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ABSTRACT

Traditional model-based pattern classification is based on the assumption that the
distribution of the training samples of each pattern class can be formulated by a single
statistical function. It is difficult to make an accurate classification by the traditional
method when the training samples of different classes do not bind to this assumption. The
main contribution of this research is the development of a new clustering technique,
called Multi-Hyperellipsoid Clustering, that is able to handle any irregular pattern
distributions. The new method uses a supervised maximum likelihood estimation to
derive a set of distribution functions for the training samples of each class, and then uses
an improved Bayesian probability decision model to partition the pattern space. The new
classifier achieved a higher rate of correct classification than the traditional method, with

respect to some rather complex pattern distributions in a number of test examples.

Key terms:
Pattern classification, multi-hyperellipsoid clustering, Gaussian distribution, maximum

likelihood estimation, Bayes decision rule.



1. Introduction

w
Suppose there are w classes of samples, i.e. § = Usi , in an n-dimensional space;

i=1

and there are g;, i=12,---,w, sarhples in each class, i.e. §; = {sl,sz,-u,sqi}. A Pattern

Classifier can be viewed as a mapping or decision-making mechanism that partitions an
n-dimensional feature space into w subspaces. For any given feature vector x in this

space, the classifier will provide a class-label as its output. That is, if
ﬂi(x),i= 1,2,---,w, is a set of discriminant functions for the classification, then the
classifier will assign a class-label @, to vector x such that 7,(x) has the maximum

value. This decision-making procedure can be represented as a mapping machine in the

following figure.

m,(x)
752()()

X o 7, (%) \;‘ class(x) —— o,
7, (x)

Figure 1.1 Mapping Machine of Pattern Classification
Pattern classification is a very important technique used in many computer
applications such as image processing, speech recognition, disease diagnosis, biological

slide analysis, weather forecasting, machine vision, etc.



Traditionally, statistical approach is a fundamental technique used in pattern
classification. The technique works in this fashion: (1) by assuming a form of the class-
conditional probability distribution functions and using parameter estimations on the
given training set, a set of decision (or say, discriminant) functions is found; (2) based on
these discriminant functions, a classification model is constructed to partition the feature
space into w subspaces such that each subspace corresponds to a class; (3) any vector in
the feature space should locate in a specific subspace. In practical problems, however, the
form of the desired class-conditional probability distribution functions are often
unknown. Therefore, the theoretically ideal classifier is hardly applied in practical
problems without loss of statistical precision.

The conventional classification models are based on the assumptions of Gaussian
normal disffi'bution in general’. A 'Gz;ussian normal distribution function can be regarded
as a hyperellipsoid in an n-dimensional feature space. Therefore, in conventional
parameter estimation, there is a single hyperellipsoid corresponding to the pattern
(!istrib_ution for each class. In this research, a model based on unions of multiple pattern
distributions is developed. The models can be in Gaussian normal distribution or others.
There is a major difference between our model and the conventional approach. In our
approach, samples of each class are modeled by multi-hyperellipsoids, instead of a single
\hyperellipsoid. The advantage of this modeling technique is that it can be used in case

where the distribution of the training samples is not in single Gaussian distribution.



Moreover, compared with the traditional model, our model provides a better performance
in classification when the training samples are in complex and irregular distributions.

Te—

There are lots of studies been done in pattern classification and 'paraﬁleter
estimation. Basically, they can be categorized as four techniques: 1) Statistical
Approaches; 2) Neural Network Approaches; 3) Fuzzy Clustering Approaches; and 4)

Linear Programming Approaches. R. O. Duda and P. E. Hart [28] presented the classic

work on statistical theory for the combined classification and parameter estimation.

- —— — ——

Similar discussions about the statistical approaches on the classification problem can be
found in [5], [18] and [30]."Clustering techniques with unsupervised learning was
presented as a popular approacﬁ for pattern analysis in [30] and [24]. The popul'arity of
clustering has spawned a library of clustering algorithms (R. K. Blashfield et. al.[25], and
A. K. Jain and R. C. Dubes [2]). Neural network approaches for clustering and
classification are shown in [30] and [33]. R. Schalkoff [27] covered the statistical,
structural and neural-net approaches in pattern classification area, Many significant and
broad studies in nearest neighbor techniques within the fields of pattern classification are
presented in [4]. Fuzzy clustering was studied by V. D. Gesu [31], I. Gath and A. B.
Geva[11], H. Ishibuchi et. [10], D. E. Gustafson and W. C. Kessel [6]. Multisurface
method was a famous linear programming approach ([19], [20], and [21]).

This thesis is organized as follows : In Section 2, we summarize the basic

processes for a general probability-based classifier and indicate its limitations in solving

certain classification problems. In Section 3, we describe the multi-hyperellipsoid



¢lustering algorithm which performs supervised clustering on the labeled training sample
set. In Section 4, we illustrate the construction of the Multi-HyperEllipsoid Classifier (M-
HEC) which is derived from the clustering algorithm described in Section 3. In Section 5,
we present the comparison of the M-HEC with the conventional classifier, neural-
network based classifiers, and fuzzy-clustering based classifiers. Section 6 contains

conclusion remarks.

2. Model-Based Classifications

2.1 Bayes Decision Rule

A pattern classification process starts with a set of measurements that can be

viewed as points in a vector space. That is, the measurement is a feature vector x in an n-
dimensional space, x = [x1 Xy e ,xn] .

