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Abstract:  

Alzheimer’s disease (AD) is the most devastating neurodegenerative disorder that effects the aging 

population worldwide. In this study three hypotheses of AD are explored, the β-amyloid cascade 

hypothesis, the β-amyloid metal binding hypothesis and the oxidative stress hypothesis are 

explored. In the first case compounds from the South African Natural Compounds Database 

(SANCDB) are docked to models of β-amyloid fibrils and the properties of these fibrils under 

pulling simulations are compared to a known small molecule disruptor of β-amyloid, wgx-50. In 

these simulations SANCDB compounds are identified that disrupt β-amyloid in a similar manner 

to wgx-50. In these simulations the disruption to the free energy of binding of chains to the fibrils 

is quantified. For metal binding and oxidative stress hypotheses, problems in simulation arise due 

to only fragments of β-amyloid being present in the Research Collaboratory for Structural 

Bioinformatics protein data bank (RCSB PDB), as determined from NMR experiments. In this 

work, β-amyloid is set up under periodic boundary conditions to simulate a fibril under reasonable 

computational time. Within these periodic boundary conditions, β-amyloid has been solvated in 

copper and zinc rich environments and diffusion of these metals around the fibrils has been 

explored. The localization of these metals (in simulation only using van der Waal’s and 

electrostatic terms) around the fibril has led us to explore other possible metal binding sites. Metal 

bound to the infinite fibril has been optimized at the QM/MM level and some of the reactive 

oxygen species in the presence of the fibril are quantified.  
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Chapter 1: Introduction 

 1.1 Alzheimer’s disease 
 
The World Health Organization defines Alzheimer’s disease (AD) as a neurodegenerative disease 

of unknown aetiology, characterised by progressive memory and cognitive impairment. It accounts 

for 50% to 75% of all cases of dementia (Jia et al., 2016). Dementia is defined as the loss of 

cognitive function sufficient to interfere with social and occupational functioning (American 

psychiatric association, 1994).  Alzheimer’s diseases (AD) is reported as the most frequent form 

of dementia in adults with at least 65 years of age (Riverol and Lopez, 2011). AD is thought to 

begin at 20 or more years of age before symptoms arise (Villemagne et al, 2013, Braak et al, 2011). 

Symptoms occur because nerve cells in parts of the brain involved in thinking, learning and 

memory have been damaged, persons in the final stages of AD require constant care and are bed-

bound (Gaugler et al., 2019). Multiple risk factors have been identified, including female sex, age, 

low education, the apolipoprotein (APOE*E4) allele, smoking, obesity and diabetes mellitus (Jia 

et al., 2016). AD affects patients and their families on a mental, psychological, social and financial 

level, resulting in millions of households living below the poverty line (George-Carey et al, 2012). 

The World Alzheimer report 2019, reported that over 50 million people lived with dementia; Asia 

contributed the highest number of people and Africa had the least contribution in the global impact 

(Fig 1.).  
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Figure 1: The number of people living with Alzheimer’s disease and other dementia in the world. 
Data was extracted from world Alzheimer’s disease report 2015. 
 
The prevalence of AD worldwide was estimated to be as high as 24.2 million, considering that 

both developed and developing countries are rapidly aging, the frequency is expected to double 

every 20 years until 2040 (Ferri et al., 2005, Mayeux and Stern, 2012). North America and Western 

Europe have at age 60 years the highest prevalence of AD, followed by Latin America and China 

(Mayeux and Stern, 2012). In the United States of America, an estimated 5.8 million people are 

living with AD in 2019, This number includes an estimated 5.6 million people age 65 and older 

(Hebert et al, 2013). The number of cases and projected prevalence are similar in Europe (Thies 

and Bleiler, 2011, Wimo et al, 2003). This number is expected to grow rapidly as the population 

of Americans age 65 and older is projected to grow from 55 million in 2019 to 88 million by 2050 

(Feng et al, 2016, West et al., 2014). 
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China has the largest population in the world, the number of Chinese aged 60 years and above was 

159.89 million in 2008 (Jia et al., 2014). This suggest that in time it will have the greatest number 

of cases with AD in the world (Ferri et al., 2005). It was reported that the prevalence of AD was 

3.21% among people aged 65 years and older, and more than 7 million Chinese people lived with 

AD in 2014 (Jia et al., 2014). The rapid growth of the elderly population poses tremendous 

challenges to the national health-care system and to the sustainable development of the national 

economy (Ji et al., 2015). The total prevalence of people living with AD in Africa was 2.76 million 

and 2.1 million of the afflicted individuals were from Sub-Saharan Africa in 2010 (George-Carey 

et al., 2012). There is limited research data concerning AD prevalence in South Africa (De jager 

et al., 2017). A study of 200 individuals was conducted in Bloemfontein, it identified 6% 

prevalence of AD in the black community assessed. Mixed-race people above the age of 65 years 

accounted for 8.6% of patients with possible AD, the 2016 world Alzheimer’s report approximated 

that 4.4 million individuals above the age of 60 years living in South Africa, of this figure almost 

187,000 living with AD. (Van der Poel et al., 2012, Ben-Arie et al., 1983, Alzheimer’s disease 

international, 2016).  This number is predicted to rise to 250,000 by 2030, with a concurrent 

increase in the number of people aged 60 years or older to 7 million (Alzheimer’s disease 

international, 2016). This ensures that it is a necessary to determine not only the burden of AD in 

the country but also the services required to maintain, support and care for the affected individuals, 

their families and care-givers (De jager et al., 2017). 

 

Economic costs of AD are significant for the health systems given the resources used to prevent, 

diagnose, treat and manage dementia (Castro et al., 2010). AD is the third most expensive disorder 

in the United States of America and with the aging society will likely become more significant 
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(Meek et al., 1998). The physical and psychological toll of care-giving can increase health risk for 

the care-givers and increase their own medical costs, this is because care-givers are an integral part 

for treatment of patients with AD (Zhu and Sano, 2006). The total worldwide societal cost was 

estimated to be US$ 315 million in 2005 with about 70% of cost occurring in developed countries 

(Wimo et al., 2010). The median survival of patients with AD is 9 years for persons diagnosed at 

age 65 years and 3 years for persons diagnosed at 90 years of age (Brookmeyer et al., 1998).   

It is vital to study AD to improve pharmacological treatment and management of AD may help 

control health-care costs and improve the quality of life of patients and families.   

 

1.2 Treatment of Alzheimer’s disease 
 

Despite the significant global health issue that AD poses, only five medical treatments have been 

approved. These treatments act to control symptoms rather than alter the course of the disease 

(Briggs et al., 2016). Although drug discovery, informed by preclinical models for AD, has 

resulted in large efforts to produce drugs that significantly alter the course of the disease, not a 

single drug proposed has achieved these outcomes (Salomone et al., 2012). Current clinical 

treatments of AD focus on the use of cholinesterase inhibitors, and drugs that target memantine, 

and tau. In Fig.2 various mechanisms have been proposed to explain the underlying pathology of 

AD. Current and future treatments are based on the modification of these pathways (Briggs et al., 

2016).   
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Figure 2: Aetiology of Alzheimer’s disease with therapeutic targets (Briggs et al., 2016 open 

access). 

1.2.1 Tau-targeted therapy  
 

Tau neurofibrils are found in neurons, while β-amyloid (Aβ) fibrils are found as plaques in AD 

patients. Since tau is not directly toxic to cells and is a mediator to Aβ toxicity, reducing tau levels 

is a therapeutic approach to AD (Bi et al., 2011). Tau-targeted therapy treatment strategies uses 

agents to prevent hyperphosphorylation (a process that moves tau away from its microtubule 

stabilization function, allowing for formation of tau fibrils), as well as targeting microtubule 

stability and aggregation (Wischik et al., 2014). Tau expression can be reduced with small 

interfering RNA (siRNA) or antisense oligonucleotides (ASOs) (Congdon and Sigurdsson, 2018). 

Guo et al., 2018 found that in cell and animal models, siRNA reduced tau pathology and associated 

functional impairments. Phosphorylation of the tau protein affects its ability to bind tubulin and 
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the adult form of tau promote microtubule assembly (Lindwall and Cole, 1984). In AD the pattern 

of phosphorylation changes as the disease progresses (Bi et al., 2011). The pattern of 

phosphorylation differs between tauopathies and familial tauopathies. In familial tauopathies the 

causative mutations induce conformational changes that make tau a more favourable substrate for 

specific kinases (Noble et al., 2013). Lithium and valproic acid can be used to inhibit tau 

phosphorylation (Tariot and Aisen, 2009). Epithilone D were identified as antifungal agents, 

however they were later discovered to be microtubules stabilizers (Bollag et al., 1995). Brunden 

et al., 2010 and Zhang et al., 2012, found that in preclinical testing, epithilone D increased 

microtubule numbers and decreased axons with abnormal morphology both in young and aged tau 

transgenic mice respectively. Methylene blue blocks the polymerization of tau in vitro (Bi et al., 

2011). It achieves this by trapping the tau monomer in aggregation incompetent conformation 

(Panza et al., 2016, Wischik et al., 1996).    

1.2.2 Cholinesterase inhibitors  
 

Within the first generation of cholinesterase inhibitors was Tacrine, however with hepatoxic side 

effects (Manning, 1994). The most used agent currently is Donepezil (Briggs et al., 2016). 

Donepezil is prescribed at an initial dose of 5 mg in the evening, increased to 10 mg after one 

month (National institute for health and care excellence, 2011). It is recommended that patients 

should have electrocardiogram prior to commencing a cholinesterase inhibitor due to risk of sinus 

syndrome and other conduction abnormalities (Briggs et al., 2016). Cholinesterase inhibitors do 

not achieve the minimum clinically important drug-placebo of 4 points on the Alzheimer’s disease 

assessment scale-cognitive subscale (ADAS-cog) (Schneider et al., 2014).  
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1.2.3 Memantine 
 

Memantine (MEM) is a low-affinity voltage-dependent uncompetitive antagonist of N-Methyl-D-

aspartate receptor (NMDAR) (Schneider et al., 2014). It blocks the NMDAR, and, due to being 

low-affinity is rapidly displaced from NMDAR. This displacement prevents prolonged receptor 

blockade and associated negative side effects on learning and memory that have been observed in 

high affinity NMDAR antagonists (Folch et al., 2018). MEM has adequate treatment thresholds 

of protection and tolerability. It has been shown mild to extreme AD benefits (Atri et al., 2013). 

Only when it is pathologically active, that’s when it interacts with the channel. Preclinical data 

indicated that other receptors, including nicotinic, acetylcholine, and sigma-1 receptors could be 

blocked by MEM (Allgaier M and Allgaier C, 2014, Buisson and Bertrand, 1998).  

1.3 Causes of Alzheimer’s disease 
 

At early stages of the disease, medical diagnosis of AD are extremely difficult (Zverova, 2019). 

This is due to extensive examinations to exclude any other probable dementia (Houmani et al., 

2018). A clinical diagnosis is at times based on medical reports, neuroimaging, physical and 

neurological examination, neuropsychological assessment, collateral history from family and 

laboratory tests (Zverova, 2019). The exact cause of the disease is not yet evident. However, the 

available literature propose that AD is more than a neurodegenerative brain disorder (Zverova, 

2018). There are numerous theories postulated that attempting to pinpoint the root cause and origin 

of AD, these include β-amyloid (Aβ) overproduction and clearance, acetylcholine deficiency, the 

tau hypothesis, brain-derived neurotropic factor (BDNF) deficit, mitochondrial dysfunction and 

neuroenergetic hypothesis, nerve growth factor (NGF) deficit, etc. (Zverova, 2019).  
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1.3.1 Acetylcholine deficiency 

The first neurotransmitter to be identified was acetylcholine (ACh) (Loewi et al., 1921). It is used 

by all cholinergic neurons and is vital in peripheral and central nervous systems (CNSs) (Ferreira-

Vieira, 2016). Since ACh has importance in cognitive processes, this suggests that the cholinergic 

system plays a vital role in the AD (Muir, 1997). It was thought that the depletion of cholinergic 

neurons and the resultant failure of dopaminergic production could be the main factor underlying 

psychiatric symptoms associated with AD (Martorana and Koch, 2014). Mesulam, 2013 supported 

this hypothesis, by demonstrating that dopamine efflux is significantly increased in M4 knockout 

mice. The findings reported by Mesulam suggest that cholinergic neuronal projections to the 

nucleus accumbens from laterodorsal tegmental nucleus and pedunculopontinus nucleus can 

control dopamine by M4 autoreceptor (Sarter et al., 2001). 

1.3.2 Tau hypothesis 

Tau proteins belong to the microtubule-associated family (Weingarten et al., 1975). They are 

involved in microtubule assembly and stabilization, in humans they are found in neurons (Gu et 

al., 2009). In the adult brain, six tau isoforms are produced from a single gene, located on 

chromosome 17q21 by alternative mRNA splicing (Delacourte et al., 2003). There are four repeats 

and two inserts in the CNS of the longest isoform, whereas the smallest isoform has three 

repetitions and no inserts (Mohandas et al., 2009). The tau hypothesis states that abnormal 

phosphorylation of tau results in the transformation of normal adult tau into paired helical 

filaments (PHF-tau) and intracellular neurofibrillary tangles (NFTs). The six tau isoforms are 

mostly found in a hyperphosphorylated state in paired helical filaments from AD (Mohandas et 

al., 2009). Mutations that change tau’s function and isoforms expression result in 
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hyperphosphorylation. The tau aggregation mechanism is not clear in the absence of mutation, but 

may result from hyperphosphorylation, the action of proteases or the presence of stabilizing 

polyanions, such as glycosaminoglycans (Iqbal and Grundeke-Iqbal, 2008). Hyperphosphorylated 

tau disassembles microtubules and sequesters normal tau, microtubule associated protein1 (MAP 

1), MAP 2, and ubiquitin into tangles of PHFs. This insoluble structure damages cytoplasmic 

functions and interferes with axonal transport, which leads to cell death (Mudher and Lovestone, 

2002). 

1.3.3 Brain-derived neurotropic factor deficit 

BDNF is important for the survival of entorhinal cortex, whose early impairments leads to the 

initial loss of short-term memory in AD (Nagahara et al., 2009). BDNF deficiency stems from a 

number of different factors, including metal dyshomeostasis, lack of nerve growth factor (NGF) 

support, degradation of usable Aβ monomers, and the presence of harmful Aβ oligomers (Zimbone 

et al., 2018). The cyclic AMP reaction element-binding protein (CREB) cannot be triggered by 

Aβ monomers and thus prevent BDNF transcription and release (Zimbone et al., 2018).  

1.3.4 Mitochondrial dysfunction and neuroenergetic hypothesis 

Mitochondria are genetically inherited intracellular organelles with critical roles such as energy 

metabolism and second messenger signalling through to programmed cell death (Ortiz and 

Swerdlow, 2019). Several of the first hints to mitochondria dysfunction in AD, were obtained from 

observations of regional hypometabolism findings in AD subjects on brain images (Foster et al., 

1983). AD brains appear to account for hypometabolism of glucose by switching into amino and 

fatty acids as an alternative sources of energy (Teledo et al., 2018). Such findings certainly 

suggested improvements in the fuel metabolic pathways in AD (Ortiz and Swerdlow, 2018). It is 
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thought that the observed metabolic changes consider impaired mitochondrial functions (Ortiz and 

Swerdlow, 2019). Mitochondrial dysfunction may play a significant role in increasing AD 

susceptibility accompanying aging (Chetelat et al., 2013). The aging brain has lower energy 

consumption, lower glucose usage and decreased respiratory capacity (De Santi et al., 2007). 

Mitochondrial electron transport chain (ETC) complexes I and IV functions decrease with age 

(Navarro and Boveris, 2007). A main pathogenic finding is that Aβ accumulation in the OXYS rat 

model is followed by mitochondrial dysfunction (Stefanova et al., 2019). A series of experiments 

found a more direct link between mitochondrial function and aging, whereby dampening the 

development of mitochondrial ROS increased the lifetime of mice (Schriner et al., 2003). 

The neuroenergetic theory attempts to explain the AD process as a consequence of persistent 

reduction in usable metabolizable energy resources, mainly CNS glucose (Blonz, 2017). This age-

related, gradual reduction in the scope of metabolic implications is compatible with current 

theories epidemiological observations (Quistorff et al., 2008)    

1.3.5 Amyloid cascade hypothesis 

The Aβ cascade hypothesis was proposed in 1992 by Hardy and Higgins (Hardy and Higgins, 

1992). They postulated that accumulation of Aβ42, is the starting point for neurodegeneration 

(Yoon and Ahn Jo, 2012). Aβ is produced during neuronal activity from amyloid precursor protein 

(APP) (Bero, et al., 2011). In non-pathological conditions, APP is cleaved off by α-secretase which 

precludes formation of Aβ, and the resulting carboxy-terminal fragment is then cleaved by γ-

secretase (Chow et al., 2010). If APP is cleaved by β-secretase 1 instead of α -secretase, the 

subsequent γ-secretase cleavage will result in soluble monomeric Aβ (Zheng et al., 2013). The 

most common soluble monomeric isoforms of Aβ are Aβ40, Aβ38, and Aβ42 (Morris et al., 2014). 
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Aβ42 has two additional amino acids, making it more hydrophobic than other isoforms and, thus, 

capable of forming insoluble aggregates (Dawkins and Small, 2014).  

