#—OXE75 -+ pmXE50 —x—pmxE75|

Figure 5-109 (Unique)

As with the other comparisons, graph family is a significant predictor of an algorithm's
performance. The graph family's and their best variants are: Cat:pmxE75, GeoGS:0xES50,
GeoGX:0xE50, GeoT1:0xE75, GeoT2:pmxE75, GeoT3:0xE50, GeoT4:pmxES0. The OX
operator dominance is relevant through the remainder of this analysis, along with the
slight edge of the E = 0.75 parameter.

Algorithm Category vs. % Min D, (Circuit & Schedule)

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

% Min Dt

109

oxE75 pmxE75

oxE50 pmxE50

F"- Circ

~a— Sched g TOtal ‘ Al go rithm Catfg ory

Figure 5-110 (Total)

70%
60%
50%

30%
20%

10%
0%

% Min Dt

40% |

oxES0 oxE75 pmxE50 pmxE75

—e— Circ

—=—Sched —«— Total |

Algorithm Category

Figure 5-111 (Unique)

GEA’s better performance on circuit vs. schedule is due to the fact that position
information is not directly used in the evaluation. In other words, a vertex can still be in
the same subgraph in two different array positions, but the position has no direct impact
on the algorithm execution or individual evaluation. However, complete reversal occurs
with the unique values, where schedule percentages are higher than circuit percentages.
Again, OX / E = 0.75 have the leading results.

110

Algorithm Category vs. % Min D, (D=10 & D=1,000)

70% —
60% |- -
50% |
40% |
30% - — -
20% |
10% | =

0% T
oxE50 oxE75 pmxES0 pPMxE75

% Min Dt

10 —=—1000 -+ Total| Algorithm Category

Figure 5-112 (Total)

70%
60% |
50%
40%
30% 1—
20% o
10%

0%

% Min Dt

oxE50 oxE75 pmxE50 pmxE75
Algorithm Category

——10 ~=—1000 -4~ Total |

Figure 5-113 (Unique)

The OX and E = 0.75 parameter again take the lead. However, we have an interesting
performance results. For D =10, OX / E = 0.75 outperforms OX / E =0.50 and PMX / E
= 0.50 outperforms PMX / E = 0.75. The exact opposite is true for D = 1,000. This holds
for both the total and unique results, with no reversals.

111

Algorithm Category vs. % Min D (D=10 & D=1,000)

80% -
70% - o
w ©60%
QO 50% | e —
é 40% | —
°7 20% | —
10%
00/0 B [Il
oxE50 oxE75 pmxES50 pmxE75
e E=1,V=2 —a E=2,V=1 s E=2,V=2 Algorithm Category
——E=77,V=238 - E=160,V=400 —s—Total |
Figure 5-114 (Total)
80%
70%
— 60% |
Q 50% —
S 40% 1
= 30% - :
10% = e
3 _ S
0% ! y
oxE50 oxE75 pmxESO pmxE75
——E=1,V=2 —=—E=2,V=1 -« E=2,V=2 Algorithm Category
——E=77,V=238 - E=160, V=400 —— Total |

Figure 5-115 (Unique)

For the most part, OX / E = 0.75 again have the leading results. However, the two FPGA
samples we used have a significantly different results, where the OX operator is better
for Xilinx's Spartan family, while Lucent's Orca 2 family is handled well by the PMX
operator. This result is observable on both the total and unique graphs.

112

Algorithm Category vs. % Min D (|E|/ |V])

100% = |
90% | —
80% +— X — _——
70% |- A . S
60% | —
50% -
40%
30% | —
20%
10% -
O% T I I I T
075 100 125 150 175 200 Total

[E| / VI

% Min Dt

—+—0XE50 —=—0XE75 -« pmxES5S0 —x—pme?ﬂ

Figure 5-116 (Total)

 100%
90% -
80%
70% - —
60%
50%
40%
30% -
20% -
10%
0% |

% Min Dt

0.75 1.00 1.25 1.50 1.75 2.00 Total

= EWM

| —+—OXE50 —#—0xE75 -~ pmxES50 —xépme75‘

Figure 5-117 (Unique)

The significant difference between these two graphs can be partially explained by the fact
that the lower density graphs also have a lower number of vertices and edges. These
graphs are thus easier to partition. However, the remaining values, [E|/ [V| > 1.25 offer
good discussion. We can see the OX and E = 0.75 dominance, although the PMX
operator has a strong showing. This is further evident from the tight clustering of the
average totals of all variants on both graphs.

