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Statistical Learning Theory now plays a more active role: after the general analysis of learning
processes, the research in the area of synthesis of optimal algorithms was started. These studies, however,
do not belong to history. They are a subject of today’s research activities.

Viadimir Vapnik (1995)

As the research of many different leaming and function estimation problem
develops, a new technique, called a Support Vector Machine (SVM), has been

introduced to solve those problems.

In this thesis, we describe a new SVM learning machine that is relatively simple,
and easy to implement. A Support Vector Machine (SVM) is a very specific kind
of learning machine, trained by the use of kernel functions. The idea behind it is
that most data points are ignored, only a small amount of data points, called
support vectors, are involved to determine the hyperplane, which separates the
data points into different classes. There could be several hyperplanes, but only
one optimal hyperplane that separates two class data sets with the largest

distance exists.



The learning approach to training SVMs in this thesis comes from perceptron
theory, which does a finite number of calculations for adjusting the coefficients
and learning functions. The optimal hyperplane is obtained by means of SVMs
trained by above leamning approach, and then applies for the classification of data

sets.

When considering a linear classifier, the optimal hyperplane is obtained by
maximizing the distance between the margins of the training sets. For a non-
linear classifier, we map the input space into the expanded space, in which the
parameters of the input set are linear, by choosing an appropriate kernel
function. With respect to the non-separable case, the problem has led to the
technique of the “soft-margin”, a procedure aimed at extending the large margin
algorithms to the noisy areas by permitting a trade-off between accuracy and

margin.

Key words. Support Vector Machine, hyperplane, leaming machine,

classification, optimal solution, margin of solution, training sets
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Chapter 1: Introduction

1.1 Basic Definitions

A classifier is a hyperplane that separates data into different categories or
classes. A trainable classifier is a classifier that may make its performance better
in response to information it receives and tasks it takes. Training is the process
by which the parameters of a function are adjusted in response to categories or
classes. A training procedure is a training algorithm that implements the training

process.

Learning is the process of a system’s performance from one level to another.
Learning is often related to feedback, and provides a method by which people
can manage their technologies. Also learning means that certain machines may
adapt automatically to changing environments. A Learning machine can be
thought of as a set of functions implementing an induction principle, or an
algorithmic procedure for implementing the induction principle on the given set of

functions.

Recall that we defined a classifier as a hyperplane that separates data into
categories. These data_are often structured as vectors in feature space. Every
vector in this space is called a feature vector. The fact that each vector in a given
vector space can be expressed as a unique linear combination of the vectors of a

specific basis suggests that we write the elements of an arbitrary vector space as
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a coordinate vector whose components are the coefficients in the linear

combination (Hugh. G. Campbell. 1997).

The feature vectors in a given class occupy a region in feature space that we call
a class region. When the class regions don’t overlap, the classes are said to be
separable, and to have the property of separability. If, for every class region, a
hyperplane can be placed so that it separates that region from all other class
regions, the classes are said to be linearly separable. More details are discussed
in chapter 4. Classes that are not linearly separable are called nonseparable

classes.

The training set is the set of feature vectors that are used as input data during

the training procedure. The set of discriminant functions {g,(x) } determine the

decision hyperplanes:

R, =lg,mzg® Vil

Where g (x) is of the form
g; (x) = WX + W,
Where w] denotes the transpose of a weight vector w;, when g, (x) is a linear

discriminant function as above the classifier is referred to as a linear classifier.
(Jack Sklansky. Gustav N. Wassel. 1998)



1.2 Prior Knowledge in Support Vector Machines

A Support Vector Machine (SVM), as a kind of learning machine, is a new
approach to pattern classification. It consists of a very specific set of algorithms,
characterized by the use of kernel functions. As it makes sure to give good
performance, therefore it has been applied to various tasks. The foundations of
Support Vector Machines have been developed by Vapnik (1995) and are getting
popularity as their many attractive features, and promising empirical
performance. The term “SVM” is .typically used to describe classification with
support vector methods. The term “support vector regression” is used to describe
the regression process using support vector methods. In this thesis we prefer it to

refer to both classification and regression methods.

The approach of SVM has recently been introduced as a new technique for
solving various function estimation problems, including the pattern recognition
and regression estimation problems, i.e, to problems of finding the indicator

function y = f(x) given by its measurements y, at some vectors x,,

(X Y10 (x5 )
It can be applied for pattern recognition (i.e. to estimate indicator functions), or
for regression (to estimate real-valued functions), and for solving linear operator
equations. (Vladimir Vapnik, 1997)
In pattern classification, very good resulits have been reported in (Edgar Osuna,

Robert Freund, and Federico Girosi, 1997). It also has been applied to a speaker
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identification task (M.Schmidt, 1996) and reported that SVM gives slightly better
performance than the modified Gaussian system on the difficult Switchboard

task.

When SVM is used for two-group classification problems, it attempts to separate
points belonging to two given datasets in n-dimensional real space R'by a
nonlinear surface defined by a kermel function. The nonlinear surface in R is
typically linear in its feature space (O.L.Managasarian, 1998). Therefore, it can
be represented as a linear function in a higher dimensional space, and the
original points of the two sets can be mapped into this dimensional space.
Further the two sets can be linearly separated in this dimensional space by °
choosing a suitable kernel function. Generally speaking, for a inen learning task,
with a given finite amount of training data, the best generalization performance
will be achieved by mapping the input vectors into a high-dimensional feature
space through some nonlinear mapping, chosen by the appropriate kernel
functions. In this space, an optimal separating hyperplane is constructed. The
main idea behind the techniques is to separate the classes with a surface that

maximizes the margin between them.
1.3 The Research of This Thesis

The purpose of this thesis is to study how to classify the separable or non-

separable datasets by using Support Vector Machines (SVMs). A technical
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analysis will be touched and discussed on what SVM solution is optimal and how
to define the decision function on the real data sets. We will also describe how
support vector training can be practically implemented, and discuss in detail the
learning technique which is used to construct SVM solutions, by which the linear

or nonlinear hyperplane is constructed for the data sets.

