Metadata, citation and similar papers at core.ac.uk

Provided by The University of Nebraska, Omaha

UNIVERSITY J OF
e University of Nebraska at Omaha

Omaha DigitalCommons@UNO

Student Work

12-1-1990

Integration of Distributed Expert Systems: An Open System
Approach.

Semir Al-Schamma

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Recommended Citation

Al-Schamma, Semir, "Integration of Distributed Expert Systems: An Open System Approach." (1990).
Student Work. 3527.
https://digitalcommons.unomaha.edu/studentwork/3527

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for
inclusion in Student Work by an authorized administrator
of DigitalCommons@UNO. For more information, please
contact unodigitalcommons@unomaha.edu.

https://core.ac.uk/display/368327329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/studentwork
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3527&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/3527?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3527&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

Integration of Distributed Expert Systems:

An Open System Approach

A Thesis

Presented to the

Department of Mathematics and Computer Sciences
and the
Faculty of the Graduate College

University of Nebraska

In Partial Fulfillment
of the Requirements for the Degree
Master of Arts

University of Nebraska at Omaha

by
Semir Al-Schamma

December 1990

UM Number: EP74725

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

" Dissertation Publishing

UMI EP74725
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code

ProQuest

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Boux 1348

Ann Arbor, MI 48106 - 1346

THESIS ACCEPTANCE

Accepted for the faculty of the Graduate College, University of Nebraska, in
partial fulfillment of the requirements for the degree of Master of arts, University

of Nebraska at Omaha.

Committee

Name Department

gﬁuéé} 4 /‘MM;M(% 3 MATHEATIES Jeompurse st sencs
j\bv%%. ‘Dﬂcﬁs‘,\,\ gC"\eV\(Q;

M C@w\ Mathesotics /&’W Do Serenes

%@,‘xc@%

Chairman
Dee <, 1950

Date

To my Wife Liz
and

My Parents Agnes and Hassan

ABSTRACT

The integrated use of expert systems distributed on a network is a topic of practical
importance. Through the proper integration methods, powerful expert systems could emerge.
Several approaches exist for distributed problem solving, but most of them assume that the
individual agents possess sufficient knowledge and skills to communicate and negotiate results
and plans. In practice, however, what is needed is a simple, easy-to-implement, approach that

allows the integrated use of a distributed (probably existing) set of expert systems or agents.

In this thesis the OSDES approach (which stands for Open System of Distributed Expert
Systems) is presented. It entails the open systems perspective (originated from Hewitt), as
well as the centralized version of multiagent planning. This approach sets a minimum
requirement which specifies the types of interfaces that OSDES can handle. Almost any
expert system can interface with OSDES through input and output redirection at the user

‘interface level.

The heart of the integrated system is the Experts Directory Assistance (EDA) which is a
service that all the agents in the system can utilize. The EDA keeps all the information about
all the expert systems currently contributing to the system. Whenever an agent is added or

removed, the EDA is notified to update its database.

Another major part in the integrated system is the communicator, which acts as the
mediator between the individual agents, as well as between the agents and the EDA. Each

agent in the system has a communicator associated with it. The communicator also provides

a user interface, and a simple scheduler to plan the execution sequence of the remote agents.
The communicator incorporates a Generic User Interface (GUI), a Generic Agent Interface

(GAI), a Distributed System Interface module (DSI), and a Kernel (or planner) module.

The OSDES approach was implemented on the IBM-PC/AT running MS-DOS 3.3. The
communicator and the EDA were written using Microsoft ’C’ compiler version 5.1, and
1st-Class (an expert systems building tool) was used to develop the sample expert systems. To
implement the communication protocols, a Remote Procedure Call (RPC) development tool
(Netwise RPC) was used. The underlying network is an Ethernet based Novell 386 Local
Area Network (LAN), but given the proper RPC compiler and libraries, any other LAN can
be used. Further improvement includes developing new agent interfaces using memory
mailboxes or interactive remote input and output. It also includes eliminating the current
DOS limitations by adapting OSDES in a multi-threaded environment such as UNIX or OS/2.

environment.

Table of Contents

CHAPTER 1 Introduction 0. iiiiiiiiiiinnnnnnnn 1
CHAPTER 2 Distributed Problem Solving Approaches 3
21 Expert Systemsot e e e 3

2.2 The Distributed Environment 4

2.3 Distributed Problem Solving: Objectives and Phases 5

2.4 Cooperative Distributed Problem Solving 6

2.5 Constraints and COncernsottt eeeennnnnnnn. 7

2.6 The Coordination Problem 9

261 Negotiation 10

262 Contractingttt e e 11

2.6.3 Functionally Accurate Cooperation 12

2.6.4 Organizational Structuring 13

2.6.5 Sophisticated Local Control 14

2660pEn SYStemMSottt e e 14

2.6.7 Multiagent Planning, 14

268 Blackboards e 15

27 SUMMALY . ittt ittt ettt ettt i e 15
CHAPTER 3 An Approach to the Integration of Distributed Expert Systems 17
3.1 Redefiningthe Problem 18

3.2 Integrated System Objectives 18

3.3 The OSDES Approach: an Open System of Distributed Expert

SYsStemsSo i i i e 19

3.4 Agent to System Interaction o ... 20
35AGeneral OverVIEW . . . oo i ittt ittt ittt et 22
3.5.1 General User Interface (GUI)o, 22

3.5.2 Generic Agent Interface Module (GAI) 23

3.5.3 Distributed System Interface Module (DSI) 24

354 Kernel/Planner Module 24

3.6 Components Interaction in the OSDES Approach 25
| 3.6.1 Experts Directory AsSistancec.c.ouiiuininennnn. 25
3.62 COMMUNICALOT . ..ottt ittt it iiiiieiieiiennnnnnn 27

3621 S8erverState e 27
3622ClientState i i 28
37Dependency Lists i i e e 30
38Crashand Recovery ittt iinennn. 32
3.9 OSDES versus other Distributed Problem Solving Approaches 33
310 SUMMALY . .. oot e e 34
CHAPTER 4 Implementationottt e eennnannnn. 35
4.1 Program Development Environment 35
411 IBM-PC/AT . .t e e e e e 35

4.1.2 Microsoft ’C’ 5.1 Compiler 35

413 Ist-Class ..ot 36

415 NOVEIL 380 .ottt e e e e e 38

4.2 The Experts Directory Assistance (EDA) Setup 38

4.3 The Integration Procedure 39

4.4 A Note on the Expert Systems Requirements 41

4.5 A Sample System and Scenariociii ittt i i i e 42

4.5.1 Integrated System Setupt 43

452 ASample Scenario e 44

4.6 SUMMALY . . .ttt ittt ittt et ettt ettt e e et e e et e e e 48
CHAPTER 5 Discussion and Conclusion, 51
5.1 Advantages Of OSDES i 51

52 Issuesof Concernin OSDES 53

5.3 Future Opportunities for Improvements 54
APPENDIX A Parameter Files 55
APPENDIX B Source Codettt 59

CHAPTER 1

Introduction

The integration of distributed expert systems is a topic that is still under research. Through
the proper integration methods, powerful expert systems could emerge with an integrated

knowledge base far beyond the individual knowledge of the individual experts.

Several attempts have been made to develop approaches to distributed problem solving, but
most of these systems assume that the individual members (or agents) possess sufficient

knowledge and skills to communicate, negotiate results, and plans with each other.

In reality though, expert systems that are being built today are not as powerful, and do not
possess all these additional skills. These expert systems are developed using a generic high
level language, such as ’C’ or Pascal, but more commonly specialized artificial intelligence
languages such LISP and PROLOG are used. Recently the approach has been to use Expert
System Building Tools (ESBTs) such as 1st-Class, KEE, and Picon, which simplify the expert
system building process. In any case, the expert systems generated are network unaware, not
to mention other experts on the network, in other words communication skills do not exist

in these systems. To integrate these systems using one of the existing approaches would

2

require major modifications (if not complete rewrites) of these systems, and this is not an
acceptable solution. The available approaches are useful in cases where domain dependent
expert systems are developed, so that the additional skills can be built-in at the development

phase.

What is needed is a simple approach that allows the integration of a distributed, probably
existing, set of expert system or agents. This approach should consider simple expert systems

as well as complicated ones.

To be able to develop such an approach which investigates the existing distributed problem
solving approaches, a literature survey is performed in chapter 2. The conclusion is that these
works are either to complicated to implement, or place severe restrictions on the agents that
can be integrated into the system. In chapter 3 the problem and the objectives of distributed
problem solving are extended, and a new approach to the integration of distributed expert
systems (OSDES) is presented. The actual implementation, environment, and tools used are
discussed in chapter 4. Finally, the problem is reassessed and OSDES is compared with the
other approaches in chapter 5. A list of future enhancements and development opportunities

is also presented in this chapter.

CHAPTER 2

Distributed Problem Solving Approaches

This chapter will present the basic terminology used in this approach and in other approaches
to distributed problem solving. Next some of these approaches are presented and their

advantages and disadvantages are highlighted.

2.1 Expert Systems

An expert system is a system that has sufficient information to mimic the ability of an expert
in a specified field. It uses a knowledge base supplemented by an inference engine to analyze
given facts [Borl87]. It is a computer program containing knowledge and reasoning capability

that imitates human experts problem solving in a particular domain. [Hu 89]

An expert system usually consists of a knowledge base which holds the expert knowledge in
the domain of expertise and an inference engine which uses the knowledge base and
information provided by the client to arrive at its conclusion. Finally, the user interface asks
the questions, and converts answers into a form the inference engine can understand [Covi8S,

Luge89].

Early expert systems were built for specific domains with high level languages, these programs

4

were highly interwoven. "... although efficient, once these expert systems were constructed
they could not be easily adopted to altered views of the domain". This led to the development
of shells or expert system building tools (ESBT) [Gaag88]. "The idea behind an expert system
building tool is that the user can produce a true expert system for whatever problem domain
he wants by filling the shell with expert knowledge needed for his application" [Covi88,

Cohe89].

2.2 The Distributed Environment

A system of distributed experts is one in which the expert systems are physically distributed.
These systems are sometimes referred to as distributed problem solvers or multiple agents.
Both distributed problem solvers and multiagent systems comprise the basis for that portion

of artificial intelligence studies called "Distributed artificial intelligence (DAI)" [Gass89].

In Distributed Artificial Intelligence the emphasis is not on providing performance
improvement, but on using the expertise of multiple agents to find a solution that fits the

problem, or handles uncertainty through triangulation or models natural systems [Gass89].

Distributed Problem Solving (DPS) considers how the work of solving a particular problem can
be divided among a number of modules that cooperate by dividing the problem, sharing the

knowledge about it, and developing the solution [Gass89, Smit81, Stee86].

Multiagent systems comprise intelligent behavior among a collection of possibly preexisting,

autonomous, intelligent agents, when they can coordinate their knowledge, goals, skills, and

5

plans to take action or solve problems. The agents in a multiagent system may be working

toward a single global goal or separate individual but interacting goals.

The knowledge required for a distributed group of problem solvers differs from the one
needed by a single agent, since the distributed agents need extra capability of planning,
negotiation, and communication. While a single problem solver would detect any changes to
it’s world (knowledge and environment) almost instantaneously, the changes applied in a
distributed problem solving environment may not be detected by everyone immediately
[Stee86] (in fact some of the approaches in distributed problem solving, expect the agents to

be able to anticipate and plan all the world changes).

2.3 Distributed Problem Solving: Objectives and Phases
The different approaches have several objectives [Gass89, Durf89, Stee86]. The major ones
are listed below:
1. Boost task completion rate through parallelism.
2. Expand the set or scope of achievable tasks by sharing resources (including
information, knowledge, and devices).
3. Increase certainty, reliability of solutions, and the probability of finding a solution,
through redundancy.
4. Utilize DPS approaches in many Al problems that are inherently distributed e.g.,
interpretation of sensory information.
5. Build and maintain complex expert systems by using a structure of self contained

modules.

