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Abstract

The Four Color Problem:

The Journey to a Proof and the Results of the Study

Rebecca Rogers

Dr. Mathew Cropper Department of Mathematics and Statistics

The four color problem was one of the most difficult to prove problems for 150 years.

It took several failed proofs and advancement in technology and techniques for the

final proof to become possible. Some notable men include De Morgan first writ-

ing about the problem, Kempe giving the first proof, Heawood showing the flaws in

Kempe’s work as well as making advancements of his own. The first actual proof of

the problem is then discussed, as well as it’s shortcomings and the work done by other

mathematicians to show improvements on them. The total of this work has lead to

numerous great leaps in mathematics including the creation of the branch known as

graph theory. This one problem also revolutionized proof writing, being the first to

use a computer as an essential part of the proving process.

Keywords: Four Color Problem, Four Color Theorem, Graph Theory, Computer,

Kempe, Appel and Haken
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Introduction

Most people who have taken a math class throughout the years, at almost any

level has probably asked themselves how this certain problem, or even area of math

was even created. Branches of mathematics are far reaching and often seem very

daunting. Learning thought that an entire branch had stemmed out of one question

may make it seem easier. The subject seems easier still when you learn that the

question involves coloring a map. It is not until it is learned that this one simple

question, which can be stated in one short sentence, took over a hundred years to

find a proof for and a new branch of mathematics to solve.

History of the Problem

The first thing to be asked is what is this problem that keeps getting mentioned?

The first time it can be found to be written is on October 23, 1852 in a letter from

Augustus de Morgan to Sir William Rowan Hamilton [11]. The contents of the letter

are as follows:

A student of mine asked me to day to give him a reason for a fact

which I did not know was a fact, and do not yet. He says, that if a

figure be any how divided and the compartments differently coloured so

that figures with any portion of common boundary line are differently

coloured four colours may be wanted but not more. The following is

his care in which four are wanted.

A B C D are names of colours

Query cannot a necessity for five or more be invented. As far as I see at

this moment, if four ultimate compartments have each boundary line

1



HISTORY OF THE PROBLEM 2

in common with one of the others, three of them inclose the fourth,

and prevent any fifth from connexion with it. If this be true, four

colours will coulour any possible map without any necessity for colour

meeting colour except at a point. Now, it does seem that drawing three

compartments with common boundary A B C two and two you cannot

make a fourth take boundary from all, except inclosing one But it

is tricky work and I am not sure of all convolutionns What do you

say? And has it, if true been noticed? My pupil says he guessed it in

colouring a map of England. The more I think of it, the more evident it

seems. If you retort with some very simple case which makes me out a

stupid animal, I think I must do as the Sphynx did. If this rule be true

the following proposition of logic follows: If A B C D be four names

of which any two might be confounded by breaking down some wall of

definition, then some one of the names must be a species of some name

which includes external to the other three[11].

Due to the nature of the problem it was named the Four Color Problem. Later it

becomes known that De Morgan’s student who mentioned this was Frederick Gutherie,

but it was his brother Francis Gutherie who initially made the claim. This is why

the four color problem is also commonly known as Gutherie’s Problem. Simply put,

the four color problem states that for any map only four colors are needed such that

no areas which share a common boundary (more than a point) have the same color.

This idea is a very simple one, so simple that even elementary school children can

understand the idea behind it. What makes this truly a problem though is that no

matter how simple to phrase, it is extremely difficult to prove.

Although the problem has now been mentioned and documented, it does not gain

notoriety until after it is written of in the Proceedings of the London Mathematical

Society by Cayley in 1878, asking if it had yet been proved [22]. When it had been

found to not as of yet been proven, it was not long until there were many attempts
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being made toward a proof. In mathematics it is the thought that any statement

which can be simply phrased can also be proven in a suscinct and efficient manner

such that anyone with the necessary knowledge can easily follow the proof to see that

it is true [3].

The first attempt at a proof came in the next year by Kempe. It was not until

eleven years later, in 1890, that this proof was shown to be incorrect by Heawood.

His findings lead to the proof of the five color theorem. Due to this finding, it was

clear that the minimum number of colors needed to satisfy these conditions were at

most five. From here, all that needed to be shown was if there were any cases in which

five were necessary or if four colors were sufficient. Even though Kempe’s proof was

shown to be overall incorrect, it had many correct elements and the general idea used

within the proof of reduction were eventual used in the first correct proof that was

found.