Statistically, an optimal classifier is the one which minimizes the probability of
overall decision error, i.e. mis-classification, on the samples in the vector space. For a

given observation vector x of unknown class membership, if class-conditional
distributions p(xlco k) and prior probabilities P(a) k) for the class w,, k=12,---,w, are

provided, then a posterior probability P(cok |x) can be computed by Bayes Rule:

Pla,fx) = plfo.)M(e:) @1

plx)



where

p(x)= p(xjw,)P(w,). 2.2)
i=1
Bayes decision method finds the membership label class(x) for the observation
feature vector x such that the overall probahility of classification-error, in the decision

theoretic terminology, the expected loss (or risk), is minimized. Suppose for the given

observation vector X, we are going to make decision g, . If the true state of nature is ®,,

we will incur a loss 7:(5 ,.|(0 k). Since P(a) k|x) is the probability that the true state of

nature is @, , the expected loss (or risk) associated with decision & ;18

R(5,[x) = 2 (8 |0, )P(w, [x). (2.3)

k=1

Then, the overall expected loss is given by

R(8(x)) = | RS(x)Ix]p(x)dx 2.4)

where 8(x) is the decision function for vector x , which assumes one of the decision
among the decision set {6,,6,,~-,6,}. The integral extends over the entire feature
space. Clearly, if &(x) is chosen so that R[§(x)x] is as small as possible for every

vector X, then the overall expected loss will be minimized. Therefore, to minimize the

overall loss, we need to compute the conditional risk

R(5].|x) = 27(5f|wk )P(@kl—x) 2.5)

k

w

—



for j=12,---,d and select the decision & ; for which R(6 ]|x) is minimum. This is what

we called the Bayes Decision Rule.
In a typical classification problem, each sample is usually associated with a

unique member of the w classes, and the 6, is usually interpreted as the decision that the
true state of nature of the sample is @;. If decision & ; is made and the true state of

nature is @, , then the decision is correct if k= j, and is error if k# j. To avoid

decision errors, it is nature to seek a decision rule that minimizes the overall probability

of error. In certain cases, we can define the loss function as

0, j=k
r(6j|a)k)={1, ;ik k=12, w 26)

This loss function assigns no lose to a correct decision, and assigns a unit loss to

any error. The risk corresponding to this loss function is precisely the overall probability

of error, since the conditional risk is

R(S,[x) = ir(c’iklw,.)P(a)Jx) =Y Plo|x)=1- P(w,|x) (2.7)

i=1 izk
and P(a) k|x) is the conditional probability that decision §, is correct.
From Eq.(2.7), we can see that the class probability functions, P((ok|x) s,

dominate the computation of conditional risks. They describe the class boundaries in the
n-dimensional feature space which are the decision bases of many model-based

classifiers. Generally, they are referred as Bayes’. discriminant functions.



2.2 Maximum Likelihood Estimation

From the above discussion, we learned that the Bayes classifier is determined
primarily on the class probability functions P((o klx). If the prior probabilities P(w,) of
all classes are equal (this is the general assumption for many pattern classification
problems), then, according to Eq. (2.1), the class conditional densities p(xla)k) uniquely

determine a set of discriminant functions. Decisions are made based on these discriminant
functions such that if p(xla),.) > p(x|(o j), Vj # i, then x € @,.

Of the various probability density functions that have been investigated, none has
received more attention than the multivariate normal density. The general multivariate
normal density in Gaussian distribution is defined as

1 e[-gu-urz-%x—uﬂ .
2z Yz @8

p(x) =

where X is an n-dimensional vector, i is an n-component mean vector, X is an rnXn
covariance matrix, (x—p) is the transpose of (x—p), 7' is the inverse of X, and

IEI is the determinant of X. Formally, u is the expectation of x and X is the

expectation of (x —u)(x — )’ . That s,

+oc

U = Expect[x] = J‘xp(x)dx (2.9)

and



% = Expect|(x - p)(x - p)]= [j[(x ~ p)(x - 1)’ [p(x)dx (2.10)

where p(x) is the density function. The expected value of a vector or a matrix is found
by taking the expected values of its components.

Suppose there is a training set with k samples {x,,x2,---,xk}. By applying
Maximum Likelihood Estimation on this sample set, thepz and X can be obtained by

(see R. O. Duda and P. E. Hart [28], p.49),

1 k
L=—) X, (2.11)
kS
and
k
z =%2(xi - p)x, - u) (2.12)

i=1

Thus, the maximum likelihood estimations for the mean vector and the covariance matrix
are the sample mean and the arithmetic average of the n matrices (x, —p)(x, — ),

respectively.

n(n+1)

The multivariate normal density is completely determined by n+

parameters : 1) the elements of the mean vector u ; and 2) the independent elements of

the covariance matrix X . Geometrically, samples drawn from a normal population tend

to fall in a single cluster. The center of the cluster is determined by the mean vector, and
the shape of the cluster is determined by the covariance matrix. It follows from Eq.(2.8)

that the loci of points of constant density are hyperellipsoids for which the quadratic form



(x—u)'Z7'(x — p) is constant. The principal axes of these hyperellipsoids are given by

the eigenvectors of X and the lengths of these axes are determined by the eigenvalues.

The quantity

r=y(x-p) = (x— ) (2.13)
is called the Mahalanobis Distance from x to u . Thus, the contours of constant density
are hyperellipsoids with a constant Mahalanobis Distance to the point @t. The volume of

these hyperellipsoids measures the scatter of the samples about the mean.

Suppose that there is a set S of labeled training samples in which each sample is

associated with a specific class, i.e., § = US,. , Siﬂ S = D, for i+ j. Moreover, for

i=1
each x € S, there exists a k, (k_ =12, w), such that x € S, . A pattern classifier can be

formed by applying the Maximum Likelihood estimation in a learning process that uses

the training samples. The general supervised learning based classifier works as follows:
(1) independently assuming a functional form of p(x|w k) for each class; (2) a parameter
estimation procedure, e.g. Maximum likelihood estimation, is used to determined the
parameters in p(xla)k); (3) the probability density functions p(xla)k) form a set of
discriminant functions; (4) based on these functions, a set of decision rules are established
for a classifier. More discussions on maximum likelihood estimation and multivariate

normal density can be found in books by Charles W. Therrien [5] and R. O. Duda and P.

