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ABSTRACT
As computer science becomes more prevalent in the K-12 world,
elementary schools are increasingly adopting computing curricula.
Computer scientists have recognized the connection between math
and computer science, but little work has demonstrated how and
whether computer science can support improved learning in math.
This paper reports on a project in which elementary students in
a gifted program used Bricklayer, a functional programming en-
vironment that supports artistic and mathematical expression. A
pre- and post-test design demonstrates significant learning gains
in coordinate graphing and visual-spatial skills.
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1 INTRODUCTION
Efforts such as the CSForAll initiative [12] and Code.org have been
increasingly successful at promoting the adoption of computer sci-
ence across schools, particularly in elementary schools. In order to
continue justifying instructional time spent on computer science,
educational research must demonstrate that the time is effective
- that students are indeed making sufficient progress towards in-
structional goals. Traditionally, language arts and math have been
the two cornerstones of elementary curriculum. Computer science
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most closely aligns with mathematics, yet little research has demon-
strated that incorporating computer science improves mathematics
outcomes [10].

This paper reports on a project in which elementary school
students were provided computer science lessons once per week
for ten weeks in a gifted and talented education (GATE) program,
and were tested for mathematics outcomes in a pre- and post-test
design. The paper first explains the relationship between mathe-
matics and computer science, particularly in elementary school.
It then describes the educational intervention, using Bricklayer, a
programming-based pedagogical tool that creates artistic artifacts.
Finally, the research project is described, including findings related
to improvements in students’ coordinate graphing knowledge and
visual-spatial skills following the intervention. Implications, limita-
tions, and areas for future research are identified.

1.1 Computer science and mathematics
Computer science is in many ways an application of mathemati-
cal principles, and computer science educators have long argued
the relationship between computing and math [7]. While anec-
dotal evidence that mathematical skill enhances students’ ability
to understand computing is reinforced through mathematics pre-
requisites for high school and college computing courses, there
has been little evidence that learning programming actually leads
to gains in mathematics performance [8]. This is unsurprising, as
transfer between domains requires deep understanding and explicit
instructions for how to take ideas from one area (such as program-
ming) and apply them in another (such as mathematics) [1]. There
is reason to believe that a strength of computing is the opportunity
to apply mathematics skills and topics to a real world setting [9];
for example, programming graphics objects can motivate students’
understanding of the coordinate graphing system [3]. Recently,
the Bootstrap program has shown evidence that functional pro-
gramming can successfully support student learning of algebraic
functions [10, 11]. However, there remains a dearth of research
on the explicit connections between computer science and mathe-
matics, particularly for young children, before the introduction of
algebraic reasoning.

Although it has not traditionally been a focus of mathematics
curriculum and instruction, spatial reasoning has been gaining
attention as an important skill underpinning mathematical and sci-
entific learning. The National Research Council called for explicit
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attention to spatial reasoning in not just mathematics but across
the entire curriculum, calling it a “major blind spot” in almost all
current curricula [2]. A large longitudinal study demonstrated that
spatial ability plays a critical role in the development of STEM
abilities [13]. In a study of 8-year-old students, Gunderson et al.
found a “strong relationship between spatial skills, number line
knowledge, and math achievement” [4]. In other words, curriculum
that supports student development of spatial skills is likely to sup-
port improved academic performance across the curriculum and
especially in mathematics [6, 13].

A major topic in upper elementary mathematics instruction
is geometry, particularly introducing students to the coordinate
plane and extending their early number sense to two- and three-
dimensional spaces. For example, the CommonCore State Standards
for Mathematics includes “Graph points on the coordinate plane
to solve real-world and mathematical problems (CC.5.G.A.1 and
CC.5.G.A.2)” and “Solve real-world and mathematical problems
involving area, surface area, and volume (CC.6.G.A.3).” Further,
elementary mathematics curricula are designed to support the un-
derlying mathematical skills and concepts that will help students
be successful in algebra, such as generating and analyzing patterns
(CC.4.OA.C.5) or writing and interpreting numerical expressions
(CC.5.OA.A.1, CC.5.OA.A.2).