5.10. AGPM Sample

113

Here we attempt to synthesize the results presented in this chapter, coupled with the long-

term objectives of the AGPM, to provide a sample of how it would appear and be used.

Additionally, factors as to whether replication or the number of available partitions (k)

would also be available. This data would be accessible based on any subset of these

metrics. Note that only critical metrics, based on our analysis, are included here.

Graph Structure | Density | Domain |E|-limit |V|-limit Algorithm
E|/]V]D
Caterpillar <1.25 Circuit 1 1 BPD
Geometric Grid >1.25 | Schedule 2 2 CTR
Geometric Grid-X Lucent Orca 2 | Lucent Orca 2 DSC
Geometric Touch Xilink Xilink GEA
Spartan Spartan RAN

For instance, the relative inter-partition delay was not determined to be significant. Most

notably, the original graph structure and density, coupled with the application domain,

were most significant. As mentioned earlier, future research would directly benefit from

some measure of the linearity and/or granularity of both the original graph(s) and the

resulting partition(s). These metrics would then be used to determine which algorithm to

use, based on the input and the desired output controls.

For example, when working with Caterpillar graphs and in the Circuit domain, BPD is the

optimum algorithm. However, if replication is not permitted, then the RAX and RIN

variants of CTR, or perhaps the OX/E = 0.75 and PMX/E = 0.75 variants of GEA are best

suited. If we are afforded an unlimited number of devices (e.g. raw speed is the only

objective), then DSC is the algorithm of choice.

114

6. Conclusions

In summary, we have presented the abstract graph partitioning model, or AGPM. This
model was used to compare two domain-specific algorithms. Additionally, the AGPM
was successfully used to demonstrate its ability to motivate the development of our two
proposed algorithms. We also provided a comparison of graph visualization tools. Along
with the comparison, development was begun on a research database, PRRS [Appendix
B], and a unifying GUI, GraphOp. Future plans would call for the conversion of

GraphPar to a compiled language [Appendix D].

6.1. Future Directions

Future directions of research are significant with any number of possible avenues. There
is of course, the continued development of the AGPM. Although we offer only a sample
here, compilation of both existing and future data would serve to further determine which
metrics are useful when distinguishing between domains and algorithmic results.
Eventually, the final product would be a multi-dimensional matrix or a decision tree
leading users to the desired algorithm, while providing an explanation of the domains and

graphs the algorithm is best suited for.

We also suggest further experimentation with any of the discussed algorithms: BPD,
DSC, GEA, CTR, and RAN. BPD would benefit from replication limits, versus having it
as a post-processing step (if required). DSC, while extremely efficient, could be mapped

to domains requiring a k-way partition limit. GEA warrants further comparison,

115

specifically with the encoding schemes that we used to develop ours. The CTR algorithm
would benefit from other metrics suitable for determining a center and classification of

when each metric is useful.

Our plan to develop a cohesive and robust graph ADT, coupled with a similarly capable
GUI did not materialize. This application would entail two levels, akin to Richard Parris'
Peanut Software, Windisc, where one can view the results only or step through an
algorithm [43]. Furthermore, it would be extensible, in the file formats, GUI capabilities
and algorithms supported. A command-line mode, as with GraphViz or Maple V, would

reduce CPU load when the GUI is not needed.

