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Abstract 
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Aviation safety management is implemented through reactive, proactive, and predictive 

methodologies. Unlike reactive and proactive safety, predictive safety can predict the 

next accident and enable prevention before an actual occurrence. The study outlined here 

promotes predictive safety management through machine learning technologies using 

large amounts of data to facilitate predictive modeling.  

The study addresses efforts to reduce General Aviation accidents, an effort that 

was renewed in earnest with the Federal Aviation Administration’s 1998 Safer Skies 

Initiative. Over the past 22 years, the General Aviation fatality rate has decreased. 

However, accidents still happen, and there is some evidence showing the number of 

accidents, representing hazard exposure, is increasing. The accident data suggest that the 

aviation community still has more to learn about the variables involved in an accident 

sequence.  

The purpose of the study was to conduct an exploratory data-driven examination 

of General Aviation accidents in the United States from January 1, 1998, to December 

31, 2018, using machine learning and data mining techniques. The goal was to determine 

what model best predicts fatal and severe injury aviation accidents and further, what 

variables were most important in the prediction model. 
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The study sample comprised 26,387 fixed-wing general aviation accidents 

accessed through the publicly accessible National Transportation Safety Board Aviation 

Accident Database and Synopses archive. Using a mixed-methods approach, the study 

employed both unstructured narrative text and structured tabular data within the 

predictive modeling. First, the accident narratives were culled using text mining 

algorithms to develop text-based quantitative variables. Next, data mining algorithms 

were used to develop models based on both text- and data-based variables derived from 

the accident reports. 

Five types of machine learning models were created using SAS® Enterprise 

Miner™, including the Decision Tree, Gradient Boosting, Logistic Regression, Neural 

Network, and Random Forest. Additionally, three broad sets of variables were used in 

modeling, including text-only, data-only, and a combination of text and data variables. 

Three models, Logistic Regression (text-only variables), Random Forest (text-only 

variables), and Gradient Boosting (text and data variables), emerged with a similar 

prediction capability. The top six variables within the models were all text-based 

covering Medical, Slow-flight and stalls, Flight control, IMC flight, Weather factors, and 

Flight hours topics. The Logistic Regression (Text) model was selected as the champion 

model: Misclassification Rate = 0.098, ROC Index = 0.945, and Cumulative Lift = 3.46. 

The results of the study provide insights to the entire General Aviation 

community, including government, industry, flight training, and the operational pilot. 

Specific recommendations include the following areas: 1) improve the quality and 

usefulness of accident reports for machine learning applications, 2) investigate ways to 

capture and publish more open-source flight data for use in safety modeling, 3) invest in 
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additional medical education and find ways to address impairing medications and high 

risk medical conditions, 4) renew efforts on improving flight skills and combatting 

decision-based errors, 5) emphasize the importance of weather briefings, pre-flight 

planning, and weather-based risk management, and 6) create an aviation-specific corpus 

for text mining to improve text analysis and transformation.  

Keywords: general aviation, machine learning, text mining, data mining, 

predictive safety management  
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Chapter I: Introduction 

The introduction chapter for this study provides a project overview and lays a 

foundation for the follow-on chapters. The foundation begins with a brief background on 

general aviation accidents. Following the background is a discussion of the problem 

statement, the purpose of the study, and study significance. Next, the research questions 

that drive the methodology and research design are presented. Delimitations, limitations, 

and assumptions provide the scope and boundaries of the study. Finally, key definitions 

of significant terms and concepts are provided to facilitate understanding and knowledge 

transfer.  

Background/Overview 

The analysis of modern aviation accidents may be traced to the 1908 Wright Flyer 

crash that killed Thomas Selfridge and injured Orville Wright (Bruno, 1944). While the 

flight environment has become more complex, the core components of accident 

investigation have remained mostly unchanged. The goal of accident analysis is to 

determine what happened to prevent future mishaps. What has changed in the realm of 

accident prevention is a move from reactive analysis--a review of what has happened--to 

methods of proactive prevention. More recent is the effort to move beyond proactive 

accident prevention to predictive methods enabled by machine learning (Shmueli et al., 

2016; Stolzer, Halford et al., 2011). Data mining is a multidisciplinary science concerned 

with extracting information from large quantities of data and draws from different areas 

such as machine learning, artificial intelligence, neural networks, database technology, 

and computer science (Han & Kamber, 2001). Data mining is much more than extracting 

data from a database. It is the machine learning intelligence functionality within data 
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mining that enables the extraction of knowledge that cannot be detected using traditional 

statistical methods or with limited amounts of data (Han & Kamber, 2001). Limitations 

of traditional methods such as assumptions of normality, sensitivity to missing values, 

and multicollinearity are overcome when data mining large amounts of data (Truong et 

al., 2018). As applied to aviation, by using machine learning, it may be possible to predict 

specific types of aviation accidents supporting targeted interventions to prevent adverse 

outcomes (Burnett & Si, 2017; Liu et al., 2013; Stolzer & Halford, 2007). As noted, an 

enabling component of machine learning is access to large blocks of data. One such 

source is the National Transportation Safety Board (NTSB) Aviation Accident Database 

& Synopses (NTSB, 2020b). 

General Aviation Operations   

General Aviation (GA) represents a major portion of flight operations within the 

United States and encompasses a wide array of operations types, aircraft types, pilot 

experience, and operating standards. A standard definition of GA involves a reference to 

what is not included in the category. GA operations are civil aviation flights that do not 

include scheduled or unscheduled air carriers (FAA, 2017). Operations not involving 

scheduled or unscheduled air carriers include such areas as personal use, flight 

instruction, business, agriculture, sight-seeing, and air medical flights (FAA, 2020b), 

though that list is far from exhaustive. The Federal Aviation Administration (FAA) 

(2020) conducts annual surveys of aircraft activities by aircraft types in the categories of 

fixed wing-piston, fixed wing-turboprop, fixed wing-turbojet, rotorcraft-piston, 

rotorcraft-turbine, gliders, lighter-than-air, experimental, and special light-sport, giving 

some indication of the variation in aircraft complexities across the GA fleet. According to 
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the FAA (2018), there are over 220,000 GA aircraft in the United States. Focusing on the 

fixed-wing subset of the GA fleet, the FAA (2020) data show that in 2017 there were 

167,560 active aircraft that flew 18,336,203 hours. Overall, both the total number of 

active GA aircraft and total GA flight hours decreased between 1999 and 2017 with the 

lowest numbers in 2013. Since 2013, the total number of active GA aircraft and total GA 

flight hours has been increasing (FAA, 2020b), as shown in Figure 1.  

 

Figure 1 

Fixed-wing Active Aircraft and Flight Hours, 1999-2017 

 

Note. Adapted from the FAA General Aviation and Part 135 Activity Surveys (FAA, 2020b). *The active 

aircraft and flight hours data for 2011 are presented as averages of 2010 and 2012 because the FAA has not 

published the data for 2011.  
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transport pilot (ATP). Each requires varying levels of training and flight hours in order to 

qualify for the different certificates. All but those who obtain a commercial or ATP 

certificate are limited to GA flying. Commercial and ATP pilots are not limited and may 

fly under different flight rules in addition to Part 91. At the end of 2018, there were 

633,316 pilots with active certifications in the US. (FAA, 2019a). Of the total number of 

certificates, 26% are student pilot certificates (FAA, 2019a). Student, sport, recreational, 

and private pilot certificates comprise 48% of the active certificates (FAA, 2019a). 

Pilot medical requirements. In addition to the variety of GA aircraft and possible 

pilot certification levels, each pilot certificate has a different medical requirement that 

varies by age. One difference between the airline community and the general aviation 

community is that that active airline pilots must retire at 65, whereas there are no upper 

age restrictions for GA pilots. Age may have different implications for aviation accidents 

given a GA population of over 92,000 pilots age 65 or higher, with 9,188 pilots age 80 or 

older (FAA, 2019a). A general description of pilot medical requirements can be viewed 

in Table 1.  
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Table 1 

General Pilot Medical Requirements  

Certificate Medical 

Requirement 

Renewal Requirement 

Sport Not Required* *A sport pilot may operate according to their U.S. 

driver’s license restrictions. 

Recreational Third-Class 

Medical 

<40, every 60 months; 40 and over, every 24 

months 

Student Third-Class 

Medical 

<40, every 60 months; 40 and over, every 24 

months 

Private Third-Class 

Medical 

<40, every 60 months; 40 and over, every 24 

months 

Commercial Second-Class 

Medical 

Every 12 months  

ATP First-Class 

Medical 

<40, every 12 months; 40 and over, every six 

months 

Note. The information contained in the table is general and does not capture all of the possible variables. 

The 14 CFR § 61 (Certification: Pilots, 2020) is the source document for all variations of medical 

requirements. 

 

 The primary reason for considering the different aircraft, types of operations, pilot 

certification levels, and medical standards is to frame some of the challenges with 

addressing safety issues in GA. Variations in training, flight experience, aircraft speeds, 

aircraft complexity, and flying operations present very different hazards than that found 

in the airlines and other non-GA commercial operations. Unfortunately, sometimes the 

hazards develop into aviation accidents. 

General Aviation Accidents  
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A review of accident trends between 1998-2016 reveals mixed conclusions. The 

Joseph T. Nall reports have been an industry source of GA accident statistical roll-ups 

since 1997, with the most recent report covering 2016 (AOPA, 2019). Figure 2 shows the 

fixed-wing GA accident data from 1998-2016. The gold bars indicate the total number of 

accidents per year. Accident rates per 100,000 flight hours are superimposed as line 

graphs. The 2016 data indicate there were 1,036 fixed-wing accidents, of which 159 

involved fatalities. 

 

Figure 2 

Fixed-wing Non-commercial Accidents, 1998-2016 

 

Note. Adapted from the Joseph T. Nall reports AOPA, 2019). *The accident rates from 2011 are estimated 

using the average of the flight hours flown in 2010 and 2012 due to missing data from the FAA. 
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A review of FAA-provided data, which uses a slightly different accounting 

period, shows there were 347 fatalities from GA accidents in the Fiscal Year 2017 

(October 1, 2016, through September 30, 2017) (FAA, 2018). The fatalities occurred 

from 209 accidents. What the Fiscal Year 2017 numbers do not capture is 961 additional 

GA accidents during the same period that did not result in a fatality (NTSB, 2020b). In 

pure numbers, since 1998, the number of both total accidents and fatal accidents has 

decreased. However, while the number of accidents in 2016 is lower than in 1998, 

accidents increased between 2013-2016 after 14 years of a declining accident trend. 

Many studies have concluded that human error is either causal or contributory to 

the vast majority of GA accidents (Boyd, 2017a; Boyd, 2017b; Houston et al., 2012; 

Shappell et al., 2007; Shappell & Wiegmann, 1996; Van Benthem & Herdman, 2016; 

Wiegmann et al., 2005; Wiegmann & Shappell, 2003). The 28th Joseph T. Nall Report 

shows that 72.9% of all fixed-wing GA accidents were pilot related. Private pilots were at 

the controls of 45.6% of the accidents, commercial pilots 25.2%, and ATP 19%. There 

was a second pilot in the aircraft in 18.3% of the accidents. Further, in 26% of the 

accidents, there was a certified flight instructor on board, and in 54.2% of the accidents, 

there was an IFR certified pilot on board (AOPA, 2019). 

Of the 1,036 fixed-wing GA accidents, 74.2% involved single-engine fixed-gear 

aircraft. The majority of accidents (73.4%) were listed as personal use, and 17.2% as 

instructional flights. The most dangerous flight condition was day VMC accounting for 

89.1% of fixed-wing GA aircraft accidents and 78.6% of the fatal accidents. The bulk of 

accidents (32%) occurred during the landing phase. The most significant portion of the 

landing accidents (47%) involved loss of control (LOC) with airspeed/stall and hard 
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landings accounting for another 28%. As a group, 48% of all fixed-wing GA accidents 

occurred during landing, takeoff and climb, and descent/approach, in other words, near an 

airport (AOPA, 2019). 

Many studies and reports have touted the safety record of the airline industry 

(Cusick et al., 2017; Ekman & Debacker, 2018; FAA, 2019b; Madsen et al., 2016; 

Shappell et al., 2007). The accolades appear well-founded. In 2016, the scheduled airline 

accident rate was 0.164 (Bureau of Transportation, n.d.), whereas the GA fixed-wing 

accident rate was 5.67 (AOPA, 2019). Interestingly, the difference in total flight hours 

between the two groups was only 3%, with the scheduled airlines flying 18,294,000 hours 

in 2016 (BTS, n.d.b) compared to the GA fixed-wing community flying 17, 691, 000 

flight hours (AOPA, 2019). A comparison of flight hours between GA (Part 91 in blue) 

and scheduled airlines (Part 121 in gold) can be seen in Figure 3. 
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Figure 3 

Flight Hours Comparison, 1998-2016  

 

Note. Adapted from the Joseph T. Nall reports (AOPA, 2019) and Bureau of Transportation (n.d.) statistics. 

*The 2011 flight hours for the Part 91 aircraft data are presented as averages of 2010 and 2012 because the 

FAA has not published the data for 2011. 
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Figure 4 

Accident & Fatality Rate Comparison, 1998-2016  

 

Note. Adapted from the Joseph T. Nall reports (AOPA, 2019) and Bureau of Transportation (n.d.) statistics. 

The rates are calculated as the number of occurrences every 100,000 flight hours. *The Part 91 accident 

rates from 2011 are estimated using the average of the fight hours flown in 2010 and 2012 due to missing 

data from the FAA.  
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GAJSC partners over the past 20 years, and though there have been incremental 

improvements at times, accidents still occur.  

More recent works on safety theory have outlined three different categories of 

safety efforts. The first is reactive safety, which relies on actual occurrences to develop 

safety interventions. The goal is to learn from the past so that the particular accidents are 

not repeated. The second is proactive safety, which relies on precursor conditions that, if 

identified early, can prevent actual occurrences. Key indicators are determined and 

tracked for trends, and participants voluntarily report near-misses so that mitigations can 

be implemented. The third is predictive safety, where accident occurrences are predicted 

before they occur based on modeling factors that have led to mishaps in the past. By 

determining the combination of factors and the relative weight of a factor contributing to 

an accident, steps can be taken to prevent accidents. 

Unfortunately, published research from governmental and quasi-governmental 

organizations regarding GA accident reduction is sparse. However, what appears to be 

evident is a reliance on reactive safety methodologies. Accident statistics are compiled, 

trends are noted, and initiatives developed to address high-level accident factors. 

Proactive safety methodologies are widely accepted as superior to reactive safety because 

proactive measures seek to prevent accidents by identifying and mitigating accident 

precursors. Proactive programs are robust in the air carrier world. For GA, there appears 

to be only one government-based proactive safety program, the Aviation Safety 

Reporting System (ASRS). The ASRS promotes anonymous self-identification of 

deviation without fear of punishment for the purpose of knowledge sharing. Predictive 

safety methodologies strive to provide data-driven knowledge based on past events “to 
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identify current behavior that has the same characteristics” (Dean, 2014, p. 16) with the 

goal of preventing accident precursors, or incidents, and accidents. A search of 

government repositories revealed very little in the way of predictive safety, nor are there 

any evident links between predictive safety methods and the FAA and GAJSC accident 

reduction efforts. 

Research reports from national aviation leaders are sparse providing an 

opportunity to explore new ways of analyzing the problem by leveraging the capabilities 

of machine learning as applied to vast accident archives. The current study seeks to 

augment predictive safety efforts to reduce accidents through data-driven analysis of 

NTSB aviation accident reports. 

Statement of the Problem 

Viable safety systems require continual identification and assessment of its 

components, including identification of hazards, assessments of risks, collection of data, 

and analysis of the data (Stolzer et al., 2018). Since 1998, there has been a targeted 

campaign to reduce GA fatalities, yet fatalities still occur. Data analysis indicates the GA 

fixed-wing accident fatality rate—the proportion of accidents involving a fatality—has 

decreased overall; however, the total number of GA accidents appears to have remained 

at a consistently steady rate (AOPA, 2018b). Further, the fatal accident rate increased 

from .94 in 2017 to 1.029 in 2018 (Gilbert, 2019). What remains unclear is why fatal 

accidents have generally decreased while the overall accident rate remains consistent. 

Perhaps there is undiscovered knowledge to be unlocked in the accident data; 

commonalities or factors that, if better understood, could prevent accidents. Reactive 

safety is expensive and inefficient in terms of both human lives and property. An accident 
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must occur to learn lessons. A better way to approach aviation safety is to predict 

accidents before costs are realized. A machine learning approach with big data could help 

reduce accidents by understanding variables that predict accidents. There is a gap of 

knowledge understanding factors that predict GA accidents (both fatal and non-fatal). 

Further, efforts in closing the gap in understanding are constrained by the limitations of 

traditional statistical modeling. A predictive exploratory data-driven approach to 

analyzing GA accidents through machine learning can potentially advance aviation 

knowledge beyond the limits of proactive safety methodologies and traditional 

correlational analysis. Once the variables are understood in the context of exploratory 

predictive modeling, barriers and mitigations may be instituted to prevent the next 

accident. 

Purpose Statement 

The purpose of this data-driven exploratory study was to determine the model that 

best predicts the target variable—accident injury level—and determine the variables that 

are most important within the model. The variables were derived from quantitative 

tabular and qualitative narrative data found in the NTSB aviation accident report archive. 

Significance of the Study 

Theoretical Significance    

Aircraft incidents and accidents form the basis of reactive safety efforts (Stolzer 

& Goglia, 2015) and efforts to improve aircraft accident prevention have the greatest 

potential impact on operations as safety activities graduate from reactive to predictive 

methods (Baugh & Stolzer, 2018; Friend & Kohn, 2018; Stolzer, Halford et al., 2011). 

Further, the evaluation of accident precursors using new methods is still needed because 
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accidents are still occurring (Erjavac et al., 2018). The study, as envisioned, extends 

efforts to reduce GA accidents by using powerful machine learning techniques 

(predictive methodology) with a large dataset to detect previously undiscovered 

relationships between accident components. 

Practical Significance   

When aggregated, incidents and accidents drive safety campaigns (Aircraft 

Owners and Pilots Association, n.d.; General Aviation Joint Steering Committee, n.d.). 

These campaigns appear to have reduced mishaps; however, mishaps continue to occur. 

The biggest and most well-defined problems are being addressed. The next logical step is 

to investigate areas that are not as easily accessible or under-exploited. The study 

outlined here identifies an algorithm that can predict GA accident outcomes, which can 

more finely guide safety prevention activities. 

The results obtained from this study provide data for use in many academic and 

practical arenas, including developing strategies for improving pilot flight performance. 

Specific benefits are envisioned for general aviation participants, Federal Aviation 

Administration, industry leaders, academic researchers, and flight training institutions. 

Human factors and flight safety researchers will benefit by knowing the relevance of 

particular predictors of accidents to improve further research efforts. Accident 

investigators will benefit from an increased understanding of human error resulting from 

combinations of various human factors. Finally, flight training institutions can use the 

study outcomes to evaluate the curriculum in light of empirical indications of accident 

predictors. 
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Research Questions 

Two research questions guide this exploratory data-driven study: 

RQ1: What model developed with machine learning and data mining techniques best 

predicts fatal and severe injury aviation accidents?  

RQ2: What variables are most important in the selected model for predicting fatal and 

severe injury aviation accidents? 

Delimitations 

The scope of the current study must be defined to ensure feasibility and provide a 

foundation for assessments of generalizability, validity, and reliability. Additionally, the 

broad category of Part 91 GA activities covers a myriad of aircraft types, flight 

operations, and pilot certifications that make it difficult to make meaningful 

generalizations to the entirety of GA. Overall, the research involved Part 91 GA fixed-

wing aircraft accidents in the United States from 1998 to 2018. Because the study is 

interested in the actions of pilots in an accident sequence, crashes involving deliberate, 

willful negligence, or criminal actions were excluded.  

Given the variety of aircraft types within the GA category, the research focused 

only on fixed-wing aircraft. The study excluded the following aircraft: helicopters, 

gliders (powered or unpowered), lighter-than-air, weight-shift, gyrocopters, and powered 

parachutes. Aircraft operating under rules other than Part 91, such as Part 137 

(agriculture aircraft operations) or Part 135 (commuter and on-demand operations), were 

also excluded. 
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Limitations and Assumptions 

Limitations  

The primary limitation relates to the use of archival data. The research project 

relies on secondary historical reports captured by outside individuals for purposes that are 

not necessarily aligned with research designs (Vogt et al., 2012). Some reports are limited 

by the lack of completeness. However, the database is large enough that missing data are 

not anticipated to be a factor in the study results (Bordens & Abbott, 2011; Shmueli et al., 

2016; Truong et al., 2018). In most cases, and unlike aircraft operating as commercial air 

carriers, there are no onboard data capture devices such as cockpit voice recorders and 

flight data recorders. Data is provided based on witness reports, expert judgment, and 

post-crash physical evidence. 

Assumptions   

NTSB reports begin with an investigation outlining the facts surrounding the 

incident or accident. While the NTSB can send investigators to the site, in some cases, 

the facts are determined by other assigned government agencies or by phone interviews 

to individuals at the crash site. Reports submitted by operators are compiled on the NTSB 

Form 6120.1, Pilot/Operator Aircraft Accident/Incident Report (NTSB, 2013). It is 

assumed that those individuals providing information to the NTSB answered questions 

honestly.  

Further, it is assumed that the NTSB instrument and methodology are valid and 

reliable. Once the investigation is complete, a report is generated and published in the 

NTSB Aviation Accident Database & Synopses (NTSB, 2020b). Reports are available in 

a standardized format as a PDF or HTML document. Data from the report is mirrored in 
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the downloadable Microsoft Access database. Addressing the NTSB process for 

capturing, storing, and publishing the data, the U.S. Government Accounting Office 

(2010) reported that all required quality assurance measures were in place to help ensure 

accuracy and correct erroneous entries. The quality assurance process includes 

management review, reconciliation of the completeness of the data, a process that 

promotes accuracy when entered into the system, a process that validates data entered 

into the system, and a process to identify and correct data errors (GAO, 2010). Further, 

the NTSB has defined database events to promote replication by third parties, and initial 

and recurrent training is provided to system users (GAO, 2010). 

Summary 

In Chapter I, the subject of the current study was introduced. The nature of the 

problem was stated, and the significance of the problem was outlined. Finally, the first 

chapter outlined research questions that provide direction for the project. 

Chapters II and III complete the setup for the dissertation project. Chapter II 

comprises an extensive review of the literature. Chapter III builds on the literature by 

providing a methodological foundation for addressing the research questions. The 

research design is presented in Chapter III, including details of the population, sample, 

and sampling strategy. Finally, major details on conducting the study and the approaches 

to analyzing the data will be given. Chapters IV and V present the study results and the 

discussion of the results, respectively. 
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Definitions of Terms 

Aviation Accident An aviation occurrence involving substantial 

damage or serious injury that happens on an aircraft 

with intentions to fly. The time period covers 

boarding to disembarking the aircraft (Definitions, 

2020). 

Big Data Describes a magnitude of compiled data typified by 

its volume, complexity, and speed of growth (EMC 

Education Services, 2015). 

Cause A deficiency, which if properly eliminated or 

mitigated, would likely have prevented the accident 

or reduced the accident severity (USAF, 2018; 

Wood, 2003). A cause may be related to a single 

factor or a combination of factors (Wood, 2003), 

and may relate to “actions, omissions, events, [or] 

conditions” (ICAO, 2016, p. 1-2) that led to an 

accident. 

Civil Aircraft An aircraft not categorized as a public aircraft 

(Definitions, 2020). 

Class Variable Used in SAS® EM™, a class variable is 

synonymous with a categorical variable (McCarthy, 

McCarthy, Ceccucci, & Halawi, 2019; SAS 

Institute Inc, 2019a). 
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Confusion Matrix Describes a table used to visualize classifier 

performance. As used in the current study, a 2x2 

matrix shows how many times a model correctly 

and incorrectly categorized the target in terms of 

True Positives (TP), False Positives (FP), True 

Negatives (TN), and False Negatives (FN) (EMC 

Education Services, 2015). 

Data Mining Extracting information from large quantities of data 

using machine learning techniques to detect hidden 

associations (Han & Kamber, 2001; Tufféry, 2011). 

Decision Tree A structure resembling branches of a tree that can 

be used for predicting the target variable using 

“sequences of decisions and consequences” (EMC 

Education Services, 2015, p. 192). Data are 

segmented hierarchically and partitioned into 

disjoint groups where prediction is achieved 

(Sarma, 2013).  

FAR Part 91 Rules governing general aviation flight (General 

Operating and Flight Rules, 2020). 

FAR Part 121 Rules governing air carrier flights (Operating 

Requirements, 2020). 

Fatal Injury An injury resulting in death 30 days or less from the 

accident (49 CFR § 830.2) 
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General Aviation Civil aviation flights not including air carriers 

whether or not the air carrier flights are scheduled 

or unscheduled (FAA, 2017). 

Gradient Boosting Machine An ensemble machine learning technique built in a 

stepwise fashion characterized by combining 

prediction models into a more superior model with 

greater prediction capability than the individual 

models (McCarthy et al., 2019). 

Hazard A condition that creates the “potential for producing 

death, injury, illness, fire, property damage, 

equipment damage or environmental damage” 

(USAF, 2015, p. 143). 

Incident An aviation occurrence that either affects or has the 

potential to affect operations safety and does not 

meet the definition of an accident (Definitions, 

2020). 

Latent Variable Describes a variable not capable of being measured 

directly, and is accessed through observed variables 

(Field, 2018). An aviation example is the concept of 

flight experience which is not directly measured, 

but is a combination of factors. 

Loss of Control “Loss of aircraft control while, or deviation from 

intended flightpath, in flight” (ICAO, 2017, p. 15). 
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Machine Learning “A branch of artificial intelligence [that] uses 

computational algorithms to automatically learn 

insights from the data and make better decisions in 

the future with minimal intervention” (McCarthy et 

al., 2019, p. 12) 

Minor Injury An injury not rising to the level of serious or fatal 

(49 CFR § 830.2). 

Mishap Describes unplanned reportable safety occurrences 

resulting in injury or damage. The terminology is 

primarily used by military services in the United 

States (USAF, 2015; Wood, 2003). 

Near Miss A near miss can be described as “an outcome with a 

subjective potential negative (or more severe) 

consequence” (Thoroman et al., 2019), or more 

specifically, “an incident that could have, but did 

not, result in death, injury, or illness” (OSHA, 2016, 

p. 34).  

Neural Network “A neural network, when used for classification, is 

typically a collection of neuron-like processing 

units with weighted connections between the units” 

(Han & Kamber, 2001, p. 24) 

Overfitting A characteristic where model training becomes 

overly complex and includes too much noise (SAS, 
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2019a) leading to poor operation in subsequent 

samples.  

Parent Term Within the text mining process, words are identified 

and categorized. A parent term is one that includes 

all stemmed versions of the word. The plus (+) 

character indicates the word is a parent term. 

Random Forest An ensemble model for regression and classification 

based on multiple decision trees to arrive at a model 

with greater stability and prediction capability than 

a single decision tree (McCarthy et al., 2019).  

Receiver Operating Characteristic A plot of a model’s sensitivity and specificity using 

true positive and false positive rates at various 

thresholds (McCarthy et al., 2019).  

Safety A risk-based assessment of an operation. Operations 

with acceptable risk are deemed safe, while 

operations with unacceptable risk are deemed 

unsafe (Wood, 2003). 

Serious Injury An injury resulting in more than 48 hours 

hospitalization, bone fractures, severe lacerations, 

internal injuries, or burns (second or third-degree) 

(49 CFR § 830.2). 

Text Mining A form of data mining involving the quantification 

of textual data (Shmueli et al., 2016). 
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List of Acronyms 

ADM Aeronautical Decision Making 

ADS-B Automatic Dependent Surveillance-Broadcast 

AGL Above Ground Level 

ANN Artificial Neural Network 

AoA Angle of Attack 

AOPA Aircraft Owners and Pilots Association 

ARC Aviation Rulemaking Committee 

ASAP Aviation Safety Action Program 

ASRS Aviation Safety Reporting System 

ATP Airline Transport Pilot 

CFIT Controlled Flight Into Terrain 

CFR Code of Federal Regulations 

CG Center of Gravity 

CRM Crew Resource Management 

EAB Experimental Amateur Built 

FAA Federal Aviation Administration 

FAAST Federal Aviation Administration Safety Team 

FAR Federal Aviation Regulation 

FOQA Flight Operational Quality Assurance 

FSF Flight Safety Foundation 

GA General Aviation 

GAJSC General Aviation Joint Steering Committee 
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GAO Government Accountability Office 

HF Human Factors 

HFACS Human Factors Analysis and Classification System 

IAF Initial Approach Fix 

ICAO International Civil Aviation Organization 

IEA International Ergonomics Association 

IFR Instrument Flight Rules 

IMC Instrument Meteorological Conditions 

INCOSE International Council on Systems Engineering 

LOC Loss of Control 

LODA Letter of Deviation Authority 

NTSB National Transportation Safety Board 

OOB Out-of-Bag 

ROC Receiver Operating Characteristic 

SMS Safety Management System 

SQL Structured Query Language 

SRM Safety Risk Management 

SVD Singular Value Decomposition 

SVM Support Vector Machine 

VFR Visual Flight Rules 

VMC Visual Meteorological Conditions  
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Chapter II: Review of the Relevant Literature 

There will develop a technique and a language of aerial navigation, and 

experts will become skilled in contending with the perversity of special 

mechanisms in starting and landing under difficult circumstances, in battling with 

fog and rain and storm, in taking advantage of air currents at different levels, and 

in seeking out the lanes of the atmosphere in which to add to their speed the 

sweep of the trade winds.  