E. Hart [28].
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2.3 Problems in the Maximum Likelihood Classifier

In real world applications, the functional form of probability distribution for the
training samples is not predetermined. Furthermore, the training samples of different
classes are not completely independent. For example, in Figure 2.1, we have a training

sample set which includes samples in two classes in a 2-dimensional space.

N
A X2
O O
O O
X X X X X
XXXXXX
X. X . X -=class 1
X X O O o --class 2
’;: oXoXe)
@)
X X oMo )
oN®)
0 " X

Figure 2.1 Training Samples
The class-conditional probability distributions p(x|w,) and p(x|w,), which are

computed by the maximum likelihood estimation based on the assumptions of Gaussian

distribution, are depicted in Figure 2.2.
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p(x|o,)

X --class 1
o -- class 2

A\

Figure 2.2 Result of Gaussian Clustering
It is obvious that the Gaussian distribution assumption does not fit to the nature of

the distribution of the samples in class 1 or both classes. The use of a single Gaussian
distribution for p(x|a),) and p(xla)z) causes a big error between the real distribution and
the estimated one. Even though the samples in class 2 seems in Gaussian distribution, the
resulting estimation of p(x]wz) may not be good enough to be used as a discriminant
function against w,. Therefore, it even be not advantageous to simply estimate the
p(x|co2) independent of the class 1 samples using the Gaussian distribution functional

form.



12
To solve these problems, we developed a new model in this research to compute

the sample density distribution function p(xl(ok) for each class @,. We call this

approach Multi-Hyperellipsoid Clustering. Instead of assuming a single p(xla) k) for each
class, a set of locally-bound normal density functions are used in our approach to find the
p(x|cok,s,a.) from the training samples in S, . In the procedure of finding p(x|cok,ek,.),
thé influences of samples in other classes are considered. Though these local sample

normal density functions could be modeled in Gaussian distribution by themselves, they

should be distinctive enough that no significant interference should happen with the
distributions of other classes. Thus, sample normal density function p(x[a) k) for class w,

is computed by the combination of these multiple local normal density

functions p(xlco k,ek,.). By this way, the sample normal density functions of different

classes will not interfere significantly with each other. As a result, they can be used as the
discriminant functions to partition the feature space in classes. This method is based on
the assumption that even the distribution of a sample set is not in Gaussian distribution,
the subset of it can be treated as Gaussian distributions.

For the example mentioned above, the proposed model has the clustering result as

shown in Figure 2.3.
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A Xz
p(xlmz,an)
: o O
D O p(xl(t)x,alz)
/ X/\\ \
fOTNX X X XX
X Xy T = x --class 1
IX X i o -- class 2
x x|
X X
| X x/f’
\ /
\
/ .
p(xl(Dl,Su) ) p(xlmz,azz)
0 " Xa

Figure 2.3 Result of Multi-Hyperellipsoid Clustering

According to the resulting figure, we have four local distributions : p(x|a),,£,,)
and p(x|w,,€,,) for class 1, p(x/®,,€,) and p(x|w,,&,,) for class 2. Then,

P(xlwn 811) + P(Xlwl’ 812) - P(Xlwl’ 811)P(xla’1 ) 812)

p(xjo,) = o) , (2.14)
and
P(X|w2) _ P(Xlwz’gm) + P(xla)z, 822) - p(x|(02,821 )P(xlmz’ 822) , 2.15)
p(x)
where

HX =A@ &) +HAD 8)+HAD, €0+ HA, £2) A, ) HA @, 8,) —HX @, ) H{{0,.£,).

The p(x|a)1) and p(x|a)2) obviously constitute non-intersected and separable class

boundaries between these two classes. They can be used as discriminant functions for the

classifier.
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3. Multi-Hyperellipsoid Clustering Algorithm

Based on the preceding discussion, in this section, we introduce an algorithm
which can be used to cluster the given training samples. With this algorithm, any labeled
training sample set in an n-dimensional feature space can be clustered into different
multi- hyperellipsoid sets. Samples in each class is modeled by its corresponding multi-

hyperellipsoid set.

3.1 Algorithm Description

The basic procedure of the algorithm is :

1) let every sample in the training sample set be a hyperellipsoid;

2) merge the closest two hyperellipsoids in same class under the constraint that the
resulting hyperellipsoid will not intersect with any hyperellipsoid in other classes;

3) repeat step 2) until that no two hyperellipsoids in a class can be merged

without intersecting with hyperellipsoids in other classes.

To simplify the description, we define the following notations:

w ---- the number of classes in discussion,

q;---- the number of samples in class 'i ,i=12-w.
S, ---- a subset of sample set S, which contains the samples in class i, i =1,2,---w.
§ ---- a vector in n-dimensional space. s = [sl, Sypeees sn], s; is the i™ value in vectors.
€, p ---- hyperellipsoids in n-dimension space.

H,; ---- the set of hyperellipsoids for class i , i=12,---w.
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||H ,|| ---- the number of hyperellipsoids in H,, i=1,2,---w.

@ ---- an empty set.

H_ Merge(el , 82) ---- algorithm returning a hyperellipsoid which is the result of merging

two hyperellipsoids ¢, and &, .

Algorithm 3.1: Multi-HyperEllipsoid-Clustering Algorithm (M-HEC Algorithm)

Input: Wy g i=1,2,m) Si,(i:l,Z,m,w) ,C=1
Output: {Hi}, 1=12,---,w

Step 1: for each class i (i =12,---, w) do begin
Step 1.1: H, « Q, "H,."(——O
Step 1.2: for each s € S; do begin
Step 1.2.1: € « H_ Merge(®, s)
Step 1.2.2: H « H ulel, |H|<|H]+1
end;

end;
Step 2: Repeat:
Step 2.1: find a pair (sj,ek),ej,ek €eH,jke {1,2,---,”H,.”}, j#k and

Distance (8 i€ k) is the minimum among all pairs of hyperellipsoids in the

hyperellipsoid set H, (t =12,---, w).