6.2. Additional Graph Sources

On a different note, The Stanford GraphBase, by Donald E. Knuth, was written to
provide a robust and common platform for graph-theoretic computing [14]. In addition to
having a robust data structure, standard graphs are available at
<ftp://labrea.stanford.edu/pub/sgb/>. We mention this resource as a useful background
text and point of further research. We became aware of it in the latter stages of the own
implementation, but did not incorporate it into our work. The primary thread of
discussion demonstrates that while theoretical results are important, how algorithms

behave with real-world data is often more useful.

Also available are a large number of sample graphs from several sources. We would be

remiss if we failed to mention the C77 circuit used in our examples. This circuit, along

116

with 10 others was distributed to attendees of the 1985 International Symposium of
Circuits and Systems. It, along with other benchmark graphs, is available at
<http://zodiac.cbl.ncsu.edu/> [19, 13]. One of the authors of Graph Drawing, Giuseppe
Di Battista, has a collection of directed and undirected graphs available for download at
<http://www.inf.uniroma3.it/people/gdb/wp12/LOG.htmI> [22]. Finally, our primary
graph drawing tool, GraphViz, has a number of graphs available at
<http://www.research.att.com/sw/tools/graphviz/refs.html> [47].

6.3. Alternative Applications

In addition to the primary domains studied during this research, the AGPM is extendible
to additional domains. For instance, the map-coloring problem may be viewed as a graph
partitioning problem. The minimum number of colors needed to color a map is four,
however, finding a four-color solution is often difficult [25, 15]. Jones and Beltramo also

studied U.S. map colorings [15].

The problem is formulated as follows: with only four colors, color twelve states with each
color in the continental U.S., while also equalizing the geographic area for each color and
minimizing the adjacent edge distance with the other colors. Geographic data was
collected from the Rand McNally Atlas [1], courtesy of Andrew Stalcup. Using the GEA

algorithm, UNQO's server, Apollo, gave the following solution in ten hours.

Coverage Adjacent
Color States 2 g Distance
(mi”) .
(mi)
C, AL, AZ, CO, DE, ID, IN, MO, NH, RI, SC, TX, WV 783,722 0
C, AR, FL, IA, KY, MA, MI, NC, ND, NV, PA, WA, WY 702,351 0
C; CA, CT, GA, IL, MN, MS, MT, NE, NJ, OK, VA, VT 748,240 0
Cy KSs, LA, MD, ME, NM, NY, OH, OR, SD, TN, UT, WI 725,174 0

118

6.4. Final Thoughts

We view this research as a stepping-stone for further work, both for other researchers and
ourselves. The AGPM, existing algorithm variants, new algorithms variants and
supporting utilities all offer a rich number of directions for additional in-depth research.
We have enjoyed our experiments and hope they are of use both the academic and

industrial communities.

10.

11.

12.

119

References

1995 Rand McNally Atlas. Rand McNally Company. 1995.

André DeHon. The Density Advantage of Configurable Computing. IEEE Computer.
April 2000. pgs. 41-49.

Apostolos Gerasoulis & Tao Yang. On the Granularity and Clustering of Directed
Acyclic Graphs, Scheduling and Load Balancing in Parallel and Distributed Systems.
IEEE Computer Society Press, 1995. pg. 143-202.

Balkrishnan Krishnamurthy. 4n Improved Min-Cut Algorithm for Partitioning VLSI
Networks. IEEE Transactions on Computers, Vol. C-33 (5), 1984. pg.438-446.

Bernard S. Landman and Roy L. Russo. On a Pin Versus Block Relationship For
Partitions of Logic Graphs. IEEE Transactions on Computers, Vol. C-20 (12), Dec.
1971, pg. 1469-1479.

Boontee Kruatrachue. Static Task Scheduling and Grain Packing in Parallel
Processing Systems. PhD Thesis, Oregon State University, 1988.

C. M. Fiduccia and R. M. Mattheyses. 4 Linear-Time Heuristic for Improving
Network Partitions. Proceedings of the 19th Design Automation Conference, 1982.
pg. 175-181.