2 BRICKLAYER
Bricklayer is an open-source, online educational ecosystem de-
signed to teach coding to people of all ages and coding backgrounds
[5, 14]. Designed with a “low-threshold, infinite-ceiling” philosophy,
it provides an example-rich and problem-dense domain in which
students learn to write programs in the functional programming
language SML. When executed, Bricklayer programs can produce
LEGO®artifacts, Minecraft artifacts, and even artifacts suitable for
3D printing.

Bricklayer is a collection of interactive web apps and download-
able software, including a Google Blockly-type coding environ-
ment called Bricklayer-lite, which was used by the students in
this project. The pedagogical tool begins with an unplugged level

that focuses on the exploration and understanding of various math-
ematical patterns such as tessellations, fractals, and elementary
cellular automata - all concepts that even young students can un-
derstand through drawing exercises. Bricklayer’s five coding levels
provide instruction and challenges of increasing complexity, begin-
ning with two-dimensional pixel art and progressing to the creation
of three-dimensional patterns such as a Menger sponge and even
more complex shapes such as those shown in Figure 1. Similar to
other environments like Scratch, Bricklayer-lite has a block-based
programming system and displays the output of the code, as shown
in Figures 2, 3 and 4, allowing users to see their code and the output
in different panes of the same window. Bricklayer itself is a text-
based language with the same syntax as Bricklayer-lite, making it
easy for students to transition between environments.

2.1 Bricklayer and Art
One notable element of Bricklayer is its focus on art. Although the
communication with the computer takes place through coding, and
the underlying concepts are mathematical such as placing objects
at particular coordinate points in space, the output is artistic in
nature. After introducing students to new commands and concepts,
the curriculum encourages students to use creativity to design
their own artifacts such as those shown in Figure 1. While early
tasks are very specific, directing users to place colored bricks at
particular points, users are quickly pushed to make pictures or
objects based on their own artistic interests. Examples of art created
by participants in this study are seen in Figures 2, 3 and 4.

Most introductory programming environments have some ‘theme’;
in many cases, particularly environments designed for young chil-
dren, this theme is game-based. For example, both Code.org and
Swift Playground lessons provide game-like challenges for users
to solve. Although there are challenges built into the Bricklayer
pedagogical suite, the goals are not game-like, but artistic, to create
pictures and objects. In this way, Bricklayer is designed to appeal
both to “STEM-y” students who are traditionally drawn to program-
ming, and also to students with an artistic bent for whom STEM
hobbies may not be intrinsically interesting.

Figure 1: Artifacts created using Bricklayer.



A significant portion of the Bricklayer ecosystem has been devel-
oped specifically to help novices, especially primary school children,
learn how to code. Bricklayer has been used with students from
elementary school through college courses, and is currently being
used in over 75 elementary, middle, and high schools. This paper
reports on a project in which elementary school students used
Bricklayer in a ten-week workshop one hour per week at school.

3 METHOD
This study was designed to investigate the impact of teaching
Bricklayer to elementary school students. It particularly inves-
tigated whether programming in Bricklayer would promote im-
proved mathematics skills. Thus the research question was whether
students would show improvement in coordinate graphing, spa-
tial skills, and functions following a Bricklayer unit in their GATE
program.

3.1 Participants
The participants in this study represent a convenience sample. Par-
ticipants were students who had been identified by the school
district for GATE (gifted) services. The GATE program has consid-
erably more leeway in implementing innovative curriculum than
standard classrooms which must adhere to district-adopted curricu-
lum. Students in the GATE program are pulled out of their regular
classes for approximately one hour per week to receive instruction
and resources from a trained facilitator.

Pre- and post-tests were collected from a total of 66 students in
grades three through six at nine different schools in the district. Four
participants were excluded for lack of consent, resulting in data
from 62 participants. Data were anonymized for analysis. Tables 1 -
3 show the demographic breakdown of participants by grade level,
school attended, and gender.