Step 2.2: E— H_ Merge(ej, ek)

Step 2.3: if NOT(E intersect withany p, pe H,,1<t<wand t#i) then
begin

Step 2.3.1: remove € ;, €, from H,

Step 2.3.2: H « H ulel, |H|«]|H]-1
end;

Step 2.4: Until there is no such pair (8 i€ k) which satisfies the condition in Step 2.1.

Step 3: Return {H,.}, (i =12, --,w)

Figure 3.1 M-HEC Algorithm
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This algorithm does the following:

1) In Step 1, we let all the hyperellipsoid set , each one corresponding to a class,
be a empty set initially. Then, we let eagh sample be a hyperellipsoid. That is, each
hyperellipsoid has only one sample in it. The hyperellipsoid has a center at the position of
the sample and zero' in all its principal axes. Put these hyperellipsoids into the
hyperellipsoid sets which are corresponding to their classes.

2) In Step 2, we merge the hyperellipsoids in each set of hyperellipsoids of the
same class such that the merged hyperellipsoid does not intersect with any hyperellipsoid
in other classes. This procedure will find out w hyperellipsoid sets, each set
corresponding to a class, which cover the given training samples in an n-dimensional
space without intersection with hyperellipsoids in other classes.

3) In Step 3, we return all sets of hyperellipsoids.

3.2 Properties of the Algorithm

This Multi-Hyperellipsoid Clustering Algorithm has following properties:
i) After the algorithm terminates, there is no intersection between any two hyperellipsoids

of different classes;
ic.g,ne =D, for(e, e H,)&(g; € H,)&(u#v)
Step 2.3 in the M-HEC Algorithm assures this property.
ii) After the algorithm terminates, each hyperellipsoid set H € {Hl,Hz,m,Hw} is the

minimum set with the property i);
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That is,
Ve Ve, ((ei €H,)&(e; € H, )) =
Eiek{(ek € H,)&(u=v)& (H_ Merge(e,.,ej)m £, # <I>)}
This property is obvious, since if there exists € = H _ Merge(e,., € ].) which does
not intersect with any hyperellipsoid in the other class, then in Step 2.3, this
hyperellipsoid will substitute €; and €; as a new hyperellipsoid in H, . Therefore, at the

termination of M-HEC Algorithm, property ii) persists.
iif) This algorithm converges in a finite number of hyperellipsoid merging operations.
Without loss of generality, to simplify the description, we assume that the number
of samples in every class is identical, that is, ¢, = ¢, =--=¢q, =¢q.
At the very beginning of M-HEC Algorithm, every sample corresponds to a

trivial hyperellipsoid. So, at the Step 1, we have O(wgq) hyperellipsoids.
In Step 2, the Algorithm tries to merge every pair of hyperellipsoids which are in

the same class. There are at most O(qz) possible combinations of hyperellipsoid pairs for

every class. Totally, there are at most ,O(qu) possible hyperellipsoid pairs in the

training sample set. Since each time a successful hyperellipsoid merging takes place, the

number of hyperellipsoids in that class decreases. After checking all possible 0(wq2)

hyperellipsoid pairs for the training sample set, M_HEC Algorithm should stop. At each

merging operation, the algorithm needs to check whether the merged hyperellipsoid
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intersects with the hyperellipsoid in the other class or not. At worst case, this will take

O((w—-1)g) = O(wq) times to run. Totally, there are at most O(wq)O(wgq®)= O(wg®)

operations of checking hyperellipsoid intersections.

That is, at worst case, there are at most 0(wq2) operations of hyperellipsoid-pair

emerging and at most 0(wq3) operations of checking hyperellipsoid intersections in this

A

algorithm. Therefore, the M-HEC Algorithm guarantees converging in a finite number of

algorithmic operation steps.

3.3 Algorithm Discussions

(1) In this algorithm, a set of samples, say {xX,,X,,"-:,X,}, uniquely determine a

hyperellipsoid by equation

(x-p)Z'(x-p)<c

where
1 k
#=;§xi
and
k C, Op ... Oy
E=%2(X,~—#)(x‘._”)'= 0'521 0'.22 o Oy,
) Oy O, ... O,

k
and &, = %2(;(5“) —u@)x -p®), =12,

i=1

(3.2)

(3.3)

(3.1)
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C is a constant to determine the scale of the hyperellipsoid.

Therefore, a hyperellipsoid £ can be denoted as € ~ (x — )’ 2™ (x —u) < C.

The parameter C should be chosen such that hyperellipsoids properly cover the
samples in the set. In our research, we choose C = 1.
(2) Algorithm H_ Merge(s,,ez) is a simple algorithm to merge two hyperellipsoids &,
and &, into a hyperellipsoid €. What this algorithm does is simply calculating the mean
U and covariance matrix X for &£ from those training samples which are either in €, or
in &,.

There are two sub-algorithms which significantly affect the time complexity of M-
HEC algorithm. One is the algorithm for finding the closest pair of vectors in an n-
dimensional space among the given vector set. The other is the algorithm to determine

whether two hyperellipsoids intersect with each other or not.

Jon Louis Bentley [16] developed an efficient algorithm for finding the closest
pair of vectors in 1976. This algorithm only takes O(N lg“" N) time to run for N vectors

in k-space. The basic design clue about this algorithm can also be found in [17].

To determine if two hyperellipsoids € and &, intersect with each other, it is

needed to solve the following co-equation: -

(x—pm ) Z ' (x-p)<C _
34
{(x—;%)'zgl(x—‘uz) <G, G4
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Analytic solution for these equations is not necessary in our problem. We only
need to know if a solution exist or not. If there exists a solution, then &, and &, intersect
with each other, otherwise, they are apart. It is not easy to solve Eq.(3.4) when the
dimension of feature space is more than two. This is the main barrier to use M-HEC to
cluster training samples in higher dimensional feature spaces.