This pathway and these enzymes have been the subject of scientific research for a long time in 

order to produce AD drugs. In the light of the weight of previous studies of Aβ, a new proposal 

regarding Aβ plaque formation has recently appeared in the literature. This concept leans towards 

Aβ clearance rather than synthesis thereof (Yoon and Ahn Jo, 2012). There are various processes 

through which Aβ may be cleared from the brain; these include both enzymatic and non-enzymatic 

pathway (Tarasoff-Conway., 2015). The latter pathway includes bulk flow of the interstitial fluid 

(ISF) into cerebrospinal fluid (CSF) followed by ISF drainage pathway through perivascular 

basement membranes, the uptake by microglial or astrocytes phagocytosis, and the transport across 

the blood vessel walls into the blood vessel which is mediated by a series of clearance receptors 

such as low-density lipoprotein receptor related protein 1 (LRP1), very low-density lipoprotein 

receptor (VLDLR) and P-glycoprotein localized predominantly on the abluminal side of the 

cerebrum (Shibata et al., 2000, Deane et al., 2004). While the enzymatic clearance involves several 

proteases, including neprilysin (NEP), insulin-degrading enzyme (IDE), matrix metalloproteinase 

(MMP)-9 and glutamate carboxypeptidase II (GCPII) (Yoon and Ahn Jo, 2012).  
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Figure 3: Model of AD pathophysiology (Holtzman et al., 2012). 

Figure 3 summarizes some of these discussed hypotheses. All computational studies performed in 

this thesis are based on the amyloid cascade hypothesis that Aβ is the target for AD drug design.  

1.3.5.1 Beta-amyloid peptides 

APP is a neuron’s transmembrane protein that alters the structure and function of synapse in a 

cultured hippocampal neuron. APP has three major isoforms APP695, APP751, and APP770 that are 

abundant in the hippocampus and cerebellum.  There are multiple varying pathways that exist for 

APP proteolysis. All of the pathways may be categorised in to two pathways namely, the 

amyloidogenic pathway which leads to a production of Aβ peptides, and the non-amyloidogenic 

pathway (Priller et al., 2006).     
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It is proposed that about 90% of secreted peptides are Aβ40, while Aβ42 accounts for less than 10% 

of secreted Aβ. However, Aβ42 is more neurotoxic as it aggregates faster. The sequence of Aβ42 

is: 

DAEFR5HDSGY10EVHHQ15KLVFF20AEDVG25SNKGA30IIGLM35VGGVV40IA. Aβ40 has 

the same sequence as Aβ42, but the last two residues are not present. Aβ42 and Aβ40 are fitted with 

same hydrophilic N-terminal from residue 1 to 15. Residues 17-21 are the central hydrophobic 

center, and residues 22-28 are included in the turn region. In Aβ42 and Aβ40, the hydrophobic C-

terminal has 13 residues 30-42 and 11 residues 30-40 respectively (Querfurth and Laferla, 2010).  

The structural details of Aβ42 are poorly defined, despite rigorous efforts (Lührs et al., 2005). The 

high misfolding propensity of Aβ42 fibrils show structural and morphological heterogeneity, 

limiting subsequent analyses (Masuda et al., 2009).  In this thesis three structures are used with 

Protein Data Bank (PDB) identification (ID) 2MXU (Aβ11-42), 2BEG (Aβ17-42), and 2NAO (Aβ1-

42). All these amyloid fibril atomic models are based on liquid NMR (2NAO) or solid-state NMR 

(ssNMR). 2MXU has 12 S-shape chains in fibrillar state and contains a triple parallel-β-motif 

(Xiao et al., 2015). The 2BEG is a U-shaped pentamer, forming intermolecular β-sheets structures 

between neighboring peptides in this PDB (Okumura and Itoh, 2016). The 2NAO is composed of 

two molecules per fibril layer, with residues 15-42 forming a double-horseshoe-like cross-β-sheet 

(Walti et al., 2016). 

1.4 β-amyloid as a drug target   

Amyloid plaques in the brain are one of the major symptoms of AD, these consist mainly of fibrils 

of the amyloid-β peptide (Monsonego et al., 2003). There are various targeting candidates that 

have been proposed to disrupt or prevent Aβ aggregation. These include antibodies, peptide 
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inhibitors, and non-peptide small molecules (Fan et al., 2015). A hypothesis that the interaction 

between resveratrol derivatives and Aβ could shift the equilibrium of Aβ polymorphism from β-

sheets into disordered monomers was proposed by Riviere et al. in 2002. This was due to in vitro 

studies that have suggested some polyphenolic compounds from red wine and green tea may bind 

to Aβ, inhibit Aβ aggregation, and destabilize preformed fibrils (Ono et al., 2003, Hamaguchi et 

al., 2010). In vivo experiments on an Alzheimer’s mouse model reported a lower level of amyloid 

plaque and improved memory and cognitive ability after feeding of red wine (Hamaguchi et al., 

2010). Curcumin and ibuprofen have also been shown to inhibit the Aβ peptide aggregation in 

vitro and in vivo (Choi et al., 2014). Similarly, β-sheet breakers have been identified, which can 

inhibit Aβ peptide aggregation (Lemkul et al., 2010). Arginine was also observed to have a role as 

an aggregation suppressor to increase the solubility of the Aβ peptide in aqueous medium (Das et 

al., 2001). It was proposed that a hybrid peptide inhibitor containing an aromatic ring and arginine 

may be good candidates to inhibit Aβ peptide aggregation.  

1.4.1 Drugs that interact with fibrils   

N-[2-(3,4-dimethoxyphenyl) ethyl]-3-phenyl-arcylamide (wgx-50) is a potent drug candidate for 

AD that has been developed in recent years (Tang et al., 2013). Wgx-50 was shown to pass through 

the blood brain barrier (BBB), boosting mice’s cognitive ability, and decrease Aβ oligomer 

aggregation in the cerebral cortex. These conclusions were drawn from performing in vivo 

experiments, such as pharmacokinetic assays, cognitive abilities tests, and immunohistochemical 

analysis of the brain section of the transgenic mouse model (Gu and Wei, 2017). Wgx-50 was also 

shown to disassemble Aβ oligomers, inhibit Aβ-induced neuronal apoptosis, and has anti-

inflammatory effects by counteracting Aβ-triggered microglial overaction. In vitro experiments, 
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such as atomic force microscopy (AFM) of Aβ oligomers and cell apoptosis assay provided proof 

for these conclusions (Gu and Wei, 2017). Tang et al., 2013 found that wgx-50 also inhibits Aβ 

peptide-induced ion conductance. They observed this by pre-treating neurons with wgx-50 before 

adding Aβ amyloids, this inhibited accumulation of calcium ions (Ca2+) at the cytoplasmic side 

and reduced neuronal calcium toxicity. Fan et al., 2015 found that wgx-50 can disrupt the Aβ 

protofibril structures by breaking the Aspartic acid 23, Lysine 28 (Asp23-Lys28) salt bridges found 

in the interior of the Aβ protofibrils.  

 

 

Figure 4: Molecular structure of wgx-50, obtained from Hou et al., 2017. 

Non-steroidal anti-inflammatory drugs (NSAIDs) have been identified as Aβ aggregation 

inhibitors (Azam et al., 2018). This is due to AD brain is marked with chronic inflammatory status 

of the activated glial cells and elevated release reactive oxygen species (ROSs), inflammatory 

cytokines, chemokines and organisms (Dumont and Beal, 2011). The correlation between AD and 

inflammation indicates that NSAIDs may be helpful AD therapy (Deardorff and Grossberg, 2016). 

Gilgun-Sherki et al., 2006, reported that NASIDs minimize the threat of AD, prolong dementia 

development, decrease the frequency of mental symptoms. These can also change the 

conformation of anti-aggregation of Aβ peptides exerting anti-aggregation and cause the 

development of amyloid-binding proteins (Gasparini et al., 2004). 
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1.4.2 Challenges generated by β-amyloid  

Amyloid plaques are accumulations of molecules in the extracellular space of the brain (Holtzman 

et al., 2012). The principal component of these plaques is the Aβ peptide (Golde et al., 2000). 

Amyloid plaques are widely accepted as dynamic and serve as a reservoir of different forms of Aβ 

and other bioactive molecules (Haass and Selkoe, 2007). They can induce many downstream 

changes, including microgliosis and dystrophy (Shankar et al., 2008). Over the past two decades, 

therapeutic strategies have been developed aiming to reduce amyloid plaques (Xiong et al., 2019). 

These attempts, however, have failed to show substantial efficacy in clinical trials (Wang et al., 

2014) even though they yielded promising effects in mouse models (Cummings et al., 2014).    

 

Figure 5: Aβ aggregates in the extracellular space of the brain to form plaques (Holtzman et al., 
2012). 

 

Aβ is capable of generating reactive oxygen species (ROS) in conjunction with certain redox-

active transition metal ions (Mayes et al., 2014). Hung et al., 1999, reported direct production of 

two key ROS, hydrogen peroxide (H2O2) and hydroxyl (·OH), during Aβ in vitro incubation. They 

also stated that Aβ binds strongly to Copper (Cu), Iron (Fe) and Zinc (Zn) ions and that when 
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bound, Aβ reduces Cu(II) to Cu(I) and Fe(III) to Fe(II), and the resulting complex of peptide-metal 

ions is redox-active. This is essential because Cu(I) and Fe(II) ions will reduce molecular oxygen 

to H2O2 and (·OH) when bound to Aβ (Mayes, 2014). Higher levels of these metals are identified 

in the brains of individuals with AD located in the amyloid plaque deposits (Lovell et al., 1999).  

1.5 Metal binding to β-amyloid  

Metals are thought to play a role in AD’s pathogenesis (Atwood et al., 1999). Cu and Zn have 

been documented to accumulate in and around amyloid plaques. (Sayre et al., 2000, Dong and 

Chen, 2003). Aβ possesses selective high and low affinity Cu2+ and Zn2+ binding sites (Atwood et 

al., 1998). The sites mediate aggregation of Aβ by interacting with Zn2 and Cu2+ in vitro (Bush et 

al., 1994). Curtain et al., 2001 proposed a model of monomer Aβ binding to a Cu ion either through 

three histidine and one tyrosine residue or through a bridge histidine for aggregation Aβ. They 

used electron paramagnetic resonance and nuclear magnetic resonance (NMR). Dong et al., 2003 

showed that Zn and Cu ions were coordinated through a histidine at the end of the Aβ sequence in 

the N-terminal. They used Raman spectroscopic analysis of senile plaque cores for this 

demonstration.     

1.5.1 Mechanism of copper binding to β-amyloid  

Cu homeostasis can be compromised under disease conditions, resulting in Cu being more loosely 

bound Cu, which is vulnerable to ROS production (Simon et al., 2012). This is thought to be the 

case in AD (Hung et al., 2010), where there is high concentration of Cu found in amyloid plaques 

(Sayre et al., 2000). Cu-Aβ has been shown to be redox competent and capable of producing ROS 

catalytically in the presence of physiological concentrations of reductant such as ascorbate (Hureau 

and Peter 2009). The binding of either Cu ion to the Aβ peptide is highly dynamic and different 
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binding conditions are in rapid exchange (Hureau, 2012). The main binding model for Cu(I) for 

instance is a diagonal coordination to the Nδ of the two His 13 and His 14 (Jesse et al., 2004). In 

physiological pH, Cu(II) is bound to Aβ in two different coordination sites (Furlan et al., 2015). 

In the major form, Cu(II) is bound to four equatorial ligands. In the minor form, the Cu(II) 

equatorial ligands are NH2 (Asp 1), the deprotonated amide N of Asp 1-Ala 2 bond, the adjacent 

C=O from the Ala 2-Glu 3 bond, and one of the His side chains (Hureau, 2012). This is shown in 

Fig.6.  

    

Figure 6: Schematic representation of high pH model of Cu2+- Aβ (Furlan et al., 2012).   

1.5.2 Mechanism of zinc binding to β-amyloid  
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The first Zn binding site of Aβ is located in the N-terminal part (Talmard et al., 2007).  Alies et 

al., 2016 proposed the model shown in Fig.7 regarding Zn(II) binding to Aβ. The main 

coordinating sphere of Zn(II) near pH 7 is [2N2O], consisting of two His residues and two 

carboxylate groups. The carboxylate groups are predominantly binding by Glu 11, while the other 

three carboxylate side chains share the fourth position of coordination, with Asp 1 preference 

(Alies et al., 2016). 

 

  

Figure 7: Proposed Zn(II) binding site in Aβ, Alies et al., 2016. 

1.6 SANCDB compounds in drug discovery 

The South African natural compounds database (SANCDB), is a free, online database containing 

compounds isolated from the plant and marine life in and around South Africa. The database is 

curated and fully-referenced containing compound information of more than 700 natural products 

(NPs). SANCDB has been developed to assist with in silico drug discovery (Hatherley et al., 

2015). NPs and their derivatives have been recognized for many years as a single most productive 



33 
 

source of leads for the development of drugs, since they have a wide range of diversity of chemical 

structures and moeities (Harvey, 2008). Thus, it is believed that a large number of new potential 

drugs are within the space held by all NPs. However, isolating all the NPs and screening them is 

extremely unpractical, due to the expense and time required to do so (Strohl, 2000).  

Problem statement  

The World Alzheimer report 2015, reported that over 46.8 million people live with dementia.  

Alzheimer’s diseases (AD) is reported as the most frequent form of dementia in adults with at least 

65 years of age. Currently there is no cure for AD or a way to stop or slow its progression. The 

only available forms of treatment are for patients with mild to moderate AD. Patients in the final 

stages of AD require constant care and are bed-bound till ultimate fatality. AD is a global health 

priority, which does not only affect patients diagnosed with the disease, but also their families on 

a personal, social, psychological and financial level. AD has the propensity to drive millions of 

households below the poverty line. 

Drug discovery in AD has attempted in the last decade to develop disease modifying drugs with 

the help of preclinical models, but none of these drugs has succeeded. This failure is attributed to 

lack of clarity in terms of the cause of AD.  

Recent studies have showed that simulation of copper binding to the Aβ oligomer, showed the 

residue that copper interacts most with (this interaction in the simulation is only from the set van 

der Waal’s and electrostatic terms) is Met 35. Other studies have also described a relationship 

between Met 35 and Cu ions, and their influence on neurotoxic activity of Aβ. Thus, investigating 

different Cu binding sites could offer more insight into the interaction between Aβ and  Cu and 

the effect this relationship has on aggregation and fibril formation.  
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Hypothesis  

High throughput screening of compounds against Aβ42 targets will result in hits able to destabilize 

the Aβ aggregate formation. Understanding the thermodynamics of destabilizing of these 

aggregates and features contributing to their stability will allow the fine-tuning of therapeutic 

agents. Understanding of the competitive Cu and Zn binding to Aβ and the potential energy surface 

associated with ROS will enable us to target these sites in docking. Small molecules that interact 

with fibrils yet do not disrupt the aggregate, may still be useful in preventing access of O2 to these 

metal-binding sites   

Aims   

The aim of this research is to use in silico methods such as, molecular docking to screen for 

compounds that display destabilizing activity against Aβ aggregates. Additionally, use molecular 

dynamics, as well as center-of-mass pulling and umbrella sampling to study factors that influence 

destabilizing effects of these compounds. A secondary aim is to characterize metal binding to the 

Aβ aggregate, and to perform QM/MM molecular studies for quantification of the interaction 

between copper and Aβ aggregates. 

Goals/objectives 

To successfully execute the proposed research, the following objectives will be carried out: 

1. High throughput virtual screening of SANCDB compounds against the Aβ oligomer (PDB 

ID: 2MXU, 2BEG and 2NAO) using Autodock Vina  

2. Dock the potential drug candidate Wgx-50 to 2MXU, 2BEG, and 2NAO using Autodock 

Vina  
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3. Study the thermodynamics of peptide dissociation from core of 2BEG protofibril at 

physiological temperature in the presence of SANCDB top hits and Wgx-50. 

4. This work seeks to explore Cu (based only on van der Waal’s parameters (Carlisle MSc, 

2018) methionine binding sites, and other experimentally reported binding sites  

5. Investigate and determine how binding affects the Aβ structure  

6. Determine the mechanism of formation of H2O2 by Cu-Aβ (Mayes et al., 2013) 

7. Since existing literature depends on a model subset of the full system for 4-6, in this study 

a full system will be used 
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Chapter 2: Molecular docking 

2.1 Introduction 

Molecular docking is a computational procedure that is utilized to predict non-covalent binding of 

a small molecule (ligand) into a binding site of a macromolecule (receptor). This provides us with 

the ability to characterize the behavior of small molecules in the binding site of target proteins as 

well as to elucidate fundamental biochemical processes (McConkey et al., 2002). The aim of 

molecular docking is to predict both the bound conformation (the docking pose) and the binding 

affinity using computational methods (Trott et al., 2010). The prediction of binding of small 

molecules to proteins is an important part of rational drug design and drug development. Docking 

programs usually use a scoring function to approximate the standard chemical potentials of the 

system (Gilson et al., 1997).  The purpose of the scoring function is to delineate the correct pose 

from incorrect pose, thereby identifying active and inactive compounds in a reasonable 

computational time (Cheng et al., 2012). Scoring functions involve estimating, the binding affinity 

and they can be divided into empirical, force-field-based and knowledge-based scoring functions 

(Kitchen et al., 2004). The scoring functions takes a pose as input and returns a number indicating 

the likelihood that the pose represents a favorable binding interaction. Most scoring functions are 

physics-based relying on molecular mechanics force fields that estimate the energy of the pose in 

which a low energy indicates a stable system and thus a likely binding interaction. An alternative 

approach is to derive a statistical potential for interactions from a large database of protein-ligand 

complexes such as Protein Data Bank (Halperin et al., 2002). 

