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Abstract 
Ultra-high performance concrete (UHPC) displays several enhanced material properties 

compared to normal strength concrete (NSC). In past research, Split-Hopkinson pressure 

bar (SHPB) tests have been used for normal strength concrete to determine material 

behavior at high strain rates. The behavior of advanced concrete materials, such as UHPC, 

under high strain rates has not been thoroughly investigated. While it is generally accepted 

that concrete materials experience increases in compressive strength under increasing strain 

rates, a preliminary investigation was conducted to gain insight into the compressive 

behavior of UHPC under high strain rate SHPB testing. 

 

In this research, 50 specimens were tested in compression using the SHPB equipment at 

Michigan Technological University. Normal strength concrete, ambient cured UHPC, and 

thermally treated UHPC specimens were tested at 2:1, 1:1, and 0.5:1 aspect ratios. A dynamic 

increase factor (DIF), which shows the increase in strength between dynamic and static 

loading, was calculated for each specimen. Based on results of specimens meeting 

recommended tolerances, DIFs were found to be between 3.65 and 4 for NSC, 1.73 and 

2.95 for ambient cured UHPC, and 1.21 and 2.45 for thermally treated UHPC for strain 

rates between 102 and 103 s-1. While UHPC experiences a relative increase in dynamic 

compressive strength, it is less strain rate sensitive than NSC and experiences a lower overall 

compressive strength increase. 
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Chapter 1 Introduction 

1.1 Background 
As the number one most used building material in the world, concrete is very beneficial to 

the engineering industry (Mehta and Monteiro 2006). However, normal strength concrete 

(NSC) has limitations with durability and its ability withstand extreme loads (Mather 2004). 

These extreme loads, such as impacts and blasts, occur at high strain rates of loading, 

generating a large amount of energy. Normal strength concrete simply does not possess 

enough strength to endure such loadings.  

 

Much advancement has been made in the area of concrete materials. Ultra-high performance 

concrete (UHPC) is one such advancement. Around since the 1990s, UHPC has shown 

enhanced material properties in many areas, including compression and tension strength and 

freeze/thaw durability, among others (Ahlborn et. al. 2003). An area of UHPC material 

behavior that has yet to be explored, however, is its performance under high strain rates of 

loading.  

 

The desire to fully understand a material’s behavior is essential for its proper and efficient 

use. As ultra-high performance concrete continues to be introduced as a structural material, 

the knowledge base for its material properties continues to expand. An important material 

characteristic is its behavior at high strain rates. It is generally accepted that concrete 

materials experience an increase in compressive strengths under dynamic loading scenarios 

(Bischoff and Perry 1991). However, many material properties of UHPC vary greatly from 

those of conventional concrete. Based on this information, an investigation of UHPC’s 

dynamic properties, specifically strength, at high loading rates is necessary.  

 

As structural design evolves, so too does the capability of structures and materials to 

withstand various loads and loading scenarios. More extreme loading cases include 

earthquakes, impacts, and blasts. These dynamic loads occur at increasing strain rates, 

resulting in three primary consequences: stress wave propagations within the impacted 

bodies, large inelastic deformations at high rates of deformation, and vibration issues caused 
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by further excitement from the impact (Ramesh 2008). Therefore, high strain rate 

experiments are required to develop an understanding of material and structural response. A 

variety of experiments have been developed to measure dynamic material properties, 

specifically high strain rate behavior. One such development is the Split-Hopkinson pressure 

bar (SHPB). Through these high strain rate experiments, structural systems can be better 

designed to withstand more extreme loading scenarios. With limitations to conventional 

materials, it becomes even more important to investigate the behavior of advanced materials, 

such as UHPC, at these extreme loading conditions. The ability withstand high strain rates 

can be a tremendous benefit to the engineering and construction community, as well as the 

welfare of the public.  

 

1.2 Research Objectives  
The purpose of this thesis is defined by two objectives, which focus on previous research 

along with the presentation of new data and discussion.  

 

The first objective of this thesis is to document the state of practice of Split-Hopkinson 

pressure bar testing on normal strength concrete. This is accomplished through a literature 

review of previous research regarding the use of the SHPB to test concrete at high strain 

rates. Through this literature review, comparisons are drawn between the new information 

presented in this thesis and the information of past research in the subject area. 

Furthermore, this helps confirm the SHPB equipment response and data at Michigan 

Technological University’s Cement and Concrete Research Lab. By confirming the SHPB 

equipment’s validity, further testing and research that extends beyond the scope of this thesis 

can take place.  

 

The second objective of this thesis is to preliminarily characterize the material response of 

ultra-high performance concrete under high strain rates. As a relatively new material, it is 

necessary to fully understand the material behavior of UHPC as it becomes used throughout 

the industry. The data presented in this thesis compares the behavior of a UHPC to normal 

strength concrete during high strain rate loading through SHPB testing. With this data, 
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dynamic increase factors, which are used to define a material’s strength increase under 

elevated strain rate loading, are calculated for UHPC. While only a limited number of 

specimens are tested in this research, this factor further defines the material and provides 

additional research to the breadth of knowledge regarding UHPC material response at high 

strain rates.  

1.3 Thesis Outline 
Chapter 1 of this thesis provides background information regarding the research being 

presented. This includes an introduction to UHPC and Split-Hopkinson Pressure Bar 

testing. Furthermore, the goals and objectives are defined in the first chapter.  

 

Chapter 2 discusses previous research in the area of concrete testing using a SHPB. This 

literature review covers SHPB testing methods and theory, along with the results and 

findings of previous work conducted on plain, fiber-reinforced, and ultra-high performance 

concrete.    

 

Chapter 3 explains the experimental methods used for testing normal strength concrete and 

ultra-high performance concrete subjected to high strain rate loading using a SHPB.  

 

Chapter 4 presents the analytical methods used in this research, including an overview of the 

data analysis process and calculation of the dynamic increase factor. 

 

Chapter 5 presents test results and provides discussion for the previous research outlined in 

the literature review and the new data. Note that all UHPC specimens tested during this 

project were cast at Michigan Technological University using the Ductal® premix by LaFarge 

North America. 

 

Chapter 6 completes the thesis with conclusions regarding the information previously 

presented and the impact of the new test data. Furthermore, recommendations for future 

work in this area of study are presented, both generally and specifically, as extensions of this 

project.   
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Chapter 2 Literature Review 

2.1 The Split-Hopkinson Pressure Bar 
To fully understand a structural material and show where a material can best be used, its 

behavior under every loading type must be investigated. Material performance is also very 

dependent on the rate at which a load is applied. Figure 2.1 illustrates various loading 

scenarios based on strain rate (Bischoff and Perry 1991). 

 

10-8 10-6 10310210110010-110-210-310-410-510-7

Strain Rate (1/sec)

Creep Static Earthquake Impact Blast

104 106105

Ultra-high rate

 

Figure 2.1: Typical magnitudes of strain rates for different loading types 

 

Impact experiments can be considered as (a) high strain rate tests, (b) wave propagation tests 

through the material, (c) dynamic failure process within the material or structure, and (d) 

direct impact with broader impacts such as crash testing. The development of the Split-

Hopkinson pressure bar allows for dynamic material characterization at high strain rates 

ranging, from 1 to 104 s-1. These high strain rate experiments can determine a material’s 

response under impact and blast loading scenarios.  

 

The Hopkinson pressure bar originated in 1872, when John Hopkinson investigated the 

effects of stress waves in iron wires (Gilbertson 2011). Later, in 1914, his son, Bertram 

Hopkinson, measured pressure through induced-wave propagation in a single elastic metal 

bar (Gray III 2000). This single bar apparatus was named the Hopkinson pressure bar as a 

result of Bertram Hopkinson’s revolutionary work in dynamics. In 1949, R. M. Davies and 

Kolsky added another long, elastic metallic bar to the Hopkinson pressure bar and 

sandwiched specimens between the two bars (Gray III 2000). This piece of equipment, 

which was designed to measure the material stress-strain response under dynamic 
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conditions, became known as the Split-Hopkinson pressure bar (SHPB), or Kolsky bar. 

Traditionally, the SHPB was designed to measure the dynamic compressive behavior of a 

material, while the Kolsky bar is a general term for various loading configurations (tension, 

compression, torsion, or combinations). Later developments and alterations led to the ability 

to measure dynamic material response in tension, shear, and torsion, using a modified SHPB 

arrangement. This thesis focuses solely on dynamic compressive SHPB testing.  

 

Most Split-Hopkinson pressure bars follow the same general design and are comprised of 

the same elements. The main features are two long, elastic, metal bars, the input (incident) 

and output (transmitter) bars. The material sample is placed between these two bars. The 

pulse is generated by a striker bar fired from a cannon using compressed gas. Strain gages 

placed on the input and output bars measure the wave propagation and output information 

to be read by a data acquisition system. Below is a schematic drawing of a typical SHPB.  

 

Compressed Gas 
Cannon Input Bar Output Bar Stop Bar

Input/Specimen 
Interface

Striker Bar

Output/Specimen 
Interface

Specimen

Strain Gage Strain Gage

 

Figure 2.2: Schematic drawing of typical SHPB 

 

Details regarding the SHPB used in this research and its configuration are discussed in 

Section 3.1.4.  

2.1.1 SHPB Assumptions  
Dynamics experiments have inherent variability in the results due to the equipment set up 

and alignment, as well as the specimen size, shape, and tolerances. While there is variability 

within SHPB tests, there are also several assumptions, or requirements that must be met to 

achieve valid test results. The following sections discuss these assumptions and the methods 

of satisfying them. 
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2.1.1.1 Specimen Stress Equilibrium 
Stress equilibrium within a specimen assumes that the stress measured on the output side of 

the specimen is the average stress within the specimen. This calculated stress, measured from 

the output wave, is representative of the average specimen stress (Ramesh 2008). In 1963, 

Davies and Hunter estimated that approximately three reverberations of the pulse within the 

specimen are required to satisfy stress equilibrium. This requirement is achieved through 

proper experiment and specimen design. To check this assumption, the normal forces at 

either side of the specimen (P1 and P2) can be calculated and compared to one another. 

These values should be in agreement to satisfy specimen stress equilibrium.  

2.1.1.2 Friction Effects 
The second assumption for a valid SHPB experiment is a reduction of friction effects. 

Friction occurs along both input and output bar-specimen interfaces. Considerable friction 

can lead to increased strength that is not an accurate representation of the dynamic material 

properties. These friction effects can be designed out of SHPB experiments by increasing 

the length of the specimen. It has also been shown that friction is reduced as strain rate 

increases (Ramesh 2008).However, specimen length and length-to-diameter ratio need to 

remain small to achieve high strain rates, satisfying the aforementioned stress equilibrium 

assumption, and reducing inertial effects. Because a large specimen length or length-to-

diameter ratio is not feasible, lubricant is used at the interfaces to reduce the coefficient of 

friction to negligible values.  

2.1.1.3 Inertial Effects 
Specimens that undergo dynamic testing at strain rates greater than or equal to 10 s-1 are 

subject to inertial effects. Inertial effects can cause an increase in the dynamic strength of a 

material that is not truly reflective of the material’s actual strength. Concrete is particularly 

sensitive to these effects due to its brittle nature and heterogeneity that features microcracks. 

Bischoff and Perry describe clearly the inertial effects, or lateral inertia confinement, in 

SHPB testing, stating: 

“An elastic material loaded in compression will expand in the transverse direction as 

a result of Poisson’s ratio effect. However, a cylinder loaded rapidly in the axial 
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direction will not be able to expand instantaneously in the lateral direction because of 

inertial restraint, causing it to be initially in a state of uniaxial strain with 

corresponding lateral stresses that will act as a form of confinement. Expansion, or 

unloading, begins almost immediately from the free surface of the cylinder and 

propagates towards the centre as the material is accelerated in the outward radial 

direction. This reaction to inertia, commonly called lateral inertia confinement, 

produces a lateral confined stress on that part of the material which has not yet 

expanded, or unloaded, radially.” (Bischoff and Perry 1991) 

 

Several methods exist to combat the inertial effects in dynamic testing, particularly SHPB 

tests. Modified split-Hopkinson pressure bars have been created that confine the specimen, 

both actively and passively (Gong and Malvern 1990). Furthermore, these effects can be 

greatly reduced using proper specimen design. A shorter specimen length, which equals a 

smaller aspect, or length-to-width ratio, helps reduce the effects of inertia. While Bischoff 

and Perry concluded that researchers are divided regarding whether or not the increase in 

strength is due to the increase in strain rate or inertial effects, Li and Meng (2003) agree that 

the increase in strength during dynamic testing due to lateral inertial forces can cause the 

specimen to deviate from a uniaxial stress state. However, Huang and Subhash (2003) 

rebutted this statement, verifying that strain rate effect of brittle solids is independent of 

lateral confinement at high strain rates.  

2.1.1.4 Dispersion Effects 
Longitudinal waves traveling through elastic bars are subject to geometric dispersion 

(Ramesh 2008). Although these dispersion effects can be accounted for through strenuous 

analysis, researchers typically ignore them. Rather than ignore these effects, which cause 

oscillations in the specimen loading and sharper rise times, a shaper material, or pulse 

shaper, can be used to effectively minimize dispersion. Pulse shaping, which is discussed in 

Section 2.1.4, reduces the rise time of the pulse resulting in minimal dispersion effects.  
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2.1.2 SHPB Theory 
A fundamental postulate of SHPB testing is the validity of one-dimensional elastic stress 

wave theory in the bars (Q.M. Li 2003). Ensuring elastic deformation in the SHPB bars is 

done by limiting the impact stresses and striker bar velocity. From this theory, the dynamic 

compression can be validated and analyzed.  

 

During a uniaxial compression test, the striker bar impacting the open face of the input bar 

creates a compressive wave with a pulse length equal to twice that of the striker bar (Gama 

et. al. 2004). This pulse travels through the input bar at a speed defined by the bar material. 