6. Use a DPS system to simulate and analyze social sciences.
7. Accommodate open systems and multiple perspectives.

8. Allow agents to use global knowledge to make local decisions.

Smith and Davis identified the following phases in any distributed problem solving process
[Smit81]:
1. Problem decomposition into subproblems.
2. Solution of kernel subproblems, which might require inter-communication between
the agents.
3. Answer synthesis, which integrates the subproblems results. This phase is not always

necessary.

2.4 Cooperative Distributed Problem Solving

Cooperative Distributed Problem Solving (CDPS) is a special case of distributed problem
solving. It is the study of how a loosely coupled network of problem solvers can work together
to solve problems that are beyond their individual capabilities. Each node can work
independently and might possess various skills, thus each agent has different appropriateness
to solve an assigned task. Each uses its expertise, resources, and information to solve
subproblems, and then integrates the results with the others. Each has limited knowledge of

the tasks assigned to the group and the intentions of the others [Stee86, Durf89].

CDPS differs from some of the DPS frameworks such as ACTOR [Jack86], HEARSAY II,

ETHER language, BEINGS, CAOS, Poligon and connectionism where each agent is a

7

specialist in an aspect and there are predefined interactions between tightly coupled elements.
In these systems each expert has no knowledge of the problem solving task or general
strategies, and scheduling is centralized. An element in these networks is like a small piece
of the brain, by itself it is not intelligent, but intelligence emerges from a well structured and

tightly connected collection of such elements [Durf89].

Some of the cooperative distributed problem solving applications are:
1. Distributed interpretation such as distributed sensor networks. Agents constantly
exchange their partial views [Durf89].
2. Distributed Planning Control such as distributed Air Traffic Control, cooperating
robots, and remotely piloted vehicles [Durf89].
3. Cooperative expert systems such as navigation, and vehicle control. Multiple
corporate expert systems negotiate to decide on product prices. Agents might have
different goals, but common language. These are complicated systems in which agents
must model each other.
4. Computer supported human cooperation such as intelligent command and control
systems, multiuser project coordination, and meeting scheduler or messages router.

5. Cognitive models of cooperation such as emulating human methods of cooperation.

2.5 Constraints and Concerns

This section list some of the major issues of concern presented in other approaches [Gass89,
Durf89, Stee86]:

1. How to decompose an individual problem, and allocate it to a collection of problem

8

solvers with different skills and resources? (sometimes called the connection problem).
Solutions can include having a central node acting as clearing house, having nodes
decompose tasks locally and announce them to the network, or having some nodes
produce plans, while others evaluate and adopt them.

2. How to resolve subproblem interactions?

Nodes have to send copies of partial results to each other. Since the nodes’
interactions are not predictable in terms of which nodes talk to each other; the partial
results may be incompatible. To enforce compatibility the nodes must first recognize
each other and second communicate with each other regarding the results.

3. How to exploit parallelism?

If a centralized scheduling mechanism is used, then a powerful scheduler is needed
which knows everything in the system. However if decentralization is preferred, where
each node has it’s own scheduler, then the schedulers either have to cooperate, or the
nodes must predict and anticipate each other’s behaviors and actions.

4. Where and when to integrate the results?

The integration can be performed at one node or at several, it can be done with
partial results, or with the complete final results, but how can partial results (arriving
synchronously) with different certainties be integrated into meaningful wholes?

5. How to corroborate when nodes realize that they have formed mutually exclusive
views?

They must reason about the information and decide which information to ignore. This
type of decision will require additional intelligence.

6. How to keep all the agents up-to-date?

9

One approach suggests reflecting the changes made by an agent only to a subset of
the agent, or only at specified time intervals, but inconsistencies may arise due to the
incomplete reflections of the world changes to all the agents. On the other hand
keeping every agent up-to-date with all actions and intentions of all the other agents
is very difficult and can pose as a bottle neck to the communication channels.
Another approach suggests that solutions must be coherent locally and globally, but
this coherence must be achieved solely by local computation (i.e. nodes must predict
the intentions and actions of others).

7. How to recover from a node crash?

None of the research done indicates how to handle crash and recovery, they suggest
replication partially to resolve inconsistencies and uncertainties, and to assure that

someone can respond in the case of node crash.

2.6 The Coordination Problem

Most of the considerations and issues mentioned above can be combined in a problem known
as the coordination problem. It addresses how the agents should reason about the coordination
process among them [Gass89]. In the remaining parts of this chapter, the coordination

problem is explained and the different solutions to the problem are presented.

Effective coordination requires structure, flexibility, knowledge reasoning ability, and
cooperation between the agents[Durf89]. This might be an impossible task in situations where

global control, global consistent knowledge, or globally shared goals are impossible. [Gass89]

10

Node coordination approaches [Durf89, Gass89] include negotiation and contracting, a
functionally accurate approach, organizational structuring, multiagent planning, open systems,

sophisticated control, and blackboards.

2.6.1 Negotiation

Negotiation uses dialogue between the nodes to resolve inconsistent views and to reach an
agreement on how they should effectively cooperate. This is "the process of improving
agreement (reducing inconsistency and uncertainty) on common viewpoints or plans through

the structured exchange of relevant information" [Durf89].

Negotiation is exercised in the Air Traffic Control (ATC) Problem [Stee86, Durf89] where
several agents cooperate to direct aircrafts in ways to avoid collisions. The system is object-
centered, an agent is associated with each aircraft, and each aircraft has only limited world
knowledge, and is constantly gathering information about the other aircrafts. The major tasks
of the agents are detection and resolution. They also provide some generic tasks e.g., sensing,
input communication, output communication, initial plan generation, plan evaluation, plan

fixing, and plan execution. An agent will request help if it can not resolve a conflict.

Goal interactions between the agents come in the form of shared aircraft conflict which
happens, according to their current plans, if two (or more) aircrafts are going to meet in the
future. When conflict is foreseen the agents must communicate and negotiate a solution. If
(due to lack of knowledge) the group fails to assign the tasks to the most appropriate agents,

the problem of optimal tasks assignment arises (also called the connection problem).

11

The coordination approach used here is called Task Centralization where conflicting planes
choose a node to solve and resolve. A plane is then called to change direction and only it’s
local data is changed. Since it is centralized there is no inconsistent data. On the other hand
it might be the bottle neck, in which case there is a reliability risk since there are two rounds
of negotiations involved to decide who qualifies for planning and who qualifies for acting.

This process could require time that is not available to the conflicting planes.

Even if the agents come to a conclusion, other coordination problems may arise. The action

of moving to avoid a conflict might cause another one.

2.6.2 Contracting

"Contracting involves an exchange of information between interested parties, an evaluation
of the information by each member from its own perspective, and final agreement by mutual
selection" [Durf89]. Problem solvers use bidding, contracting and information exchange
protocols to allocate work or resolve conflicts [Gass89]. The bidding protocol is the process

of announcing the tasks by the manager and finding contractors.

An agent can be a contractor or a manager, nodes are free to act and unlike voting, agents
are free to exit the process rather than being bound by the decision of the majority. The

contract contains, task abstraction, eligibility specifications, and bid specifications [Durf89].

The Contract-Net-Protocol can be summarized as follows [Durf89].

1. The manager forms the task to be allocated.

12

2. The manager announces the existence of the task.

3. Available nodes evaluate the task announcement.

4. Suitable nodes bid for the task.

5. After the announcement of the task, the manager waits for some time then
evaluates the bids.

6. The manager awards the contract to the most appropriate node(s).

7. The manager and selected contractor(s) communicate privately during the contract

execution.

A basic messaging system is used in which the nodes can announce their availability and in
special cases the manager can award a contract without bidding [Durf89]. The process of

contracting can result in two or more results that need to be synthesized.

2.6.3 Functionally Accurate Cooperation

Functionally accurate cooperation involves the exchange of tentative results to overcome
errors and coverage on problem solutions [Durf89]. Gasser [Gass89] defines it as the
triangulation and convergence on useful results. It deals with the issue of getting nodes with

inconsistent views to effectively cooperate.

Inconsistencies may arise from incomplete, out-of-date, contradictory, or conflicting
knowledge, different views, and errors in hardware and software. They can be managed in
several ways:

1. Do not allow inconsistencies, in other words precheck every modification to the system.

13

2. Resolve inconsistencies, if they occur, through explicit negotiation.

3. Build CDPS networks that perform accurately despite inconsistencies.

In a functionally accurate approach the network solution is structured so nodes cooperatively
exchange and integrate partial results to construct consistent and complete results. "Some say
that in complex systems it is impossible to guarantee that knowledge among nodes will remain

consistent”. [Gass89]

Unlike negotiation, functionally accurate cooperation is bottom-up. It relies on the nodes’
ignorance which might lead to excessive communication. The problem in negotiation is that
the nodes in the beginning don’t know how their local subproblems fit within the overall

problem.

2.6.4 Organizational Structuring

Organizational structuring is a compromise between negotiation (top-down) and functionally
accurate cooperation (bottom-up). "An organizational structure of a CDPS network is the
pattern of information and control relationships that exist between the nodes and the

distribution of problem solving capabilities among the nodes" [Durf89).

Organizational structuring uses common knowledge about general problem solving roles and
common patterns to reduce nodes’ uncertainty. It provides control frameworks to work as a
team. This approach allows nodes to work in parallel, assigns the roles to suitable nodes,

permits overlapping roles to increase network reliability, and empowers each node to

14

determine for itself whether there is an interaction. Because the network might be able to
solve problems in several different ways, it must have nodes that have the authority to decide

and enforce a particular approach.

2.6.5 Sophisticated Local Control

Sophisticated local control involves reasoning about other agents in addition to reasoning
about the actual problem, hence coordination is done locally. The information communicated
has to satisfy relevance, timeliness, and completeness characteristics. The communication can
be achieved by sending all the partial information all the time, sending when a node is locally

completed, or sending the first information and the last [Durf89].

2.6.6 Open Systems

Gasser defines open systems as "systems with no complete representation and with
dynamically changing boundaries" [Gass89]. An open system consists of a network of micro
theories in which an agent or a small set of agents can reason logically and maintain
consistent knowledge within a micro theory [Durf89]. Hewitt noted that "Internal operation
organization and state of one computational agent may be unknown and unavailable to
another agent" [Hewi86]. The open systems approach is further explained in the next chapter

where a solution based on it is presented.

2.6.7 Multingent Planning
Multiagent planning involves developing a plan on how agents should work, distribute it and

follow it [Durf89]. A single agent or a group of agents may be used to form a coherent plan

15

for solving a multiagent problem. Dependencies and conflicts among the actions and
knowledge of different agents are identified in advance. Communication and synchronization
acts are inserted into each agent’s plan to prevent conflicts when the plan is executed. In this
approach one (or more) node possess(es) a plan that indicates exactly what actions and
interactions each node will take for the duration of the network activity. This approach differs
from contracting where nodes make pair wise agreement and there is no complete view of
the network coordination represented. More computation and communication than other

approaches may be required if multiagents are used [Gass89].

In Centralized multiagent planning [Degr87], plans of nodes are formed (announced), then
a central node collects and analyzes them, its duties involve detecting and avoiding

inconsistencies. Nodes form a plan for all their future actions and interactions.

2.6.8 Blackboards

A black board is a central global database for the communication of independent synchronous
Knowledge Sources (KS) focusing on related aspects of a particular problem [Luge89]. Gasser
defines blackboards as a collection of KSs which rely upon a global scheduler and a central

shared data structure for communication, consistency and control e.g., Distributed Vehicle

Monitoring Testbed (DVMT) [Gass89].

2.7 Summary
This chapter presents some of the approaches to distributed problem solving. Each approach

is unique in its own way and has its application areas, but the must important observation is

16

that none of these approaches exists in an operational system. Durfee states that "It is
important to remember that the implementations are prototypes and simulations; to date no
CDPS networks have actually been used in real world applications." [Durf89]. The other
major observation is that all these approaches require advanced intelligence to cooperate, but
most of today’s systems do not have this intelligence, and would have to be changed severely

to be incorporated into a distributed system.