(3) If the covariance matrix ¥ is non-singular, then there are n linearly independent

eigenvectors ey, €, ..., €, such that

A, if i=j
eXe; = e,.‘(/'{,jej)= Aele; ={O, ;i (3.5)
Therefore,
[— el ] NN 21 [A 0
t . . \ }’ N E .
EZE=|T 27 |5le ¢ - e |= . A (3.6)
; I d l '
_(—en —)J 0 A’n

where A,,i=12,---,n, are called eigenvalues.

Then, after transforming vector x into x” by linear transformation x'= E‘x and u
into ' by p'= E'jt respectively, the hyperellipsoid & ~ (x — )’ =™ (x — ) < C can be
represented by the following equation

(x'-u) A (x'-p)< C 3.7

This equation represents the co-ordinate rotation of hyperellipsoid from the

original co-ordinate system to the orthogonal co-ordinate system determined by the
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eigenvectors. By using this equation, it is much easier to compute the Mahalanobis
Distance from vector x to the mean u of the hyperellipsoid &. The way is to perform the
linear transform p'= E‘'y and x'= E’‘x first, and then cdmpute r’=(x"-p') A (x'-p).
Since A is a diagonal matrix, its inverse matrix is a diagonal one with

%. , (i=12,---,n), as its diagonal elements. This will save lot of computation to

compute the inverse matrix for X .
>
4. Multiple Hyperellipsoid Classifier

A general pattern classifier can be viewed as a mapping function in terms of a set
of discriminant functions 7,(x), k =12,---,w, which selects the class corresponding to
the largest discriminant value. Thus, the classifier is said to assign an observation feature
vector x to a class @, if 7,(x)>7,(x), for all j#k.

From this point of view, the effect of any decision rule in the classifier is to

divide the feature space into w decision regions, R,,R,,---, R, . If 7, (x)>x,(x) for all

j#k, then x is in R, and the decision rule assigns x to class w,. The regions are
separated by decision boundaries, i.e. surfaces in feature space where ties occur between a
pair of discriminant functions.

From Equation(2.7), we know that the optimal discriminant function corresponds

to the minimum conditional risk. A Bayes classifier is naturally represented as
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7w, (x)=—R(8[x) = —(1 - Plw klx)) = P(w,|x) 1. To simplify this expression, we can let
m (x)= P(a) klx) , that is, the optimal discriminant function corresponding to the one that

maximizes a posterior probability. This form of the decision rule emphasizes the role of
the a posteriori probabilities. By using Eq. (2.1), we can express the rule in terms of the

conditional and a priori probabilities. Note that term p(x) in Eq.(2.1) is not important

for making a decision. It is just a scale factor to assure that ZP(G) k[x) =1. In the real
k=1

application problem, we generally assume that the states of nature are equally likely a

priori, i.e. P(w,) are identical for all k =12,---,w. In this case, the decision is entirely
based on p(x|w, ). p(x/@,) is called the likelihood function of @, with respect to x. The
bigger p(x|a)k) is, the bigger P(coklx) is. That is, the optimal discriminant function

corresponding to the one that maximizes the likelihood function p(xl(o k). Therefore, to
achieve the minimum probability of error, the decision rule in our modeling is : for a
given vector X, choosing class label @, such that the likelihood value p(x]a) k) is the
maximum forall o, , k=12,---,w.

To the given sample set S, — S for class @w,, k=12,---,w, from Eq.(2.8), we

have the density probability functions

1 .

= n 1 e
(275)4 ZL—|A

p(x|a)k) k=12,....,w 4.1)
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where r* = (x -, ) ;' (x— ;) is the squared Mahalanobis Distance from vector X to
mean vector U,, 4,and X, is the mean vector and covariance matrix corresponding to
sample set Sk', respectively. It is easy to see that : 1) the smaller 7 is, thus the closer x
to u, is, the bigger the p(xla) k) has; 2) the small is the |E kl , the bigger is the p(xl(o k).
4.1 Multiple Hyperellipsoid Classification

By applying the foregoing Multi-hyperellipsoid Clustering algorithm onto the

training sample set S, we have a set {Hl yHy, Hw} as its output, where H, is a set of
clustering hyperellipsoids for class @,, k=1.2,---,w. Thatis, H, = {sk,,£ kz,---,s,w(k)},

v(k)=|H,|, where &,,j=12,---,v(k), is a clustering hyperellipsoid for class ,.

Therefore, hyperellipsoid €,; describes a local class-conditional distribution for class @, ,

denoted as p(x|a) € ,q.). The total class-conditional distribution of class w, is

p(x]a)k)=p()i+:)’£) 4.2)
where
A
p(xlcok,e)= Zl(— )"z j(x|a)k,£) 4.3)
[Hl
Z,(x|a)k,£)= 2 p(x|w,‘,ekt), 4.3.1)
Z,(Xo,.e)= Y, p(xlo.. e )p(xo,.e. ) (4.3.2)

1st<udH,|
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Z,(xo,.€)= ls«;vs"n,u p(xloy. & )p(xlo;. £ ) p(x|@, €4 ). (4.3.3)
v 2y (oloe) =T olofon.e,). @34

and

p(x)= 2 p(x|o,.€) (4.4)

Thus, those hyperellipsoids in H, characterize class-conditional distribution for class
@ .