And over all will soar with the ease of the gull or drive with the speed of 

the whirlwind, the myriad of ships of the air, transforming the face of the heavens. 

Of many sizes and at many altitudes, midgets and leviathans, close to the earth 

and up in the clouds—in the days of the shadows of their wings will speed over 

every corner of all the lands and seas, and in the nights of that future time the eye-

like gleams of their search-lights will mingle to the uttermost ends of the earth, 

beacons of science and romance and progress and brotherhood. (Victor Lougheed, 

1909, p. 41)  

Following the study foundation laid in the previous chapter, Chapter II proceeds 

with a discussion of general aviation in the literature, findings on general aviation safety, 

and general aviation safety initiatives. Next, studies researching aspects of aviation 

safety, including studies predicting aviation incidents and accidents, are outlined. Finally, 

gaps in the literature are presented. 

General Aviation in the United States. 

It may be argued that from the beginning of powered flight in the United States, 

aviation was “general.” To be sure, early flyers such as the Wright brothers sought to sell 
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their aircraft to the military (McCullough, 2015). However, in the years following Kitty 

Hawk, many pioneers such as Walter Beech, Clyde Cessna, Glenn Curtiss, Lloyd 

Stearman, and the Wrights developed aircraft and aircraft components for a myriad of 

personal and business purposes (Crehan & Brady, 2000). While discussions of GA may 

evoke images of the ubiquitous Cessna and similar aircraft, GA is defined not by a type 

of aircraft but by a kind of operation. The standard FAA (2017) definition states that GA 

comprises civil aviation flights, not including air carriers, whether or not the air carrier 

flights are scheduled or unscheduled. Rules defining GA flight operations are defined in 

14 CFR § 91 of the U.S. Code of Federal Regulations (CFR) (General Operating and 

Flight Rules, 2020). An abbreviated listing of common aviation CFRs are found in Table 

2. 
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Table 2 

Common CFRs for Aircraft Operations 

Part Heading 

61 Certification: Pilots, Flight Instructors, and Ground Instructors 

67 Medical Standards and Certification 

68 Requirements for Operating Certain Small Aircraft Without a Medical 

Certificate 

91 General Operating and Flight Rules [for General Aviation] 

103 Ultralight Vehicles 

121 Operating Requirements: Domestic, Flag, and Supplemental Operations 

135 Operating Requirements: Commuter and On Demand Operations and 

Rules Governing Persons on Board Such Aircraft 

136 Commercial Air Tours and National Parks Air Tour Management 

137 Agriculture Aircraft Operations 

Note. Adapted from the eCFR table of contents (Aeronautics and Space, 2020). 

 

General aviation operations encompass a wide variety of aircraft types and 

activities. Aircraft types include single- and multi-engine piston, single- and multi-engine 

turboprop, turbojet, helicopter, experimental, and light sport (AOPA, 2018a). Balloons, 

blimps, gliders, powered-parachutes, ultralights, and weight shift control aircraft also 

operate under GA rules (NTSB, 2020b). Some of the GA activities that fall under Part 91 

include recreational flying, air ambulance, business, freight, and law enforcement 

(AOPA, 2018a). The BTS (n.d.a) indicates there were 211,749 GA aircraft as of the 2018 
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accounting. In comparison, there were 7,397 aircraft recorded under Parts 121 and 135 air 

carrier operations (BTS, n.d.a).  

Aviation Safety   

The early days of powered flight were fraught with accidents as builders 

innovated with different materials and aircraft shapes. Engines, propellers, and even 

building techniques all needed to be tested. Improvements were made when designs 

failed, and system reliability gradually improved. Learning from accidents in the early 

days of aviation was key to aviation progress, beginning with the first fatal crash. On 

September 17, 1908, Orville Wright and Lieutenant Thomas E. Selfridge were flying a 

final sortie during acceptance trials for a potential aircraft purchase by the U.S. Army. 

Shortly after takeoff, the aircraft crashed, injuring Mr. Wright and fatally injuring Lt. 

Selfridge. The U.S. Army investigated the cause of the accident and found that a new 

propeller contacted rudder guy wires leading to a loss of the aircraft directional control 

(Martin, 1999). Recalling the 1908 crash, Stolzer, Halford et al. (2008) wrote:   

It is fascinating to read this report from the perspective of a century of aviation 

safety evolution, and recognized in the reporter’s work the same painstaking 

attention to detail and objective analysis that we have come to expect from 

present-day NTSB reports. In the description one can see the progenitors of many 

of our present-day accepted practices in forensic analysis—crowd control and the 

principle of preservation evidence, description of ‘witness’ marks in the 

wreckage, identification of probable cause. (p. 43) 

While lacking today’s sophistication, the investigation served its purpose, to prevent 

future accidents. The report helped the Wrights to improve the aircraft design and 
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“marked the beginning of the flight safety program so familiar to us today” (Martin, 

1999, p. 2). 

James Reason (2000b) wrote, “avoiding [fatalities, injuries and environmental 

damage] as far as possible is the objective of the safety sciences” (p. 4). Implementing 

the safety objective is as varied as there are organizations and methods to promote safety 

and avoid accidents collectively take various forms. One large aviation organization 

stated its policy in part, “The [organization as a whole] shall support hazard identification 

and mitigation. …When mishaps do occur, investigations must identify the causes and 

allow mitigation of hazards to prevent similar occurrences” (USAF, 2019, p.2). Further, 

the policy stated a requirement to provide safety training to the workforce, enabling 

proactive hazard assessments (USAF, 2019). The parent company for several GA aircraft 

manufacturing operations—Beechcraft, Cessna, and Hawker—stated in part their 

commitment to the safety of their employees and other stakeholders, “We will actively 

champion environmentally sound practices and safe behaviors. We will continuously 

improve our processes, require individual accountability and demonstrate leadership to 

strive for zero injuries…” (Textron, 2018, para 5). Textron (2018) also stated their belief 

that safety begins at the top levels of management, all injuries are preventable, and 

employees must be appropriately trained to realize the desired safety state. For a final 

example, a large southeast college flight program in the United States stated their 

approach to safety as proactive in nature, combining the principles of mishap prevention, 

hazard identification, data collection and analysis, and safety education. Moreover, like 

Textron, safety begins with organizational leadership (ERAU, 2020). From large, diverse 
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fleets, to GA manufacturing, to GA training, the goal is the same; identify and mitigate 

hazards to prevent the next accident. 

To be sure, there are hazards associated with flying, and sometimes accidents 

occur. Investigations are conducted, and from a safety practitioner’s standpoint, 

hopefully, they arrive at a root cause. Once root causes are determined, mitigations can 

be instituted. It seems clear from the literature that most GA accidents have a human 

error component. However, focusing on the pilot can be counterproductive in preventing 

the next accident. First, when pilots feel they are going to be blamed, they are less 

inclined to be forthcoming with information. Second, accidents rarely occur in a vacuum. 

Reason (1997; 2016) argued for a broader view. Certainly, sharp-enders, “those in direct 

contact with the system” (Reason, 2016, p. 2) may be causal in an accident sequence. 

However, what may be more valuable to preventing the next accident is understanding 

underlying factors that created an environment for the accident to occur. Preventing 

mishaps requires addressing both active failures, where sharp-enders act unsafely, and 

latent conditions, those conditions without which the accident would not have happened 

(Reason, 2016). Maurino et al. (2016) wrote of their belief that the time is past for a focus 

on the individual. Instead, it is more beneficial to focus on the organization where the 

underlying conditions reside. One way of systematically shifting away from the 

individual focus to the organization is through the implementation of a Safety 

Management System (SMS). 

Safety Management Systems  

If a system is “a combination of interacting elements organized to achieve one or 

more stated purposes” (INCOSE, 2006, p. 1.5), then a safety management system is a 
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mechanism for managing the safety aspects of the defined system. The International Civil 

Aviation Organization (ICAO) defines safety as “the state in which the possibility of 

harm to persons or of property damage is reduced to, and maintained at or below, an 

acceptable level through a continuing process of hazard identification and safety risk 

management” (ICAO, 2019b, p. 2-1). Due to the complexity and high risks encountered 

in aviation, aviation at large adopted the SMS framework to improve and ensure aviation 

safety. Safety practitioners realized safety problems might not just reside at the operator 

or the equipment, but can have organizational components. Further, as aviation grew to 

be a global system, there was a need to establish international safety standards in the form 

of a State safety program (ICAO, 2019b). The State-level safety program in the United 

States is directed by 14 CFR Part 5 (Safety Management Systems, 2020) and developed 

and managed by the FAA (2016). According to federal law, some types of operations, 

such as Part 121, are mandated to develop a formal SMS, while others are highly 

encouraged to do so (FAA, 2015). The defining characteristic of an SMS, according to 

the FAA, is that it is a system to support safety decision making (FAA, 2015). 

Explaining the premise of a system approach to addressing human error, Reason 

(2000b) wrote, “Humans are fallible and errors are to be expected, even in the best 

organizations. Errors are seen as consequences rather than causes, having their origins not 

so much in the perversity of human nature as in ‘upstream systematic factors’” (p. 768). 

Recognizing the difficulty in changing the human condition, organizations should focus 

their efforts on understanding and changing the operating condition. Further, when 

accidents occur, the focus should move from individual blame to understanding the 
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defense barriers that were breached (Reason, 200b). To Reason (2000a), “Defenses, 

barriers, and safeguards occupy a key position in the system approach” (p. 769). 

Swiss Cheese Model  

The Swiss cheese model is widely used to explain how accidents may occur. If 

one considers aircraft operations, there are any number of hazards that exist that provide 

the conditions for an accident. Barriers (represented by a slice of Swiss cheese) are 

designed to prevent the hazards from becoming an accident factor. However, barriers are 

not perfect (represented by the holes in the Swiss cheese). If the holes in the barriers 

align, then an accident occurs. Reason (2000a) explained the nature of the barriers: 

In an ideal world each defensive layer would be intact. In reality, however, they 

are more like slices of Swiss cheese, having many holes—though unlike in the 

cheese, these holes are continually opening, shutting, and shifting their location. 

The presence of holes in any one “slice” does not normally cause a bad outcome. 

Usually, this can happen only when the holes in many layers momentarily line up 

to permit a trajectory of accident opportunity—bringing hazards into damaging 

contact with victims. (p. 769) 

Active failures, such as a pilot violating a standard operating procedure, and latent 

conditions, such as a lax safety culture represent the holes. “Active failures are like 

mosquitoes. They can be swatted one by one, but they still keep coming. The best 

remedies are to…drain the swamps in which they breed. The swamps, in this case, are the 

ever present latent conditions” (Reason, 2000a, p. 769). 

Active Failures. Active failures most commonly occur with the operator. The 

framework proposed by Maurino et al. (2016) breaks active failures into three areas and 
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provides a method of identifying potential errors. Active failures are categorized as 

knowledge-based, rule-based, and skill-based. Errors within the active failure categories 

can range from skill-based slips and lapses resulting in routine violations to knowledge-

based mistakes resulting in exceptional violations. 

Latent Conditions. Latent conditions represent the operating environment. 

Organizationally, the goal of the SMS is to provide depth in the level of safety barriers; 

the more barriers, the less likely the Swiss cheese holes will align, ending in an accident 

(Reason, 2016). “The key to proactive safety management lies in identifying latent 

failures and remedying them before their consequences are visited upon the organization” 

(Maurino et al., 2016, p. 26). 

Human Factors Analysis and Classification System (HFACS). 

Shappell and Wiegmann (1997; Wiegmann & Shappell, 2003), developed 

HFACS to provide a tool for identifying the holes theorized in the Swiss cheese model. 

HFACS describes four failure levels: unsafe acts; preconditions for unsafe acts; unsafe 

supervision; and organizational influences.  

Unsafe Acts. HFACS builds on Reason’s (1990) categories of errors and 

violations. Errors can be categorized as skill-based errors, decision errors, and perceptual 

errors. Violations can be categorized as routine and exceptional. Interestingly, Reason 

(2016) has since adopted some of these expansions in his later works. 

Preconditions for Unsafe Acts. One level removed from unsafe acts, HFACS 

looks at underlying conditions and begins to look at the operating environment. The 

HFACS preconditions fall under three branches. The first is the condition of the operators 

further divided into adverse mental states, adverse physiological states, and physical or 
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mental limitations. The second condition is environmental factors, which has two 

branches, physical and technological. The final condition is comprised of personnel 

factors divided by crew resource management and personal readiness. 

Unsafe Supervision. Once problems with preconditions for unsafe acts are 

understood, HFACS broadens to look at how the preconditions are allowed to exist, 

leading to unsafe supervision. Again building on Reason (1990), unsafe supervision is 

subdivided into four areas: failure to correct a problem, inadequate supervision, planned 

inappropriate operations, and violations by the supervisor. 

Organizational Influences. At the broadest level, HFACS examines the 

organizational setting from the highest levels of the organization. Organizational 

influences are comprised of organizational climate, organizational processes, and 

resource management. 

SMS Components   

An SMS is developed around four core pillars: safety policy, safety risk 

management, safety assurance, and safety promotion (FAA, 2015; ICAO 2019b). The 

safety policy pillar establishes standards and outlines responsibilities. The safety 

assurance pillar outlines the processes necessary to ensure essential policies are 

implemented and meeting policy goals. The safety promotion pillar helps ensure all 

members of the system know their responsibilities and are trained to implement their role 

in safety. Finally, the fourth pillar, safety risk management, will be explained in greater 

detail in a separate paragraph. 
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Safety Risk Management (SRM)  

There is a myriad of hazards associated with flying. However, that does not mean 

flying is inherently risky; risk can be a subjective term. Because all risks cannot be 

avoided, avoiding unnecessary risk has become a major component of aviation safety 

(USAF, 2013) that implies active involvement from participants (Stolzer, Halford et al., 

2008). Safety risk management involves processes for “identifying hazards and 

mitigating risk based on a thorough understanding of the organizations’ systems and their 

operating environment” (FAA, 2015, pp. 4-5). It is within this component that the 

reactive, proactive, and predictive aspects of accident prevention are carried out.  

Reactive SRM. Reactive SRM is the traditional tool facilitated by accident 

investigation and analysis (Baugh, 2020). Stolzer, Halford et al. (2008) refer to this as the 

“fly-crash-fix-fly” (p. 215) approach to safety management. Accidents are investigated, 

and the lessons learned are used to reevaluate hazards and implement barriers to prevent 

similar events in the future. The primary benefit of reactive SRM is the prevention of 

similar occurrences in the future. The apparent limitation with reactive SRM is that 

incidents and accidents, also known as losses, will have already occurred. 

Proactive SRM. Proactive SRM benefits from analysis of operational trends and 

near-misses to provide a basis for change before incidents develop into accidents 

(Stolzer, Halford et al., 2008). Proactive SRM requires a knowledge of the operating 

environment, data capture, and measurement against operating standards. Proactive SRM 

also relies on voluntary self-identification of deviations and hazards to support inferential 

analysis (Stolzer, Halford et al., 2008). Trends in the deviations provide the basis for 

safety efforts to prevent the precursor activities well before the risks can develop further. 
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The primary benefit of proactive SRM is the possibility of preventing accidents without a 

loss already occurring. The primary shortfall of proactive SRM is that deviations, also 

called near-misses or close-calls, represent risks that, but for some factor, could have 

developed into an accident. 

Predictive SRM. Predictive SRM represents an advancement over both reactive 

and proactive methods. Being able to predict problems enables mitigations prior to 

incidents and accidents even developing. Stolzer, Halford et al. (2008) wrote, “If we wish 

to move to an even higher level [of safety management], the aviation industry must begin 

to embrace methods that allow us to better assess complex systems and predict where the 

failures may be” (p. 216). One challenge for safety program leaders is that accident rates, 

especially for the airline industry, are quite low, making it difficult to analyze and reduce 

the existing risks. However, using predictive tools can provide the information needed to 

improve safety (Stolzer, Halford et al., 2008). Predictive SRM uses historical 

performance data to identify future states with the same attributes (Dean, 2014). Today 

there are vast amounts of data available to fuel prediction modeling. While difficult to 

analyze using traditional statistical and inferential methods, one way to advance 

predictive SRM is through machine learning techniques that have the capability to build 

predictive models from the large amounts of operational and safety data generated. 

GA Safety Initiatives   

A natural outgrowth of safety management efforts is a number of safety initiatives 

designed to better prepare pilots for the hazards of aviation and add barriers to hazards 

developing into accidents.  
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General Aviation Joint Steering Committee (GAJSC). One organization tasked 

at the national level to address general aviation safety is the GAJSC. The GAJSC began 

with the 1998 Safer Skies Initiative and is comprised of industry and government 

stakeholders. The organization charter has evolved, but their most recent goal was to 

reduce the GA fatal accident rate incrementally to just one fatal accident per 100,000 

hours by 2018 (GAJSC, 2016). To realize their goal, the GAJSC launched several lines of 

work. The products of two lines of work, loss of control and system component failure – 

powerplant, produced several safety enhancements that are viewable on the GAJSC 

website (GAJSC, n.d.). A third group, controlled flight into terrain, has met, and a 

published list of recommendations appears to be forthcoming (Haertlein, 2019). A list of 

the loss of control safety enhancements can be seen in Table 3. 

 

Table 3 

GAJSC Loss of Control Safety Enhancements  

Project Title 

1 Angle of Attack (AoA System – New and Current Production 

2 Angle of Attach (AoA) Systems – Existing Fleet 

3 Aeronautical Decision Making (ADM) 

4 Over Reliance on Automation 

5 Transition Training 

6 Transition Training Letters of Deviation Authority (LODA) for Experimental 

Amateur Built (EAB) 

7 Utilization of Type Clubs 

8 Flight Training after Period of Inactivity 

9 Part 135 Safety Culture 
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Project Title 

10 Stabilized Approach and Landing 

12 Weather Technology – Weather Cameras 

R1 Expanded Weather Camera Network 

13 Weather Technology – Use of Available Weather Information 

14 Engine Monitoring Technology 

15 Flight After Use of Medication with Sedating Effects 

16 Flight with Impairing or Incapacitating Medical Conditions – Improve 

Medical Records 

17 Flight with Impairing or Incapacitating Medical Conditions – Barriers to 

Communication 

21 Risk Based Flight Review 

22 Flight Data Monitoring 

23 E-AB/Flight Test 

24 Single-Pilot Crew Resource Management (CRM) 

25 Reduce Regulatory Roadblocks (R3)- Streamline Novel Technology 

26 Reduce Regulatory Roadblocks (R3) – Part 23 Aviation Rulemaking 

Committee (ARC) 

27 Reduce Regulatory Roadblocks (R3) – Review of 14 CFR 21.8 and 21.9 

28 Pilot Response to Unexpected Events 

30 Medication List for Pilots 

31 Test Pilot Utilization and Experimental Amateur Built (EAB) Proficiency 

32 Airman Certification Standards 

33 Safety Culture 

34 Safety Outreach 

Note. Adapted from GAJSC (n.d.). 

 

National Transportation Safety Board (NTSB). The NTSB is well known for 

its independent role in investigating transportation accidents, conducting safety studies, 
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and recommending safety improvements (NTSB, n.d.a). In addition to the causal finding 

accident reports, every one to two years, the NTSB publishes a “most wanted list” to 

focus attention on safety trends with many issue areas applying to all modes of 

transportation. Four topics from 2011-2020 deal specifically with GA operations 

including the following areas: preventing LOC in GA (2015-2018); improving GA safety 

(2011-2013), identifying and communicating hazardous weather for GA (2014); 

enhancing safety in public helicopter operations (2015); and addressing the unique 

aspects of helicopter operations (NTSB, 2020a). The full NTSB most wanted lists 

applicable to aviation are compiled in Appendix D. 

FAA Safety Briefing. The FAA Safety Briefing, published as an online magazine 

six times per year, is billed as “the safety policy voice of non-commercial general 

aviation” (FAA, 2020a, para. 1) with topics selected by the safety briefing editorial staff. 

Topics have included unfriendly weather, knowing your aircraft, flight fundamentals, and 

safety culture, among many others. In addition to the safety magazine, the FAA has 

produced a series of GA safety topic fact sheets that cover topics to enhance pilot skills. 

Many of the fact sheets support both the NTSB's most wanted and GAJSC safety efforts. 

A list of the fact sheets can be found in Appendix E. 

Studies of GA Accidents and Correlating Variables   

Malcolm Ritchie (1988) wrote, “the three classes of aviation in the United States 

are military, airlines, and everybody else” (p. 561). The broadness of everybody else 

points to the difficulty in researching generalizable GA accident factors. Despite the 

challenge, many scholarly studies have been undertaken to research aspects of GA 

accidents. With many studies, there are as many ways to categorize them when 
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conducting a review. The following paragraphs will outline the primary predictor or 

outcome variables that have been used as correlates, a review of studies covering 

different categories of GA aircraft, and those studies with a particular Human Factors 

focus. 

Review of GA Safety Studies   

It may be instructive to begin with an overview of GA safety and studies with 

broad implications. Boyd (2017a) provided a 33-year look at non-revenue-generating 

fixed-wing flight with specific attention given to particular areas: new training and 

technology; crashworthiness initiatives; human factors and aviation psychology; and, 

pilot physiology and toxicology. Several risk factors were identified, including weather, 

mountainous flying, flight distance, night flying, and gender. Studies of flight experience 

as a risk factor report mixed results (Boyd 2017a). When considering safety 

improvements, Boyd (2017a) reported training improvements to focus on risk 

management and relevance to real-world situations. Regarding occupant survivability, the 

lack of seatbelt use was implicated as a significant factor for fatalities in survivable 

accidents. Other risk factors included unsafe behavior, in-flight decision making, and 

pilot health (Boyd 2017a). The factors noted by Boyd (2017b) may be viewed as an 

overview of the more recent findings.  

Wiegmann and Taneja (2003) conducted a more focused study researching fatal 

accident injuries. Blunt trauma was the leading cause of fatalities. Improving 

survivability should include further studies into “attenuating the energy of a crash before 

it can be transmitted to an individual…[and] further development in the areas of 

improving restraint systems” (Wiegmann & Taneja, 2003, p. 576). The final 
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recommendation of Wiegmann and Taneja (2003) was for investigators. Reports need to 

include crashworthiness factors and documentation of the sources of injuries to 

understand the mechanisms of the crash environment. 

Perhaps there is no surprise that common categories of variables are used in 

accident studies. The reason for some of the commonalities likely relates to how accident 

data are recorded. Many accident studies rely on data captured by NTSB investigators, 

and, by definition in archival research, one gets what is previously recorded. Differences 

in studies often reduce to periods covered, the target sample, variations on variable 

combinations used for correlation models, and analysis method. What follows is a 

discussion of common variables used in studying GA hazards, risks, and accidents. 

Coverage of common demographic variables. Depending on the counting 

method, there are hundreds of possible variables in the NTSB database. A pilot’s age, 

sex, flight experience, and flight hours are some of the most commonly used variables. 

These four variables are introduced in the next paragraphs. 

Pilot Age. A pilot’s age has been used as both a predictor and a control variable in 

many studies. Age may be a factor in GA accidents since there is a decline in some 

cognitive and performance capabilities and health implications with age (Boyd, 2018; 

Tsang, 1992; Kennedy et al., 2010; Van Benthem & Herdman, 2016). In airline 

operations, a pilot must retire at age 65, and until 2006, the age was 60 (FAA, 2019c), 

while there is no age restriction in GA operations (Certification: Pilots, 2020). Some 

studies use combinations of a pilot’s age and flight experience to explain the findings (Li 

et al., 2003). Older pilots are at a higher risk for accidents (Li & Baker, 2007; McFadden, 

2003; Shao et al., 2014a, 2014b), and pilots over 60 were found to have a greater risk of 
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involvement in a fatal accident (Bazargan & Guzhva, 2011). Contrarily, Boyd (2015) 

found that increased age was not a risk factor for fatal accidents, and Morris (2018) found 

younger pilots have a greater probability of being involved in an accident than older 

pilots. In Groff & Price (2006), age at the time of earning the first pilot certification 

mattered with higher accident risks associated with private pilot certification after age 25. 

In Li et al. (2001), the researchers found no association between age (or gender) and 

increased probabilities of committing a pilot error. 

Tsang (1992) conducted a review of the literature on how age affects key 

cognitive functions used by pilots. The core functions are memory, perceptual processing, 

problem-solving, and psychomotor coordination. Cognitive slowing begins around age 

25, though the degree to which slowing matters in operations is at the heart of the various 

studies.  

The analysis of the literature indicates that different types of memory are affected 

by age. What is not known is if age effects on memory are different in pilots than in the 

general population. Studies show an age-related decline in perceptual processing; 

however, the research is unclear as to any significance to operations. Age does not appear 

to affect problem-solving when considering the person’s area of expertise. Finally, 

psychomotor coordination can decline with age; however, the data suggests that 

experience and practice can mitigate declines. The broad summary indicated experience 

could mitigate aging effects (Tsang, 1992).  

Li et al. (2003) designed a study to analyze the risk of accidents with commuter 

air carrier and air taxi pilots. The study spanned 1987 to 1997 and included pilots age 45-

57. They found that the risk of accidents in the targeted age range remained stable. 
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Nevertheless, flight experience was shown to be a significant protective factor, especially 

for those pilots with 5,000 to 9,999 hours. The research suggested that after 10,000 hours, 

the protective effect plateaued. 

Van Benthem and Herdman (2016) delved into the relationship of age, pilot 

expertise, and cognitive factors through a GA aircraft simulator experiment. Their results 

showed that older pilots with fewer flight hours experienced significantly more flight 

path deviations in the simulator. They were not willing to say that experience mediates 

for cognitive decline because there may be other factors involved such as flying skills. 

What seemed clear was that cognitive flexibility, visual attention, speed, and working 

memory predict pilot performance (Van Benthem & Herdman, 2016). 

Because there is no upper age limit for GA flying, Boyd (2018) developed a study 

to determine if medical standards are adequate to address the needs of octogenarian 

aviators. What he found was that the accident rate for the 80 and older pilot population 

was increasing. Landing accidents, twice the rate of younger pilots, were most prevalent 

with many related to flaring errors or loss of directional control. Given the pilot’s 

experience in both total time and recency, the problems were not likely skill-based 

(Boyd, 2018). 

Pilot Sex. The results of studies comparing males and females have shown 

varying results. To illustrate, females may be safer than males (Vail & Ekman, 1986), 

females may be safer in some phases but not in others (Walton & Politano, 2016), there is 

no real difference between males and females in accident rates (Bazargan & Guzhva, 

2011; Ison, 2015; Li et al., 2001; McFadden, 1996, 1997; Mitchell et al., 2005), or males 
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are at higher risk for fatalities (Bazargan & Guzhva, 2011; Li & Baker, 2007; McKay & 

Groff, 2016). 

Vail and Ekman (1986) analyzed all accidents from 1972 through 1982 to 

determine whether accident rates differ between male and female pilots. They determined 

that males had a higher rate of accidents and a higher rate of severe injuries and fatalities 

when compared to females. Their conclusion was striking and spoke to the potential bias 

of the day (Vail & Eckman, 1986):  

This study has shown that not only are females significantly safer pilots as far as 

accident rates are concerned, in every way in which the data were compared, but 

that they also kill themselves off at a significantly lower rate when they do have 

pilot-error accidents, in this still male-dominated profession. (p. 303) 

Walton and Politano (2016) conducted their study using the NTSB database with 

a sample comprised of GA accidents from 1982 to 2014 to determine differences in 

accident severity by females and males. They found that females of lesser experience had 

significantly higher accident rates than males, whereas females with higher levels of 

experience had significantly fewer accidents (Walton & Politano, 2016). 

Burgess, Walton et al. (2018) delved into the relationship of pilot sex to helicopter 

accidents, specifically if patterns in the fixed-wing community were present in the rotor-

wing community. Reviewing 6,678 accidents from 1982 to 2014, the authors researched 

the relationship between flight hours, sex, aircraft damage, and injuries. They found no 

difference between males and females in terms of aircraft damage and injuries. 

Additionally, there were no significant differences with respect to flight hours and 
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accidents. Finally, the results of the rotor-wing pilots were similar to prior studies with 

fixed-wing pilots. 