Successful docking methods are able to effectively search the high dimensional search spaces and 

apply scoring functions that correctly rank docking candidates. However, there are limitations to 
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molecular docking. The major limitation is due to the lack of confidence on the ability of scoring 

functions to give accurate binding energies (Sethi et al., 2019). This stems from the fact that 

intermolecular interactions terms, such as solvation effect and entropy change are hardly predicted 

accurately (Yuriev et al., 2009). Halogen bonding and guanidine-arginine interactions are some 

intermolecular interactions which are rarely considered in scoring functions despite being proven 

to be of significance (Ren et al., 2014, Yang et al., 2015). Water molecules in the binding pocket 

during docking process, are still yet to be dealt with accurately (Sethi et al., 2019). This inaccuracy 

is attributed to two challenges. Firstly, the x-ray crystal structures lack the coordinate information 

of hydrogen as a consequence of inefficient scattering by smaller atoms (Spyrakis and Cavasotto, 

2015). Secondly, there is no reliable theoretical approach available to accurately determine how 

water molecules are affected by ligands and how strong this effect is (Spyrakis and Cavasotto, 

2015).  

There are also limitations tailored to a specific scoring function, for instance in knowledge-based 

scoring functions is their reliance on the inverse Boltzmann relationship (Prieto-Martínez, et al., 

2018). Whereby a reference state needs to be defined in which pairwise potentials are zero. 

Defining such state is not trivial and it can impact the results significantly (Muegge, 2000). There 

have been attempts to improve the predictive power which led to hybrid approaches (Debroise et 

al., 2017). In force-field-based scoring functions is the entropic contributions of solvation which 

cannot be accounted for (Kitchen et al., 2004). Additionally, these approaches usually involve long 

computing times and need distance cut-offs which decreasing the accuracy of long-range effects 

(Meng et al., 2011). While for empirical scoring functions is the fact that they are derived from 

individual protein-ligand complexes and heterogeneous data in training sets (Pason and Sotriffer, 
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2016). Although, empirical scoring functions are computed much faster than the force-field-based 

scoring functions and yield reasonable binding energy predictions (Murray et al., 1998). 

Docking is useful in performing virtual screening of large libraries of compounds. Since it can 

rank the results and propose structural hypotheses on how the ligands inhibit the target which is 

invaluable in lead optimization during computer-assisted drug design (Morris et al., 2008).   

Over the last two decades, more than 60 different docking tools and programs have been developed 

for both academic and commercial use such as DOCK (Venkatachalam et al., 2003), AutoDock 

(Österberg et al., 2002), FlexX (Rarey et al., 1996), Surflex (Jain, 2003), Genetic Optimization for 

Ligand Docking (GOLD) (Jones et al., 1997), AutoDock Vina (Trott and Olson 2010), MOE-Dock 

(Corbeil et al., 2012), UCSF Dock (Allen et al., 2015), and many others. The most used docking 

programs are GOLD (Jones et al., 1997) and AutoDock (Goodsell et al., 1996).  

In this chapter AutoDock Vina was used, it is an open source and is currently used by many groups 

worldwide for docking and virtual screening molecular (Quiroga and Villarreal, 2016). It is the 

successor of Autodock 4, a highly successful docking program (Trott and Olson 2010, Morris et 

al., 2009). However, AutoDock Vina is a different program and uses a different scoring function 

and a global optimization algorithm. It is two orders of magnitude faster and has shown similar or 

improved accuracy (Trott and Olson, 2010, Chang et al., 1955). For the estimation of ligand-

receptor affinity, AutoDock Vina uses an empirical scoring function which is inspired by the X-

score function (Wang and Lin, 2013). According to the authors, Trott and Olson the nature of the 

scoring function is  used in AutoDock Vina is “more of a machine learning than a physics-based 

function”.   
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AutoDock Vina is employed in this study to estimate the binding affinity and generate starting 

conformations of Aβ-ligand complexes for use in pulling and umbrella simulations. As such it is 

the first stage of virtual screening for potential drug candidates from the SANCDB.  

2.2 Drug-likeness based on molecular properties  

During the drug discovery process, medicinal chemists investigate what the biological impact will 

be of the physicochemical parameters of potential drugs; these physicochemical parameters in turn 

are dependent on structural features related to drug-likeness properties (Mignani et al., 2018). The 

objective is to differentiate between the medicinal potential of-high-quality drugs and non-drugs, 

both of which may in theory be active against a particular target. The main developmental 

properties analyzed are, molecular mass, number of rotatable bonds, number of aromatic rings, 

number of heavy atoms, number of chiral centers, lipophilicity partition coefficient (logP), 

polarity, number of hydrogen bond donors (HBD) and hydrogen bond acceptors (HBA) (Segall, 

2012).    

Lipinski et al., 2001 pointed out that leads obtained through high-throughput screening tend to 

have higher molecular weights and greater lipophilicity. Lipinski’s Rule of 5 was developed to set 

drug-ability guidelines for new molecular entries. The Rule of 5 predicts that poor absorption or 

permeation is more likely when there are more than 5 HBDs and 10 HBAs, molecular weight 

greater than 500 g/mol, and the calculated logP is greater than 5 (Benet et al., 2016). This Rule of 

5 is only valid for compounds that are not substrates for active transporters (Lipinski et al., 1997).                                                                                      
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2.3 Molecular Docking to Aβ 

β-amyloid and amyloid fibril are peptides that do not have any active site or specific activity 

region. Thus, the blind docking approach is applied to identify possible binding regions (Balaji et 

al., 2013). Theoretical methods have been used for several years to expand the experimental work 

and increase the rate of Alzheimer’s drug design process. However, Aβ aggregation is a 

challenging area and the related information is difficult to gather using traditional experimental 

techniques. Hence, molecular docking and virtual screening are very helpful (Teplow et al., 2006). 

Teper et al., 2006, used docking studies of hydroxycholesterol derivatives to find the different 

compounds that can bind large regions of the Aβ surface, encompassing nearly half of the Aβ 

sequence. On the other hand, Braymer et al., 2011 investigated the binding of stilbene derivatives 

to Aβ monomers. They reported that these compounds could bind to polar N-terminal residues that 

are believed to bind to metal ions and contribute to neurotoxicity. Liu et al., 2006 performed MD 

simulations prior to molecular docking to generate Aβ conformations that represent the solution 

conditions better. The compound that Liu et al., 2006 examined was bound to a large portion of 

the Aβ surface. However, this compound did not inhibit β-strand formation. They concluded that 

the compound’s inhibitory mechanism is involved in interfering with interpeptide hydrogen 

bonding. Thus, in the context of Aβ, it may be seen that docking is an extremely useful tool. 

In this study, structural based virtual docking approach was employed to screen a library of natural 

products from South Africa (the SANCDB) against 3 Aβ42 protofibril structures. 
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2.4 MUSCLE 

Multiple alignments of proteins sequences are important in many applications. They are used in 

phylogenetic tree estimations, structure prediction and critical residue identification (Edgar, 2004). 

In this thesis we employed multiple sequence comparison by log expectation (Edgar, 2004), to 

differentiate between the three Aβ aggregates.  

MUSCLE uses two distance measures for a pair of sequences. The first is a kmer distance for an 

unaligned pair, and the other is the Kimura distance for an aligned pair (Edgar, 2004). The kmer 

distance is derived from the fraction of kmers in common in a compressed alphabet. Thus, given a 

pair of sequences, it computes the pairwise identity and convert it to an additive distance estimate. 

While applying the Kimura correction for multiple substitutions at a single site (Kimura, 1983). 

MUSCLE can achieve both better average accuracy and better speed than CLUSTALW or T-

Coffee, however this depends on the chosen options. (Edgar, 2004). 

                                                                                                                                                                           

2.5 Methods 

2.5.1 Receptor preparation 

The three 3D structural representatives of Aβ42 fibrils obtained through solid-state nuclear 

magnetic resonance (ssNMR) were retrieved from the Protein Data Bank (RCSB.org).  PDB ID: 

2MXU (Xiao et al., 2015), 2BEG (Lührs, et al., 2005), 2NAO (Wält, et al., 2016). Since the 2NAO 

structure contains two distinct Aβ filaments, we docked to one filament with chains A-C. The 

receptors were prepared using a script (prepare_receptor4.py -r filename) from the Autodock 

Tools suite of software. The script prepares the 3D structures of Aβ42 fibrils by removing water, 
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adding hydrogens, merging non-polar hydrogen, adding Gasteiger charges, and saving the 

receptors in pdbqt file format.       

2.5.2 Ligand preparation 

The potential drug candidate Wgx-50 was sketched and the geometry optimized using Discovery 

Studio Visualizer version 4.5 based on the structure by (Hou et al., 2017). Seven hundred and 

twenty-eight natural compounds were obtained, already minimized from SANCDB (Hatherlry et 

al., 2015). These compounds together with wgx-50 were then prepared for docking using a script 

(prepare_ligand4.py -l filename) also from Autodock Tools suite. This script sets correct atom 

types and charges, defines the relevant torsions for conformational searching, and saves the ligands 

in pdbqt file format.    

2.5.3 Docking 

The docking simulations were performed with the SANCDB compounds as ligands and the three 

Aβ42 fibrils as targets. Vina input scripts were generated for each SANCDB compound to dock to 

these targets (the vina input scripts were generated from within a controlling python script) and 

these vina scripts were used as input to AutoDock Vina (Trott and Olson, 2009). To validate the 

dockings, the docking simulation was performed in duplicate for each of the three Aβ42 fibrils as 

targets. Dock A (2MXU), and Dock C (2NAO) were targeted docking focusing on the eighth chain 

(chain H) and final chain (Chain C) of the aggregates respectively. The last chain is the most variable 

chain of the Aβ42 fibrils (Carlisle, 2018). Thus, docking to the last chain could assist in discovering 

whether the compounds would bind to the variable chain, such that it prevents further aggregation 

of another monomer to the Aβ42 fibrils (Carlisle, 2018). Dock B (2BEG) was also a targeted dock 
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on the fourth chain (chain D) of the aggregate. This is also near the last chain in this structure 

(Luhrs et al., 2005). Blind docking was not performed as it was extensively studied for 2MXU and 

2BEG by (Carlisle, 2018). Therefore, targeted docking was performed near (2BEG chain D and 

2MXU chain H) the final chain and at the final chain of the 2NAO (chain C) aggregate, because 

were interested in disruption of these chains in the aggregate. All three dockings were performed 

with a grid box of 22 Å. Dock A (2MXU) was centred with coordinates x = 7.417, y = 0.177, z = 

0.112; Dock B (2BEG) with x = 13.859, y = 0.0965, z = -0.463, while Dock C (2NAO) was 

coordinated with x = 10.780, y = 17.975, z = -35.945. The grid box was centred visually to cover 

the Aβ42 fibril structures and to accommodate ligands to move freely.   

We also performed Dock D (new-2NAO), new-2NAO consist of a single chain of 2NAO repeated 

four times. The reasons for editing 2NAO, creating a new aggregate new-2NAO are explained in 

detail in a later chapter in this thesis. A targeted docking approach was followed also on this 

structure docking at the “C chain” which will be the last chain in Dock C (2NAO). The coordinates 

were centred with x = 12.057, y = 18.041, z = -35.901.                                                   

All four dockings were performed across 4 CPU cores applying an exhaustiveness of 128 (see 

scripts in appendix 1-4).      

2.5.4 RDKit descriptor calculations  

We utilized KNIME Analytical Platform version 3.5.1 (Berthold et al.,2009), to create a workflow 

for determining the drug-likeness of the SANCDB compounds and Wgx-50. All these ligands were 

in pdbqt file format after molecular docking, and required conversion and collation into SDF files. 

The first node in the workflow reads these SDF files and creates several columns with each 

molecule in a new row. The second node was the RDKit Fingerprint, which generates hashed bit-
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based fingerprints for an input RDKit Mol column and appends them to a table. The fingerprint 

calculation is not necessary for immediate purposes; however, in terms of other aspects of machine 

learning which are important in the continuation of this project, the fingerprints prove useful. 

Finally, the last node was the RDKit Descriptor Calculation. It calculates the descriptors (number 

of HBDs and HBAs, molecular weight and logP) for each molecule in the input table. 

 

    

 

 

 

Figure 8: KNIME workflow to determine drug-likeness of the best binding SANCDB ligands and 
wgx-50. 

 

2.5.5 Wgx-50 

Wgx-50 was docked to the four Aβ42 aggregate targets following the same approach as the natural 

products from SANCDB.  

2.5.6 Parallel coordinates plot 

The SANCDB compounds were fed into the Knime workflow mentioned above with the same 

parameters as the best binders, then the output table was read in using Excel reader(xls) node. A 

color manager node was then used to assign colours across the dataset. A parallel coordinates plot 
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(JavaScript) was finally used to display the multidimensional data set as polylines over five parallel 

and evenly spaced axes.   

 

 

 

 

 

Figure 8.1: KNIME workflow to plot all SANCDB compounds as an overview in terms of 
Lipinski’s rule of five.   

 

2.5.7 Analysis 

The top five of the best hits for each docking together with the wgx-50 docking were identified 

and molecular graphics were created of them together with the receptors using the Discovery 

Studio visualizer (DSV) version 4.5 program. The ligand interactions were also determined using 

DSV, while the molecular properties were investigated utilizing the KNIME workflow.     

2.6 Results and Discussions 

We first performed a structural analysis, to account in detail for using three Aβ42 aggregate 

structures. Figure 9 illustrate the relatively simple residue difference in the docking targets used in 

this thesis. The sequences of these Aβ aggregates were analyzed using MUSCLE.  

 

 



46 
 

 

 

Figure 9: Multiple sequence alignment of Aβ42 aggregates used, results visualized in Jalview (java 
version 1.8.0).  

 

The structural analysis results figure 9, 2NAO has no missing residues. While 2MXU and 2BEG 

are missing 1-10 and 1-16 residues respectively. Residue 1-14 of the 2NAO are partially ordered 

and in a β-strand conformation, although they do not display unambiguous distance restraints to 

the remainder of the core structure ( Walti et al., 2016). It is proposed that the core region of Aβ42 

comprising residues 17-42 is principally responsible for its stability (Masman et al, 2009). It is 

interesting to note the differences in 3D conformation for each of the three structures given the 

sequence similarity. 

The identification of lead compounds showing pharmacological activity against a biological target 

and the optimization of the pharmacological properties and potency of these compounds are the 

important aspects of early-stage drug discovery (Lionta et al., 2014). In the human brain, Aβ fibrils 

are considered the hallmark of AD and are found in the hippocampus and neocortical region 

(Ramesh et al., 2011). Aβ42 monomers have a propensity to aggregate into oligomers, protofibrils, 

and fibrils, with the assistance of exogenous species such as proteins and metal ions, they form 

dense senile plaques. The formation of dense senile plaques prevents the interaction of neurons in 

the brain, leading to neuronal atrophy and death (Mash et al., 2015). The destabilization of Aβ42 

and the inhibition of aggregates formation has been argued extensively to combat AD. In this study 

we worked with three structures of the aggregate; there are only four ssNMR structures of these 

aggregates available in the PDB (rscb.org). 2MXU, 2BEG and 2NAO were elected for molecular 

docking study. The fourth structure with PDB ID 5KK3 was omitted due to time constraints, but 



47 
 

given the increased number of chains compared to 2NAO (5KK3 has more chains, 18 chains in 

total) and given it also contains the full sequence as does 2NAO, it is an attractive structure to 

address in future studies. The dockings were targeted near the last chains for 2MXU (chain H), 

2BEG (chain D) new-2NAO (chain C), and on the last chain for 2NAO (chain C). This was thought 

that it could assist in discovering if the SANCDB natural products could aid destabilizing these 

chains and prevent aggregation by another monomer to the fibril.  

AutoDock Vina (Trott and Olson, 2010) was utilized to perform dockings, after docking top five 

SANCBD hits for each of the four, docking simulation were identified. DSV was used to identify 

the protein-ligand interaction for these hits to the Aβ42 aggregate structures.  

Figure 10 and 10.1 shows an overlay of the docking results that were obtained. Seven hundred and 

twenty-eight natural products were docked against 2MXU, 2BEG, 2NAO and new-2NAO.          

      

 

 

 

Figure 10: The images of the docking simulations performed using AutoDock Vina visualized in 
DSV. A) Dock A (2MXU); B) Dock B (2BEG); C) Dock C (2NAO). 
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Figure 10.1: The screenshots of A) Dock D, also obtained using AutDock Vina 

 

In Table 1, the docking scores are estimated using a scoring function in AutoDock Vina. The 

docking scores ranged from –10 to –6.5. SANC00585 (D), SANC00407 (D) and SANC00414 (D) 

have the lowest binding energies. Dock D (new-2NAO) showed the lowest group of docking scores 

and Dock B (2BEG) showed the highest compared to all four dockings.    