During this time there were strides toward a proof and related graph ideas by

many people all working toward the much desired proof of this one problem. Some

of these honorable mentions include:

• 1880 Tait: found three-coloring the edges of a cubic map

• 1891 Peterson: Four Color Problem was equivalent to a problem on edge

coloring

• 1898 Heawood: The Four Color Problem into algebraic form

• 1912 Veblen: The Four Color Problem to assertions in projective geometry

• 1912 Birkhoff: Chromatic Polynomials

• 1931 Whitney: Dual Graphs

• 1941 Brooks: Theorem that gives a bound on the chromatic number of any

graph

• 1943 Hadwiger: A conjecture in which the four color problem is a special

case
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[22]Within these many years there were other strides toward finding the proof, such

as many people showing that maps with a certain number of regions being able to

be four colored. The first of these instances was in 1922 by Franklin. He showed

that any graph that has 25 or fewer regions needed at most four colors. In 1926 this

number was raised to 27 regions by Reynolds. Franklin raised the number to 31 in a

paper published in 1938. It was raised two more times, first by Winn to 35 in 1940

and finally by Ore and Stemple to 39 in 1970[22]. Although this method was a good

excercise and lead to many findings, this was not a way to prove the conjecture, as

there is no stipulation to how many regions are possible.

It is not until 1977 that there is finally a proof answering the question. This

proof is different than any other that came before it though. This proof utilized

new technology in the form of a computer. Due to this new technology, the proof

was not readily accepted. In fact, a book on the topic, entitled The Four Color

Problem: Assault and Conquest written by Thomas Saaty and Paul Kainen, which

was published just after the proof came out has many sentences that tell the reader

to be cautious of putting too much stock into the proof. One such example reads,

“Since the proof itself (if it is a proof) was discovered using the theory, and since the

theory is heuristic, there is an added tendancy on the part of many mathematicians to

mistrust the whole thing [22] .” This is just one example of the doubt surrounding the

Appel-Henkel proof. Even though this was a controversial, it took twenty years before

another result, confirming Appel-Henkel’s was found. This is because the computing

technology for such large quantities of data were still being improved upon.

Now, the Four Color Problem is acknowledged as being proven in 1977 by Ap-

pel and Henkel and the use of computer technology is becoming more accepted in

mathematics. Although the problem has been solved does not mean that it’s legacy

is over. This problem that was started as an “innocent little coloring problem [12] ”

has expanded mathematics and banded together mathematicians for over 150 years.
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The entire branch of math known as graph theory began to be explored in order to

prove a question easy enough that even those new to math can understand it.

Background Math

Although the Four Color Problem is easy to understand, in the way that it has thus

far been worded may lead some to wonder how it can be proven using mathematics. To

do such, it is necessary to phrase the problem in mathematical terms. For reference,

the original problem can be worded as, “can the regions of every map on a globe be

colored with four colors so that regions sharing a nontrivial boundary have different

colors [29].” Here terms such as map, region, and boundary are used. Though these

terms are easy to understand, they are not mathematically the best way to look at

the problem. In 1931 Whitney did work on dual graphs. This is the idea that each

region can be represented by a vertice (or dot) and where two regions are connected

by a boundary the corresponding vertex can be connected with a line known as an

edge [30]. This new image is a graph, while the original is the map (see Figure 1).

This new graph is known as the map’s dual graph. One of the important features

of a dual graph is that it allows a region coloration corresponds directly to a vertex

coloration of its dual graph [19]. Using graphs instead of the corresponding maps is

useful as the shape of the regions is no longer of concern. Now, maps that appear to

be different, due to the shapes of the regions, can actually be seen to be the same

through the lens of this particular problem (see Figure 2).

There are a few aspects of the dual graphs we will be using that are important

to note. The first of these is that due to the duality with maps, all maps that we

need to consider are planar maps. In the simplest terms this means that the graph

can be drawn on a two dimensional surface or the surface of a sphere in such a way

that the edges do not intersect when there is not a vertice [16]. Figure 3 shows an

example of a non-planar graph. There are two parts of graphs that are not necessary

to consider for this problem. The first is a loop. A loop is when one edge both starts
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Figure 1. This shows how a map can be correlated with a dual graph.
The map shows the continential Unites States, although only a few of
the states were chosen to be included in the graph. Note that all of these
states are somehow connected to one another. These chosen states also
do not create any of the obstacles described by Appel and Haken as is
described in the section “Appel and Haken.”

and ends on the same vertice. If this were to occur in a dual graph it would mean

that the map has a region that shares a boundary with itself. For maps there would

not be a boundary there, so a loop does not make sense. The other are parallel edges.

This is when two vertices have two seperate edges connecting the two vertices. In

terms of maps this would be two regions sharing two boundary edges. Although this

is possible, it does not change the coloring no matter how many boundary lines there

are, so the graph can be simplified to only one edge. For an example of a loop or

parallel edges see Figure 4.

Another definition that will prove useful to know is the degree of a vertex. Since

there will be no loops in the graphs following, it can be said that it is the number of
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edges leading to (or from, based on perspective) a vertex. For maps this is equivalent

to saying how many other regions share a boundary edge with the region in question.