Flight Experience. Flight experience is a latent variable that is defined for each 

study. Common observed variables used to assess flight experience include combinations 

of total flight hours (Burgess, Walton et al., 2018), recent flight hours, pilot certification 

level, and advanced certifications (Bazargan & Guzhva, 2007; Bazargan & Guzhva, 

2011; Boyd, 2015; Boyd, 2017a; Groff & Price, 2006; Li & Baker, 2007; McFadden, 

2003; Shao et al., 2014a, 2014b). 

Flight Hours. Many measures of flight hours may be used in accident research. 

Standard accounting of hours includes a pilot’s total flight hours, aircraft type, aircraft 

make, pilot-in-command, last 24-hours, and last 30/60/90-days (Bazargan & Guzhva, 

2007; Houston et al., 2012; McFadden, 1997; Salvatore et al., 1986; Uitdewilligen & de 

Voogt, 2009). Flight hours are also used as a component of flight experience and pilot 

proficiency (Fanjoy & Keller, 2013). 

Coverage of Common Situational Variables 

Instructional Flights. A large portion of GA operations involves flight 

instruction. Instructional accidents occur with pilots of varying skills from the newest 

pilots to those upgrading their certificates or graduating to different aircraft types. 

Uitdewilligen and De Voogt (2009) studied accidents of student pilots flying solo 

between 2001 and 2005. They found that injury and fatality rates were lower in student 

solo flights than with other instructional flights, and most accidents were in the landing 

phase with errors in flaring. The results indicated a higher risk of injury when 

instructional flights involved pilots with more than 100 hours of flight time. 
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In a similar study, Boyd and Dittmer (2012) researched solo student accidents 

except with a broader sample covering 1994 through 2013. They found that 90% of the 

accidents had minor or no injuries, though 97% of the aircraft had substantial damage. 

Similar to Uitdewilligen and De Voogt (2009), Boyd and Dittmer (2012) found that more 

than 70% of the accidents were in the landing phase, with a third of those due to excess 

speed. 

Loss of control in GA instructional flights was the subject of a study by Houston 

et al. (2012). The purpose was to discover secondary factors that contributed to LOC 

accidents. The majority of the accidents occurred in the landing phase, with a second 

significant portion occurring during takeoff, a go-around, or a climb after takeoff. 

Through their study of 147 GA instructional accidents, they found a correlation between 

accumulated flight hours and crash location, and analyzing the causal chain is vital in 

determining accident causes. While not a key aim of the study, the researchers found a 

lack of information in many reports where there was no underlying analysis explaining 

the factors leading to the LOC condition (Houston et al., 2012).  

Lee et al. (2017) studied the reports of 293 accidents involving instructional 

flights in the United States. They found that in fatal accidents, it was four times more 

likely to be a flight with both a student and an instructor suggesting instructor 

deficiencies in supervising the student. Most accidents were local (i.e., not cross-

country), most accidents were in the landing phase, most of the landing accidents were 

related to skill-based errors, and most of the landing accidents were nonfatal. Finally, the 

researchers found that accidents involving decision deficiencies involved more fatal 

outcomes (Lee et al., 2017). 
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Flight Distance. Flight distance is often used as a measure of risk exposure and 

may be used in measures of nautical miles from the point of departure or may be 

categorical like local or cross-country (Boyd, 2015; Boyd, 2017; Lee et al., 2017). 

Aircraft Complexity. Complexity is defined by the researchers and is often 

defined by the number and type of engines (Bazargan & Guzhva, 2007; Boyd, 2015; 

Boyd & Stolzer, 2016), aircraft size (Boyd, 2015), speeds (Boyd, 2015), and landing gear 

type (Bazargan & Guzhva, 2007; Rostykus et al., 1998). 

Post-crash Fire. The presence of a post-crash fire or explosion has been cited in 

several studies and is often associated with off-airport accidents (Ballard et al., 2013; 

Boyd, 2015; Handel & Yackel, 2011; Li & Baker, 1999; Li & Baker, 2007; Rostykus et 

al., 1998). When a post-crash fire occurs, fatality rates increase (Rostykus et al., 1998). 

Air medical flights were shown to have a higher fatality rate than non-medical flights 

when a post-crash fire occurred (Handel & Yackel, 2011). 

Time of Day. Time of day can be significant in many respects, though it is often 

used as an indicator of prevailing visibility (Boyd, 2017; Handel & Yackel, 2011; Li & 

Baker, 1999). Different light conditions can hinder a pilot’s ability to judge distances and 

see other aircraft (Bazargan & Guzhva, 2007; Boyd, 2015; Handel & Yackel, 2011). 

Flying during dark hours typically comes with a higher risk than daylight (Handel & 

Yackel, 2011). 

Off-airport. A location variable can take different forms, such as on- or off-

airport or in maneuvering and enroute phases. When it comes to emergency landings, 

there are many considerations, though it has been shown that landings off-airport, 

especially when combined with a post-crash fire are the most deadly (Ballard et al., 2013; 
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Boyd, 2015; Houston et al., 2012; Li & Baker, 1999; Li & Baker, 2007; Rostykus et al., 

1998). While enroute or maneuvering, the terrain feature was shown to be a factor in 

accident outcomes, with mountainous areas being the most dangerous for GA flights 

(Boyd, 2017; Ison, 2014). 

Restraints / Seatbelts. Seatbelts and shoulder harnesses are not typically involved 

in the causal portion of the accident. However, their use can make a difference between a 

survivable outcome or a fatal outcome (Bazargan & Guzhva, 2007; Boyd, 2017a, Li & 

Baker, 1999; Li & Baker, 2007; Rostykus et al., 1998; Wiegmann &Taneja, 2003). 

Professional Pilot / Second Pilot. Intuitively it would make sense that 

professional pilots perform better than non-professionals due to experience. Ison (2015) 

determined that while professional pilots certainly had more experience, they tended to 

have more fatalities primarily due to acrobatic mishaps. The presence of a second pilot 

would seem to be helpful to assist with the complexities of flight, though this is not 

always the case (Bazargan & Guzhva, 2007). 

Weather-related Accidents. Numerous researchers have studied accidents with a 

weather component (Boyd, 2017a; Handel & Yackel, 2011; Li & Baker, 1999; Liu et al., 

2013). For example, Wiggins and O’Hare (1995) researched weather-related decision-

making. Specific weather factors such as winds, either straight line, crosswinds, tailwind, 

or gusts, may play a factor in an accident (Mclean, 1986; Wiegmann et al., 2005) as well 

as general flight conditions such as IMC or VMC (Ballard et al., 2013; Boyd, 2015; Li & 

Baker, 2007). A pilot’s perception of weather risks can also be a factor in accidents 

(Shappell et al., 2010). Ison (2014) used weather briefings as a variable in studying 

accident outcomes. 
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One of the more commonly cited works is McLean (1986). He noted that 

unfavorable winds on approach and landing accounted for the greatest number of GA 

accidents. However, continued VFR flight into IFR was the most frequent cause of fatal 

accidents. Perhaps the most significant contribution of the McLean (1986) study is a 

discussion of investigation techniques to determine the weather elements vital to the 

understanding of accidents.  

Shappell et al. (2010) sought to understand factors relating to why pilots 

encounter poor weather. The study was somewhat novel in that the research team 

interviewed 27 pilots who had been involved in adverse weather events. The results 

suggested a misunderstanding or lack of appreciation for the hazards of weather. 

Acceptance of unnecessary risks was anecdotally linked to outside influences and 

sometimes mechanical issues (Shappell et al., 2010). 

Weight and Balance Issues. Given that one-third of Americans are affected by 

obesity, and that weight can negatively impact flight characteristics, Boyd (2016) 

researched accidents where weight and balance or center of gravity (CG) issues were 

implicated. He found no correlation between rising body mass and weight and 

balance/CG accident rates. Boyd (2016) did find that 57% of the accidents were fatal, 

with the majority related to aircraft out of weight limits but within CG limits. 

Coverage of Common Skill-related Variables. Borrowing from HFACS 

(Shappell & Wiegmann, 1997; Wiegmann & Shappell, 2003), the next set of studies 

relate to GA pilot skill-based errors. The research includes landing accidents (Boyd, 

2019; Rao & Puranik, 2018), midair collisions (De Voogt and Van Doorn, 2006), and 

pilot proficiency (Fanjoy & Keller, 2013; Salvatore et al., 1986). 
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LOC. The LOC accident can occur in many phases of flight with different 

severity risks and different initiates (Lee et al., 2017; Rao & Marais, 2020). Risk of LOC 

can vary by accumulated flight hours (Houston et al., 2012), and may be riskier for 

females in helicopter hovering (Burgess, Walton et al., 2018). Risks of a LOC event may 

be different by pilot qualification, though Shao et al. (2014a) found that LOC risk did not 

vary between IFR and non-IFR qualified pilots in the landing and takeoff phases.  

Landing Accidents. Landing accidents for GA fixed-wing aircraft are the single 

biggest accident category at almost three times the next category. They account for 44% 

of all accidents, yet they account for the smallest number of fatalities (AOPA, 2019). 

Attempting to land while unstabilized is a critical factor in landing risk (Rao & Puranik, 

2018). Further, most instructional flight accidents occurred in the landing phase (Boyd & 

Dittmer, 2012; Lee et al., 2017; Uitdewilligen & De Voogt, 2009) 

Rao and Puranik (2018) conducted a study to analyze the causes of unstabilized 

approaches in GA accidents. Unstabilized approaches are a well-known hazard in both 

airline and GA flying; however, relatively few studies focus attention on GA. “A stable 

approach requires a methodical sequence of changes to an aircraft’s state while satisfying 

pre-defined safety criteria” (Rao & Puranik, 2018, p. 1). The Flight Safety Foundation 

(FSF, 2000) recommended that the criteria for landing are met prior to reaching 500 feet 

AGL in VMC/ 1,000 feet AGL in IMC, and should include the following areas:  

- The flight path is correct; 

- Only small changes are necessary for the aircraft to stay on the flight path; 

- The aircraft speed is not too fast or too slow; 

- The gear and flaps are set correctly; 
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- The sink rate is controlled at 1,000 feet per minute or less; 

- Power settings are appropriate according to the flight manuals; 

- Required briefings have been completed; and 

- Instrument approach tolerances are maintained (FSF, 2000). 

Additionally, Rao and Puranik (2018) found the most frequent cause of landing accidents 

(42.4%) to be airspeed related, and 29% of those accidents involved stalls on the final 

approach due to AoA exceedance. Behind airspeed was a failure to maintain the 

necessary glidepath (28%). 

Boyd (2019) delved further into the research on GA landing accidents by focusing 

on excessive landing speeds and the relation to accident injury severity. Two categories 

of landing accidents were identified from the NTSB reports between 1997 and 2016. Low 

energy (low airspeed) accidents related to aircraft stalls. High energy (high airspeed) 

accidents related to bounces, floating, or porpoising. Boyd (2019) found high energy GA 

landing accidents to be correlated with more severe injuries. 

Midair Accidents. Using the NTSB reports for 2000-2004, De Voogt and Van 

Doorn (2006) looked at midair collisions to determine common situational characteristics 

but with a focus on radio communications and aircraft altitude at the time of the collision. 

The sample included all Part 91 operations, including public use flights, Part 135 

operations, and Part 137 operations. During the study time, there were 48 midair 

collisions. De Voogt and Van Doorn (2006) identified a limitation determining 

communications issues as in 14 of the accidents there were no indications in the report of 

any communications. Interestingly, in 16 of the midair accidents, the aircraft were under 



52 

 

ATC control. Additionally, while traffic pattern accidents are more frequent than other 

types, they are often less fatal. 

Pilot Proficiency. A common premise in studies asserts that pilots with an airline 

transport pilot (ATP) certificate are safer than those flying under lesser certificates. 

Salvatore et al. (1986) conducted a study to compare ATP certified pilots in GA accidents 

with private pilots. Overall, the ATPs had fewer accidents than private pilots, and their 

accidents were largely non-skill related. Aerobatic accidents accounted for 14% of ATP 

accidents and 50% of the ATP accidents fatalities. In other phases of flight, ATPs fared 

better overall, likely due to their level of flight proficiency (Salvatore et al., 1986). 

Fanjoy and Keller (2013) studied IFR accidents in GA between 2002 and 2012, 

specifically looking at the pilot's instrument proficiency check currency and possible 

relationships in the approach phase. Within the sample of 31 pilots, the number one cause 

of instrument approach accidents was a failure to control the aircraft, followed by a 

failure to follow instrument procedures, proceeding below weather minimums, airspeed 

issues, spatial disorientation, CFIT, and not initiating a missed approach. 

Human Factors   

Human factors (HF) is concerned with “understanding interactions among 

humans and other elements of a system, and the profession that applies theory, principles, 

data, and other methods to design in order to optimize human well-being and overall 

system performance” (IEA, 2020, para 1). Practitioners of HF “analyze the factors (e.g., 

human information processing, situation awareness, mental models, workload and 

fatigue, human error) that influence decision making and apply this knowledge to identify 
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potential hindrances to successful task performance, at both the individual and team 

level” (Cuevas et al., 2018, p. 1). 

The study of HF in aviation dates back to World War II when increasingly 

complex aircraft systems were introduced, and the need to understand the limits of human 

capabilities interacting with the systems was recognized (Cuevas et al., 2018; Stone et al., 

2018).  

Li (1994) conducted an extensive meta-analysis of the literature concerning pilot-

related factors in an aircraft accident from the 1930s to the late 1990s. More of an 

exposition on how to conduct better aviation research, one conclusion of interest is that 

violations of regulations needed more attention in the literature. The primary outcome 

was that more epidemiologic studies of pilot-related factors are needed, and using state-

of-the-art methodologies can assist in identifying accident risk factors. 

McFadden and Towell (1999) took a similar approach when reviewing previous 

studies on pilot error. They aimed to analyze past methods and propose a framework for 

future studies that research more complex HF interactions. While the study was airline 

focused, the point of their research applies to GA research; pilot error is a complex study 

requiring insight into underlying relationships.  

The team of Wiegmann et al. (2005) applied HFACS to 14,436 GA accidents that 

occurred between 1990 and 2000. They found that skill-based errors were most common 

and accounted for the first HF component in the accident chain in almost half of the 

accidents. Accidents involving violations were the most deadly. Comparing the HFACS 

classifications with the NTSB cause codes, Wiegmann et al. (2005) found that the top 

five skill-based errors were maintaining directional control (on the ground), airspeed, 
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stall/spin, aircraft control (in the air), and wind compensation. The top five decision 

errors related to in-flight planning, pre-flight planning, managing fuel, terrain selection 

(for taxi, takeoff, and landing), and decisions to go-around. Perceptual errors involved 

misjudgments of distance, flare, altitude, clearance, and visual/aural perception. Finally, 

the top five violations were continued VFR flight into IMC, disregarding known 

procedures, operating unsafe aircraft, hazardous maneuvers, and flying into bad weather 

(Wiegmann et al., 2005). 

Erjavac et al. (2018) sought to model the preconditions to human error in air 

carrier and GA operations. Their goal was to determine the relationship between active 

and latent factors in Part 91 and Part 121 multi-engine accidents that occurred between 

2006 and 2015. One finding was a validation that the Part 91 pilots and the Part 121 

pilots came from different populations. Agreeing with Wiegmann et al. (2005), accidents 

involving violations resulted in a higher incidence of severe injuries and fatalities 

(Erjavac et al., 2018). 

Drugs & Alcohol. Just like with motor vehicles, operating an aircraft while under 

the influence of drugs or alcohol increases accident risk (Li & Baker, 2007), and drug use 

in pilots while flying appears to be increasing (McKay & Groff, 2016). Drugs and 

alcohol, along with cardiovascular or cerebrovascular events, are the most probable 

causes of pilot incapacitation (Booze, 1987; Taneja & Wiegmann, 2002). Prior alcohol-

related events on the ground provide a risk marker for pilots (Li, Baker, Qiang et al., 

2005), and alcohol use has been specifically implicated in continued VFR flight into IMC 

accidents (Li, Baker, Lamb et al., 2005). 
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Taneja and Wiegmann (2002) conducted a more narrow HF study to analyze 

incidents of in-flight impairment and incapacitation in GA accidents. Reviewing NTSB 

and FAA crash data from 1990 through 1998, the authors found 216 accidents relating to 

their study. The most common causes of incapacitation were from drugs and alcohol, 

accounting for 72.2% of the accidents. Cardiovascular-related causes of impairment 

accounted for another 12.03% of the accidents. While pilot health is a concern, the 

primary lesson learned is the importance of not flying while under the influence of drugs 

and alcohol (Taneja & Wiegmann, 2002). Taneja and Wiegmann (2002) generally agree 

with Booze (1987), who also found the most likely causes of incapacitation in GA pilots 

to be alcohol, drugs, and cardiovascular/cerebrovascular events. What appears to have 

changed is the number of drug and alcohol accidents, only at 7.7 % (Booze, 1987), 

although this may be due to different reporting and accounting. Booze (1987) did 

determine the risk of incapacitation increased with age, but the risk is less than that in the 

general public. 

Building on risks related to operating vehicles while intoxicated, Li, Baker, Qiang 

et al. (2005) designed a study to assess whether a history of driving while intoxicated 

(DWI) served as a risk indicator for GA pilots. They found that of the pilots with a 

history of DWI, there was a 43% risk increase of involvement in a future aviation 

accident. Less experienced older males were also at an increased risk (Li, Baker, Qiang et 

al., 2005). In a related study led by Li and Baker (Li, Baker, Lamb et al., 2005), 

researchers focused on pilots from fatal accidents in three states. They noted that alcohol 

use was particularly detrimental in its correlation to continued VFR flight into IMC 

fatalities. 
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McKay and Groff (2016) continued research on drug use in aviation in all forms, 

including over-the-counter drugs, prescription medication, and illicit drugs. Using data 

from the NTSB and the FAA Civil Aerospace Medical Institute toxicology database, the 

researchers analyzed the information of 6,677 pilots from fatal accidents that occurred 

between 1990 and 2012. All pilots in the sample had some form of drugs in their system; 

the researchers wanted to know what kinds and the likelihood of impairment. Most of the 

pilots were flying as GA (96%) and were primarily male (98%). The study noted an 

upward trend in the use of all categories of potentially impairing drugs, with the most 

common being diphenhydramine found in many common over-the-counter medicines. 

And while not significant, there was an increasing amount of accidents where the pilot 

tested positive for marijuana (McKay & Groff, 2016). 

Violations. Violations are defined in HFACS as “a willful departure from those 

practices deemed necessary to safely conduct operations” (Shappell & Wiegmann, 1997, 

p. 274). Fatal and non-fatal accidents can frequently be traced back to violations (Boyd & 

Stolzer, 2016; Erjavac et al., 2018; Shappell & Wiegmann, 1997; Wiegmann et al., 2005), 

and pilots with a history of violations are at greater risk for future accidents (Li & Baker, 

2007). Moreover, violations are often the predecessor to continued VFR flight into IMC 

(Detwiler et al., 2008).  

VFR to IMC Accidents. The most deadly accidents by percentage involve 

continued VFR flight into IMC (AOPA, 2019), a condition that has endured for decades 

(McLean, 1986; Wiegmann et al., 2005). These accidents are related to decision errors 

and violations (Detwiler et al., 2008), can be linked to overconfidence (Goh & 
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Wiegmann, 2001), and are generally associated with lesser pilot certification levels (Ison, 

2014).  

Inadvertent flight into IMC weather conditions while flying under VFR rules may 

not account for the most accidents, but they do account for the highest fatality rate of 

weather-related accidents (Detwiler et al., 2008; McLean, 1986). Some of the associated 

variables include overconfidence (Goh & Wiegmann, 2001), visibility miscalculations 

(Detwiler et al., 2008; Goh & Wiegmann, 2001), and violations (Detwiler et al., 2008; 

Ison, 2004). 

Goh and Wiegmann (2001) investigated decision-making for continued flight 

from VFR to IMC. Using a flight simulator, pilots flew a sortie beginning in VFR 

conditions. After about 45 minutes of flying, the weather deteriorated to below VFR 

minimums. Pilots were then given a time window to decide to turn back or press on to 

their destination. The researchers found 68.75% of the pilots erroneously pressed on to 

their destination. Their findings suggest poor diagnoses of the visibility and 

overconfidence in piloting skill correlate with continued VFR flight into IMC (Goh & 

Wiegmann, 2001). 

Detwiler et al. (2008) use HFACS to examine the causal factors behind the GA 

pilot’s VFR flight into IMC. Their study included fixed- and rotor-wing accidents 

between 1990 and 2004. Subject matter experts reviewed the NTSB findings and 

categorized each according to 10 HFACS causal categories. The results indicated that 

decision errors, perception errors, and violations were the most prevalent factors in the 

accidents (Detwiler et al., 2008). 
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Ison (2014) sought to determine the correlates of GA pilot characteristics and 

situational factors with continued VFR flight into IMC. Initial input variables included 

age, contact with ATC, flight plan filed, pilot certificate, pilot flight hours, terrain, time 

of day, and whether the pilot received a weather briefing before the flight. Ison (2014) 

found that terrain (mountainous areas being more troublesome) and the weather briefing 

(perhaps related to violations) were significant predictors. He found a negative 

correlation with pilot certification level and the likelihood of a VFR to IMC accident, and 

younger pilots were more likely to press into IMC. 

Decision Making. Decision making is one of the human factors studied by 

researchers. Topics of research included the decision to fly VFR into IMC (Detwiler et 

al., 2008; Goh & Wiegmann, 2001; Ison, 2014; Shappell et al., 2010), the decision to turn 

back or to continue to the destination in the face of weather (Wiggins & O’Hare, 1995), 

the effects of age on decision making (Kennedy et al., 2010), and the decision to fly in 

too close of a proximity to convective weather (Boyd, 2017a). 

One of the oft-cited experimental studies came from Wiggins and O’Hare (1995), 

where they researched the GA pilot’s weather-related decision making. Using a sample of 

pilots from New Zealand, the authors were presented a general problem-solving test and 

several aeronautical-based decision-making scenarios. Wiggins and O’Hare found that 

experienced pilots were able to make decisions more efficiently, and novices and experts 

view problems differently and access information differently. Given the scenario, novice 

pilots chose the wrong course of action more times than the intermediate and expert 

pilots. Additionally, the time to make the decisions was longer for the novices. 
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Kennedy et al. (2010) developed an experimental study using a flight simulator to 

study aviation decision-making with respect to age and expertise effects. Using a sample 

of 72 GA pilots, all IFR certified, they presented scenarios requiring a land/go-around 

decision and holding. They found that older pilots—those over 41-years old—were more 

likely to attempt landing below the visibility minima. Age-related factors may affect 

certain flying tasks. The hypothesis of better decisions related to more experience was not 

supported. When measures of cognition were entered in the model, processing speed 

became a significant predictor; faster processing and more experience correlated with 

better performance (Kennedy et al., 2010). 

More recently, Boyd (2017b) conducted a decision-making study with GA pilots 

focusing on thunderstorm-related accidents and whether or not pilots had violated the 

FAA-prescribed storm clearance distances. They found that 93% of thunderstorm-related 

landing accidents and 77% of enroute accidents involved a violation of the recommended 

separation distances. The numbers are significant given a 70% fatality rate in 

thunderstorm related accidents (Boyd, 2017b). 

Other GA Aircraft Studies   

Sport Aircraft. While not large in number, at least two studies looked at aircraft 

that were not in the fixed-wing or rotor-wing categories. The first was a descriptive study 

by Skelley et al. (2016), who described pilot injuries from powered parachute accidents. 

While not germane to discussions on pilot performance, Skelley et al. (2016) made 

design recommendations to increase a pilot’s safety in an accident. The second study was 

by Van Doorn and De Voogt (2011), who researched sport aviation accidents comprised 

of balloons, blimps, gliders, gyroplanes, and ultralights. They determined that risks and 
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accident rates vary within the sport aviation category, but that accidents in amateur-built 

aircraft carried a higher chance of fatality by a factor of 1.6 (Van Doorn & De Voogt, 

2011). 

Oceanic Flight. De Voogt and Heijnen (2009) studied aviation accidents over the 

Pacific Ocean. Their research included all GA accidents (fixed- and rotor-wing) that 

occurred between 1964 and 2004. Over the 40 years, there were 67 accidents (39 fixed-

wing; 28 rotor-wing) that fit the search criteria. Ultimately the De Voogt and Heijnen 

(2009) study was descriptive and did not delve into correlations and causal chains. 

Rotor-wing. De Voogt and Van Doorn (2007) conducted a study of 4,863 

helicopter accidents between 1982 and 2006. While the title suggests the study 

methodology was data mining, the authors only reported descriptive information and 

accident counts. Like fixed-wing accidents, helicopter accidents were most lethal in poor 

weather. Additionally, the authors concluded that the primary causes of helicopter 

accidents were not specific to rotor-wing operations (De Voogt & Van Doorn, 2007). 

De Voogt, Uitdewilligen et al. (2009) built on De Voogt and Van Dorn (2007) by 

researching the role of additional crew members in preventing accidents in high-risk 

helicopter operations. Analyzing 142 accidents between 1998 and 2005, the authors 

found that while the pilots, on the whole, were extremely qualified, the nature of the 

operation placed high demands on the pilot. The recommendation was to include 

qualified ground crew and possibly additional flight crew members to mitigate the risks. 

Because additional crew can become victims, ground crew members seem to be the best 

option to reduce accidents (De Voogt et al., 2009). 
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Medical Flights. Handel and Yackel (2011) sought to analyze fixed-wing 

medical flight fatalities compared with helicopter medical flights and overall GA fatality 

rates. The accidents spanned 1984 to 2009. Several input variables were used, such as 

light conditions, time of day, weather conditions, whether or not the accident was in 

flight or on the ground, and the presence of a post-crash fire. There were significantly 

more fatalities in medical flights, and post-crash fires were the greatest predictor of 

fatalities (Handel & Yackel, 2011).  

Boyd and Macchiarella (2016) focused on GA helicopter accidents involving 

emergency medical transport. Their time frame spanned 1983-2014. The purpose of the 

study was to determine accident rates and causes, injury profiles, and adherence to 

crashworthiness standards. The underlying correlations and causes were not explored. 

Aviation Accidents Prediction Studies  

It is well understood that learning from past accidents is essential, but being able 

to predict accidents before they happen protects lives and property. Many studies from 

different angles have sought to determine variables and create models useful for 

predicting accidents. For example, overarching studies looked at GA accident risk factors 

(Li & Baker, 2007; Rostykus et al., 1998) predicting fatalities in GA accidents (Bazargan 

& Guzhva, 2011; Diamoutene et al., 2018; Shao et al., 2014a, 2014b), factors for 

predicting accidents (Ison 2015; Knecht, 2013, 2015; Li & Baker, 1999; Morris, 2018; 

Valdés et al., 2018), and factors for predicting airline accidents (McFadden, 1997, 2003). 

Studies conducted to predict accidents in specific sub-sets of aviation include air tour 

crashes (Ballard et al., 2013), turbine-powered aircraft (Boyd & Stolzer, 2016), business 
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aircraft (Burgess, Boyd et al., 2018), helicopters (Rao, 2016), and weather-related 

accidents (Groff & Price, 2006; Insua et al., 2019; Ison, 2014).  

The purpose of the McFadden (1997) study was to predict aviation accidents in 

male and female airline pilots using logistic regression. Model inputs included age, total 

flight hours, recent flight hours, and the employer, either a major or non-major airline. 

Younger pilots with fewer flight hours flying for a non-major airline were at greatest risk. 

Further, there were no significant differences found between females and males 

(McFadden, 1997). 

Rostykus et al. (1988) studied 8,411 GA landing accidents from 1983 through 

1992. Risk factors associated with GA accident fatalities were investigated, and several 

factors that increased the risk of pilot fatalities were identified. The two with the highest 

risk were aircraft destruction and post-crash fire. Other factors included the use of 

restraints, an off-airport crash site, flying a retractable-gear aircraft, and flying a multi-

engine aircraft. Despite the risks of a fatal landing accident, most accidents in the study 

were survivable (Rostykus et al., 1988). 

Li and Baker (1999) searched for potential correlations of factors predicting GA 

fixed-wing and helicopter fatalities. The regression model indicated that the most 

significant factor predicting fatalities was the presence of a post-crash fire. Other 

significant factors in the model were the crash location (on or off-airport), weather, time 

(daytime or nighttime), and use of restraints (Li & Baker, 1999). Eight years later, Li and 

Baker (2007) revisited risk factors encompassing GA flight risks. A post-crash fire 

remained a significant factor in fatality risks. Other variables included IMC, an off-

airport crash, and the use of restraints. Overall, accident risk factors for increased 
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accident potential were alcohol use, experience, age, being male, and intentional 

violations (Li & Baker, 2007).  

McFadden (2003) developed regression models to predict accidents at United 

States airlines and whether there were airline-specific factors useful to the model. The 

model indicated that airline-specific factors were not useful in predicting accidents. 

However, age, experience, and the interaction between age and experience were 

significant predictors. The results suggest that in the airlines, as pilots increase in age and 

experience, their risk of pilot-related accidents decreases (McFadden, 2003). 