Table 1: Participants by grade level

Grade 3 4 5 6
Number of participants 10 14 23 15

Table 2: Number of participants at each school

School A B C D E F G H J
Number of participants 11 8 5 1 11 6 10 3 7

Table 3: Participants by gender

Gender Female Male Declined to state
Number of participants 29 29 4

3.2 Procedure
The six GATE facilitators for the nine schools were trained in Brick-
layer over two evenings before teaching the students. Facilitators
were trained prior to spring break and implemented the program

following spring break and through mid-May; students spent no
more than ten weeks using Bricklayer as a part of this program. A
Piazza online community was established for the facilitators to be
able to ask questions as they encountered them. The facilitators
were introduced to a ten-week curriculum designed for after-school
programs, and used this curriculum as a guide for their implemen-
tations.

Students took the tests on paper during their regular GATE time;
the tests were administered by GATE teachers and were collected
and maintained by the GATE coordinator for the district, who
delivered the tests to the researchers at the conclusion of the school
year.

During the Bricklayer lessons, student progressed through Brick-
layer levels of increasing complexity. Examples of student work
created during the project are shown in Figures 2, 3 and 4. These
show a progression in conceptual complexity. Figure 2 represents
level one: pixel art, created by placing each block individually. Fig-
ure 3 represents level two, and demonstrates a function which
creates a simple repeating pattern. Figure 4 is a more complex func-
tion that creates a non-repeating pixelated image, from the third
level of Bricklayer. Each figure shows both a Bricklayer-lite code
snippet on the left, and the outcome as displayed on the screen, on
the right side of the figure.

Figure 2: Early art created by a participant in Level 1

Figure 3: Intermediate art created by a participant in Level 2

3.3 Measures
Pre- and post-test mathematics questions were isomorphic: slightly
different versions of the same questions. For example, the mental



Figure 4: More complex programming by a participant in
Level 3

rotation question shown in Figure 6 had a different shape on the
pre-test than the post-test. The other test questions were identi-
cal between the pre- and post-test. The following measures were
analyzed:

• Demographics Participants were asked their grade, age,
gender identification, and ethnicity. The first two pieces of
demographic information were at the beginning of the test,
and the last two at the end of the test in order to decrease the
likelihood of stereotype threat. The grade level reported on
the post-test was used for analysis because not all students
answered the question on the pre-test. Four students did not
report their gender. The GATE coordinator identified the
school associated with each set of tests.
• Attitudes about math & computers Participants were
asked to respond to ten statements using a five-point Likert
scale. The statements broke into three constructs: Computer
Interest such as “Computers are interesting to me”, Computer
Confidence such as “I am good with computers”, and Math
Confidence such as “I feel confident about my ability to do
math problems.” For each construct, responses were aver-
aged and normed to result in a single score between 1 and
5.
• Mathematics A mathematics score represented how many
questionswere answered correctly out of twelve; unanswered
questions were marked wrong. These were further divided
into three subsections:
– Three questions about coordinate graphing prompted stu-
dents to identify the coordinates of a cell containing a
particular symbol such as that shown in Figure 5

– Four questions allowed students to demonstrate visual-
spatial ability such as the task shown in Figure 6 that
requires mentally rotating an image.

– Five questions inquired into students’ understanding of
mathematical functions. For example, “A mathematical
function can sometimes be written in words like this. Let’s
say I have a function called ‘Almost double’. Here is what
almost double does. Take any number, double it, then take
away 1. What would you get if you used 7 with the ‘almost
double’ function?”

Figure 5: Sample coordinate graphing question

Figure 6: Sample mental rotation question

3.4 Data Analysis
At the end of the school year, the tests were returned to the re-
searchers. One author entered the responses into a spreadsheet.
The data was analyzed using R. Because the data was non-normal,
Yuen’s test for trimmed means was used to compare means.

The analysis addressed the following hypotheses:
(1) Average score on the test of mathematics would increase

between pre-test and post-test.
(2) Average score on the coordinate graphing mathematics sub-

section would increase between pre-test and post-test.
(3) Average score on the visual-spatial mathematics sub-section

would increase between pre-test and post-test.
(4) Average score on the functions mathematics sub-section

would increase between pre-test and post-test.
(5) There would be no significant difference between boys and

girls in terms of improvement on the tests
(6) There would be no significant difference between schools in

terms of improvement on the tests
(7) Average score increase on the test of mathematics would be

different for different grades. Either a ceiling effect would
occur where older students (e.g. grade 6) would already have



mastered the skills and so a smaller change would occur,
or the intervention would be less effective with younger
students (e.g. grade 3) who had not yet learned coordinate
graphing and functions, or both.