Table 1: Docking scores between the receptors A (2MXU), B (2BEG), C (2NAO), D (new-2NAO) 

and the top hits from all the SANCDB dockings. 

SANCDB compound Docking score Dock 
SANC00490 -8.9 A 
SANC00261 -8.4 A 
SANC00585 -8.3 A 
SANC00264 -8.2 A 
SANC00265 -8.1 A 
SANC00248 -7.3 B 
SANC00247 -6.9 B 
SANC00415 -6.8 B 
SANC00348 -6.5 B 
SANC00423 -6.4 B 
SANC00489 -9.3 C 
SANC00491 -8.5 C 
SANC00422 -8.1 C 
SANC00449 -7.9 C 
SANC00488 -7.5 C 
SANC00585 -10 D 
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SANC00490 -9.1 D 
SANC00414 -9.2 D 
SANC00264 -9.1 D 
SANC00407 -9.2 D 

 

Figure 11 shows the docked top five hits from SANCDB against 2BEG. In the images shown 2 

compounds dock on the surface of 2BEG. These are compounds SANC00415 and SANC00348 

(C and D). The rest of the top five compounds are docking in the interior of the U-shaped 2BEG. 

The binding energies do not significantly discriminate based on the binding position of the top 5 

compounds in Dock B (2BEG). By comparison the docking of wgx-50 to 2BEG is shown later in 

the chapter, in Figure 19.    

 

 

 

 

 

 

 

 

 

 

Figure 11: The Dock B (2BEG) and top five SANCDB compounds, images were created in DSV. 
A) SANC00248, B) SANC00247, C) SANC00415, D) SANC00348, and E) SANC00423.  
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Table 2 shows all the interactions from Dock B (2BEG) for the top 5 hits. There were no van der 

Waals clashes present in these hits. The majority of the interactions observed were hydrophobic 

Alkyl interactions. There were three conventional hydrogen bonds formed between SANC00247, 

SANC00415, SANC00423 and 2BEG. For each of these three cases, the hydrogen bonds were 

formed on different residues and chains.  

 

Table 2: The interactions between the receptor and the top hits from Dock B (2BEG), the 

interactions were visualized in DSV. The letters within brackets indicate the exact chain were the 

interaction is observed. 

SANCDB 
compound 

Alkyl 
interactions 

Amide-π 
stacked 

Conventional 
hydrogen 
bonds 

Carbon 
hydrogen 
bond 

π-Sulfur 

SANC00248 Ala21(E, D, B, 
A) 
Leu34(B, E, D) 
Val36(C, B, D, 
E) 

    

SANC00247 Ala21(A, B, D, 
E) 
Val36(B, C, D, 
E) 
Leu34(B, D, E) 

 Glu22(E)   

SANC00415 Met35(B, C, D, 
E) 
 

Val36(B, C, D) Met35(B)   

SANC00348 Val39(B, E) 
Met35(C) 

Val36(C)  Gly37(C)  
 

Met35(E) 

SANC00423 Leu17(E) 
Phe19(D, E) 
Val36(E, B, C) 
Ala21(A, B, E) 
Leu34(B) 

 Gly37(E) Met35 (E)  
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A pictorial representation of Table 2 is used in Figure 12. The image was obtained using DSV 

tools for receptor-ligand interactions. Amide-π stacking interactions are between an amide group 

and an aromatic ring, these interactions are related to canonical aromatic π-stacking, the π-surface 

of the amide bond stacks against the π-surface of the aromatic ring (Harder et al., 2013). In π-

Sulphur interactions a π-electron cloud of an aromatic ring interacts with a lone pair of electron 

cloud of Sulphur atom (Harder et al., 2013).  Alkyl interactions are non-covalent interactions, 

between the electrons of the electrons of the compounds and the receptors (Ribas et al., 2002). 

Conventional hydrogen bonding produces a wide variation in the interaction energy, depending on 

the molecular systems involved. A typical example of this type of non-covalent interaction is the 

interaction observed in the benzene...NH3 complex (Kumar et al., 2012). The carbon hydrogen 

bond is an interaction between carbon and hydrogen atoms (Horowitz, 2012). 
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Figure 12: The image of Dock B (2BEG), obtained from DSV, representing the interactions 
between SANC00348 and 2BEG.  

 

The Dock B (2BEG) results are of particular interest in this thesis, being used further in chapter 3, 

to investigate the pulling and umbrella simulation in the presence of the SANCDB top hits. We 

elected Dock B results, since in literature Lemkul and Bevan, 2009 have also studied 2BEG. In 

their work they studied several factors that influence the stability of 2BEG following in silico 
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mutation. They employed molecular dynamic, center-of-mass (COM) pulling and umbrella 

sampling to investigate the chain dissociation of Aβ. 

The docking results of the top five hits against 2MXU are shown in Figure 13. SANC00490 has 

the lowest binding energy in this set, docking in between chain I and H (Figure 13 A), while the 

other docked natural products occupy a similar region (Figure 13 B-E)      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: The docking results of the top 5 binding natural products from the South African 
database against 2MXU aggregate. A) SANC00490, B) SANC00261, C) SANC00585, D) 
SANC00265 and E) SANC00264.  

 

The summary of the residue interactions of the best 5 binding compounds with receptor 2MXU is 

presented in Table 3. The ligand with the lowest binding energy in this case is SANC00490. A π-

π T-shaped interaction was observed SANC00585. This is an interaction of a π-electron cloud, it 
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occurs between two aromatic groups that are T-shaped (Ribas et al., 2002). SANC00264 and 

SANC265 showed identical interactions. Across the 5 compounds there was also one common 

interaction, an alkyl interaction with residue Leu17 in chain F. π-sigma interactions are shown to 

depend on the bond length and the type of hybridization, this includes the angle between sigma 

bonds, and on the nature of the bonding atoms (Gleiter, 1987).          

Table 3: The interactions between the receptor and the top hits from Dock A (2MXU), the 

interactions were visualized in DSV. The letters within the brackets indicate chain were the 

interaction is observed. 

SANCDB 
compound 

Alkyl 
interactions 

Conventional 
hydrogen 
bond 

π-π T-shaped π-Sigma 

SANC00490 Leu17(F) 
Leu34(F) 
Ile32(F, G) 

His13(F)  Ile32(F) 

SANC00261 His14(F) 
Leu17(F, G, H) 
Ile32(F, G, H) 

   

SANC00585 Leu17(F) 
Phe20(F) 
Ala30(F) 
Ile32(F) 

 Phe19(F)  

SANC00265 His14(F) 
Leu17(F, H) 
Leu34(F) 
Ile32(H) 

    
 

SANC00264 His14(F) 
Leu17(F, G) 
Leu34(F) 
Ile32(H) 

   

 

Figure 14 shows the SANC00490 interactions from Table 3. In this figure the interactions between 

the respective leucine and isoleucine residues and the ligand are clearly observed.      
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Figure 14: An image showing the interaction of residues with SANC00490 against 2MXU (Dock 
A). The image was generated using DSV.  

 

Figure 15: The five lowest energy dockings for Dock C (2NAO), A) SANC00489, B) 
SANC00491, C) SANC00422, D) SANC00449 and E) SANC00488 
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In terms of docking to 2NAO in dock C, unfavorable donor-donor and acceptor-acceptor 

interactions were observed for SANC00489, SANC00422 and SANC00448 (Table 4). These 

interactions are not satisfactory for a good inhibitor, although at this stage not enough information 

is available to rule them out as poor inhibitors. More detailed investigation of these compounds 

will provide firmer conclusions with respect to these ligands.       

Table 4: Table showing the docked ligands with lowest energy and their interactions with the 

receptor from Dock C (2NAO), interactions investigated in DSV. Residue chains are shown in 

brackets. 

SANCDB 
compound 

Alkyl 
interactions 

Conventional 
hydrogen 
bond 

Carbon 
hydrogen 
bond 

Unfavorable 
Acceptor-
Acceptor 

Unfavorable 
Donor-
donor 

π-Sigma 

SANC00489 Val12(C) 
Val18(C) 
Phe20(C) 
Phe24(C) 

His13(C) His13(C) 
Gln15(C) 

Gln15(C)   

SANC00491 Val12(C) 
Val18(C) 
Phe20(C) 
Val24(C) 

     

SANC00422 Tyr10(B) 
Val12(C) 
Lys16(C) 
Val18(C) 

Gln15(C)   Leu17(C)  

SANC00449 Val12(C) 
Lys16(C) 
Val18(C) 

 His13(C)   
 

 Val12(C) 

SANC00488 Val12(C) 
Leu17(C) 
Val18(C) 
 

Gly9(B) 
Glu11(B, C) 
 

  Glu15(C)  
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Figure 16: The image of Dock C (2NAO), obtained from DSV, representing the interactions 
between SANC00489 and 2NAO.  

 

Figure 16 shows the interactions between SANC00489 and 2NAO, in this particular case 

hydrophobic interactions are abundant valine residues in the C chain of the model and ligand. 

A final model receptor, (named the new-2NAO aggregate), was obtained by editing 2NAO. Details 

of this edit will be provided in a later chapter. Docking to this model was interesting in that 

complexes obtained exhibited the lowest binding energy compared to the other aggregates used in 

this thesis. In Figure 17 the top 5 lowest binding poses for this set of docking experiments are 

represented. 
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Figure 17: The images show, docking for the top five binding energies for Dock D (new-2NAO). 
Images were obtained from DSV, A) SANC00585, B) SANC00490, B), SANC00414, D) 
SANC00261 and E) SANC00407. 

   

As before the, the details of the ligand residue interaction are detailed (Table 5). It is interesting to 

note though, that residue Tyr10 of chain D, has an unfavourable acceptor-acceptor interaction with 

SANC00407. This interaction is not shown on the table (see appendix 5, Figure 1 for details). 

Figure 18 shows the rich range of hydrophobic interactions in the dock between new-2NAO and 

SANC00585.   

Table 5: The interactions between the receptor and the top hits from Dock D (new-2NAO), the 

interactions were visualized in DSV. The letters within brackets indicate the chain where the 

interaction is observed. 

SANCDB 
compound 

Alkyl 
interactions 

Conventional 
hydrogen 
bond 

Carbon 
hydrogen 
bond 

π-cation π-Donor π-Sigma π-anion 

SANC00585 Val17(B) 
Phe20(B) 

    Phe19(B)  
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Ile32(B) 
Leu34(B) 

SANC00490 Ala21(B) Lys16(B) 
Glu11(C) 
Lys16(C) 

     

SANC00414  Tyr10(C, D) 
Glu11(C) 
Lys16(C) 

Glu11(C) Glu11(D) Tyr10(C) Glu11(D)  

SANC00264 His13(B)  Glu11(D)   
 

  Glu11(D) 

SANC00407 His13(B) Tyr10(C) 
His13(C) 
Lys16(D) 
Glu11(D) 

Glu11(B) 
His13(D) 

    

 

 

Figure 18: The interaction between SANC00585 and new-2NAO, Dock D. 
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All docking simulations performed in this thesis were targeted to the more variable chains of the 

aggregates (near or at the end of the Aβ42 fibril). The understanding was that not only would 

targeting of these chains could prevent further Aβ42 monomers from binding to the fibril structure, 

but this would be the best strategy to explore destabilizing of terminal monomers. Dock C and D 

were both targeted on the last chains, However Dock D (new-2NAO) was the group with the lowest 

binding energies. The cause of this is evident from the interactions, Table 5 has more conventional 

hydrogen bond interactions as compared to other interaction summary tables (Table 2, 3, and 4).  

Dock B (2BEG) contained the highest set of docking scores. From Table 2, it is not immediately 

clear why this is. The table is mostly dominated by alkyl interactions with a few conventional and 

carbon hydrogen interactions. However, Dock A (2MXU) has almost no hydrogen bond 

interactions and is dominated by alky interactions (Table 3) but the group shows better binding 

energy than Dock B (2BEG). 

Wgx-50 (the known drug candidate targeting Aβ for AD) was also docked to the four structures. 

The docking approach used was the same for each specific structure. i.e. wgx-50 against 2BEG 

followed the Dock B (2BEG) approach. Table 6 illustrates the binding energies of wgx-50. While 

Figure 19 shows the docking region of wgx-50. 

Table 6: Dock score of wgx-50 against Aβ42 fibril structures.  

Wgx-50 2MXU 2BEG 2NAO New-2NAO 
Docking score -5.4 -6.6 -5.8 -6.6 
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Figure 19: Wgx-50 docked to the four aggregates, A) 2MXU, B) 2BEG, C) 2NAO and D) new-
2NAO. 

 

As is presented in Table 6, 2BEG and new-2NAO have the same binding score of 6.6 for wgx-50. 

More so, the wgx-50 dock score is within the same range of binding energy as the top 5 SANCDB 

compounds in Dock B (2BEG). These results may offer insight in terms of the interactions, and 

thermodynamic destabilization of the aggregates. Table 7 illustrates the exact interactions of wgx-

50 the Aβ42 with aggregates. 
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In Table 7, a point to note is that the unfavorable donor-donor interaction between residue Lys16 

of chain A and wgx-50 in 2NAO aggregate structure is present but not shown (see appendix 5, 

Figure 2 for details).      

Table 7: Interactions between wgx-50 and the aggregates used in this study. 

Aβ42 
aggregates  

Alkyl 
interactions 

Conventional 
hydrogen 
bond 

Carbon 
hydrogen 
bond 

π-cation π-π 
stacked 

π-Sigma 

2MXU Leu17(B) 
Ile32(B) 

 Gly33(B)    

2BEG Leu34(E, D, 
C) 
Val36(C, D) 
Ala21(B, C, 
E) 

     

2NAO Lys16(A, B) 
Ala21(C) 

 Phe20(B)  His13(A) Val12(B) 
Ala21(B) 

New-2NAO  His13(C) His13(D)  Lys16(B) 
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Figure 20: The interactions of wgx-50 in the receptor 2BEG 

 

Wgx-50 docked against 2BEG only showed π-alky interactions with all the residues it interacts 

with (Figure 20). These interactions are consistent with the Dock B (2BEG) interactions with 

SANC00248 and SANC00247. However, SANC00247 deviates by having one conventional 

hydrogen bond. As such SANC00248 and SANC00247 are promising in terms of potential for Aβ 

disruption.  

Lipinski’s rule of five is a heuristic approach for predicating drug-likeness. The rule states that 

molecules having less than 500 amu molecular weight, logP of less than 5, less than 5 hydrogen 

bond donors and less than 10 hydrogen bond acceptors good oral permeation (Lipinski et al., 
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1997).  Figure 21 shows a parallel coordinates plot of relevant physicochemical properties of 

compounds in the SANCDB. It is an overview of the seven hundred and twenty-eight SANCDB 

compounds used in this thesis in relation to Lipinski's rule of 5. High oral bioavailability is an 

important consideration for the development of bioactive molecules as therapeutic agents (Salah 

et al., 2015). All compounds that meet the Lipinski’s rule of five and the Veber rules, suggest that 

they are theoretically ideal for oral uptake (Zerroug et al., 2018).   
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Figure 21: Parallel coordinate plot of all the SANCDB compounds studied.  

 

Table 8 shows the determined Lipinski’s rule of five parameters and Veber’s rule on the 

topological polar surface area (TPSA). TPSA is defined as the surface sum over all polar atoms, 

particularly oxygen and nitrogen. An increase in TPSA is associated with an increase in the 

percentages of compound that are not permeable (Palma et al., 1997).  Verber et al., 2002 argues 

that TPSA should be less than 140 Å2.   
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Table 8: Predicted Lipinski’s rule of five parameters for the top five selected Dock A (2MXU), 

Dock B (2BEG), Dock C (2NAO), Dock D (new-2NAO) and wgx-50 drug candidate.  

Compound 
ID 

Molecul
ar 
weight 
(g/mol) 

Hydrogen 
Acceptors 

Hydrogen 
Donors 

LogP TPSA No. Of 
rules 
violated  

Rule  <500 
 

<10 
 

<5 
 

≤5 <140 
 

≤1 

Wgx-50 311.38 4 1 3.08 47.56 0 
SANC00247 424.58 4 1 6.61 71.44 1 
SANC00248 408.58 3 0 6.73 51.21 1 
SANC00261 442.73 2 2 7.14 40.46 1 
SANC00264 420.59 3 1 6.42 54.37 0 
SANC00265 436.59 4 2 5.39 74.6 1 
SANC00348 594.77 7 3 3.97 105.45 1 
SANC00407 328.38 9 5 2.59 138.07 0 
SANC00414 326.36 5 3 3.56 73.04 0 
SANC00415 456.71 5 3 4.27 77.33 0 
SANC00422 584.80 3 1 7.04 46.53 2 
SANC00423 895.15 10 5 3.30 154.42 2 
SANC00449 895.15 12 6 5.35 184.08 5 
SANC00488 941.17 14 6 3.75 213.68 4 
SANC00489 955.20 14 6 4.00 213.68 4 
SANC00490 911.19 12 5 5.65 180.92 4 
SANC00491 911.19 12 5 5.65 180.92 4 
SANC00585 510.57 6 2 5.97 93.06 2 

 

From Table 8, it is observed that nine out of the sixteen best docking SANCDB compounds across 

all dockings obey the Lipinski’s rule of five and Verber’s rule on TPSA. The drug candidate wgx-

50 also abides by these rules. The compounds that obey these rules are SANC00247, SANC00248, 

SANC00261, SANC00264, SANC00265, SANC00348, SANC00407 and SANC00414. 