For example, the state of Kentucky has seven states that share a boundary. In the

dual graph for the United States, the vertex representing Kentucky would be of degree

seven as there are seven edges extending from that vetex (see Figure 1).

From here we can begin to look into the work leading up to the proof found by

Appel and Henkel. This includes the attempted proof by Kempe and the disproof

by Heawood. Although overall the proof by Kempe was found not true, most of the

work done was correct and essential to understanding the proof that was eventually

found. Heawood, during his work showing Kempe’s to be incorrect, came up with a

proof showing that five is the maximum minimal number needed for planar coloring

problems.
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Figure 2. The top image shows the dual graph that corresponds to
Figure 1. This graph has been laid out in a different manner, and
although may look different is the same graph. Things such as length
of edges and the angle between edges does not matter in graph theory
as it does in subjects such as geometry. It is for this reason that maps
which look totally different can have the same graph. The bottom
image is a map which has the same dual graph as that shown in the
top image, yet it looks very different from the map of the United States.
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Figure 3. This figure shows two different examples of non-planar
graphs. The first image is that of K5 the complete graph with 5 ver-
tices. The second is an example of a bipartite graph. Both of these
images have edges that cross where there is no vertex. This is one of
the main signs that a graph is not planar.

Figure 4. The first image shows a loop. Note that it is one vertex
and one edge. The second image shows parallel edges. Here there are
two vertices and two edges. Both of these are situations that will not
have to be looked at or thought of as special cases when dealing with
dual graphs of maps.



Attempt of a Proof

After the problem had been initially stated in 1852 it took over twenty years for

the problem to pick up noteriety. Once it did, however, it was not long before there

were several mathematicians working toward the answer. A proof was quickly found,

but over a decade later one map was shown to contradict part of the proof, leading

it to be a failed attempt. Although the proof was not successful, it’s revolutionary

methods are still applied. For nearly a century the proof loomed just out of reach of

mathematicians.

Kempe’s Proof

In 1879, only 1 year after the question was posed by Cayley, Alfred Bray Kempe

had an article entitled “On the Geographical Problem of the Four Colors” in the

American journal of Mathematics declaring a proof to the seemingly easy problem.

After explaining the necessity and usefulness of an answer to the problem, Kempe

begins explaining his process to a proof. The first thing noted, which is significant

to the proof, is “that four colours may be necessary will be at once obvious on

consideration of the case of one distict surrounded by three others (see Figure 5),

but that four colours will suffice in all cases is a fact which is by no means obvious

[15].” Here, Kempe correctly points out that it is clear with one simple example that

there are cases in which four colors are needed. Now, what needs to be shown is that

four colors are always enough. An equivalent statement to this is that there are no

instances in which five colors are needed. The rest of the article attempts to show

that these statements are indeed true when applied to planar surfaces.

10
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Figure 5. A simple example of how four colors are necessary. Note
that the red section touches the blue, green and yellow. Similiarly,
the blue region touches each of the other three, as well as the yellow
touching the other three and the green touching the other three. Thus,
none of the colors can be switched for another.

Unlike many mathematical papers that are written today, Kempe’s “paper is

virtually all prose which, though well written, makes it difficult to verify his work

[23].” Rather than written as a clear mathematical proof, the paper holds a structure

that can at times be rather difficult to follow. Timothy Sipka rewrote Kempe’s proof in

a different structure which makes it clear that it is actually a proof by mathematical

induction which covers several cases [23]. Proofs by induction all hold a common

principle. First, the first (or first several) statements need to be shown as true.

Then, assume that there is a step farther along that is true. Finally, show that this

assumption leads to the next step also being true. This method concludes that all

steps are then true [5]. The general structure of induction is used loosely by Kempe,

but explained plainly using Kempe’s terminology through Sipka. The base case, as

this first step is often called, is clear - when there is a map of four or fewer areas, then

four or fewer colors suffice to color them in an acceptable manner. Now, assume that

a map with n areas, or regions, can be colored appropriately with only four colors.
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Kempe then shows that a map with n+ 1 regions must have at least one region with

five or fewer boundary lines with other regions. This means that there is always at

least one region that is adjacent to five or fewer other regions. This result is found

due to a method involving Cauchy’s formula.

In order to get the map from having n + 1 regions to only n regions, Kempe

came up with a process which he called patching. For this he says to literally cut

out a patch the same shape as the region you wish to get rid of just slightly bigger.

Then he says to cover this region up and extend the now unended boundary lines to

meet at a vertex. If the region being patched over touches only two other regions,

then rather bring the boundaries to a point connect them with a boundary line (see

Figure 6). Patching in this manner will eliminate what Kempe refers to as islands and

peninsulas. Islands are a region or a group of regions that do not connect with the

rest of the map. Peninsulas are a region or group of regions that connect to the rest

of the map through only a single vertex (see Figure 7). This process of patching being

repeated several times will always eventually result in only one region remaining.