(8) Students would increase their computing interest and confi-
dence and their mathematics confidence

4 FINDINGS
4.1 Overall Score
There was a significant increase in average test scores between the
pre- and post-test across all questions from 36% correct (se = 2.6)
on the pre-test to 47% correct (se = 2.6) on the post-test on average
(t(37) = 5.51, p<.0001), representing a large effect (r = .67). This
confirmed the first hypothesis.

4.2 Coordinate Graphing
There was a significant increase in scores on the coordinate graph-
ing section of the test. On average, scores went from 26% correct (se
= 4.2) on the pre-test to 42% correct (se = 4.0) on the post-test (t(37)
= 3.84, p = 0.0005) with a moderate effect size (r = .53). The smaller
significance and effect size despite a larger change in percentage
correct is due to the much smaller number of questions: only three
rather than 12 on the composite score. This confirmed the second
hypothesis.

4.3 Visual-Spatial Skill
There was a similarly large increase in scores on the visual-spatial
section of the test. On average, scores went from 24% correct (se =
2.9) on the pre-test to 52% correct (se = 3.6) on the post-test (t(37)
= 4.30, p = 0.0001) with a moderate effect size (r = .53). Like the
coordinate graphing section, this represents that the visual-spatial
skill section encompassed only four questions. This confirmed the
third hypothesis.

4.4 Functions
On the functions section of the test, there was a small and non-
significant increase in scores from 43% correct (se = 3.4) on the
pre-test to 45% correct (se = 3.7) on the post-test (t(37) = 0.82, p
= 0.41, r = 0.13). Thus, the fourth hypothesis was not confirmed,
though the small improvement contributed to the improvement
seen on the overall score.

4.5 Demographic differences
An Analysis of Variance (ANOVA) was conducted to compare score
differences among students with various demographic differences.
No significant difference was found for changes in score between
pre- and post-tests for students in different grades (F = .32, p =
.57) or different genders (F = ..03, p = .97). Although there was a
small difference between students in different schools (F = 2.74, p =
.01) the number of students at each school was small, and further
research is necessary to draw any conclusions about differences
between schools. Thus hypotheses five was confirmed (that there
would be no difference between genders) and hypotheses six and
seven were not confirmed.

4.6 Attitudes
Because Bricklayer provides an engaging, creative opportunity for
students to learn programming and math, the hypothesis was that
after engaging in the Bricklayer experience, students would increase
their computing interest and confidence and their mathematics
confidence. Although no formal qualitative data was collected, there
was anecdotal evidence that students were highly engaged and
enjoyed using Bricklayer. One of the teachers reported that she
gave the students an opportunity to go on to another desirable
curricular experience or continue using Bricklayer and that the
students unanimously chose to continue using Bricklayer. However,
the survey results do not demonstrate a significant increase in
attitudes. Computer interest increased from 4.21 (se = .1) to 4.24 (se
= .11) (t = 0.32, p = .75) on a five-point scale, computer confidence
increased from 4.17 (se = .09) to 4.24 (se = .08) (t = 0.79, p = .43), and
math confidence increased from 4.17 (se = .09) to 4.24 (se = .08) (t =
0.79, p = .43). Thus, hypothesis eight was not confirmed.

5 DISCUSSION
At the most basic level, this paper reports upon a successful proof
of concept: that elementary students can use Bricklayer-lite to
create artistic artifacts of their own design. It further suggests that
Bricklayer can support students’ mathematics learning.

Participants’ improvement in their ability to answer questions
about coordinate graphing and visual-spatial skills following the
Bricklayer course is extremely promising. Although the ability to
identify locations on a coordinate graph is not a traditional com-
puter science topic, it is a fundamental skill required in elementary
math standards, and is represented in graphics programming. Stu-
dents’ improvement in their visual-spatial ability is not currently
strongly represented in math or computer science standards, but
prior research has demonstrated that it is an important skill associ-
ated with strong outcomes in STEM.