Although more than half of our compounds obeyed the rules mentioned above, one has to be 

cognizant of the drawbacks of these rules. Since these rules are based on a distribution of calculated 

properties, some drugs will lie outside the parameter cutoffs. Equally, there will be leads that meet 
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these rules that will never be effective medicines. For example, Doak et al., 2014 identified 226 

pre-clinical candidate drugs which have a molecular weight greater than 500 g/mol. This set 

includes peptides, HIV protease inhibitors, azole antifungal, cyclosporins, cardiac glycosides etc.         

Table 9 provides an abbreviated background to the compounds from SANCDB best performing 

docking against Aβ42, including the compound name, organism, and one or two known tested 

activities.  

Table 9: Summary of the best-performing SANCDB compounds, by categorizing them based on 

their names to the compound’s known activities.   

Compound ID Name Source organism Compound uses 
SANC00247 Sargaquinoic acid Sargassum 

heterophyllum 

Antimalarial 

SANC00248 Sargaquinal 
 

Sargassum 

heterophyllum 

Antimalarial 

SANC00261 11α-Hydroxy-β-
amyrin 
 

Elaeodendron 

croceum 

No record  

SANC00264 Tingenone 
 

Elaeodendron 

croceum 

Anticancer activity 
activities against Vero 
cells 

SANC00265 Tingenine B 
 

Elaeodendron 

croceum 

Anti-HIV activity 

SANC00348 Kraussianone 5 
 

Eriosema 

kraussianum 

Contraction of corpus 
cavernosum tissue 

SANC00407 (25R)-3β-Hydroxy-
5α-spirostan-1β-yl β-
D-glucopyranoside 

Ornithogalum 

thyrsoides 

Cytotoxic activity on HL-
60 leukemia cells 
Cytotoxic activity on 
HSC-2 cells 

SANC00414 Spongotine A 
 

Topsentia 

pachastrelloides 

Antibacterial 

SANC00415 Bromodeoxytopsentin Topsentia 

pachastrelloides 

Antibacterial 

SANC00422 Sodwanone Q 
 

Axinella weltneri diuretic activity 

SANC00423 Bengamide A 
 

Jaspis digonoxea Anticancer activity 
Antimitotic activity 
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SANC00449 Cephalostatin 6 
 

Cephalodiscus 

gilchristi  
 

Anticancer activity 

SANC00488 Cephalostatin 14 
 

Cephalodiscus 

gilchristi 

Anticancer activity 

SANC00489 Cephalostatin 15 
 

Cephalodiscus 

gilchristi 

Anticancer activity 

SANC00490 Cephalostatin 16 
 

Cephalodiscus 

gilchristi 

Anticancer activity 

SANC00491 Cephalostatin 17 
 

Cephalodiscus 

gilchristi 

Anticancer activity 

SANC00585 Scutiaquinone A 
 

Scutia myrtina Anthelmintic Activity 

 

The structures of these compounds in Table 9 are readily available on the SANCDB database 

(sancdb.rubi.ru.ac.za).  

Since the SANCDB compounds docked against 2BEG showed dock scores within the range of 

wgx-50 docked across all aggregates (Table 1 and 6), and also since SANC00247 and SANC00248 

interactions were similar to wgx-50 docked against 2BEG (Tabled 7 and 2), dock B (2BEG) best-

performing ligands are used to study the thermodynamics of destabilizing aggregates in the 

following chapter. It is also useful to reiterate that 2BEG has been used in previous literature 

(Lemkul and Bevan, 2010), and this also makes an attractive target for evaluating the disruption 

ability of these ligands.      
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Chapter 3: Evaluating the stability of β-amyloid fibrils using molecular 

dynamics     

3.1 Introduction 

Molecular dynamics (MD) simulations have been successfully used to study interactions among 

proteins, lipids, and small molecules to provide atomic-level detail of many phenomena (Lemkul 

and Bevan, 2010). In a classical MD simulation, the motion of atoms and molecules is described 

by classical physics. MD simulation was first applied in theoretical physics in the late 1950s (Alder 

and Wainwright, 1959). It is widely used today in many science and technology domains including 

computational biophysics and medicine (Hospital et al., 2015). There are different force fields that 

have been worked out to model both biomolecules and ligands at an accurate level such as 

GROMOS (Haung et al., 2010), AMBER (Hornak et al., 2006), CHARMM (Vanommeslaeghe et 

al., 2010) and OPSL (Kaminski et al., 2010). Even though the force fields are different, the 

interaction energies have common functional form (Eq.3),  

                                                                                                                               Eq.3 

where Ebonded is the interaction energy of atoms which are connected by covalent bonds, and Enon-

bonded is a term containing the non-bonding interactions such as Van der Waal’s (Eq.8) and 

electrostatic interactions (Eq.7) (Allen, 2004).  

3.2 Bonding potential energy  

The Ebonded consists of four terms to the total energy (E), these are bond stretching (Eq.4), angle 

bending (Eq.5), and dihedral and improper torsions (Eq.6) (González, 2011). 
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                                                                                                                                                                                                      Eq.4               

                                      

The bond stretching energy equation is based on Hook’s law. The kij parameter is the bond stretch 

force constant, rij is the actual bond length, while bij defines its equilibrium length (Moses et al., 

2017). Both actual bond length and bond stretch force constant are specific for atom pairs. They 

are either extracted from experimental data or QM calculations. The bond stretching is usually 

represented with a simple harmonic function, this implies that the bond cannot be broken, thus no 

chemical processes can be studied. This yields one of the limitations of force field based MD 

simulations as compared to ab initio MD. Although sometimes Morse potential and other 

functional forms are used to improve the accuracy, they are computationally expensive (González, 

2011). 

Angle bending is also often represented by a harmonic potential, between a triple of atoms i – j – 

k is related with the angle θijk. 

                                                                                                                                                                                                      Eq.5                                      

 

θijk represents the actual bond angle, θ0
ijk represents the equilibrium bond angle, and kijk denotes 

the angle bending force constant (Moses et al., 2017). The actual bond angle and equilibrium bond 

angle are dependent on the chemical type of atoms involved. Angle bending, may sometimes be 

optimized for fitting to vibrational spectra, by adding the Urey-Bradley potential (Eq.5.1).    

                                                                                                                                                                                                  Eq.5.1 
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In the Urey-Bradley term, s represents the distance between two external atoms forming the angle 

(González, 2011). 

The dihedral or torsional term is only included in molecules that contain four or more atoms in a 

row. These terms are as important as angle bending and bond stretching. However, although bond 

stretching, and angle bending can be replaced by a rigid approximation, torsional terms are vital 

in obtaining the correct degree of rigidity/flexibility of the molecules allowing for major 

conformational changes as a result of rotation about bonds (González, 2011). 

                                                                                                                               Eq.6 

The torsional energy is described with terms, kφ for the dihedral angle force constant, φs is the 

dihedral angle, n =1,2,3 denotes the coefficient symmetry (González, 2011). 

3.3 Non-bonding potential energy 

Electrostatic interactions play an important role in determining the structure and packing of 

molecules. The Coulombic energy term is presented in Equation 7, 

                                                                                                                            
                                                                                                                                               Eq.7           

where qi and qj are the atomic charges, rij is the distance in Å separating atoms i and j, ε0 is the 

dielectric constant. Although there may be, biological systems whereby solvent molecules are not 

included explicitly in the simulation, most simulations include explicit solvent and so ε0 usually 

carries a value of 1(Gao, 1998). 

The van der Waals interaction is the long-range attraction which is proportional to R-6. Since at 

short distances the interaction of all atoms is repulsive. The Lennard-Jones potential (Eq.8) is often 
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used to describe the attractive interactions. The repulsive interaction may be is represented using 

the exponential function, as is used in the Buckingham potential (González, 2011). However, a 

power 12 term is often used for the repulsive term within the van der Waal’s interaction (Equation 

8), 

        

                                                                                                                             Eq.8  

 

where C12 and C6 are specific Lennard-Jones parameters. These parameters are dependent on atom 

types and force fields. The van der Waals forces between any pair of atoms belonging to different 

molecules, however, they also occur on atoms of the same molecule (González, 2011).        

3.4 Background on umbrella sampling 

Umbrella sampling (US) was developed by Torrie and Valleau (Torrie and Valleau, 1974). In US 

a bias potential, is applied to the system to ensure there is enough sampling along the entire reaction 

coordinate. The motive of the bias potential is to connect energetically separated regions in phase 

space, hence the name umbrella sampling (Kästner, 2011). The results obtained from individual 

simulations must be unbiased and recombined, such that accurate information about the free 

energy of the system is acquired (Mills and Andricioaei, 2008).   

Free energy is an important quantity that describes chemical and biological processes (You et al., 

2019). This is because free energy controls to a certain extent, directionality of binding and 

unbinding kinetics. As such, it is a central task for computational chemists to determine accurate 

free energy calculations, notably along a chemical or biological process (Miao and McCammon), 
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2016). US is one of the most used methods to compute the potential mean force (PMF) based on 

probability calculations along a given coordinate (Torrie and Valleau, 1977). 

US is suitable for calculating PMF for non-covalent ligand-receptor association/dissociation 

interactions. PMF can provide thermodynamic details for molecular recognition (You et al., 2019). 

Limitations of US include the inability to provide the dissociation path by itself. Thus, enhanced 

sampling methods are employed. Enhanced sampling methods such as, include steered molecular 

dynamics, adaptive biasing force and metadynamics (You et al., 2019). 

3.5 Molecular dynamics, umbrella sampling 

Since it is challenging to obtain high-resolution structural data of Aβ aggregates, MD simulations 

are an ideal approach for studying these systems. While US is particularly useful in analyzing 

macromolecular interactions (Lemkul and Bevan, 2010). In this chapter, a series of configurations 

are generated along a reaction coordinate, ξ. The Aβ42 without a ligand bound is used as a reference. 

The bound structure contains each of the five different best binding ligands including wgx-50 from 

chapter 2, Dock B (2BEG). They are used to investigate the dissociation of a single chain from the 

most interacting (with our ligands) end of the Aβ42 protofibril.  

Although numerous MD studies have examined the basis for the stability of Aβ40 fibril, the 

neurotoxic form of Aβ in AD is Aβ42 (Selkoe, 1999). Therefore, it is vital to understand the 

structural basis for the stability of the Aβ42 (Lemkul and Bevan, 2010). 

In this chapter the pulling and umbrella sampling simulations using an atomistic model of a five 

chain Aβ42 protofibril in explicit solvent at physiological temperature are generated. 
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3.6 Methods 

3.6.1 Structural preparation 

The model used was the core of the Aβ42 fibril, this structure was determined using ssNMR by 

Lührs et al., 2015. For PDB ID 2BEG, in the model the N-terminal 16 amino acids (1-16 residues) 

are missing. However, it has been proposed that residues 17-42 are responsible for the stability of 

Aβ1-42 fibril (Masman et al., 2009). Thus, the observations made, and the conclusions reached are 

most likely to extend to the full length of the Aβ42 fibril. All chains were used in the simulation, 

but this structure was prepared by applying a rotation matrix so that the direction of pulling could 

match one of the Cartesian axes (chapter 3, structural preparation).  

3.6.2 Pulling and umbrella sampling simulations  

The complexes used included the ligands wgx-50, SANC00247, SANC00248, SANC00348 and 

SANC00415. These are the best binding compounds from the SANCDB database with the 

exception of wgx-50 (Dock B). Wgx-50 was considered as it is reported as a potential drug 

candidate in literature (Tang et al., 2013). SANC00415 and SANC00348 bind on the surface 

2BEG, while the rest of the compounds bind inside the U-shaped 2BEG.  

The parameters from AMBER03 (Duan et al., 2003) were applied to all simulated systems. The 

ligand topologies were generated using acypype script (da Silva and Vranken, 2012) within an 

ambertools environment (Wang et al., 2006). All structures were for pulling simulations, by 

placing them in a rectangular box of simple point charge (SPC) water, to which a neutral 

concentration of 0.1 M NaCl, and 5 Na counterions were added. The dimensions of the box were 

ensured to be sufficient enough to satisfy the minimum image convention and provide enough 
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space for pulling simulations to occur along the x-axis without interacting with the periodic image 

of the system. The COM of 2BEG was placed at (2.0, 2.9, 3.0) in a box of dimensions 12.0×6.0×6.0 

Each of the structures were minimized using a steepest descents minimization, with position 

restraints applied to peptide heavy atoms throughout for the equilibration step. Followed 

simulating for 100 ps under constant pressure and temperature (NPT) ensemble, with temperature 

at 310 K. After equilibration, restraints were removed from all chains with the exception of chain 

D. Since it was being used as an immobile reference for the pulling simulations.  

For each of Aβ-ligand (2BEG bound to our ligands) complexes, chain E was pulled away from the 

core structure along the x-axis. A spring force constant of 1000 KJ mol-1 nm-2 was used for pulling 

over 500 ps with a pull rate of 0.1 Å ps-1. From the pulling simulation trajectories, snapshots were 

taken to generate the starting configurations for the umbrella sampling windows. The window 

spacing used was 0.2 nm and resulted in 25 windows. In each window, 10 ns of MD was performed 

for a total of 250 ns for each Aβ-ligand umbrella sampling and Aβ-apo aggregate. Therefore 

ultimately 1500 ns simulation time was utilized.  

Analysis of the results were performed using the weighted histogram analysis method (WHAM). 

3.7 Results and Discussion 

Figure 22 shows the images of initial structures used in the pulling simulation. The structures were 

generated after a 100 ps equilibration as mentioned in section 3.6.2. Movie 1 (see supplementary 

information) illustrates the pulling simulation of Aβ42 docked with wgx-50.  

 

 



76 
 

 

 

 

  

                                                                                                                                                                                     

Figure 22: Aβ42 aggregate structures after 100 ps NPT equilibration, used as starting structures 
for pulling simulations, ligands are represented as licorice. A) 2BEG-apo, B) 2BEG-wgx-50, C) 
2BEG-SANC00247, D) 2BEG-SANC00248, E) 2BEG-SANC00348, and F) 2BEG-SANC00415. 
VMD was used to obtain images.  

 

COM pulling simulations are mostly used to bias the functioning of a system to favor a particular 

phenomenon that might be out of reach on the time scale of traditional MD (Lemkul and Bevan, 

2010). COM pulling simulations have been studied on various biological processes, such as 

protein-protein interactions, protein-ligand, and on extraction of lipids from membranes (Izrailev 

et al., 1998).  The applied external force accounts for the ability to determine the work done on 

the system or by the system. This thermodynamic work is a path-dependent quantity. WHAM is 

one of the proposed methods used to extract the equilibrium data of the system also known as free 

energy (Lemkul and Bevan, 2010). The WHAM method determines ΔG from multiple simulations 

performed on configurations rendered from a single COM pulling simulation (Kumar et at., 1992).  

The dissociation of chain E in the 2BEG aggregate structure, occurs due to pulling of its COM. A 

constant pull force is applied at a constant rate, this leads to force building up until a breaking point 

is reach (Lemkul and Bevan, 2010). The breaking point would not be possible had chain D not 

been restrained. In each of the pull simulations performed in this thesis, the point of maximum 
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force corresponds to the exact moment when chain D dissociates from the aggregate structure. In 

Figure 22 the maximum force was reached at 230 ps.  

 

 

 

 

 

 

 

 

 

                                                                                                                                                  
Figure 23: The plot of force vs time graph of the dissociation of Aβ42 aggregate. Aβ-apo 
corresponds to 2BEG without a ligand bound. The plot was generated using Grace.   

 

Since the dissociation is path dependent, the force vs time curves provide insufficient evidence to 

furnish conclusions on the destabilizing effect of each ligand used, unless the incidents leading up 

to the dissociation of each system are identical. The major role of the pulling simulation in this 

thesis is to provide a series of configurations that will be used later for umbrella sampling.  Figure 

24 shows the dissociation pathway of Aβ42 in the presence of the SANCDB compounds.   
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                        a)            Aβ-SANC00247                                                 b)         Aβ-SANC00248        

  

                                                                               

 

 

                                                                                                  

                       c)           Aβ-SANC00348                                                d)          Aβ-SANC00415 

 

 

 

                                                                                                                                                                                                                                                                                                                                                                                      

 

Figure 24: The force vs time graphs showing the dissociation pathway of Aβ42 a) Aβ-SANC00248, 
b) Aβ-SANC00247, c) Aβ-SANC00348 and d) Aβ-SANC00415 
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Figure 25: The dissociation of chain E in Aβ42 in the presence of wgx-50.  

 

The events leading to the breaking point are different across each force vs time graph in this thesis. 

The graphs in Figure 24 and 25 as compared to the Aβ-apo dissociation graph (Figure 23), show 

all require a lower force to dissociate chain E from the aggregate structure. This is also evident in 

terms of time, the Aβ42 aggregate with no ligand present took longer to reach the breaking point 

than the aggregate with ligands. These results are summarized in table 10 below.          
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Table 10: Summary of the dissociation point of chain E from Aβ42 aggregate structure.  