The longitudinal wave velocity, c, is defined as: 

 

𝑐 =  �𝐸
𝜌
               Equation 2-1 

   Where:  

    𝐸 = elastic modulus 

    𝜌 = material density. 

 

As the compressive pulse meets the input bar-specimen interface, a portion of the pulse 

enters the specimen while some of the pulse is reflected back through the input bar as a 

tension wave. As the initial compressive pulse passes through the specimen and reaches the 

output bar-specimen interface, a portion of the pulse continues into the output bar. The 

remainder of the pulse is reflected within the specimen. As mentioned before, the specimen 

must reach stress equilibrium. This is achieved as the pulse wave continues to pass back and 

forth through the specimen, remaining in the specimen due to its lower acoustic impedance 

compared to the steel input and output bars. The difference in acoustic impedance is also 

responsible for the reflected wave in the input bar. Acoustic impedance, Z, is defined as the 

degree at which a wave transmits through or reflects off of a material boundary (Gama et.al. 

2004). It can be calculated using the following equation: 
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𝑍 = 𝜌 ∙ 𝑐                 Equation 2-2 

   Where:  

    𝜌 = material density 

    𝑐 = longitudinal wave velocity.  

 

The movement of the pulse wave is tracked through the SHPB by strain gages located at the 

midspan of the input and output bars. The individual input, output, and reflected waves, are 

utilized in the stress and strain analysis of the specimen. 

  

There are multiple methods of analyzing data from SHPB testing. One-dimensional (1-D) 

wave propagation theory is most common, while two- and three-dimensional analyses have 

been developed (Gray III 2000). There are three main relationships used to define the 1-D 

analysis of the dynamic properties of a sample in a SHPB, with the ultimate goal of obtaining 

a dynamic stress-strain curve for the tested material. The strain in the specimen, εs, is 

calculated as: 

 

𝜀𝑠 = −2∙𝑐𝑏
𝐿𝑠

∙ ∫ 𝜀𝑟 𝑑𝑡𝑡
0     Equation 2-3 

   Where: 

    𝑐𝑏 = longitudinal wave velocity of the SHPB bars 

    𝐿𝑠 = length of specimen 

    𝜀𝑟 = strain of reflected wave. 

 

The dynamic specimen stress, σd, is calculated by the following equation: 

𝜎𝑑 = 𝐸𝑏 ∙
𝐴𝑏
𝐴𝑠
∙ 𝜀𝑡       Equation 2-4 

  Where: 

   𝐸𝑏 = elastic modulus of SHPB bars 

   𝐴𝑏 = cross-sectional area of SHPB bars 

   𝐴𝑠 = cross-sectional area of specimen 

   𝜀𝑡 = strain of transmitted (output) wave. 



10 
 

Aside from the specimen stress and strain, specimen strain rate is also calculated to 

characterize the loading type as defined by Figure 2.1. The specimen strain rate of the 

loading, 𝜀�̇�, is calculated by the following equation: 

 

𝜀�̇� = −2∙𝑐𝑏
𝐿𝑠

∙ 𝜀𝑟       Equation 2-5 

Where: 

    𝑐𝑏 = longitudinal wave velocity of the SHPB bars 

    𝐿𝑠 = length of specimen 

    𝜀𝑟 = strain of reflected wave. 

 

2.1.3 Aspect Ratio 
Aspect ratio is defined as the ratio of the length of a shape to the width of a shape. In the 

case of a cylindrical SHPB specimen, the aspect ratio pertains to the ratio of the length (L) 

of the specimen compared to the diameter (D) of the specimen (L:D).  

 

Specimen design is an important step in a SHPB test. There are many assumptions that must 

be met for a test to be valid, as mentioned in Section 2.1.1, and many of these can only be 

achieved through adequate specimen design. One of the assumptions is that the specimen is 

in stress equilibrium during the early duration of the test, or “ringing-up” period. To help 

minimize the “ringing-up” period, a minimum possible specimen length could be used. 

However, pulse shapers can be utilized to achieve equilibrium. Another assumption for a 

valid SHPB experiment is that friction and inertia effects are minimal. Specimen geometry 

plays a large role in achieving this criterion. Frictional effects occur at the interface between 

the bar and the specimen. Inertial effects occur as a result of the loading occurring faster 

than the specimen can expand laterally. This results in an increase in dynamic strength that 

does not accurately reflect the material’s actual increase in dynamic strength when compared 

to static strength.  
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An issue arises from the fact that the conditions for minimum friction and minimum inertia 

cannot be satisfied simultaneously. Longer specimens reduce the frictional effects but 

increase the inertial effects. Similarly, the shorter the specimen the smaller the inertial effects, 

but greater the frictional effects. Frictional effects can be minimized with the use of 

lubricants. Inertial effects are minimized primarily through aspect ratio. Some adaptations to 

the SHPB have been designed to either actively or passively confine the specimen in the 

radial direction. Inertia effects become an issue when the strain rate reaches or exceeds 102 

1/sec (Malvern et. al. 1984). Generally, SHPB specimens, of all types of materials, have 

aspect ratios between 0.5:1 to 1:1 (Gray III 2000). This range is taken as a compromise 

between the two effects. The diameter of the specimen (Ds) is limited by the diameter of the 

incident and transmission bars (Db). Consequently, the diameter of the specimen should not 

exceed the diameter of the bars.  

 

According to Gama et al. (2004), along with other literature, the optimum length of a 

specimen depends on the rise time required to achieve an uniaxial stress state in the 

specimen. In 1963, Davies and Hunter proposed an optimum specimen geometry shown by 

Equation 2-6.    

 

𝐿
𝐷

= �3∙𝑣𝑠
2

      Equation 2-6 

   Where: 

    𝐿 = length of specimen 

    𝐷 = diameter of specimen 

    𝜈𝑠 = Poisson’s ratio of specimen. 

 

Research has been done to determine whether or not the increase in strength under dynamic 

loading conditions is a true material characteristic or if it is due to the radial inertia effects. 

Some researchers believe that the effects of inertia cannot be completely designed out of an 

SHPB experiment through specimen geometry and must, therefore, be carefully analyzed 

(Zhang et. al. 2009).  
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Table 2.1 is a compilation of SHPB research, primarily on concrete or other brittle materials. 

Outlined in the table is the aspect ratio used for each research project. Clearly, the 0.5:1 and 

1:1 aspect ratios are the most commonly used specimen aspect ratios, regardless of the 

specimen length and diameter. Note that the “optimum equation” in Table 2.1 refers to the 

aspect ratio defined by Equation 2-6. 

Table 2.1: Aspect ratio used in previous SHPB research 

Research 
Aspect Ratio 

(L:D) 
Length Diameter Material Tested  

Davies and Hunter (1963) 
0.5:1 and optimum 

equation 

 12.7 mm 

(0.5 in) 

25.4 mm                  

(1.0 in) 
Metals and Polymers 

 Ross et. al. (1989) 1:1 
51 mm    

(2.0 in) 

51 mm                     

(2.0 in) 
Concrete 

Malvern and Ross (1984) 0.5:1 
 10.16mm 

(0.4 in) 

19 mm 

(0.75 in)  
Concrete 

Ross (1989) 1:1 
51 mm    

(2.0 in) 

51 mm                     

(2.0 in) 
Concrete 

Gong and Malvern (1990) 0.667:1 
50.7 mm  

(2.0 in) 

76 mm                  

(2.99 in) 
Concrete 

Bischoff and Perry (1991) Optimum equation N/A N/A Concrete 

Tang et. al. (1992) 0.5:1 and 1:1 Varied 
76.2 mm                 

(3.0 in) 
Concrete 

Jerome (1991) 1:1 N/A N/A N/A 

Ross et. al. (1995) 1:1 
51 mm    

(2.0 in) 

51 mm                      

(2.0 in) 
Concrete 

Shan et. al. (2000) 

1:1 (50 samples), 

1.5:1 (40 samples), 

2:1 (10 samples)* 

Varied 30 mm 
Rock (Marble and 

Granite) 

Frew et. al. (2001) 1:1 
12.7 mm  

(0.5 in) 

12.7 mm                 

(0.5 in) 
Rock (Limestone) 

Vitton et. al. (2002) 2:1 
37.5 mm  

(1.48 in) 

75 mm                  

(2.95 in) 

Concrete and 

Aggregate 

Lok et. al. (2002) 0.57:1 and 0.7:1 Varied 70 mm                  Brittle Materials 
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(2.76 in) 

Lok and Zhao (2004) 0.5:1 
35 mm  

(1.38 in) 

70 mm                  

(2.76 in) 

Steel Fiber-Reinforced 

Concrete 

Li and Meng (2003)† 0.5:1 
60 mm  

(2.36 in) 

120 mm                 

(4.72 in) 
Concrete 

Wang et. al. (2008) 0.5:1 
37 mm  

(1.46 in) 

74 mm                  

(2.91 in) 

Steel Fiber-Reinforced 

Concrete 

Vecchio and Jiang (2007) 1:1 
5 mm    

(0.20 in) 

5 mm                     

(0.20 in) 

50-50 NiTi alloy, 60 

NiTi alloy, tungsten 

single crystals, 

interstitial-free steel, 

MACOR 

Ramesh (2008) 0.5:1 - 1:1 N/A N/A N/A 

Zhang et. al. (2009) 0.5:1 and 0.35:1 Varied 
74, 50, 17 mm    

(2.91, 1.97, 0.67 in) 
Concrete-like materials 

Frew et. al. (2010) 1:1 
12.7 mm  

(0.5 in) 

12.7 mm                 

(0.5 in) 
Rock (Limestone) 

Lu et. al. (2010) 0.5:1 
37 mm  

(1.46 in) 

74 mm                  

(2.91 in) 
Rock 

Wang et. al. (2011) 0.5:1 
38.5 mm  

(1.52 in) 

77 mm                  

(3.03 in) 

Fiber-reinforced high-

strength concrete 

Gilbertson (2011) 0.5:1 
37.5 mm  

(1.48 in) 

75 mm                   

(2.95 in) 
Wood 

Gilbertson (2011) 0.75:1 
37.5 mm  

(1.48 in) 

75 mm                  

(2.95 in) 
Aluminum 

Zhigang et. al. (2012) 0.5:1 
35 mm  

(1.38 in) 

70 mm                  

(2.76 in) 

Hybrid Fiber 

Reinforced Concrete 

Chen et. al. (2013) 0.5:1 
37 mm  

(1.46 in) 

74 mm                  

(2.91 in) 
Silica Fume Concrete 

*Samples excluded due to discrepancy 
† Finite element analysis simulation  
 

2.1.4 Pulse Shaping 
Pulse shaping is the creation of a ramp shaped incident pulse during a SHPB test. This is 

accomplished by placing a material on the open face of the incident bar in a manner that it 
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deforms plastically upon contact with the striker bar. The ramp shaped incident pulse, as 

opposed to a rectangular/trapezoidal shaped pulse, is due to the reduction in rise time. Two 

generic incident waves are shown in Figure 2.3. The plot on the left is without pulse shaping, 

while the plot on the left is with pulse shaping. The effect of the pulse shaper is clearly 

evident in the second image.  
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Figure 2.3: Generic input pulse waves without and with pulse shaping 

 

Rise time is the estimated time required for π reverberations in the specimen (Davies and 

Hunter 1963). The use of a pulse shaper generates a constant reflected pulse, which 

according to one-dimensional wave theory, represents a constant strain rate of the specimen, 

a consideration when discussing the validity of a SHPB test. Typical incident pulses are 

rectangular or slightly trapezoidal, with the specimen reaching maximum amplitude nearly 

instantaneously. This can result in high frequency oscillations, or Pochhammer Modes, 

which create dispersive effects in the data (Gama et. al. 2004). Pulse shaping minimizes these 

dispersive effects. Furthermore, as a result of the energy required to deform the pulse 

shaper, there is a reduction in achievable strain rate during an SHPB test. This must be taken 

into consideration when trying to attain high strain rates.  

 

There are few criteria corresponding to the proper use of pulse shapers. First, the final pulse 

shaper size must not expand outside the diameter of the incident bar. This limits the size of 
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the pulse shaper. Throughout the literature there are no existing size specifications, rather 

only recommendations used in practice by other researchers. Many researchers use varying 

thickness-to-diameter ratios to help determine the optimal size of the pulse shaper. Other 

researchers use varying diameters and thicknesses.  

 

Typically, soft metals are used as pulse shapers. Table 2.2 is a compilation of previous work 

using the Split-Hopkinson pressure bar along with pulse shaper information. Outlined in the 

table are the pulse shaping materials and sizes, along with the material being tested with the 

SHPB. Based on the gathered information, it is evident that pure copper, hard or annealed, 

is the most popular pulse shaper material for any SHPB test material. However, paper and 

other metals have also been used. An exact size of the pulse shaper remains inconclusive. It 

is important to note that the smaller and thinner the pulse shaper, the less energy will be 

used to plastically deform it.  
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Table 2.2: Pulse shapers used in previous SHPB research 

Research Pulse Shaper Material Tested Material Pulse Shaper Size 

Wang et. al. (2011) Aluminum 
Plain &Fiber-reinforced 

concrete 
30 mm diameter x 1 mm thick 

Forrestal et. al. (2006) 
Annealed and hard 

C11000 copper  
 Plain concrete 

3.97 mm diameter x 0.79 mm 

thick  

Frew et. al. (2002) 
Annealed and hard 

C11000 copper  
Macor  

Diameter: 3.16 - 4.81 mm   

Thickness: 0.78-1.59 mm 

Frew et. al. (2001) 
Annealed and hard 

C11000 copper  
Limestone 

3.97 mm diameter x 0.79 mm 

thick 

Frew et. al. (2010) Annealed C11000 copper  Limestone  
9.60 mm diameter x 1.02 and 4.80 

mm thick 

Lu et. al. (2010) Unknown  Rock  Unknown 

Gilbertson (2011) 8 sheets of typing paper Wood Full area of bar 

Zhang et. al. (2009) Unknown    Mortar Unknown   

Abotula and 

Chalivendra (2010) 

Copper-182 alloy and 

annealed C11000 copper 

 Aluminum, Macor, 

Plexiglas, Synthetic foam 

Diameter: 3.175-6.35 mm   

Thickness: 1.13-3.0 mm 

Vecchio and Jiang 

(2007) 
HSHWHR material Metals, Macor  31.5 mm^2 area 

 

2.1.5 Parallel Tolerances 
An important characteristic of the specimen tested in an SHPB setup is that the specimen 

has parallel ends. The ends of the specimen meet with the input and output bars to make up 

the input bar/specimen interface and the output bar/specimen interface, respectively. To 

ensure uniform stress and consistency of the data, it is important to meet parallel tolerances. 