Despite successfully writing functions in order to run their pro-
grams in the higher levels (2 and 3), participants did not demonstrate
improvement from pre- to post-test on the functional reasoning
sub-section. Further research is warranted to understand why this
hypothesis was not confirmed. One possibility is that, because the
functions questions were at the end of the test, students ran out
of time and could not complete them. Another possibility is that
in only ten sessions with Bricklayer they were not able to engage
with enough of the higher levels of the curriculum that would sub-
stantially strengthen their functional reasoning. No formal record
was kept of how far students progressed in the curriculum. The
curriculum has 5 levels with exposure to functional reasoning in-
creasing dramatically in levels 3, 4, and especially 5. Feedback from
the teachers indicate that many of the 62 participants only made it
to levels 2 or 3 material, and thus had limited exposure to functional
reasoning. It may be that more exposure to Bricklayer functional
reasoning would lead to more general mathematical functional rea-
soning. One of our in-progress initiatives involves working with
Master elementary teachers with experience teaching coding to
develop Bricklayer coding projects that correlate well with elemen-
tary mathematics content standards and more advanced topics like
functional reasoning.



As in most educational research, causality cannot be applied
to this ten-week program. It is certainly possible that other ex-
periences, including students’ regular classroom math classes and
lessons were responsible for the significant increase in performance
on the post-test. However, the students were distributed across nine
schools and four grades as shown in Tables 1 and 2. The hetero-
geneity of participants’ outside-workshop experience suggests that
the impressive changes are likely associated with using Bricklayer,
particularly since Bricklayer was explicitly designed to support
the skills which were assessed. This is not itself a weakness - the
hypotheses were based on prior research and understanding of the
likely gains, and were objectively assessed using isomorphic ques-
tions. To confirm a causal relationship, experimental conditions
must be set up in which control groups will complete a different
mathematical workshop, teaching similar skills without the use of
functional programming. However, we feel comfortable suggesting
that this research is worthwhile, given the strength of the findings
presented here.

With the increasing push to cover more and more topics in ele-
mentary grades, finding a way to address multiple content strands
is one of the great potentials of Bricklayer. A significant limitation
is that this work reports upon workshops run with students iden-
tified as gifted - that is, more intelligent than the average public
school population. This limits the generalizability of the results, and
we hope to expand the work to implement Bricklayer across math
classes throughout the district rather than limiting it to pull-out
classes. It would be of interest to see how exposure to learning
coding with Bricklayer will lead to similar changes in a general
population of elementary students. Elementary class time is in-
creasingly constrained, particularly with the ever-present threat
of standardized tests that students must pass. By demonstrating
that Bricklayer has the potential to improve students’ performance
on these tests, we hope that teachers, principals, and district per-
sonnel would be open to incorporating Bricklayer into curricular
programming more broadly.

One of the reasons touted for getting programming into mathe-
matics classes is that it will increase student engagement - students
will think it is fun and pay more attention. Anecdotal evidence
does support this idea, as students indicate more interest in some
ideas such as coordinate graphing when they are motivated by a
“real world” context to use what is otherwise a dry practice. This
was the case with Bricklayer, where teacher reports suggest that
students enjoyed using it. However, the survey of student attitudes
indicate that there was not a significant change in student interest
or confidence about computing and math. This is likely because
of a ceiling effect - the students were generally very positive on
the post-test. This is not surprising from an academically-strong
group, and a group who is young enough to not yet have “turned
off” to mathematics or programming. Further investigation of the
role of student attitudes on learning and engagement will continue
to shed light into when and how such interventions may be most
effective.

Recent efforts to incorporate coding and computer science across
all schools have focused on the positive outcomes of computer sci-
ence. This paper reports upon a successful implementation of an
environment that not only teaches programming but also demon-
strates mathematics learning as well. Being able to learn coding

skills while at the same time improve on students’ understanding
of coordinates and develop students’ spatial reasoning at the same
time is a win-win.
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