In the next chapter an approach will be presented that tries to solve these problems. It is
based on open systems and multiagent planning approaches, and has a few similarities with

the contracting approach.

17

CHAPTER 3

An Approach to the Integration of

Distributed Expert Systems

As discussed in the previous chapter, there have been several attempts to develop distributed
problem solving approaches, each claiming to be reliable, fast, and intelligent. As Durfee
states, most of these systems are simulations or primitive prototypes. They are very complex
and require that agents have additional expertise and communication skills. In addition most

of these systems are domain dependent.

This is not very encouraging, given that expert systems have penetrated today’s office
environment [Will87], and could be potential agents in an integrated system. An approach
must be developed that is domain independent, and that does not require any additional

intelligence or skills by the agents to be part of the systems.

This chapter will first redefine the problem and set the objectives. Next an approach based
on the open systems and multiagent planning approaches will be presented and the protocol
described. Finally the approach will be compared to the other approaches described in

chapter 2.

18
3.1 Redefining the Problem

To be able to present a solution or approach, the problem has to be further defined, and the
objectives extended to meet the requirements of integrating expert system such as the ones

developed in today’s office environment.

The problem is the need for a simple approach that allows the interconnection of a
distributed, probably existing, set of expert systems or agents. These expert systems may vary
in size and complexity. A large percentage of today’s expert systems are small and simple,
most of them do not involve a major development effort since they are created using expert
system building tools (ESBT), e.g., Du Pont’s engineers developed over 300 such systems in
1988 using an ESBT called 1st-Class [Will87]. Thus a generic approach must be simple
enough to encourage adding such systems to the network of distributed problem solvers. This
,Jather unique, point of view distinguishes this solution from the others, since it covers a
larger set of agents. Note that the solution presented here will be able to integrate small

expert systems as well as large and complicated ones.

3.2 Integrated System Objectives
Based on the consideration described above, the objectives described earlier have to be
extended to include the following:
1. Most of the expert systems are small programs, generally unaware of the existence
of other experts or even the existence of a network. It is thus unlikely that these

experts possess the advanced (or for that matter even primitive) communication and

19

negotiation expertise described in other solutions.

2. Furthermore it is unrealistic to expect the developers of such systems to spend
mére time developing a communication interface than they spent on the actual expert
system. The developers need a generic and simple interface to the rest of the agents

in the network.

3.3 The OSDES Approach: an Open System of Distributed Expert Systems
The approach used to integrate a distributed set of expert systems is a combination of an
open systems approach and the multiagent planning approach. It also features some common

attributes with the other approaches to distributed problem solving such as contracting.

The open system approach is chosen since it can accommodate preexisting systems (i.e.
systems that were not built specifically for the integration process such as standalone systems).
Hewitt assumes that the "internal operation, organization and state of one computational
agent may be unknown and unavailable to another agent" [Hewi86]. This is the case with most
the standalone systems. Multiagent planning similarly assumes preexisting agents. In addition
the special case where only one agent is planning, called centralized multiagent planning,
assumes that the one node develops the complete plan before having the group help in

solving the problem.

In general an open system features the following [Bond88]:
1. They are composed of independently developed parts in continuous evolution.

2. They are concurrent and synchronous, and they have decentralized control based

20

on debate and negotiation.
3. They exhibit many local inconsistencies.
4. They consist of agents with bounded knowledge and bounded influence.

5. They have no fixed global boundaries visible to the agents constituting the system.

The OSDES approach presented here will satisfy these objectives as follows:
1. Any expert system can be added to the integrated system at any time, thus the
system consists of independently developed parts and is in continuous evolution.
2. These expert systems are synchronous and concurrent, they are based on an
approach similar to contracting. Control is decentralized in the sense that any agent
can issue a problem to be solved, but that agent will be the center of coordination for
that specific problem. Using this semi-centralized approach reduces the load on the
communication channels, as well as the level of negotiation and communication
intelligence required from every agent.
3. Since the experts do not modify each other’s knowledge bases, they do exhibit local
inconsistencies. These inconsistencies are resolved at the integration level (if it exists).
4. Every expert system is restricted to its own knowledge base, thus it has bounded
knowledge; it uses its own inference engine and thus has bounded influence.

5. There is no global boundary for either the knowledge base or inference engine.

3.4 Agcnt to Systcm Intcraction
To intégrate an agent in the system, the agent must be able to interact with the system. There

are three possible levels of interaction.

21

At the Knowledge Base level, a global knowledge representation scheme can be developed
which converts all the requests of the local knowledge base to the global scheme and vice
versa [Howa89]. This involves modifications to the agent which contradicts with the original

objective of not excessively modifying the agent.

At the Inference Engine level, the task implied in the user query can be distributed to various
inference engines, using methodologies similar to those considered in distributed artificial
intelligence and then the partial results synthesized [Durf89, Smit81]. However, this approach

also requires modifications to the existing expert systems.

At the User Interface level, which can be viewed as the part issuing the consolidations to the
inference engine. This part seems to be the easiest accessible part of the integrated system,
as well as the easiest to modify (if necessary). Integration through the user interface means
incorporating one or multiple expert systems and providing them with the input data as if they
were provided by the user. Thus an expert system can be invoked and supplied with input
data similar to that which the actual user would provide. The output that the expert system
thinks is going to the user will be captured and redirected to the agent initiating the original
query. This type of interfacing is sometimes called a non-intrusive type of interface since the
ignorance of an agent to the world around it is preserved by capturing and redirecting the

input and output.

Integration realized through the user interface will be referred as a conceptual integration,

because it allows the user to envision the set of expert systems as a conceptual whole. The

22

term conceptual integration also implies the little amount of software develo'pment effort
required by this approach, since basically no modifications to the inference engine and

knowledge base for an existing agent is needed.

A side benefit from interfacing at the user level is that agents are not restricted to being
expert systems, in fact, any agent that requires input from the user or provides output to the

user (or both) can be integrated into this open system.

3.5 A General Overview

The heart of this system is the Experts Directory Assistance (EDA) which is a service that all
the agents in the system can utilize. The EDA keeps all the information about all the expert
systems currently contributing to the system. Whenever an agent is added or removed the

EDA is notified to update its database.

The other major part in this system is the Communicator, which acts as the mediator between
the individual agents, as well as between the agents and the EDA. Each agent in the system
has a communicator associated with it (Figure 3.1). It also provides a user interface, and a
simple scheduler. The communicator incorporates a Generic User Interface (GUI), a Generic

Agent Interface (GAI), a Distributed System Interface module (DSI), and a Kernel module.

3.5.1 General User Interface (GUI)

The GUI module interacts with the user. It receives the requests for advice, asks the user all

23

Expert
System
1

Communicator

EDA

(Eommunicator N Communicator
o O o
Expert Expert
System ¢ o o System

= N “

Figure 3.1 System Components Interaction

the necessary questions, and returns the final results to the user.

3.5.2 Generic Agent Interface Module (GAI)
The GAI wraps itself around the expert system. It is responsible for executing the local expert

system, providing it with input, and obtaining the output. The conceptual integration method

24

described above is used.

The communicator can interface with the agent by simple input/output redirection, file passing
[Degr87], mailboxes [Luge89], or interactive methods which require modifications to the
expert’s user interface. Using the 1/O redirection or file passing methods, the agent is almost
not changed, it still thinks it is running in standalone mode. The communication skills and
responsibilities are shifted up to the communicator, thus the expert system will suffer minor

to no modifications.

3.5.3 Distributed System Interface Module (DSI)
This module is responsible for the communication with the EDA, and the other
communicators in the system. The DSI can receive a request to solve a problem or it can send

a request to solve a problem.

3.5.4 Kernel/Planner Module
This is a simple scheduler that prepares the plan of execution (or a dependency list), then
calls the agents in the order specified in the dependency list. In this document the kernel is

sometimes referred to as the planner.

The knowledge possessed by the kernel includes knowledge about the existence of the EDA
and the rules to apply in building a dependency list at the time when it communicates with

remote communicators to solve a problem.

25

This is also the module called when the expert system is added to the system. It calls the
EDA requesting to add an expert (add_expert), then it goes to sleep and waits for user input

or a remote request.

3.6 Components Interaction in the OSDES Approach
In this section the two major components of this approach are detailed and their interaction

is explained (Figure 3.2).

3.6.1 Experts Directory Assistance

In order for the communicators to communicate they have to possess certain knowledge about
each other, such as, names, topics of expertise, and the facts other agents need to know
before being able to provide a solution. Building this kind of knowledge into each
communicator is very inconvenient and inefficient, it implies keeping all these knowledge

bases up-to-date with every change to the integrated system.

A better option is to keep all this knowledge about all the experts in a centralized knowledge
(or data) base, the Experts Directory Assistance (EDA). All the communicators are aware
of the existence of the EDA, thus the knowledge requirements of each communicator is
reduced. If a problem is to be solved by the integrated system, the communicator will retrieve
from the EDA all the information it needs about all the agents in the system that deal with
the specific problem topic. This information is updated every time an agent is added or

removed from the system.

26

/_Input to Remote

/ Qutput to Remote

{nput_from Remote

EDA

(1) - Request for Advice (M@ D Dvalues_List Results
(2) - Topics_List
J) - Factors_List R R
) - Start —T
4) - Topic Selection
(-t User
Stop
Interface
Remove_Exp
Kernel
Add_Exp GetLTopic_
| nf
DS | Local Export Remote Export
Get_Topics Topics_Listf Get_Topics
Topic_Info
Get _Topic_Infol
I Agent Interface

Output to Remote

Expert System

Figure 3.2 EDA/Communicator Interaction

27

For each expert or agent in the system there will be an entry in the EDA that contains
information about it. This information includes name, topics of expertise, facts required to
solve a problem and the associated question issued to the user and domains. Information
about the results generated by an agent is also kept in the EDA. The contents of such an
entry are provided to the EDA at the time when the agent is added to the system. At that
time the communicator obtains this information from a parameter file (contents of this file

and how it is provided to the communicator are described in Appendix A).

The EDA acts as a global directory assistance. Whenever an agent is added to the system an
entry in the EDA is created for it. Similarly when an agent is removed (or crashes) its
corresponding information is removed from the EDA. Since this a non-static data base, the
system can grow and shrink dynamically, thus the system resembles an open system by being

in a continuous evolution.

3.6.2 Communicator

This section will describe the two possible st‘ates for a communicator, Server or Client.
3.6.2.1 Server State: In this state the communicator is waiting for a remote request to execute
the local expert system. The communicator is activated via its DSI module (Figure 3.3) which
receives a remote request along with the necessary input data to the expert. The GAI is next
activated which starts the local expert system and provides it with the input data. The output
from the expert system is captured by the GAI and forwarded to the DSI, which in turn

returns the output data to the communicator that issued the remote request.

nput - Agent

DS!
Interface

™\
L

Module

- Modute
Output \\\\\
R\
4 |
e
o
25°
“ Output: | nput
Y
Expert
System

Figure 3.3 Communicator Server State

3.6.2.2 Client State: While in client state the communicator is passive, it does not generate
any load on the network. The communicator is activated via a user request of advice to the
GUI module(Figure 3.4.a). The request for advice is translated to a request by the DSI
module to the EDA for a list of available topics (get_topics). The list of topics returned by
the DSI module (topics_list) is presented to the user to make a selection for the topic of
interest. Once the user has selected a topic, the DSI module is invoked with a request to get
the detailed information about the selected topic. This request is translated into a
(get_topic_info) to the EDA (Figure 3.4.b) The detailed information about a certain topic
is the name(s) of the expert(s) that deal with this topic, along with the set of factors,
questions, and domains needed to generate the result. Having received all the information the

GUI module asks the user all the questions (facts), and forwards all the answers (values) to

29

T
A
\ V’C‘s Get Topics Get Topics

User

DSI

Interface Modute

3

/ Topics List Topics List

Cad

Get Topics Info ‘/\ Get Topics Info ||

Request Topic User DS|
—_— Interface

Module EDA

Topics Info Toplcs Info

Cb)

Factors, Values,

Values

Topic Info actors,

DSi

Interface

l ’(Planner
- Resulits
€
e

Module

Factors, Values

fFactors/ Values

e...
Ced

Figure 3.4 Communicator Client State

the kernel (Figure 3.4.c).