However, there are no standards or set regulations regarding the parallel tolerances for 

SHPB specimens. It is recommended that the specimen ends be machined parallel within a 

0.001 inch tolerance (Gray III 2000). Furthermore, Gray III suggests a tolerance of 0.0001 

inch for brittle materials. According to Ductal® reference T 009, the standard Operating 

Procedure Cylinder End Preparation, UHPC specimens must be within a maximum degree 
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difference less than or equal to 0.5 degrees. The ASTM C39 Standard Test Method for 

Compressive Strength of Cylindrical Concrete Specimens also requires specimen ends to be within 0.5 

degrees difference (ASTM C39, 2013). 

 

2.2 Ultra-High Performance Concrete (UHPC) 

2.2.1 History of UHPC  
Ultra-high performance concrete (UHPC) was first introduced in France in the early 1990’s 

(Ahlborn et. al. 2003). An alternative to conventional concrete, UHPC offers enhanced 

material characteristics. UHPC utilizes an extremely dense microstructure as well as a very 

low water-to-cement ratio to obtain compressive strengths exceeding 22,000 psi (150 MPa), 

among other improved material properties, including high tensile strength, long-term 

durability, and post fracture strain. As a relatively new material, UHPC has been the subject 

of a great deal of research throughout the world. However, the concrete has yet to become a 

common material in the construction industry, particularly in the United States.  

 

Several projects across the world have taken advantage of UHPC’s strength and durability 

characteristics. The first bridge using UHPC was a pedestrian bridge completed in 1997 in 

Quebec, Canada (Blaise and Couture 1999). Since then several other bridges have been 

constructed using UHPC, including the first highway bridges in Bourg-les-Valence, France in 

2002 and the Footbridge of Peace in Seoul, South Korea in 2002. The first bridge completed 

in the United States was in Wapello County, Iowa in 2006 (Endicott 2006). It utilizes UHPC 

I-shaped girders and waffle deck panels. Because precast construction best suits UHPC, its 

applications often include bridge girders and deck elements. However, UHPC is also used 

for other structural components as well as architecturally. Tokyo’s Haneda Airport Runway 

D expansion project is one of the largest UHPC projects to date. It included 24,000 m3 

(847,522 ft3) of UHPC slabs (Tanaka et. al. 2009).  Architectural applications of UHPC 

include facades, lattices, and sunshades among other aesthetic components (Batoz and 

Behoul 2009). 
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Currently, there are proprietary UHPC mixtures available on the United States market 

including Ductal® and Taktl®. Furthermore, several universities are working to develop their 

own material blend of ultra-high performance concrete. As UHPC knowledge expands, 

along with design guidelines and codes, so too will its popularity grow.  

2.2.2 Composition of UHPC 
Although characterized as concrete, UHPC varies in composition compared to conventional, 

or even high strength, concrete. Using similar mixture constituents, the proportions vary 

compared to other concrete mixtures to produce its high performance material properties. A 

typical composition of UHPC is shown below in Table 2.3 (Graybeal 2006).  

 

Table 2.3: Typical UHPC Composition 

 
 

UHPC features a low water-to-cement ratio (w/c ≈ 0.20) and extremely dense 

microstructure. The dense microstructure of UHPC is a direct result of the small particle 

sizes of the cement and cementitious materials in the mixture, along with the exclusion of 

coarse aggregate. Essentially, UHPC could be considered a mortar due to the exclusion of 

coarse aggregate as a constituent. A low water-to-cement ratio is achievable with the use of a 

high range water reducing admixture (HRWRA), also known as superplasticizer. Also, 

UHPC features steel fibers, improving its tensile capacity and ductility. The fibers are 

generally about 0.008 inches in diameter by 0.5 inches long. With the addition of these steel 

fibers, UHPC is considered a fiber reinforced concrete (FRC). Accelerator admixtures are 

optional based on construction parameters.  
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2.2.3 Material Properties of UHPC 
With many similarities to conventional and high strength concretes, UHPC is defined 

primarily by its material properties. American Concrete Institute (ACI) Committee 239-

UHPC has proposed a common definition for UHPC, pending ACI approval, as concrete 

that has a minimum specified compressive strength of 150 MPa (22,000 psi) with specified 

durability, tensile ductility and toughness requirements; fibers are generally included to 

achieve specified requirement. There are many other material properties that differentiate it 

from other variations of concrete. Since its creation, extensive research has helped to clearly 

define the mechanical properties of UHPC. However, as with any material there are ranges 

that outline UHPC’s properties (Ahlborn et. al. 2003). Table 2.4 summarizes the various 

properties of UHPC as compared to normal strength concrete (NSC) and high performance 

concrete (HPC). 

Table 2.4: Material properties and performance measures for varying concrete types 

Material Property NSC HPC UHPC 
Compressive Strength (ksi) 3.0-6.0 6.0-14.0 22.0-33.0 
w/c Ratio 0.40-0.70 0.24-0.35 0.14-0.27 
Split Cylinder Tensile Strength 
(ksi) 

0.36-0.45 - 1.0-3.5 

Maximum Aggregate Size (in) 0.75-1.00 0.38-0.50 0.016-0.024 
Porosity (%) 20.0-25.0 10.0-15.0 2.0-6.0 
Pore Diameter (in) - - < 6*10-7 
Ductility - - 250x > NSC 
Fracture Energy (k-in/in2) 0.00057-0.00086 - 0.057-0.228 
Young's Modulus (ksi) 2000-6000 4500-8000 8000-9000 
Modulus of Rupture 1st Crack (ksi) 0.4-0.6 0.8-1.2 2.4-3.2 
Ultimate Flexure Strength (ksi) - - 3.0-9.0 
Poisson's Ratio 0.11-0.21 - 0.19-0.24 
Creep Coefficient, Cu 2.35 1.6-1.9 0.2-0.8 
Percent Air (%) 4.0-8.0 2.0-4.0 0 
 

Table 2.4 clearly illustrates that not only does UHPC provide superior compressive strength, 

but UHPC also performs at much higher levels in many mechanical properties compared to 
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NSC and HPC. In regards to the dynamic behavior of UHPC at elevated strain rates, the 

most important characteristics to note are its compressive strength, ductility, flexure 

strength, and fracture energy.  

 

2.3 SHPB Testing for Concrete 
The Split-Hopkinson pressure bar was originally designed for, and is most often used, to test 

metals. However, researchers have used it to examine the dynamic properties of brittle 

materials, including concrete. While other testing methods exist to test the impact and 

dynamic properties of materials, such as the ACI Drop Weight-Impact Test (Myers and 

Tinsley 2013), the SHPB test exceeds the capabilities of these test methods for high-strain 

rate experiments. The following sections discuss the current body of research regarding the 

use of the SHPB testing on concrete materials.  

2.3.1 Plain Concrete 
Ross et. al. (1989) first expanded on the minimal dynamic concrete research, using a 2-inch 

SHPB to test 100 concrete and mortar samples in tension and compression configurations. 

Dynamic increase factors were reported for strain rates ranging from 10-7 to 102 sec-1. Ross 

et. al. (1989) found as strain rate increases, dynamic increase factors for splitting tension, 

direct tension, and compression tests also increase. Furthermore, concrete exhibits larger 

dynamic increase factors than that of mortar tests.  

 

In 1991, Bischoff and Perry reported a comprehensive review of dynamic compressive 

behavior. Included are the strain rate ranges and dynamic increase factors for the breadth of 

the research. This includes research completed using methods other than the SHPB for a 

variety of NSC specimen sizes. However, it is generally accepted that there is an increase in 

dynamic compressive strength at increasing strain rates (Bischoff and Perry 1991).  

 

Zhang et. al. (2009) investigated the dynamic strength increase of concrete using solid and 

tubular cylinders in SHPB experiments. The research suggests that radial confinement had a 
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greater influence on the dynamic increase in compressive strength of concrete than strain 

rate effect. This research applies to strain rates in the range of 1 s-1 to 103 s-1.   

 

Tang et. al. (1992) observed compressive strain rate dependence for two high strength 

concretes with static strengths of 14,000 psi (97 MPa). This experiment was completed on a 

3 inch (76.5 mm) SHPB at a range of strain rates between 0 and 200s-1. The authors also 

utilized dispersion correction analysis techniques that resulted in more accurate stress wave 

results. Dispersion correction also created smoother output as well as ramp incident pulse 

waves. This dispersive analysis can be similarly achieved through the use of a pulse shaper 

material. Furthermore, the research investigated the effect of lateral stress on the dynamic 

compressive strength of the concrete. A calculated estimation of the contributing lateral 

specimen stress was between 0.1-0.2%, which is considered trivial compared to the total 

dynamic compressive strength.  

2.3.2 Fiber-Reinforced Concrete 
While some fiber-reinforced concrete consists of higher strength concrete than plain 

concrete, normal strength concrete can still be fiber-reinforced. Wang et. al. (2011) 

concluded that fiber-reinforced high strength concrete (FRHSC) had better impact resistance 

than plain high strength concrete (HSC). The research consisted of plain and fiber reinforced 

high strength concrete, with compressive strengths between 11,600 psi (80 MPa) and 13,000 

psi (90 MPa), under SHPB testing. The FRHSC contained 0.5% fiber content. Strain rates 

for the testing ranged from 40s-1 to 300s-1. It can also be concluded from Wang et. al. (2011) 

that the FRHSC displays a larger amount of energy absorption compared to the plain HSC. 

Furthermore, the dynamic increase factors (DIF) for compressive strength, critical strain, 

and elastic modulus increased for both the FRHSC and the HSC as strain rates increased.  

 

Wang et. al. (2008) investigated the effects of fiber reinforcement content under dynamic 

compression using the Split-Hopkinson pressure bar. Fiber-reinforced concrete samples 

were tested with varying levels of steel fiber content, specifically 0.0%, 3.0%, and 6.0% 

percentage by volume. Strain rates during this research ranged from 40s-1 to 100s-1. The 
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research shows that both a higher steel content and higher strain rate result in a higher 

dynamic compressive strength. Dynamic increase factors were not reported.  

 

Zhigang et. al. (2012) used the SHPB to investigate the mechanical capability of steel-

polypropylene hybrid fiber-reinforced concrete (HRFC) as compared to steel fiber-

reinforced concrete (SFRC). These samples were tested at strain rates ranging from 20s-1 to 

120s-1. The plain concrete nearly reached static compressive strengths of 8,700 psi (60 MPa). 

HRFC performed better than SFRC. DIFs for the SFRC ranged between 1.11 and 1.27, 

while DIFs for the HFRC ranged between 1.11 and 1.39. For both materials, the DIFs 

increased as strain rate increased.  

 

Lok and Zhao (2004) tested steel fiber-reinforced concrete (SFRC) using the SHPB to 

determine its ability to resist impact, concluding that the compressive strength of SFRC 

increases in the same manner as plain concrete at high strain rates. More specifically, 

dynamic compressive strength increased as strain rate increased. DIFs also increased as 

strain rate increased, ranging between 1.02 and 1.71. Strain rates between 20s-1 to 100s-1 were 

reached during testing.   

 

2.3.3 UHPC 
While research has been conducted to show the effects of fiber reinforcement on dynamic 

response, little SHPB testing has been done on concretes with strengths higher than 13,000 

psi. With its improved material properties, UHPC tends to behave quite differently than 

other concretes. For that reason, along with the need for comprehensive material behavior 

characterization on UHPC, it is essential to continue the dynamic studies of UHPC using the 

SHPB. 

 

Millon et. al. (2012) used Hopkinson bar experiments to conclude that the dynamic tensile 

and dynamic fracture energy of UHPC reach higher values than those of normal concrete 

and high-performance concrete. The research investigates these two properties and their 

relationship with fiber content. UHPC without any fiber content behaved similar to 
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conventional concrete. However, with just 1.0% and 2.5% fiber content, the dynamic tensile 

strength and dynamic fracture increased greatly. It should be noted that these dynamic 

properties were determined at strain rates up to 180s-1.  

 

In 2006, Cavill et. al. presented on the capability of UHPC, specifically Ductal®, as a material 

to resist and mitigate the effects of blasts and impacts. A part of these proceedings included 

a “Constitutive Model for Ductal® at High Loading Rates”. The research concluded an 

increase in compressive strength up to 1.5 times between the dynamic and static loading. 

Cavill et. al. also concluded that UHPC is less rate sensitive than normal strength concrete 

and high strength concrete. This experimental program, which is based on only 3 specimens, 

provided the basis for a strain-rate dependent constitutive model proposal. The model is 

only applicable for compressive strengths between about 4600 psi (32 MPa) and 23000 psi 

(160 MPa) at strain rates not exceeding 300s-1.  