Before going any farther, it is necessary to look into why only regions with four

or five suurrounding regions need to be gone through this patching process. In order

to show this result Kempe works through some formulas, eventually leading to an

equation credited to Cauchy, although it was derived from wok done by Euler. To

begin it is important to define some variables. Let R be the number of regions at any

given step with the patch still on. B is the number of boundaries and P the number

of points of concourse -the number of times two boundary lines meet- at the same

step with the patch on. Then, R′ is the number of regions after the patch is moved

at that particular step, B′ the number of boundaries and P ′ the number of times

boundary lines meet after the patch is removed. Now, let us look at the situation

when the patch is covering an island. Then,

P ′ = P
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Figure 6. Here is the patching process as shown by Kempe in his
original paper. He had these labeled as two seperate images, the first
showing where the patch was going and the second showing the result
after placing the patch and connecting all the boundary lines to a single
point. Note that all the outer boundary lines do not show an ending,
meaning that this is just a part of a bigger map.[15]

R′ = R + 1

B′ = B + 1.

Using these equations it can be seen that

P ′ + R′ −B′ − 1 = P + (R + 1) − (B + 1) − 1(1)

= P + R−B − 1(2)

For situations when the patch is over a peninsula region, the equations become,

P ′ = P + 1

R′ = R + 1

B′ = B + 2
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Figure 7. This is the example given by Kempe for a peninsula. This
section looks very similiar to what is seen in Figure 6, yet there is a
difference. This can be seen as a peninsula due to the outer boundary
lines, on the peninusla area, not disappearing without an end. These
boundary line can be seen to make a clear complete outer boundary,
showing that it is indeed the edge of the map. [15]

These result in,

P ′ + R′ −B′ − 1 = (P + 1) + (R + 1) − (B + 2) − 1(3)

= P + R−B − 1(4)

The final situation is when the patch is covering any other region, not including an

island or peninsula region. The equations for this are,

P ′ = P + x− 1

R′ = R + 1

B′ = B + x
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where x is the number of regions that are adjacent or connected to the one under the

patch. Using these we get that,

P ′ + R′ −B′ − 1 = (P + x− 1) + (R + 1) − (B + x) − 1(5)

= P + R−B − 1(6)

From (2),(4), and (6), it can be seen that

P ′ + R′ −B′ − 1 = P + D −B − 1

in all scenarios. This is saying that at every step P + R−B − 1 has the same value,

even after the patch is removed. Yet, it is known that when all patches are added ,

there is only one region left. Thus,

P = 0

R = 1

B = 0.

From here it can be seen,

P + R−B − 1 = 0 + 1 − 0 − 1(7)

= 0(8)

for every step. This is the part that can be attributed to Cauchy and Euler. Kempe

takes this work a bit farther. For the rest of this section, let subscripts refer to the

number of boundaries associated with each bit of information. So, r1 refers to the

number of regions with one boundary, while r2 refers to the number of regions with

two boundaries. Similiarly, p3 refers to the number of points of concourse where three

boundaries meet. In general, rn is the number of regions that have n boundaries and

pn is the number of points of concourse where n boundaries meet. These lead to the
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equations

R = r1 + r2 + r3 + ...

P = p3 + p4 + ....

Since two districts share one boundary,

2B = r1 + 2r2 + 3r3 + ....

A similiar equation can be made regarding points of concourse, yet a couple of sit-

uations must be taken into account first. To begin, when there are no boundaries

involved, for these situations b0 will be used. When it is a peninsula and a boundary

is made and not a point of concourse, it will be refered to as b1. Now, it can be said,

2B = 2b0 + b1 + 3p3 + 4p4 + ....

Using multiplying (7) and (8) by 6 and rearranging some terms results in,

(6R− 2B) + (6P − 4B) − 6 = 0.

Substituting in what is known,

(6R− 2B) + (6P − 4B) − 6 = 6(r1 + r2 + r3 + ...) − 6(r1 + 2r2 + 3r3 + ...))(9)

+(6(p3 + p4 + ...) − 2(2b0 + b1 + 3p3 + 4p4 + ...)) − 6

(10)

= 5r1 + 4r2 + 3r3 + 2r4 + r5 − ...(11)

= 0(12)

Where all terms not listed in are subtracted from the equation. In order for

this equation to equal zero, which it must, then there must be at least one of the

following: r1, r2, r3, r4, r5. So, there must be at least one region that has less than

six boundaries in every map. From here Kempe goes on to say,“Consequently, if we
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develop a map so patched out (with patches only going over districts with less tham

six boundaries), when taken off, discloses a [region] with less than six boundaries, not

more than five boundaries meet at the point of concourse on the patch[15].” This is

how it was shown that at most five regions will be surrounding the patched off region.