30

The kernel, which has already received a copy of the topic_info, generates a dependency list
based on input and output factors of each agent (See the section Generating Dependency
Lists). Next the kernel calls the remote agents in the order specified in the dependency list.

The final result(s) is/are returned to the GUI to be displayed to the user.

3.7 Dependency Lists

In the client state the user provides all the answers (values) which are forwarded to the
kernel along with a copy of the topic_info. From the topic_info the kernel can identify the
agents involved in the problem solving process and also all the input and output factors to
each agent. Based on this information the kernel can build a dependency list which will

specify the order of calling the remote agents.

Building the dependency list is based on the following set of rules:
1. If an agent A’ produces output that is required by an agent 'B’ then A’ must be
called before ’'B’. In the diagrams (Figure 5) this would be an arrow from ’A’ to ’B’
(Figure 3.5.a).
2. If’A’ and ’B’ produce output that is required by ’C’, then ’C’ can not be called until
’A’ and ’B’ returned their results (Figure 3.5.b)
3. In a similar manner if A’ and B’ are independent and neither requires the output
of the other one, then ’A’ and "B’ can be called in parallel (Figure 3.5.c).
4. A dependency list can have a single inpul to one or more agents (Figure 3.5.b). It
also could have multiple entry points (Figure 3.5.c).

5. A dependency list can have one output (Figures 3.5.a and 3.5.b), or multiple

31

(ad ”

(bd
el
Figure 3.5 Dependency Lists

outputs (Figure 3.5.c). Results integration is exercised in the case where one result

is produced. If there is no results integration agent in the dependency list, the user

32

will see several results (or advices).

3.8 Crash and Recovery
Crash and recovery are areas given inadequate consideration in other approaches. When a
member of the integrated system crashes the system is left in an inconsistent state, since the

EDA indicates that this expert exists when in fact it has crashed.

If a communicator sends a request to another communicator that has crashed, it will obviously
not receive any response and it will time out. In that case the communicator will call the
EDA and place a so called service call. There are two modes for a service call, regular and

urgent.

In the regular mode, the communicator places the service call but does not wait for a
response from the EDA. A regular mode service call is placed when according to the
dependency list there is another expert that was called at the same time and that fulfills the

requirements for calling the next expert in the list (i.e., it returns all the necessary results).

In the urgent mode the communicator has to wait for the EDA to perform the service call
since it can not rely on other experts. If the EDA finds that the remote expert has left the
network it updates its data base to reflect the new state of the network and return a negative
result to the communicator indicating the crash of the remote expert. Upon a negative result
the communicator will try to recover by asking the user the questions associated with the

failed agent’s results and forwarding them to the next agent. If the user is unable to answer

33

the questions the process is stopped and the user is informed of the temporary downfall of

the system.

3.9 OSDES versus other Distributed Problem Solving Approaches

OSDES performs the same phases as the DPS in terms of problem decomposition,
subproblem solution, and answer synthesis. Unlike the other approaches the decomposition
process does not require any negotiation and little intelligence to build the dependency list.
Parallelism is achieved by concurrently calling those experts that do not depend on each
other. The answer synthesis is left to the integrated system, if an agent uses the results of two
or more agents and operates on them then it is called. In other words if the last stage of the
dependency list consists of one node then this node performs the answer synthesis, otherwise
a user might be presented with several results. The idea is that building the answer synthesis
intelligence into the communicators, which has to be generic, will be complicated and not very
efficient. It is more efficient to build that knowledge in separate agents that deal with a

specific domain.

The OSDES approach is similar to the multi agent approach, since both prepare the plans
before hand. OSDES builds a dependency list which represents the plan. OSDES is a special

case of multi agent planing where the plans are developed by one node.

Unlike the original open systems approach all the nodes do not have to reason about

inconsistencies, this skill is built into the nodes that integrate the results (if they exist).

34

The OSDES approach is similar to the contracting approach, where there are managers and
contractors, except that in OSDES the contractors announce their availability first thus
eliminating the need for the bidding process. The manager (coordinating

communicator) gets only the bids from the EDA that relate to the topic of interest. By
eliminating the need for broadcasting a bid the load on the network is reduced. In addition
the manager in OSDES does not have to wait until all the contractors have

responded to it’s bid. Finally, the contracting approach requires domain specific knowledge

in the manager to be able to decompose a problem and evaluate the bids.

3.10 Summary

This chapter presented an alternative approach to the integration of distributed expert
éystems. This approach tries to accommodate the current generation of unsophisticated expert
systems developed in office environments. Unlike the other approaches OSDES does not
make any assumption about the different members in the system. It does not require any
extraordinary intelligence or communication skills from the individual agents. Instead it sets
a minimum requirement which specifies the types of interfaces that OSDES can handle.

Almost any program can interface with input/output redirection, file passing, or interactive

I/O.

While the other approaches had assumed that the agents in the system should possess
knowledge about each other, OSDES shifted this responsibility to the communicator and the
experts directory assistance. Finally, this approach produces less traffic on the network due

to minimum knowledge exchange needs.

35

CHAPTER 4

Implementation

4.1 Program Development Environment

The OSDES approach was implemented on the IBM-PC/AT running MS-DOS 3.3. The
communicator was written in Microsoft ’C’ compiler version 5.1, and 1st-Class is an Expert
Systems Building Tool (ESBT) used to develop the sample expert systems. To implement the
communication protocols a Remote Procedure Call (RPC) development tool called Netwise
RPC was used. The underlying network is an Ethernet based Novell 386 Local Area Network
(LAN), although given the proper RPC compiler any other LAN could have been used

(discussion will follow).

4.1.1 IBM-PC/AT
The IBM-PC/AT running MS-DOS was chosen as the development and implementation
platform due to it’s availability and the availability of the other system components for the

PC platform (e.g., 1st-Class, Netwise RPC, MS ’C’ 5.1, Novell).

4.1.2 Microsoft ’C’ 5.1 Compiler
C was chosen, since it provided an interface to the system, the network, and the RPC
compiler. The RPC compiler usually generates ’C’ routines, that get compiled using the MS

’C’ compiler.

36

4.1.3 1st-Class

- An Expert Systems Building Tool (ESBT) makes it possible to build an expert system in a
order of magnitude less time than it is possible in regular Al languages (e.g., LISP and
PROLOG) [Geva87]. Since the purpose of this study was to integrate expert systems and not
to develop them, it did not matter whether the experts were developed in PROLOG or 1st-
Class. It saved a lot of effort in developing the actual expert systems, and it demonstrated that
integrating expert systems developed using an ESBT is just as easy as integrating ones that

were developed using conventional languages.

There exists a large variety of commercial ESBTs in the market including: ART, KEE,
Knowledge Kraft, Picon, S.1, Personal Consultant+, EXSYS, Expert Edge, ESP Advisor,
Insight 2+, TIMM, OPSS, Rulemaster, and 1st-Class [Geva87]. 1st-Class was the tool of

choice at Du Pont [Will87] due to its simplicity and wide acceptance.

1st Class is an induction system that generates decision trees, which are elaborate rules, from
examples given in spreadsheet form. Rules can be individually built or edited in graphical
form on the screen. The rules are compiled, thus are very fast. The 1st-Class system is
designed to interface readily with other software. Interfacing techniques include file passing,
memory mailboxes, or interactive input and output. The examples developed in 1st-Class use
the file passing method to interact with the communicator. The file format for these examples

will be discussed later in this chapter (See Appendix A.,OSDES Parameter Files).

4.1.4 Netwise RPC

37

In the conventional programming environment, a procedure call involves passing arguments
to, and returning values from, a procedure within a program. The RPC model suggest that
this process can be carried out between two machines on a network. Conceptually, a Remote
Procedure Call differs from a conventional local call only in that the caller and the called
procedure occupy disjoint address space. In practical terms the caller and the called procedure

are separated by one or more networks.

The Remote Procedure Call model is a client-server model in which the caller (client) passes
arguments and control to the called procedures (server). However unlike regular local calls
communication software intervenes. The client communication software manages the transfer
of the request and any associated data (arguments) to a remote computer where similar
software receives the information and simulates a local call to the intended procedure. When
this procedure finishes its work, the server communication software returns control and any
output data to the caller. By declaring a procedure as remote, the RPC compiler generate the
necessary code for the server, the server dispatcher, and the client and server stubs for that

procedure.

In the specific case of OSDES, each communicator is a server that waits for remote requests
to execute the local expert system program. The Experts Directory Assistance (EDA) is also
a server program that allows remote calls to add, remove, and retrieve records from the

directory.

Due to some DOS and RPC for DOS limitations, only one communicator with one expert

38

system can run on a machine at a time. This limitation disappears with operating systems that
allow threaded execution such as OS/2 and UNIX where each communicator runs as a

separate process.

4.1.5 Novell 386
Novell Netware is a file server based Local Area Network (LAN) Operating System (OS).

It allows services such as file and printer sharing.

Applications can interface directly with Netware via its Sequenced Transport Protocol (SPX).
A set of library function call allow a ’C’ program to interface with the network. RPC uses this
facility to send and receive the packets across the network. RPC can utilize similar interfaces
provided by other network operating systems such as NetBIOS for IBM networks, and
TCP/IP for UNIX based networks. This means that porting the OSDES from a Novell
network (using SPX) to a UNIX based network (using TCP/IP) is as simple as re-compiling

and re-linking the client and server code with a different set of RPC network libraries.

Usually RPC relies on the file server to keep information about all the available 'RPC
servers’ or remote functions in the network. In OSDES the need for the file server was
eliminated by using the EDA for that purpose. Each client knows the network address of the

EDA which in turn can provide the address of any expert system on the network.

4.2 The Experts Directory Assistance (EDA) Setup

Before adding any expert system to OSDES the Experts Directory Assistance (EDA) must

39

be started. This is a server program that runs on separate PC (or in UNIX and OS/2, a
separate process). Once activated it goes into server mode and waits for remote requests.

Requests can be one of the following :

Adding an Expert System.
The EDA program checks the topic of expertise then decides whether to merge this expert

with an existing group, or to create a new one.

Removing an Expert System.
The EDA program finds the expert system (by its name) and removes it from the list of

experts contributing to OSDES.

Finding available Topics of Expertise.
Whenever a user requests assistance (on a communicator), the list of currently available topics

is retrieved from the EDA and displayed to the user to choose from.

Retrieving Group Information about a Topic
Given a topic name the EDA program finds and returns information about the group of

expert systems that claim to know about this topic.

4.3 The Integration Procedure
Adding a new member (expert system) to OSDES is very simple. The communicator, which

is a generic shell, accepts a parameter file that contains all the information about the new

40

member. Given this information a communicator can pass information to the expert system,
execute the expert system, and capture information from the expert system. The
communicator interacts with the local expert system by passing ’facts’ and their ’values’ back

and forth. In most of the cases no changes are required to the actual expert system.

The communicator is started from the command line with an argument indicating the name
of the expert system that needs to be added to the system (e.g., SHIPPER is the name of the
expert system which provides package shipping advice). The communicator looks for a
parameter file with the same name as the expert and a DAT extension (e.g.,
SHIPPER.DAT). It then reads the parameter file, and performs a remote procedure call
"ADD to EDA" to add this information to EDA (Note that the communicator is acting as a
client at this stage). Next the communicator switches into server mode and wait for remote

requests form other communicators to execute the local expert system.

When a communicator is awakened by a remote request, it is usually supplied with all the
factors and their respective values that the local expert system needs to solve a problem. The
communicator responds by acknowledging the receipt of the request and data (done internally
by RPC), and then executes the local expert system passing all the data it received. Once the
execution is completed control is returned to the communicator with the results in a result
file. The communicator reads the data from this file, returns it to the requestor, and goes

back to sleep.