2.4 Dynamic Increase Factor (DIF) 
An important aspect in comparing static and dynamic strengths is the dynamic increase 

factor (DIF). Also known as the dynamic impact factor, it is defined as the ratio of the 

ultimate dynamic stress to the ultimate static stress. Abrams (1917) first observed the 

strength increase in concrete at increased strain rates (Li and Meng 2003). Since then, this 

material response is generally accepted for concretes and concrete-like materials.  

 Bischoff and Perry (1991) compiled various information regarding the influence of strain 

rate on dynamic compressive strength. Figure 2.4 is a compilation of previous research 

measuring the DIF of plain concrete.  
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Figure 2.4: Research of strain rate influence on concrete compressive strength (reprinted with 

permission from Bischoff and Perry 1991) 

 
There is uncertainty regarding the data outlined in Figure 2.4 due to the different testing 

techniques, specimen size effect, material differences, and boundary effects (Li and Meng 

2003). However, from Bischoff and Perry’s study on the influence of strain rate on the 

compressive strength of concrete, the clear trend is an increase in compressive strength as 

strain rate increases. Note that the DIFs reach about 2.25 as the body of data ends. From 

graphical interpolation, DIFs can be expected to continue to exponentially increase at strain 

rates above 102 sec-1. As such, a less rate sensitive material, such as UHPC, will not 

experience increased strengths as rapidly as strain rate increases.  This high strain rate range 

is especially important as “the SHPB-based experimental results suggest […] that the strain-

rate influence on DIF becomes significant when the strain-rate is beyond a critical value 

between 101 and 102 s-1” (Li and Meng 2003). Further research is required to better 

understand the material behavior of concrete above these critical strain rates.  
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Chapter 3 Experimental Methodology 

3.1 Dynamic Testing 
The dynamic testing consisted of a uniaxial compression test using the SHPB equipment at 

Michigan Technological University. Testing consisted of multiple specimens of 0.5:1, 1:1, 

and 2:1 aspect ratios. Normal strength concrete was tested to allow for baseline data and 

equipment verification. After completing the SHPB testing on normal strength concrete, two 

sets of UHPC specimens were tested. One set was cured in ambient conditions, while the 

other was thermally treated according to standard operating procedures as recommended by 

the supplier. Table 3.1 below shows the number of specimens tested using the SHPB for 

each aspect ratio as well as each type of concrete. 

 

Table 3.1: Number of samples tested for each concrete type and aspect ratio 

Aspect Ratio NSC UHPC - Ambient UHPC – Thermal Treatment 
0.5:1 8 8 7 
1:1 6 7 7 
2:1 3 3 3 

 

3.1.1 Concrete Mixing and Curing 
The normal strength concrete used for this research was delivered by Superior Sand & 

Gravel in Hancock, Michigan. The concrete was placed in 3”x6” cylinders according to 

ASTM C192 Making and Curing Concrete Test Specimens in the Laboratory. Cylinders were covered 

for 24 hours, at which time they were removed from molds and left to ambient cure. Static 

compressive strength data used in this research was taken at 28 days. The NSC samples were 

tested in the SHPB at 35 days.  

 

Both of the UHPC concrete batches were mixed at Michigan Technological University’s 

Cement and Concrete Research Lab. Standard mixing procedures were followed using 

Ductal®, a UHPC premix produced by LaFarge North America. The 3”x6” cylinders were 

filled by allowing the concrete to flow down the side of the tilted cylinder until full, utilizing 
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UHPC’s ability to self-consolidate. The difference between the two UHPC mixes is the 

curing regime. The first mix was ambient cured. This included a steam cure at 140°F for 24 

hours following casting. After the steam cure the cylinders were de-molded and left to 

ambient cure. The ambient cured UHPC cylinders were tested in the SHPB and for static 

compressive strength at 54 days, well after the recommended 28 day curing time.  

 

The second UHPC batch was thermally treated according to Ductal® Standard Operating 

Procedures (Peuse 2008), which begins with 48 hours of ambient curing, followed by de-

molding. The cylinders were then placed in a cure chamber for another 48 hours. The cure 

chamber increases temperature at about 20°F/hour until holding at 194°F. The first time 

this batch of UHPC was placed in the cure chamber, the cure chamber was unable to reach 

the proper 194°F and maintain its heat over the 48 hour time period. As a result, the same 

batch was properly thermally treated again, ensuring the proper temperatures and time 

frames were attained. Once the thermally treated UHPC has cooled to ambient 

temperatures, the material properties are locked in and it can be tested at any time. 

3.1.2 Specimen Preparation 
Prior to testing with the SHPB, each specimen must undergo significant preparation. This 

preparation ensures consistency and accuracy of testing. Once the concrete specimens were 

mixed and cured, the next step in preparing the concrete specimens was to cut the 3”x6” 

cylinders to the correct size based on the selected aspect ratio. The cylinders were cut 

transversely using a water-cooled concrete saw. Once the samples are cut to size, the ends 

must be ground until smooth and parallel with one another. This was done using a Reid 

Surface Grinder.   

 

As previously mentioned, the parallelness of the specimen is very important in SHPB testing. 

However, there are no specific regulations for SHPB concrete specimens, only 

recommendations (Gray III 2000). The parallelness of each specimen was checked using a 

micrometer. Relative specimen height was measured at 5 different points, as shown in Figure 

3.1.   
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Figure 3.1: Location of measurements for parallelness data 

The parallel measurement data can be found in Appendix A. Of the 50 total specimens, 20 

samples, or 40%, did not meet the 0.5° degree tolerance recommendation by at least 1 point 

of measurement following extensive surface grinding.  

 

The final steps of specimen preparation prior to testing were to record length and diameter 

measurements and assign an ID for data processing for each sample. Figure 3.2 is a photo of 

prepped samples of each aspect ratio.  

 

 

Figure 3.2: Prepared UHPC specimens at aspect ratios of 2:1, 1:1, and 0.5:1 

~3” 
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3.1.3 Specimen Nomenclature  
Each prepared specimen was given a unique identification to distinguish the various 

properties and test data of the samples. The first letter denotes either normal strength 

concrete or UHPC with either a “N” or “U”, respectively. Following a hyphen is an “A”, 

“B”, or “C”. This letter represents the aspect ratio of the specimen, 0.5:1, 1:1, or 2:1, 

respectively.  After the letter representing the aspect ratio is the sample number for that 

given aspect ratio. For NSC specimens, the aforementioned information concludes the 

identifying process. However, with two different curing regimes for the UHPC, another 

hyphen is added followed by “AMB” for ambient cured specimens or “TT” for thermally 

treated specimens.  

3.1.4 SHPB Configuration 
The SHPB testing equipment at Michigan Technological University’s Cement and Concrete 

Research Lab features an input and output bar, each 3 inches in diameter and 12 feet long. 

These are made of 1045S steel, which carries a minimum strength of 91 ksi (630 MPa) and a 

yield stress of 77 ksi (530 MPa) (Gilbertson 2011). It also includes five various sizes of 

striker bars made of the same material. Each striker bar is 3 inches in diameter, but has 

various lengths of 12, 18, 24, 36, 48 inches (305, 457, 610, 914, 1,219 mm) long. The striker 

bar is fired using compressed nitrogen gas.  

 

Both the input bar and output bar have 4 Vishay Micro-Measurements EA-06-125AC-350 

strain gages attached at midspan, 90 degrees from each other. Each gage corresponds to the 

gage opposite it, creating a channel in the data acquisition system. Figure 3.3 shows a 

schematic of the strain gage layout and corresponding channels. Only 1 pair of strain gages is 

needed on the input and output bars. However, 2 pairs of strain gages are used for 

redundancy.  
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Figure 3.3: Strain Gage/Channel Layout 

 
Four Vishay or Ellis Associates Bridge Amplifier and Meter-1 (BAM-1) are used for signal 

conditioning and amplification of the strain gages. Figure 3.4 is a photo of the BAM-1 units 

under the current SHPB configuration.  

 

 

Figure 3.4: Bridge amplifier units (BAM) 

 

The strain gages attached to the bar are connected to the BAM-1 units in full Wheatstone 

bridge configuration. At rest the Wheatstone bridge is balanced. An output voltage is 

recorded when the bridge becomes unbalanced, as is the case during the SHPB test. 
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Data acquisition and analog-to-digital conversion was accomplished using a digital 

oscilloscope. A Picoscope 4424, from Pico Technology, allows for precise measurement of 

small voltage values at high speeds (Gilbertson 2011). The oscilloscope settings were 

selected based on previous work with this equipment and estimation of test results. Each 

channel appears concurrently, with a color code to differentiate between them. The 

Picoscope is set to record 2000 samples with a maximum output voltage of ± 5 volts. Prior 

to each test a trigger point is established at 200 μs and 0.4 volts to indicate when to initiate 

data acquisition during each test.  

 

The velocity of the striker bar is another test characteristic used in data processing. A 

Shooting Chrony – Beta Master chronograph is mounted between the cannon and input bar 

to measure the striker bar velocity. The chronograph measures the time it takes for an object 

to pass between two sensors based on disturbances in light. Due to space limitations the 

chronograph is mounted 6 inches apart, as shown in Figure 3.5, instead of 12 inches apart as 

recommended. Therefore, the measured velocity reading is double the striker bar velocity. 

This is accounted for in the data analysis process.  

 

 

Figure 3.5: Chronograph used to measure striker bar velocity 
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If the chronograph could not detect a change in light, the velocity would not record. If the 

velocity was not recorded for a given test, the average striker bar velocity for a group of tests 

was used in the data analysis process.  

3.1.5 Calibration 
A series of calibration tests are required prior to specimen testing for any given day.   

3.1.5.1 BAM Calibration 
The first calibration step is to balance the BAM-1 units and simulate a strain by shunting the 

unit’s internal resistor. This ensures the most consistent and accurate results across all four 

channels and each unit individually. Using the balance knob, the bridge is balanced both on 

the unit analog meter as well as digitally on the oscilloscope.  

 

After balancing each unit, the amplifiers are shunted internally. This simulates an estimated 

strain value and is done by pressing inward and holding down the calibration knob.  The 

shunting of the internal resistor causes an imbalance in the Wheatstone bridge resulting in an 

output voltage, similar to what will occur during an actual test. The amount of output 

voltage is dependent on the resistor values as well as the calibration value.  

 

Equation 3-1, found in the BAM-1 unit instruction manual, is used to calculate the simulated 

strain, μεCAL.  

 

𝜇𝜀𝐶𝐴𝐿 = 𝑅𝑔∙𝐶𝐴𝐿 𝑆𝐸𝑇
𝐺𝐹∙𝑁

   Equation 3-1 

  Where: 

   𝑅𝑔 = gage resistance (ohms) 

   𝐶𝐴𝐿 𝑆𝐸𝑇 = position of Calibration switch 

   𝐺𝐹 = exact gage factor of gages 

   𝑁 = number of fully-active gages. 
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Based on the strain gage characteristics, the gage resistance is equal to 350 ohms. The gage 

factor for these particular gages is 2.11.  Based on the bridge configuration, the number of 

fully-active gages is equal to 1. Lastly, the Calibration switch on the BAM-1 units was set to 

20, resulting in an output voltage of about 1.6 volts. According to the equation above, the 

simulated micro-strain is 3317.5 με. This simulated strain value is later used in data 

processing to convert the output voltage to strain.  

3.1.5.2 Bars Together 
Once the bridge amplifier units are calibrated, two tests are run on the SHPB without 

samples.  The first test is conducted with the input and output bars together.  Performing 

this test results in a constant wave moving through both the input and output bars without a 

reflected wave. This allows for a stress correction factor, Kσ, to be calculated as follows: 

 

𝐾𝜎 = 𝜀𝑏 (𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙)

𝜀𝑏 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)
       Equation 3-2 

  Where: 

   𝜀𝑏 (𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) = theoretical strain in SHPB 

   𝜀𝑏 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) = measured strain in SHPB. 

 

The measured value of strain is taken as the average strain during the time of the pulse. The 

theoretical strain value, εb(theoretical), is a function of the SHPB bar material and the velocity of 

the striker bar. 

 

𝜀𝑏 (𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) =  𝑣𝑠𝑏
2∙𝑐𝑏

             Equation 3-3 

  Where: 

   𝑣𝑠𝑏 = striker bar velocity 

   𝑐𝑏 = longitudinal wave velocity of SHPB bars. 

 

The stress correction factor is applied during the data analysis process to correct the output 

wave data. 
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3.1.5.3 Bars Apart 
The final calibration test is run without a sample, but keeping the input and output bars 

apart from one another. The “bars apart” test results in the strain gages only recording input 

and reflected waves because there is no path for the pulse wave to reach the output bar. This 

allows for a strain correction factor, Kε, to be calculated as follows: 

 

𝐾𝜀 = 𝜀𝑏 (𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙)

𝜀𝑏 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)
         Equation 3-4 

  Where: 

   𝜀𝑏 (𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) = theoretical strain in SHPB 

   𝜀𝑏 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) = measured strain in SHPB 

 

The measured value of strain is taken as the average strain during the time of the pulse. The 

theoretical strain value is calculated using Equation 3-3 above. The strain correction factor is 

applied during the data analysis process to correct the input and reflected wave data. 

 

3.1.6 Pulse Shaper 
Prior to any testing, including calibration tests, the selected pulse shaper should be adhered 

to the impact face of the input bar.  A small amount of lube was applied to the C1100 

copper pulse shaper and then placed in the center of the open face of the input bar. The 

placement of the pulse shaper is shown in Figure 3.6.  



34 
 

 

Figure 3.6: Copper pulse shaper placed on impact face of input bar 

Four pulse shaper sizes were initially investigated through preliminary testing. These tests 

considered two thicknesses and two diameters. Table 3.2 shows the pulse shaper sizes used 

in preliminary testing.  