Groff and Price (2006) focused their study on determining risk factors for GA 

accidents in degraded visibility. Input variables included accident histories, 

demographics, experience, length of flight, the purpose of flight, and testing. Significant 

predictors in the regression model were for pilots who earn their initial certification after 

age 25, who are non-instrument rated, who have a history of prior accidents or incidents, 

and who are on a flight 300 nautical miles or greater. Age at certification emerged as a 

novel finding (Groff & Price, 2006). 

Bazargan and Guzhva (2007) use regression modeling to predict fatalities in GA 

accidents from accidents that occurred from 1983 to 2002. Variables of aircraft 

characteristics, complexity, experience, flight plan, gender, light condition, phase of 

flight, and wind condition were entered into the model. Significant factors include light 

condition, IMC, cross-country flying, retractable landing gear, second pilot, restraint use, 

total flight time, recent flight time, wind, and phase of flight. Counterintuitive findings 

include a higher risk of accident in cruise flight and the presence of a second pilot 

(Bazargan & Guzhva, 2007). 



64 

 

Bazargan and Guzhva (2011) followed their 2007 study with further research on 

predicting GA accident fatalities, but with respect to gender, age, and experience. Their 

findings suggest that gender is not a factor in predicting pilot-related accidents, though 

males were more likely to have a fatal accident. Again, this study found that as 

experience increases, pilot-related accidents decrease (Bazargan & Guzhva, 2007). 

Ballard et al. (2013) researched a lesser-studied category of GA operations, 

commercial air tours. The study covered 152 air tour crashes with at least one fatality 

spanning 2000 to 2011. Three risk factors accounted for the most variance in the 

regression model: post-crash fire, IMC, and an off-airport crash location (Ballard et al., 

2013). 

Knecht (2013) investigated the proposition that there is a range of accumulated 

flight hours —the killing zone—where GA pilots were at the greatest risk for an accident. 

Working under the supposition that the relationship between flight hours and accident 

rates are nonlinear, the author investigated the usefulness of serial nonlinear modeling in 

predicting the outcome variable. The researcher concluded that serial-nonlinear models 

could be useful in making predictions from flight hours. The major finding is data 

suggesting the killing zone may be larger than once thought, perhaps extending to the 

2,000-hour range (Knecht, 2013). In a second study, Knecht (2015) again looked at flight 

hours and accidents, but this time using a nonlinear gamma-based model. With similar 

results to the previous study, the data suggest the killing zone extends wider than 

conventional wisdom suggests.  

As discussed earlier in the literature review, Ison (2014) investigated correlations 

between GA pilot actions or conditions and fatalities from continued VFR flight into 
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IMC using eight predictor variables. Creating a regression model, the researcher found 

two variables contributed to the model in a significant way; terrain and weather briefing 

(Ison, 2014).  

Shao et al. (2014a; 2014b) conducted two studies related to instrument-rated 

private pilots. The first study to report (Shao et al., 2014b) centered on fatal accident 

rates. They found that fatality rates increased for pilots over 65. Significant factors in 

IMC accidents included instrument approach deficiency, spatial disorientation leading to 

LOC, and lack of obstacle clearance. Significant pilot factors in VMC accidents included 

aerodynamic stalls and lack of obstacle clearance. The second study (Shao et al., 2014a) 

examined causal factors behind fatal accidents in instrument and non-instrument certified 

private pilots. In contrast to popular wisdom, IFR certification did not provide protection 

from accidents, and IFR certified pilots were involved in more accidents than the non-

certified private pilots. Show et al. (2014a) did not determine a reason though they 

speculated there was an increase in exposure because IFR certified pilots tended to fly 

longer distances. 

Ison (2015) researched accident factors using a sample of two pilot groups; one 

group had been involved in accidents, and the other group of pilots had not. Factors that 

were input into the regression model included age, flight time, gender, pilot certification 

level, professional pilot employment, and the status of the pilot flight review. Significant 

factors in the model were age, employment as a professional pilot, and flight time. Lower 

ages and flight times were associated with an increased risk of accidents. Additionally, 

employment as a professional pilot was associated with a higher risk, though this may be 

a factor of increased exposure. 
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Boyd (2015) used regression techniques to determine risk factors and causes of 

fatal accidents in non-commercial twin-engine piston GA aircraft. Accidents from 2002 

to 2012 (n = 376) were extracted from the NTSB aviation accident database. One key 

finding is the risk factors for fatalities included lighting conditions, IMC, off-airport crash 

site, and post-crash fire. Age was not found to be a factor for fatal accidents, nor was 

advanced certification. 

Boyd and Stolzer (2016) analyzed the underlying factors of accident causes in 

turbine-powered GA aircraft. To begin, they created a unique taxonomy to categorize the 

accident factors into 17 areas. Once the data were categorized, the authors continued with 

their aim to discover which factors were associated with a higher risk of serious injuries 

or fatalities. Using backward elimination in logistic regression, they determined 11 of the 

17 categories of the taxonomy contributed to the model. They found that not following 

checklists or flight manuals appeared most frequently as a precipitating factor. Next were 

flight planning errors and violations to Federal regulations. Other factors that increase 

risk were lack of knowledge and experience followed by deficiencies with air traffic 

services (Boyd & Stolzer, 2016).  

Burgess, Boyd et al. (2018) studied GA business flight accidents searching for 

accident rates, risk factors, and causal factors. They found that business flights had a 

higher proportion of fatalities than recreational flights. Their regression modeling 

indicated that a deficiency in pilot skill, pilot experience, and systems knowledge were 

the top causes of accidents followed by regulatory violations (Burgess, Boyd et al., 

2018). 
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Morris (2018) attempted to model private pilot accidents by age and recentness of 

medical certification. The model indicated that younger pilots had a higher probability of 

accidents. 

Rao and Marais (2020) used state-based analysis to predict helicopter accidents 

using a sample of 6,180 accidents between 1982 and 2015. The researchers reduced the 

redundancy within the NTSB database, making it easier to study safe or hazardous states 

and the triggers that activate the states. Focusing on LOC in flight, they identified the 

primary trigger to be pilots clipping objects. The significant benefit of the state-based 

analysis is the ability to identify causal factors not evident in traditional methods. 

Machine Learning Studies   

The regression analysis has been a staple for research projects, especially when 

trying to determine risk factors and build prediction models. Machine learning is 

becoming an increasingly popular method of developing models for aviation studies 

(Maheshwari et al., 2018) and human factors research (Carnahan et al., 2003). Machine 

learning has also shown better prediction results over regression methods (Stolzer & 

Halford, 2007). Machine learning has been used for safety analysis (Čokorilo, De Luca, 

& Dell’Acqua, 2014) and to predict accidents (Hu et al., 2019), unsafe acts (Harris & Li, 

2019), injuries and fatalities (Burnett & Si, 2017), pilot-error (Matthews, Das, Bhaduri, 

Das, Martin, & Oza, 2013) and HFACS factors (Liu et al., 2013). Additionally, machine 

learning has proven useful in understanding accident complexity (Christopher et al., 

2016) and detecting anomalies (Janakiraman & Nielsen, 2016).  

Liu et al. (2013) drew their sample from the NTSB aviation accident analysis 

database. The sample comprised 2,568 accidents that occurred from 1990-2002. Using 
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subject matter experts, all of the errors listed in the reports were coded into the HFACS 

categories of decision-based, perceptual-based, skill-based, and violations. Several non-

HFACS factors were also used, including general demographics, pilot experience, 

information about the aircraft, and weather information. The variables were then used to 

build a series of neural network models to determine factors that best predict fatal or 

nonfatal accidents. Twenty variables were kept in the final model. The top five most 

influential variables were total hours, ceiling height, taxiing, total aircraft seats, and 

female (Liu et al., 2013). 

Matthews et al. (2013) demonstrated the use of data mining in finding anomalous 

safety events using a multivariate time-series algorithm. They used flight operational 

quality assurance data (FOQA), large streams of data produced by aircraft, to explain the 

process. They found two previously undiscovered anomalies, namely airspeed drops and 

mode confusion. While the study outcome is not directly applicable to most GA 

operations, there is a utility in the technique (Matthews et al., 2013). 

Čokorilo et al. (2014) used clustering algorithms to analyze 1,500 accidents 

across the world that occurred between 1985 and 2010. Through the clustering process, 

data were grouped, and a representative accident was chosen. The defining feature of the 

clustering activity is no subjectivity in the assignment of members as the algorithms do 

the assignment. Each cluster was also assigned a hazard score to denote the level of risk 

represented by the cluster. The results were then used to build a predictive model.  

Janakiraman and Nielsen (2016) “develop[ed] fast anomaly detection algorithms 

using extreme learning machines (ELM) to discover significant anomalies in large 

aviation data sets” (p. 1993). Their data source was the radar measurement output from 
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the Denver Terminal Radar Approach Control Facility (TRACON). The researchers 

noted promise in the technique (Janakiraman & Nielsen, 2016). However, the procedure 

is quite complicated and likely not very useful for typical accident analysis. 

Burnett and Si (2017) used neural network modeling to predict aviation injuries 

and fatalities. The data were extracted from FAA accident records for GA crashes that 

occurred from 1975 to 2002. Variables and data were used to create several models: 

support vector machines (SVM), k-nearest neighbor, decision trees, and artificial neural 

networks (ANN). Each model was duplicated four times using four different 

combinations of variables; two of the four were based on odds ratios. The results of the 

modeling indicated that the ANN models performed better than the other model types, 

with all four variable combinations producing similar abilities to predict fatalities at an 

average rate above 91.16%. 

Harris and Li (2019) wanted to predict HFACS unsafe acts from the pre-

conditions of unsafe acts using neural network modeling. Their data source was the 

accident narratives from the Republic of China Air Force from 1978 through 2002. Each 

of the 523 accidents was coded into the HFACS framework by subject matter experts. 

The neural network predicted the unsafe acts with a classification rate of over 74%. 

Hu et al. (2019) employed text mining to analyze and predict accident causes 

based on NTSB aviation accident narratives for airline accidents from 1982 to October 

24, 2017. Their goal was to develop a model that can predict flight states and accident 

causes. Seven flight states were used: taxi, takeoff, climb out cruise, descent, approach, 

and landing. Causes were divided into three categories: aircraft, personnel issues, and 

environmental issues. Keywords were developed to aid in model development. Features 
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were extracted using the TF-IDF method, which is a factor of how many times a word is 

used and how many times it appears in different documents. Because the number of 

words was in the thousands, logistic regression was used to select the top 500 words.  

Five machine learning methods were chosen: deep neural network (DNN), 

gradient boosting decision trees, ImVerde, multinomial naïve Bayes, and support vector 

machines (SVM). The DNN is often used in text classification and speech recognition. 

Gradient boosting decision trees are a combination of decision trees, where variables are 

split into branches and leaves, and boosting, where models are combined to increase 

predictive capabilities. ImVerde models the reports as a network and reports similarities. 

Multinomial naïve Bayes has been shown to be useful in classifying discrete text features. 

Finally, the SVM algorithm works to classify variables according to a “non-probabilistic 

binary linear classifier” (Hu et al., 2019, p. 4). Of the five methods, the DNN was the best 

at predicting aircraft, personnel, and environmental causal factors. 

Theoretical Foundation  

The study outlined here is exploratory and data driven, which means there is no 

theoretical foundation upon which hypotheses are developed. Rather, the theoretical 

foundation relates to the data and text mining methodology for developing predictive 

models. The following paragraphs describe the data mining, text mining, and SEMMA 

foundation. 
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Data Mining   

Data mining is explained in many ways, yet with universal themes. Tufféry 

(2001) explained, “Data mining is the art of extracting information—that is, 

knowledge—from data” (p. 36). Han and Kamber (2001) wrote, “Data mining is a 

multidisciplinary field, drawing work from areas including database technology, artificial 

intelligence, machine learning, neural networks, statistics, pattern recognition, 

knowledge-based systems, knowledge acquisition, information retrieval, high-

performance computing, and data visualization” (p. xix). Truong et al. (2018) explained 

that data mining is a machine learning methodology that goes beyond traditional 

statistical methods by “construct[ing] patterns based not solely on the input data, but also 

on the logical consequences of the data” ( p. 31). One of the significant benefits of data 

mining is the ability to use large data sources to look for patterns and systematic 

relationships among variables while overcoming traditional statistical challenges with the 

volume of data (Stolzer, Halford et al., 2008). 

Data mining was developed to address the challenge of extracting useful 

information from vast amounts of data collected from a myriad of sources. The 

compilation of information is known as Big Data. The characteristics of Big Data include 

the volume, complexity, and growth of the information captured and stored (EMC 

Education Services, 2015). One use of Big Data in aviation is to support a flight 

operational quality assurance (FOQA) program where a flight organization can review 

digital flight data from day-to-day operations. The organization can then identify trends 

and verify the level of compliance with operating procedures (FAA, 2004). One estimate 

of how much data can be captured tops over half a terabyte of data per Boeing 787 flight 
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(Finnegan, 2013). To facilitate aviation data analytics such as that required by a flight 

operational quality assurance (FOQA) program, Airbus launched a data platform called 

Skywise. According to Airbus (2020), their platform currently houses over 10 petabytes 

of data and connects to over 9,000 airplanes from over 100 airlines. One petabyte is 1015 

bytes of data, 1,000 terabytes, or 1 million gigabytes (Smith, 2016). Han and Kamber 

(2001) described this condition as a deluge of data requiring ways to automate 

classification, analysis, and modeling the data to improve decision making. 

Decision Tree. Decision trees are models that begin with a root (target variable) 

that is split into branches at nodes representing the predictor variables using if/then rules. 

Trees are constructed using recursive partitioning with a training sample and limited, or 

cut back, using pruning with a validation sample. Because the project uses a categorical 

target variable, a classification tree algorithm is used to make the splits into two 

successor nodes (Shmueli et al., 2016). Decision trees are said to work best modeling 

variables with non-linear relationships (Wielenga, 2007). They also hold the advantage of 

not being subject to the assumptions required in traditional statistics and are robust to 

noisy data (Truong et al., 2018; Tufféry, 2011). Overfitting is possible, that is why it is 

essential to either stop the tree growth or prune the branches where appropriate. A 

maximum depth of six levels will be imposed (Maxson, 2018; McCarthy et al., 2019; 

SAS Institute, 2019a), and branches will be pruned if necessary. 

 Gradient Boosting Machine. Gradient boosting machine algorithms build 

prediction models based on combining basic regression and decision tree models (Dean, 

2014) “with the goal of minimizing a target loss function” (Bonaccorso, 2018, p. 274). 

The algorithm uses a series of trees that become the foundation for a single prediction 
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model. The gradient boosting machine functions in a stepwise or additive manner where 

data are resampled several times to produce a weighted average of the data just resampled 

with the sum of the individual predictions formulating the final prediction (Bonaccorso, 

2018; Dean, 2014; McCarthy et al., 2019). By building in an additive manner, 

mispredictions from previous trees are corrected. When used on large datasets, “the 

combined techniques may produce results that are superior to each individual technique” 

(McCarthy et al., 2019, p. 176). A benefit of gradient boosting machine models is that 

they are said to be more robust to missing data and outliers than single regression or 

decision tree models (McCarthy et al., 2019). 

 Neural network. The artificial neural network in data mining method mimics 

how the human brain makes connections (Stolzer & Halford, 2007) and learns through 

experience (Shmueli et al., 2016). Similarly, machine learning neural networks are based 

on connecting “simple processing elements” (Liu et al., 2013, p. 155), and, because of its 

structure, can solve complex problems. Further, “although each neuron holds a relatively 

small processing capacity, it is this interconnected, nonlinear, parallel-processing 

architecture that gives this system the computational power to solve complex problems 

similar to those solved by biological systems” (Liu et al., 2013, pp. 155-156). Using a 

supervised process, a model is constructed by building on inputs, outputs, 

backpropagation of error, and weight adjustments improving predictability through each 

cycle (Han & Kamber, 2001; Liu et al., 2013; Shmueli et al., 2016; Stolzer, Halford et al., 

2008). Neural networks may be especially useful for modeling non-linear relationships 

(Wielenga, 2007), and can model complex variable relationships not possible using other 

methods (Shmueli et al., 2016). However, they can be challenging to interpret, and 
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variables should be examined a priori so that only necessary variables are used 

(Wielenga, 2007). Additionally, neural networks are subject to overfitting due to over-

training the data (Shmueli et al., 2016). 

Random Forest. To quote Bonaccorso (2018), “A Random Forest is a bagging 

ensemble method based on a set of Decision Trees” (p. 264), or, in other words, a 

decision tree forest (McCarthy et al., 2019). Bagging, also known as bootstrapping, 

creates a tree ensemble through a series of sampling by replacement and builds new trees 

for each sample (Bonaccorso, 2018). The algorithm builds many trees that are weak 

classifiers that then “vote in some manner to build a stable and strong classifier that is 

better than the average tree created in the forest” (Dean, 2014, pp. 125-126). The benefit 

of the Random Forest algorithm is its ability to work with classification and regression 

trees so it can be used with binary target variables. They are also said to be less prone to 

overfitting compared to a single decision tree (McCarthy et al., 2019). 

 Regression. Regression is a method of discovering relationships between 

variables and may be one of the most popular textbook methods for prediction (Shmueli 

et al., 2016). When a change in one variable correlates with a change in another variable, 

it is said to be a linear relationship. Logistic regression is used when the target variable is 

binary such as in the current study and predicts “the probability of a categorical outcome” 

(Shmueli et al., 2016, p. 231). The regression model output will be used to assess a 

variable’s worth in predicting the target variable. 

Regression in data mining is not restricted to traditional statistical assumptions 

because the models are built with machine learning algorithms, and they are capable of 

handling noisy data (Truong et al., 2018). Shmueli et al. (2016) advise caution with 
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taking an all-in approach with variables. Instead, they suggest using variable subsets as a 

possible method of improving model accuracy. When there are multiple variables, 

multicollinearity can affect the model. Further, there are tradeoffs between too many and 

too few predictors that should be considered; too many uncorrelated predictors can 

increase prediction variance, whereas too few could mean valuable predictors have been 

left out (Shmueli et al., 2016). 

Text Mining   

Text mining is also a machine learning methodology, but it processes text inputs 

rather than numerical inputs by “undercover[ing] the underlying themes or concepts that 

are contained in large document collections” (SAS, 2019b, para 1). Using unstructured 

data rather than structured data, text mining “is a method of extracting unknown and 

valuable information from randomly organized text data” (Hong & Park, 2019, p. 2). 

Text mining is a quantitative methodology employing algorithms to identify parts of 

speech based on context (SAS, 2019b). Using a process of parsing, stemming, stop-word 

removal, search and retrieval, and text mining (EMC Education Services, 2015; Han & 

Kamber, 2001), text is transformed into a “term-by-document frequency matrix” (SAS, 

2019, p. 1385) that can be used for data mining. Similar documents will likely have 

similar words, and frequency tables can be used to count and classify related terms (Han 

& Kamber, 2001), from which text mining algorithms can group similar objects into 

clusters (Stolzer & Halford, 2007). Clusters may then be used as predictors in a data 

mining model. 
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SEMMA Framework   

The SEMMA framework operates in activities suggested by its acronym 

SEMMA—sample, explore, modify, model, and assess. SEMMA represents a way to 

visualize and organize data mining processes. While beginning with sampling, the 

processes described by SEMMA are iterative through all phases as the researcher 

explores the data and evaluates the models. The SAS® Enterprise Miner™ is designed in 

line with SEMMA and was used for the current study. 

Sample. The sample activity comprises actions needed to determine the data 

required to answer the research question and whether or not the data are available in a 

single source or need to be merged from separate sources (Patel & Thompson, 2013). 

Once data are aggregated, a sample is extracted and prepared for follow-on processes 

beginning with selecting a sample statistically representative of the data (SAS, 2006). 

Partitioning the sample facilitates model development and assessment. Depending on the 

research needs, data are partitioned into a training sample for model fitting, a validation 

sample for assessment, and a test sample to reconfirm the model generalizability (Dean, 

2014). 

Explore. The explore activity allows the researcher to search for anticipated 

relationships (Patel & Thompson, 2013) and discover inconsistencies, abnormalities, and 

trends useful for understanding the data (Dean, 2014). Reviewing the quality of the data, 

such as searching for missing data and errors, is also within the explore activity (Patel & 

Thompson, 2013). SAS (2006) explains exploration as a means of discovering. A number 

of methods are available in the process of exploring, including clustering, factor analysis, 

and other statistical techniques (SAS, 2006). 
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Modify. The modify activity describes molding the variables to facilitate 

meaningful modeling. Variables may be grouped or deleted, and outliers may be 

transformed (Dean, 2014). Should the data change, researchers may need to revisit the 

modify activity and account for new conditions (SAS, 2006). 

Model. The model activity uses machine learning algorithms to find combinations 

of variables that predict the target variable (Dean, 2014). The Enterprise Miner™ can 

develop many different types of models, each with their strengths and weaknesses, to 

facilitate the search for the best predicting model for the data. The current study will use 

Decision Tree, Logistic Regression, Neural Network, Gradient Boosting Machine, and 

Random Forest models in the search for a model that performs the best in predicting the 

target variable with the NTSB dataset.  

Assess. The assess activity describes evaluating and comparing models between 

the partitioned samples (Dean, 2014). Models are built with the training sample and 

validated with the validation sample. The models are then assessed for their accuracy 

using new data not previously used in training or validation. Depending on the model 

type, there are a number of methods for assessing the models, including misclassification 

rate, receiver operating characteristic (ROC) curve, Gini coefficient, cumulative, and 

average squared error (McCarthy et al., 2019). The accuracy will be assessed using the 

test sample partitioned from the dataset in the Sample activity. The outcome of the 

Assess activity is a determination of the champion model (SAS, 2006). 

Gaps in the Literature 

Accident analysis and efforts to predict future accidents are prevalent in the 

literature. Unfortunately, the underlying combination of variables at the heart of GA 
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accidents are still not fully understood; accidents continue and appear to be increasing. 

Considering the stated research problem, and a review of the extant literature, several 

gaps are evident. 

First, aviation is not stagnant. New generations of pilots are trained, the current 

generation of pilots mature, aircraft systems change, and the airspace system evolves. A 

search of aviation studies revealed that there is a gap in analyzing current data. To 

illustrate, GA accident analysis from 2016 to present only appears in four peer-reviewed 

studies, with zero analysis of accidents from 2018 to present. An additional six studies 

include 2015, and, further, seven additional studies cover 2014. 

 Second, there have been very few studies that have taken advantage of the 

increased abilities afforded by data mining in predicting accidents. In practical terms, that 

means that lessons learned through non-parametric model building with large amounts of 

data, and potentially hundreds of variables have not been exploited. 

 Third, text mining has not been fully explored. There is only one known text-

mining study (Hu et al., 2020) using NTSB data with GA accidents, and that study used 

different variables, years, goals, and data mining models from the study reported here. It 

is possible that new information emerging from text mining may unlock some of the 

answers to reducing GA accidents. 

Summary 

Given the century-long history of aviation, and the FAA and NTSB focused 

attention on GA since 1998, it may seem all lessons have been learned, and safety 

improvements are a matter of executing what is already known. However, with GA 

accident rates increasing, it appears there is more to learn. The role of the literature 
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review was to provide a foundation for the current study, define the variables, and 

describe the research gaps. The review covered GA safety, the role of SMS, introduced 

many studies seeking to understand GA accident causes and understand variables that 

may predict the next accident so that barriers can be put in place and risks mitigated. The 

following chapter details the study methodology. 
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Chapter III: Methodology 

Chapter III proceeds with a detailed discussion of the methodology used in the 

current study toward the project’s aim of building a model capable of predicting GA 

accidents. The chapter first outlines the selected research methodology and the sampling 

strategy. The middle portion of the chapter focuses on the research design, including 

procedures used to conduct the study. Finally, the last sections of the chapter introduce 

the approach to data analysis. 

Research Method Selection 

The data-driven exploratory study, as envisioned, employed both text and data 

mining techniques to answer the research questions. Data mining is useful for detecting 

patterns and relationships among quantitative variables contained in large databases (Han 

& Kamber, 2001; Stolzer, Friend et al., 2018; Truong et al., 2018; Tufféry, 2011). Text-

mining, a method of data mining used with unstructured text data such as the narratives 

found in accident reports (Shmueli et al., 2016), was also used. Text mining is a form of 

text-based predictive modeling “to find the patterns that emerge when the values of the 

target variable are analyzed against the text” (SAS Institute, 2019b, para. 1). The study 

first used text mining to analyze and categorize textual components of the dataset and 

create quantitative variables from the qualitative inputs. Text-based variables were then 

added as quantitative variables in the data mining modeling. 

Data Mining   

Researchers are taught that research designs are based on the nature of the 

research problem and research questions (Cresswell, 2009). The study, as suggested, 

seeks to advance the science of aviation accident prevention through exploratory data-
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driven predictive modeling. Further, the dataset is large, and the variables potentially 

complex. Data mining provides the capability to address the research questions while 

handling the potential variable complexity. 

The challenge, as stated by Dean (2014), is that with real data the relationships 

between variables are often nonlinear and do not follow assumptions required of 

traditional statistical methods. Even where a linear relationship appears to exist, it is 

sometimes difficult to describe. However, data mining overcomes obstacles presented by 

nonlinear relationships and violations of traditional statistical assumptions. Further, large 

amounts of data are sometimes required to observe relationships (Dean, 2014). Perhaps 

most importantly, traditional statistical methods are limited in their ability to predict 

target variables such as that envisioned in this study. 

Text Mining   

As stated previously, the overarching goal of the project was to develop predictive 

models from data contained in the NTSB aviation accident reports. Reviewing individual 

reports revealed a vast amount of the information was in a narrative format. Qualitative 

analysis of the report narratives using traditional methods could undoubtedly have led the 

researcher to central themes in the text-based data to describe the dataset. However, the 

knowledge gained from such a purely qualitative analysis could not be used for 

prediction. Conversely, text mining combined qualitative and quantitative aspects and 

employed machine learning algorithms that enabled predictive modeling from the text 

through a combination of data mining and text-based analytics (Dean, 2014). 
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Population/Sample 

The current study intended to develop a model that could predict injury-related 

GA accidents from variables captured in NTSB aviation accident reports. The following 

paragraphs describe the population of interest and the sampling strategy. 

Population and Sampling Frame   

The population of interest comprised the aviation incidents and accidents from 

1998 to present within the GA community. The incidents and accidents were archived in 

the NTSB (2020b) Aviation Accident Database & Synopses and made available to the 

public. The population size was n = 31,967. 

Sample Size   

The sample was n = 27,786 and was comprised of all fixed-wing GA incidents 

and accidents in the United States, 1998-2018. 

Sampling Strategy   

The purposive sample derived from the population of interest was all accidents 

involving only fixed-wing GA aircraft in the United States, 1998-2018. The definition of 

GA adopted for the current study described a type of operation rather than particular 

types of aircraft or pilot certifications. Aircraft flown under GA rules ranged from slow 

and simple to fast and complex, and pilots ranged from the newest student to the most 

accomplished pilots with multiple certifications. The broad range of participants flying 

diverse aircraft involving different speeds, training, complexities, and flight envelopes 

could have made it difficult to draw meaningful conclusions. Therefore, purposive 

sampling was used. As envisioned, all cases within the specific parameters were chosen. 
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Samples are smaller representatives of the population useful for research when 

using the entire population is impractical or infeasible (Field, 2018). The goal was to 

select a sample that represented the whole population of interest to reduce bias in the 

research conclusions and improve the study’s generalizability (Bordens & Abbott, 2011). 

Various methods of sampling were possible to accomplish research goals included under 

the broad categories of random and non-random sampling. Random sampling describes 

methods of selecting participants or cases from a population based on probabilities, 

where each unit has an equal chance to be chosen for the sample. Variations include 

stratified sampling, systematic sampling, and cluster sampling (Bordens & Abbott, 2011). 

Non-random sampling does not rely on probabilities for selection and is used when 

required knowledge of the population is not available or when random sampling is not 

appropriate (Babbie, 2013). Common methods of non-random sampling are convenience 

sampling, snowball sampling, and purposive sampling. Purposive sampling, also called 

judgmental sampling, describes the selection of participants or cases based on “the 

researcher’s judgment about which ones will be the most useful or representative” 

(Babbie, 2013, p. 190). As explained, the current study used purposive sampling to select 

the class of cases to be data mined. 

Data Collection Process 

The study used aviation accident report data collected by the U.S. Government 

and archived for public use. Because the data were not pre-formatted according to the 

scoping requirements of a particular study, pre-processing actions were needed. The 

following paragraphs detail procedures used to prepare the data for analysis. 
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Design and Procedures   

There were several possible ways of obtaining the NTSB aviation accident data. 

The primary way for most users is to use the basic search features of the NTSB Aviation 

Accident Database & Synopses webpage (NTSB, 2020b). Users can search using basic 

event information, aircraft details, operation type, NTSB report status, or geographical 

information. The system searches for reports meeting the requested parameters and 

provides links to the written reports. However, for the current study, tabular data were 

needed. In addition to the written reports, the NTSB made downloadable datasets 

available on the same webpage. The datasets were complex and comprehensive, requiring 

more advanced procedures to extract and pare the required information. A step-by-step 

methodology was used to prepare the data and promote process repeatability, which 

began by downloading the data set. The dataset was downloaded as a Microsoft® Access® 

file using the process explained below. 