Christos H. Papadimitriou and Mihalis Yannakakis. Towards an Architecture-
Independent Analysis of Parallel Algorithms. SIAM Journal on Computing, Vol. 19
(2), April 1990, pg. 322-328.

Chuck Kring and A. Richard Newton. A Cell-Replication Approach to Mincut-Based
Circuit Partitioning. Proceedings of the IEEE International Conference on Computer-
Aided Design, Nov. 1991. pg 2-5.

Cristian Lenart. 4 Generalized Distance in Graphs and Centered Partitions. Siam
Journal of Discrete Mathematics. Vol. 11 (2), May 1998. pgs. 293-304.

D. F. Wong & Rajmohan Rajamaran. Optimal Clustering for Delay Minimization,
30th ACM/IEEE Design Automation Conference (309-314), ACM, 1993.

Daryl D. Harms et al. Network Reliability: Experiments with a Symbolic Algebra
Environment. CRC Press, Inc. Boca Raton, 1995.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

120

David Bryan. The ISCAS '85 Benchmark Circuits and Netlist Format. MCNC
<http://zodiac.cbl.ncsu.edu/>.

Donald Knuth. The Stanford GraphBase: A Platform for Combinatorial Computing.
ACM Press, 1993.

Donald R. Jones and Mark A. Beltramo. Solving Partitioning Problems with Genetic
Algorithms. Proceedings of the Fourth International Conference on Genetic
Algorithms, 1991. pg. 442-449.

Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr.. Lazy Task Creation: A
Technique for Increasing the Granularity of Parallel Programs. IEEE Transactions
on Parallel and Distributed Systems, Vol. 2, no. 3, July 1991, pg. 264-280.

Eugene L. Lawler, Karl N. Levitt, and James Turner. Module Clustering to Minimize
Delay in Digital Networks. IEEE Transactions on Computers. Vol C-18 (1), Jan.
1969. pg. 47-57.

Eugene L. Lawler. Electrical Assemblies with a Minimum Number of
Interconnections. IRE Transactions on Electronic Computers. Feb. 1962, pg. 86-88.

F. Brglez and H. Fujiwara. A Neural Netlist of 10 Combinational Benchmark Circuits
and a Target Translator in FORTRAN. Int. Symposium on Circuits and Systems, Jun.
1985.

Fred Buckley and Frank Harary. Distance in Graphs. Addison-Wesley Publishing
Company, 1990.

Gerard J. Milburn. The Feynman Processor: Quantum Entanglement and the
Computing Revolution. Perseus Books, Reading. 1998.

Giuseppe Battista et al. Graph Drawing: Algorithms for the Visualization of Graphs,
Prentice-Hall, Inc., Upper Saddle River, 1999.

Gregor von Laszewski. Intelligent Structural Operators for the k-way Graph
Partitioning Problem. Proceedings of the Fourth International Conference on Genetic
Algorithms. Morgan Kaufmann, 1991. pgs. 45-52.

Hesham El-Rewini, Theodore G. Lewis, and Hesham H. Ali. Task Scheduling in
Parallel and Distributed Systems. Prentice Hall, Englewood Cliffs, 1994.

John J. Watkins & Robin J. Wilson. Graphs. An Introductory Approach, John Wiley
& Sons, Inc., New York, 1990.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

121

John K. Ousterhout. 7c! and the Tk Toolkit, Addison-Wesley Professional
Computing, Reading, 1994.

Kai Hwang. Advanced Computer Architecture, McGraw-Hill, St. Louis, 1993.

Kenneth H. Rosen. Discrete Mathematics and Its Applications, McGraw-Hill, Inc., St.
Louis, 1995.

Keshav Dev and C. Siva Ram Murthy. 4 Genetic Algorithm for the Knowledge Base
Partitioning Problem. Pattern Recognition Letters, Vol. 16 (8), 1995. pg. 873-879.

L. J. Stockmeyer. Handbooks in Operations Research and Management Science:
Computing. Eds. E. G. Coffman, J. K. Lenstra, and A. H. G. Rinnoy Kan. Vol. 3, New
York, 1992. pg. 480-517.