In this thesis we will study the following:
e Using the convex hull algorithm to determine whether the two data sets

are linearly separable or non-linear. A set of vectors y can be convex if a
straight-line segment joining any pair of vectors in y is entirely contained
in . The convex hull of y, which we denote by { y, is the intersection of
all convex sets containing y . The two convex hulls are intersected if and

only if there exist points (a point), which are inside both of convex hulls.

e Choosing an appropriate mapping function such that it transforms the
input space into a new space x—>®(x). Let the training set X be
partitioned into two subsets X,, X,. In some situations the set X,, X,
are not linearly separable in X space, but are linearly separable in a

& —space, where ¢ is a function of X and the dimensionality of & is

larger than X . Suppose that dis the dimensionality of X , and suppose



q)l(x)
that £ =®(x), where ®(x)=| : [, r>d.Then a separating hyperplane
@, (x)

may be linear in £ —space, but notin X —space.

Training the data sets to obtain the SVMs by choosing a suitable learning
function for linear and non-linear situations in the new space. Assume a
perceptron with a fixed function ® and adjustable coefficients ¢, , the sum
Zaw(p(X) for X belonging to F* is positive, and for X belonging to F is
negative. How can we make this procedure as simple as possible? The
first idea coming out is feedback. Since the sum is too small (in F*), we
increase the coefficients, but if the sum is too large (in F), we decrease

the coefficients. We adjust the coefficients in a reasonable manner, so that

the feedback effect is directed properly.

Measuring the empirical risk error for nonseparable datasets. For the
nonseparable case, there is no feasible solution. But we can introduce the
separable case to the nonseparable case by introducing positive slack

variables &,, i=1,...,/ in the constrains of the separable hyperplane
functions. Therefore, for an error occurring, the correspondingf,. must

exceed unity, so Zié} Is an upper bound on the number of training errors.
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e Constructing the decision function y=a=*z+b (z is a vector of the

feature space Z, a is a weight vector, and b is a threshold value)
through the SVMs to build an optimal hyperplane.

e Expanding such a two-dimensional function (in the pattern recognition
case: such as hyperplane) in a high-dimensional space. The derivation of
linear decision surfaces in an expanded feature space can be a means for
deriving nonlinear decision surfaces in the original feature space. We are
interested in principal components of variables, or features that are
nonlinearly related to the input variables. To this end, we are computing
dot products in the feature space by means of kernel functions in the input

space.

e Demonstrating the results of the empirical data in Microsoft Visual C++

environment.

Roadmap of this thesis is followings:

Chapter 1, basic concepts and some prior knowledge of SVMs are introduced.
Chapter 2 gives a brief introduction to the SVM principle. In chapter 3 we will
discuss the theoretical aspects of hyperplanes, which makes a separation of two
different data sets with multiple dimensions. It is presented in several cases,
such as, linearly separation, nonlinearly separation, and nonseparation. The

algorithmic details are dealt with in chapter 4, which represents 5 algorithms for
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solving the classification problems of different separating cases. Finally, we
show some results of the implementation of the algorithms and analyze the final

results.



Chapter 2: Support Vector Machines

2.1 Overview of the problems

Since SVMs are a new type of universal learning machine, they are used widely.
For example, for the pattern recognition case, SVMs have been used for isolated
handwritten digit recognition (C.Cortes and V.Vapnik, 1995. B.Schélkopf,
C.Burges, and V.Vapnik, 1995. B.Schélkopf, C.Burges, and V.Vapnik, 1996.
B.Schélkopf, K. Sung, C.Burges, F. Gurisu, P.Niyogi, T. Poggio, and V.Vapnik,
1997), object recognition (V. Blanz, B.Schélkopf, H.Biilthiff, C.Burges, V.Vapnik,
and T.Vetter, 1996), speaker identification (M.Schmidt, 1996), charmed quark
detection, face detection in images (Edgar Osuna, Robert Freund, and Federico
Girosi, 1997), and text categorization (T.Joachims, 1997). For the regression
estimation case, SVMs have been compared on benchmark time series
prediction tests (K. —R. Mt’jller‘, A. Smola, G. Ratsch, B.Schélkopf, J. Kohimorgen,
and V.Vapnik, 1997. Edgar Osuna, Robert Freund, and Federico Girosi, 1997),
the Boston housing problem (H. Drucker, C. J. C. Birges, L. Kaufman, A. Smola,
and V. Vapnik, 1997), and (on attificial data) on the operator inversion problem
(V.Vapnik, S. Golowich, and A. Smola, 1996), In most of these cases, the SVM
generalization performance either matches or is significantly better than those

competing methods.

Although SVMs have good generalization performance, they can be slow in the

test phase because of the range of the data, a problem about decomposing
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procedure addressed in (C.J.Burges, P.Knirsch, and R.Haratsch, 1996. Edgar
Osuna, and Federico Girosi, 1998). Recent work has generalized the basic
ideas, shown connections to regularization theory, and shown how SVM ideas
can be incorporated in a wide range of other algorithms. The problem that drove
the initial development of SVMs occurs in several guises- the bias variance
tradeoff, capacity control (B.E.Boser, 1.M.Guyon, and V.Vapnik, 1992), and

overfitting, (D.C.Montgomery and E.A.Peck, 1992).

The Support Vector Machine has been thought of as a capable learning machine
for human-computer interfaces. Because it has the ability to handle difficult
speech recognition tasks and give nice performance. Based on the principle of
Structural Risk Minimization, SVMs have advantages over other classifiers. For a
particular problem, the most generalized classifier to be found by embedding the

capacity control in the training algorithm.

The algorithm of SVM is elegant as it is simplified to a limited data set, and can
be separated linearly in the expanded space. Theoretically the training is
guaranteed to converge to a global optimality. This ability to select the training
data that defines the classification boundary could have many applications other
than in pattern classification. Also the SVM algorithm can be thought of as an
alternative training technique for Polynomial, Radial Basis Function and Multi-
Layer Perceptron classifiers, in which the weight of the network are found by

solving a Quadratic Programming (QP) problem with linear inequality and
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equality constraints, rather than by solving a non-convex, unconstrained
minimization problem, as in standard neural network training techniques. Since
the number of variables in the QP problem is equal to the number of data points,
when the data set is large, this optimization problem becomes very challenging. It
is because the quadratic form is completely dense and the memory requirements
grow with the square of the number of data points. In (Edgar E. Osuna, Robert
Freund and Federico Girosi, 1997), a decomposition algorithm that guarantees
global optimality has been presented, and can be used to train SVMs over very
large data sets. The main idea behind the decomposition is the iterative solut_ion
of sub-problems and the evaluation of optimality conditions that are used both to
generate improved iterative values, and also establish the stopping criteria for the

algorithm.