Once the files are downloaded, data are commonly extracted using the Access® 

query functions and then exported to Microsoft® Excel® for data analysis. To facilitate 

data extraction and presentation, the NTSB dataset was instead imported into Microsoft® 

SQL Server®, a platform for programming database functions. The NTSB used event 

identification (event ID) numbers as anchors making standard query results and the 

resulting display cumbersome because each event ID returned multiple lines of data. For 

instance, in the case of mid-air or on-ground collisions, a single event ID represented all 

of the aircraft involved. As another example, when extracting flight hours, a single event 

ID was replicated multiple times to cover each of the various flight hour categories. 

Through SQL Server®, the data were extracted and presented using the NTSB report 
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number as the anchor. The result was a structured dataset where each aircraft with the 

associated variables was contained on a single row. All aircraft were placed in rows, one 

aircraft per row, and all variables were placed in single columns. Once the data were 

extracted, they were exported to a Microsoft® Excel® file. 

The Excel® file containing the NTSB incident and accident data was scoped 

according to the planned delimitations. A review of the NTSB product revealed that the 

entire database contained over 84,000 line items. The scoping included the following 

steps: 

Step 1: The study date range—January 1, 1998 – December 31, 2018—was 

selected. 

Step 2: The country—USA—was selected. Reports without a country listed were 

deleted. 

Step 3: The type of operation—FAR Part 91—was selected. Reports without an 

operation designation were deleted. 

Step 4: The aircraft category—AIR—was selected. Reports with an unknown 

category or that were coded as a balloon, blimp, glider, gyrocopter, helicopter, powered-

parachute, ultra-light, or weight-shift were deleted. 

The remaining data included all of the NTSB reports for Part 91 airplane incidents 

and accidents in the United States between 1989 and 2018. The next actions involved 

building the target variable, combining selected variables, and determining features for 

input into the models. 

Target Variable Preparation. The target variable called Accident Injury Level 

was built as a dichotomous variable. Events involving fatal or serious injuries were 
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combined to form the first level of the target variable and labeled as one (1) in the 

dataset. Events with minor or no injuries were combined to form the second level and 

labeled as zero (0). Events without a specified injury level were deleted. 

Text-based Variable Preparation. There were three categories of text-based 

information in the NTSB database considered for the projected study. They were the 

Occurrence Descriptions, the Findings Descriptions, and the Narratives. Each report 

possibly contained several major events, termed occurrences, listed in the report. One 

occurrence in each report was designated the defining event while the others described 

major events in the accident sequence. Using the CONCATENATE function within 

Excel®, all of the occurrences were combined into a single field. Similarly, the reports 

listed findings, which were designated as either causal components or factors in the 

accident sequence. All findings were combined into a single field. At this stage, the 

narratives were not adjusted. 

Variable Selection. There were many variables or features available from the 

NTSB database as potential inputs into the model. As introduced previously, the target 

variable was Accident Injury Level, a two-level dichotomous variable of fatal/serious and 

minor/no-injuries. Variables relating to pilot demographics, including age, sex, 

certificates held, and flight hours are common descriptors in aviation studies and were 

used in the modeling process. Other variables of potential interest related to weather (e.g., 

visual or instrument conditions and precipitation), aircraft details (e.g., homebuilt, 

landing gear complexity, and aircraft complexity), and the operating environment (e.g., 

airspace type, mishap location, second pilot on board, and student solo). The final 

variables related to the text-based variables that described the accident sequence, 
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findings, and occurrences. The a priori study variables are found in Table 4. The 

complete variable library is at Appendix C.  

 

Table 4 
 
A Priori Study Variables  
 
Variable Description Type 

Mid-air Mid air collision Dichotomous 

Ground collision On ground collision Dichotomous 

Airport location to crash Proximity to airport Categorical 

Atmospheric lighting Lighting condition Categorical 

Wind gusts indicated Gusts indicated Dichotomous 

TARGET Accident Injury level Dichotomous 

Basic weather conditions Basic weather condition Dichotomous 

Flight plan type Type of flight plan filed Categorical 

Homebuilt Homebuilt aircraft Dichotomous 

Fixed-retractable gear Gear type Dichotomous 

Flight purpose Flight purpose Categorical 

Second pilot on board Second pilot on board Dichotomous 

Sightseeing flight Sightseeing flight Dichotomous 

Air-medical flight Air medical flight Dichotomous 

Airspace Airspace Categorical 

Crew position code Pilot category Categorical 

Age Pilot age Interval 

Sex Pilot sex Dichotomous 

Med certificate validity Medical certificate validity Categorical 

Professional pilot Professional pilot Dichotomous 

Highest certificate Highest pilot certificate Categorical 

Total flight hours Total flight hours, all a/c Interval 

Total PIC hours PIC hours, all a/cd Interval 



89 

 

Variable Description Type 

Hours last 90-days Hours last 90-days, all a/c Interval 

Hours last 30-days Hours last 30-days, all a/c Interval 

Hours last 24-hours Hours last 24-hrs, all a/c Interval 

Total hours make Total hours in a/c make Interval 

Total hours multi-engine Total multi-engine hours Interval 

Total hours single-engine Total single-engine hours Interval 

Total hours at night Total night hours Interval 

Engine type Engine type Categorical 

Multi-engine aircraft Multi-engine a/c Dichotomous 

Defining events Defining event Categorical 

Occurrences Combined occurrence descriptions Text 

Causes Combined cause descriptions Text 

Factors Combined factors descriptions Text 

Report narrative Accident summary/report Text 

Factual narrative Factual narrative Text 

Cause narrative Probable cause narrative Text 

Incident narrative FAA Incident Narrative (8020-5) Text 

 

Apparatus and Materials   

The data used for modeling came from archived aircraft incident and accident 

information downloaded from the NTSB’s public website. Data were extracted using 

Microsoft® Access® and Microsoft® SQL Server® then cleaned and prepared using 

Microsoft® Excel®. Descriptive analysis and modeling were conducted using SAS® 

Enterprise Miner™. 

Sources of the Data   

The data for analysis were drawn from the NTSB aviation accident database, 

which is a publicly available repository of civil aviation accident reports from 1948 to 
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present (NTSB, 2020b). The NTSB database was a relational database; data were stored 

in a collection of tables consisting of various attributes and capable of storing thousands 

of records with each record identified by a unique key (Han & Kamber, 2001). The 

contents comprise both structured and unstructured data (EMC Education Services, 

2015). The database contained all of the written accident reports, and the reports were 

available for download as PDF or HTML documents. Additionally, all of the report 

components were stored as searchable tabular data. As an additional feature, 

downloadable datasets in Microsoft® Access® format provided the researcher the ability 

to customize data extraction according to the research project requirements. The Access® 

database contained all of the information found in the actual accident investigation 

reports. The data used for the study were current as of the NTSB’s February 2020 

Access® product. 

Ethical Consideration 

The use of data about people may have serious implications depending on data 

access, collection purposes, and legitimate conclusions that can be drawn from the data 

(Witten et al., 2017). Considering the data source and purposes, concerns for the ethical 

treatment of human subjects were not a factor in the described study as the data were 

available for public download according to U.S. Government policies and used for 

accident prevention in line with the goals of investigating accidents. Additionally, any 

pieces of personally identifiable information for individuals involved in the events were 

sanitized by the government prior to the report being made public. Given the data source 

and protections provided by the U.S. Government before posting the data, internal review 

board consideration was not required. 
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Data Analysis Approach 

The basic purpose of the study outlined in this chapter was to develop a prediction 

model that best predicted the target variable using text mining and data mining tools. 

Choosing the best predicting model—the champion—required a methodical development 

process and assessments of several candidate models. The study followed the SEMMA 

model as previously introduced (SAS Institute, 2019a). The paragraphs that follow within 

this section outline the data analysis approach used to conduct the study including the 

steps within the SEMMA framework and specific discussions on participant 

demographics, reliability, and validity assessments. 

Participant Demographics 

Descriptive demographics were derived from data captured in the NTSB reports. 

The demographics included descriptive statistics regarding the accident pilots’ age, sex, 

flight hours, and the highest pilot certification. Derived statistics included the minimum, 

maximum, mean, median, and standard deviation values. 

Reliability Assessment Method   

Reliability is commonly defined in relation to how well an instrument provides 

consistent measurements (Field, 2018; Hair et al., 2010). Two components of reliability 

in the current study were connected to the reliability of the data and the reliability of the 

predictive models (Hair et al., 2010; Odisho, 2020). If the data were corrupted, the 

models would not provide consistent predictions with new data. Processes were instituted 

by the NTSB to ensure the data entry personnel were trained and the data were quality-

checked (GAO, 2010). Model reliability was assessed using the validation sample in 

comparison with the training sample results. Details are provided hereafter; however, 
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assessment methods included reviewing ROC curves, lift charts, and miscalculation rates. 

Reliable models were those that showed similar results in each sample. Models with the 

best results were then used with the test sample. Again, the similar results indicated 

reliability. 

Validity Assessment Method   

Validity refers to whether an instrument measures what it intends to measure and 

the level to which results can be inferred (Hair et al., 2010; Vogt, 2005). Validity works 

in partnership with reliability; a model that is reliable lacks usefulness in predicting 

outcomes if it does not predict well. Validity in the study was assessed using the test-

retest methodology in SAS, similar to the reliability assessment. Specifically, the validity 

was evaluated after the models were built with the training portion of the data and 

validated with the second portion of the data. The validation models were then tested 

with the third portion of the data. 

Validity assessment methods included assessments of prediction accuracy and 

predictive power. Miscalculation rate and overall prediction results assisted in assessing 

accuracy. The Lift chart, ROC, specificity, and sensitivity analysis assisted in assessing a 

model’s predictive power.  

Data Analysis Process   

Data analysis was a key component in realizing the goals of the current study. As 

Dean (2014) described, “Model assessment, stated simply, is trying to find the best model 

for your application to the given data” (Dean, 2014, p. 67). While Dean (2014) was 

specifically writing about the model, it follows that in order to find the best model, solid 

analysis needed to occur in all appropriate points in the project.  
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As previously introduced, the text mining activities were conducted first because 

the text mining process converted qualitative data into a quantitative format for use in 

modeling. The data mining process followed the text mining process and incorporated the 

text-based variables. Three groups of models were built. The first grouping of models 

was based solely on the text variables. The second grouping was based solely on the 

quantitative tabular data. Finally, the third grouping combined both text-based and 

tabular data in the models. The champion model was chosen from the models produced in 

the three groups. The process and analysis decision points are described below. 

Sample Analysis Approach. As the Sample activities appear first in the model, it 

was intuitive that they set the stage for the remaining SEMMA activities. Analysis in the 

Sample activity was simple yet foundational. First, the overall dataset was analyzed to 

determine whether the necessary information existed in the dataset or whether additional 

information was required. Upon review, additional information was not needed. Next, the 

dataset was assessed against the scoping delimitations to ensure the extraneous data were 

removed. 

Explore Analysis Approach. During the Explore activities, the data were 

assessed for completeness and were cleaned according to the assessment. A descriptive 

analysis occurred in order to provide depth and understanding to key pilot demographics 

and other appropriate variables in the dataset. During the Explore activities, the data were 

assessed for extreme values and data entry errors. Further, new variables were created 

from the existing data to facilitate eventual model interpretation. 

Modify Analysis Approach. In connection with the Explore analysis, the Modify 

analysis entailed assessing the potential impact of such issues as missing variables and 
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outliers. Imputation and data transformation were not used. Analysis in the Modify 

activity, in conjunction with the Model activities, included assessments of model 

adjustments to improve model performance. 

Model Analysis Approach. During the Model activity, the various models were 

trained. The analysis involved reviewing the model for any unexpected results or 

anomalies that could be addressed through modifications, either correcting erroneous data 

in the dataset or creating new variables based on findings. Overall, five types of models 

were used, including Decision Trees, Gradient Boosting, Logistic Regression, Neural 

Network, and Random Forest. The project process is explained in the next paragraphs. A 

depiction of the project flow diagram can be viewed in Figure 5. 
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Figure 5 

Project Flow Diagram  

 

 

Note. The diagram was built within SAS® Enterprise Miner™. The project flow began with the dataset 

node in the top-left portion and flowed to the Final Models Node on the extreme right of the diagram. The 

three Metadata Nodes were not required, but they facilitated variable selection for all following nodes. 

 

Text Mining. The text mining portion of the project began with Text Parsing 

where a terminology-document frequency matrix was created by the text mining 

algorithm. The stop list was edited by the researcher so that the algorithm returned the 

most useful terms. Analysis of the Text Parsing process provided insight into document 
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terms, how a term was used, how frequently it was used, and whether the term was kept 

for follow-on processes. Terms that appeared to have no use yet figured prominently in 

the analysis became candidates for the stop list. When words were added to the stop list, 

the node was executed again, and the words were dropped from future use. Once the Text 

Parsing output was created, the Text Filter process refined the list of words and terms by 

applying weights. Words that appeared less frequently were assigned higher weightings 

and were potentially more meaningful in the prediction models.  

The next two processes of Text Cluster and Text Topic created the text-based 

variables using singular value decomposition (SVD) to transform the terminology-

document frequency matrix into a form compatible for quantitative modeling. The first of 

the two processes was the Text Cluster, where documents were clustered into disjoint sets 

and described with descriptive terms. In the current study, the documents were the 

individual aircraft accident reports. In text clustering, each document was assigned to a 

specific cluster without crossover between clusters. The second process was the Text 

Topic, which associated terms and documents. Unlike the text clusters, terms and 

documents could be associated with more than one topic or not associated with any topic 

at all. The outcome of the text mining process was a set of new Text Cluster and Text 

Topic variables that were added to the quantitative dataset and available for overall 

modeling. 

Data Mining. Once the text mining process was completed, the data mining 

process was executed, beginning with data partitioning at a ratio of 60:20:20. The largest 

portion of the partition was allocated for model training and the other two for model 

validation and model testing. Three metadata nodes were inserted into the project flow to 
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facilitate the different model group variables. One branch of the process flow included 

only text variables, a second included only tabular data variables, and a third allowed 

both text and tabular data variables as potential model components. In the end, models 

were assessed against each other, and a champion model was selected. 

Assess Analysis Approach. Several types of models were assessed for usefulness 

in predicting GA accidents using SAS® Enterprise Miner™. The models included the 

Decision Tree, Neural Network, Random Forest, Gradient Boosting, and Logistic 

Regression. The ambition was to discover a model that best predicted the outcome 

variable. A checklist of SAS® Enterprise Miner™ settings for each of the nodes can be 

found in Appendix F. The checklist was used to promote standardization and process 

repeatability, adding to the reliability and validity of the findings. 

Decision Trees. The Decision Trees were based on rules that split variables 

hierarchically, creating a branch structure. The results represented rules that were used 

for predicting the target variable. The splitting rule criterion was based on a Chi-square 

test within the algorithm. The algorithm searched for a split “that maximize[d] the 

measure of worth associated with the [specified p-value]” (SAS Institute, 2019a, p. 765). 

Once a variable node was split, the algorithm considered the new nodes for further 

splitting. Splitting ended when further splits failed to meet the Chi-square significance 

threshold (SAS Institute, 2019a). 

The current study built three Decision Tree models for each of the three groups of 

variables based on how many branches the algorithm was allowed to use, either 2-, 3-, or 

5-branches. The 3- or 5-branch specification did not force the model to create a certain 

number of branches. Rather, it provided a measure of freedom to the algorithm. The 
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Decision Tree models were built using the Decision Tree Node in SAS® Enterprise 

Miner™.  

Gradient Boosting. The Gradient Boosting was another partitioning algorithm 

“that searche[d] for an optimal partition of the data defined in terms of the values of a 

single variable” (SAS Institute, 2019a, p. 799). Target values were partitioned into 

segments in a recursive process. Partition worth was based on partition similarities. When 

the optimality criterion was met, the partitions were combined to form a model that 

predicted the target variable. The boosting mechanism involved several iterations of data 

resampling. The results of the resampling were a weighted average of the original data 

set. The algorithm accounted for inaccuracies in each resample iteration to improve 

accuracy. Many decision trees were developed and combined in a single model (SAS 

Institute, 2019a). The Gradient Boosting models were built using the Gradient Boosting 

Node in SAS® Enterprise Miner™.  

Logistic Regression. As the target variable used in the current study was binary, 

Logistic Regression was appropriate to model the probability that a variable predicted the 

target. Four different effect selection methods were possible, including None, Backward, 

Forward, and Stepwise. The current study used the Stepwise selection method. The 

Stepwise method in SAS® Enterprise Miner™ began with no variables and incrementally 

added variables until the algorithm met the stop criterion. The Stepwise method had the 

ability to remove variables already in the model if a better variable was encountered 

(SAS Institute, 2019a). The Logistic Regression models were built using the Regression 

Node in SAS® Enterprise Miner™.  
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Neural Network. The Neural Network models operated by searching for 

nonlinear linkages between the input variables and the target variable. The network was 

based on the neuron units and connections between the neurons. Input neurons were 

connected to a hidden layer of neurons where the algorithm made the nonlinear 

connections that predicted the target variable. Weights were assigned to connections in an 

attempt to minimize prediction error (SAS Institute, 2019a). The Neural Network models 

used a supervised algorithm and were built using the AutoNeural Node in SAS® 

Enterprise Miner™.  

Random Forest. The Random Forest, like Gradient Boosting, involved many 

Decision Trees. However, the Random Forest algorithm built the training trees using 

sampling without replacement of all the observations, and the input variables were 

randomly selected from all variables. The algorithm calculated posterior probabilities 

from several trees. Then, using a voting mechanism, “the forest predict[ed] the target 

category that the individual trees predict[ed] most often” (SAS Institute, 2019a, p. 1289). 

Individual trees used an out-of-bag sample, data the algorithm excluded from the training 

sample, to form predictions that are said to have greater reliability than predictions from 

the training sample (SAS Institute, 2019a). The Random Forest models were built using 

the HP Forest Node in SAS® Enterprise Miner™.  

Models were evaluated using the software’s Model Comparison node. Similar 

across all of the model results, fit statistics were produced by the Model Comparison 

Node. The receiver operating characteristic (ROC) curve charts and misclassification rate 

values were used for model evaluation (SAS Institute, 2019a). The misclassification rate 

was based on the formula of one minus the validation accuracy, with better rates having a 
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lower number (Truong et al., 2018). The ROC was based on the model’s true and false 

positive rate at a given threshold. When the plots were joined with a line, they formed the 

ROC curve. The ROC curve, as a measure of model sensitivity and specificity, provided 

an indication of model usefulness (Truong et al., 2018). Area under the curve in a ROC 

chart offered another basis for assessment. In general, the model with the highest area 

was interpreted as the best performing model (Shmueli et al., 2016). Another output, 

cumulative lift, was also used. A baseline was projected on a graph, and the results of the 

models were overlaid. The model with the highest lift above the baseline was interpreted 

to have the best model fit. Finally, variables were examined for their importance in 

predicting the target variable of accident injury severity. 

Summary 

The purpose of Chapter III is to outline the proposed methodology for the study, 

which involved text and data mining. The aim of the project, to create a model that 

predicted GA accident severity, is discussed. Procedures for conducting the study are 

detailed, including explanations of the tools and techniques to be used. Five families of 

models were created, including Decision Tree, Gradient Boosting, Random Forest, 

Neural Network, and Logistic Regression. Finally, the data analysis approach is outlined 

as a framework for choosing the model that best predicted the target variable. 
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Chapter IV: Results 

The study was conducted according to the methodology outlined in Chapter III 

following the SEMMA framework. Using publicly available NTSB aviation accident data 

from 1998-2018, prediction models were developed, validated, and tested through a 

series of machine learning techniques. The chapter begins with the demographic findings 

within the scoped sample of GA accidents and incidents. Next, the actual text mining 

process and results are described. The last portion of the chapter addresses the data 

mining process and findings. The different prediction models included Decision Tree, 

Gradient Boosting, Logistic Regression, Neural Network, and Random Forest. Further, 

the models were built using three combinations of variables: 1) text only, 2) data only, 

and 3) text and data. The results of the modeling process are presented here. 

Demographic Results 

At the beginning of the study, general demographic data were tallied once the 

dataset was uploaded into the SAS® library. The final sample size included in the 

modeling was n = 26,387. While there may have been more than one pilot on board the 

aircraft, the following numbers reflect the pilot at the controls of the aircraft. Further, the 

pilot at the controls was not always the designated Pilot-in-Command. Pilot ages ranged 

from 16 to 98 years old (mean = 51.7; med = 53; SD = 15.3) as seen in Figure 6.  
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Figure 6 

Accident Pilot Age Distribution  

 
Note. Age was not captured in 257 reports. 

 

While age is a typical demographic reported in research, the aviation literature 

indicates that correlations between age and a target variable, such as fatal/serious injury 

accidents, are complicated because of the relationship of age with associated variables 

that comprise experience and situational factors. Of note, Figure 6 captures all of the 

accident pilots in the sample, not just those involved in fatal/serious injury accidents. 

Additionally, it is notable that age did not appear as a variable in the top three prediction 

models and only appeared as a minor contributing variable in three of the 21 prediction 

models. The Random Forest (All) model, the fourth-best model, ranked age as #28 in 

variable importance. Age did not appear again until the 13th-best Gradient Boosting 

(Data) and the 14th-best Random Forest (Data) where age appeared at #15 and #18 in 

importance, respectively.  
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Pilot sex was not captured in every NTSB report; however, the accident reports 

indicated the involvement of 23,071 male pilots and 725 female pilots. An exact 

comparison with the demographics of the current GA population is not possible given the 

21-year span of the study and the availability of pertinent statistics. However, the average 

number of female pilots between 2000 and 2018 was approximately 6% of the pilot 

population and ranged from 5.6% in 2000 to 6.9% in 2018 (FAA, 2019a; Goyer, n.d.). A 

crosstabs comparison between the accident pilot female-male ratio and the pilot 

population female-male ratio indicates a statistically significant difference between the 

two groups but, there is not sufficient data to determine if there is a practical significance 

between the two groups. A visualization is provided in Figure 7. 

 

Figure 7 

Accident Pilot by Sex  

 
Note. Sex was not captured in 2,591 reports. 
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The accident reports contained details regarding the pilot’s certification, and a 

pilot may hold several certificates. For consistency, only the highest certificate was used 

in the demographic analysis. A graph of the number of pilots by highest certificate is 

included for ease in visualizing the data (see Figure 8). The numbers can be viewed as a 

table in Appendix A, Table A1. 

 

Figure 8 

Graph of Pilots by Highest Certificate Held  

 
Note. The numbers here represent the certificate held by the pilot at the controls of the mishap aircraft. 

Information on additional pilots in the aircraft is not included. The category of “none” is assigned by the 

investigator to indicate that the individual held no FAA pilot certificate. The pilot data are missing in 138 

reports. 

 

Several other demographic markers provide greater insight into the accident pilot 

profile. The reports indicated that 1,632 of the accident pilots were employed 

professionally as pilots. There were 5,409 pilots with instructor certifications, of which, 
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3,926 were certified as instructors in more than one aircraft type. Finally, the reports 

indicated that there were 1,894 solo students involved in accidents.  

One hallmark of GA is the number of different types of operations. The types of 

operations and aircraft involved in GA activities can vary greatly. All of the operations 

types were binned into five categories to facilitate modeling. The categories and accident 

totals are shown in Figure 9. 

 

Figure 9 

Accident Totals by Operation Type  

 

Note. The categories of Business and Special Purpose differ slightly from the NTSB categories. The 

categories were simplified to facilitate modeling, as explained below. 

 

The Personal category is the largest by far and is perhaps the most generic 

category assigned in the reports. Instructional flights are those that involve either new 
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students or upgrading pilots and may or may not include an instructor pilot. Business 

operations can include any flight in the furtherance of business including executive 

travel, banner tows, aerial application (non-Part 137), flight test, and aerial observation. 

Special purpose flights in the current study are skydiving, airshow, and glider tow 

operations. The final category is for flights categorized as Public which could include 

local government flights, law enforcement, and firefighting. 

There are hundreds of aircraft makes and models involved in the GA aircraft 

accident sample. However, there are accessible indicators from which to build an 

accident aircraft profile. There are different challenges flying diverse types of aircraft 

with varying complexity and associated hazards. Interestingly, the vast majority of 

mishap aircraft were factory manufactured single-engine aircraft with a reciprocating 

engine configured with tricycle landing gear. Unfortunately, there were too many missing 

data points to determine whether or not retractable landing gear figured prominently in 

accidents. Charts depicting the aircraft data are included in Appendix B, Figures B1-B4.  

The accident reports contain several flight hour categories. Most reports captured a 

pilot’s total overall flight hours. Other categories captured flight hours in differing levels 

of detail. The flight hours for the accident pilots are found in Table 5, and each category 

is also displayed graphically in Appendix B, Figures B5-B11. Broadly speaking, the 

demographics provide a profile of an accident pilot who likely will have accrued less than 

500 hours overall, less than 100 hours in the particular aircraft make, less than 20 hours 

in the previous 90 days, and less than 10 hours in the previous 30 days.  
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Table 5 

Flight Hours of Accident Pilots 

Flight Hours Mean Min Max Med 

Hours last 30-days 19.5 0 238 11 

Hours last 90-days 49 0 624 26 

Total PIC hours 2,632 0 48,800 848 

Total flight hours 3,187 1 55,000 1,000 

Total hours make 461 0 31,603 122 

Total hours night 450 0 20,000 57 

Total hours single-engine 1,607 1 48,500 728 
 
Note: Hours last 24-hours and Total hours multi-engine were not included because of the number of 

missing data points. 

 

Descriptive Statistics 

Descriptive statistics were compiled by interval variables, shown in Table 6, and 

class variables, shown in Table 7. Contained within the two tables are 31 class variables 

(categorical variables) and eight interval variables, respectively. 
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Table 6 

Interval Variable Summary Statistics  

Variable N Missing Min Max SD Skew Kurtosis 

Age 26,130 257 16 98 15.30 -0.2217 -0.5753 

Hours last 30-

days 

16,861 9,526 0 238 22.79 2.4499 8.1326 

Hours last 90-

days 

18,178 8,209 0 624 60.85 2.5209 8.0842 

Total PIC 

hours 

15,787 10,600 0 48,800 4553.93 3.1976 12.5337 

Total flight 

hours 

25,463 924 1 55,000 5524.38 3.0458 10.6106 

Total hours 

make 

22,304 4,083 0 31,603 1101.11 7.6958 100.8248 

Total hours 

night 

14,914 11,473 0 20,000 1323.70 5.9493 46.5419 

Total hours 

single-engine 

19,350 7,037 1 48,500 2666.44 4.9633 39.4198 

Note. Aside from age, the remaining interval variables are the different types of flight hours logged by the 

pilots: time in the past 30- and 90-days, time as pilot-in-command, and total time in all aircraft, the accident 

aircraft make, night flying, and single-engine aircraft time. 

 

  



109 

 

Table 7 

Class Variable Summary Statistics  

Variable Number of 

Levels 

Missing Mode Mode 

Percentage 

Airspace 8 11749  44.53 

Flight Plan Type 5 969 NONE 78.61 

Gear 12 515 TRI 66.53 

Highest Certificate 9 138 PRI 49.65 

Highest Instructor Cert. 13 1357 NONE 73.34 

Multi-platform instructor 4 1369 N 79.93 

Instructor 4 1228 N 74.84 

Atmospheric lighting 5 149 DAY 88.49 

Loss of Control 3 222 0 84.53 

Med Certificate Validity 9 3131 WWL 31.55 

Multi-engine aircraft 3 117 N 93.62 

Seat occupied by pilot 8 2441 LEFT 65.07 

Crew position code 8 67 PLT 87.14 

Professional pilot 3 7607 N 55.61 

Runway condition 19 9868 DRY 51.72 

Solo student pilot 4 8 N 92.79 

Sex 3 2591 N 87.43 

Systems failure 3 222 N 91.25 

Type aircraft 6 226 3 73.76 

Air-medical flight 4 51 N 99.71 

Airport location to crash 3 5 ONAP 53.18 

Engine type 7 188 REC 94.78 

Ground collision 3 400 N 96.37 

Wind gusts indicated 3 4665 N 65.86 

Homebuilt 3 7 N 84.94 

Mid-air 4 395 N 97.41 
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Variable Number of 

Levels 

Missing Mode Mode 

Percentage 

Number of engines 6 331 1 89.06 

Second pilot on board 3 1619 N 79.65 

Sightseeing flight 4 79 N 99.47 

Weather not a factor 3 222 0 64.3 

Basic weather conditions 4 122 VMC 93.86 

Note. The sample size was n = 26,387.  

 

Text Mining Execution  

As introduced, the predictive modeling was preceded by the text mining process. 