When a communicator is approached by the user, it calls the EDA and gets the latest list of

41

available topics. The user chooses a topic, and the communicator calls the EDA again to get
specific information about the group of experts providing expertise in this domain. This
information includes the names of all of the experts in the group, and all the questions that

must be answered by the user before invoking the experts.

After obtaining all the answers from the user, the communicator prepares to call all the
experts involved requesting their assistance. The communicator starts by calling the expert
system whose input data (factors) does not depend on any output data from any other expert
(Note that several experts could be called at this stage). The resulting factors from this stage
determine which is to be executed next. At any stage if more than one communicator is to
be called, an asynchronous RPC method is used where all the experts are called first and then
the group is polled for the results. Finally the user is shown the result(s) returned by the

system.

Result integration and synthesis is not the responsibility of OSDES, but that of the experts
in the network. For every group of experts a new expert should be created that combines all
the results. This does not apply to single expert groups, or groups where the last stage of

calling involves only one expert.

When a communicator terminates it calls the EDA and requests the removal of the

information about the local expert system.

4.4 A Note on the Expert Systems Requirements

42

To be able to interface the communicator with any expert system, the expert systems have to
satisfy the following requirements :
1. The expert system must be able to interface with one of the interfaces described
in appendix A (or the communicator has to be modified).
2. If the expert system allows file passing, then the developer might be asked to add
one or two commands to the expert system code that read or write the file and
instantiates the variable. For the example in 1st-Class the following command had to
be added in the beginning of the expert system program: {READ filename ALL}
which reads all the values from a file named ’filename’.
3. If the Input Redirection Method is used then the expert system must be able to ask
the questions in a fixed order. Usually an option in the expert system development
tool allows building the expert system to run in an exhaustive mode (i.e ask all the
questions first). This is because all the answers are passed at once into the expert
system, hence the order of questions can not be anticipated at the time of the file
creation.
4. The expert system should be able to provide a plain text output report, or output

redirection.

4.5 A Sample System and Scenario
In this section a sample system will be described and a scenario presented. This setup was
used to test the system. First the actual components are described, then the scenario is

presented.

43
4.5.1 Integrated System Setup

This system includes the EDA, and a communicator (Client Communicator) which will serve
as the user interface to the system. There is no expert system associated with this
communicator due to the DOS/RPC limitation where the communicator can run only in one

state (Client or Server).

The other components of this system are the actual expert systems and the communicators
associated with them. The expert systems are:
1. SHIPPER, a shipping advisor provides advice about which shipper to choose for
a given type of service. The factors in this system are WEIGHT specifying the parcel
weight, SPEED indicating number of days to delivery, 10:30_AM specifying AM
delivery, SAT _DELYV indicating if saturday delivery is required. Accordingly the
expert produces a result factor SHIP_BY which is the shipping method.
2. SHIPCOST, a shipping advisor that provides the cost of shipping given the shipping

method. Input factors are the same as for SHIPPER and the resulting factor is COST.

3. CREDIT, a credit advisor that can decide the person’s credit status. Input factors
are ANNUAL_INCOME, YEARS_EMPLOYED, and LIVING_STD which is urban

or suburban. The output is a CREDIT_STATUS.

Obviously the first two expert systems belong to a common pool of experts since they both
deal with the shipping topic. They can be called in parallel since there are no dependencies

between them.

4.5.2 A Sample Scenario

44

This scenario assumes that the user will request an advice regarding shipping a parcel. It is

divided into five phase beginning with the system startup and ending when the user receives

the advice.

Communicator

CCiient)

Phase 1
Start EDA
start (1)

Credit
Adv isor

Shipper
Adv isor

Shipcost

Adv Isor

Figure 4.1 Phase 1 : Start EDA

Phase 1 : The EDA is started by running the EDA from the DOS prompt at the machine

holding the EDA program (Figure 4.1). Once started the EDA goes to sleep awaiting a

45

remote request from one of the communicators. Note that the only communicator at this

stage is the client communicator which has not been started yet.

46

[9¢b]
Shell (Credit)
b—

Communicater Communicator

User Credit

Advisor

CCllent)

c2
Add_Exp fCredit)

3

Shel)l CShipper)
Communlcator |e—m——————

Add_Exp £Shipper, Shipping)

(€]
Phase 2 hetl (Shipcost)
[——

Add Experts

Communicator

Add_Exp (Shipcost, Shipplng) Shipcost

Adv isor

Figure 4.2 Phase 2 : Add Experts

Phase 2 : The individual expert systems can be added now to the system by loading the
communicator on each machine and supplying it with the local expert name that it should
represent. This is achieved by running SHELL shipper, SHELL shipcost, and SHELL Credit
at the respective machines. The SHELL is the program which executes the remote call
add_Exp when the communicator is started and, then starts the communicator in server mode.

Each communicator (SHELL) will load the parameter file describing the local expert system,

and forwards it to the EDA with an Add_Exp request (Figure 4.2).

C1) Request Advice

\ (4) Topics_List Communicator
User CS)} Selection (Shippifhgd cciient)
C Questions (Factor|s)

(9D Answers (Values)

Commun|cator

Credit

Adv isor

Theto) [<-p)]

sgldoL’lag:aj

-51do

Communicator

Shipper
Adv isor

(Bu19d1uSD UL
(11p2-43 ‘purddiusd 1517 oI

Phase 3

'I!!ll!lll!!!!ll‘
User Request for Advice

Shipcost

Advisor

Figure 4.3 Phase 3 : User Request for Advice

Phase 3 : Next the user can request advice from the Client communicator by running
CLIENT. The communicator immediately, contacts the EDA with a Get_Topics request

(Figure 4.3). The returned Topics_List, which is Shipping and Credit, is presented to the user

to make a selection. The user will select Shipping causing the communicator to call the EDA

48

again with a request for detailed topic information Get_Topic_Info about the topic Shipping.
The EDA will return SHIPPER and SHIPCOST as the contributing experts names, along
with list of factors used in the two systems, and the questions to asks and the expected results.
For example for the factor WEIGHT, the associated question will be "Specify the weight of
the Parcel in Pounds (.5_TO_2, 2_TO_20, and OVER_20) ?’, and the expected results would
be one of the items listed between the parentheses. These questions will be presented to the

user, and the responses (values) validated against the expected ones.

Phase 4 : Now that the Client communicator has acquired all the values from the user, it will
call the experts systems according to their dependencies. In this case there are no
dependencies between the two, so it calls (Try_Solve) in both remote experts at the same

time (Figure 4.4).

Phase 5 : After calling all the remote experts, the communicator will start pooling them
waiting for the results. The results will be returned in the form of factors and their values
along with the text advice that the user would see. Since there are no more experts to call
the communicator decides to return the results to the user and will display both text results

(Figure 4.5)

4.6 Summary
In this chapter the actual implementation, environment and tools are described. The system
runs on the IBM-PC/AT running DOS 3.3, on a Novell 386 network. The expert systems are

developed in 1st-Class but the communicators are generic enough to interface with expert

49

N e ™,

Communicator

Communicator

CClient)
User Credit

(}b Adv isor

C1) Build
Dependency

Lisy

Communicator

Shipper

Adv isor

Phase 4

Call Remote Experts

Figure 4.4 Phase 4 : Call Remote Experts

systems written in PROLOG, LISP or any other language. In fact any program that accepts
standard input and output direction can be added to this system. The communication interface
is based on a Remote Procedure Calls library called Netwise RPC. Using RPC the underlying
Novell network can be replaced by almost any other network for which there are RPC

libraries, such as Banyan VINES, 3COM, PC-NFS and DECNet.

The actual implementation of the EDA is described followed by a discussion on how to setup

50

Communicator
CClient)
(3) Display
Results

User

Shipper
Advisor

Phase 5

Communicator

Shipcost

Poil Experts and Get Results

Advisor

Figure 4.5 Phase 5 : Poll Experts and Get Results

the integrated system. Next, the limitations imposed by the actual implementation are listed,

and finally a sample system setup and scenario is presented.

This is an implementation of the OSDES approach described in chapter 3. Even though it
is a limited version due to the DOS restrictions, it substantiates the idea presented in this

project, that small expert systems can be integrated in a simple fashion.

51

CHAPTER 5

Discussion and Conclusion

In this project an Open System approach to integrate Distributed Expert Systems (OSDES)
is presented. This approach tries to integrate the individual agents in a manner that is
transparent to them. Transparency is required to reduce the effort needed to add the agents
to the distributed system. Thus almost any agent (not necessarily an expert system) can be
integrated. This approach has been implemented and unlike other approaches, places

minimum skill requirements at the individual experts.

As demonstrated in chapter 4, the Open Systems approach to Distributed Expert Systems
(OSDES) is a viable way to integrate distributed expert systems. It represents a unique
contribution to the field of distributed problem solving. Some future enhancements and
development opportunities, which would convert this system into a fully functional and

operational system, remain open.

The OSDES approach utilizes the original Open Systems Approach, and the centralized
“version of Multiagent Planning discussed in chapter 2. In addition this approach provides an

easy interface to accommodate today’s expert systems.

5.1 Advantages Of OSDES

52

This section will re-emphasize the advantages and strengths of the OSDES approach which
satisfies most of the distributed problem solving objectives:
1. Any expert system can be added to the system if it uses one of the interfaces
described earlier.
2. A larger set of expert systems is addressed here, since there is no extra intelligence
or skills (such as negotiation skills) required in the individual expert systems.
3. Unlike most of the distributed problem solving approaches, OSDES is an actual
implementation. It is not a simulation, it uses everyday networks and everyday expert
systems.
4. The approach used in OSDES can be used to integrate any program (or agent
which does not have to be an expert system) on the network, as long as it satisfies the
general interface requirements.
5. Most of the objectives of distributed problem solving approaches are implemented
in OSDES. These objectives are:
(i) Increasing performance and throughput through parallelism.
(i) Increasing the set or scope of achievable tasks.
(iii) Increasing the probability that the solution can be found through redundancy.
(iv) Implementing a modular approach, where each expert system feeds the next
with viable information.
V) Simplifying problem decomposition.
(vi) Implementing crash and recovery protocols.
(vii) Using any network or expert system. That is, it is network and application

independent.

53
5.2 Issues of Concern in OSDES

Even though OSDES solves the issues that the other approaches ignore, it has some
limitations in terms of functional intelligence and application areas. These considerations are
listed below along with ideas on how to overcome these limitations.
1. By simplifying the decomposition problem, the system does not have the
intelligence to negotiate a solution like some other approaches. On the other hand
this extra intelligence, say to integrate results, is left to the developer. The developer
of an expert system (or the administrator of the integrated system) can add another
expert system to each group that is only responsible for integrating the results, thus
shifting the responsibility away from the existing systems.
2. There is no corroboration in the OSDES approach. Experts can not verify each
others results. Considering the ignorance of most of the expert systems, this is not
surprising. The administrator, however could add new experts to system that perform
these tasks.
3. OSDES is very useful for applications where the system interacts with a user, since
the communicator can always fall back on the users response (say in the case of a
crash of an agent). Applications such as Distributed Air Traffic Control require higher
levels of intelligence and performance.
4. Although OSDES is not a centralized system in the traditional sense, it still has a
few bottlenecks. The communicator at the user side acts as a scheduler, and can
potentially be overloaded. Similarly the machine running the Experts Directory
Assistance, can be overloaded or (even worse) crash, in which case the whole system

is halted. Depending on the level of security (safety) required, some of these

54

components can be duplicated or mirrored.

5.3 Future Opportunities for Improvements
The current implementation of OSDES is operational and can be used to integrate a set of
distributed expert system. Just like any other system, there are functions that can be enhanced
or added to make the system more useable and user friendly.
1. The system as it is now allows two types of interfacing, I/O redirection and file
passing. One improvement would be to allow other types of interfacing e.g., memory
mailboxes and interactive remote I/O. In memory mailboxes the communicator
interacts with the expert system through passing the parameters in predefined memory
locations. Remote interactive I/O should provide the expert systems with a set of
function calls (or executables) that the expert could use to interact with the remote
user.
2. Due to the current DOS limitations, the communicator had to be split into two
major parts, the communicator itself and the user interface module. The user can not
use a system running the communicator program, since the communicator is an RPC
server process. Adopting this system to a UNIX or OS/2 environment should solve
this problem.
3. Neither the crash recovery portion of the OSDES nor the process of building

dependencies at the query time was implemented.