The face detection problem as an application of SVM for solving a pattern
classification problem is introduced in (Edgar E. Osuna, Robert Freund and
Federico Girosi, 1997). The problem has many important practical applications,
and received a lot of attention in recent years. While being a totally new
approach, SVM also offers a fresh view to a few conventional classifiers, namely
Neural Networks and Gaussian Radial Basis Function (RBF) classifier. So SVM
can be incorporated with other model-based approaches, which capture temporal
information. This combination could result in a high—performance speech

recognition and other intelligent systems.
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2.2 Cortes and Vapnik (VC) Dimension

The VC dimension is a well-known scalar value that can be evaluated for any set

of functions accessible to a learning machine.

A

*’

Fig.1. VC-Dimension illustration.

The VC dimension is defined as:
There exists a set of points x, such that these points can be separated in all 2"

possible configurations, and that no set xn, exists where m > n satisfying this

property.

The fig.1 illustrates how three points in the plane can be separated by the set of
linear indicator functions. In this case the VC dimension is equal to the number of
free parameters. Of course, in general that is not always the case, e.g. the

function Asin(bx) has an infinite VC dimension.
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2.3 Linearly separable case

If the set of points is linearly separable, i.e. the figure 2, two different data sets,
class 1 and class 2, each of them respects to a convex hull, are separated by a
linear surface. The goal of the SVM is to find, among the canonical hyperplans
that correctly classify the data, the one with minimum norm, or equivalently
minimum [Iwll?, because keeping this norm small will also keep the VC-
dimension small. It is interesting to see that minimizing llwll? (in this case of linear
separable) is equivalent to finding the separating hyperplane for which the
distance between the two convex hulls, measured along a line perpendicular to

the hyperplane is maximized.

Let S = {x,,....x,} be a set of ¢ points x. € R% each x, is given a label
y, € {~1+1}. S is linearly separable if for some w ¢ R* and he R, such that
y;(w-x,+b)=1, for i=12,....,¢. The hyperplane w-x+b=0 is a separating
hyperplane. The signed distance d; of x; from the separating hyperplane is

bl

d=w x+ —
Twll
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separating hyperplane
class 1

class 2

Fig.2. Linearly separable class

A general two-class pattern classification problem is defined as follows:
e Giving a dataset: (x,,y,).....(x,,y,) where «x,, for i=1,...,¢, is a feature
vector of length d and y, = {~1,+1} is the class label for data point x;.
e Find a classifier with the decision function f(x), such that y = f(x), where
y is the class label for x.

e The performance of the classifier is measured in terms of classification

error which is defined in the follow:

R

1, otherwis.

Let us look at the linear support vector machine. It is based on the idea of

hyperplane classifier, or linearly separability.
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To learn a linear separating hyperplane classifier:

f(x) =sgn (w.x+Db)

This hyperplane needs to have the maximum separating margin, namely, to find
this hyperplane H: y = w . x + b = 0 and two hyperplanes parallel to it and with

equal distances to it.

Hi: y=w.x+b=+1

Hy: y=w.Xx+b=-1

With the condition that there are no data points between H;and H;,

O W.X+b=+1

O

O
o O w.X+b=20
o O wW.X+b=-1

Fig.3.optimal separating hyperplane.
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For any separating plane H and the corresponding H; and H; we can always
“normalize” the coefficients vector w so that Hywillbey= w.x +b =+1, and H»
willbe y = w . x + b =-1. So there will be some positive data points on H; and
some negative data points on H, These data points are called support vectors
because only they participate in the definition of the separating hyperplane, and
other data points can be removed around as long as they do not cross the planes
H; and Hs_In other words, there are three hyperplanes,
'H: y =w. X + b =0, there is no any data point on this hyperplane;
H;: y= w.x+b=+1, only positive data points lie on this hyperplane;
H>: y= w.x+b =-1, only negative data points lie on this hyperplane. There are

no any data points between H; and H,

The figure 3 shows the three hyperplanes, the middle one is the optimal
hyperplane with minimum norm, and apparently there is no any point between H;
and H, Consequently the hyperplane. is determined by a small subset of the data
set, namely SVs. The other points could be removed from the data set and
recalculating the hyperplane would produce the same answer. Hence SVM can

be used to summarize the information contained in a data set.

Suppose we have some hyperplanes that separate the positive data points from

the negative data points (a “separating hyperplane”). The points x which lie on

the H satisfy w e x + b = 0, where w is normal to the hyperplane, % is the
w

perpendicular distance from the hyperplane to the origin, and Illwlil is the
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Euclidean norm of w. Let d.(d.) be the shortest distance from the separating
hyperplane to the closest positive (negative) data points. Define the “margin” of a
separating hyperplane to be (d. + d.) For the linearly separable case, the
support vector algorithm simply looks for the separating hyperplane with largest
margin. This can be formulated as follows:

All the training data satisfy the following constraints:

XiwW+b=>+1 fory =+1 (1)

XiW+b<-1 fory=-1 (2)

These can be combined into one set of inequalities:

yi(Xi.Ww+b)—120 Vi 3)

Now consider the points for which the Eq. (1) holds (requiring that there exists
such a point that is equivalent to choosing a scale for w and b). These points lie
on the hyperplane H;: y = w - x + b = +1 with normal w and perpendicular

I1-bl

distance from the origin = Similarly, the points for which the Eq. (2) holds lie

on the hyperplane Hz: y = w - X + b = -1 with normal again w, and perpendicular

distance from the origin I'II—IIQII. Hence d, =d. = E—l—”and the margin is simply
w w

L. Note that H; and H, are parallel (they have the same normal) and that no

Twll
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training points fall between them. Thus we can find the pair of hyperplane which
gives the maximum margin by minimizing llwll?, subject to constraints (3). The
expected solution for a typical two-dimensional case looks like the figure 4, those

marked points are support vectors.

margin

Fig.4. Linear separating hyperplane for separable case.