Now, the map with n+ 1 regions, which must have a region, X, with five or fewer

adjacent regions, has this patching procedure done on regionX. This results in the

map with n regions, which we have already assumed to be four colorable. All that

Kempe had left to show was that in all scenarios, where five or fewer regions were

adjacent to this centralized region which just had its patch removed, could be four

colored. This would mean that the up to five regions in a ring like pattern around the

center could be colored with only three colors, leaving the fourth for the uncovered

middle region. As Sipka describes it, this was shown by Kempe in different cases.

Since it is clear that if the ring had at most three regions, then it could be colored

with three or fewer colors. With this in mind, the first case is that which has 4

regions in this ring. This case is then broken into subcases based on a concept known

as Kempe chains. To describe a Kempe chain, ”He first asked that we consider all

the [regions] (he called them districts) in the map which are colored red and green;

then he observed that these [regions] form one or more red-green [sections]. Kempe’s

notion of a red-green [section] was simply a continuous ’chain’ of [regions] colored

red or green. He then made the important observation that one could interchange

the colors in any red-green [section], and the map would still remain properly colored

[23].”

The first subcase of case one describes a map that has four regions in the ring

surrounding region X, where region A and region C belong to different red-green

chains (see Figure 8). Since the two regions are part of different chains, then the

colors of one chain, say the one containing region A, can be inverted - all red regions

in this chain become green and all green become red, so that now A and C are the
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same color. This means the four regions in the ring are colored with three colors

leaving the fourth color for region X.

Figure 8. This image is provided by Sipka as the scenario in which
Kempe uses as his first situation. In the modern terms that Sipka uses
this is subcase 1.1. [23]

The other subcase of case one is where regions A and C are part of the same red-

green chain. In order for this to happen, then regions B and D must not be a part

of the same blue-yellow chain (see Figure 9). Now the same principle from subcase

one can be applied to this case of the blue-yellow chains. Invert the colors of one of

the chains, then there will only be three colors used around the region X leaving the

fourth color for X.

The next case to look at, case two, is that in which there are five regions in a ring

around region X. Like case one, case two also has two subcases. The first of these

subcases is when regions A and C are part of different red-yellow chains or if A and
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Figure 9. This is the second scenario discussed by Kempe, or in the
terms of Sipka subcase 1.2. [23]

D are part of different red-green chains (see Figure 10). When one of these is true

then those colors can be inverted leaving three colors in the ring surrounding region

X. As with before the fourth color can then be used on region X.

The final subcase to look at is the second subcase of case two. For this case

regions A and C are a part of the same red-yellow chain and regions A and D are a

part of the same red-green chain (see Figure 11). Kempe then goes to state, “the two

regions cut off B from E so that the blue-green region to which B belongs is different

from that to which D and E belong, and the blue-yellow region to which E belongs

is different from that to which B and C belong[15].” He continues to explain that

the colors in the blue-green chain in which contain B need to be inverted as well as

the colors in the blue-yellow chain that contains D. These two switches lead to the
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Figure 10. The third possibility talked about by Kempe, or Sipka’s
subcase 2.1. This is the first scenario that uses five regions surrounding
X rather than four. [23]

regions in a ring around X only using three colors, leaving the fourth color for region

X.

This concludes the proof given by Kempe for the four color problem. The method-

ology of Kempe chains is one that has endured throughout time, even after a flaw

was found in Kempe’s work. The flaw was not in the chains and this procedure has

lasting impacts on mathematics. Although the proof was widely accepted, in 1890,

eleven years after Kempe’s paper, one map would be enough to show that it was not

quite the answer needed to solve the problem.
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Figure 11. Kempe includes this as the final possible scenario of col-
oring a region getting a patch removed. This is called subcase 2.2 by
Sipka.[23]

The Five Color Theorem

In 1890, Percy J. Heawood wrote a paper that included a discussion on the four

color problem. Allthough the majority of this paper focused on the number of colors

needed on surfaces other than those that are planar - for which Heawood did a great

deal of work, the ending mentions the minimal colorings needed on any planar map.

Heawood takes his time to describe Kempe’s method, specifically what we refered to

as the second subcase of case two. Heawood was complimentary of Kempe’s work

until one sentence, “it is conceivable that though either transposition would remove

a red, both may not remove both reds[13].” This one sentence and the corresponding

map, Figure 12, were enough to show that Kempe’s proof was flawed and not enough

to give a complete answer to the problem.
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Figure 12. This is the image used by Heawood to show that Kempe’s
proof was not adequate for every possible map. This image is in contrast
only to the fourth scenario Kempe mentions, leaving the other three as
being correct. This is where both reds may not be removed.[23]

Although Heawood showed this flaw in the proof, he did not attempt to come up

with a correct proof. Rather, he modified Kempe’s work to show that it did prove

another theorem, the five color theorem. This theorem, much as its name suggests,

says that every planar graph can be five-colored. Heawood proved this theorem by

slightly altering the work Kempe did to prove the four color theorem [22]. Using the

ideas of Kempe, and knowing that his first case and the first subcase of case two are

correct, it can be seen in the last subcase that at least one pair of regions must touch

each other nowhere[13]. As with many theorems, proofs of different types have been

tried through out the years. For the five color theorem, another proof that was used

was by Paul C. Kainen. His proof was a proof by contradiction and using the idea

that K6 is not planar[14]. K6 is the complete graph having 6 vertices (see Figure
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13). This proof is mentioned here as the use of complete graphs play a part in future

attempts at a proof.