55

APPENDIX A

Parameter Files

Adding a new member to OSDED requires a parameter file that contains all the information
a communicator needs to know about that member. The expert system developerihas to
provide the communicator with this file which holds all the information about the expert
system, and about the methods of interfacing. In the following paragraphs the format of the
parameter file will be presented, each entry in the parameter file will be described in a

separate paragraph.

Expert System Name :
The name used by the communicator to add the new expert system to the EDA. This name

is also used when a communicator calls another one.

Topics Covered :
The list of topics that the expert system deals with. These topics are shown to the user as the

available topics.

Input File Name :

The name of the file which holds the information needed by the expert system (only for

56

certain interfaces such as file passing and standard I/O redirection).

Output Results File Name :
The name of the file which holds the final results, generally a text file. (only for certain

interfaces)

Output Factors File Name :
The name of the file that holds the output factors and their values. These factors and values
are used by the calling communicator as input to the next expert system in the dependency

list.

Memory Location :
A memory address to hold the address of the input/output buffer between the GAI and the

agent. (only for certain interfaces)

List of Factors Questions and Domains :
The list of the factors that have to be passed to the expert system. The questions are the ones
that the communicator should ask, and the domain specifies what type of answers are

expected.

Invocation method :

The command the communicator should execute when activating the local expert system.

57
Interface style :

There are several ways to interface the communicator with an existing expert system. Since
this is the part that heavily depends on the expert system architecture, the expert system
developer (Administrator) has to research and investigate the most appropriate method (if
any). Following is a list of possible interface styles, there are many others. Note that, there
might be some communicator code modifications involved if it does not support that interface
yet.
1. Input/Output Redirection : This is the simplest method, and applies to those expert
systems that read their input from the standard input device and produce their output
to the standard output device.
2. Input variables/Output Reports : Some of the expert systems can read any of the -
yet unbound- variable and their values from a file. Similarly the output variables or
reports can be placed in some file. This is the method utilized by the expert system
building tool (1-st Class) used in this projects. For example for an Insurance

application processing system, the input variables can be passed in file as :

AGE=18
STATUS=SINGLE
ACCIDENT=3

The result can then be read from a file in the form :
INSURANCE=DENIED
or, the result can be place in a report as follows :
THE APPLICANTS INSURANCE APPLICATION CAN NOT BE APPROVED

AT THIS TIME, CALL YOUR AGENT FOR FURTHER ASSISTANCE.

Sample Parameter File

CREDIT

FRUN CREDIT /IYXRB

CREDIT.IN

CREDIT.RPT

CREDIT APPROVAL ADVISOR

#

CRED_RATING

WHAT IS YOUR CREDIT RATING ? (one only of: excellent. good, poor)
YEARSATJOB

HOW MANY YEARS HAVE YOU BEEN EMPLOYED BY YOUR CURRENT COMPANY ? (Number)
INCOME

WHAT IS YOUR ANUAL INCOME IN DOLLARS ? (Number)

ADDRESS

IN WHAT TYPE OF SETTING DO YOU LIVE ? (only one of: suburban, urban)
#

58

APPENDIX B

Source Code

59

02-17-90 19:51:14 COMMON\EXPERTS.RPC Pg

Wed 11-28-90 12:26:29 of 3
1-35
1 +--%h{
2 | #define MAX_EXPERTS 3
3 | #define MAX_TOPICS (MAX_EXPERTS * 3)
4 | #define MAX_FACTORS (MAX_EXPERTS * 7)
5 | #define STRLEN 30
6 | #define NAME 20
7 | #define LINELEN 80
8 | #define REPORT_SIZE 512
9 +--°o}
10
11 +--TYPEDEF STRUCT Factor { /* FACTOR
} consists of */
12 | CHAR fName[NAME] (*$0 =="0);
| /* Factor's Name */
13 | CHAR fDomain[LINELEN] (*$0 =="0");
| /* Decription of domain */
14 | CHAR fValue[NAME] (*$0 =="\0");
/* Factor's Value *
15 +--} FACTOR ;
16
17 +--TYPEDEF STRUCT Expertinfo { /* Expert
| Description */

18 | CHAR eName[NAME] (*$0 =="0;
| /* How to invoke the Expert */

19 | CHAR elnvoke[STRLEN] (*$0 =="0);
| /* How to invoke the Expert */

20 | CHAR elnput[NAME] (*$0 =="\0);

| /* Input file Name */

21 | CHAR eOutput[NAME] (*$0 =="0");
| {* Results file Name */

22 | CHAR (eTopics[MAX_TOPICS][STRLEN] (
| *$0 =="0)); /* Expert’'s Topics */

23 | FACTOR eFactors[MAX_FACTORS] ;

| /* Expert's Factors */
24 +--} EXPERT_INFO ;
25
26 +--TYPEDEF STRUCT expertsGroup {

27 INT expertsCount ;
28 CHAR eName[MAX_EXPERTS][NAME];
29 CHAR elnvoke[MAX_EXPERTS][STRLEN];

I
|
30 | GCHAR elnput{MAX_EXPERTS][NAME];
I
I
I

31 CHAR eOutput[MAX_EXPERTS][NAME];
32 CHAR eTopics[MAX_TOPICS * STRLEN];
33 FACTOR eFactors[MAX_FACTORS];

34 +--} EXPERTS_GROUP ;
35

02-17-90 19:51:14 COMMON\EXPERTS.RPC Pg 2
Wed 11-28-90 12:26:29 announc of 3
36-69

36 /*

37 * File: experts\common\experts.rpc

38 *

39 * This RPC file runs in the following environment

40 * RPC TOOL 2.2.0, Novelle SPX, DOS 3.3

M1 *

42 * This is the RPC Specification file for the
experts example.

43 */

44

45 /*

46 * A global variable called sname is identified
as the variable containing

47 * process binding information. Because this
variable is only

48 * used for input process binding information
and because no

49 * output process binding information is
specified, the client

50 * stubs open and close connections for each
remote procedure

51 * call (i.e., this is a non-persistent connection
).

52 *

63 EXTERN server_name [bind in] sname; /* server_nam
e is a predefined binding

54 type (typedef char *server_name

) */

55

56 /* The following procedures use the global
variable sname implicitly

&7 * for obtaining process binding information.
The procedures add the

58 * elements of vec and return the sum.

59 */

60

61 INT

62 announce(

63 EXPERT_INFO [in out] *anExpert ,

64 CHAR [in] *cfgName (*$0 == "\0)

65 ;

66

67 INT

68 trySolve(

69 EXPERT_INFO [in] *expertinfo ,

61

02-17-90 19:51:14 COMMON\EXPERTS.RPC
Wed 11-28-90 12:26:29 trySolv of 3
70-72

70 CHAR [in out] resultText{REPORT_SIZE]
o),
72

Pg

3

62

02-17-90 18:34:50 CLIENT\CLIENT.MK Pg
Wed 11-28-90 12:22:26 of 10
1-41
1 #
2 # File: experts\client\client. mk
3 # Makefile FOR the 'experts’ client program
4 # This makefile runs in the following environment:
5 # RPCTOOL 2.2.0, Novelle SPX, DOS 3.3
6 #
7
8 COMMON=.\common
9 CC=cl
10 MODEL=S
11 MLIB=C_LIBS
12 CFLAGS=/A$(MODEL) /Od
13 LFLAGS=/SE:256 /STACK:0X4800 /CO
14 RPCC=rpcc
15 NOBJS=
16 LIBS=$(MODEL)rpc $(MODEL)nwspx fdr_S$(MODEL)
samlib
17 INCS=
18 RINCS=
19
20 experts.h: $(COMMON)\experts.rpc
21 $(RPCC) $(RINCS) /c $(COMMON)\experts.rpc /o
cstubs.c
22
23 cstubs.c: $(COMMON)\experts.rpc
24 $(RPCC) $(RINCS) /c $(COMMON)\experts.rpc /o
cstubs.c
25
26 cstubs.obj: cstubs.c experts.h
27 $(CC) $(CFLAGS) /c $(INCS) cstubs.c
28
29 user_io.obj: user_io.c experts.h
30 $(CC) $(CFLAGS) /c /Zi $(INCS) user_io.c
>user_io.err
31
32 client.obj: client.c experts.h
33 $(CC) $(CFLAGS) /c /Zi $(INCS) client.c
>client.err
34
35 client.exe: client.obj cstubs.obj user_io.obj
36 # Create the response file FOR the linker
37 echo client.obj cstubs.obj user_io.obj > client.Ink
38 echo client.exe > >client.Ink
39 echo $(LFLAGS) >>client.Ink
40 echo $(LIBS) > >client.Ink
41 link @client.Ink

63

02-17-90 18:34:50 CLIENT\CLIENT.MK Pg 2
Wed 11-28-90 12:22:26 of 10
42-42

42 erase client.Ink

02-17-90 19:51:26 CLIENT\EXPERTS.H Pg 3

Wed 11-28-80 12:22:26

©DO~NOOH WN =

P (] [N WWWMNNNNNNN N i el v
wMdoggwgoahgwaoomﬂmmawﬁagomﬂmmawmao

+

MAX_TOPIC of 10
1-43

/*

* Generated by Netwise C/RPC TOOL

* MS/DOS - Microsoft C 5.1, Version 2.02.03
*/

#ifndef EXPERTS_H

#define EXPERTS_H 1
#include "rpchdr.h"

#define MAX_EXPERTS 3
#define MAX_TOPICS (MAX_EXPERTS * 3)
#define MAX_FACTORS (MAX_EXPERTS * 7)
#define STRLEN 30
#define NAME 20
#define LINELEN 80
#define REPORT SIZE 512
-TYPEDEF STRUCT Factor {
CHAR fName[NAME];
CHAR fDomain[LINELEN];
CHAR fValue[NAME];
-} FACTOR;

CHAR eName[NAME];

CHAR elnvoke[STRLEN];

CHAR elnput[NAME];

CHAR eOutput[NAME];

CHAR eTopics[MAX_TOPICS]{STRLEN];
FACTOR eFactors[MAX_FACTORS];

|

|

|
+-
+--TYPEDEF STRUCT Expertinfo {
|

|

|

|

|

|

+--} EXPERT_INFO;

+

--TYPEDEF STRUCT expertsGroup {
INT expertsCount;
CHAR eName[MAX_EXPERTS][NAME];
CHAR elnvoke[MAX_EXPERTS][STRLEN];
CHAR elnput[MAX_EXPERTS][NAME];
CHAR eOutput[MAX_EXPERTS][NAME];
CHAR eTopics[MAX_TOPICS * STRLEN];
FACTOR eFactors[MAX_FACTORS];

+--} EXPERTS_GROUP;

EXTERN server_name sname;,
EXTERN INT announce();
EXTERN INT trySolve();

#endif

65

02-17-90 19:46:58 CLIENT\CLIENT.C Pg 4

Wed 11-28-90 12:22:26 main of 10
1-37
1 /»*
2 * File: experts\client\client.c
3 *
4 * This example runs in the following environments

* RPC TOOL 2.2.0, Novelle SPX, DOS 3.3

*

NOoO O

* Client code for the experts example. This

driver program calls two server

8 * programs, opening and closing the connection
for each call, i.e., a

9 * non-persistent connection.

10 */

11

12 #include <stdio.h>

13 #include <fdrlib.h>

14 #include "experts.n" /* client header file,
created by RPC compiler */

15

16

17 /* Server_Name is used to set the process-
binding variable.

18 * It must be defined as the name the server

registers under.