Table 3.2: Preliminary pulse shaper sizes 

Pulse Shaper Thickness (in.) Diameter (in.) 
1 0.025 0.75 
2 0.085 0.75 
3 0.25 1.5 
4 0.085 1.5 

 

The thicker pulse shaper with the smaller diameter, pulse shaper #2, was chosen as the sole 

pulse shaper for further testing, as it presented the most reliable and consistent results for 

modifying the high strain rate pulse and lengthening the ringing up time.  

3.1.7 Lubricant 
As mentioned in Section 2.1.1.2, friction effects can cause erroneous results during SHPB 

testing. However, lubricant can reduce the friction at the specimen-bar interfaces. For the 

research presented herein, DuPont™ Teflon® Non-Stick Dry-Film Lubricant was used. The 
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lubricant was sprayed on the ends of the input and output bars prior to placing the specimen 

between the bars.  

 

3.2 Static Testing 
Static testing was performed on the concrete specimens to obtain the static compressive 

strengths of each mix.  This data offers valuable insight when comparing how the concrete 

behaves dynamically and statically.  With this information dynamic increase factors can be 

calculated for the concrete materials. Static testing on the NSC specimens was performed 

according to the specifications outlined in ASTM C39 Standard Test Method for Compressive 

Strength of Cylindrical Concrete Specimens. Static testing of UHPC specimens was performed 

using an increased loading rate as described by Peuse (2008).  
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Chapter 4 Analytical Methodology 

4.1 Data Processing 
Along with proper experimental design and SHPB configuration, data processing is an 

essential step in SHPB testing. Not only does the analyzed data reveal the dynamic material 

behavior that is desired, but it also reassures the legitimacy of the testing procedures and 

confirms previous work in the field.  

 

The acquired data from the Picoscope, which displays voltage for each channel over time, 

was imported into an analysis program using Microsoft Office Excel. The program used for 

this research is a modified version of the spreadsheet developed by Gilbertson (2011). In an 

effort to streamline the process of data analysis and organization thereof, multiple 

spreadsheets were combined into a single workbook to serve as a template for each 

individual test. The following subsections provide an overview of the analysis program and 

each component within it.  

4.1.1 Properties 
The first worksheet in the program, titled “Properties”, is meant to provide specific 

information relevant to each test. This includes unique test identification along with 

specimen and SHPB equipment constants. The input values are then used further along in 

the analysis when necessary. Many of these values do not change from test to test, such as 

material constants of the SHPB equipment. However, this section of the program provides a 

snapshot view of all of the properties being used in the analysis. Also included is specific 

information related to testing, such as the striker bar length being used and the cannon 

pressure. The measured striker velocity is also input in this worksheet. Figure 4.1 shows a 

screenshot of the aforementioned Properties worksheet. 

 



37 
 

 

Figure 4.1: Screenshot of Properties worksheet in SHPB Excel program 

 

4.1.2 Raw Data 
The next worksheet is dedicated solely to the raw data retrieved from the Picoscope software 

and copied into the spreadsheet. Combining and organizing the test data into a single file is 

important because the raw data is saved in individual files through the data acquisition 

software. The three sets of data shown in Figure 4.2 represent the typical raw data acquired 

by the Picoscope during the individual test along with 2 sets of calibration data from SHPB 

tests conducted with the bars apart and the bars together without a specimen in place.   

 

 

Figure 4.2: Screenshot of Raw Data worksheet in SHPB Excel program 
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4.1.3 BAM Data 
Similar to the Raw Data worksheet, the BAM Data worksheet is a collection of data acquired 

from the Picoscope software displaying the shunted voltage values for each BAM-1 unit. An 

average of these shunted values is taken for each channel for use in converting the measured 

output voltage to strain in the SHPB bars. Because the calibration procedures are performed 

for each day of testing, the BAM data will not frequently change between individual tests. 

However, this worksheet is still useful for each test as a point of quick reference and 

consistency. Figure 4.3 is a screenshot of the BAM data worksheet.  

 

 

Figure 4.3: Screenshot of BAM Calibration worksheet in SHPB Excel program 

 

4.1.4 Calibration 
The Calibration worksheet is the last set of calculations needed before the primary analysis 

takes place. It pulls information from the previous worksheets and performs the necessary 

calculations needed to convert output voltage in the strain gages to strain in the SHPB bars. 

Using Equation 3-1 and properties specific to the strain gages being used and the BAM-1 

unit settings, a conversion factor for each channel is developed to obtain strain values. 

Figure 4.4 displays the Calibration worksheet and the conversion being calculated.  
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Figure 4.4: Screenshot of Calibration worksheet in SHPB Excel program 

 

4.1.5 Analysis 
The final worksheet, aside from various graphs and outputted displays, consists of 

incorporating the calibration and material properties previously described. Essentially, this 

spreadsheet completes the analysis of the specimen that was tested in the SHPB and outputs 

the stress, strain, and strain rate values based on one-dimensional wave propagation theory 

over a given time period, as presented in Section 2.1.2.  

 

Several graphs are presented throughout the analysis process as a result of the data 

processing. These plots aid in the analysis process as well as graphically presenting the data 

to better depict the experimental results. The first graph, shown below, shows the outputted 

raw data, as seen on the Picoscope. Each line represents a channel, or a pair of strain gages, 

on either the input or output bar of the SHPB equipment. During the test, changes in 

voltage are recorded and outputted to the oscilloscope as displayed in Figure 4.5.  
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Figure 4.5: Strain gage output (voltage versus time) in SHPB per channel 

 
Similar to the strain gage output, the SHPB strain graph illustrates the same wave types. 

However, instead of change in voltage, the data has been converted to strain in the SHPB 

bars, using Equation 3-1 (Figure 4.6). These strain values have been corrected for any 

misbalance in the BAM units, as described in Section 3.1.5.1. Also note, the SHPB 

equipment is verified through a comparison between the various strain gage channels, with 

one overlaying the other.  
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Figure 4.6: Strain versus time in the SHPB 

 

The analysis worksheet also performs the same data manipulation for the “bars apart” and 

“bars together” calibration tests. The worksheet calls the data from the bars apart calibration 

test discussed in Section 3.1.5.3, and performs one-dimensional wave propagation analysis 

on the SHPB system data. With this data, strain correction factors for the input and reflected 

strain values are determined using Equation 3-4. Similarly, the worksheet uses the data 

acquired from the bars together calibration test discussed in Section 3.1.5.2 to calculate a 

stress correction factor for the output waves. Screenshots of the Analysis worksheet are 

shown in Figure 4.7. Some components vary between calibration tests and actual specimen 

tests. However, the data processing procedure remains the same.  
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Figure 4.7: Screenshot of Analysis worksheet in SHPB Excel program 

 

 
Figure 4.7, continued. 

 

Although this worksheet gathers a large amount of information from each of the previous 

worksheets, there are a few manual steps that must be taken to properly analyze the dynamic 

response of the specimen. The main step that must be completed manually is to identify the 

individual waves within the data and separate them out. After the raw data is converted from 



43 
 

voltage to strain, the individual waves are located and copy and pasted to their respective 

columns. It is essential to use the “Paste Special” function in Excel and paste only the values. 

This eliminates any issues associated with altering the built-in formulas and calculations. 

Once the individual waves are located, they are each graphed relative to the pulse at a zeroed 

time for each channel group (A/B or C/D), as shown in Figure 4.8.  

 

 

Figure 4.8: Strain versus time for the individual waves in the SHPB – Channels A/B, typical 

 

Visual inspection of strain versus time, such as shown in Figure 4.8, allows each wave to be 

checked to ensure that the time shift is correct and each wave was properly located. This 

time shift could vary based on what material is being tested and how long it takes for the 

pulse wave to pass from one end of the specimen to the other. The respective correction 

factors are then applied to the individual waves; the input, output, and reflected waves. From 

these corrected values of strain measured in the SHPB, the specimen strain, stress, and strain 

rate are back calculated using the Equations 2-3, 2-4, and 2-5, respectively. The strain values 

for the input and reflected waves are used to calculate the strain in the sample, while the 

output wave strain values are used to calculate the specimen stresses. 
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4.1.6 Dynamic Increase Factor Analysis 
Using current data from this research and previous research of DIFs for concrete, the 

influence of strain rate on compressive strength can be compared. The dynamic increase 

factor is defined as:   

𝐷𝐼𝐹 =  𝜎𝑑
𝜎𝑠

     Equation 4-1 

  Where:  

   𝜎𝑑 = ultimate dynamic stress 

   𝜎𝑠 = ultimate static stress. 

 

For each sample tested, a DIF is calculated using the maximum dynamic stress achieved 

during SHPB testing and the average static compressive strength of the concrete. These 

calculated DIFs are presented and compared to previous research in the next chapter.  
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Chapter 5 Discussion and Results 

5.1 NSC Results 
The SHPB results of the normal strength concrete (NSC) samples are presented in this 

section. For NSC, 3 samples were tested for the 2:1 aspect ratio, 6 samples for the 1:1 aspect 

ratio, and 8 samples for 0.5:1 aspect ratio. Data for sample N-A6 was disregarded because 

the specimen slipped prior to impact and was therefore not properly tested.  

 

Visually, each NSC sample was extremely fragmented following each test. Only very small 

pieces of cement paste and aggregate remained after impact, as shown in Figure 5.1. For the 

longer samples, at the 2:1 aspect ratio, there was slightly less fragmentation and a few 

unbroken aggregates (about ½ inch in diameter). However, these larger unbroken pieces 

were very rare.   

 

 

Figure 5.1: Typical NSC fragmentation following SHPB test 
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As presented in Section 2.1.2, the specimen stress and strain curves are calculated using one-

dimensional wave propagation theory. These values of specimen stress and strain are then 

plotted to obtain a dynamic stress-strain curve for each sample. Figure 5.2 is a typical 

dynamic stress-strain curve for one of the NSC samples. 

 

Figure 5.2: Typical dynamic stress-strain curve for NSC with 0.5:1 aspect ratio (sample N-A8) 

Overall, the dynamic stress-strain curves for the normal strength concrete cylinders 

maintained similar trends. Each curve features a concave segment at the beginning followed 

by the curve moving to the right, or clockwise, and back down toward zero. This curve 

shape is expected because concrete is a heterogeneous material that features micro cracks. 

During a static compressive strength test, the stress propagates through the micro cracks 

causing larger cracks and eventually failure. At elevated strain rates, these micro cracks close 

prior to the material entering the elastic range, creating an initial concave shape.   

 

Table 5.1 presents a summary of the results acquired from the SHPB tests on each NSC 

sample. The group average, standard deviation and coefficient of variation are also tabulated. 
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In general, the results for NSC tests were consistent, as shown by the coefficient of 

variations (COV) less than 10% for ultimate stress and maximum strain results. Note that 

samples marked with an asterisk did not meet parallelness tolerance recommendations and 

were not included in the statistical analysis.  

Table 5.1: Dynamic stress and strain data for NSC samples 

Aspect 
Ratio ID Ultimate 

Stress (psi) 
Max. Strain Rate 

(1/sec) 

Max. 
Strain 
(in/in) 

Strain @ 
Ultimate Stress 

(in/in) 

2:1 
 

N-C1 11834 128.8 0.000128 0.000113 
N-C2* 10605 139.3 0.000139 0.000135 
N-C3 13646 144.3 0.000144 0.000130 
Avg. 12740 136.6 0.000136 0.000122 

Std. Dev. 906 7.8 0.000008 0.000009 
COV 0.071 0.057 0.059 0.070 

 

          

1:1 
 

N-B1* 11546 287.0 0.000287 0.00024 
N-B2 12846 282.0 0.000282 0.00022 
N-B3* 11053 275.8 0.000276 0.00025 
N-B4 12536 293.1 0.000293 0.00019 
N-B5 11617 269.2 0.000296 0.00024 
N-B6* 13021 288.0 0.000288 0.00026 
Avg. 12333 281.4 0.000290 0.00022 

Std. Dev. 522 9.8 0.000006 0.00002 
COV 0.042 0.035 0.021 0.095 

           

0.5:1 

N-A1* 11762 549 0.000549 0.00053 
N-A2 13538 502 0.0005 0.00038 
N-A3 13232 524 0.00052 0.00046 
N-A4* 15094 529 0.000529 0.00050 
N-A5* 12662 558 0.000558 0.00048 
N-A6 x x x x 
N-A7 14010 510 0.00051 0.00051 
N-A8 13523 512 0.000512 0.00050 
Avg. 13576 512.0 0.000511 0.00046 

Std. Dev. 279 7.9 0.000007 0.00005 
COV 0.021 0.015 0.014 0.111 

 *Sample did not meet parallelness tolerance 
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From these results, the most noticeable similarity between the aspect ratios of the specimens 

is the ultimate stress. The ultimate stress varies by about 1000 psi (7-8%) across all aspect 

ratios, with the largest stresses appearing within the shorter specimens. Another important 

trend of the results to note is that a shorter sample reaches a higher strain rate. The changes 

in strain and strain rate across the various sample lengths are due to the fact that both of 

these values are functions of specimen length according to one-dimensional wave 

propagation theory. However, Table 5.1 reveals the consistency between samples within 

each aspect ratio for all values of stress, strain and strain rate.  

 

5.2 UHPC Results 
The following sections describe the results of the ultra-high performance concrete 

specimens, both ambient cured and thermally treated. Visually, the UHPC specimens 

experienced much less fragmentation and remained fairly intact. Figures 5.3 – 5.5 show 

typical fractures of UHPC specimens for each aspect ratio.  

 

 

Figure 5.3: Typical fracture for UHPC at 2:1 aspect ratio 
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~1” 

 
 

Figure 5.4: Typical fracture of UHPC at 1:1 aspect ratio 

 

 
Figure 5.5: Typical fracture of UHPC at 0.5:1 aspect ratio 

 

5.2.1 Ambient Cured UHPC 
The results of the ambient cured UHPC samples are presented in this section. For these 

samples, 3 samples were tested for the 2:1 aspect ratio, 7 samples for the 1:1 aspect ratio, and 

8 samples for 0.5:1 aspect ratio. Data for sample U-A2-AMB was inadvertently not recorded. 