Consider the above example again, there are many possible linear classifiers
that can separate the data, but there is only one that maximizes the margin
(maximizes the distance between it and the nearest data point of each class).
This linear classifier is termed the optimal separating hyperplane. Obviously, we
expect this boundary to generalize well as opposed to the other possible

boundaries.
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2.4 The optimal separating

Let us consider the problem of separating the set of training vectors belonging to

two separate classes,

(xnyl'),---’(xwy()v X, € R", y, € {+1,-1}, (4)

with a hyperplane

(w-x)+b=0. (5)

The set of vectors is said to be optimally separated by the hyperplane if it is
separated without error and the distance between the closest vectors to the
hypérplane is maximal (Steven Gunn, 1998). Such as figure 5, there is no data
crossing the hyperplane, and sitting in the set in which the data does not belong

to, also maintaining the maximal distance between the two sets.

K A
AAﬁA
O O A
o
° oo

Fig.5. Optimal separating hyperplane without error.
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The fact that the optimal separating hyperplane is determined by the SVs is most
remarkable. We know, the number of support vectors is usually relatively small,
using a few points to replace the whole data set and the same hyperplane is
exactly what we want. Because the support vectors summarize all the
information contained in the data set. There are two classifiers, one is hard
classifier, and another is soft classifier.

The hard classifier is then,
f (x) = sgn (w -x + b).

The soft classifier may be used to linearly interpolate the margin,

-1 x<-1
f(x)=h(w-x+b) whereh(x)=qx -1<x<l1
1

x=1
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Chapter 3. Support Vector Algorithm

3.1 Introduction

The Support Vector Machine (SVM), as a generalized linear classifier with a
maximum-margin fitting criterion, provides regularization that helps the classifier
generalizing bette/r. The classifier tends to ignore many of the features. For
example, a classification boundary is explored by SVM to allow the largest
possible margin of errors. The goal is to minimize the expectation of the out of
point error of a learning machine. We set up a hierarchy of function spaces and
choose the space with smallest complexity that can attain the desired training
error. SVMs use linear hyperplanes as the hierarchy of functions in which
“learning” takes place. In order to extend the method to the nonlinear domain, we
use the similar method in some non-linear transformed space where certain
linear hyperplanes will correspond to a non-linear function in the original space. It
turns out that the expected test error is related to the expected number of
‘Support Vectors’ (certain particularly informative members of the data). So we
can get the benefits of non-linearity without much overfitting. The virtue of this
algorithm is that it pe;'forms well even with a few training data points, as can often

be the case. It is expected that such a method would perform well even if the

data were noisy.
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The SVM algorithm is divided into four steps. In the first step, a structure of
decision function is generated which is sufficiently simple to admit the formulation
df a bound on their VC-dimension. Based on this result, the optimal margin
algorithm minimizes the VC-dimension for this class of decision functions in the
second step. This algorithm is then generalized in two steps in order to obtain SV
machines: non-separable classification problem are dealt with in the third steps,
and nonlinear decision functions, retaining the VC-dimension bound are

described in fourth step.
3.2 Existing Approaches

The extension from the binary two-class problem to K classes is an important
question for the support vector machine approach. (Ulrich H. —G. KerBel, 1997)
Investigated pairwise classification as an altérnative to the often used approach
“one class versus all others”. The idea of pairwise classification fits perfectly to
the borderline-based adoption of the support vector machine. Not just the high-
dimensional classifier deserves attention, also the simple linear pairwise support
vector machine showed good recognition results with extremely low classification
requirements. For the digit recognition (Ulrich H. =G. KerBel, 1997) the expense
compares to a multi-reference Euclidean-distance classifier having (K — 1)/2 =
45 reference vectors per class. The linear pairwise support vector machine
provides an algorithm to adapt for a given sample set a piecewise linear classifier

with at most K * (K —1)/2 hyperplanes, which are optimal placed in respect to the
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error rate. The pairwise support vector machine with its strong discrimination
possibilities between class pairs and the ease of combination of these votes
allows quite interesting classifier designs, such as using different classifiers
depending on the difficulty to separate the given classes or such as pre-
classification by a linear classifier and separation between the top votes by a
more elaborate method. Support Vector Machines using “ANOVA
Decomposition” (Mark O. Stitson, Alex Gammerman, Vladimir Vapnik, Volodya
Vovk, Chris Watkins, Jason Weston, 1997). Kernels (SVMD) are another way of
imposing a structure on multi-dimensional kernels that are generated as the
tensor product of one-dimensional kerels. A SVM using ANOVA decomposition
kernels gave a better result than a SVM using other kernels on the Boston
housing data and performed more reliably. The low variance observed also
iﬁdicates a slightly more stable method than with the other kernels. SVM using
ANOVA decomposition kernels also yields results that are better than results with
other regression methods on the same data. ANOVA decomposition is applicable
to many other kernels such as Fourier expansions, Hermite polynomials and

Radial Basis Functions.

Support Vector Machine algorithms have been successfully applied to elimination
problems. (K. P. Bennett, J. A. Blue, 1997) examined how three key ideas from
SVMs can be extended to two-class decision trees (DTS). The key ideas are
formulating the problems using structural risk minimization, solving the dual

problem, and using nonlinear transformation of the input space to construct
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nonlinear discriminants. By making simple changes in a nonlinear transformation
of the input space, the decisions in the tree can be linear discriminants,
polynomials, radial basis functions, neural networks, or any combination of the
above. The primary question is: given the underlying structure of a DT, the
number and types of decisions, and the classification of the leaves, what is the

optimal DT?

The first key idea of the SVM’s algorithm is the formulation of the problem using
the structural risk minimization principle (SRM). By SRM, the classifier must both
reduce the expected classification error and the confidence interval to ensure
- good generalization. The more details are discussed in chapter 4. Geometrically,
this corresponds to pushing apart two parallel planes, one supporting class A and
one supporting class B; the wider the margin, the smaller the VC-dinﬁension of
the resulting classifier. By widening the classification margin, the confidence

interval for the classification error is reduced.

The second key idea from SVMs is the use of the dual problem. An equivalent
dual problem can be constructed that can be efficiently solved even for problems
with very high input dimension. A Lagrangian dual variable o is defined for every
constraint in the primal problem. Any point x; with o; > 0 is a support vector. A
global mathematical programming technique is applied to train the support

vectors.
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The third key idea is using convolutions to construct nonlinear discriminamts. A
nonlinear function, ®: R" RN where N>> n, maps the input vectors x to a new
space and then constructs a linear discriminant in the new space. Figure 6
illustrates a two-layer mapping, to reach a leaf, a point must satisfy two linear
inequalities (assume A', B', A%, B? are classified Correctly). Each layer linearly
matches to its ancient, and the data in the bottom layer are eventually separated

correctly.