The dataset contained a major text field comprised of the written report narratives. Using 

the text mining process, the qualitative data were transformed into a quantitative form 

suitable for modeling. The output of the text mining sequence was a series of new 

quantitative variables that were used in the predictive models. Two types of text-based 

variables are described below including Text Cluster and Text Topic variables. However, 

before the variables were created, the narratives needed to be cataloged and filtered using 

the Text Parsing and Text Filter functions in SAS® EM™. 

The first process, Text Parsing, cataloged all of the words by term, role, attribute, 

frequency, and the number of documents in which the terms appeared. Words were 

analyzed for their potential usefulness in modeling with the goal of reducing noise and 

improving interpretability. Words that did not appear to add value were excluded. The 

decision to exclude words was subjective and iterative based on reviewing the Text 

Parsing output, running the processes through the Text Topic creation (explained in 

greater detail below), and reviewing the output for the topic descriptors. Words were 
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added to the stop list, and the cycle of Text Parsing-Text Filter-Text Cluster-Text Topic 

was run again. Examples of excluded words included the following: directions (north, 

northeast, south, southwest), medical measures (hg, mg), descriptors (agl, msl, c), and 

terms referring to accident severity (death, fatal, severe injury, and fatal injury). As an 

illustration of the output, a catalog of the top 250 words detected by the Text Parsing 

algorithms can be found in Appendix A, Table A2. Figure 10 provides an indication of 

the number of words, documents, and frequencies detected in the dataset. While the 

figure is a macro-level view, it provides a picture of the magnitude of the parsing process. 

 

Figure 10 

Number of Documents by Frequency  

 

Note. During the Text Parsing process, all words are counted and cataloged. For example, the term 

+airplane appears 205,085 times within 25,056 documents. The term +landing has a frequency of 50,455 

and appears in 19,392 documents. Finally, the term +teach has a frequency of 98 within 88 documents. 

Terms with a plus (+) are parent terms.  
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The second text mining process, Text Filter, built upon the first process by adding 

weights to words. Words with potentially greater usefulness according to the text mining 

algorithm were assigned higher scores based on frequency and usage. Similar to the Text 

Parsing results, a catalog of the top 250 terms with the newly assigned weights is located 

in Appendix A, Table A3. Figure 11 provides an indication of the number of words, 

documents, and weights assigned in the dataset.  

 

Figure 11 

Number of Documents by Weight  

 

Note. During the Text Filter process, the words were assigned weights by the algorithm. Terms with a 

weight of zero were dropped from further use. In some cases, the words were automatically dropped by 

rule. In other cases, words were dropped via the stop list by the researcher like the word +airplane. The 

term +landing was assigned a weight of 1.444. The term +teach was assigned a weight of 9.228. Terms 

with a plus (+) are parent terms. 
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The third process, Text Cluster, arranged the documents into mutually exclusive 

clusters based on the words cataloged and weighted during parsing and filtering. The 

Singular Value Decomposition (SVD) algorithm transformed the high dimensional 

document-term frequency matrix into a lower dimensional form that enabled the creation 

of variables that can be used in modeling (SAS Institute Inc., 2015). The SVD is an 

approximation of the weighted frequency matrix and “is the best least squared fit to that 

matrix” (SAS Institute Inc., 2018, p. 78). The SVD solution created 24 dimensions and 

derived four clusters for a total of 28 possible new variables including 24 Text Cluster-

SVD variables and four Text Cluster variables. In practice, SVD variables and cluster 

variables were not used together in modeling because of the potential overlap or 

confounding effects in data representation. Rather, models were developed using each 

type, either SVD or cluster, and then compared for their usefulness in the models. 

There is an important distinction between the 24 SVD variables and the four text clusters 

that factor into their usefulness in model interpretation. The SVD variables numerically 

represent the likeness or separateness of one document to another in the algorithm-

created matrix. While the SVD variables may prove extremely useful in a prediction 

model’s accuracy, in the SVD form there is no practical way to interpret and explain the 

composition of the variable potentially hampering the model’s usefulness for some 

applications and end-users. Of potentially greater use to the end-user is the clustering of 

the documents. The algorithm determines clusters of documents in the matrix and 

extracts words that are key within the clusters. The key words for the current study are 

shown in Table 8. 
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Table 8 
 
Text Cluster Descriptive Terms  

Cluster ID Descriptive Terms Frequency Percentage 

1.0 +landing  +report  +runway  +gear  left  

+land  +condition  visual  +damage  +plan  

+student  +nose  +prevail  +state  +time 

3875.0 15% 

2.0 +power  +engine  +fuel  +tank  +hour  

+position  +reveal  medical  last  +record  

+issue  +hold  +wing  +damage  

+instrument 

9731.0 37% 

3.0 +record  weather  last  medical  +locate  

+hold  +issue  +instrument  +mile  +hour  

+impact  +knot  +turn  +instructor  +wind 

2655.0 10% 

4.0 +report  +runway  left  +landing  

+condition  visual  +plan  +land  +damage  

+state  +prevail  +sustain  +time  +nose  

+operate 

10126.0 38% 

Note. The plus (+) character indicates the word is a parent term and includes all stemmed versions of the 

word. 

 

The final text processing step, Text Topic, also relied on SVD with a different 

outcome. Scores were assigned by the algorithm to words and documents. Topics were 

created when scoring thresholds indicated strong associations among the words and 

documents, allowing the formation of topical groups. Unlike the mutually exclusive Text 

Cluster variables, Text Topic words and documents may appear in more than one topic 

(SAS Institute Inc., 2018). As text mining is an iterative process, the first iteration 
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specified an output of 15 topics as a baseline. A second iteration specified an output of 25 

topics and produced more intuitive results, the output of which is shown in Table 9. 

 

Table 9 

Text Topic Output  

Topic 

ID 

Variable Label Topic Terms Description 

1.0 Wind Factors +knot, +wind, +degree, 

+runway, +gust 

Landing accidents where 

wind was noted. 
2.0 Fuel Issues +fuel, +tank, +gallon, +fuel 

tank, +selector 

Fuel related accidents 

including human factors. 

3.0 IMC Flight +controller, +radar, 

+advise, +acknowledge, 

+tower 

Flight in instrument 

conditions or under ATC. 

4.0 LOC-Stalls +propeller, +nose, aft, 

+blade, +approximately 

Stalls and LOC, often 

related to abrupt 

maneuvers 
5.0 Student Pilots +student,  +student pilot, 

solo, +solo flight, 

instructional 

Student flying, especially 

as on solo instructional 

flights. 
6.0 Forced Landings +engine, +power, forced, 

+forced landing, +loss 

Forced landings often in 

conjunction with engine 

issues. 
7.0 Landing Gear +gear, gear, +landing gear, 

+landing, +extend 

Landings noting gear 

issues, including failure to 

extend or hard landings. 
8.0 Flight Envelope 

Exceedance 

aircraft, +approximately, 

+refer, +find, accident 

aircraft 

Pilots exceeded the aircraft 

capabilities. 
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Topic 

ID 

Variable Label Topic Terms Description 

9.0 Weather Factors +foot, +cloud, +mile, 

+visibility, +ceiling 

Reports where weather 

factors were prominent. 
10.0 Flight Hours +hour, total, +time, 

+engine, +logbook 

Both pilot and maintenance 

times figure prominently 

11.0 Engine Oil Loss +oil, +rod, +connect, 

+cylinder, +number 

Engine related issues due 

to oil loss and related 

component failure. 
12.0 Directional LOC +normal operation, 

+preclude, +malfunction, 

+failure, +operation 

Loss of directional control 

on takeoff or landing; no 

aircraft problems noted. 
13.0 Braking issues +brake, +brake, +apply, 

+rudder, +wheel 

Issues with aircraft brakes 

and braking. 

14.0 Water-Remote 

Airstrips 

+airstrip, +passenger, 

+water, +lake, +seat 

Accidents by amphibious 

or float equipped aircraft. 

Also, includes remote 

airstrips. 

15.0 Excess Weight +takeoff, +weight, +foot, 

+pound, +end 

Excess weight and takeoff 

errors. 
16.0 Instructional +instructor, +instruction, 

+instructional flight, 

instructional, +student 

Variation of instructional 

flights involved in 

accident. 
17.0 Unstable 

Approach 

+approach, +runway, final, 

+airport, +end 

Errors on approach; 

includes mid-air collisions 

on approach. 
18.0 Carburetor Icing +carburetor, +heat, icing, 

carburetor heat, ice 

Accidents where actual or 

suspected carburetor icing 

played a major role. 
19.0 Loss of Power +pump, +magneto, +valve, 

+cylinder, +spark 

Engine related events, 

often with fuel issues. 



117 

 

Topic 

ID 

Variable Label Topic Terms Description 

20.0 Slow Flight-Stalls +witness, left, +hear, 

+state, +turn 

Reports often developed 

with witness testimony; 

includes slow flight and 

stalls 

21.0 Flight Control +attach, +aileron, +control, 

+cable, +remain 

Focused on flight control 

surfaces, often recounting 

the aircraft had no 

problems. 

22.0 Surface Accidents +taxiway, +taxi, +runway, 

+park, +fire 

Airport surface incidents. 

23.0 Engine 

Component 

Failure 

+fracture, +bolt, +rod, 

fatigue, +surface 

Mechanical-related 

incidents. 

24.0 Medical +detect, +witness, medical, 

+test, +brake 

Accidents involving 

medical issues. 
25.0 Obstructions +tree, +runway, main, 

+landing gear, +tank 

Landing and takeoff issues, 

on or near a runway, with 

obstructions playing a role. 

Note. The short variable label was developed by the researcher to assist readers in recognizing the topics 

throughout the study. Because the algorithm-assigned topic words did not always capture themes, a 

description of the documents assigned to a particular topic has been provided. Details regarding the number 

of terms assigned to each topic and the number of documents in which the topics appear can be found in 

Appendix A, Table A4. The plus (+) character indicates the word is a parent term and includes all stemmed 

versions of the word. The top-25 associated accident reports for each topic are referenced in Appendix A, 

Table A9. 
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At the end of the text mining process, four Text Clusters, 24 Text Cluster-SVD 

variables, and 25 Text Topic variables, were created. All of the new variables were made 

available for modeling. 

Data Mining Execution  

The data mining portion of the study followed the SEMMA framework of sample, 

explore, modify, model, and assess. As SEMMA is iterative in nature, there are natural 

overlaps in activities. Where possible, the activities are presented within their respective 

categories to facilitate understanding. 

Sample Execution   

The sample activity began prior to both text and data mining. A general review of 

the NTSB database indicated a large amount of data was available across multiple 

variables. The researcher determined no additional sources of data were necessary given 

the study aims and the available report data. The data were extracted from the NTSB 

Access® product using SQL Server® and saved into an Excel® format. In the spreadsheet 

format, the data were pared according to the stated delimitations: 1) United States only, 

(2) accidents and incidents between January 1, 1998 and December 31, 2018, 3) Part 91 

operations, and 4) fixed-wing aircraft.  

Another sample activity included the partitioning of the dataset to facilitate model 

training, validation, and testing. The data were partitioned 60:20:20 respectively. 

Partitioning occurred immediately following the text mining activities.  

While not necessarily anticipated, several reports were deleted after the initial 

sample selection based on findings while exploring the data. Specifically, 17 accidents 

involved stolen aircraft, 20 suicides, 79 parked aircraft, 7 ATC/airfield management-
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caused mishaps, and 17 maintenance accidents (where there was no intent to fly). By 

their nature, these events could not provide value in predicting the target.  

Exploration Execution   

Data exploration built upon the sample activity to help ensure maximum usability 

to the modeling algorithms. During the Sample activities, the data were pared using the 

information entered into the various data field. However, there were occasions where data 

were incorrectly entered or mislabeled. Observations that did not meet the delimitations 

were removed. Additionally, variables were reviewed for missing values and extreme 

high or low numbers. Where possible, the seemingly extreme values were compared to 

the actual NTSB reports. Any detected errors were corrected. For instance, data contained 

in the field L24H_ALL indicated impossibilities; the reports indicated that some pilots 

flew more than 24 hours in a 24-hour day. All values greater than 18 were verified 

against the reports and the original documentation, where available. Ultimately 12 data 

points with hours ranging from 24 to 124.6 were deleted. Missing values were also 

addressed against the NTSB reports, where possible. Any values found in the written 

documents were entered into the study dataset. Once suitable for the study, the dataset 

was uploaded into SAS® EM™ for use in modeling.  

The dataset included multiple variables containing structured quantitative data. 

The StatExplore node was used to conduct an examination of the importance of 

individual variables based on their Chi-Square values when set against the target variable. 

The results are depicted in Figure 12. The table of results can be viewed in Appendix A, 

Table A3.  
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Figure 12 

Chi-Square Variable Importance 

 

 

Another way to view variable importance is to assess their worth according to 

statistical calculation, as seen in Figure 13. As before, the table of results can be viewed 

in Appendix A, Table A4. 
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Figure 13 

Input Variable Worth 

 

 

Examination of the figures and accompanying statistics indicated Air-medical 

flight and Sightseeing flight might be candidates for exclusion. Further analysis of the 

Sex variable indicated possible exclusion due to the small number of female pilots 

included in the sample. The bottom seven variables, according to worth, were considered 
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for exclusion. Each was individually eliminated from models to view the effects on the 

model. The decision was made to globally exclude Air-medical flight, Sightseeing flight, 

and Sex from the list available for the models. All other variables were made available 

for modeling. 

Modify Execution   

A potential outgrowth of the sample and explore activities is the need to modify 

variables. Variables may be modified to address outliers, missing data, or to group 

variables. Several a priori proposed variables were deleted by rule in the import process 

due to the number of missing data points (greater than 50%). The deleted variables were 

Fixed-retractable gear, Hours last 24-hours, Total hours multi-engine, Defining events, 

Occurrences, Causes, Factors, Factual narrative, Cause narrative, and Incident narrative. 

Several quantitative variables were created upon closer inspection of the NTSB database 

to make better use of the data for model building and improve usability of model 

findings. The new variables were compiled and are shown in Table 10. A comprehensive 

list of variables used in the modeling steps is in Appendix C, Table C1. 
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Table 10 
 
New Quantitative Variables 

Variable Description Type 

Gear Type Gear type Nominal 

Highest instructor cert. Highest instructor rating Nominal 

Multi-platform instructor Instructor rated in multiple a/c Dichotomous 

Instructor Pilot possessed instructor rating Dichotomous 

Loss of Control  Loss of control (air or ground) Dichotomous 

Number of engines Number of engines Interval 

Seat occupied by pilot Seat position of accident pilot Nominal 

Runway condition Runway condition Nominal 

Solo student pilot Solo student pilot Dichotomous 

Systems failure System failure cited Dichotomous 

Weather not a factor Weather not a factor Dichotomous 

 

Model Execution   

The prediction models were built in three groupings based on the types of 

variables in the dataset; text-only, data-only, and both text and data variables. Ultimately, 

21 models were built and then ranked by misclassification rate. The final model process 

used to build the models is shown in Figure 14. 
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Figure 14  

Final Model Process  

 

 

Text-only Models. The possible text-only variables included the four Text 

Cluster, 24 Text Cluster-SVD, and 25 Text Topic variables. The first task was to 

determine which text-based variables produced the best predicting models. The variables 

were iteratively introduced into the seven basic model types and then assessed according 

to their misclassification rates. The possible variable combinations were Text Cluster-
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only, Text Cluster-SVD-only, Text Topic-only, Text Cluster/Text Topic, and Text 

Cluster-SVD/Text Topic, noting that the two cluster variable types were not used 

together in the same models. The results in Table 11 indicate that three of the five 

combinations produced models with a misclassification rate less than 0.10. As explained 

previously, the internal workings of the Text Cluster and Text Cluster-SVD variables are 

not readily translatable to the general audiences intended to use the models. Given the 

similarity of the misclassification rates and the usability factors, the researcher opted to 

use only the Text Topic variables in the final models. 

 

Table 11 

Text-based Model Comparison Summary  

Model Text-

Cluster 

Text 

Cluster-

SVD 

Text Topic Text Topic/ 

Text 

Cluster 

Text Topic/ 

Text 

Cluster-

SVD 

Random Forest 0.20750 0.10063 0.09873 0.09627 0.09987 

Neural Network 0.20750 0.11162 0.12583 0.09665 0.09077 

Logistic Regression 0.20750 0.10707 0.09816 0.09911 0.09816 

Gradient Boosting 0.20750 0.11256 0.10290 0.10309 0.10006 

DT (5-branch) 0.20750 0.11256 0.10498 0.10498 0.10555 

DT (3-branch) 0.20750 0.11294 0.10726 0.10669 0.10574 

DT (2-branch) 0.20750 0.11768 0.10707 0.10839 0.10460 

Note. The bolded numbers in each column represent the best predicting model by variable combination 

based on the validation misclassification rate. DT = Decision Tree. 
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Data-only Models. Seven models were developed using only structured data. 

Unlike the text-based variables, no additional work was necessary to determine the best 

predicting model by data type. The findings are shown in Table 12. 

 

Table 12 

Data-based Model Comparison Summary   

Model Misclassification Rate 

Gradient Boosting 0.16771 

Random Forest 0.17908 

Decision Tree (2-branch) 0.18287 

Decision Tree (3-branch) 0.18571 

Decision Tree (5-branch) 0.18666 

Logistic Regression 0.26492 

Neural Network 0.28918 

Note. The models within the table presented here only used data variables. 

 

Combined Text and Data Models. The final set of seven models used both text 

and data variables. As with the final text-only models presented earlier, the Text Topic 

variables were used in the combined models. The results of the combined text and data 

models are shown in Table 13. 
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Table 13 

Combined-data Model Comparison Summary   

Model Misclassification Rate 

Gradient Boosting 0.09930 

Random Forest 0.10063 

Decision Tree (5-branch) 0.10479 

Decision Tree (3-branch) 0.10707 

Decision Tree (2-branch) 0.10821 

Logistic Regression 0.22873 

Neural Network 0.28482 

Note. The models within the table presented here used both text and data variables. 

 

Assess Execution   

The final process in the SEMMA framework involved assessing the 21 models 

and selecting the champion model. All 21 models, their rankings, and the associated 

misclassification rates are contained in Table 14. A full accounting of the model 

prediction and accuracy numbers are shown in Appendix A, Table A7. 
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Table 14 

Model Comparison Summary 

Model Variables 

Used 

Valid: MR Test: MR ROC 

Index 

Ranking 

Logistic Regression Text 0.09816 0.09850 0.945 1 

Random Forest Text 0.09873 0.09358 0.938 2 

Gradient Boosting All 0.09930 0.09528 0.937 3 

Random Forest All 0.10063 0.09225 0.937 4 

Gradient Boosting Text 0.10290 0.10059 0.933 5 

Decision Tree (5-br.) All 0.10479 0.10684 0.902 6 

Decision Tree (5-br.) Text 0.10498 0.10722 0.901 7 

Decision Tree (3-br.) All 0.10707 0.11082 0.907 8 

Decision Tree (2-br.) Text 0.10707 0.10513 0.875 9 

Decision Tree (3-br.) Text 0.10726 0.10968 0.908 10 

Decision Tree (2-br.) All 0.10821 0.10551 0.875 11 

Neural Network Text 0.12583 0.12616 0.915 12 

Gradient Boosting Data 0.16771 0.17181 0.863 13 

Random Forest Data 0.17908 0.18072 0.854 14 

Decision Tree (2-br.) Data 0.18287 0.18716 0.807 15 

Decision Tree (3-br.) Data 0.18571 0.18810 0.810 16 

Decision Tree (5-br.) Data 0.18666 0.18886 0.809 17 

Logistic Regression All 0.22873 0.21993 0.814 18 

Logistic Regression Data 0.26492 0.26596 0.715 19 

Neural Network All 0.28482 0.28396 0.551 20 

Neural Network Data 0.28918 0.28888 0.529 21 

Note. For MR, lower numbers indicate better performing models. For ROC Index, also known as Area 

Under the Curve, a higher number generally indicates better performance. The column listing variables 

used refers to the type of variables introduced in the model. For instance, “text” indicates only text-based 

variables were used. Models using both text- and data-based variables have the notation “all.” 
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As shown, three models achieved misclassification rates less than 0.10: Logistic 

Regression (Text), Random Forest (Text), and Gradient Boosting (All). Because of the 

similarity, details of the top three models are presented in the next paragraphs. The 

combined results are introduced first followed by a discussion of the top three models 

individually. 

One way to visualize the performance of the models is with the Receiver 

Operating Characteristic (ROC) graphs. A ROC curve within the graph depicts the 

misclassification rates according to Sensitivity on the y-axis and Specificity on the x-axis. 

Sensitivity and specificity are measures of how well a model performs in predicting the 

target events (SAS Institute Inc., 2018). Better performing models have higher sensitivity 

and specificity for a given threshold. Another way to describe the ROC curve is with the 

accompanying ROC Index or Area Under the Curve. The previous table showed the top 

three models had a ROC Index of 0.95 for the Logistic Regression (Text) and 0.94 for 

both the Random Forest (Text) and the Gradient Boosting (All). The Receiver Operating 

Characteristic (ROC) graphs for the top three models (see Figure 15) illustrate pictorially 

what the misclassification numbers indicate. 
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Figure 15 

ROC Diagrams—Top Three Models  

 

Note. The graphs depict model performance from training to validation and from validation to test. The 

expectation is that the validation models perform as well or better than the train models. Additionally, the 

test models should be consistent with the validate models. 

 

The Cumulative Lift graph is another tool to visualize model performance. Better 

predicting models again have a higher area under the curve, also described as lift. Similar 

to the ROC, the models should be consistent across the three samples. The similarity of 

the top three models is indicated by the proximity of the lift lines to each other. The 

Cumulative Lift graphs for the top three models are shown in Figures 16-18. 
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Figure 16 

Cumulative Lift (Train)—Top Three Models  

Note. The figure depicts each model’s cumulative lift from the model training activity. There is no expected 

performance as the training step builds the models and provides the baseline for validation and testing. 
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Figure 17 

Cumulative Lift (Validate)—Top Three Models  

Note. The figure depicts each model’s cumulative lift from the model validation activity. In general, the 

models should perform in a similar manner to the training sample. Additionally, the graph indicates the 

closeness of the three models in their prediction capability. 
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Figure 18 

Cumulative Lift (Test)—Top Three Models  

Note. The figure depicts each model’s cumulative lift from the model test activity. The validation and test 

lift charts should be similar if the models perform well. 

 

Logistic Regression (Text). The model ranked highest by misclassification rate 

was the Logistic Regression only using the text variables. Inspection of the Cumulative 

Lift chart (see Figure 19) provides an indication of the model performance between Train 

and Validate samples. The lines in close proximity indicate model consistency. The 

Cumulative Lift value is 3.46. Additionally, the chart indicates that at the cumulative lift 

of 2.0 (where the model predicts 2x better than random), 45% of the fatal/severe injury 

accidents are predicted. At the 1.5 level, the prediction is 65%, and at the at the 1.25 

level, 80%.  
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Figure 19 

Cumulative Lift—Logistic Regression (Text)  

 

Note. The model has a Cumulative Lift of 3.46. 

 

Plots showing the misclassification rates are not produced for regression models. 

Instead, an Effects Plot is produced, as shown in Figure 20. The bars represent the 

individual variables used in the model with blue indicating variables with a positive 

impact. The height of the bars indicates the absolute values of the variable coefficients, 

and in the figure provide an indication of relative importance. 
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Figure 20 

Effects Plot—Logistic Regression (Text)  

 

Note. The variables are shown here according to their absolute coefficient values. Of most interest to the 

current study are the variables in blue that have a positive relationship to the target variable. The variable 

identification numbers were inserted into the chart to aid in identification. The variables are explained in 

greater detail in subsequent paragraphs and tables (see Table 19).  

 

The fit statistics for the Logistic Regression (Text) model are shown in Table 15. 

The statistics most commonly referenced in the table are the Misclassification Rate and 

the Average Squared Error. The better predicting models will show consistent values 

across the three samples. 
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Table 15 

Fit Statistics—Logistic Regression (Text)   

Fit Statistic Train Validation Test 

Akaike's Information Criterion 7931.96   

Average Squared Error 0.07 0.08 0.07 

Average Error Function 0.25 0.25 0.25 

Degrees of Freedom for Error 15812   

Model Degrees of Freedom 19   

Total Degrees of Freedom 15831   

Divisor for ASE 31662 10554 10558 

Error Function 7893.96 2632.63 2536.52 

Final Prediction Error 0.07   

Maximum Absolute Error 1.00 0.99 0.9 

Mean Square Error 0.07 0.08 0.07 

Sum of Frequencies 15831 5277 5279 

Number of Estimate Weights 19   

Root Average Sum of Squares 0.27 0.27 0.27 

Root Final Prediction Error 0.27   

Root Mean Squared Error 0.27 0.27 0.27 

Schwarz's Bayesian Criterion 8077.69   

Sum of Squared Errors 2314.03 791.82 762.33 

Sum of Case Weights Times Freq 31662 10554 10558 

Misclassification Rate 0.09513 0.09816 0.09850 

 

Random Forest (Text). The model ranked second by misclassification rate was 

the Random Forest using only text variables. The Random Forest model behaves 

differently than other models in that the Cumulative Lift lines (see Figure 21) between 

the Train and Validate samples are somewhat separated at the beginning and then 
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converge as the depth increases. The expectation of a good model is the validate lift will 

be less than the train lift given a tendency to overfit a solution. The Random Forest (Text) 

model has a Cumulative Lift score of 3.45. The graph indicates that at the 2.0 lift level, 

the depth is 45, at 1.5, the depth is 65, and at 1.25, the depth is almost 80 which is very 

similar to the Logistic Regression (Text) model. 

 

Figure 21 

Cumulative Lift—Random Forest (Text) 

 

Note. The validate model has a Cumulative Lift of 3.45. 

 

The iteration plot depicting the misclassification rate is shown in Figure 22. The 

expectation is that as the Out of Bag and Validate rates improve, the lines will converge, 

and then the lines will flow in close proximity, as the number of trees increase. 
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Figure 22 

Iteration Plot—Random Forest (Text) 

 

 

The fit statistics for the Random Forest (Text) model are shown in Table 16. As 

with the previous model, the statistics most commonly referenced in the table are the 

Misclassification Rate and the Average Squared Error. Again, the better predicting 

models will show consistent values across the three samples. However, with the Random 

Forest model, the Train values may be significantly less than the Validation values. The 

Text sample values are especially important here to provide an indication that the model 

is well trained and not overfit. 
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Table 16 

Fit Statistics—Random Forest (Text)  

Fit Statistic Train Validation Test 

Average Squared Error 0.01243 0.07552 0.07368 

Divisor for ASE 31662 10554 10558 

Maximum Absolute Error 0.53 1 1 

Sum of Frequencies 15831 5277 5279 

Root Average Squared Error 0.11151 0.27482 0.27143 

Sum of Squared Errors 393.663 797.0808 777.872 

Frequency of Classified Cases 15831 5277 5279 

Misclassification Rate .00006 0.09873 0.09358 

Number of Wrong Classifications 1 521 494 

 

Gradient Boosting (All). The third ranked model according to misclassification 

rate was the Gradient Boosting using both text and data variables. Similar to the previous 

two models, the Cumulative Lift chart (see Figure 23) gives an indication of model 

performance between samples. The model has a Cumulative Lift of 3.46, and the lift lines 

between the samples are in close proximity. At the 2.0 lift, the depth is 45, at 1.5, the 

depth is 65, and at 1.25, the depth is just over 80. 

 

  



140 

 

Figure 23 

Cumulative Lift—Gradient Boosting (All)  

Note. The validate model has a Cumulative Lift of 3.46. 

 

The Gradient Boosting model produces a Subseries Plot (see Figure 24) depicting 

misclassification rate changes across the iterations. Based on how the models are built, 

the graph shows the rate dropping steeply in the first several iterations and then steadily 

decreases until the algorithm reaches the prescribed stopping point. The better predicting 

models will behave similarly throughout the iterations and run in close proximity to one 

another. 
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Figure 24 

Iteration Plot—Gradient Boosting (All)  

 

 

The fit statistics for the Gradient Boosting (All) model are shown next in Table 

17. Once more, the statistics most commonly referenced in the table are the 

Misclassification Rate and the Average Squared Error. Model performance is indicated 

by consistency between the Train, Validation, and Text sample values. 
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Table 17 

Fit Statistics—Gradient Boosting (All)  

Fit Statistic Train Validation Test 

Sum of Frequencies 15831 5277 5279 

Sum of Case Weights Times Freq 31662 10554 10558 

Misclassification Rate 0.09380 0.09930 0.09528 

Maximum Absolute Error 0.96186 0.96374 0.96143 

Sum of Squared Errors 2,349.152 823.933 792.230 

Average Squared Error 0.07419 0.07807 0.07504 

Root Average Squared Error 0.27239 0.27941 0.27393 

Divisor for ASE 31662 10554 10558 

Total Degrees of Freedom 15831   

 

Variable Importance  

Assessing variable importance is an Assess activity within SEMMA and is related 

to at least two general research aims: 1) improving the model performance, and 2) 

providing practical information for model implementation. While the model output 

formats vary by model, the variable importance of the top three models is presented in 

this section. 