19 */

20

21 #define Server_Name "EXAMPLE"
22

23 EXTERN INT _rpcerr_; /* declare RPC error code */

24

25 /* declare variable of type server_name for
process binding */

26 server_name sname;

27

28 STATIC VOID place(EXPERT_INFO *, /* in */
EXPERTS_GROUP [1) ;

29 STATIC VOID merge(EXPERT_INFO *, /* with */
EXPERTS_GROUP *);

30

31 main(argc, argv)

32 INT argc ;

33 CHAR **argv;

34 +-{

35 | STATIC CHAR resultText(REPORT_SIZE] ;

36 | STATIC EXPERT_INFO anExpert ;
37 | STATIC EXPERTS_GROUP experts[MAX_EXPERTS] ;

02-17-90 19:46:58 CLIENT\GLIENT.C Pg 5
Wed 11-28-90 12:22:26 main of 10
38-78

38 |

39 | INT i, index , num_expens ;

40 |

41 | fdcir(0,0,24,79, ' ', fdpen(P_NORMAL)) ;

42 | IF (argc < 2)

43 | +-—{

44 | | printf("\n\n USAGE : client <expert1>
| | [expert2] [expert3]\n");

45 | | exit(0) ;

46 | +--}

47 |

48 | memset((CHAR *) experts, "\0’, SIZEOF(
| expens)) ;

49 |

50 | // fill the array of experts

51 | FOR(i=1;i<argc; i++)

52 | +-{

53 | | memset(&anExpert, '\0’, SIZEOF(anExpert)) ;

54 | | sname = argv(i] ;

55 | | announce(&anExpert, sname) ;

56 | | place(&anExpert, experts) ;

57 | +-}

58 |

59 | /] count the number of expert groups

60 | FOR (num_experts = 0 ; experts[num_experts].
| eTopics[0] ; num_experts+ +);

61 |

62 | DO

63 | +-{

64 | | index = getTopic(experts, num_experts) ;

65 | | IF (index < 0)

66 | | BREAK ;

67 | |

68 | | IF (getFactors(&expents[index]) == 0)

69 | | BREAK ;

70 | |

71| | memcpy(anExpent.eFactors, experts[index].
| | eFactors,

72 | | SIZEOF(anExpert.eFactors)) ;

73 | |

74 | | fdcIr(0,0,24,79, ' ', fdpen(P_NORMAL)) ;

75 | | fdcurset(0,0);

76 | | FOR (i = 0 ; experts[index].eName[i][0] ;
I i++)

77 | | +-{

7|] strepy(anExpert.eName |, experts[index)

67

02-17-90 19:46:58 CLIENT\CLIENT.C Pg 6

Wed 11-28-90 12:22:26 place of 10
78-118

| | .eName[i]) ;

79 | || strecpy(anExpert.elnvoke , expertsfindex]
|| .elnvokeli]) ;

80 | | | strcpy (anExpert.elnput , experts{index]
| | .elnputfi]) ;

81 | | | strcpy (anExpert.eOutput , experts[index]
| | .eOutput[i]) ;

82 | | | sname = anExpert.eName ;

83 | | | printf("CALLING ==> %s \n", sname) ;

84 | | | (fdstfill(resultText, REPORT_SIZE - 1,
(I I

85 | | | trySolve(&anExpent, resultText) ;

8 | | | IF (_rpcerr)

8 | | | +-{ /* check RPC return code */

88 | | | | printf("CLIENT: RPC error %d \n",

8 | | | | _rpcer);

90 | | | | exit(l)

91 | | | +-}

92 | | | printf("ADVICE IS :\n%s\n", resultText) ;

93 | | +-}

94 | |

95 | | printf("\n\n press any key when ready ");

96 | | fdkbget(&resultText[0]) ;

97 | +--

98 | WHILE (1);

99 |

100 | exit(0);

101 +--}

102

103 STATIC VOID place(anExpert, /* in */ allExperts)

104 EXPERT_INFO *anExpert ;

105 EXPERTS_GROUP allExperts]] ;

106 +--{

107 | INT i=0,k=0,

108 | found = 0;

109 |

110 | FOR (i = 0 ; allexperts][i].eTopics[0] ; i++)

111 | +-{

112 | | FOR (k = 0 ; anExpert->eTopics[k][0] ; k+ +)

113 | | +-

114 | | | IF (strstr(allExperts{i].eTopics,
|| anExpert->eTopics[K]))

115 | | | +--{// if found the merge

116 | | | | merge(anExper, &allExperts|i]) ;

117 | | | | found = 1 ;

118 | | | | BREAK ; // continue with the

02-17-80 19:46:58 CLIENT\CLIENT.C Pg 7
Wed 11-28-90 12:22:26 merge of 10
118-154

1111 next expert

19| || +-}

120 | | +-}

121 | +-}

122 |

123 | IF (!found)

124 | merge(anExpert, &allExperts[i]) ; /!
| add to a new group

125 +--}

126

127 STATIC VOID merge(anExpert, /* with */ eGroup)
128 EXPERT_INFO *anExpert ;
129 EXPERTS_GROUP *eGroup ;

130 +--{

131 | INT j=0,k=0;

132 |

133 | strcpy (eGroup->eName[eGroup->expertsCount],
| anExpert->eName) ;

134 | strcpy (eGroup-> elnvoke[eGroup-> expertsCount],
| anExpert->elnvoke) ;

135 | strcpy (eGroup-> elnput[eGroup-> expertsCount],
| anExpert->einput) ;

136 | strcpy (eGroup-> eOutput[eGroup->expertsCount],
| anExpert->eOutput) ;

137 |

138 | /f Merge the Topics

139 | FOR (k = 0 ; anExpert->eTopics[k][0] ; k++)

140 | +-{

141 | | /I if Topic does not exists then added to
| | the list

142 | | IF (!strstr(eGroup->eTopics, anExpert->
| | eTopics[k])

143 | | +--

144 | | | iIF (strlen(eGroup->eTopics) > 50)

145 | | | strcat(eGroup-> eTopics, "\n") ;

146 | | | ELSE

147 | | | strcat(eGroup->eTopics, *, ") ;

148 | | | strcat(eGroup->eTopics, anExpert->
| | | eTopics[K]) ;

149 | | +-}

150 | +--}

151 |

152 | /! Merge the factors

153 | FOR (k = 0 ; anExpert->eFactors[k].fName[0] ;

| k++)
154 | +--{

69

02-17-90 19:46:58 GCLIENT\CLIENT.C Pg 8

Wed 11-28-90 12:22:26 merge of 10
155-168

155 | | FOR (j = 0; eGroup->eFactors[j].fName[0] ;
I j++)

156 | | +-{

157 | | | IF (!strcmp(anExpert->eFactors[k].fName,
I 1| eGroup-> eFactors[j}.fName))

158 | | | BREAK ; // Factor already exists
I in the group

159 | | +-}

160 |

161 | | IF (!(eGroup->eFactors[jl.fName[0])) //
| | end of factors -> add factor

162 | | memcpy (&eGroup->eFactors[j], &anExpert->

eFactors[k],

163 | | SIZEOF (FACTOR));

164 | +--}

165 |

166 | eGroup->expertsCount++ ; // increment
| # of experts in the group

167 +--}

168

02-18-90 14:31:10 CLIENT\USER_IO.C
Wed 11-28-90 12:22:26

SOONONHWN =

—t i
N =

I
13

I
14

I
15

I
16

I
17

I
18

I
19

I
20

I
22

I
23

I
24
25
26
27
28
29
30
31
32
33
34

21

1-34
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <dos.h>
#include <fdrlib.h>
#include <experts.h>
USHORT keylist[] = { KB_ENTER, KB_ESC, NULL };
STRING str =
+--{
| NULL, /I special
option flag
| NULL, // maximum
length of string
I 20, // width of
field display
| 0, // current
scrolling offset
| o, // cursor
position in field display
| NULL, {/ value to
be edited
| NULL, // valid/
invalid input characters
| NULL, // formatted
input mask
| 20, 20, // absolute
row, column
| P_REVERSE, P_NORMAL, // attribute
pen numbers I
| keylist, // array of
keys that terminate
| NULL // override
of fdkbget() function
+-}
INT getTopic(experts, num_experts)
EXPERTS_GROUP experts[] ;
INT num_experts ;
+--{
| INTi,j;
| CHAR selection[3] ;
I
| fdcir(0,0,24,79, ' ’, fdpen(P_NORMAL)) ;
| fdcurset(0,0);

getTopic of 10

Pg 9

71

02-18-90 14:31:10 CLIENT\USER_IO.C Pg 10

Wed 11-28-90 12:22:26

35
36
37
38
39

40
41
42
43
44
a5
46
47
48
49
50
51
52
53

——

getFactor of 10
35-64

FOR (i = 0; i < num_experts ; i++)
printf("\n%d. %s", i, experts[i].eTopics);

fdsffill(selection, 3 -1, ') ;
IF (get_string(&str, selection, 20, 1,
STR_UPPER,
"Select a Topic Number') == KB_ESC)
RETURN(-1) ;

RETURN (atoi(selection)) ;

-}

INT getFactors(eGroup)
EXPERTS_GROUP *eGroup ;

t

INT i,j,
sts=0;

fdcir(0,0,24,79, * *, fdpen(P_NORMAL)) ;
fdcurset(0,0);
FOR (i = 0, j = 0; eGroup->eFactors[i].fName[
0] ;i++, j+=2)

+-{

| fdstfill(eGroup->eFactors]i].fValue, NAME

-1,

| IF (get_string(&str, eGroup->eFactors]i].

fvalue, j, 0, STR_UPPER,
eGroup->eFactors[i].fDomain) == KB_ESC)
RETURN(sts) ;

RETURN(1) ; // all ok

72

01-09-90 08:22:48 SERVER\SERVER.MK Pg
Wed 11-28-90 12:28:03 of 8
1-42
1 #
2 # File: expents\server\server.mk
3 # Makefile FOR the 'experts’ server program
4 # This makefile runs in the following environment:
5 # RPCTOOL 2.2.0, Novelle SPX, DOS 3.3
6 #
7
8 COMMON=.\common
9 SCPS=$(RPCSCP)
10 CC=cl
11 MODEL=S
12 MLUB=C_LIBS
13 CFLAGS=/A$(MODEL) /Od
14 LFLAGS=/SE:256 /STACK:0X4000
15 RPCC=rpcc
16 NOBJS=
17 DEFINES=/DSERV_DEF
18 LIBS=$(MODEL)rpc $(MODEL)nwspx fdr_5$(MODEL)
19 INCS=
20 RINCS=
21
22 experts.h: $(COMMON)\experts.rpc
23 $(RPCC) $(RINCS) /s $(COMMON)\experts.rpc /o
sstubs.c
24
25 sstubs.c: $(COMMON)\experts.rpc
26 $(RPCC) $(RINCS) /s $(COMMON)\experts.rpc /o
sstubs.c
27
28 sstubs.obj: sstubs.c experts.h
29 $(CC) $(CFLAGS) /c $(INCS) sstubs.c
30
31 # Note that main_sc.c is in the server control
procedure directory rather
32 # than in the local example directory
33 scp.obj: serv_def.h
34 $(CC) $(CFLAGS) /c /Foscp.obj /l. $(INCS) $(
DEFINES) $(SCPS)\main_sc.c
35
36 rproc.obj: rproc.c experts.h
37 $(CC) $(CFLAGS) /c $(INCS) rproc.c
38
39 server.exe: scp.obj rproc.obj sstubs.obj
40 # Create the response file FOR the linker
41 echo scp.obj rproc.obj sstubs.obj >server.Ink
42 echo server.exe > >server.lnk

1

73

01-09-90 08:22:48 SERVER\SERVER.MK
Wed 11-28-90 12:28:03

23
44
45
46

43-46

echo $(LFLAGS) >>server.Ink
echo $(LIBS) > >server.Ink
link @server.Ink

erase server.Ink

of

8

Pg

2

74

02-17-90 19:54:50 SERVER\SERV_DEF.H
Wed 11-28-90 12:28:03

WN =~

O©ONOOH

1-9

/*

* File: experts\server\serv_def.h

* This include file is used to define the
constants needed by the

* server control procedure.