Complex system Force (KJ/mol/nm) Time (ps) 
Aβ-apo 2101 230 
Aβ-wgx-50 1685 211 
Aβ-SANC00247 1909 227 
Aβ-SANC00248 1832 213 
Aβ-SANC00348 1997 211 
Aβ-SANC00415 1625 201 

 

To evaluate the contribution of each ligand effect on destabilizing chain E in the aggregate, we 

performed umbrella sampling simulations. US are used to determine ΔG of a binding or unbinding 

process along a specific reaction coordinate. The reaction coordinate in this study is the pulling 

direction, the x-axis. The PMF curves for each complex system were obtained by using 25 

sampling windows along the x-axis (Figure 26). From the PMF curve results, the ΔG of binding 

for chain E was extracted (Table 11).  

The Aβ-apo PMF curve yielded the highest ΔG of binding for chain E, while the Aβ-wgx-50 

system produced the lowest ΔG in this study. Interestingly SANC00247 and SANC00248 

identified to have similar interactions to wgx-50 in chapter 2, were both compatible with  the wgx-

50 the drug candidate in terms of ΔG (Table 11 and Figure 26). Exploration of the residues that 

these three compounds interact with, namely Leu34, Val36, Ala21, and Glu22 may account for the 

destabilization of Aβ42 stabilizing residues.           
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Figure 26: Potential of mean force (PMF) curves, black (Aβ-apo), red (Aβ-wgx-50), green (Aβ-
SANC00247), blue (Aβ-SANC00248), orange (Aβ-SANC00348) and brown (Aβ-SANC00415). 

 

An effective US simulation consists of several sampling windows with as much overlap between 

neighboring windows as possible (Mills and Andricioaei, 2008). Figure 26.1 shows the Aβ-apo 25 

window umbrella sampling after 10 ns simulation per window.  
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Figure 26.1: The 25 window umbrella sampling histograms for Aβ-apo. 

In Figure 26.1 there is sufficient overlap between neighboring windows from 0.8 to 5.1 nm of 

COM spacing. However, the overlap around 0.5 nm suggest that one or two further sampling 

windows may increase the accuracy of ΔG further.  

Table 11: The binding free energies (ΔG) for each of the aggregates in this thesis. 

Complex system ΔG (Kcal/mol) PMF colour 
Aβ-apo 30.11 Black 
Aβ-wgx-50 11.95 Red 
Aβ-SANC00247 13.5 Green 
Aβ-SANC00248 14.3 Blue 
Aβ-SANC00348 27.18 Orange 
Aβ-SANC00415 22.74 Brown 
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These are promising results in terms of SANCDB compounds. Two compounds (SANC00247 and 

SANC00248) lower the binding free energy of the final chain to close to that of the wgx-50-based 

destabilization. This is in the light that both of these compounds only fail one of the Lipinsky rules 

(the logP is close to 6 in both cases). As such these two compounds may form the basis as potential 

lead compounds in the search for Aβ destabilizers. 
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Chapter 4: Charmm simulation with copper and zinc  

4.1 Introduction 

Bio-metals copper (Cu) and zinc (Zn) are extremely important for brain function (Choo and 

Grubman 2017). The aggregation of Aβ is mediated by the interaction of metals, notably Cu, Zn 

and iron (Fe) (Maynard et al., 2005). Zn and Cu have low oxophilicity while  Fe is moderately 

oxophilic. These metals often bind to nitrogen and sulfur-donor ligands, however they can also 

bind oxygen (Kepp, 2016). Zn exerts a direct control over the Aβ balance in terms of production 

and degradation via zinc peptidases (Kepp, 2012). Its concentration in the brain is estimated at 150 

µM, which is 10 times higher than the concentration in serum (Andreini, 2006).  Almost all of the 

brain Zn is tightly bound in metal-protein complexes to achieve enzymatic activity or structural 

stability, while the loosely bound Zn is present mainly in areas associated with memory and 

learning (Huang, 1997). Cu ions bind to Aβ peptides with high affinity and increase the proportions 

of β-sheet and α-helix structures in amyloid peptides. These structures may be responsible for Aβ 

aggregation (Atwood et al., 2000, Dai et al., 2010), while binding of Cu to Aβ increases Cu’s 

toxicity to cells (Sarell et al., 2010).  

In this chapter molecular dynamics (MD) simulations were performed on three Aβ42 structures, 

carried out in the presence of Cu(II) and Zn(II). It has been reported by numerous scholars that Aβ 

contains a high-affinity metal-binding region at residues 1-16, which includes histidine residues 

as well as other groups such as aspartic acid and glutamic acid that can coordinate metal ions 

(Kepp, 2012, 2017; Hureau and La Penna, 2014; Faller and Hureau, 2009; Kozin et al., 2001; 

Curtain et al., 2001). However, almost all the postulated Cu and Zn binding residues have been 

reported for a single chain of Aβ42; to the best of our knowledge, only one report of MD simulations 
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on Cu(II)-Aβ fibrillated multiple chain system has been reported in the literature (Carlisle, MSc 

thesis 2018). Our initial focus is was study the dynamic nature of the of Cu(II) and Zn(II) on the 

Aβ fibrillated chain system. These results along with the QM/MM studies to be performed aim to 

provide insight on revealing the formation mechanism of pathogenic Aβ aggregates. 

CHARMM stands for Chemistry at HARvard Molecular Mechanics. it is a general and flexible 

molecular simulation and modeling program. It is widely used and uses both classical and quantum 

mechanical energy functions (Brooks et al., 2009). The name CHARMM also refers to a set of 

force fields for molecular dynamics simulation and analysis. Over the years, CHARMM software 

has been modified to run on many different machines and platforms. This modification includes 

both serial and parallel implementations of the code. In the present age CHARMM can run on 

single-processor PCs, Mac and Linux workstations, to machines based on vectorial or multi-core 

processors. It is also compatible to distributed-memory clusters of Linux machines and large 

shared-memory super-computer installations (Brooks et al., 2009). The CHARMM simulation 

program is used for studying the structure, energetics, and properties of molecular systems (Becker 

and Karplus, 2006).   

4.2 FindGeo 

FindGeo is a tool for determining coordination geometry of metals in biological macromolecules 

with known structures. It is available freely as a web server and as a stand-alone program. FindGeo 

is written in both Fortran and Python, and it uses PDB files as input. The coordinating atoms to 

the metal are identified using a threshold distance of 2.8 Å (default parameter). Metal coordination 

is determined by comparing a library of structural templates with ideal geometries. Various 

probable geometries are tagged as regular, distorted or irregular, based on the root-mean-square 
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deviation (RSMD) values obtained after superposition. The best estimate of the metal coordination 

has the lowest RMSD, a geometry is not assigned when all possible geometries are tagged as 

irregular. The template structures in FindGeo’s library has geometries for coordination numbers 

2-9, including geometries derived from 2-9 coordination numbers because of an empty position 

(Andreini et al., 2012). 

The RMSD criteria for tagging geometries is based on using RMSD as a metric for estimating 

similarities between the overall arrangement of metal coordinating atoms and other potential 

geometries. The alternative geometries are ranked based on RMSD value, Andreini et al., 2012 

reported that this ranking allows quantitative comparison of potential geometry assignments. Thus, 

the RMSD value produced by FindGeo may be understood as the distance between the actual 

geometry of the query PDB and an idealized geometry (Andreini et al., 2012).      

4.3 Methods 

4.3.1 Molecular models 
 

In order to reduce simulation time, and further to simulate an infinite fibril of Aβ, the number of 

stacked chains in the NMR-derived fibril was reduced, and periodic boundary conditions were 

introduced. The twelve chains of the 2MXU PDB structure, each lacking the first 10 amino acids 

of Aβ42, was reduced to four chains. Given that spatially it is impossible for metals to bind to 

residues on more than two chains simultaneously, this number of chains was deemed to be more 

adequate for this type of simulation. The chains chosen were F-I, as they were more uniformly 

orientated, and given the that molecular dynamics equilibration was to be used to remove any 

artefacts from the construction of this model. Similarly, the five peptide chains of the 2BEG PDB 

structure were also reduced to four chains, chain A-D. However, for the 2NAO PDB structure 
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which consists of a double filament of 3 chains each (explicitly discussed in the results section), 

chain A from the first filament was chosen and repeated four times to match 2MXU and 2BEG.  

Disorder in the chains of 2NAO made this approach necessary; in this approach no overlap of 

atoms is introduced when periodic boundary conditions are set. Four chains of each PDB structure 

were also used to keep them consistent with each other and, as previously mentioned, to reduce 

computational cost. Inspection and initial processing of chains was done using Discovery studio 

visualizer (DSV) program version 4.5. Of the various multi-models of these structures, the first 

model was chosen for use, also given that the intention was to use molecular dynamics 

equilibration to remove artefacts of construction. 

4.3.2 Structural preparation 

All three structures were submitted to H++ (Virginia Tech), to add missing hydrogen atoms, and 

obtain protonation states of each amino acid in the chain at pH 7.4. The periodic boundary 

conditions (PBC) for these structures were computed using a python script, which aligned the 

fibrils so that the average Cα-Cα vector was aligned with a Cartesian axis, and such that the average 

Cα-Cα interatomic distance was matched within the PBC (see appendix 6). The script was 

constructed to read in the 3D structure and to perform calculations only using coordinates of the 

alpha carbons. This script locates the distances between each chain by subtracting the xyz 

coordinates of corresponding atoms from adjacent chains. The average distance is determined for 

each chain in the structure, these distances are than used to calculate an average displacement 

vector V. This vector is used to determine an angle θ with respect to the x-axis (the OX vector 

where O is the origin). Further a cross product of three normalized unit vector ||V|| with OX, 

provides a vector U. Given the rotation of the full system about U through the angle θ aligns the 
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fibril to the x-axis, the script then finally produces the rotation matrix from P and θ that will effect 

this rotation, and details of the periodic box that maintains the correct chain distance across the 

boundary. For easy access to visualization of the PBC, the rotation matrix was applied to the 

system in DSV to transform the PDB structures to be perpendicular with respect to (w.r.t) the A 

length, and parallel w.r.t the B length of crystal cell. 

 

 

R is the rotation matrix applied, where θ is the angle about the perpendicular vector U (ux, uy, uz); 

as a check the determinant of the rotation matrix was determined to be equal to 1.    

4.3.3 CHARMM molecular dynamics 

Once the script was set up with PBCs, this information was taken through to CHARMM 

simulations. The first input script required was for setup (Setup.inp), this script requires the input 

of each of the four chains to be inputted separately. However, since residue numbering across the 

chains has to be precise as input within CHARMM, a Perl script was used to renumber the residues 

in the separate PDB chains from residue 1 on the first chain with no repeating residue number (see 

appendix 7), vacuum minimization was effected, initiated by a 100-step energy minimization run 

using the steepest descent (SD) algorithm and followed by a 1000-step minimization run using the 

adopted basis Newton-Raphson method (ABNR). The orthorhombic crystal cell parameters (in Å) 

for 2MXU were (19.45 60.00 60.00), 2BEG (18.46 60.00 60.00) and 2NAO (20.48 70.00 70.00). 

These crystal cell parameters were used within all subsequent steps. The structures were then 

solvated in the orthorhombic box of pre-equilibrated waters (TIP3). After successful solvation, the 
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systems were neutralized in KCl, but simulations were also set up using the CuCl and ZnCl. The 

Lennard-Jones parameters for Cu2+ were obtained from Moses et al., 2017. All neutralized systems 

then underwent their final minimizations. After all these steps, the systems underwent molecular 

dynamics, heating, equilibration and production runs. 
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4.3.4 FindGeo metal coordination geometry 

Five Aβ42-metal coordination complexes were investigated. Informed by molecular dynamics of 

the CHARMM MD simulations, together with information from literature, Cu2+ ions were 

localized to 2NAO His14 (chain A and B), Asp23 (chain A and B), Glu22 (chain B and C), Met35 

(chain B and C) and Ala42 (chain B and C) residues. His14 and Asp23 residue have been reported 

as metal binding residue (Savelieff, et al., 2014, Atrián-Blasco et al., 2018, Cassagnes et al., 2013), 

Cu had been shown to localize Met35 during MD simulations (Carlisle, MSc thesis 2018); 

investigating Aβ42 metal binding residues is vital for determining mechanism of ROS formation 

in AD. In these MD simulations performed, no Cu localization was observed to a specific residue 

was observed. This was attributed to the difference in total simulation time between these 

simulations and those performed by T. Carlisle. However, since observation of binding is limited 

under these conditions by diffusion, the concentration of Cu2+ and the random location of ions at 

the start of simulation, the possible binding residues  a more directed approach was followed. To 

this end simple harmonic patches were setup between Cu atom and pairs of residue atoms (one per 

chain) and these systems optimized. Water was allowed to move freely, and the resultant water 

geometry was consistent with expected hydration  of the metal center. This was repeated for five 

pairs of Aβ42 residues to achieve five possible Cu-Aβ complexes.  

Table 12 also confirmed the choice of residues with which to localize the Cu2+ ion; the “patch” 

command was applied in the CHARMM vacuum minimization script to direct Cu2+ ion to a 

residue. Cu-O and Cu-N force constants were obtained from Moses et al., 2017 (see appendix 8). 

The five complexes were then submitted to FindGeo using the default distance threshold.     
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4.4 Analysis 

The structures were loaded onto the Visual molecular dynamics (VMD), version 1.9.4a31. The 

trajectories of both Cu and Zn neutralized systems were analysed. The last frame trajectories after 

MD simulations for, Cu and Zn within 4 Å distance were reported in table 1 and table 2 

respectively.        

4.5 Results and Discussion 

In CHARMM, there are two methods for enforcing periodic boundary conditions (PBC). The first 

is the well-known minimum image convention, whereby each atom i interacts with the version of 

atom j closest to i. The other (used in this study) generates replicas of the main simulation cell and 

its atoms (Seminario and Balbuena, 1999). Initial work with 2NAO resulted in an overestimation 

of the x-dimension of the periodic box. This was due to extensive disorder in the chains (A-C) 

resulting in a much longer average Cα-Cα distance. This structure had further issues; under PBC it 

was evident that there was overlapping of chains after performing MD simulations (Figure 27C). 

A new 2NAO structures was constructed, new-2NAO, by editing the original 2NAO to four chain 

A’s. The former under PBC showed an overlapping of chains after performing MD simulations 

(Fig.27C). Figure 27 shows the final structures after MD simulations of 2MXU, 2BEG, 2NAO and 

new-2NAO, under PBC the main simulation cell is enclosed by the purple box. The new-2NAO 

structure was validated by monitoring interchain Cα pairs across the periodic boundary conditions 

during the course of equilibration. A stable interchain distance was observed, contrary to the case 

of the original 2NAO structure. 
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A. 2MXU 

  

B. 2BEG 
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C. 2NAO 

 

D. new-2NAO 

 

 

 

 

 

 

  

 

Figure 27: The cartoon structures of A) 2MXU, B) 2BEG, C) 2NAO and D) new-2NAO with 
their PBC, glutamic acid and methionine residues represented in bond form. 
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The new-2NAO will be referred to as 2NAO from this point onwards for the sake of clarity. The 

results obtained from CHARMM simulation with dication neutralized allowed the investigation of 

the diffusion of the Cu and Zn ions throughout the simulation. Figure 28 shows an overlay of 

copper atoms in all trajectory frames, illustrating the localization of Cu during MD. This 

localization is driven by only two force-fields terms – the van der Waal’s and electrostatic terms. 

The residues highlighted are MET, GLU, ASP and HSD as these residues are proposed to bind Cu 

ions (Carlisle, MSc thesis 2018, Furlan et al., 2015, Hureau, 2012).   

A)                                                         B)                                                       C) 

 

 

 

 

                                                                                                                                                                                                                                                                                             

Figure 28:  Images of the structures after Charmm MD simulation, showing the diffusion of Cu 
ions, A) 2MXU-Cu, B) 2BEG-Cu and C) 2NAO-Cu. 

 

Further analysis was done by using the VMD tool to analyze the Aβ-metal distance. We analyzed 

the distance within 4 Å to confirm the diffusion images (Fig.28 and Fig.29). The results were than 

presented in table 12 and 13.    
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Table 12: The residue interaction distance between Aβ and Cu2+ ion 

3D structure Residue name Chain  Distance in Å 
                                                                                                                                                                         
2MXU 

Glu22 B 4.03 
Asp23 D 3.50 
Ala42 D 3.71 
Glu22 A 4.01 
Asp23 C 4.02 
Glu22 D 4.05 
Ala42 B 4.02 
Gly25 A 3.71 
Asp23 A 3.95 
Val40 D 3.82 

                                                                                                            
2BEG 

Glu22 C 3.58 
Glu22 B 3.63 
Ile31 D 3.95 
Met35 C 4.08 
Leu34 D 4.04 
Val40 A 4.09 
Ala42 A 4.02 

                                                                                                                                                                             
2NAO 

Asp7 A 3.93 
Asp23 C 3.82 
Asp7 B 3.68 
Asp23 A 3.59 
Asp7 B 3.90 
Ser8 B 4.01 
Ser8 C 4.09 
Glu22 A 3.84 
Glu22 B 4.08 
Arg5 C 4.07 

 

Figure 29 shows an overlay of zinc atoms in all trajectory frames, illustrating the diffusion of Zn2+ 

during MD simulations. 
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    A)                                                       B)                                                       C) 

 

 

 

 

 

 

 

 

 

Figure 29:  Images of the structures after Charmm simulation, showing the diffusion of Zn ions, 
A) 2MXU-Zn, B) 2BEG-Zn and C) 2NAO-Zn. 