 

Using the same data processing methods as the NSC samples, the dynamic stress-strain 

curves were graphed for the ambient UHPC samples. A representative plot for ambient 

UHPC specimens with aspect ratios of 0.5:1(from sample U-A4-AMB) is shown in Figure 

5.6.   

~1” 
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Figure 5.6: Typical dynamic stress-strain curve for ambient cured UHPC at a 0.5:1 aspect ratio 

 

The above dynamic stress-strain curve for ambient cured UHPC at a 0.5:1 aspect ratio is 

similar in shape to the aforementioned NSC curve. However, the stresses are much higher, 

about a 370% increase, and the strains are smaller, about a 36% decrease. The curve also 

continues to the right, or clockwise, after reaching ultimate. There was some discrepancy for 

the UHPC samples for this curve characteristic. For specimens remaining fairly intact, curves 

continued to the left, or counterclockwise, after reaching maximum stress, exhibiting the 

ability to absorb impact energy. Aside from higher compressive strengths, UHPC’s ability to 

absorb energy without totally failing can be credited to the steel fibers to keep the UHPC 

specimens intact. The next two dynamic stress-strain curves better illustrate the effect of the 

steel fibers within the UHPC. Figure 5.7 and Figure 5.8 represent the 1:1 and 2:1 aspect 

ratios, respectively.   
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Figure 5.7: Typical dynamic stress-strain curve for sample ambient cured UHPC at a 1:1 aspect ratio 

 

Figure 5.8: Typical dynamic stress-strain curve for ambient cured UHPC at a 2:1 aspect ratio 
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Although aspect ratio shows little difference between ultimate dynamic stress, the strains are 

reduced as the specimen length increases. These graphs also illustrate the counterclockwise 

motion of the dynamic stress-strain curves after reaching the ultimate dynamic strength. This 

trend occurred with most of the ambient cured UHPC samples, with a few exceptions for 

samples that suffered more severe fragmentation.  

 

A summary of the results calculated for the ambient cured UHPC samples is tabulated 

below. Similar to NSC, ambient cured UHPC specimens also had consistent results, with 

COVs less than 10% for ultimate stress. Strain values varied slightly more, with a maximum 

COV of 15.9%. Recall, samples that did not meet parallelness tolerance recommendations 

were not included in the statistical analysis.  
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Table 5.2: Dynamic stress and strain values for ambient cured UHPC samples 

Aspect 
Ratio ID Ultimate 

Stress (psi) 
Max. Strain Rate 

(1/sec) 
Max Strain 

(in/in) 

Strain @ 
Ultimate Stress 

(in/in) 

2:1 
 

U-C1-AMB 46156 118.0 0.000115 0.00011 
U-C2-AMB 45648 116.0 0.000116 0.000116 
U-C3-AMB 44243 115.0 0.000111 0.000111 

Avg. 45349 116.3 0.000114 0.000112 
Std. Dev. 809 1.2 0.000002 0.000003 

COV 0.018 0.011 0.019 0.023 
 

          

1:1 
 

U-B1-AMB 47872 162.3 0.000162 0.000140 
U-B2-AMB 42889 218.0 0.000218 0.000210 
U-B3-AMB* 35160 264.0 0.000264 0.000230 
U-B4-AMB* 35166 231.2 0.000231 0.000231 
U-B5-AMB 46010 188.3 0.000188 0.000170 
U-B6-AMB 48233 174.1 0.000174 0.000150 
U-B7-AMB 49733 176.2 0.000176 0.000160 

Avg. 46947 183.8 0.000184 0.000166 
Std. Dev. 2350 19.0 0.000019 0.000024 

COV 0.050 0.103 0.104 0.146 
           

0.5:1 

U-A1-AMB 55504 293.9 0.000294 0.000220 
U-A2-AMB x x x x 
U-A3-AMB* 32477 436.4 0.000436 0.000410 
U-A4-AMB 53239 314.9 0.000315 0.000235 
U-A5-AMB 46955 417.4 0.000417 0.000325 
U-A6-AMB* 46225 424.7 0.000425 0.000360 
U-A7-AMB 55162 266.2 0.000266 0.000240 
U-A8-AMB 43777 352.3 0.000352 0.000330 

Avg. 50927 328.9 0.000329 0.000270 
Std. Dev. 4714 52.4 0.000052 0.000047 

COV 0.093 0.159 0.159 0.176 
 *Sample did not meet parallelness tolerance 

 

Based on the results for the ambient cured UHPC specimens, the dynamic ultimate stresses 

are similar regardless of aspect ratio, with the exception of a couple 0.5:1 samples reaching 

about 55,000 psi. However, the same size specimens had the lowest dynamic ultimate stress 



54 
 

of any ambient UHPC sample at about 32,400 psi, which could be due to unparallel ends. 

Furthermore, the strain rates and strain values followed the same trend as the NSC samples. 

Lastly, the shorter specimens reached higher strain rates as well as larger strain values.  

5.2.2 Thermally Treated UHPC 
The results of the thermally treated UHPC samples are presented in this section. For this 

curing scenario, 3 samples were tested at the 2:1 aspect ratio, 7 samples at the 1:1 aspect 

ratio, and 7 samples at 0.5:1 aspect ratio. A representative dynamic stress-strain curve, from 

sample U-A6-TT, is shown below in Figure 5.9 and compared to previously discussed 

dynamic stress-strain curves. 

 

 

Figure 5.9: Typical dynamic stress-strain curve for UHPC thermal treated specimens (U-A6-TT) 

 
All of the dynamic stress-strain curves for the thermally treated UHPC were similar to one 

another. Each featured a counterclockwise curve at its peak. This is related to each sample 

physically absorbing the energy for the SHPB test and not suffering extreme fragmenting, 

due in part to the steel fibers as well as the increased static compressive strength. The 
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thermally treated UHPC samples also followed the same trends as the other two mixes (NSC 

and ambient cured UHPC) in terms of strain values. As the specimen length increased, the 

specimen strain decreased.  

 

Results are summarized for the thermally treated UHPC samples in Table 5.3 below. The 

variation of the ultimate stress increased for thermally treated specimens is below 10%, 

excluding samples not meeting parallelness tolerance. The consistency in ultimate stress for 

thermally treated UHPC is comparable to that of both ambient cured UHPC and NSC. 

Similar to the ambient cured UHPC, the thermally treated UHPC experienced a 15-18% 

variation in strain. 
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Table 5.3: Dynamic stress and strain values for thermally treated UHPC samples 

Aspect 
Ratio ID Ultimate 

Stress (psi) 
Max. Strain 
Rate (1/sec) 

Max. 
Strain 
(in/in) 

Strain @ 
Ultimate Stress 

(in/in) 

2:1 
 

U-C1-TT* 51713 120.3 0.000120 0.000119 
U-C2-TT* 37303 126.3 0.000126 0.000126 
U-C3-TT 50938 114.7 0.000115 0.000028 

Avg. 50938 115 0.000115 0.000028 
Std. Dev. 0.0 0.0 0.0 0.0 

COV 0.0 0.0 0.0 0.0 
 

          

1:1 

U-B1-TT 59230 144.4 0.000144 0.000082 
U-B2-TT 49402 200.0 0.000200 0.000170 
U-B3-TT* 45451 183.6 0.000184 0.000175 
U-B4-TT 58440 147.0 0.000147 0.000100 
U-B5-TT* 36135 229.9 0.000230 0.000220 
U-B6-TT* 42325 218.9 0.000219 0.000180 
U-B7-TT* 25474 307.5 0.000307 0.000307 

Avg. 55691 163.8 0.000164 0.000117 
Std. Dev. 4458 25.6 0.000026 0.000038 

COV 0.080 0.156 0.157 0.324 
           

0.5:1 

U-A1-TT* 35314 410.7 0.000411 0.00034 
U-A2-TT 48009 301.3 0.000301 0.00023 
U-A3-TT* 41175 454.0 0.000454 0.00039 
U-A4-TT* 25791 531.9 0.000532 0.00050 
U-A5-TT 46343 414.7 0.000415 0.00028 
U-A6-TT 48514 323.5 0.000324 0.00025 
U-A7-TT 38431 465.5 0.000466 0.00042 

Avg. 45324 376.3 0.00038 0.00030 
Std. Dev. 4060 66.8 0.00007 0.00007 

COV 0.090 0.178 0.178 0.252 
*Sample did not meet parallelness tolerance 

 

The thermally treated UHPC samples follow the same patterns as the NSC and ambient 

cured UHPC, including seeing higher strain rates and strain values as the specimen length 

decreases. Stress values for thermally treated UHPC were about 330% higher than NSC and 

about 10% lower than ambient cured UHPC. However, the dynamic ultimate stresses are 
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more inconsistent as a whole. This may be due to the larger number of specimens that did 

not meet parallel end tolerance requirements. The greater variation of results confirms this 

notion. Moreover, the average dynamic ultimate stress is lowest for samples with a 0.5:1 

aspect. This directly contrasts the other two concrete mixes, which experienced the highest 

average ultimate stress at the 0.5:1 aspect ratio.  

 

5.3 Static Testing Results 
The static test results, according to the procedure outlined in Section 3.2, are shown in Table 

5.4. For each group of concrete, 3 cylinders were tested. The average of the 3 compressive 

strengths for each group is used in further analysis, specifically the calculation of dynamic 

increase factors.  

Table 5.4: Static strength for each concrete group 

NSC 
Test No. Static Strength (psi) 

1 3239 
2 3427 
3 3476 

Average 3380 
UHPC - Ambient 

Test No. Static Strength (psi) 
1 18637 
2 17605 
3 20140 

Average 18790 
UHPC - TT 

Test No. Static Strength (psi) 
1 20017 
2 17996 
3 25341 

Average 21120 
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5.4 Dynamic Increase Factor Comparison 
A comparison of the DIFs for each type of concrete and curing scenario tested is completed 

for each sample tested, using Equation 4-1. Tables 5.5, 5.6, and 5.7 show the DIF for each 

sample and the information used to calculate it, including the average static compressive 

strength of representative cylinders from each group, denoted as σs at the end of each table. 

 

Table 5.5: DIFs for NSC samples 

Aspect 
Ratio 

ID 
σd             

(psi) 
DIF 

Strain Rate 
(1/sec) 

2:1 

N-C1 11834 3.50 128.8 
N-C2* 10605 3.14 139.3 
N-C3 13646 4.04 144.3 
Avg. 12740 3.77 136.6 

 
        

1:1 

N-B1* 11546 3.42 287.0 
N-B2 12846 3.80 282.0 
N-B3* 11053 3.27 275.8 
N-B4 12536 3.71 293.1 
N-B5 11617 3.44 269.2 
N-B6* 13021 3.85 288.0 
Avg. 12333 3.65 281.4 

         

0.5:1 

N-A1* 11762 3.48 549.4 
N-A2 13538 4.01 502.1 
N-A3 13232 3.91 524.1 
N-A4* 15094 4.47 529.2 
N-A5* 12662 3.75 557.6 
N-A6 x x x 
N-A7 14010 4.14 510.0 
N-A8 13523 4.00 511.9 
Avg. 13576 4.02 512.0 

 σs= 3380 psi 
 
For the normal strength concrete samples, the DIFs range from about 3 to 4 with averages 

ranging between 3.65 and 4.0. Samples with aspect ratios of 0.5:1 tended to have higher 

DIFs due to the higher ultimate dynamic stresses. As a strain rate sensitive material, concrete 
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has an increase in strength at higher loading rates. As the strain rates increase so too do the 

dynamic strengths, resulting in higher DIFs.  

 

DIF values were also calculated for the ambient cured UHPC samples as shown in Table 5.6. 

The ambient cured UHPC samples experienced higher dynamic strengths than the normal 

strength concrete, but also had much higher static compressive strengths. As a result, the 

DIFs were smaller, ranging between 1.73 and 2.95, compared with NSC DIF values of 3.14-

4.47, for similar strain rates of loading. The results between the various aspect ratios tested 

for ambient cured UHPC samples remain unclear as both larger and smaller DIFs exist 

within each group. Typically, for higher strain rates, as are found in 0.5:1 aspect ratio 

specimens, higher dynamic compressive strengths should be calculated. However, the 

ultimate dynamic stresses tend to remain relatively consistent throughout each aspect ratio. 
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Table 5.6: DIFs for ambient cured UHPC samples 

Aspect 
Ratio 

ID 
σd             

(psi) 
DIF 

Strain 
Rate 

(1/sec) 

2:1 

U-C1-AMB 46156 2.46 118.0 
U-C2-AMB 45648 2.43 116.0 
U-C3-AMB 44243 2.35 115.0 

Avg. 45349 2.41 116.3 
         

1:1 

U-B1-AMB 47872 2.55 162.3 
U-B2-AMB 42889 2.28 218.0 
U-B3-AMB* 35160 1.87 264.0 
U-B4-AMB* 35166 1.87 231.2 
U-B5-AMB 46010 2.45 188.3 
U-B6-AMB 48233 2.57 174.1 
U-B7-AMB 49733 2.65 176.2 

Avg. 46947 2.50 183.8 
 

        

0.5:1 

U-A1-AMB 55504 2.95 293.9 
U-A2-AMB x x x 
U-A3-AMB* 32477 1.73 436.4 
U-A4-AMB 53239 2.83 314.9 
U-A5-AMB 46955 2.5 417.4 
U-A6-AMB* 46225 2.46 424.7 
U-A7-AMB 55162 2.94 266.2 
U-A8-AMB 43777 2.33 352.3 

Avg. 50927 2.71 328.9 
 σs= 18790 psi 

 

The DIFs for the thermally treated UHPC specimens are shown in Table 5.7. Compared to 

the ambient cured UHPC specimens, the DIFs for the thermally treated UHPC vary slightly, 

ranging from 1.21 to 2.45. It can be concluded that the thermally treated UHPC samples 

have the lowest DIFs of all concrete mixes tested. However, similar to the ambient UHPC, 

there is no definite correlation between the DIFs and the aspect ratios or strain rates for the 

thermally treated UHPC specimens. In fact, DIFs on the lower end of the range tend to 

occur at the higher strain rates. This is unexpected since theoretically the dynamic strength 

should increase as strain rate increases. Based on this notion, a stronger material, statically, 
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should obtain higher dynamic strengths. However, these results suggest that there may be a 

maximum strength increase that a material may see regardless of a further increase in strain 

rate.  