Logistic Regression (Text) Variables. Text variables important to the Logistic 

Regression (Text) model are shown in Table 18. 
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Table 18 

Logistic Regression (Text) Analysis of Maximum Likelihood Estimates  

Parameter Estimate Standard 

Error 

Wald 

Chi-Sq 

Pr > 

ChiSq 

Standardized 

Estimate 

Exp 

(Est) 

Intercept -2.6566 0.0741 1283.66 <.0001  0.071 

Medical  

(TT 24) 

24.2622 0.8373 839.64 <.0001 0.7473 999.000 

Slow Flight-

Stalls  

(TT 20) 

15.3506 0.6828 505.36 <.0001 0.4481 999.000 

Flight Control 

(TT 21) 

10.8613 0.6283 298.82 <.0001 0.4402 999.000 

IMC Flight  

(TT 3) 

4.6725 0.4880 91.68 <.0001 0.1803 106.966 

Weather Factors 

(TT 9) 

4.2627 0.5194 67.34 <.0001 0.1711 71.001 

Flight Hours  

(TT 10) 

4.1343 0.4984 68.80 <.0001 0.1643 62.449 

Excess Weight 

(TT 15) 

3.5586 0.5057 49.53 <.0001 0.1105 35.112 

Unstable 

Approach  

(TT 17) 

3.4771 0.5802 35.91 <.0001 0.1075 32.365 

Engine Oil Loss 

(TT 11) 

2.7163 0.5192 27.37 <.0001 0.0931 15.124 

LOC-Stalls 

(TT 4) 

2.4448 0.6130 15.91 <.0003 0.0872 11.529 

Loss of Power 

(TT 19) 

2.0081 0.4452 20.34 <.0001 0.0788 7.449 
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Parameter Estimate Standard 

Error 

Wald 

Chi-Sq 

Pr > 

ChiSq 

Standardized 

Estimate 

Exp 

(Est) 

Flight Envelope 

Exceedance 

(TT 8) 

1.9797 0.5185 14.58 .0001 0.0615 7.241 

Carburetor Icing 

(TT 18) 

-2.5487 0.5037 25.61 <.0001 -0.0801 0.078 

Landing Gear 

(TT 7) 

-4.0391 0.7609 28.18 <.0001 -0.1431 0.018 

Wind Factors 

(TT 1) 

-5.5085 0.6321 75.95 <.0001 -0.1823 0.004 

Braking Issues 

(TT 13) 

-7.0504 0.9049 60.71 <.0001 -0.2135 0.001 

Directional LOC 

(TT 12) 

-7.1902 0.7602 89.47 <.0001 -0.2205 0.001 

Engine 

Component 

Failure  

(TT 23) 

-7.7403 0.6550 139.65 <.0001 -0.2212 0.000 

Note. The Degrees of Freedom = 1 for all variables. TT = Text Topic. The full variable descriptions were 

presented in Table 10. 

 

Random Forest (Text) Variables. Variable importance in a Random Forest 

model is assessed using the Out-of-Bounds (OOB) Gini Reduction scores, as shown in 

Table 19. 
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Table 19 

Random Forest (Text) Variable Importance  

Variable Name Number of 

Splitting 

Rules 

OOB: Gini 

Reduction 

OOB: 

Margin 

Reduction 

Label 

Medical 

(TT 24) 

5597 0.06433 0.14439 +detect, +witness, medical, 

+test, +brake 

Flight Hours 

(TT 10) 

3285 0.03871 0.08899 +hour, total, +time, 

+engine, +logbook 

Flight Control 

(TT 21) 

4655 0.02511 0.06543 +attach, +aileron, +control, 

+cable, +remain 

Slow Flight-

Stalls 

(TT 20) 

5182 0.01361 0.04251 
+witness, left, +hear, 

+state, +turn 

LOC-Stalls 

(TT 4) 

4813 0.00388 0.02421 +propeller, +nose, aft, 

+blade, +approximately 

Weather Factors 

(TT 9) 

6682 0.00269 0.02782 +foot, +cloud, +mile, 

+visibility, +ceiling 

IMC Flight 

(TT 3) 

 

4314 

0.00222 0.0189 +controller, +radar, 

+advise, +acknowledge, 

+tower 

Engine Oil Loss 

(TT 11) 

2731 0.0022 0.01427 +oil, +rod, +connect, 

+cylinder, +number 

Excess Weight 

(TT 15) 

3346 -0.0007 0.01049 +takeoff, +weight, +foot, 

+pound, +end 

Fuel Issues 

(TT 2) 

3373 -0.0019 0.0074 +fuel, +tank, +gallon, +fuel 

tank, +selector 

Directional LOC 

(TT 12) 

3257 -0.0025 0.00652 +normal operation, 

+preclude, +malfunction, 

+failure, +operation 
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Variable Name Number of 

Splitting 

Rules 

OOB: Gini 

Reduction 

OOB: 

Margin 

Reduction 

Label 

Instructional 

(TT 16) 

2836 -0.0028 0.00436 +instructor, +instruction, 

+instructional flight, 

instructional, +student 

Braking Issues 

(TT 13) 

3163 -0.0029 0.00478 +brake, +brake, +apply, 

+rudder, +wheel 

Wind Factors 

(TT 1) 

2623 -0.0041 0.00134 +knot, +wind, +degree, 

+runway, +gust 

Carburetor Icing 

(TT 18) 

3060 -0.0042 0.00186 +carburetor, +heat, icing, 

carburetor heat, ice 

Engine 

Component 

Failure 

(TT 23) 

4112 -0.0045 0.00446 

+fracture, +bolt, +rod, 

fatigue, +surface 

Forced Landings 

(TT 6) 

5229 -0.0046 0.00788 +engine, +power, forced, 

+forced landing, +loss 

Loss of Power 

(TT 19) 

3398 -0.0046 0.00277 +pump, +magneto, +valve, 

+cylinder, +spark 

Unstable 

Approach 

(TT 17) 

3534 -0.0049 0.00206 +approach, +runway, final, 

+airport, +end 

Water/ Remote 

Airstrips 

(TT 14) 

2951 -0.0051 0.00062 +airstrip, +passenger, 

+water, +lake, +seat 

Obstructions 

(TT 25) 

4076 -0.0058 0.00185 +tree, +runway, main, 

+landing gear, +tank 
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Variable Name Number of 

Splitting 

Rules 

OOB: Gini 

Reduction 

OOB: 

Margin 

Reduction 

Label 

Student Pilots 

(TT 5) 

4007 -0.0059 0.00125 +student, +student pilot, 

solo, +solo flight, 

instructional 

Surface 

Accidents 

(TT 22) 

3851 -0.0063 0.00048 +taxiway, +taxi, +runway, 

+park, +fire 

Flight Envelope 

Exceedance 

(TT 8) 

5643 -0.0075 0.00261 aircraft, +approximately, 

+refer, +find, accident 

aircraft 

Landing Gear 

(TT 7) 

4993 -0.0079 0.00078 +gear, gear, +landing gear, 

+landing, +extend 

Note. The plus (+) character indicates the word is a parent term. 

 

Gradient Boosting (All) Variables. Variable importance for the Gradient 

Boosting (All) model is shown in Table 20. 
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Table 20 

Gradient Boosting (All) Variable Importance  

Variable Name Description Number of 

Splitting 

Rules 

Validation 

Importance 

Medical 

(TT 24) 

+detect, +witness, medical, +test, 

+brake 

26 1 

Flight Control 

(TT 21) 

+attach, +aileron, +control, +cable, 

+remain 

16 0.41985 

Slow Flight-

Stalls 

(TT 20) 

+witness, left, +hear, +state, +turn 28 0.44596 

Flight Hours 

(TT 10) 

+hour, total, +time, +engine, 

+logbook 

7 0.34715 

IMC Flight 

(TT 3) 

+controller, +radar, +advise, 

+acknowledge, +tower 

11 0.29600 

Total hours 

make 

Total flight time in the accident 

aircraft make. 

7 0.22847 

Weather Factors 

(TT 9) 

+foot, +cloud, +mile, +visibility, 

+ceiling 

8 0.25234 

Airport location 

to crash 

Accident proximity to an airport. 6 0.19135 

LOC-Stalls 

(TT 4) 

+propeller, +nose, aft, +blade, 

+approximately 

3 0.15849 

Excess Weight 

(TT 15) 

+takeoff, +weight, +foot, +pound, 

+end 

9 0.10808 

Hours last 30-

days 

Total flight time in the past 30-days. 3 0.10676 

Directional LOC 

(TT 12) 

+normal operation, +preclude, 

+malfunction, +failure, +operation 

4 0.10312 
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Variable Name Description Number of 

Splitting 

Rules 

Validation 

Importance 

Braking Issues 

(TT 13) 

+brake, +brake, +apply, +rudder, 

+wheel 

3 0.09127 

Total hours 

single-engine 

Total flight time in single-engine 

aircraft. 

2 0.07900 

Total PIC hours Total flight time as pilot-in-

command. 

1 0.07031 

Forced Landings 

(TT 6)   

+engine, +power, forced, +forced 

landing, +loss 

2 0.06963 

    

Engine 

Component 

Failure 

(TT 23) 

+fracture, +bolt, +rod, fatigue, 

+surface 

2 0.04653 

Total hours night Total flight time at night. 2 0.05453 

Obstructions 

(TT 25) 

+tree, +runway, main, +landing gear, 

+tank 

3 0.03915 

Fuel Issues 

(TT 2) 

+fuel, +tank, +gallon, +fuel tank, 

+selector 

1 0.04269 

Engine Oil Loss 

(TT 11) 

+oil, +rod, +connect, +cylinder, 

+number 

1 0.04227 

Homebuilt Aircraft homebuilt or factory 

manufactured. 

1 0.04612 

Carburetor Icing 

(TT 18) 

+carburetor, +heat, icing, carburetor 

heat, ice 

1 0.01352 

Note. TT = Text Topic. The plus (+) character indicates the word is a parent term. 
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Reliability and Validity Testing Results 

The final area under Assess in SEMMA is an analysis of the model’s reliability 

and validity. To summarize, reliability is the level to which an instrument provides 

consistent performance, and validity is the level to which an instrument measures what is 

intended. Reliability and validity begin with the input data. The quality of the data 

sourced from the NTSB was generally acceptable overall, providing consistent model 

outputs. However, during the initial data exploration, errors were noted between the 

Access® data, the written reports, and the public dockets containing the source 

documents for many of the accidents. Many errors were detected and addressed using a 

hi/lo search of the variables. For instance, there were several pilots with ages less than 16 

years and more than 98 years. Each case was cross-checked with the reports to either 

correct the age or delete the entry. In many cases, zero was used for missing data rather 

than leaving the field blank. Total flight hours provide a second example where several 

entries indicated 999,999 flight hours. Closer examination in the reports revealed the 

entry indicated missing data. Many variables contained missing data. Where possible, the 

variables were checked against the reports and corrected in the study dataset. Where 

reference to the original was not possible, no attempt to impute variables was made given 

the general robustness of data mining to missing variables. 

Each model was assessed for reliability and validity using the techniques outlined 

in Chapter III. Overall, models were trained, validated, and tested using different portions 

of the sample, enabling assessments of model performance. The results from the top three 

models are presented in the following sections.  
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Reliability Assessment  

Model reliability was assessed using ROC, Cumulative Lift, and Miscalculation 

Rate scores. The ROC graphs represent sensitivity and specificity scores at various 

threshold levels. When plotted, the plots are joined in a “curve” that depicts model 

performance. Reliable models show consistency across measurement, as seen in the ROC 

graphs in Figure 25. 

 

Figure 25 

ROC Graphs—Top Three Models  

 

Note. The Logistic Regression (Text) ROC curve is depicted by the bold blue line. 

 

Cumulative Lift provides a visual representation of model strength. A model that 

is no better than random guessing will have a lift approaching 1 or no lift. Higher lift 

scores indicate better predicting models (McCarthy et al., 2019). The Cumulative Lift 

graph for the top three models shows model reliability in the closeness of the lines from 
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different samples. Upon inspection, the graph shows strong predictability over a random 

guess. To illustrate, at the 2.0 level—the point where a model predicts two-times better 

than no model—approximately 45% of the Fatal/Severe Injury cases are predicted with 

all three models. At the 1.5% level, the prediction is approximately 65%, and at the 1.25 

level, the number is almost 80%. The Cumulative Lift graph is shown in Figure 26. 

 

Figure 26 

Cumulative Lift (Validation Sample)—Top Three Models  

 

 

Further examination of the misclassification rates also provided an indication of 

reliability, as found in Table 21. With misclassification rates, a lower score is better. 

Average Squared Error, which is related to model bias, should also be low, indicating less 

bias (McCarthy et al., 2019). Model reliability is indicated by the similarities between the 

Valid and Test scores.  
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Table 21 

Misclassification Rate Comparison—Top Three Models  

Model & Measure Train Validate Test 

Logistic Regression (Text)    

Misclassification Rate 0.09513 0.09816 0.09850 

Average Squared Error 0.07267 0.07461 0.07250 

Random Forest (Text)    

Misclassification Rate 0.00006 0.09873 0.09358 

Average Squared Error 0.01243 0.07552 0.07368 

Gradient Boosting (All)    

Misclassification Rate 0.09380 0.09930 0.09528 

Average Squared Error 0.07419 0.07807 0.07504 

 

Validity Assessment   

Validity indicators include test-retest performance and measures of accuracy and 

predictability. The ROC diagram shown previously (see Figure 25) charts 

misclassification rates by measuring sensitivity and specificity. Sensitivity is a measure 

of a model’s capability to detect targets of interest or events (Shmueli et al., 2016). 

Specificity is a measure of a model’s ability to correctly rule out false targets or non-

events (Shmueli et al., 2016). In other words, the ROC displays the model’s true and false 

positive scores at a given threshold. When the plots are joined with a line, they form the 

ROC curve. Recalling the current study specifics, the target of interest is the Fatal/Severe 

Injury aviation accident. The best predicting model, as represented by the ROC curve 

where all targets were classified correctly without any error would have data points at 1,0 

on the graph or in the top left corner. A ROC Index, or Area Under the Curve (AUC) 
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measures the space created by the curve, the higher number the better with a ROC Index 

of 1 representing a perfect predicting model. 

Test-Retest performance is shown in the Cumulative Lift Graphs across all three 

samples; train, validation, and test. The expectation is that all of the graphs will display 

similar results. The stacked graphs are shown in Figure 27 and provide a visual indication 

of model validity. 

 

Figure 27 

Cumulative Lift Graphs—Top Three Models  
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Several formulas were used to calculate model performance. To begin, actual and 

predicted classification scores were entered into a 2x2 confusion matrix (EMC Education 

Services, 2015). The classification scores were True Positives (TP), False Positives (FP), 

False Negatives (FN), and True Negatives (TN). The confusion matrix with associated 

scores is shown in Tables 22-24. 

 

Table 22 

Logistic Regression (Text) Confusion Matrix  

  Actual 
 

 Fatal/Serious Injury (1) Minor/None Injury (0) 

Pr
ed

ic
te

d Fatal/Serious Injury (1)  1,145 [TP]  138 [FP] 

Minor/None Injury (0)  380 [FN]  3,614 [TN] 

Note. TP = True Positive; FP = False Positive; FN = False Negative; TN = True Negative. 

 

Table 23 

Random Forest (Text) Confusion Matrix  

  Actual 
 

 Fatal/Serious Injury (1) Minor/None Injury (0) 

Pr
ed

ic
te

d Fatal/Serious Injury (1)  1,130 [TP]  126 [FP] 

Minor/None Injury (0)  395 [FN]  3,626 [TN] 

Note. TP = True Positive; FP = False Positive; FN = False Negative; TN = True Negative. 
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Table 24 

Gradient Boosting (All) Confusion Matrix  

  Actual 
 

 Fatal/Serious Injury (1) Minor/None Injury (0) 

Pr
ed

ic
te

d Fatal/Serious Injury (1)  1,114[TP]  113 [FP] 

Minor/None Injury (0)  411 [FN]  3,639 [TN] 

Note. TP = True Positive; FP = False Positive; FN = False Negative; TN = True Negative. 

 

The formulas that build on the confusion matrix are shown in Table 25, including 

the scores derived from the formulas. While assessed separately, better Accuracy, True 

Positive Rate (TPR), Specificity, and Precision scores are closer to 1.0. Better False 

Positive Rate and False Negative Rate scores are closer to 0.0. 
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Table 25 

Model Precision and Accuracy Formulas  

Measure Formula 
Score 

LR (Text) RF (Text) GB (All) 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 0.902 0.901 0.901 

True Positive Rate 

(TPR), Sensitivity 

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 0.75 0.74 0.73 

Specificity 
𝑇𝑁

𝐹𝑃 + 𝑇𝑁 0.96 0.97 0.97 

False Positive 

Rate (FPR) 

𝐹𝑃
𝐹𝑃 + 𝑇𝑁 0.036 0.034 0.030 

False Negative 

Rate (FNR) 

𝐹𝑁
𝑇𝑃 + 𝐹𝑁 0.25 0.26 0.27 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 0.894 0.900 0.908 

Note. TP = True Positive; FP = False Positive; FN = False Negative; TN = True Negative; LR = Logistic 

Regression; RF = Random Forest; GB = Gradient Boosting. 

 

When all of the indicators were combined, the results suggested that the top three 

models are all good predictors of Fatal/Severe Injury aviation accidents. First, the ROC 

index shows a 95%, 94%, and 94% probability that the models can distinguish between 

classes. Second, accuracy for all models is greater than 90%. Third, precision is just 

under 90% for the first model and at or slightly above 90% for the second and third. 

Fourth, the False Positive Rate (FPR) or Type I error is 3.6%, 3.4%, and 3%, 

respectively. Fifth, the False Negative Rate or Type II error is 25%, 26%, and 27%, 

respectively. Sixth, the True Positive Rate (TPR) or Sensitivity is 75%, 74%, and 73% 

(acceptable). And seventh, the Specificity is 96%, 97%, and 97% (good). All of the 
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numbers for the top three models suggest they are acceptable prediction models (Truong 

et al., 2018).  

Summary 

The hallmark of data mining is the ability to work with large amounts of data. 

One source of aviation accident data is the NTSB Aviation Accident and Synopses 

publicly available for download in both structured and unstructured data formats. Text 

and data mining tools were used to make use of the NTSB data to develop models that 

predict Aviation Accident Severity. In total, the results of 21 prediction models were 

presented across five model types and three variable groupings (text-only, data-only, and 

both text and data). The models included Decision Tree, Gradient Boosting, Logistic 

Regression, Neural Network, and Random Forest. Three models emerged as potential 

champions based upon their prediction performance; Logistic Regression (Text), Random 

Forest (Text), and Gradient Boosting (All). 
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Chapter V: Discussion, Conclusions, and Recommendations 

The purpose of this study was to conduct data-driven exploratory research into 

creating models that predict aviation accident injury levels using machine learning 

techniques. Aviation safety is underpinned by reactive, proactive, and predictive 

methodologies. Both reactive and proactive approaches rely on various levels of actual 

safety occurrences. While it is essential to learn from past accidents and near-misses and 

then prevent them from happening again, prediction methodologies provide a way to 

prevent accidents before they happen in the first place, protecting lives and property. 

The current study successfully employed machine learning tools to build, validate, 

and test several prediction models based on 21 years of data from fixed-wing GA 

accidents and incidents in the United States. Unique to the study was the introduction of 

text-based quantitative variables derived through text mining the accident report 

narratives. Using the text mining process produced a different insight into variables that 

contribute to fatal and severe injury accidents. The lessons gleaned from this research 

could provide new directions in the efforts to reduce aircraft accidents and improve flight 

safety. 

Discussion 

Wiegmann and Shappell (2017) wrote, “Simply focusing on unsafe acts is like 

focusing on a fever without understanding the underlying illness that is causing it” (p. 

56). Standard measures of safety include different counts of occurrences from which 

safety mitigations are developed; the type of accidents with the highest occurrences 

become the target of safety efforts. Traditional statistical methods have been used in an 

attempt to understand variables in an accident sequence. However, these methods are 
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limited by their ability to address complexity and data non-normality. Data mining 

overcomes these limitations, and machine learning enables researchers to delve into the 

underlying factors and patterns undetectable using traditional statistical tools. 

Research Question 1   

RQ 1 asked, what model developed with machine learning and data mining 

techniques best predicts fatal and severe aviation accidents? Analysis of 21 prediction 

models revealed that the Logistic Regression (Text) model had a misclassification rate 

(MR) of 0.098 or a 9.8% MR in the validation data. In practicality, the Logistic 

Regression (Text) model showed a 90.2% capability to correctly predict the target of 

accident injury severity level. 

The practical usefulness of a prediction model is based on the application and 

operating environment, and sometimes the best predicting model is not the most useful to 

those who rely on the model’s interpretability (Truong et al., 2018). For this reason, it is 

beneficial to look at models with similar performance. In the current study, the second- 

and third-best models by MR had similar scores to the Logistic Regression (Text) model. 

The second-best model by MR was the Random Forest (Text). It is similar to the 

Logistic Regression (Text) model using only text-based variables. The MR = 0.9873 or 

9.9%, which equated to a 90.1% capability to correctly predict the target. The third-best 

model by MR was the Gradient Boosting (All), which was also the first model that 

integrated data-based variables. The MR = 0.0993 or 9.9%, which also equated to a 

90.1% capability to correctly predict the target. 
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Research Question 2   

RQ2 asked, what variables are most important in the selected model for predicting 

fatal and severe injury aviation accidents? A comparison of variable importance across 

the top three models revealed commonality between the models with Medical (TT 24), 

Slow flight-stalls (TT 20), and Flight control (TT 21) playing prominent roles. IMC flight 

(TT 3), Weather factors (TT 9), and Flight hours (TT 10) also figured prominently in all 

three models. The most important variables are discussed here according to their 

importance in the model output. A review of the NTSB written accident reports linked to 

the particular Text Topic provided context to the topic assignment. Only the top topics 

are discussed here. However, a listing of the top 50 accident reports by topic weight for 

each of the 25 topics can be viewed in Appendix A, Table A9. 

Text Topic 24 (Medical). Text Topic 24 was the most important variable in all of 

the top three models. Keywords for the variable included +detect, +witness, medical, 

+test, and +brake, noting the plus (+) indicates a parent term. According to the accident 

reports corresponding to the topic variable, many pilots had medical problems that were 

or could have been factors in the accident. Some medical problems noted during the 

forensic analysis were unreported to the FAA and could have had medical certificate 

implications. A common problem noted by investigators was the use of potentially 

impairing over-the-counter drugs, prescription medication, and illegal substances. 

Alcohol impairment was also implicated in many accidents. One challenge with GA 

accidents is that there are often no data or voice recorders on board making witness 

statements important in determining the accident sequence. 



162 

 

Text Topic 20 (Slow Flight-Stalls). Text Topic 20 was the second most 

important variable in the Logistic Regression (Text) model, fourth in the Random Forest 

(Text) model, and third in the Gradient Boosting (All) model. The keywords assigned by 

the algorithm included +witness, left, +hear, +state, and +turn. As with the previous text 

topic, witnesses were important to the accident analysis, though some reports point to the 

limitation of the non-aviation bystander witnesses. The use of the term “left” had two 

common uses in the reports. The first use references left turns, often indicating standard 

traffic pattern turns either on landing or takeoff. The second use references the yawing 

action or P-factor associated with the clockwise propeller rotation and the need for right-

rudder to counteract the force. Many times the yawing action appeared to occur just 

before a loss of control. 

Text Topic 21 (Flight Control). Text Topic 21 ranked third in the Logistic 

Regression (Text) and Random Forest (Text) models and second in the Gradient Boosting 

(All) model. The terms +attach, +aileron, +control, +cable, and +remain are the 

descriptors for the topic. In some cases, the accidents referred to aircraft hitting power 

wires or radio tower cables. In other cases, the terms directly related to the analysis of the 

aircraft wreckage, sometimes in connection with pilot control issues. The term control 

was used in several ways, including references to aircraft control surfaces, aircraft 

controls, and loss of control or failure to maintain directional control. 

Text Topic 3 (IMC Flight). Text Topic 3 ranked fourth in the Logistic 

Regression (Text) model, seventh in the Random Forest (Text) model, and fifth in the 

Gradient Boosting (All) model. Key terms for the variable included +controller, +radar, 

+advise, +acknowledge, and +tower. Interactions with air traffic control figured 
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prominently within the topic. In some of the incidents, the controllers were contributing 

factors in the accident. However, a more widespread factor was the environment 

surrounding the accident sequences. Common components included inadequate flight 

planning and unexpected flight from VMC into IMC, where the controllers were doing 

their jobs providing assistance to the pilots. 

Text Topic 9 (Weather Factors). Text Topic 9 ranked fifth in the Logistic 

Regression (Text) model, sixth in the Random Forest (Text) model, and seventh in the 

Gradient Boosting (All) model. Key terms for Text Topic 9 included +foot, +cloud, 

+mile, +visibility, and +ceiling. The accident reports linked to Text Topic 9 all have a 

weather component contributing to mishaps. Many of the accidents involved continued 

VFR flight into IMC. Often the pilot did not receive a weather briefing or disregarded a 

weather briefing that outlined IMC conditions or stated, “VFR flight is not 

recommended.” Lastly, many of the pilots were not instrument rated or had little recent 

experience flying IFR. 

Text Topic 10 (Flight Hours). Text Topic 10 ranked sixth in the Logistic 

Regression (Text) model, fifth in the Random Forest (Text) model, and fourth in the 

Gradient Boosting (All) model. The variable here included the terms +hour, total, +time, 

+engine, +logbook. A common attribute of the reports assigned to Text Topic 10 was a 

detailed accounting of pilot flight times and engine operating times facilitated by the 

investigator’s access to logbooks. The finding may be notable because, while required, 

logbooks were not available for all accident investigations. Unfortunately for 

interpretation purposes, the term engine was not always definitive with a positive or 
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negative outcome, as many reports stated that engine problems were not a factor in the 

accident. 

The Gradient Boosting (All) was the only model in the top three to include data-

based variables. The variable of Total Hours Make (total flight time in the accident 

aircraft make) appeared sixth in variable importance. The variable Airport location to 

crash (accident location in reference to an airport) appeared eighth. The variable Hours 

last 30-days (total flight time in the past 30-days) appeared eleventh. Other data variables 

in the model with somewhat lesser importance scores (< 0.10) were Total hours single-

engine (total flight time in single-engine aircraft), Total hours night (total flight time at 

night), and Homebuilt (whether or not an aircraft was manufactured in a factory). 

Surprisingly, none of the data-only models could perform at a level better than the 

0.16771 misclassification rate. One possible reason relates to how the data mining 

algorithms calculate and account for error, whereas in traditional statistics such as logistic 

regression, models assume no error in the model. Another possible reason could relate to 

the broadness of the GA sample, including a wide variety of pilots, operations, and 

aircraft capabilities. A third possibility is the quality of the data; missing data likely 

hampered the predictive capability of the models. As an example, studies cited by Boyd 

(2017a) showed that flight hours could be a risk factor, yet they did not appear in the top 

two models. The total hours in aircraft make, hours in the previous 30-days, single-engine 

time, and flight time at night did appear in the third-best model, with impact lower than 

text-based variables. 



165 

 

Conclusions 

According to James Reason (200b), “There are no final victories in the struggle 

for safety” (p. 4). The meaning seems to be that one must always be looking for new 

safety challenges; the work is never done. Experience has shown that as systems evolve, 

new problems can arise where problems previously did not exist. The research reported 

here does not discount previous efforts. On the contrary, the research adds to the body of 

knowledge in several theoretical and practical ways. 

Theoretical Contributions   

The greatest contribution to the science of aviation safety management and 

machine learning theory relates to the text mining findings. The novel results add to the 

body of literature that addresses predictive safety using machine learning and discusses 

the capabilities of data mining in building predictive models within an aviation paradigm. 

The findings agree with Malaszek (2017), who wrote, “Models with a properly conducted 

text-mining process have better classification quality than models without text variables” 

(p. 1). Interestingly, in the current study, models with only text variables outshone those 

that included both text and data or only data. Further, in the third best performing model, 

which was the first model that incorporated both types of variables, the data variables 

featured lower in importance. The results suggest that while not often used in aviation 

studies, the accident report narratives contain valuable information that can be used in 

predictive accident prevention efforts. Indeed, the current project was the first known 

study to use unstructured-text narratives as they appeared in the accident reports to 

predict accident outcomes, and provides a baseline for future text mining-based 

prediction efforts in aviation. 
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Other contributions include a new understanding of variables that predict GA 

accidents and provide a basis for future studies. The study answers the call for continual 

reassessment of safety system components to ensure the viability of the system (Stolzer, 

Friend et al., 2018). Further, the findings build on previous literature such as Baugh and 

Stolzer (2018), Friend and Kohn (2018), and Stolzer, Halford et al. (2011), extolling the 

benefits of predictive safety methodologies and advance the research in predictive safety 

risk management.  