In Eq. (4.2), p(x) is unimportant for making the classification decision since it is

w
just a scale factor to assure 2 p(xlw k) =1. Together with the preceding conclusion, to
k=1

minimize the overall decision risk in assigning the class membership to the observation
feature vector x, we should categorize X into class @, such that p(xj@, ), ie. p(x|w,.€),

has the maximum likelihood value for all k =12,---,w. Thus, the Decision Rule of the

classifier is

1) computing values p(x|w,,€) for all classes according to Eq. (4.3), and
k

2) categorizing x into class @, which has the maximum p(xl(o k,e) value for
k=12, w.
4.2 Implementation of the Classifier : Parallel-distributed Processing

To compute the value p(xla) k,e) for class @, , it is needed to compute all values



25

1 _%(x—uekj )l Zey (x—”c"" )

e 2
(2z)” z,, &

p(x|o..€,), j=12.]H,]. Since p(xo,.&y)=

z

e,| Of covariance matrix

to compute p(xlw Y- kj) , we need to compute the determinant

%,  and the squared Mahalanobis Distance (x —H,, )tE;:i (x - "‘eu) from X to the mean
M., of hyperellipsoid &, . From Section 3, we knew that hyperellipsoid £,; is determined

by u, and X e After diagonalizing the covariance matrix X_ by the orthonormal

€y
. . . . t -1
eigenvectors transformation, hyperellipsoid ¢, ~ (x - ,ueﬁ) z., (x - ,ueb,) <C, can be

t
represented as €, ~ (x'—,u;ﬁ) A_el,q- (x'—y;’d ) <C,» Where x'= E:ﬁx is the linear
transformation of vector x by matrix E, whose columns are the eigenvectors, and A, is

a diagonalized matrix with eigenvalues as its diagonal elements. Since squared

t
Mahalanobis Distance r> = (x'—y'%) A, (x'—/,t'%) is much easier to compute than to

t
compute r’ = (x -H %_) E;L (x - ,u%), the later one involves an inverse operation of an

nxXn matrix. We prefer to do linear transformation x'= E, x and p'= E'u first, and

then compute the squared Mahalanobis Distance by

2
n O
= oo, | A ) - E(JC%L);) 4.5)
o’

i=l

This computation procedure corresponds to the following functional link neural-network:
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together with the determinants of covariance matrices of hyperellipsoids, the neurons in
Layer 2 use the Eq. (4.1) as their activation functions to calculate the class-conditional
probability value p(x|co,.,e,.j) for every hyperellipsoid € in class w;, i=12,---,w. At
Layer 3, the neurons use Eq.(4.3) as their activation functions to calculate the class-
conditional probability value p(x|a),.,£) for every class w;, i=12,---,w. Finally, the
neuron in Layer 4 simply returns the class label & which has the maximum value
p(x,.€) among all p(x|w,,€),i=12,---w.

If multi-processing computer system is available, the parallel-distributed
processing ability inhered in neural network will make it possible to substantially speed
up the classification process for the real world applications.

4.3 Simulations

In this research, we designed a simulation program embedded with both M-HEC
classifier and Gaussian classifier. By using MS-Visual C++ and object-oriented
programming technique, we implemented the program within an integrated graphical
interface in MS-Windows environment. In Figure 4.3 ~ 4.5, we present snapshots of the
program running under Windows® 95.

After a user activates the program, a graphical interface is shown up as in Figure
4.3. The user can interactively create a training sample set by using the mouse to choose

different pattern styles from the Tool Bar and click on different co-ordinate points in the

window.
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5. Comparison and Analysis of Experiment Results

There are many techniques in pattern classification, such as Statistical Modeling
using Gaussian Probability Distribution, Neural Network Clustering, and Fuzzy
Clustering. We will compare our Multi-HyperEllipsoid Classifier with these classifiers in
this section. To simplify the explanation, we denote Multi-HyperEllipsoid Classifier as

M-HEC.

5.1 Comparison with Gaussian classifier

Conventional Gaussian classifier can be treated as a classifier which uses a Single
HyperEllipsoid to cluster a given training sample set in a class. Every class will have its
own single clustering hyperellipsoid. We denote this classifier as S-HEC.

In this section, we use the simulation program mentioned in section 4.3 to
compare the classification performance of M-HEC with that of S-HEC. This program
simulates classifications in 2-dimensional feature space.

In all examples shown in this section, )X stands for a pattern in the first class,O a
pattern in the second class, and /\ a pattern in the third class.

(1) Example 1

If the training samples can be clustered by hyperellipsoids such that each class has

only a single corresponding hyperellipsoid and there is no intersection between any two






Table I Classification Result On The Training Sample Set of Example 1
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M-HEC S-HEC
Class| Samples # |Correct Classified #| Correct Ratio % | Correct Classified # | Correct Ratio %
1 5 5 100 00 % 5 100.00 %
2 4 4 100.00 % 4 100.00 %
3 5 5 100.00 % 5 100.00 %
Total 14 14 100.00 % 14 100.00 %

For those situations in which the training samples can not be separately clustered
by S-HEC, M-HEC uses more than one hyperellipsoid to cluster each class. For S-HEC,
since there are intersections among the clustering hyperellipsoids, those training samples
located in the intersection regions will not be correctly classified by S-HEC. But for M-
HEC, there is no intersection between any two clustering hyperellipsoids of different
classes. The clustering hyperellipsoid dominates the probability calculation for patterns in
the subspace covered by itself in the feature space. Therefore, theoretically, M-HEC
guarantees 100 percent correct classification on the training sample set. We have

examples with results which are consistent with this conclusion shown in Figure 5.2~5.5.

(2) Example 2

Figure 5.2(a) is an example with a training sample set in two classes. The samples
in the first class does not look like a Gaussian normal distribution. The samples in the
second class are separated by the samples in the first class. The clustering results and
feature space partitioning results by M-HEC and S-HEC are presented in Figure 5.2(b) ~

(e), respectively.
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The classification results on the training sample set by M-HEC and S-HEC are in
Table II. In this example, M-HEC correctly classifies the training sample set, but S-HEC
has 5 mis-classified samples among 24 samples in class 1 and 3 mis-classified samples
among 10 samples in class 2.