Load Sharing Facility (LSF). The Platform Company. <http://www.platform.com/>.

Maple V Release 5.1. Waterloo Maple, Inc. November 5, 1998.
<http://daisy.uwaterloo.ca/>.

Marc Giusti. MEDICIS. 2000. <http://www.medicis.polytechnique.fr/index-
eng.html>,

Martin Hulin. Circuit Partitioning with Genetic Algorithms Using a Coding Scheme
to Preserve the Structure of a Circuit. Lecture Notes in Computer Science, vol. 496,
1990. Springer-Verlag, New York. Pgs. 75-9.

Melvin A. Breuer. General Survey of Design Automation of Digital Computers.
Proceedings of the IEEE, Vol. 54 (12), Dec. 1966. pg. 1708-1721.

Michael Himsolt. GraphLet, University of Passau, Germany. July 1999,
<http://www.infosun.fmi.uni-passau.de/Graphlet/>.

Naveed Sherwani. Algorithms for VLSI Physical Design Automation. Kluwer
Academic Publishers, Norwell, MA, 1997.

ORCA Series 2 Data Sheet. Lucent Technologies, Jun. 1999.
<http://www.lucent.com/micro/fpga/>.

Paramartha Dutta. An Evolutionary Heuristic for Knowledge Base Partitioning
Problem. IEEE International Conference on Evolutionary Computation, 1997. pg.
657-662.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

122

R. Murgai, R. K. Brayton and A. Sangiovanni-Vincentelli. On Clustering for
Minimum Delay/Area. IEEE International Conference on Computer-Aided Design
(ICCAD), 1991. pg. 6-9.

Ralph P. Grimaldi. Discrete and Combinatorial Mathematics. Addison-Wesley
Publishing Company, New York, 3rd ed., 1994.

Randy L. Haupt and Sue E. Haupt. Practical Genetic Algorithms. John Wiley & Sons,
New York, 1998.

Richard Parris. 2000. <http://math.exeter.edu/rparris/windisc.html>.

Roy L. Russo, Peter H. Oden, and Peter K. Wolff, Sr. A Heuristic Procedure for the
Partitioning and Mapping of Computer Logic Graphs. IEEE Transactions on
Computers, Vol. C-20 (12), Dec. 1971, pg. 1455-1461.

Scott Hauck. Multi-FPGA Systems. University of Washington, PhD Thesis, 1995.

Spartan and Spartan XL Series Data Sheet. Xilinx, Jan. 1999.
<http://www.xilinx.com/products/spartan.htm>.

Stephen C. North. GraphViz, AT&T Labs — Research, Florham Park, NJ. September
1999, <http://www.research.att.com/~north/graphviz/>.

Sun Y. Kung. VLSI Array Processors. Prentice Hall, Englewood Cliffs, 1988. pgs.
374-83.

Ted Lewis and Boontee Kruatrachue. Grain Size Determination for Parallel
Processing. Scheduling and Load Balancing in Parallel and Distributed Systems.
IEEE Computer Society Press, 1995. pg. 143-202.

Thang N. Bin and Andrew Peck. Partitioning Planar Graphs. SIAM Journal on
Computing, Vol. 21 (2), April 1992, pg. 203-215.

Thang N. Bui and Byung R. Moon. Genetic Algorithm and Graph Partitioning. IEEE
Transactions on Computers, vol. 45, no. 7, July 1996, pg. 841-55.

Thang N. Bui and Curt Jones. Finding Good Approximate Vertex and Edge Partitions
is NP-Hard. Information Processing Letters, Vol. 42 (3), May 1992, pg. 153-159.

The American Heritage® Dictionary of the English Language, Third Edition.
Houghton Mifflin Company, 1992. Microsoft Corporation, 1996. Electronic version
licensed from InfoSoft International, Inc.

54.

55.

56.

57.

123

Tom Sawyer Demo. Tom Sawyer Software. 1999.
<http://www.tomsawyer.com/download-soft.htm[>.