Fig.6. two-layer mapping.

3.3 Structure on the Set of Hyperplanes

Since the SVM algorithm is based on a structure defined on the set of separating
hyperplanes. First note that given a dot product space F and a set of pattern

vectors z,,...,z, € F , any hyperplane can be written as {ze F :(w-z)+b=0}.
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In this formulation, there still have the freedom to multiply w and b with the
same nonzero constant. However the hyperplane corrésponds to a canonical pair
(w,b) € FxR if additionally requiring

min | (w-z,)+blk=1,

such that the point closest to the hyperplane has a distance of ”—l—ﬁ The margin
w

between the two classes, measured perpendicular to the hyperplane, is at least

—2—. The possibility of introducing a structure on the set of hyperplanes is based

twill

on the following result:

Let R be the radius of the smallest ball Bg (o) = {ze F: llz-all < R} (¢ € F)
containing the points z, ..., z., and let

fwb = sgn ((w-z) + b)

be canonical hyperplane decision functions defined on these points. Then the set

{tup: lIWll <A} has a VC-dimension h satisfying:

h<RPA® + 1.
Due to llwll<A, we can get VC-dimensions which are much smaller than Np,
where N is the dimension of F. This enables us to work in very high dimensional
spaces, because that the risk bound dose not explicitly upon Ng, but on the VC-
dimension. So the hyperplane decision functions should be constructed such that
they maximize the margin, and at the same time separate the training data with

as few exceptions as possible.
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3.4 Optimal Margin Hyperplane

The exploretion of optimal margin hyperplane is defined as the follows:
As we discussed in the previous chapter, a set of points (z,,y,)....(z,,,),
z,€ F, y, e {+1}, defines a decision function
fwp(zi) = sng((w-z) + b)
with property

fw,b(Zi)=y;‘ i=1,...,/. (1)

if this function exists (the non-separable case shall be dealt with in the next
step), it implies

vi-(wz)+b)=1, i=1,.., 1 (2

the separating hyperplane can be found by minimizing

W) = -;-uwu? (3)

Subiject to (2).

Thus there are two reasons for introducing a Lagrangian formulation of the
problem. The first is that the constraints (3) will be replaced by constraints on the
Lagrange multipliers themselves, which will be much easier to handle. The

second is that in this reformulation of the problem, the training data will only
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appear in the form of dot products between vectors. So we introduce positive

Lagrange multipliers a;, i =1,...,4, one for each of the inequality constraints (2).

This gives Lagrangian:
1 ¢
L{w,b,a) = 5 Iwli* = a,(y,((w-z)+6)-1) (4)
i=1

With multipliers 4=0. The Lagrangian L has to be maximized with respect to o;
and minimized with respect to w and b under the condition at the saddle point,

the derivatives of L with respect to the primal variables must vanish. This is

oL(w,b,)
it b § I
ob
and
oL(w,b,cx) ~0 (5)
ow
leads to
14
Za,. y; =0 (6)
i=1
and

4
w= Zai YiZ; (7)
i=]
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The solution vector thus has an expansion in terms of training points. Although
the solution w is unique, the coefficients «;, need not be.
According to the Kuhn-Tucker theorem of optimization theory (Hans Paul Kiinzi,
Wilhelm Krelle, Werner Oettli, 1966), at the saddle point only those Lagrangain

multipliers oy can be nonzero which correspond to constraints (2) such that
aly, - (w-z)+b)-1]=0, i=1,..¢ (8)
the patterns z,for which «; > 0 are the Support Vectors.

According to (8), the Support Vectors lie exactly on the margin. All remaining |
points of the training set are irrelevant: their constraint (2) is satisfied

automatically, and they do not appear in the expansion (7). Substituting the

conditions (6) and (7) into the Lagrangian (4), we derive the dual form of the

optimization problem:

maximizing

£ 1 i1
W(a)ZZai_Ezaiajyiyj(zi'Zj) (9)
1 =1

Subject to the constraints

o, 20, i=1,..,/ (10)
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and

e
zaiyi =0 (11)
i=1

then we obtain an expression which can be evaluated in terms of dot products

between the pattern to be classified and the Support Vectors,
f(z)= sgn[}:aiy,»(zi 'Z)+b} (12)

It is interesting to note that the solution has a simple physical interpretation. If we
assume that each Support Vectors z;, exerts a perpendicular force of size ¢, and
sign y, on a solid plane sheet lying along the hyperplane w-z, +b=0, then the

solution satisfies the requirements of mechanical stability. The constraint (11)

translates into the forces on the sheet summing to zero; and (7) implies that the

o, y;w

TR also sum to zero. This mechanical analogy illustrates the
w

torques z, X

physical meaning of the term Support Vector.
3.5Linearly Nonseparable Hyperplane

In practice, a separating hyperplane often does not exist. To allow for the
possibility of examples violating (2), Cortes and Vapnik(1995) introduce slack

variables



and a function
4
NE)=Y¢
i=1

using relaxed separation constraints

and
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(13)

(14)

(15)

The method of solution of this quadratic optimization problem is in large sense

equivalent to the method used in the separable case: to find the coefficients of

the optimal hyperplane
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¢
w= Eaiyixi’
=1

We have to find the parameters «,, i=1,...,/ one that maximize the same

quadratic form as in the separable case

yiyjaiaj(xi'xj)

~
]

- -

1

' 2[ =1

under a little bit different constraints
0<a. <C, i=1,...,10,

iaiyi =0.
i=1

As in the separable case, only some of the coefficients ¢, i=1,...,¢ differ from

zero. They determine the support vectors. C is a given value by user.
3.6 Nonlinear Separable Hyperplane

To allow for much more general decision surfaces, we can first nonlinearly

transform a set of input vectors x,,...,x, into a high-dimensional feature space by
a map @: x, — z; and then do a linear separation there. Note that in all of the

above, we made no assumptions on the dimensionality of F. we only required F
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to be equipped with a dot product. The pattern z, that we talked about in the

previous sections thus need not coincide with the input patterns. They can

equally well be the results of mapping the original input patterns x; into a high-

dimensional feature space.