 

Table 13: The summary of residue interaction distance between Aβ and Zn2+ ion 

3D structure Residue name Chain Distance in Å 
                                                                                                                 
2MXU 

Asp23 C 3.92 
Gly25 D 4.04 
Asp23 D 4.08 
Asp23 C 4.01 
Glu11 C 3.84 

                                                                                                                 
2BEG 

Glu22 C 3.52 
Glu22 B 4.03 
Ala42 C 3.83 
Val24 A 4.01 
Val24 B 4.02 

                                                                                                                                                 
2NAO 

Asp7 C 4.07 
Ala21 A 4.07 
Glu22 C 4.03 
Asp23 C 4.04 
Asp23 B 4.01 
Glu22 C 4.06 
Leu34 A 4.09 
Glu3 B 4.03 
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The results from FindGeo web server comprise of numerous PDB files containing the metal site 

superimposed to each ideal geometry. Table 14 summaries the best geometry obtained for the five 

Aβ42-Cu2+ used. 

Table 14: The results obtained from FindGeo of the Cu2+ five explored coordination 

Cu bound residue  Best geometry Tag RMSD 

His14 Octahedron Distorted 0.759 

Glu22 Square antiprism with a 

vacancy 

Distorted 0.591 

Met35 Octahedron, face 

monocapped with a 

vacancy 

Irregular 0.855 

Ala42 Square antiprism Distorted 0.717 

Asp23 Pentagonal bipyramid 

with a vacancy 

Distorted 0.584 

 

His 14 the lowest RMSD is an octahedron, face monocapped. However, the best geometry is not 

the lowest RMSD in this case (see supplementary information). FindGeo was not able to predict 

the coordination of Cu2+ ion Cu-Met35, as a result all possible geometries were tagged as irregular 

(see supplementary information).  
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Chapter 5: Optimization of Aβ-copper with ONIOM and QM/MM 

molecular dynamics  

5.1 Introduction  

Hybrid techniques that combine two or more computational methods in one calculation allow the 

accurate exploration of the chemistry of very large systems (Vreven et al., 2003). The QM/MM 

methods combine a quantum mechanical (QM) method with a molecular mechanics (MM) method 

(Gao, 1996). The development of the hybrid QM/MM approaches is guided by the general idea 

that large chemical systems may be partitioned into an electronically important region which 

requires a QM treatment and the rest which only requires a classical description (Bakowies and 

Thiel, 1996). The QM treatment allows modeling of the electronic rearrangements involved in the 

breaking and forming of chemical bonds, while the MM treatment allows for the efficient inclusion 

of the wider environment and its effects on the reaction energetics (Kamp and Mulholland, 2013). 

QM/MM approaches can use either subtractive or additive schemes (Senn and Thiel, 2009). The 

energy in the subtractive QM/MM scheme (Eq.1) is obtained by a MM calculation of the entire 

system (S) with the inner part (I) cut out and replaced by a QM calculation (Culka et al., 2017). 

ESub = EMM (S) + EQM (I) - EMM (I)                                                                    Eq.1         

The QM energy of the quantum mechanically treated inner part (EQM (I)) is added to the MM 

energy of the entire system (EMM (S)), however the MM energy of the inner part (EMM (I)), has to 

be subtracted to avoid double counting (Culka et al., 2017).  The most widely used approach that 

uses the subtractive scheme is ONIOM (Svensson et al., 1996). The ONIOM is able to combine n 

(any counting number) layers of any implemented QM or MM approach. The advantage with this 
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approach is the simplicity, as it automatically ensures that no interactions are double counted and 

it can be set up for any QM and MM software, without the need of any modification of the code 

(Cao and Ryde, 2018)  

In the additive QM/MM scheme, the MM energy is only calculated on the outer system (O) instead 

of the entire system (S) (Eq.2). The QM energy (EQM (I)) is added and plus an introduction of a 

coupling term (EQM /MM(I, O)) is added. This coupling term treats the interaction of the QM and the 

MM part (Culka et al., 2017). 

Eadd = EMM (O) + EQM (I) - EQM/MM (I, O)                                                              Eq.2 

The coupling term is composed of Van der Waals, electrostatic, and bonded contributions. The 

advantage of the additive QM/MM scheme is that no MM parameters for the QM atoms are 

needed, because those energy terms are calculated by QM (Cao and Ryde, 2018)   

The misfolding of Aβ into toxic conformations is proposed to be at the molecular foundation of 

AD (Orcellet et al., 2011). Thus, there is a major interest in understanding the structural and 

toxicity features of Aβ aggregation pathway. This is because if we understand the structural and 

molecular basis behind the aggregation pathway of Aβ1-42, it will advance the design of therapeutic 

strategies.  

5.2 Application of QM/MM 

5.2.1 Potential energy surface 

A potential energy surface (PES) is a plot of the energy of a collection of nuclei and electrons 

against the geometric coordinates of the nuclei (molecular energy versus molecular geometry). In 

Mathematical terms the PES may be regarded as the equation that gives the energy as a function 
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of nuclear coordinates. PESs are important as they assist in visualizing and understanding the 

relationship between potential energy and molecular geometry. They are also vital in 

understanding how computational chemistry programs locate and characterize structures of 

interest (Berger, 2004). Stationary points are the most important features of PESs for discussing 

chemical reactions. These features on PESs are identified as points at which surfaces are flat.  

Mathematically, a stationary point is described as a point in which the first derivative of the 

potential energy with respect to each geometric parameter is zero (Eq.3). 

                                                                                                                                                   Eq.3 

The stationary points can be further distinguished by the second derivatives of the potential energy 

in terms of the internal coordinate. Depending on the number of positive, negative and zero 

eigenvalues of the Hessian matrix. The stationary points can be characterized as minima, transition 

states or hilltops (Li, 2014). 

An important aspect of Cu-Aβ interactions related to AD, is the catalytic role of Cu in the 

production of ROS (La Penna et al., 2013). In the presence of a physiological reductant like 

ascorbate and under aerobic conditions, Cu-Aβ catalyzes the production of H2O2 and HO• 

(Guilloreau et al., 2007).  

Aβ + M(n + 1) +
 → Aβ + Mn+ (reduction of the metal ion) 

Mn+ + O2 → Mn+1
 + O-

2 

O-
2 + O-

2 + 2H → H2O2 + O2 (production of H2O2) 

Mn+ + H2O2 → M(n+1)
 + O-

2 + HO• + HO- (Fenton chemistry) 

O-
2 + H2O2 →, HO• + HO-

 + O2 (Haber-Weiss reaction) 
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5.2.2 Born-Oppenheimer molecular dynamics 

Born-Oppenheimer molecular dynamics (BOMD) is a MD simulation carried out on ab initio PES, 

characterized by determining the electronic ground state and energy at every time step (Payne et 

al., 1992). The first BOMD simulation using ab initio PES was reported in 1978 by Leforestier, 

and they used the Hartree-Fock approximation and the STO-3G basis to describe the gas phase 

reaction H- + CH4 → CH4 + H- (Wang and Song, 2019). In BOMDs, it is assumed that the adiabatic 

and the Born-Oppenheimer approximations are valid and that the nuclei follow a semiclassical 

Newton equation whose potential is determined by the Ehrenfest theorem (Paquet and Viktor, 

2018). The adiabatic approximation assumes that the electronic wave functions adapt quasi-

instantaneously to a variation of the nuclear configuration. This assumption is justified by the fact 

that the nucleus is much heavier than electrons (Broeckhove and Lathouwers, 1992). The Born-

Oppenheimer approximation further assumes that the electronic and nuclear motions are separable 

as a result of the difference between nuclear and electronic masses (Paquet and Viktor, 2018). 

BOMD can provide insights into chemical reaction mechanisms independently of mechanistic 

hypotheses, since individual reaction events can occur naturally by integrating the equations of 

motion (Wang and Song, 2019). BOMD is computationally expensive, due to the evaluation of ab 

initio PES at each time step. Another BOMD limitation is the self-consistent field equations that 

are needed to solve ab initio PES, these equations may fail to converge (Payne et al., 1992).       

Meliá et al., 2013, conducted a computational investigation of the Peptidylglyine a-Hydroxylating 

Monooxygenase (PHM) mechanism by employing hybrid density function theory and molecular 

mechanics (DFT/MM) calculations coupled to BOMD simulations. Their main objective was to 

determine the evolution of cupric-hydroperoxide intermediate which is formed upon the transfer 
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of a hydrogen atom by the cupric-superoxide intermediate. Their BOMD allowed them to 

understand how fast reactive steps occur at the enzyme active site, which is not possible with 

current experimental approaches.  

5.3 Methods 

GaussView version 5.0.9 was used for creation of Gaussian input files and interpretation of output 

files. Optimization and bond scans were determined by employing the ONIOM model as 

implemented in Gaussian 09, Revision E01, with the high layer calculated using a Semiemperical 

(PM6) approach and the low layer using MM with the universal force field (UFF). The high layer 

consisted of the Cu and the side chains of the two residues to which copper was bound, together 

with the proximal water molecules (as mentioned in section 4.3.3). The remaining bulk system 

was set to calculation at the low layer in the two layer ONIOM setup. 

In a single calculation BOMD Cu simulations were performed where Cu was bound to two Glu22 

residues. The high layer for this particular calculation was at the DFT (B3LYP) level with basis 

set 6-31G(d), while the low layer was at the MM level (using UFF).   This sytem was a good choice 

for BOMD since firstly, the Glu22 residue was a residue observed to interact with destabilizing 

SANCDB compounds. Secondly, since these metals have also been implicated in the aggregation 

process for Aβ, exploration of bonding and exchange processes are interesting within this context. 

Finally, no studies have explored this bonding, to confirm or refute the possibility of binding to 

this position. 
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5.3.1 PES scan setup 

Another aspect to be explored was the formation of reactive oxygen species (ROS). In the literature 

although studies have involved Cu-HIS complexes, to our knowledge no study of the complete 

Cu-HIS mediated formation of ROS is available. 

Dioxygen was added to a Cu bound to two His14 residues and 4 proximal water (bound to two His 

on separate chains). Bond scans were performed to allow the oxygen to become bound to the 

copper, as the first step in the formation of ROS. However, the multiplicity of the QM system was 

deemed important, since this affects or is affected by bond formation. 

  

                                                i) Multiplicity 4, O=O bond scan   

                                                ii) Multiplicity 2, O=O bond scan   

                                                iii) Cleavage of O=O bond (dependent on protonation), and  

    iv) Reverse scan of O=O bond  

Scans i), ii), and iii) are bond scans towards the Cu(II)/C(I), while iv) is a scan away from the 

Cu(II). The scan coordinate parameter (i), decremented from 6.04 to 1.64 Å in steps of -0.1, (ii) 

the same approach but with multiplicity 2, and the final bond distance was 1.74 Å, (iii) 

decremented 2.08 to 0.88 Å in step of 0.05 and finally (iv) incremented 2.08 to 3.13 Å in steps of 

0.05.        
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5.4 Results and Discussions  

The ONIOM method combines different levels of theory into one calculation, this method has 

achieved success in describing large systems. The geometry optimization approach takes 

advantage of the partitioning of these calculations by treating one region at QM level of theory 

and the bulk remaining system is treated at MM (Vreven et al., 2003).  

Table 15: ONIOM energy and RMS optimization results for the five Cu localized residues   

Cu bound residue ONIOM total energy 
(Kcal/mol) 

RMS gradient norm 
(Kcal/mol) 

His 14 1161.75 0.007 
Glu 22 -765.68 0.014 
Met 35 1127.34 0.021 
Ala 42 -617.15 0.015 
Asp 23 624.27 0.116 

 

Table 15 provides the ONIOM total energies for all systems in kcal/mol. Note that the ONIOM 

values are not comparable to each other although there are systems with exactly the same 

stoichiometry. This is due to different atoms being at different levels (between systems) within the 

ONIOM calculation. 

In Figure 30, the exploration is of an oxygen coming slowly closer into contact with the Cu, 

displacing a water molecule in the process. The multiplicity for this system is 4. The scan starts at 

1.830 Ha the energy very quickly decreases after only three steps as Cu(II)-O2 distance decreases 

reaching 1.825 Ha at scan step 3 at a distance of 5.84 Å. As the distance between Cu(II) and O2 

decreases below 3.4 Å the energy increases to a total of 1.87 Ha. After this point the energy 

decreases dramatically to 1.807 Ha, the lowest energy obtained for an optimal Cu(II)-O2 distance.   
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Figure 30: PES scan of O2 towards Cu(II) coordinated to 2 His14 from adjacent chains and four 
water molecules.   

 

It is interesting to note that when this scan is repeated at different multiplicity, the interplay 

between multiplicities becomes apparent. In this scan with multiplicity 2 (Figure 31) the energy 

starts at 1.830 Ha as before, but remains higher compared to Figure 30 suggesting that when the 

oxygen is far from the copper, having three unpaired electrons is more favorable energetically. 

However, the energy drops significantly at scan step 26 when the distance between Cu(II) and O2 

drops below 3.54 Å. This suggests that from this point, it is more favorable to pair two of the 

electrons in bond formation, leaving a single unpaired electron. The increase in energy after scan 

step 28 is due to O2 displacing a H2O molecule. The Cu(II)-O2 dative bond reaches its most 

favorable value at scan step 43 corresponding to 1.770 Ha. The Cu(II)-O2 dative bond is much 

more favorable when the electrons are permitted to pair. 
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Figure 31: PES scan of O2 towards Cu(II) coordinated to 2 His14 from adjacent chains and four 
water molecules.   

 

The scan for O=O bond cleavage, the cleavage of O2 is an energy expensive process (Figure 32). 

We do not expect this bond to break directly without protonation, but this provides a basic potential 

energy surface with which to explore this cleavage where protonation of the O=O is present, and 

where the oxidation state of the Cu is different.  

In terms of the Born-Oppenheimer molecular dynamics, at the B3LYP level, although the 

calculations are successful, only 11fs of dynamics was possible due to the high level of calculation. 

Future work will reduce the computational load on the QM portion of the calculation, so that 

extended dynamics may be performed on the system. Figure 33 shows the interchange betwee 

kinetic and potential energy during the course of dynamics. 
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Figure 32: PES scan of O2 bond breaking towards Cu(II) coordinated to 2 His14 from adjacent 
chains and four water molecules.  

 

  

Figure 33: PES scan of O2 away from Cu(II) coordinated to 2 His14 from adjacent chains and 
four water molecules.   
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Figure 34: BOMD Cu simulations were performed to 2 Glu22 residues. 

 

In this section the results are preliminary due to time constraints; and future work will explore the 

generation of all reactive oxygen species and the identification of transition states and reaction 

pathways detailing their mechanisms of formation. Where this is done for copper at different 

binding sites, the relative danger of formation of ROS can then be evaluated.  

Further, the intention with molecular dynamics is to take the system into the CP2K software to 

perform adaptive partitioning molecular dynamics to explore exchange processes at the copper 

center in the Aβ-Cu complex. 

Between these to foci, we hope to gain a more complete understanding of metal binding to the 

fibril, and the consequences of this binding in terms of the reactivity of the complex. 
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Conclusion 

Three Aβ42 aggregate structures were used as targets for a targeted docking approach with wgx-50 

and seven hundred and twenty-eight SANCDB compounds, leading to fifteen top hits, five from 

each aggregate structure. The top hits were analyzed in comparison to the known Aβ destabilizer 

wgx-50, and also based on their structural and physicochemical properties. Destabilizing 

properties of the top hits to the 2BEG were investigated further through molecular dynamics 

techniques. The evaluation of the binding of the terminal chain to the fibril in terms of binding 

energy quantification and destabilization of the ligands involved a combination of pulling and 

umbrella simulations. The pulling simulations confirmed that the presence of wgx-50 and some of 

the SANCDB compounds destabilized the terminal chain such that a lower force was required for 

its removal. Free energy calculations showed SANC00247 and SANC00248 lowered the energy 

requirements to tear the terminal chain off the fibril, almost to the same extent as wgx-50 and are 

therefore potential drug candidates for AD.          

Three models of an infinite Aβ fibril have been set up using periodic boundary conditions, and are 

equilibrated in aqueous solutions of ions. These models have been used in molecular dynamics 

simulations in the presence of metal ions of interest, and this has revealed localization of the metal 

to residues in some cases, although longer simulations may allow for closer approaches of the 

metal. Several models of the Aβ-Cu complex have been set up, and potential energy surface scans 

at the ONIOM (mixed QM and MM level have revealed the energy barrier required for the 

displacement of water by O2. Calculations at different multiplicities have quantified the point at 

which electrons are expected to pair during the approach of O2 to the copper center of Aβ-Cu. 
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In a single case BOMD has been performed on an Aβ-Cu complex, but this is a prelude to intended 

future study of adaptive partitioning molecular dynamics of this system, to explore exchange at 

the metal center. 