 

Table 5.7: DIFs for thermally treated UHPC samples 

Aspect 
Ratio 

ID 
σd             

(psi) 
DIF 

Strain 
Rate 

(1/sec) 

2:1 

U-C1-TT* 51713 2.45 120.3 
U-C2-TT* 37303 1.77 126.3 
U-C3-TT 50938 2.41 114.7 

Avg. 50938 2.41 114.7 
         

1:1 

U-B1-TT 59230 2.80 144.4 
U-B2-TT 49402 2.30 200.0 
U-B3-TT* 45451 2.15 183.6 
U-B4-TT 58440 2.77 147.0 
U-B5-TT* 36135 1.71 229.9 
U-B6-TT* 42325 2.00 218.9 
U-B7-TT* 25474 1.21 307.5 

Avg. 55691 2.62 163.8 
 

        

0.5:1 

U-A1-TT* 35314 1.67 410.7 
U-A2-TT 48009 2.27 301.3 
U-A3-TT* 41175 1.95 454.0 
U-A4-TT* 25791 1.22 531.9 
U-A5-TT 46343 2.19 414.7 
U-A6-TT 48514 2.3 323.5 
U-A7-TT 38431 1.82 465.5 

Avg. 45324 2.15 376.3 
 σs = 21120 psi 

 

Figure 5.10 graphically illustrates the influence of strain rate on compressive strength for the 

NSC and UHPC samples tested herein. Comparing the normal strength concrete specimens 

to the UHPC ambient cured and thermally cured specimens collectively, it is evident based 

on the smaller DIFs at similar strain rates that UHPC is a less rate sensitive material in terms 
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of compressive strength. However, little research exists for NSC and UHPC concrete 

specimens at such high strain rates as conducted in this research, particularly for UHPC.  

 

 
Figure 5.10: Influence of strain rate on compressive strength of NSC and UHPC for various aspect 

ratios 

 

Normal strength concrete is more rate sensitive than UHPC, evident by the larger DIFs. A 

less rate sensitive material, such as UHPC, does not experience increased strengths as rapidly 

at high strain rates. Furthermore, the thermally treated UHPC, which has the highest static 

compressive strength is the least rate sensitive, with smaller DIFs than both the NSC and the 

ambient cured UHPC specimens. Another important result illustrated in Figure 5.10 is the 

ability to achieve higher strain rates through shorter specimens. For each concrete type, the 

shorter specimens, at the 0.5:1 aspect ratio, achieved higher strain rates than longer 

specimens using the same test set-up. Conversely, the longest specimens, at the 2:1 aspect 

ratio, reached the lowest strain rates.  
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The results of this research confirm the hypotheses that DIFs for normal strength concrete 

continue to increase as the strain rate of loading increases, as Bischoff and Perry (1991) 

illustrated in Figure 2.4, and that UHPC is a less rate sensitive material compared to normal 

strength concrete. Figure 5.11 superimposes results from data collected herein with the 

Bischoff and Perry synthesis. Although previous DIF data for UHPC has not been reported 

in this context, it is still appropriate to include the DIFs for UHPC from this research 

because the data is normalized as a result of the DIF calculation. 

 

3.0

3.5

4.0

4.5

Strain Rate (strain/sec)

D
IF

Strain Rate (s-1)

 
Figure 5.11: Strain rate influence on compressive strength with strain rates between 10-8 and 103 1/sec 

 
NSC specimens tested for this research extend past the range of the original Bischoff and 

Perry graph, as they experience strength increases above a factor of 2.5. The trend follows an 

exponential curve, reaching higher DIFs very rapidly at strain rates exceeding 102 sec-1.  

While the UHPC samples, both ambient cured and thermally treated, do see an increase in 
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compressive strength at high strain rates of loading, UHPC does not achieve the same 

relative strength increase due to the reduced influence strain rate has on higher strength 

concrete materials.  These results confirm the findings previously stated from Cavill et. al. 

(2006).  

 

5.5 Effect of Parallelness on Dynamic Stress 
While there are no requirements for parallel ends of an SHPB sample, there are 

recommendations regarding specimen tolerance (Gray III 2000). Furthermore, parallel ends 

are necessary to achieve uniform stress throughout the sample. As noted in Section 3.1.2, 

40% of the samples did not meet the recommended parallel tolerance of a degree difference 

less than 0.5°. While these samples may have impacted the results, they also allow 

conclusions to be drawn regarding the relationship between parallelness and dynamic 

strength using the SHPB. When comparing the dynamic strength results of the concretes 

considering the parallel measurements taken, it is evident that the samples that do not meet 

the parallel recommendations deviate from the average dynamic strength. This holds true for 

each type of concrete tested for this research. The primary difference between samples that 

meet the parallel recommendations and those that do not is a decrease in dynamic 

compressive strength for the latter. Samples with 2 or more measurements not meeting 

criteria experienced a greater decrease in dynamic compressive strength than samples with 

only 1 measurement not meeting criteria. The decreases in dynamic compressive strength 

could be a result of stress irregularity. From this information it can be concluded that parallel 

ends are required for valid SHPB tests. Further statistical analysis is provided in Section 5.6. 

A specific tolerance requirement does not exist; therefore, parallel tolerances can be based 

only on recommendations. The data presented in this thesis does include every sample 

tested. However, samples that did not meet Gray III’s parallel tolerance recommendation if a 

degree difference less than 0.5° were identified and excluded from average, standard 

deviation, and coefficient of variation calculations.  
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5.6 Statistical Analysis 
Basic statistical analysis was performed to better understand the effects of parallel ends and 

aspect ratio. This was achieved using MiniTab software, which performs the specified 

statistical analysis for using data from the testing results. An analysis of variance (ANOVA) 

was used to compare multiple sample sets of data simultaneously. From the ANOVA 

analysis, box plots and P-values reveal the significance or insignificance of the tested 

condition between sample sets. All but one group of statistical calculations uses the DIF 

results for comparison. The exception compares the effect of aspect ratio to strain rate. 

Further analysis can be done to determine the effects of parallel ends and aspect ratio in 

terms of other material properties determined through the SHPB testing (i.e. dynamic 

compressive strength or strain). Box plots for each ANOVA test can be found in Appendix 

B. 

 

The first statistical analysis was used to determine the effect on DIF between specimens with 

parallel ends and specimens that did not meet the parallel end tolerance recommendations. 

Table 5.8 shows the P-values for each concrete group. Based on these P-values it can be 

concluded that, at a 95% confidence level, parallel ends are indeed significant for UHPC 

specimens in terms of affecting DIF. However, parallel ends are not significant for NSC. 

Table 5.8: P-values from ANOVA test for parallel end significance 

ID P-Value 
NSC 0.243 

UHPC - Ambient 0.001 
UHPC - TT 0.006 

 

The second set of analysis is used to measure the significance aspect ratio has on the DIF of 

concretes. ANOVA tests were done for each concrete type, comparing the difference 

between the DIFs for each aspect ratio. Table 5.9 shows the P-values for each concrete 

group. Based on these P-values it can be concluded, within 95% confidence, that aspect ratio 

is not a significant factor regarding DIF for each type of concrete. This applies to 0.5:1, 1:1, 

and 2:1 aspect ratios.  
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Table 5.9: P-values from ANOVA test for aspect ratio significance 

ID P-Value 
NSC 0.127 

UHPC - Ambient 0.138 
UHPC - TT 0.125 

 

The third statistical test is used to determine the effect of aspect ratio on strain rate. An 

ANOVA test for each concrete type compares the strain rates within each aspect ratio. The 

calculated P-values are shown in Table 5.10. Based on these P-values it is evident that, at a 

95% confidence level, aspect ratio has a significant effect on strain rate for each type of 

concrete.  

Table 5.10: P-values from ANOVA test for aspect ratio significance on strain rate 

ID P-Value 
NSC 0.000 

UHPC - Ambient 0.000 
UHPC - TT 0.010 

 

The final statistical analysis performed was an ANOVA test to determine the significance 

between concrete type and DIF. This sample included all DIFs from specimens meeting 

parallel tolerance recommendations. The resulting P-value was 0.000. Based on this P-value 

it can be concluded that, at a 95% confidence level, the difference between DIFs for each 

concrete type is definitively significant.  
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Chapter 6 Conclusions and Future Work 
 
The purpose of this thesis is to document the state of practice for SHPB testing on concrete 

in Michigan Technological University’s Cement and Concrete Research Lab, and to perform 

a preliminary study on the behavior of UHPC loaded at high strain rates, specifically strain 

rates exceeding 102 s-1. By reviewing previous research on SHPB concrete testing, it was 

possible to confirm the equipment response of the SHPB equipment through comparison of 

normal strength concrete test results. Furthermore, the dynamic compressive behavior of 

UHPC was investigated. This was achieved through testing ambient cured and thermally 

treated UHPC specimens at high strain rates using the SHPB and comparing the results to 

those of NSC. Through experimental design, several variables regarding SHPB concrete 

testing were also explored, including specimen aspect ratio, pulse shaping techniques, and 

the effect of parallelness. These variables were explored further through statistical analysis, 

specifically ANOVA tests. Ultimately, the information provided in this thesis demonstrates 

the influence of strain rate, particularly high strain rates, on the compressive strength of 

concrete.  

6.1 Conclusions 
Several conclusions were reached from the research conducted herein: 

 

• Normal strength concrete experiences an increase in compressive strength as strain 

rate increases. These increases range between 3 to 4 times the static compressive 

strength at strain rates between 102 and 103 s-1. 

 

• Ultra-high performance concrete also experiences an increase in compressive 

strength as strain rate increases. These increases range between 1.73 and 2.95 for 

ambient cured UHPC and 1.21 and 2.45 for thermally treated concrete.  
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• As a result of the lower DIFs for UHPC compared to NSC, UHPC demonstrates 

less rate sensitivity. Statistical analysis affirms this conclusion, showing a significant 

difference in DIFs between NSC and UHPC.  

 

• Based on the results of the three aspect ratios used in this research for each concrete 

mix, it is evident that a shorter specimen achieves higher strain rates during SHPB 

testing for the same testing set-up. Statistical data confirms this conclusion, showing 

significant difference in strain rate between aspect ratios for each concrete type. 

 
• Parallel specimen ends are an important factor that influences the results of SHPB 

testing. Based on statistical analysis parallel ends have a significant effect on DIF for 

UHPC, but are insignificant for NSC. Due to this influence, a minimum tolerance 

specification needs to be developed for SHPB testing, replacing the existing 

recommendations.  

6.2 Future Work 
Several areas surrounding this research should be considered for further investigation. With 

limitations on the data in this research, such as the influence of parallel specimen ends and 

fiber edge effects, results should be considered as preliminary. The following areas are valid 

issues to explore further, but were not within the scope of this research. With many variables 

throughout the SHPB testing process, these variables could be isolated to determine their 

level of influence on the test results. One of these variables is the pulse shaper size. This 

research selected a pulse shaper size from preliminary testing and used a single size. 

However, if the effect of size, along with various pulse shaping materials, could be 

determined, it could lead to a standard specification regarding the use of pulse shapers to 

better standardize the body of data. Another variable is the specimen design, specifically the 

specimen aspect ratio. While results for this research seem fairly consistent across each 

aspect ratio, further investigation into the effects of aspect ratio could lead to a standard 

specimen size or range of aspect ratios that are acceptable for SHPB concrete testing, similar 

to the standardization of static compressive testing. Lastly, the specimen preparation for 
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SHPB testing was shown to be very important and influential on the results. This 

preparation includes further determining the effect of parallel ends and specifying a 

minimum parallel end tolerance. Specimen preparation also includes investigating the effects 

of fiber edge effects in UHPC. Further research is needed in each of these aforementioned 

areas.  
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Appendix A: Parallelness Measurements 
The following tables consist of the data used to measure the parallelness of each specimen 

and compare them to the recommended tolerances. For each sample a relative height was 

measured at five different locations using a micrometer. The micrometer ranged from 0-100, 

where 1 unit = 1/1000 inch. Total heights were not measured. Instead the height is relative 

to the micrometer reading for each specimen. From these values, a mean was calculated. The 

specimen mean was subtracted from the height for each location of measurement. Using 

geometry and an approximate distance between the center of the specimen to any other 

point of measurement of 1.25 inches, the degree difference between any measurement 

location and the mean was calculated and reported. Samples with measurements that did not 

meet the recommended tolerance of 0.5° are shaded.  