Maximizing the target function (9) and evaluating the decision function (12) then
requires the computation of dot products (®(x)-®(x;))) in a high-dimensional
space. Under Mercer’s conditions (R. Courant and D. Hilbert, 1953)

K(x,y) = z d(x)P(y) , these expensive calculations can be reduced

significantly by using a suifable function K such that

(@(X)- @ (X)) = K(x,x) (16)
leading to decision functions of the form

f(x) = sgn(Ti=106yi - k(x,X;) +b). (17)

As the result, everything that has been said about the linear case also applies to
nonlinear cases obtained by using a suitable kernel k instead of the dot product.
Figure 7 shows a procedure that maps the input data (top left) nonlinearly

(via @) into a higher-dimensional feature space F (here: R®), and constructs a
hyperplane there (bottom left), an SV machine (top right) corresponds a

nonlinear decision surface in input space (here: R?, bottom right).
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R? x4 Xo input space
O &°© ©:R —> R
o @ %19 %2| 2 x1xd

— NI

®
R3
®\®
O
OO
O

f(x)

f(X) = SNG(W1 X1 +HW2Xo"+Waz ' X1X5)

i O
O

O O

R2

Fig.7. Nonlinearly transorm R to R°.

By using different kernel functions, the SV algorithm can construct a variety of

learning machines, some of them coincide with classical architectures:

Polynomial classifiers degree d:

K(x,x;) = (x-xi)d

Radial basis function classifiers:

k(x,x) = exp(-lx-xill>/c)



35

Neural networks:
k(x,xj) = tanh(k-( x-x) + ©)

Figure 8 shows a architecture of SVMs. The kernel function k is chosen a prior; it
determines the type of classifier (e.g. polynomial classifier, radial basis function
classifier, or neural network). All other parameters (number of hidden units,
weights, threshold b) are found during training by solving a quadratic
programming problem. The first layer weights x; are a subset of the training set
(the Support Vectors); the second layer weights A, = 'yioc; are computed from the

Lagrangain multipliers.

f(x)=sng(| Z [+Db) classification  f(x)=sgn(ZMk(x-x;) + b

e 2 A3 Aa weights

comparison: e.g.  k(x,x) = (x-x;)*

k
T t t k(x,x) = exp(-llx-xil>/c)
\ support vectors
1 2 3 4

X1,...Xa k(x,x) = tanh(k-( x-xj) + ©)

1 input vector x

Fig.8. Architecture of SV machines.
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To find the decision function (17), maximize (9)

W(d)zz,at _%Zaiajyiyjk(zi 'Zj) (18)

4 4
i=1 i=1

Subject to the constraints (15) and (11). Since Kk is required to satisfy Mercer's
condition, it corresponds to a dot product in another space (16), thus

K, = (yiyjk(x,. L X ))ij is a positive matrix, providing us with a problem that can be

solved efficiently. To compute the threshold 5, for Support Vector x; for which

we have

4
Zl.aiyik(xi ‘xj)+b =Y

Thus, the threshold can for instance be obtained by averaging
£
b=y, —Zaiyik(xi -xj)
i=1

over all Support Vectors x; .with o, >0.
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Chapter 4. Approaches Contributed in This Research

4.1. Sequential Minimal Optimization (SMO) Approach for training Support

Vector Machines

The method for controlling the generalization ability of learning machines is
employed in this research to construct an inductive principle for minimizing the

risk error using a small sample of training data.

If the ratio ¢/h(ratio of the number of training data to the VC dimension of
functions of a learning machine) is small, say ¢/h < 20, then the size / is
considered to be small. To make the sample size to be small, we will make use
of the bounds for the generalization ability of learning machines with sets of

totally bounded non-negative functions,

R@,) <R, (ae)+—B—8[1+ 1+M], 4.1)
P 2 : Be

and the bounds for the generalization ability of learning machines with sets of

unbounded functions

(4.2)

where



38
_,,/1 p-1 "

InN—-Inn
—

and
E=2
Suppose that the set of functions Q(z,«,), 1....,4, contains ¢ elements, and

h(In % +1) —In(n7/4)

=4
V4

if the set of functionsQ(z,x,), e A contains an infinite number of elements and

has a finite VC dimension % . Each bound is valid with probability of at least 1—17.

4.1.1 Empirical Risk Minimization (ERM)

For the pattern recognition problem, we use the sample to find the function from
the set of admissible functions that minimizes the probability of error. This is
exactly what we want. The reason that ERM uses empirical data better is
because it does not depend on a priori information, and there are clear ways to

implement it.

Assume we have a learning machine with adjustable parameters £. Given a

classification task, the machine will adjust its parameters £ to learn the mapping

x> y. It will bring about a possible mapping x— f(x,£), which corresponds to
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this particular leaming machine. The performance of this machine can be

measured by the expectation of test error,

RE)= [EG (e WP (x, )

This is called expected risk or actual risk. It requires at least an estimate of

p(x,y), which is not available for most classification tasks. Therefore, we have to

be content with the empirical risk measure, which is defined in the following.

This is just a measure of the mean error over the available training data,

g €)= 3 £ (5.2)

most training algorithms for learning machines employ ERM, for instance,
minimize the empirical error using Maximum Likelihood estimation for the
parameters £. However, These conventional training algorithms do not consider
the capacity of the learning machine and this can cause over fitting, such as,

using a learning machine with too much capacity for a particular problem.

The Empirical Risk Minimization (ERM) principle can be used to deal with a large
sample size. It can be modified by considering the inequalities (4.1) or (4.2).

When //h is large, ¢ is small. Therefore, the second addend on the right-hand
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side of inequality (4.1) becomes small. The actual risk is then close to the value
of the empirical risk. In this case, the smaller value of the empirical risk is , the

smaller value pf the expected risk is.