*
/

#define Dispatcher experts_Proc
#define Server_Name "shiper"
#define DEBUG

of

8

Pg

75

02-17-90 19:55:14 SERVER\EXPERTS.H Pg 4
Wed 11-28-90 12:28:03 MAX_TOPI of 8

1-42

1 /*

2 * Generated by Netwise C/RPC TOOL

3 * MS/DOS - Microsoft C 5.1, Version 2.02.03

4 */

5 #ifndef EXPERTS_H

6

7 #define EXPERTS_H 1

8 #include "rpchdr.h"

9

10 #define MAX_EXPERTS 3

11 #define MAX_TOPICS (MAX_EXPERTS * 3)

12 #define MAX FACTORS (MAX_EXPERTS * 7)

13 #define STRLEN 30

14 #define NAME 20

15 #define LINELEN 80

16 #define REPORT_SIZE 512

17 +--TYPEDEF STRUCT Factor {

18 | CHAR fName[NAME];

19 | CHAR fDomain[LINELEN];

20 | CHAR fValue[NAME];

21 +--} FACTOR,;

22 +--TYPEDEF STRUCT Expertinfo {

23 | CHAR eName[NAME];

24 | CHAR elnvoke[STRLEN];

25 | CHAR elnput[NAME];

26 | CHAR eOutput[NAME];

27 | CHAR eTopics[MAX_TOPICS][STRLEN];

28 | FACTOR eFactors[MAX_FACTORS];

29 +--} EXPERT_INFO;

G W W WWWWW
ONOOOOPARWN=O

39
40
41
42

+--TYPEDEF STRUCT expertsGroup {
| INT expertsCount;
| CHAR eName[MAX_EXPERTS][NAME];
| CHAR elnvoke[MAX_EXPERTS][STRLEN];
| CHAR elnput[MAX_EXPERTS][NAME];
| CHAR eOutput[MAX_EXPERTS][NAME];
| CHAR eTopics[MAX_TOPICS * STRLEN];
| FACTOR eFactors[MAX_FACTORS];
+--} EXPERTS_GROUP;
EXTERN INT announce();
EXTERN INT trySolve();

#endif

76

01-09-90 19:23:30 SERVER\RPROC.C Pg 5
Wed 11-28-90 12:28:03 trySolve of 8
1-39
1 *
2 * File: experts\server\rproc.c
3 *
4 * This example runs in the following environment:
5 * RPC TOOL 2.2.0, Novelle SPX, DOS 3.3
6 *
7 * This file contains the remote procedures for
the array example.
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <dos.h>
14 #include <fdrlib.n>
15 #include ‘experts.h" /* server header file,
created by RPC compiler */
16
17 INT trySolve(expertinfo, resultText)
18 EXPERT_INFO *expertinfo ;
19 CHAR *resultText ;
20 +--
21 | STATIC CHAR line[80] ;
22 | FILE *fp;
23 | INT i;
24 |
25 | printf("\nTRY SOLVE\n");
26 | /1 1. first create the input file holding
all the factors in the form of
27 | // FAVTOR = value (FACTOR is as decribed in
the EXPERT, & value is as
28 // filled by the user.
29 | fp = fopen(expertinfo->elnput, "wt") ;
30 | // while there are factors we need to put
them to the file
31 | FOR (i = 0 ; (expertinfo->eFactors]i].fName[0]
I="\0) ; i++)
32 | fprintf(fp,"%s = %s \n",expertinfo->
eFactors[i].fFName,
33 | expertinfo->eFactorsl[i].fValue) ;
34 | fclose(fp) ;
35 |
36 |
37 | /I 2. next zap the output file
38 | remove(expertinfo->eOutput) ;
I

77

01-09-90 19:23:30 SERVER\RPROC.C Pg 6

Wed 11-28-90 12:28:03

40
41
42
43
44
45
46
47
48
49

61
62
63
64
65
66
67
68

69
70
7
72
73

74
75
76
77
78

I
I
+

+-}

announce of 8
40-78

{/ 3. Now Invoke the Expert
system(expertinfo->elnvoke) ;

// 4. Now prepare the result text
resuliText[0] = "\0';

fp = fopen(expertinfo->eOutput, "it") ;
WHILE (! feof(fp) && fp)

-

IF (!fgets(line, SIZEOF (line) -1 ,fp))
BREAK ; // nothing more to
read

fdstftrim(line) ;

IF ((line[0] == "\n") || ((INT)line[0] <

32))

CONTINUE ; /I skip if new

line or non-print
printf("\n%s", line) ;
strcat(resultText, line) ;

-}

close (fp) ;

printf("\n\n\n

______Il);
printf("\n%s", resultText) ;
printf("\n\n\n

------ ok
/! end trySolve()

INT announce(anExpert, cfgName)
EXPERT_INFO *anExpert ;

CHAR *cfgName ; /! Expert
configuration file

~{

-+

STATIC CHAR line[LINELEN] ;

FILE *fp;

INT i,

sts =0 ; // 0 => did not announce, 1
=> announced OK.

printf("\nANNOUNCE\n");

sprintf(line, "%s.%s", cfgName, "dat");
fp = fopen(line,"nt") ;

IF (ifp)

78

01-09-90 19:23:30 SERVER\RPROC.C Pg 7
Wed 11-28-90 12:28:03 announce of 8
79-118
79 | RETUHN(SS) ;
80 |
81 | // 1st line is the Expert system name (

to be announced)

82 | IF (fgets(line, SIZEOF(line)-1 , fp) == NULL)
83 | RETURN(sts) ;
84 | fdstftrim(line);
85 | fdsttrim(line) ;
86 | strcpy(anExpert->eName, line) ;
87 |
88 | // 2nd line is the methode of Invoking the
| EXpert system
89 | IF (fgets(line, SIZEOF(line)-1 , fp) == NULL)
90 | RETURN(sts) ;
91 | fdstftrim(line);
92 | fdsttrim(line) ;
93 | strcpy (anExpert->elnvoke, line) ;
94 |
95 | // 3rd line is the file name that holds
| the input to the EXpent system
96 | IF (fgets(line, SIZEOF(line)-1 , fp) == NULL)
97 | RETURN(sts) ;
98 | fdstftrim(line);
99 | fdsttrim(line) ;
100 | strepy (anExpert->elnput, line) ;
101 |
102 | // 4th line is the file name that holds the
| output from the expert system
103 | IF (fgets(line, SIZEOF(line)-1 , fp) == NULL)
104 | RETURN(sts) ;
105 | fdstftrim(line);
106 | fdsttrim(line) ;
107 | strcpy(anExpert->eOutput, line) ;
108 |
109 | /] get the list of topics each on a line,
terminated by '#’
110 | // in a line by itself
111 | memset(line, \0', SIZEOF(line)) ;
112 | FOR (i = 0; (line[0] !'="#') ; i+ +)
113 | +-{
114 | | IF (fgets(line, SIZEOF(line)-1, fp) == NULL)
115 | | RETURN (sts) ; // unexpected
| end of file
116 | | fdstftrim(line);
117 | | fdsttrim(line) ;

118 | | IF (line[0] = '#)

79

01-09-90 19:23:30 SERVER\RPROC.C .Pg 8

Wed 11-28-90 12:28:03 announce of 8
119-145

119 | | strcpy(anExpert->eTopics(i], line) ;

120 | +--

121 |

122 | // get All the factor names, each Factor

name is followed by

123 | /f domain description used as info for the
| user, and terminated by '#’

124 | memset(line, '\0', SIZEOF(line)) ;

125 | FOR (i = 0; (line[0] = "#") && (!feof(fp)) ;
| i++)

126 | +--{

127 | | fgets(line, SIZEOF(line)-1, fp) ;

128 | | fdstftrim(line);

129 | | fdsttrim(line) ;

130 | | IF (line[0] !="#)

131 | | +-{

132 | || IF(@i%2 // od numbered
| 1| lines

133 | | | strcpy (anExpert-> eFactors|if2].
| 1 | fDomain,line) ;

134 | | | ELSE

135 | | | strcpy (anExpert->eF actors|i/2].fName,
Il line) ;

136 | | +--}

137 | +--}

138 |

139 | RETURN (1) ;

140 +-}

141

142

143

144

145

Alsc90

Amir89

Amir89

Bond88

Borl87

Cohe89

Covi88

Degr87

Durf89

Gaag88

Gass89

Geva87

Hewi86

Howa89

81

BIBLIOGRAPHY

Al-Schamma, S. and Z. Chen. "An Open System Approach To Integration of
Expert System.", APPLIED ARTIFICTAL INTELLIGENCE, 1990, 4:3:145-
1.54’

Anmir, S. "Building Integrated Expert Systems.", Al EXPERT, January 1989,
4:1:26-37.

Amir, S. "Building Integrated Expert Systems, Part Two.", Al EXPERT,
March 1989, 4:3:42-52.

Bond, A. H. and Gasser, L. "An analysis of problems and research in DAL
Readings in Distributed Artificial Intelligence, 1988, 1:3-35.

Borland. TURBO PROLOG TOOLBOX, Borland Inc. 1987.

Cohen, B. "Merging Expert Systems and Databases.", Al EXPERT, February
1989, 4:2:22-31.

Covington, M. A., Donald Nute, and Velline. PROLOG Programming in
Depth, Scott Foresman and Company, London 1988. 9:256-261, 12:380-381.

Degroff, L. "Conventional Languages and Expert Systems.", Al EXPERT,
April 1987, 2:4:32-36.

Durfee, E. H., Victor Lesser, and Corkill. "Trends in Cooperative Distributed

Problem Solving.", IEEE Transactions on Knowledge and Data Engineering,
March 1989, 1:1.

Van Der Gaag, L.C, and P. J. F. Lucas. "HEPAR:An Expert System in
Prolog.", Al EXPERT, June 1988, pp. 34-43.

Gasser, L. "Distributed Artificial Intelligence.", AI EXPERT, July 1989,
4:7:26-33.

Gevarter, W. B. "The Nature and Evaluation of Commercial Expert System
Building Tools.", COMPUTER, May 1987, pp. 24-44.

Hewitt, C. "Offices are open systems". ACM Transactions on Office
Information Systems, July 1986, pp. 271-287.

Howard, H. C. and Rehak, D. R. "KADBASE:Interfacing Expert Systems with

Hu 89

Jack86

Luge89

Netwl9

Pedel8

Smit81

Stee86

Thom89

Will87

82
Databases.", IEEE Expert, Fall 1989, pp. 65-76.

Hu, D. C/C++ FOR EXPERT SYSTEMS, MIS PRESS 1989.

Jackson, P. Introduction to Expert Systems, Reading, MA:Addison-Wesley,
1986.

Luger, G. F. and Subblefield, William A. ARTIFICIAL INTELLIGENCE
AND THE DESIGN OF EXPERT SYSTEMS, Benjamin/Cummings 1989 ,
15:561-563, 16:598-600.

Netwise RPC TOOL for C Language Reference Manual, Netwise Inc.,
September 1990.

Pedersen, K. "Connecting Expert Systems and Conventional Environments.",
Al EXPERT, May 1988, 3:5:26-35.

Smith, R. G., and Randall Davis. "Frameworks for Cooperative Distributed

Problem Solving.", IEEE Transactions on Systems, Man and Cybernetics,
January 1981, 3.1:61-69.

Steeb, R. and others. "Distributed Problem Solving for Air Fleet
Control:Framework and Implementation.", EXPERT SYSTEMS:Techniques
and Applications, Ed. Philip Klahr and Donald A Waterman: Addison-Wesley
Publishing Company 1986. 11:391-432.

Thomas, W. and Hapgood, W. 1st-Class Reference Manual, Expert Systems
Inc. 1989.

Williamson, M. "At Du Pont, Expert Systems Are Key to Al
Implementation.", PC WEEK, January 13, 1987, 4:2.

	Integration of Distributed Expert Systems: An Open System Approach.
	Recommended Citation

	tmp.1608220803.pdf.CYnnm