 

Table A.1: Parallel measurements for 2:1 NSC samples 

Sample ID 
  Measurements Mean 
  1 2 3 4 5 

N-C1 
Height 75 82 72 69 80.5 

75.7 Height - Mean -0.7 6.3 -3.7 -6.7 4.8 
Degree Diff. 0.03210 0.28891 0.16968 0.30726 0.22013 

N-C2 
Height 58 48 74.5 71.5 52.5 

60.9 Height - Mean -2.9 -12.9 13.6 10.6 -8.4 
Degree Diff. 0.13299 0.59157 0.62367 0.48610 0.38522 

N-C3 
Height 75 77 75.5 68.5 77 

74.6 Height - Mean 0.4 2.4 0.9 -6.1 2.4 
Degree Diff. 0.01834 0.11006 0.04127 0.27974 0.11006 

 1=1/1000 inch 
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Table A.2: Parallel measurements for 1:1 NSC samples 

Sample ID 
  Measurements Mean 
  1 2 3 4 5 

N-B1 
Height 71.5 53.5 85 84.5 65 

71.9 Height - Mean -0.4 -18.4 13.1 12.6 -6.9 
Degree Diff. 0.01834 0.84376 0.60074 0.57781 0.31643 

N-B2 
Height 46 37 39 54.5 53 

45.9 Height - Mean 0.1 -8.9 -6.9 8.6 7.1 
Degree Diff. 0.00459 0.40815 0.31643 0.39439 0.32560 

N-B3 
Height 95 105 108 92 85 

97 Height - Mean -2 8 11 -5 -12 
Degree Diff. 0.09172 0.36687 0.50445 0.22930 0.55030 

N-B4 
Height 19 20 24 18.5 11.5 

18.6 Height - Mean 0.4 1.4 5.4 -0.1 -7.1 
Degree Diff. 0.01834 0.06420 0.24764 0.00459 0.32560 

N-B5 
Height 61 50 67.5 67.5 58 

60.8 Height - Mean 0.2 -10.8 6.7 6.7 -2.8 
Degree Diff. 0.00917 0.49527 0.30726 0.30726 0.12841 

N-B6 
Height 89 96 79 83 103 

90 Height - Mean -1 6 -11 -7 13 
Degree Diff. 0.04586 0.27516 0.50445 0.32102 0.59616 

 1=1/1000 inch 
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Table A.3: Parallel measurements for 0.5:1 NSC samples 

Sample ID 
  Measurements Mean 
  1 2 3 4 5 

N-A1 
Height 69.5 66.5 86 70 57 

69.8 Height - Mean -0.3 -3.3 16.2 0.2 -12.8 
Degree Diff. 0.01376 0.15134 0.74289 0.00917 0.58699 

N-A2 
Height 58.5 65.5 55 60 62 

60.2 Height - Mean -1.7 5.3 -5.2 -0.2 1.8 
Degree Diff. 0.07796 0.24306 0.23847 0.00917 0.08255 

N-A3 
Height 48 39 43 53 54 

47.4 Height - Mean 0.6 -8.4 -4.4 5.6 6.6 
Degree Diff. 0.02752 0.38522 0.20178 0.25681 0.30267 

N-A4 
Height 68.5 80 74.5 59 75 

71.4 Height - Mean -2.9 8.6 3.1 -12.4 3.6 
Degree Diff. 0.13299 0.39439 0.14217 0.56864 0.16510 

N-A5 
Height 90 78 89.5 101 98.5 

91.4 Height - Mean -1.4 -13.4 -1.9 9.6 7.1 
Degree Diff. 0.06420 0.61450 0.08713 0.44025 0.32560 

N-A6 
Height x x x x x 

x Height - Mean x x x x x 
Degree Diff. x x x x x 

N-A7 
Height 82 86.5 99 80 95 

88.5 Height - Mean -6.5 -2 10.5 -8.5 6.5 
Degree Diff. 0.29809 0.09172 0.48152 0.38980 0.29809 

N-A8 
Height 19 27.5 26.5 7 12 

18.4 Height - Mean 0.6 9.1 8.1 -11.4 -6.4 
Degree Diff. 0.02752 0.00728 0.00648 0.00912 0.00512 

 1=1/1000 inch 
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Table A.4: Parallel measurements for 2:1 ambient UHPC samples 

Sample ID 
  Measurements Mean 
  1 2 3 4 5 

U-C1-Amb 
Height 15 12 2 10 21 

12 Height - Mean 3 0 -10 -2 9 
Degree Diff. 0.13758 0.00000 0.45859 0.09172 0.41273 

U-C2-Amb 
Height 2 8 11 1.5 -8 

2.9 Height - Mean -0.9 5.1 8.1 -1.4 -10.9 
Degree Diff. 0.04127 0.23388 0.37146 0.06420 0.49986 

U-C3-Amb 
Height 87 80 76 93 95 

86.2 Height - Mean 0.8 -6.2 -10.2 6.8 8.8 
Degree Diff. 0.03669 0.28433 0.46776 0.31184 0.40356 

1=1/1000 inch 

Table A.5: Parallel measurements for 1:1 ambient UHPC samples 

Sample ID 
  Measurements Mean 
  1 2 3 4 5 

U-B1-Amb 
Height 82 78.5 78 81 75 

78.9 Height - Mean 3.1 -0.4 -0.9 2.1 -3.9 
Degree Diff. 0.14217 0.01834 0.04127 0.09631 0.17885 

U-B2-Amb 
Height 15 16 5 14 25 

15 Height - Mean 0 1 -10 -1 10 
Degree Diff. 0.00000 0.04586 0.45859 0.04586 0.45859 

U-B3-Amb 
Height 81 84 103 79 64 

82.2 Height - Mean -1.2 1.8 20.8 -3.2 -18.2 
Degree Diff. 0.05503 0.08255 0.95380 0.14675 0.83459 

U-B4-Amb 
Height 73 66.5 82 70 57 

69.7 Height - Mean 3.3 -3.2 12.3 0.3 -12.7 
Degree Diff. 0.15134 0.14675 0.56406 0.01376 0.58240 

U-B5-Amb 
Height 103 102.5 92 101 107 

101.1 Height - Mean 1.9 1.4 -9.1 -0.1 5.9 
Degree Diff. 0.08713 0.06420 0.41732 0.00459 0.27057 

U-B6-Amb 
Height 8 9 4 7.5 10.5 

7.8 Height - Mean 0.2 1.2 -3.8 -0.3 2.7 
Degree Diff. 0.00917 0.05503 0.17427 0.01376 0.12382 

U-B7-Amb 
Height 52 43 52.5 52 43 

48.5 Height - Mean 3.5 -5.5 4 3.5 -5.5 
Degree Diff. 0.16051 0.25223 0.18344 0.16051 0.25223 

1=1/1000 inch 
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Table A.6: Parallel measurements of 0.5:1 ambient UHPC samples 

Sample ID 
  Measurements Mean 
  1 2 3 4 5 

U-A1-Amb 
Height 96.5 92.5 90 103.5 99.5 

96.4 Height - Mean 0.1 -3.9 -6.4 7.1 3.1 
Degree Diff. 0.00459 0.17885 0.29350 0.32560 0.14217 

U-A2-Amb 
Height x x x x x 

x Height - Mean x x x x x 
Degree Diff. x x x x x 

U-A3-Amb 
Height 106 110 91 96.5 114 

103.5 Height - Mean 2.5 6.5 -12.5 -7 10.5 
Degree Diff. 0.11465 0.29809 0.57323 0.32102 0.48152 

U-A4-Amb 
Height 69 66 60 67 69 

66.2 Height - Mean 2.8 -0.2 -6.2 0.8 2.8 
Degree Diff. 0.12841 0.00917 0.28433 0.03669 0.12841 

U-A5-Amb 
Height 100 89 96 109 103 

99.4 Height - Mean 0.6 -10.4 -3.4 9.6 3.6 
Degree Diff. 0.02752 0.47693 0.15592 0.44025 0.16510 

U-A6-Amb 
Height 51.5 60 53 36 45 

49.1 Height - Mean 2.4 10.9 3.9 -13.1 -4.1 
Degree Diff. 0.11006 0.49986 0.17885 0.60074 0.18802 

U-A7-Amb 
Height 74 81 72 69 70.5 

73.3 Height - Mean 0.7 7.7 -1.3 -4.3 -2.8 
Degree Diff. 0.03210 0.00616 0.00104 0.00344 0.00224 

U-A8-Amb 
Height 62 64.5 56 58 73 

62.7 Height - Mean -0.7 -8.8 -17.3 -15.3 -0.3 
Degree Diff. 0.03210 0.00704 0.01384 0.01224 0.00024 

1=1/1000 inch 
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Table A.7: Parallel measurements for 2:1 thermally treated UHPC samples 

Sample ID 
  Measurements Mean 
  1 2 3 4 5 

U-C1-TT 
Height 105.5 89 106 106 95 

100.3 Height - Mean 5.2 -11.3 5.7 5.7 -5.3 
Degree Diff. 0.23847 0.51820 0.26140 0.26140 0.24306 

U-C2-TT 
Height 60 75 64 48 59.5 

61.3 Height - Mean -1.3 13.7 2.7 -13.3 -1.8 
Degree Diff. 0.05962 0.62826 0.12382 0.60991 0.08255 

U-C3-TT 
Height 87 79 81 96 91 

86.8 Height - Mean 0.2 -7.8 -5.8 9.2 4.2 
Degree Diff. 0.00917 0.35770 0.26599 0.42190 0.19261 

1=1/1000 inch 

Table A.8: Parallel measurements for 1:1 thermally treated UHPC samples 

Sample ID 
  Measurements Mean 
  1 2 3 4 5 

U-B1-TT 
Height 79.5 86 75 68.5 79.5 

77.7 Height - Mean 1.8 8.3 -2.7 -9.2 1.8 
Degree Diff. 0.08255 0.38063 0.12382 0.42190 0.08255 

U-B2-TT 
Height 68 75 57 60 75 

67 Height - Mean 1 8 -10 -7 8 
Degree Diff. 0.04586 0.36687 0.45859 0.32102 0.36687 

U-B3-TT 
Height 78 96 81 69 81 

81 Height - Mean -3 15 0 -12 0 
Degree Diff. 0.13758 0.68787 0.00000 0.55030 0.00000 

U-B4-TT 
Height 72 67 70 75.5 67 

70.3 Height - Mean 1.7 -3.3 -0.3 5.2 -3.3 
Degree Diff. 0.07796 0.15134 0.01376 0.23847 0.15134 

U-B5-TT 
Height 52 61 44 53 32 

48.4 Height - Mean 3.6 12.6 -4.4 4.6 -16.4 
Degree Diff. 0.16510 0.57781 0.20178 0.21095 0.75206 

U-B6-TT 
Height 61.5 64 46 55 75 

60.3 Height - Mean 1.2 3.7 -14.3 -5.3 14.7 
Degree Diff. 0.05503 0.16968 0.65577 0.24306 0.67411 

U-B7-TT 
Height 65 57 48 70 73 

62.6 Height - Mean 2.4 -5.6 -14.6 7.4 10.4 
Degree Diff. 0.11006 0.25681 0.66952 0.33936 0.47693 

 1=1/1000 inch 
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Table A.9: Parallel measurements for 0.5:1 thermally treated UHPC samples 

Sample ID 
  Measurements Mean 
  1 2 3 4 5 

U-A1-TT 
Height 94.5 108 102.5 82 91 

95.6 Height - Mean -1.1 12.4 6.9 -13.6 -4.6 
Degree Diff. 0.05045 0.56864 0.31643 0.62367 0.21095 

U-A2-TT 
Height 100 110 99 98 97 

100.8 Height - Mean -0.8 9.2 -1.8 -2.8 -3.8 
Degree Diff. 0.03669 0.42190 0.08255 0.12841 0.17427 

U-A3-TT 
Height 11.5 17 29 12 -1 

13.7 Height - Mean -2.2 3.3 15.3 -1.7 -14.7 
Degree Diff. 0.10089 0.15134 0.70162 0.07796 0.67411 

U-A4-TT 
Height 92 79 108 95 75 

89.8 Height - Mean 2.2 -10.8 18.2 5.2 -14.8 
Degree Diff. 0.10089 0.49527 0.83459 0.23847 0.67869 

U-A5-TT 
Height 60 58 66 59 53 

59.2 Height - Mean 0.8 -1.2 6.8 -0.2 -6.2 
Degree Diff. 0.03669 0.05503 0.31184 0.00917 0.28433 

U-A6-TT 
Height 93 90 103 98 89 

94.6 Height - Mean -1.6 -4.6 8.4 3.4 -5.6 
Degree Diff. 0.07338 0.21095 0.38522 0.15592 0.25681 

U-A7-TT 
Height 18 27 10.5 6 19.5 

16.2 Height - Mean 1.8 10.8 -5.7 -10.2 3.3 
Degree Diff. 0.08255 0.00864 0.00456 0.00816 0.00264 

1=1/1000 inch 
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Appendix B: Statistical Analysis – Box Plots 
The following box plots were developed using an ANOVA statistical analysis through 

MiniTab software, as outlined in Section 5.6. 
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Figure B.1: Boxplot from ANOVA test for NSC specimens that either met or did not meet parallel 

tolerance 
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Figure B.2: Boxplot from ANOVA test for ambient cured UHPC specimens that either met or did not 

meet parallel tolerance 

 

METDID NOT MEET

3.0

2.5

2.0

1.5

1.0

Parallel Tolerance

D
IF

UHPC TT - Boxplot of DIF

 

Figure B.3: Boxplot from ANOVA test for thermally treated UHPC specimens that either met or did 

not meet parallel tolerance 
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Figure B.4: Boxplot from ANOVA test for NSC comparing DIF for each aspect ratio 
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Figure B.5: Boxplot from ANOVA test for ambient cured UHPC comparing DIF for each aspect ratio 
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Figure B.6: Boxplot from ANOVA test for ambient cured UHPC comparing DIF for each aspect ratio 
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Figure B.7: Boxplot from ANOVA test for NSC comparing strain rate for each aspect ratio 
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Figure B.8: Boxplot from ANOVA test for ambient cured UHPC comparing strain rate for each aspect 

ratio 
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Figure B.9: Boxplot from ANOVA test for thermally treated UHPC comparing strain rate for each 

aspect ratio 
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Figure B.10: Boxplot from ANOVA test for each concrete type, comparing DIF  
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Appendix C: Permission for Use of Copyrighted Material 
 
The email below corresponds to Figure 2.4.  
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