Table II Classification Result On The Training Sample Set of Example 2

M-HEC S-HEC
Class| Samples # |Correct Classified #| Correct Ratio % | Correct Classified # | Correct Ratio %
1 24 24 100.00 % 19 79.00 %
2 10 10 100.00 % 7 70.00 %
Total 34 34 100.00 % 26 76.00 %
(3) Example 3

Figure 5.3(a) is an example with training samples in two classes. The samples of
one class is partially surrounded by the samples in the other class. The clustering results
and feature space partitioning results by M-HEC and S-HEC are presented in Figure

5.3(b) ~ (e).

x XX X X XX
X XXX X X XXX
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% )
x 2 2]
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o @

(a) Training Sample Set

Figure 5.3 Simulation Example 3
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Table III Classification Result On The Training Sample Set of Example 3

M-HEC

S-HEC

Correct Ratio %

Correct Classified #

Correct Ratio %

Class| Samples # |Correct Classified #
1 38 38 100.00 % 32 84.00 %
2 37 37 100.00 % 30 81.00 %
Total 75 75 100.00 % 62 82.00 %

(4) Example 4

Figure 5.4(a) is an example with training samples in three classes. The samples in

the first class besiege the samples in the second and third classes. The samples in the

second class enclose the samples in the third class. The clustering results and feature

space partitioning results by M-HEC and S-HEC are shown in Figure 5.4 (b) ~ (e).
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(a) Training Sample Set

Figure 5.4 Simulation Example 4
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Table IV Classification Result On The Training Sample Set of Example 4

M-HEC S-HEC
Class | Samples # | Correct Classified #| Correct Ratio % | Correct Classified # | Correct Ratio %
1 35 35 100.00 % 35 100.00 %
2 18 18 100.00 % 0 0.00 %
3 6 6 100.00 % 33.00 %
Total 59 59 100.00 % 37 62.00 %

(5) Example 5

Figure 5.5 (a) i1s an example with training samples in three classes. In this
example, the training samples of different classes mix up together. The clustering results
and feature space partitioning results by M-HEC and S-HEC are presented in Figure

5.5(b) ~ (e).

%0 9

(a) Training Sample Set

Figure 5.5 Simulation Example 5
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Table V Classification Result On The Training Sample Set of Example 5

M-HEC S-HEC
Class| Samples # | Correct Classified #| Correct Ratio % | Correct Classified # | Correct Ratio %
1 16 16 100.00 % 15 93.00 %
2 | 25 25 ‘ 100.00 % 14 56.00 %
3 21 21 100.00 % 20 95.00 %
Total 62 62 100.00 % 49 79.00 %

From experimental examples shown above, we can see that when the training
samples of different classes can be separately clustered, S-HEC and M-HEC results in a
equivalent classifier. But when the training samples of different classes are mixed
together, M-HEC is more precise than S-HEC in partitioning the feature space into

classes. That is, M-HEC covers and improves the functionality of S-HEC.

5.2 Comparison with Neural Network Based Classifier

Neural network is a network with weighted connections on neurons in some
specific architectures. Generally, neural networks have a training mechanism to help the
network learn how to map a given input set into its corresponding output set, even though
there is no explicitly mathematical relation between them. This makes it possible to use
neural network as a classifier in pattern classification problems.

There are a lot of neural network models on which the training procedl;res are
developed, such as Backpropagation Network (BPN) and Counterpropagation Network

(CPN). After a neural network is created, a learning procedure should be applied to adjust
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the weights of neuron connections to map input into desired output. Different neural
network architectures have different learning mechanisms and the architectures
significantly affect the behaviors of the network. We call these kinds of networks as
conventional neural networks. More detailed materials of neural network techniques can
be found from text book [15]. More detailed studies about using neural network
computing for pattern classification are available in H. Hey [9], H. G. C. Traven [8], Y.
H. Pao [33], R. Schalkoff [27] and S.T. Bow[30].

Different from conventional neural networks, as we shown in previous section, a
neural network classifier can be automatically generated by M-HEC. The architecture and
the weights of the network are completely determined by the clustering result of the M-
HEC. There are lots of advantages of M-HEC neural network classifier over
convenﬁoﬁal neural netwbrks. They show in some respecté as follov;'s :

1) Convergence

Before a conventional neural network classifier can be used to do classification, it
should be trained and converged on the training sample set. A converged neural network
should have a very small total-error for mapping the training samples’ inputs to their
corresponding outputs. The convergence of a neural network depends on a number of
factors, such as the architecture of the network, the training parameters in the training
procedure, the distribution property of training samples, etc.. In conventional neural
networks, there is no consistent criterion to determine these factors to guarantee that the

training procedure results in a converged neural network.
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By using the clustering result of M-HEQC, i.e. the clustering hyperellipsoids, the
architecture and the weights of the M-HEC neural network can be easily determined as
shown in Section 4.2. From discussions in the above sections, M-HEC theoretically has
the result with the minimum classification error on the training samples. That is, M-HEC
guarantees that the neural network classifier constructed by the clustering hyperellipsoids
is a converged neural network.

2) Architecture of the Neural Network

As discussed in the previous section, conventional neural network does not have a
systematic criterion to determine a proper network architecture and weights which result
in a converged neural network classifier in applying to the training samples. Since
different neural network architecture comes with different functional properties, the non-
deterministic property prevents the classifier from convergence. The non-converged
neural network is useless in doing classification. This is the main reason why the
conventional neural network hardly gets its wide application in the real classification
problems.

For the M-HEC classifier, the neural network architecture is pre-determined by
the clustering hyperellipsoids. Since the training sample set generally is a finite set, there
should exist a finite number of clustering hyperellipsoids for any given training sample
set. As discussed in preceding section, M-HEC guarantees resulting in a converged

classifier.
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3) Training Time

To get a converged neural network classifier, conventional neural network
technique needs to take many iterations to train the network. The training time depends
on many factors, such as the network architecture, the training parameters, the probability
distribution of the training samples, etc. The conventional neural network techniques do
not provide a systematic criterion to determine the proper training parameters which
result in a converged network. Furthermore, as discussed in previous section, the
functional property of a neural network is determined by its architecture. The
conventional neural network technique does not provide a consistent way to get a proper
architecture for different kinds of training samples. It is possible to get a wrong neural
network architecture which will never converges, no matter how long in training.
Therefore, the training time to get a converged classifier is non-deterministic. This non-
deterministic property also prevents the conventional neural network techniques from
applying in the real applications.