Figure 13. The K6 graph. This was used by Kainen to prove Hea-
wood’s Five Color Theorem. K6 is the graph that has six vertices and
there is an edge connecting every vertice. This is known as a complete
graph of degree six.

Heawoods’ work with this problem did not stop at his proof of the five color

theorem. He, as well as many other mathematicians would not stop working toward

a definitive answer on the minimal number of colors needed. Since the proof was as

of yet elusive, mathematicians worked along several different paths trying to find a

revolution that would make it possible to solve. On way of doing this is to find ways

to find equivalent forms of the problem in different mathematical principles. One

example of this was by Heawood. He took the problem and found the pure algebraic

equivalent [8].
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Having the five color theorem proven, but not the four color theorem lead to a lot

of doubt amongst mathematicians on whether the minimal number of colors needed is

four or five. Although there was suspicion that four colors would not be sufficient, this

did not stop mathematicians from developing the ideas emerging continually farther,

trying to find certainty and clear ways of expressing the finding of mathematics.

More Advancements

Over the next 80 years, no proof for the four color problem was found. Although

this sounds very discouraging, it does not mean that no advancements were made.

In fact, it was said that all the techniques needed to prove the theorem were known

before 1950, it was just that there was too much data for one person, or even a group

of people, to compute and formulate by hand. Throughout this section several of the

advancements are mentioned. This is not an exhaustive list of all advancements made

in this time, as that would be so unweildy as to lose sight of this papers main focus.

The first of these advancements is done P.G. Tait. As Heawood wrote an equiv-

alent problem to the four color problem in algrebraic form, Tait focused on writing

an equivalent problem that stayed in the realm of graph theory. Tait accomplished

this through the conjecture which can be stated as follows, “The edges of every cubic,

bridgeless, planar graph are 3-colorable[27].” This conjecture is true if and only if the

four color problem can be found to be true. Since the four color problem had yet to

be proven, if this conjecture could be proven to be true, then the four color theorem

would also be proven true. While Tait thought he had the proof to this conjecture,

and thus the proof for the theorem [24], his work was disproven as Kempe’s had been

before him. Later, Tait’s ideas were used in a more generalized manner by Tutte to

show the ideas of nowhere-zero flows[10]. The work done by these men have expanded

to cover much larger parts of flows and edge colorings.

Another advancement that was done within these years was done by R. L. Brooks.

Brooks has a theorem acredited to him that says for every graph with a maximum
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vertex degree of d has a d-coloring unless either the graph contains Kd+1 or d = 2 and

the graph contains an odd cycle[9]. Although this is a theorem that is more genral

than the four color problem, it is still a useful advancement in graph theory. Another

reason that this is useful to the four color problem is that Kempe chains can be used

to prove Brooks theorem. Mel’nikov and Vizing used Kempe chains to write a fairly

short proof of Brooks theorem[17]. This shows that the ideas that had previously

been used were not just left, but expanded upon and used to grow into new areas.

The four color problem was what caused the thinking behind the entirety of graph

theory.

Although the previously mentioned advancements eventually veered away from

directly working toward a solution for the four color problem does not mean that it

was not still being worked on. As is mentioned early, throughout the early 1900s the

problem was slowly whittled away on by several men who were working on raising the

number of regions in a map that could always be four colorable. Franklin, the first to

start this trend showed that any graph that has 25 or fewer regions was four colorable.

In 1926 this number was raised to 27 regions by Reynolds. Franklin raised the number

to 31 in a paper published in 1938. It was raised two more times, first by Winn to

35 in 1940 and finally by Ore and Stemple to 39 in 1970[22]. Each of these men

had to show that no matter the configuration of the maps with this certain number

of regions, it was always four colorable. Their work was based off the reducibility

findings done by George Birkhoff in 1913[6]. Although these advancements helped us

get a better understanding of the problem, this form of study could not be used to

lead a proof.



Finally a Proof

Although many advancements were made and a great deal more was found about

graph theory as we now know it, the proof to the four color problem was still elusive,

even though it was over a hundred years since mentioned by De Morgan. Now that

the 1970s have come around, technology has advanced enough so that all the work

that was before seen as impossible to get done, may now have a chance.