Vijay V. Raghavan and Brijesh Agarwal. Optimal Determination of User-Oriented
Clusters: An Application for the Reproductive Plan. Proceedings of the Second
International Conference on Genetic Algorithms. Lawrence Erlbaum Associates,
Hillsdale, July 1987. pg. 241-246.

W. Kernighan and S. Lin. 4n Efficient Heuristic Procedure for Partitioning Graphs.
Bell System Technical Journal. Vol. 49, 1970. pg. 291-307.

Zbigniew Micalewicz. Genetic Algorithms + Data Structures = Evolution. Springer-
Verlag, New York, 1994.

128

C. GraphPar Functions

An electronic version of the source is available by contacting the author, currently via

caugeri@ieee.org and is also available on-line at <http://nothinbut.net/~caugeri>. The

source code includes the following commands, loaded by via “with(GraphPar):”

L Input/Output (I/0) Functions

GraphVizOut: output file in GraphViz format
MapleGraphln: read file in our Maple V graph format
MapleGraphOut: write file in our Maple V graph format
MapleTableOut: output file in table format for input later

WD~

IL. Graph Generator Functions

Caterpillar: generate caterpillar graph and drawing

GeoDraw: draw geometric graphs

GeoGrid: generate geometric grid & grid-X graphs
GeoMetric: generate random geometric graphs

GeoTouch: generate random geometric touch graphs

Graphs: generate previous programmed graphs (e.g. ISCAS17)
Piles: generate independent weighted graphs

NoWUnAE LN~

I11. Metric Functions

gStats: determine input graph metrics

pStats: determine output partition metrics

mCut: measure cut of output partition

mDelay: r/peasure delay of output partition

mWeights: measure vertice weights of output partition

GraphCost: determine max cut, delay & weights, measure output metrics

SUnHWN -

IV. Support Functions

ConSubGphs: generate all connected subgraphs of input graph
CreateParting: generate graph reflecting provided partition data
Delay: return delay values of vertex/vertices

GraphPerm: generate random permutation of graph's vertex labeling
GraphRoots: return primary input and output roots of graph

Hasse: return list of vertices in appropriate levels

Height: return table of heights

NP W=

®

e e Al

W=

129

InduceCopy: copy undirected or directed graph
InputGraph: set vertex delays & weights to immediate # predecessors

Support Functions (continued)

InterPart: return list of inter-partition edges

MaxDT_ALL: return max delays to all, including itself

MaxDT_OQO: return max delays to predecessors only

Max: more robust max(x, y) procedure (e.g. strings)

Min: more robust min(Xx, y) procedure (e.g. strings)

Orient: orient a graph, based on vertex label names

PartPerm: return resulting partition to un-permuted graph state

QuickSched: add edges to a graph such that TopSort will also be a schedule list
TablePerm: permute table based on pre-determined list

. Tabulate: return frequency of items in [sorted] input list

. TopSort: return topological sort of the graph

. TopSortD: return topological sort based on vertex delays of the graph
. TopSortR: return reverse topological sort of the graph

. TransReduce: perform a transitive reduction of the input graph

Partitioning Algorithms

BPD: Best Predecessor Algorithm
CTR: Eccentricity-Based Algorithm
DSC: Dominant Sequence Clustering Algorithm
a. DSRW: internal to DSC, implements constraint DSRW
b. MinDSC: internal to DSC, minimum free vertex
GEA: Genetic Algorithm
a. Cross-Over Operators
1. PMX: Permutation Cross-Over
ii. OX: Order Cross-Over
b. Mutation Operators

1. DecodeKlist: translate from absolute to relative separator positions
il. EncodeKlist: translate from relative to absolute separator positions
1il. RandKlist: generate initial partition separator positions

iv. PairSwap: generate mutated offspring

RAN: Random Solution Algorithm

	Development of an Abstract Graph Partitioning Model Using the Maple V Computer Algebra System.
	Recommended Citation

	tmp.1608220803.pdf.lD4A8