For the M-HEC, the neural network architecture is completely determined by the
clustered hyperellipsoids. After the multiple hyperellipsoid clustering procedure, there is
no time needed to train the neural network into a converged classifier. The time of M-
HEC’s clustering procedure is totally determined by the training samples. Since the
training sample set generally is a finite set, the clustering time will be deterministic and
finite. Therefore, it is predictable to get a converged classifier in a finite and deterministic

training time.
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To summarize, the non-deterministic property in architecture and training time of
conventional neural networks prevents them from being widely applied in the real world
applications. The pre-deterministic property of M-HEC make it possible to he nsed in

many classification problems.

5.3 Comparison with Fuzzy Clustering

Generally, fuzzy clustering approach is a way for finding a decision mechanism
by using fuzzy set theory to establish a set of membership functions. Many algorithms for
fuzzy clustering depend on initial guesses of cluster prototypes. The classification
precision of fuzzy clustering depends on the priori assumption of the membership
functions and the setting of the parameters. This kind of study can be found in [10] and
[11]. There is no systematic way and consistent procedure to direct the selection of
membership functions, due to the complexity and diversity of the pattern distribution in
the real classification problems. Theoretically, it is‘ impossible to get an idea form of
membership functions and parameters to fit all the complex distribution situations
occurring in training samples. Therefore, Y. Nakamori and M.Ryoke [32] proposed a
fuzzy clustering model which allows people to evaluate the initial clustering result and
interactively modify the parameters according to their intuition to get a satisfactory
classification result.

By using M-HEC, we do not need to define the form of membership functions and

select the parameters for the classifier. Also, we do not need to interact with the classifier
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to tune up its parameters to get a satisfactory classification result, since M-HEC provides
a consistent procedure to establish the classifier from the given training samples.
Theoretically, M-HEC will result in an idea classification for any given training sample

set, which is difficult, if not impossible, by using the fuzzy clustering modeling.

6. Conclusions

Pattern classification is a process of finding a decision mechanism to partition the
feature space into separated subspaces, such that each subspace corresponds to a specific
class of patterns. There are many techniques for pattern classification, such as traditional
modal-based Gaussian classifier, neural network classifier, and fuzzy clustering classifier.
Among criteria to determine the performance of the classifier, the correct classification
rate on the trainiI;g sample set is the most important and significant one to be used in real
application.

Traditional model-based Gaussian classifier relies on the statistic analysis,
especially the pattern probability distribution, of the training samples. If the training
samples of different classes are distinguishable by a set of single Gaussian distribution
functions, then it will result in an idea classifier to partition the feature space in which the
training sample set are completely separate. Otherwise, it is difficult to find a decision
mechanism to precisely distinguish those training samples in the intersection regions.

This results in a poorly classification rate on the training sample set.
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Traditional neural-network approach can be used in classification problems with
very complex mapping relationship between input and desired output. It can also be used
in handling the classification with very complex distribution of training samples. But
before the neural network can be applied‘ to do classification, it needs a non-
predetermined network architecture and non-deterministic training time to get a
converged classifier. This make it difficult to be used in the real world applications.

Fuzzy clustering approach requires a priori assumption on the form of
membership functions and parameters to set up the decision mechanism. Usually, fuzzy
clustering requires a large amount of time to search the parameters for the membership
functions. Some of the fuzzy clustering approaches even require people interactively
using their intuition to tune up the parameters to get satisfactory classifications. The
performance of fuzzy clustering classifier depends on the selection of uncertain
membership functions and non-predetermined parameters.

In this research, we developed a pattern classification model based on multiple
hyperellipsoid clustering. The decision rule in this classifier is based on the class-
conditional probability distributions of classes. The difference between this classifier and
the conventional model-based classifier ‘is that the class-conditional probability
distribution of every class is estimated by the combination of a set of local Gaussian
probability distributions, instead of a single probability function. This overcomes the

problems involved in the conventional model-based classifier in cases : (1) the parametric
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form of the probability distribution is unknown; (2) the training samples of different
classes intersect with each other.

The main contributions of this research are :

1) using multiple hyperellipsoid modeling to cluster the training samples which
overcomes the mis-classifying problem caused by the conventional model-based
Gaussian classifier. Multi-hyperellipsoid clustering also provides a very precise
classification result for any probable distribution of training samples.

2) combining the supervised learning procedure with clustering. Generally,
clustering procedure works together with unsupervised learning parameter estimation. In
this research, multi-hyperellipsoid clustering is a procedure based on supervised
maximum likelihood estimation.

3) using multiple local Gaussian-probability-based distributions to estimate the
whole probability distribution for the patterns in the feature space. Traditional model-
based supervised classifier uses only one probability distribution function per class to
estimate the pattern probability. In this research, a combining probability computation
scheme which is based on the multiple local Gaussian-probability distributions is
developed. This overcomes the problem caused by the conventional model-based
classifier when the distribution form of training samples is unknown.

4) using neural network technique to implement the classifier. The potential
parallel-distributed processing ability of neural network will substantially speed up the

strenuous computation inhered in the clarification procedure.
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5) being able to classify complex distributions with high accuracy.

6) guaranteeing convergence of the algorithms. Therefore, the behavior of the
algorithm is predictable,

To improve M-HEC’s running efficiency, further work on finding an efficient

algorithm to solve co-equation (3.4) in more than 2 dimensional space is needed.
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