Appel and Haken

In the early 1970s Kenneth Appel and Wolfgang Haken got together to work

toward the solution for the four color problem[1][2]. The work that these two did

together is described in their work “The Solution of the Four-Color-Map Problem. ”

The article begins going over the history of the problem up until that point. They

continue on to then say that to begin their work, “We therefore decided to first study

certain kinds of discharging procedure in order to determine the types of sets of

obstacle-free configurations that might arise[3].” As can quickly be seen between this

quote and ones given previously, the terminology has been greatly altered through the

time span that the problem has been worked on. The idea of labeling each of the vertex

with charges was brought upon by Heinrich Heesch. This idea follows from the work

by Kempe done with Cauchy’s formula. Since there are these charges now put upon

the vertices there are procedures that can be done in which the charges are moved

around the graph. The overall charge does not change, but the charge on any given

vertice might. By picking a specific discharging procedure a finite list of configurations

can be made. This process is explored, “Since the configurations signaled by this

procedure must form an unaviodable set, if they are also reducible then the four-color

26
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conjecture is proved[3].” On the other hand, if they are not reducible, then there is

not advancement toward a proof. After repeating this process on a computer several

times, they had found “an un-avoidable set of good configurations.” It was not until

after they found these that the proof was found that showed they were indeed what

they claimed.

Now that Appel and Hanken have found and proven their unavoidable set, they

begin to work on the reducibility section of the proof. This, they thought would be

extremely difficult, even with the use of computers. Yet, they recalled that Heesch

did work on reducibilty and he found some “phenomena that provide clues to the like-

lihood of successful reduction[3].” After working on reducibility for a few years, “by

the fall of 1974, [they] had a lengthy proof that a finite unavoidable set of geographi-

cally good configurations does exist, and [they] had a procedure for constructing such

a set with precise, although much larger than desirable, bounds on the size of the

configurations of the set[3].” Once this was done, and a proof was found, they set

out to change the parameters from good configurations to ones that are just obstacle-

free. By obstacle free they are refering to three arrangements which lead to a graph

not being able to be proven reducible. Here it is important to note that one of the

arrangments occur on a graph when a map has exactly four regions meet at a single

point (see Figure 14). Due to this fairly common complication many maps are not

included in the proof by Appel and Hanken, such as the United States due to the

Four Corners, and the state of Kentucky.

This work continued until the next summer when the duo finally started to believe

they could find an unavoidable set of obstacle free configurations which were indeed

redicible. As with all the steps before this, they spent much of their time writing and

perfecting lines of code while the computers spent several hours performing calcula-

tions. Although it took the computer so long to do this, it would have taken people

immensly more time. The work on programming for reduction continued for some

time with the help of Koch. It was also slightly modified to fall more in line with
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Figure 14. This is the dual graph of the Commonwealth of Kentucky.
It is another example to show that all maps can be turned into graphs,
as all maps are planar. This particular map is one of the ones that
causes a problem for Appel and Haken, as the four vertices that are a
seperate color do not create a triangulation like all the other areas do.
This is one of the three types of obstacles that Appel and Haken did
not know how to prove reducibility for, so they left them out of their
set.

the work of Birkhoff. It was at this time that the work of the discharging procedure

could go no farther without a complete rehaul of the computer code. Rather than

do that, it was decided that it would be more worthwhile to continue this process by

hand. Since humans were working on this process now, more “flexibility” could be

put into the procedure allowing for the unavoidable set to be even more narrowed

down. Although it was narrowed down, it would still take a great deal of computa-

tional ability to perform all the tasks needed. The computers were put to work and

from here Appel and Hanken have proven the four color theorem.

Appel and Hanken conclude their paper saying that many mathematicians are not

ready to accept the proof by computer, but that new ideas need to be embrased upon

occasion. At this time, there were no other mathematical proofs that relied on com-

puters. This particular proof was even mentioned in the article “Ugly Mathematics:

Why Do Mathematicians Dislike Computer-Assisted Proofs?” Here, Montano shows
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that from the beginnings of computer assisted proofs there have been negative recep-

tions for the mathematical community[18]. Montano has several compeling reasons,

but for at least this one proof, some of the resistence may come from the lack of clarity

and description given in the written and published proof. Even though computers

were becoming more common, the proofs were still questionable.

Could this Be?