However, sometimes even £/h is small, but a small R, («,) does not guarantee
a small value of the actual risk. In this case, to minimize the actual risk R(a ) we

have to minimize the right-hand side of inequality (4.1) or (4.2) simultaneously
over both terms. Note, however, that the first term in inequality (4.1) depends on
a specific function of the set of functions, while the second term depends on the
VC dimension of the whole set of functions. To minimize the right-hand side of
the bound of risk (4.1) or (4.2), simultaneously over both terms, we have to make

the VC dimension a controlling variable.
4.1.2 Structural Risk Minimization

The goal of Structural Risk Minimization (SRM) [Vapnik, 1995], in contrast with

ERM, is to find the learning machine that gives a good trade-off between low

empirical risk and small capacity. Two major problems in achieving this goal are
involved.

e A measure of the capacity of a particular learning machine or at least an

upper bound of the measure is required. For achieving the goal, we need

an algorithm to select the desired learning machine. We may divide the

entire class of machines into nested subsets with decreasing ca{pacity,
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One for each subsets. Then we can learn a series of machines by using

the ERM principle. Finally the machine that gives the best trade-off can be
selected. Of curse, this can be a very difficult task.

e An alternative is to define a learning machine with variable capacity and a

corresponding training algorithm that minimizes both the empirical error

and capacity of that machine.

The following general principle, which is called SRM inductive principle, is
intended to minimize the risk function with respect to both terms, the empirical

risk, and the confidence interval (Vapnik and Chervonenkis, 1974).

Let the set S of functions Q(z,e;), o€ A, be provided with a structure consisting
of nested subsets of functions S, ={0(z,a),cze A, }, such that
ScS,c...c§, ..., (4.3)

As shown in figure 9.

Sy

Figure 9. A structure on the set of functions is determined by the nested subsets of functions.
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Where the elements of the structure satisfy the following two properties:

1. The VC dimension h,of each set S, of functions is finite, and
h <hy,....<h,,....
2. Any element S, of the structure contains:

Either a set of totally bounded functions,

0<Q(z,a})<B, e A,

Or a set of functions satisfying the inequality

(jo a)iF ()

<7, 2 4.4
oh [Oaldr(z) 77 @4

for some pair (p,7,).
We call this structure an admissible structure. For a given set of points z,,...,z,
the SRM principle chooses the function Q(z,af), which minimizes the empirical

risk in the subset S, for which the guaranteed risk is minimal.

A trade-off between the quality of the approximation of the given data and the
complexity of the approximating function are defined by the SRM principle. When
the subset index n increases, the minima of the empirical risks decrease,

however, the term corresponding to the confidence interval increases. The SRM
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principle takes both factors into account by choosing the subset S, for which

minimizing the empirical risk gives the best bound on the actual risk.

4.2, Convex Hull Approach

The convex hull of a set Q of points is the smallest convex polygon P for which
each point in Q is either on the boundary of P orin its interior. Let’s denote the
convex hull of Q by CH(Q) . Intuitively, we can think of each point in Q as being

a nail sticking out from a board. The convex hull is then the shape formed by a
tight rubber band that surrounds all the nails. Figure 10 shows a set of points and

its convex hull.



Figure 10. A set of points (J with its convex hull CH (Q)

In this thesis, we will present the algorithm, Graham’s scan (Thomas H. Cormen,
Charles E. Leiserson, Ronald L.Rovest, 1989), which computes the convex hull

of a set of n points.

We use Graham’s scan to solve the convex hull problem by maintaining a queue

Q of points. Each point of the input set Q is pushed once onto the queue, and
the points that are not vertices of CH(Q) are eventually deleted from the queue,

when the algorithm terminates, queue Q contains exactly the vertices of CH(Q),
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in counterclockwise order of their appearance on the boundary. Figure 11a-h
shows the procedure.

Ps

°
Ps : Ps
o o
o o P

Figure 11.a. Sorting the set of points according to the polar angle in counterclockwise order relative to po.

oFs
Ps
®
oF7 oP:

Ps
®

®

Po

Figure 11.b. When the point makes a nonleft turn, then the point will be deleted from queue Q .
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ohs
Pe Ps
o
. P7 P4 .
Ps Pg.
o

° P
Po

Figure 11.c. When the point makes a left turn, then the point will be kept in the queue Q .

Po

Figure 11.d. When the point makes a nonleft turn, then the point will be deleted from queue Q .
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Figure 11.e. When the point makes a left turn, then the point will be kept in the queue Q .

P4

Po

Figure 11.f. When the point makes a nonleft turn, then the point will be deleted from queue Q .
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Figure 11.g. When the point makes a left turn, then the point will be kept in the queue Q .

Ps Pz.
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Figure 11.h. convex hull consists of the points that are kept in the queue Q .
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We will use the LeftOn test method for each edge of the given convex hull to

determine whether or not a query point is inside the given convex hull.

A directed line is determined by two points given in a particular order (p,, p,). If a
qucry point g is to the left of the line determined by (p,.p,), then the triple
(py»p,-q) forms a counterclockwise circuit. In another words, ¢ is to the left of
(po-p,) if and only if the area of the counterclockwise triangle, A(p,, p,,q) is

positive. See the figure 13 that both triangles have positive areas. Therefore we
may implement the Left predicate by returning a true (positive) or false (negative)

to Area (). If the point ¢ is always to the left of the each edge of the given convex
hull, then the point ¢ must be inside the given convex hull, meanwhile, it also

demonstrates that the two convex hulls are intersected each other.

Figure 13. q is left to pop iff A[)O 2,4 has positive area; also A‘!)O l)xq. has positive area.
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4.4 Learning Approach

To implement the SVM inductive principle in learning approach, we have to
minimize the risk in a given set of functions by controlling two factors: the value
of the empirical risk and the value of the confidence interval. In this section, we

describe learning approach for classification.

The generalization ability of learning machines is to control the generalization
ability during learning processing. According to this theory, to guarantee a high
level of generalization ability of the learning process, therefore the bound (4.1)

can be rewritten in the following form

k

R(x/)<R,, (af)+<1>(hi} (4.5)

where the first term is the empirical risk, and the second term is the confidence

interval.

During the design of the learning machine we define a set of admissible functions

with some VC dimension #". For a given amount ¢ of training data, the value h”
determines the confidence interval CI)(%-) for the machine. Choosing an

appropriate element of the structure is therefore a problem of designing the

machine for a specific amount of data. During the learning process the machine
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minimizes the first term of the bound of (4.5). If for a given amount of training
data we design too complex a machine, the confidence interval (I)(%) will be

large. In this case even if we could minimize the empirical risk down to zero the
number of errors on the test set could still be large. This phenomenon is called

over fitting.