  

Supplementary information  

The link below contains supplementary data: 

http://tiny.cc/2019_onke_supp 
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Appendices 

 

Appendix 1: Vina script example Dock A (2MXU) 

receptor = /home/onke/docking/receptors/2mxu_model2.pdbqt    

ligand = /home/onke/docking/SANCDB_compounds/findBestLigand_and_all.pdbqtTO.pdbqt    

out = 2mxu_model2findBestLigand_and_all.pdbqtTO.all.pdbqt    

log = 2mxu_model2findBestLigand_and_all.pdbqtTO.log    

center_x = 7.417    

center_y = 0.177    

center_z = 0.112    

size_x = 22    

size_y = 22    

size_z = 22  

energy_range = 4 

exhaustiveness = 128    

cpu = 4    

Appendix 2: Vina script example Dock B (2BEG) 

receptor = /home/onke/docking/receptors/2beg_model1.pdbqt    

ligand = /home/onke/docking/SANCDB_compounds/findBestLigand_and_all.pdbqtTO.pdbqt    

out = 2beg_model1findBestLigand_and_all.pdbqtTO.all.pdbqt    

log = 2beg_model1findBestLigand_and_all.pdbqtTO.log     

center_x = 13.859    

center_y = 0.0965    

center_z = -0.463    

size_x = 22    

size_y = 22    

size_z = 22    

energy_range = 4    

exhaustiveness = 128    

cpu = 4   

Appendix 3: Vina script example Dock C (2NAO) 

receptor = /home/onke/docking/receptors/2nao_model1.pdbqt    
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ligand = /home/onke/docking/SANCDB_compounds/findBestLigand_and_all.pdbqtTO.pdbqt    

out = 2nao_model1findBestLigand_and_all.pdbqtTO.all.pdbqt    

log = 2nao_model1findBestLigand_and_all.pdbqtTO.log    

center_x = 10.78    

center_y = 17.975    

center_z = -35.945   

size_x = 22    

size_y = 22   

size_z = 22    

energy_range = 4    

exhaustiveness = 128    

cpu = 4   

Appendix 4: Vina script example Dock D (new-2NAO) 

receptor = /home/onke/docking/receptors/new-2nao_model2.pdbqt    

ligand = /home/onke/docking/SANCDB_compounds/findBestLigand_and_all.pdbqtTO.pdbqt    

out = new-2nao_model2findBestLigand_and_all.pdbqtTO.all.pdbqt    

log = new-2nao_model2findBestLigand_and_all.pdbqtTO.log    

center_x = 12.057    

center_y = 18.041    

center_z = -35.901    

size_x = 22    

size_y = 22    

size_z = 22    

energy_range = 4    

exhaustiveness = 128    

cpu = 4    

Appendix 5: List of colours for docking figures analysis 

Interactions Colour Name  
Alkyl Cotton candy 
Attractive charge Orange peel 
Carbon hydrogen bond, halogen Honeydew 
Carbon-hydrogen bond Honeydew 
Conventional hydrogen bond Lime 
Halogen Aqua 
Metal-acceptor Light grey 
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π-alkyl Cotton candy 
π-anion Orange peel 
π-cation Orange peel 
π-donor hydrogen bond Honeydew 
π-π stacked Neon pink 
π-π T shaped Neon pink 
π-sigma Heliotrope 
π-Sulphur Tangerine yellow 
Salt bridge Orange peel 
Unfavorable acceptor-acceptor Red 
Unfavorable donor-donor Red 
Unfavorable positive-positive Red 

 

Figure 1: Dock D (new-2NAO), the interactions with SANC00407. 
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Figure 2: 2NAO and wgx-50 interactions. 

Appendix 6: Periodic boundary conditions and rotation matrix script 

# Reading in the PDB file   

pdbread = open("2beg.pdb")   

pdbread_info = pdbread.readlines()   

pdbread.close()   

#Only read lines that start with ATOM and contain the alpha carbon   

all_coord = []   

for line in pdbread_info:   

    if line.startswith("ATOM"):   

        if line.__contains__("CA"):   

            new_line = str.split(line)   

            all_coord.append(new_line[6:9])   

#Convert all coordinates from strings to float values and group the chains A-D with their 
corresponding coordinates    

new_coord_A = []   

coord_A = all_coord[0:26]   

for a in coord_A:   

    coord_A = list(map(float, a))   
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    new_coord_A.append(coord_A)   

new_coord_B = []   

coord_B = all_coord[26:52]   

for b in coord_B:   

    coord_B = list(map(float, b))   

    new_coord_B.append(coord_B)    

new_coord_C = []   

coord_C = all_coord[52:78]   

for c in coord_C:    

    coord_C = list(map(float, c))   

    new_coord_C.append(coord_C)   

new_coord_D = []   

coord_D = all_coord[78:104]   

for d in coord_D:     

    coord_D = list(map(float, d))   

    new_coord_D.append(coord_D)   

new_coord_E = []   

coord_E = all_coord[104:130]   

for e in coord_E:      

    coord_E = list(map(float, e))   

    new_coord_E.append(coord_E)   

# Subtracting atom coordinates in chain A with those in chain B, till F. Such that 
coordinates of 1st atom in chain A minus 1st atom in chain B   

vector1 = []   

for j in range(len(new_coord_A)):   

    a = new_coord_A[j]   

    b = new_coord_B[j]   

    b_minus_a = [b[0]-a[0],b[1]-a[1],b[2]-a[2]]   

    vector1.append(b_minus_a)   

vector2 = []   

for n in range(len(new_coord_B)):   

    b = new_coord_B[n]   

    c = new_coord_C[n]   

    c_minus_b = [c[0]-b[0],c[1]-b[1],c[2]-b[2]]   

    vector2.append(c_minus_b)   
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vector3 = []   

for k in range(len(new_coord_C)):   

    c = new_coord_C[k]   

    d = new_coord_D[k]   

    d_minus_c = [d[0]-c[0],d[1]-c[1],d[2]-c[2]]   

    vector3.append(d_minus_c)   

vector4 = []   

for m in range(len(new_coord_D)):   

    d = new_coord_D[m]   

    e = new_coord_E[m]   

    e_minus_d = [e[0]-d[0],e[1]-d[1],e[2]-d[2]]   

    vector4.append(e_minus_d)   

# Take the average of each vector, such that ave of coordinate x, y, z are produced for 
the five vectors   

x_coor = []   

y_coor = []   

z_coor = []   

for k in vector1:   

    x_coor.append(k[0])   

    y_coor.append(k[1])   

    z_coor.append(k[2])   

    sum_x = sum(x_coor)/len(vector1)   

    sum_y = sum(y_coor)/len(vector1)   

    sum_z = sum(z_coor)/len(vector1)   

ave_coor1 = [sum_x,sum_y,sum_z]   

x_coor = []   

y_coor = []   

z_coor = []   

for k in vector2:   

    x_coor.append(k[0])   

    y_coor.append(k[1])   

    z_coor.append(k[2])   

    sum_x = sum(x_coor)/len(vector2)   

    sum_y = sum(y_coor)/len(vector2)   

    sum_z = sum(z_coor)/len(vector2)   
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ave_coor2 = [sum_x,sum_y,sum_z]   

x_coor = []   

y_coor = []   

z_coor = []   

for k in vector3:   

    x_coor.append(k[0])   

    y_coor.append(k[1])   

    z_coor.append(k[2])   

sum_x = sum(x_coor)/len(vector3)   

sum_y = sum(y_coor)/len(vector3)   

sum_z = sum(z_coor)/len(vector3)   

ave_coor3 = [sum_x,sum_y,sum_z]   

x_coor = []   

y_coor = []   

z_coor = []   

for k in vector4:   

    x_coor.append(k[0])   

    y_coor.append(k[1])   

    z_coor.append(k[2])   

    sum_x = sum(x_coor)/len(vector4)   

    sum_y = sum(y_coor)/len(vector4)   

    sum_z = sum(z_coor)/len(vector4)   

ave_coor4 = [sum_x,sum_y,sum_z]   

# Calculating the unit vector for each of the average vectors and the angle they produce 
with ox vector which is given by the xyz coordinates (1.0, 0.0, 0.0)   

import math   

import numpy.matlib    

import numpy as np    

norm1 = math.sqrt((ave_coor1[0]**2 + ave_coor2[1]**2 + ave_coor1[2]**2))   

unit_vector1 = [ave_coor1[0]/norm1,ave_coor1[1]/norm1,ave_coor1[2]/norm1]   

vector_ox = [1.0, 0.0, 0.0]    

ab_ox = np.dot(unit_vector1,vector_ox)   

angle_ab_ox = math.degrees(math.acos(ab_ox))   

norm2 = math.sqrt((ave_coor2[0]**2 + ave_coor2[1]**2 + ave_coor2[2]**2))   

unit_vector2 = [ave_coor2[0]/norm2,ave_coor2[1]/norm2,ave_coor2[2]/norm2]   
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bc_ox = np.dot(unit_vector2,vector_ox)   

angle_bc_ox = math.degrees(math.acos(bc_ox))   

norm3 = math.sqrt((ave_coor3[0]**2 + ave_coor3[1]**2 + ave_coor3[2]**2))   

unit_vector3 = [ave_coor3[0]/norm3,ave_coor3[1]/norm3,ave_coor3[2]/norm3]   

cd_ox = np.dot(unit_vector3,vector_ox)   

angle_cd_ox = math.degrees(math.acos(cd_ox))   

norm4 = math.sqrt((ave_coor4[0]**2 + ave_coor4[1]**2 + ave_coor4[2]**2))   

unit_vector4 = [ave_coor4[0]/norm4,ave_coor4[1]/norm4,ave_coor4[2]/norm4]   

de_ox = np.dot(unit_vector4,vector_ox)   

angle_de_ox = math.degrees(math.acos(de_ox))   

# The averages of all vector sizes   

all_norm = [norm1,norm2,norm3,norm4]   

ave_norm = sum(all_norm)/len(all_norm)   

# The perpendicular vector about the ox vector (1.0, 0.0, 0.0) for all the average vectors    

perp_ab_ox = np.cross(unit_vector1,vector_ox)   

perp_bc_ox = np.cross(unit_vector2,vector_ox)   

perp_cd_ox = np.cross(unit_vector3,vector_ox)   

perp_de_ox = np.cross(unit_vector4,vector_ox)   

# The average of a unit vectors   

all_vectors = [perp_ab_ox,perp_bc_ox,perp_cd_ox,perp_de_ox]   

x_vector = []   

y_vector = []   

z_vector = []   

for k in all_vectors:   

    x_vector.append(k[0])   

    y_vector.append(k[1])   

    z_vector.append(k[2])   

sum_x = sum(x_vector)/len(all_vectors)   

sum_y = sum(y_vector)/len(all_vectors)   

sum_z = sum(z_vector)/len(all_vectors)   

ave_vector = [sum_x,sum_y,sum_z]   

ave_vector_size=np.linalg.norm(ave_vector)   

ave_vector=ave_vector/ave_vector_size   

# The average of all angles     

all_angles = [angle_ab_ox,angle_bc_ox,angle_cd_ox,angle_de_ox]   
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ave_angle = -sum(all_angles)/len(all_angles)   

# Producing Rotation matrix from average unit vector and average angle   

rad= math.pi/180   

a11 = ((math.cos(ave_angle*rad))+((ave_vector[0]**2)*(1-math.cos(ave_angle*rad))))   

a12 = ((ave_vector[0]*ave_vector[1])*(1-math.cos(ave_angle*rad))-
((ave_vector[2])*(math.sin(ave_angle*rad))))   

a13 = ((ave_vector[0]*ave_vector[2])*(1-
math.cos(ave_angle*rad))+((ave_vector[1])*(math.sin(ave_angle*rad))))   

a21 = ((ave_vector[1]*ave_vector[0])*(1-
math.cos(ave_angle*rad))+((ave_vector[2])*(math.sin(ave_angle*rad))))   

a22 = ((math.cos(ave_angle*rad))+((ave_vector[1]**2)*(1-math.cos(ave_angle*rad))))   

a23 = ((ave_vector[1]*ave_vector[2])*(1-math.cos(ave_angle*rad))-
((ave_vector[0])*(math.sin(ave_angle*rad))))   

a31 = ((ave_vector[2]*ave_vector[0])*(1-math.cos(ave_angle*rad))-
((ave_vector[1])*(math.sin(ave_angle*rad))))   

a32 = ((ave_vector[2]*ave_vector[1])*(1-
math.cos(ave_angle*rad))+((ave_vector[0])*(math.sin(ave_angle*rad))))   

a33 = ((math.cos(ave_angle*rad))+((ave_vector[2]**2)*(1-math.cos(ave_angle*rad))))   

rotation_axis = [[a11,a12,a13],[a21,a22,a23],[a31,a32,a33]]   

# Determining the rotation axis matrix determinat   

b = np.array(rotation_axis)   

det_rotation_axis = np.linalg.det(b)   

# Divide the all the elements of the matrix by det_rotation_axis, so that the determinat 
becomes 1   

new_rotation_axis = []   

for i in rotation_axis:   

    new_rotation_axis.append(i/det_rotation_axis)   

# The determinate of the new rotation axis determinat    

new_det_rotation_axis = np.linalg.det(new_rotation_axis)   

Appendix 7: Perl script PDB residue renumbering 

#!/usr/bin/perl  

my $firstatom=1;   

my $firstresidue=1;     

open(PDB,"< new-2nao.pdb");   

open(PDBOUT,"> new-2nao_fxd.pdb");   

my $atomnumber=$firstatom-1;   

my $residuedifference=-1;   

while(my $line = <PDB>)   
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{   

   #print $line;   

   if($line =~ m/ATOM/)   

   {   

       

   $atomnumber++;   

   

#0        1         2         3         4         5         6         7         8   

#12345678901234567890123456789012345678901234567890123456789012345678901234567890   

#ATOM   1573  N   ALA A 211       7.208  20.043  54.197  1.00 60.93           N   

#ATOM      2  CA  GLU F   1      -1.561   9.600 -19.812  1.00  0.00           C      

#first part    

#ATOM   1573  N   ALA A   

#last part    

#       7.208  20.043  54.197  1.00 60.93           N   

#middle part   

#211   

   my $firstl=substr $line, 0,6;   

   my $atno=substr $line,6,5;   

   my $firstr=substr $line, 11,11;   

   my $last=substr $line, 26, 1000;   

   my $middle=substr $line, 22,4;   

   if($residuedifference eq -1)   

   {   

      $residuedifference = $firstresidue-$middle;   

   }   

#   print "*$firstl*$atno*$firstr*$middle*$last";   

   $middle += $residuedifference;   

   my $resstring =sprintf("%4d",$middle);   

   my $atomstring=sprintf("%5d",$atomnumber);   

   print PDBOUT "$firstl$atomstring$firstr$resstring$last";   

   print "$firstl$atomstring$firstr$resstring$last";   

#   print PDBOUT $first;   

#   printf PDBOUT "%4d",$middle;   

#   print PDBOUT $last;   
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     ###need to number the thing correctly   

   }   

   else   

   {   

     print PDBOUT $line;   

   }   

}   

close PDB;   

close PDBOUT;   

Appendix 7: Perl script PDB residue renumbering 

 

* Minimize PDB   

*   

! read topology and parameter files   

read rtf card flex name /home/onke/toppar/top_all36_prot.rtf   

read param card flex name /home/onke/toppar/par_all36_prot.prm   

stream toppar/toppar_water_ions.str   

! read the psf and coordinate file   

read psf card name /home/onke/neutralized_output/2mxu/2mxu-neutralized_cu.psf   

read coor card name /home/onke/neutralized_output/2mxu/2mxu-neutralized_cu.crd    

!patch segid resid segid resid   

patch coppa COPP 3 CHAIN_G 35 noangle nodihedral   

patch coppb COPP 3 CHAIN_H 67 noangle nodihedral   

! set up SHAKE again   

shake bonh param sele all end   

! set up crystal and images   

!set greaterval = 50.9261   

!crystal define rhdo @greaterval @greaterval @greaterval 60. 90. 60.   

crystal define orth 19.45 60.0 60.0 90.0 90.0 90.0   

crystal build noper 0   

! These segments are used for water and ions in bulk solvent   

define bulks sele segid bwat .or. segid pot .or. segid cl .or. segid sod .or. -   

  segid cal .or. segid mg .or. segid ces end   
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! You may need to change these depending on how you plan to do recentering   

image byseg sele .not. resname tip3 .and. .not. bulks end   

image byres sele resname tip3 .or. bulks end   

! the total charge on the system must be 0 or else Ewald will not work correctly, we need 

to test for this...   

! we do the almost equal if test to avoid floating point rounding errors.   

scalar charge stat sele all end   

if ?stot .ae. 0 then goto okewald   

! uh-oh, total charge != 0, we cannot proceed, set the bomlev to an absurdly high level   

! to force a bailout.   

bomlev 5   

Achtung, particle-mesh ewald only works correctly on a structure with 0 total charge!!!!   

label okewald   

! set up nonbond correctly to the same values we will be using in dynamics 

nbond inbfrq -1 imgfrq -1 -   

      elec ewald pmew fftx 48 ffty 48 fftz 48 kappa .34 spline order 6 -   

      vdw vswitch cutnb 16. cutim 16. ctofnb 12. ctonnb 10.   

energy   

coor copy comp   

mini sd nstep 200   

mini abnr nstep 1000 nprint 100 tolg 0.01   

coor rms   

ioform extended   

write psf card name final_minimization_output/2mxu/2mxu-finalmini_cu_patch2.psf   

* psf with additional constraints   

*    

write coor card name final_minimization_output/2mxu/2mxu-finalmini_cu_patch2.crd   

* Final minimized coordinates, done with PME   

*   

write coor pdb card name final_minimization_output/2mxu/2mxu-finalmini_cu_patch2.pdb   

* final minimization pdb   

*   

stop           