Several years after the work done by Appel and Hanken, there was still doubt into

their computer proof, not only because it was done on a computer, but also because it

was so inaccessible to be verified. A quote from their own paper states, “This leaves

the reader to face 50 pages containing text and diagrams, 85 pages filled with almost

2500 additional diagrams, and 400 microfiche pages that contain further diagrams and

thousands of individual verifications of claims made in the 24 lemmas in the main

sections of text. In addition, the reader is told that certain facts have been verified

with the use of about twleve hundred hours of computer time and would be extremely

time-consuming to verify by hand. The papers are somewhat intimidating due to their

style and length and few mathematicians have read them in any detail[4].” This quote

is used by Robin Thomas in his article that gives an updated, and significantly more

simple proof of the four color theorem[26]. Thomas uses this particular quote to show

why it is beneficial for the mathematical world to spend time on a different proof than

the one found by Appel and Hanken. Thomas was up for the challenge and did just

that. He began by assessing the parts of the 1977 proof that were troublesome. Upon

reflection he came up with two areas: the first is that a computer must be used, and

the second is that even though part of it is said to be hand-checkable, it has not been

due to length and lack of clarity. In order to settle at least the second of these issues,

Thomas with his colleagues Neil Robertson, Daniel P. Sanders, and Paul Seymour

first attempted to verify the part of the proof that was said could be done by hand. It

did not take long before this attempt became clearly useless. Rather than leave both
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problems in place, they decided to create their own proof. Though they acknowledge

that the first issue cannot be changed, the second can be, by making the hand done

parts more accessible.

After covering the basic history of the problem and several ideas that others before

them have found that will be used, the paper gives a brief overview of what to expect

from this proof. That overview is as follows:

The main aspects of our proof are as follows. We confirm a conjecture

of Heesch that in proving unavoidability a reducible configuration can

be found in the second neighborhood of an “overcharged” vertex; this

is how we avoid “immersion” problems that were a major source of

complication for Appel and Haken. Our unavoidable set has size 633 as

opposed to the 1,476-member set of Appel and Haken; our discharging

method uses only 32 discharging rules instread of the 487 of Appel and

Haken; and we obtain a quadratic algorithm to 4-color planar graohs,

an improvement over the quartic algorithm of Appel and Haken. Our

proof, including the computer part, has been independently verified,

and the ideas have been and are being used to prove more general

results. Finally, the main steps of our proof are easier to present, as I

will attempt to demonstrate below[26].

Thomas makes it clear in his comparisons that this proof will follow a similiar idea to

Appel and Hakens, but the actual proof has been made significantly more simplified.

This simplification, as well as the better and more readily available computing options,

makes this proof significantly more accessible by fellow mathematicians.

As with Appel and Haken’s proof, one of the major components used by Thomas

is that of reducibility. The ideas and practice of reducibilty is derived from work by

Birkhoff, Bernhart, Heesch, Appel and Haken and others. The definitions of several

types of reducibility can be found at [21]. They do make it clear in their 1998 paper

that in order to do these types of reducibility, computers are needed, as one case can
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have up to 200,000 colorings to be checked. The rest of their proof follows the ideas

used by Appel and Haken, just in a more systemized manner. This is in part due to

there being so many less cases to check.

Continuing the Ideas

Now that the four color has been proven in a manner that it can feasibly be

checked, without finding any errors, we can now say that the four color problem is

indeed solved, after only 150 years. Although the proof was found, the work behind

and for graph theory have not stopped. Graph theory was developed for this problem

but has grown into so much more. With one search on the popular internet search

engine, Google, hundreds of millions of results for graph theory appear. Although

maybe the largest overarcing conseqence of the four color problem, graph theory is

certainly not the only lasting result. Over the time it took to solve this problem there

were many advancements made in hopes of making this problem solveable.

Now that the four color conjecture has been turned into a theorem, the work can

now be put back into practical uses, just as it originally started out as. In the article

“An Evolutionary Algorithm Based on the Four-Color Theorem for Location Area

Planning” it describes how the four-color theorem is used to not to color maps, but

actually to help plan where mobile network towers need to be placed to optimize the

network reception for customers[7]. In this modern era, this plays a larger part than

just coloring a map. It is also a significantly more difficult concept then coloring and

more costly if done incorrectly. This shows that what was just a simple concept can

have a great impact on society.

Another result of the four color theorem being proven is that it can now be used

to prove other mathematical topics. Since the problem was found to have so many

equivalent forms, the proof of our main theorem now can help prove all of these,

as well as other concepts. One of these proofs using the four color theorem can be

found in Alex Wendlands, “Coloring of Plane Graphs with Unique Maximal Colors
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on Faces” [28]. This takes the concept of the four color theorem and moves it further

along into the world of coloring graphs.

Not only was the theorem used for practical purposes and to help prove even more

things in mathematics, but even the proof of this revolutionary theorem has made

a large impact on mathematics. The use of a computer was a new concept and one

that was not accepted for many, many years. Although the use of this new technology

was initially frowned upon the tides have changed in recent years. People such as

Uwe V. Riss in his article “Objects and Processes in Mathematical Practice” take a

strong stance in pushing to have computers accepted as a tool to help with proofs[20].

Although during the proof discussed in this paper it was ground breaking to use a

computer, it is now becoming the solution to many of maths most difficult proofs

[25]. Proofs using computers are expanding, all because of the four color problem.
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