In order to avoid over fitting we have to construct machines with small VC
dimension. On the other hand, for the set of functions with a small VC dimension,
it will be hard to approximate the training data. To achieve a small approximation
error and at same time maintain a small confidence interval, we have to choose
the structure of the learning machine to reflect a prior knowledge about the
problem at hand. Thus, to solve the problem at hand by these types of machines,
we first have to find the appropriate structure of the learning machine, and
second find the function in this machine that minimizes the number of errors on
the training data. This approach, which minimizes the right-hand side of
inequality (4.5) can be describe as follows:

o Keep the confidence interval fixed (by choosing an appropriate

construction of machine) and minimize the empirical risk.
e Keep the value of the empirical risk fixed (say equal to zero) and minimize

the confidence interval.

Let's consider the problem of minimizing the empirical risk on the set of linear

indicator functions
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flx,w)=sgn{(w-x)}, weR", (4.6)

Where (w- x) denotes an inner product between vectors w and x. Let

(xl’y|)7-~~a(x/>yl’)

be a training set, where x;is a vector, and y, e {I.-1}, j=1,....¢.
Our goal is to find the weight vectors of parameters w,, which minimize the

empirical risk function

2

Remp(w) :%z(yl ‘f(xj’w)) - (47)
J=t

If the training set is separable without error (i.e. the empirical risk can become
zero) then there exists a finite step procedure that allows us to find such a

vectorw, , we use the perceptron learning method to train the data set.

In the nonseparable case, we can not apply regular gradient based on
procedures to find a local minimum of functional (4.7), since for this functional the
gradient is either equal to zero or undefined. Therefore, the idea was proposed to

approximate the indicator functions (4.6) by so-called sigmoid functions
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f(x, w) = S{(w- x)}, (4.8)

Where S(u) is a smooth monotonic function such that

The idea is to use the sigmoid approximation at the stage of estimating the
coefficients, and use the threshold functions for the last neuron at the stage of

recognition.

4.5 Efficient Implementation

The implementation will be written in C++, using Microsoft’s Visual C++ compiler.

The algorithm will be tested on experimental data sets and real data sets.

4.5.1 Convex Hull Algorithm

The procedure Convex Hull takes a set Q of points as input, where 101 >3. It
calls the functions Head () , which returns the point on head of queue O without

changing @, and Next-to-Top (Q), which returns the point one entry below the
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head of the queue O without changing Q. The queue Q returned by Convex Hull
contains, from head to tail, exactly the vertices of CH(Q) in counterclockwise

order.

Convex Hull Algorithm (Q)

1. Let p, be the point in Q with the minimum y —coordinate , or the leftmost

such point in case of a tie.

2. Let {p,.p,..... p,) be the remaining points in Q, calculated the polar angle
in counterclockwise order around p, by using cross product, and sorted
by polar angle in counterclockwise order around p,. (If more than point

has the same angle, remove all but the one that is farthest from p,)

for i< 2ton

angle[i] < poe p11) ! lpopil ® Ip1pil
min « find the minimal angle

insert min into the @
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3. Find the points on the convex hull based on the principle that the angle

formed by points Next-to-Top, and p,makes a nonleft turn should be

delete from the queue Q.

position « (pDoc — GetlistHeadPosition());

fori<3 ton

top < (pDoc — GetNext());

topnext < (pDoc — GetNext());

t«— (pi— topnext)*(top-topnext);

ift<O

then delete topnext;

return J.
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4.5.2 Intersection Algorithm

If a point is inside a convex hull, then each area consisting of the point and each
edge of the convex hull is always positive, namely the flag equals to 1, otherwise,
there exists any area that is negative, it means that the point is outside the

convex hull.

flag < O

fori—1ton
area < (P1[x] — polX]) * (dly] - Polyl)
- (q[x] - polx]) * (P1ly] — Poly])
if area < 0
then [« i+1
else
flag « 1

return flag

4.5.3 Learning Algorithm

Let us suppose that a perceptron with fixed ® and adjustable coefficients. When

a figure X is presented the sum Zawgo(X) is computed. If X belongs to F* and

this sum is positive; else if X belongs to F and this sum is negative. Assume
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that Z%(p(X) comes out negative for an X in F*. In general some ¢’ s give zero
values for @(X), and their coefficients clearly cannot be blamed for the bad

result. In fact, changing these coefficients might do harm in relation to other X's

and dose no good in relation to the current X . Thus we should increase «, only

if o(X) =1.

w— 0
XeF UF
for i< 0 ton
if X e F
if we ®(X) <0
then we« w + ®(X)
else
if we ®(X) >0

then we w - ®(X)
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Chapter 6. Conclusion

We first described the technique of hyperplane that separates the data sets into
two different categories through training SVs. There exist several cases in training
processing, such as, linear, non-linear, and non-separable cases, actually, non-
linear, and non-separable cases are the expansion of linear case by computing dot

products in feature space by means of kemel functions in original space.

6.1 New contributions of this thesis

(1). A efficient and fast convex hull algorithm for defining the convex hulls for each
data set. Based on the convex hull, we only consider the data that sit on the bound
of the convex hull. this algorithm tremendous deduces test time because all the

data inside the convex hull can be ignored, particular to the linear case.

(2). We developed the Perceptron algorithm to train non-linear case data, which is
kind of time consuming at first, but in the long run, as long as we define the
hyperplane, we can use the Support Vector Machine to do the pattern recognition,

which only involves a very small part of data sets, namely, Support Vectors.

(3). In this thesis, we successfully implemented the above algorithm using
acceptable amounts of computer time and memory in MFC to obtain a visual

result.
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6.2 Possible future research
Even though the SRM inductive principle dose give us a good performance, but
there are still some further researches needed to study, such as, a technique for
choosing the suitable kernel function and additional capacity control, and

development of kernels with invariance.

Another related research is how to decompose the large scale efficiently, as
known, the memory for the large scale data set increases in exponential, we have
to break the large set into several small sets by using approximately method,
however, the approximation can never be as good as the original, so how to

construct a efficient approximately method becomes a challenge.

We believe that SVM is very useful to the problem of classification, and to
information retrieval at large. We hope that this thesis will encourage some to

explore SVMs for further.
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