Practical Contributions    

Prior to this point in the manuscript, the results of the top three prediction models 

were presented for consideration, and it was shown that all three performed within 0.1% 

of each other, according to their ability to correctly classify the target. However, what 

remains is the selection of the champion model based on all modeling factors and 

usability for the intended population. Using a holistic view, the Logistic Regression (text) 

model is selected as the champion model. It has a slightly better misclassification rate, 

and it performed more consistently than the other models between the validation and test 

samples indicating a higher degree of validity. While it has a slightly higher False 

Positive Rate, it has a lower False Negative Rate, which is seen as a good factor. In other 

words, the model errs on adding cases to the fatal/severe injury side. This helps ensure 

the right variables are represented and not left out when making safety management 

decisions. Of greater importance, logistic regression models are reputed for their 

understandability to larger audiences. 

As suggested, the research here discovered new areas of concentration and 

variables that have value in more finely guiding safety prevention activities. The research 
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extends knowledge of machine learning in aviation human factors from such efforts as 

Liu et al. (2013) and Burnett and Si (2017). Both teams respectively showed the value of 

machine learning in predicting HFACS components using NTSB reports and aviation 

fatalities and injuries with FAA accident records. Additionally, the results provide insight 

into complex and undetected links between accident components, combinations of 

factors, and accident outcomes. Further, the results suggest the need for continued 

research into the underlying and compounding interaction of variables that led to the 

defining events. 

A question arises regarding the top variables in the models and whether anything 

new was discovered. Indeed, the broad areas are well-known in the GA community. The 

primary lesson-learned here is that text mining detected some important nuances that add 

value to accident reduction efforts. The nuances emerged by going beyond the typical 

defining event (e.g., loss of control in flight, controlled flight into terrain, and low 

altitude operation) and primary accident causes (e.g., decision making/judgement, aircraft 

control, and incorrect action selection), which are commonly charted and reviewed in the 

literature.  

The first new area of discovery is the prominence of the Medical topic (TT 24) in 

the prediction models, suggesting an area where additional focus is needed, specifically 

with unreported medical conditions and the use or abuse of all forms of medication. 

Hidden within this topic is the limitation of determining accident factors in a fleet of 

aircraft largely not equipped with cockpit voice and data recorders. Slow flight and stalls 

(TT 20) encompasses a known-hazard, but points to a need to look deeper into 

combinations of factors including speed control, remedial actions, basic pilot skills, 



168 

 

situational awareness, task management, and distractions. Flight control (TT 21) covers 

LOC accidents; however, a new contribution is a suggestion to research deeper into why 

pilots fail to maintain directional control. IMC Flight (TT 3) points to a need to 

reexamine inadequate flight planning. Weather factors (TT 9) is a well-known area for 

aviation hazards. However, a new suggestion by the topic is to focus on pilots who do not 

obtain weather briefings, do not obtain adequate briefings, or disregard the briefing, 

especially when the briefer states, “VFR flight is not recommended.” While many pilots 

are not instrument certified, the topic suggests a need to address the importance of recent 

IFR experience for those pilots who are instrument certified. Finally, the topic Flight 

hours (TT 10) is not new, as the literature is replete with examples of research 

surrounding flight hours. However, the topic suggests a new area for research: logbooks. 

Many accidents reports do not contain flight hours because logbooks were unavailable for 

a myriad of reasons. 

The current study was made possible by the data captured in the accident reports 

by teams of expert aviation investigators. The findings of the study provide a treatise for 

current and future accident investigators. Prediction modeling is only as accurate as the 

input data, and the current study shows the strengths and weaknesses of the accident 

reports. The primary strength is the report narrative itself. The study results indicate 

words matter; they can help researchers move beyond data and provide crucial context. 

The richness of the descriptions provided data capable of producing models with a 

prediction capability greater than 90%. The primary weakness of the reports is the 

amount of missing quantitative data. The literature indicates data mining models should 

improve by adding text variables. Strikingly, the current models were not able to 



169 

 

capitalize on the tabular data, and the missing data is likely the greatest reason why the 

data-only prediction models did not have a prediction capability greater than 83%. 

Regarding future text mining research, the study provides a basis for building an aviation-

specific corpus for a more accurate analysis of accident reports.  

Finally, the findings provide new areas to target aviation safety efforts. Indeed, 

the major components identified in the accident reports remain valid such as speed errors, 

task saturation, loss of control, and continued VFR flight into IMC. What these results 

provide is additional awareness into some potential precursors such as poor decision 

making, marginal flight planning, and unresolved or pilot-induced medical issues. 

Limitations of the Findings 

Archival-based research is inherently subject to limitations because the data are 

out of the control of the researcher; the data have already been captured, often without the 

possibility of clarifying points of interest or adding new reference points. While the 

prediction models performed well, they were limited by missing data, omissions, and 

errors between the source documents, the written reports, and the database. Additionally, 

source documents were not available online for accidents prior to 2009, limiting the 

ability to check discrepancies. Where a potential discrepancy was discovered, the only 

option was to remove the data from consideration. Unfortunately, several variables of 

potential value (e.g., defining events, factors, and occurrences) were deleted because of 

missing data. 

The study was purposely broad to match the variety of GA participants and 

capture as many reports as possible to improve the amount of data available for 

modeling. Even with the “global” GA breadth, several models were still able to predict at 
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a 90% level. While generalizability across the board is good, the results may not 

generalize at the same level using different subgroupings of the data. 

Finally, conclusions related to flight hours beyond basic demographics are 

problematic. One factor relates to the first limitation above. The amount of missing data 

limited the conclusions in some instances and caused others to be eliminated because of 

the amount of missing data. In some cases, the aircraft was destroyed, and the pilots 

killed, making it impossible to recreate flight hours. In other cases, the reports are silent, 

even when the pilot survived. Another limitation is the number of accident reports that 

used different accounting (i.e., last six months) instead of the standard of last 24-hours, 

last 30-days, and last 90-days. 

Recommendations 

In reactive aviation safety, understanding complex aviation accident factors is 

vital for preventing future occurrences. Proactive safety goes further by adding the near-

miss occurrences into safety equations. By adding predictive methodologies, enabled by 

machine learning and vast amounts of data, the paradigm can change. No longer will an 

accident be the basis for future safety; the prediction models can provide the necessary 

information that enables stakeholders to prevent that first accident from happening.  

Recommendations for the Target Population   

The results of the study lead to several recommendations that will address both 

the quality of the data, and by extension, the prediction models, and address areas where 

safety enhancements might be made. 

Recommendation 1. The first recommendation addresses the accident report. 

Specifically, the quality of the accident reports should be improved with a focus on the 
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needs of predictive modeling. Quality checks should be instituted to ensure continuity 

between the source documents, the written reports, and the database. Additionally, there 

needs to be an emphasis on consistency in reporting missing data (e.g., leaving the data 

field blank instead of reporting a zero for age or a series of nines for flight hours). An 

easy target would be for improvements at the NTSB level. However, the issue is not just 

for one government agency subject to competing priorities and resource constraints. 

Pilots also bear responsibility for report quality. Many of the reports begin with the 

mishap pilot submitting the NTSB Form 6120.1, Pilot Operator Aircraft 

Accident/Incident Report (NTSB, 2013). Cross-checking NTSB accident reports with the 

original NTSB Form 6120.1 revealed that many forms are incomplete or completed in 

error.  

The investigators should also strive for consistency in terminology and word use 

to facilitate text mining and predictive modeling. For example, the word “solo” is often 

used to describe a student pilot conducting a flight without an instructor on board the 

aircraft. However, in many cases, the word was used to describe the sole occupant of the 

aircraft. 

Another part of this recommendation is for investigators to capture variables 

consistently. A prime example is reporting flight hours in non-standard measures such as 

hours in the previous six months, rendering many reports unusable for modeling. The 

flight hours should conform to the categories found in the NTSB Form 6120.1 and the 

standard categories of the NTSB database. 

Recommendation 2. The second recommendation addresses the data. The FAA 

and aviation organization partners should investigate ways to capture and publish more 
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flight data for use in safety modeling. Lack of diverse data will be the greatest hindrance 

to incorporating more predictive methods in GA safety management. One reactive 

starting point could be the implementation of online pilot logbook records. A pilot’s 

flight times can be crucial points in the accident root-cause analysis. With a digital 

platform, the data could be made available to investigators following an accident. 

Recommendation 3. Moving to the model results, a third recommendation is 

based on medical findings. The results of the current study complement the previous 

research by McKay and Groff (2016), who noted an increase in pilot drug use (over-the-

counter, prescription, and illegal substances) while flying, and studies by Booze (1987) 

and Taneja & Wiegmann (2002) on medical conditions likely to cause pilot 

incapacitation. The recommendation here is to continue to invest in medical education 

and build on FAA and GAJSC efforts addressing impairing medication and high risk 

medical conditions. 

Recommendation 4. The fourth recommendation involves focusing efforts to 

improve flight skills and combat decision-based errors. The FAA, partners, and flight 

training organizations should refocus efforts on improving a pilot’s ability to control the 

aircraft when faced with unexpected events in time-critical situations. As an example, an 

additional focus should be placed on countering the effects of carburetor icing, 

identifying conditions conducive to carburetor icing, and training pilots on strategies to 

overcome the effects of suspected carburetor icing. Additional efforts should focus on the 

areas of stabilized approaches, forced landings, power management, and slow flight. 

Recommendation 5. Weather components are common in accidents, as seen by 

their inclusion in different text-based variables. Agreeing with many studies, continued 



173 

 

VFR flight into IMC was an important factor in accidents and efforts to combat the 

practice should continue. A surprising theme is the number of times pilots either did not 

receive a weather brief prior to the flight or did not follow the recommendation to avoid 

VFR flight given the observed or forecast conditions. The FAA, partners, and flight 

training organizations should refocus efforts on weather briefings, pre-flight planning, 

and weather-based risk management.  

Recommendations for Future Research    

A novel component of the current study was the inclusion of aviation accident 

report narratives transformed from their qualitative format into quantitative variables 

through a text mining process. The outcome showed great promise for future work given 

the importance of text-based variables in the top 12 of 21 models created in the project. 

Future research should focus on how to make the text mining process produce tighter 

topic and cluster variables. One way to do this could be researching and creating an 

improved aviation corpus used within the algorithm to ensure important concepts specific 

to aviation are captured to produce more precise (and by extension, more interpretable) 

Text Topics and Text Clusters. Qualitative studies of the report narratives could provide 

greater insight into word use and issues with interrater reliability between the writing 

styles and report quality of different investigators and under what circumstances. 

Another avenue of future research is an investigation into the performance of the 

data variables in the prediction models. Having this understanding would improve the 

prediction models and enhance the usability of the models toward other focus areas 

unavailable in the current models. 
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Flight safety efforts often focus on preventing the worst outcomes like those in 

the current study. However, focusing on just fatal and severe injury accidents misses the 

vulnerability represented by accidents with less extreme outcomes. Future data mining 

research should focus on predicting accidents with either minor or no injuries. By 

addressing the important variables in non-injury accidents, other major accidents might 

be prevented. 

The cornerstone of data mining is access to large blocks of data and where 

appropriate, including data from many sources. The prediction models here relied solely 

on archived data from a single source. Future efforts should focus on integrating 

additional data sources like the Aviation Safety Reporting System (ASRS), Aviation 

Safety Action Program (ASAP), and Automatic Dependent Surveillance-Broadcast 

(ADS-B) data. 

Finally, the discussion on the limits of global generalizability offers an avenue of 

research into the different sub-groups contained in the current study. Different types of 

operations (e.g., business, personal, and instructional) or aircraft attributes (e.g., tail-

wheel or multi-engines) may yield models with more specific applicability to that 

community. Additionally, other GA communities excluded from the current study like 

helicopters and gliders could benefit from prediction modeling with machine learning 

methodologies.  
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Table A1 

Pilots by Highest Certificate Held   

Certificate Type Count Percentage 

Airline Transport Pilot 3,508 13.4% 

Certified Flight Instructor 2,778 10.6% 

Commercial 4,377 16.7% 

Private 13,100 49.9% 

Recreational 19 0.1% 

Sport 263 1.0% 

Student 1,903 7.2% 

None 301 1.1% 

Note. The certificates represent the certificate held by the pilot at the controls of the mishap aircraft. 

Information on additional pilots in the aircraft is not included. The category of “None” is assigned by the 

investigator to indicate the individual held no FAA pilot certificate. The pilot data are missing in 138 

reports. 
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Table A2 
 
Text Parsing Top 250 Terms 
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Table A3 
 
Text Filter Top 250 Words  
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Table A4 

Text Topic Output—Terms and Docs  

Topic 

ID 

Topic Terms Description Number of 

Terms 

# Docs 

1.0 +knot, +wind, +degree, 

+runway, +gust 

Landing accidents where wind 

was noted. 

778.0 3972.0 

2.0 +fuel, +tank, +gallon, +fuel tank, 

+selector 

Fuel related accidents including 

human factors. 

454.0 2978.0 

3.0 +controller, +radar, +advise, 

+acknowledge, +tower 

Flight in instrument conditions 

or under ATC. 

602.0 1780.0 

4.0 +propeller, +nose, aft, +blade, 

+approximately 

Mechanical issues often noted 

with the propeller. 

1157.0 3383.0 

5.0 +student,  +student pilot, solo, 

+solo flight, instructional 

Student flying, especially as on 

solo instructional flights. 

332.0 2457.0 

6.0 +engine, +power, forced, 

+forced landing, +loss 

Forced landings often in 

conjunction with engine issues. 

910.0 4515.0 

7.0 +gear, gear, +landing gear, 

+landing, +extend 

Landings noting gear issues, 

including failure to extend or 

hard landings. 

813.0 1915.0 

8.0 aircraft, +approximately, +refer, 

+find, accident aircraft 

Pilots exceeded the aircraft 

capabilities. 

558.0 2523.0 

9.0 +foot, +cloud, +mile, +visibility, 

+ceiling 

Reports where weather factors 

were prominent. 

1180.0 2494.0 

10.0 +hour, total, +time, +engine, 

+logbook 

Both pilot and maintenance 

times figure prominently. 

981.0 4006.0 

11.0 +oil, +rod, +connect, +cylinder, 

+number 

Engine related issues. 916.0 1729.0 

12.0 +normal operation, +preclude, 

+malfunction, +failure, 

+operation 

Accidents where there were no 

malfunctions noted. 

534.0 3176.0 

13.0 +brake, +brake, +apply, +rudder, 

+wheel 

Largely landing accidents. 688.0 2193.0 

14.0 +airstrip, +passenger, +water, 

+lake, +seat 

Accidents by amphibious or 

float equipped aircraft. Also, 

includes remote airstrips. 

1206.0 3446.0 
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Topic 

ID 

Topic Terms Description Number of 

Terms 

# Docs 

15.0 +takeoff, +weight, +foot, 

+pound, +end 

Takeoff accidents. 936.0 3045.0 

16.0 +instructor, +instruction, 

+instructional flight, 

instructional, +student 

Variation of instructional flights 

involved in accident. 

543.0 2267.0 

17.0 +approach, +runway, final, 

+airport, +end 

Landing accidents. 958.0 3581.0 

18.0 +carburetor, +heat, icing, 

carburetor heat, ice 

Accidents where actual or 

suspected carburetor icing 

played a major role. 

757.0 2074.0 

19.0 +pump, +magneto, +valve, 

+cylinder, +spark 

Engine related events. 1131.0 3262.0 

20.0 +witness, left, +hear, +state, 

+turn 

Reports often developed with 

witness testimony; includes slow 

flight and stalls. 

1072.0 3635.0 

21.0 +attach, +aileron, +control, 

+cable, +remain 

Focused on flight control 

surfaces, often recounting the 

aircraft had no problems. 

1092.0 2986.0 

22.0 +taxiway, +taxi, +runway, 

+park, +fire 

Airport incidents. 1130.0 2163.0 

23.0 +fracture, +bolt, +rod, fatigue, 

+surface 

Mechanical-related incidents. 1095.0 2067.0 

24.0 +detect, +witness, medical, 

+test, +brake 

Accidents involving medical 

issues. 

1344.0 3033.0 

25.0 +tree, +runway, main, +landing 

gear, +tank 

Landing and takeoff issues, on 

or near a runway, with 

obstructions playing a role. 

1303.0 3134.0 
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Table A5 

StatExplore Variable Importance 

Input Chi-Square Df Prob 

Airport location to crash 3417.7967 2 <.0001 

Basic weather conditions 1471.1524 2 <.0001 

Runway condition 1230.9093 18 <.0001 

Atmospheric lighting 462.6179 4 <.0001 

Highest certificate 376.5766 8 <.0001 

Professional pilot 362.0299 2 <.0001 

Homebuilt 356.4551 2 <.0001 

Flight purpose 336.2555 5 <.0001 

Flight plan type 323.6753 4 <.0001 

Second pilot on board 306.5209 2 <.0001 

Crew position code 298.7658  7 <.0001 

Solo student pilot 263.6320 3 <.0001 

Highest instructor cert. 256.1608 12 <.0001 

Multi-platform instructor 248.7324 3 <.0001 

Instructor 205.7463 3 <.0001 

Airspace 195.7200 7 <.0001 

Gear 191.8177 11 <.0001 

Med certificate validity 180.9837 8 <.0001 

Mid-air 145.9344 2 <.0001 

Number of engines 142.0536 5 <.0001 

Wind gusts indicated 108.3157 2 <.0001 

Multi-engine aircraft 100.2272 2 <.0001 

Loss of control 99.2032 2 <.0001 

Seat occupied by pilot 94.8832 7 <.0001 

Engine type 71.1847 6 <.0001 

Ground collision 46.2084 2 <.0001 

Sex 35.3855 2  <.0001 

System failure 21.8658 2 <.0001 

Weather not a factor 19.5206 2 <.0001 

Air-medical flight 3.7046 3 0.2952 

Sightseeing flight 3.5618 3 0.3128 
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Table A6 
 
StatExplore Variable Worth 
 

Variable Importance Worth Variable Importance Worth 

Total hours make 1 0.069741 Wind gusts indicated 28 0.001732 

Airport location to 

crash 

2 0.051725 Seat occupied by pilot 29 0.001724 

Total hours single-

engine 

3 0.047146 Loss of control 30 0.001687 

Hours last 90-days 4 0.044737 Mid-air 31 0.001528 

Hours last 30-days 5 0.042283 Multi-engine aircraft 32 0.00125 

Total hours at night 6 0.033061 Ground collision 33 0.00066 

Total PIC hours 7 0.030906 Engine type 34 0.00063 

Basic weather condition 8 0.022074 Weather not a factor 35 0.00037 

Runway condition 9 0.018009 Systems failure 36 0.00030 

Total flight hours 10 0.00682 Air medical flight 37 0.00017 

Atmospheric lighting 11 0.006807 Sex 38 0.00017 

Highest certificate 12 0.006323 Sightseeing flight 39 0.00009 

Flight purpose 13 0.005632    

Professional pilot 14 0.005431    

Homebuilt 15 0.004903    

Crew position code 16 0.004722    

Solo student pilot 17 0.004435    

Second pilot on board 18 0.004331    

Flight plan type 19 0.004135    

Highest instructor cert 20 0.003478    

Age 21 0.003212    

Multi-platform 

instructor 

22 0.003127    

Airspace 23 0.002724    

Med certificate validity 24 0.002708    

Instructor 25 0.002368    

Number of engines 26 0.002045    

Gear 27 0.00202    
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Table A8 
 
Model Statistics Comparison Chart—Top Three Models 
 

Fit Statistics Statistics Label Logistic 

Regression 

(Text) 

Random 

Forest (Text) 

Gradient 

Boosting (All) 

BINNED_KS_

PROB_CUTO

FF 

Train: Bin-Based Two-Way 

Kolmogorov-Smirnov 

Probability Cutoff 

0.382 0.475 0.352 

KS Train: Kolmogorov-Smirnov 

Statistic 

0.745 1 0.748 

_AIC_ Train: Akaike's Information 

Criterion 

7896.171   

_ASE_ Train: Average Squared Error 0.07267 0.012433 0.07420 

_AUR_ Train: Roc Index 0.944 1 0.939 

_AVERR_ Train: Average Error Function 0.248   

_CAPC_ Train: Cumulative Percent 

Captured Response 

34.45488 34.60782 34.45488 

_CAP_ Train: Percent Captured 

Response 

17.23837 17.30391 17.17282 

_CRITERION

_ 

Selection Criterion: Valid: 

Misclassification Rate 

0.09816 0.09873 0.09930 

_DFE_ Train: Degrees of Freedom for 

Error 

15809   

_DFM_ Train: Model Degrees of 

Freedom 

22   

_DFT_ Train: Total Degrees of Freedom 15831  15831 

_DISF_ Train: Frequency of Classified 

Cases 

 15831  

_DIV_ Train: Divisor for ASE 31662 31662 31662 

_ERR_ Train: Error Function 7852.171   

_FPE_ Train: Final Prediction Error 0.07287   

_GAIN_ Train: Gain 244.3531 245.8816 244.3531 

_GINI_ Train: Gini Coefficient 0.887 1 0.877 

_KS_BIN_ Train: Bin-Based Two-Way 

Kolmogorov-Smirnov Statistic 

0.743 0.985 0.746 
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Fit Statistics Statistics Label Logistic 

Regression 

(Text) 

Random 

Forest (Text) 

Gradient 

Boosting (All) 

_KS_PROB_C

UTOFF 

Train: Kolmogorov-Smirnov 

Probability Cutoff 

0.273 0.451 0.252 

_LIFTC_ Train: Cumulative Lift 3.44353 3.45882 3.44353 

_LIFT_ Train: Lift 3.44571 3.45882 3.43261 

_MAX_ Train: Maximum Absolute Error 0.99980 0.53 0.96186 

_MISC_ Train: Misclassification Rate 0.09513 0.00006 0.09380 

_MSE_ Train: Mean Square Error 0.07277   

_NOBS_ Train: Sum of Frequencies 15831 15831 15831 

_NW_ Train: Number of Estimate 

Weights 

22   

_RASE_ Train: Root Average Sum of 

Squares 

0.26958 0.11151 0.27239 

_RESP_ Train: Percent Response 99.62121 100 99.24242 

_RESPC_ Train: Cumulative Percent 

Response 

99.55808 100 99.55808 

_RFPE_ Train: Root Final Prediction 

Error 

0.26995   

_RMSE_ Train: Root Mean Squared Error 0.26976   

_SBC_ Train: Schwarz's Bayesian 

Criterion 

8064.905   

_SSE_ Train: Sum of Squared Errors 2300.903 393.663 2349.152 

_SUMW_ Train: Sum of Case Weights 

Times Freq 

31662  31662 

_WRONG_ Train: Number of Wrong 

Classifications 

 1  

VKS Valid: Kolmogorov-Smirnov 

Statistic 

0.74 0.735 0.725 

_VASE_ Valid: Average Squared Error 0.074610 0.07552 0.07807 

_VAUR_ Valid: Roc Index 0.945 0.938 0.937 

_VAVERR_ Valid: Average Error Function 0.24832   

_VBINNED_

KS_PROB_C

UTOFF_ 

Valid: Bin-Based Two-Way 

Kolmogorov-Smirnov 

Probability Cutoff 

0.376 0.38 0.337 
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Fit Statistics Statistics Label Logistic 

Regression 

(Text) 

Random 

Forest (Text) 

Gradient 

Boosting (All) 

_VCAPC_ Valid: Cumulative Percent 

Captured Response 

34.62295 34.55738 34.62295 

_VCAP_ Valid: Percent Captured 

Response 

17.31148 17.2459 17.31148 

_VDISF_ Valid: Frequency of Classified 

Cases 

 5277  

_VDIV_ Valid: Divisor for VASE 10554 10554 10554 

_VERR_ Valid: Error Function 2620.719   

_VGAIN_ Valid: Gain 246.0328 245.3774 246.0328 

_VGINI_ Valid: Gini Coefficient 0.889 0.875 0.875 

_VKS_BIN_ Valid: Bin-Based Two-Way 

Kolmogorov-Smirnov Statistic 

0.734 0.734 0.721 

_VKS_PROB_

CUTOFF_ 

Valid: Kolmogorov-Smirnov 

Probability Cutoff 

0.259 0.301 0.296 

_VLIFTC_ Valid: Cumulative Lift 3.46033 3.45377 3.46033 

_VLIFT_ Valid: Lift 3.46033 3.44722 3.46033 

_VMAX_ Valid: Maximum Absolute Error 0.98891 1 0.96374 

_VMISC_ Valid: Misclassification Rate 0.09816 0.09873 0.09930 

_VMSE_ Valid: Mean Square Error 0.07461   

_VNOBS_ Valid: Sum of Frequencies 5277 5277 5277 

_VRASE_ Valid: Root Average Squared 

Error 

0.27315 0.27482 0.27941 

_VRESPC_ Valid: Cumulative Percent 

Response 

100 99.81061 100 

_VRESP_ Valid: Percent Response 100 99.62121 100 

_VRMSE_ Valid: Root Mean Square Error 0.27315   

_VSSE_ Valid: Sum of Square Errors 787.4203 797.0808 823.9326 

_VSUMW_ Valid: Sum of Case Weights 

Times Freq 

10554  10554 

_VWRONG_ Valid: Number of Wrong 

Classifications 

 521  

TKS Test:  Kolmogorov-Smirnov 

Statistic 

0.743 0.74 0.735 

_TASE_ Test: Average Squared Error 0.07250 0.07368 0.07504 
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Fit Statistics Statistics Label Logistic 

Regression 

(Text) 

Random 

Forest (Text) 

Gradient 

Boosting (All) 

_TAUR_ Test:  Roc Index 0.947 0.94 0.937 

_TAVERR_ Test: Average Error Function 0.24101   

_TBINNED_K

S_PROB_CU

TOFF_ 

Test:  Bin-Based Two-Way 

Kolmogorov-Smirnov 

Probability Cutoff 

0.389 0.385 0.339 

_TCAPC_ Test: Cumulative Percent 

Captured Response 

34.53473 34.4692 34.53473 

_TCAP_ Test: Percent Captured Response 17.2346 17.19991 17.2346 

_TDISF_ Test: Frequency of Classified 

Cases 

 5279  

_TDIV_ Test: Divisor for TASE 10558 10558 10558 

_TERR_ Test: Error Function 2544.571   

_TGAIN_ Test: Gain 245.2819 244.6267 245.2819 

_TGINI_ Test:  Gini Coefficient 0.894 0.88 0.874 

_TKS_BIN_ Test:  Bin-Based Two-Way 

Kolmogorov-Smirnov Statistic 

0.739 0.74 0.73 

_TKS_PROB_

CUTOFF_ 

Test:  Kolmogorov-Smirnov 

Probability Cutoff 

0.258 0.321 0.288 

_TLIFTC_ Test: Cumulative Lift 3.45282 3.44627 3.45282 

_TLIFT_ Test: Lift 3.44627 3.43933 3.44627 

_TMAX_ Test: Maximum Absolute Error 0.99366 1 0.96143 

_TMISC_ Test: Misclassification Rate 0.09850 0.09358 0.09528 

_TMISL_ Test: Lower 95% Conf. Limit 

for TMISC 

0.09059   

_TMISU_ Test: Upper 95% Conf. Limit for 

TMISC 

0.10686   

_TMSE_ Test: Mean Square Error 0.07250   

_TNOBS_ Test: Sum of Frequencies 5279 5279 5279 

_TRASE_ Test: Root Average Squared 

Error 

0.26927 0.27143 0.27393 

_TRESPC_ Test: Cumulative Percent 

Response 

99.81061 99.62121 99.81061 

_TRESP_ Test: Percent Response 99.62121 99.42068 99.62121 

_TRMSE_ Test: Root Mean Square Error 0.26927   
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Fit Statistics Statistics Label Logistic 

Regression 

(Text) 

Random 

Forest (Text) 

Gradient 

Boosting (All) 

_TSSE_ Test: Sum of Square Errors 765.5014 777.872 792.2298 

_TSUMW_ Test: Sum of Case Weights 

Times Freq 

10558  10558 

_TWRONG_ Test: Number of Wrong 

Classifications 

 494  

TKS Test:  Kolmogorov-Smirnov 

Statistic 

0.743 0.74 0.735 
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Table A9 
 
Text Topic Associated Accident Reports 
 
Text Topic Weight Report ID Text Topic Weight Report ID 

TT_1 0.477 DEN01LA054 TT_1 0.372 LAX03LA028 

TT_1 0.466 CHI04FA043 TT_1 0.366 LAX99LA194 

TT_1 0.445 SEA01LA174 TT_1 0.366 SEA02LA052 

TT_1 0.441 WPR16FA007 TT_1 0.363 CHI05LA012 

TT_1 0.430 CHI99LA133 TT_1 0.363 CEN12LA345 

TT_1 0.429 CHI99LA124 TT_1 0.362 IAD01LA085 

TT_1 0.425 CEN15LA149 TT_1 0.361 CHI06CA277 

TT_1 0.423 LAX05CA127 TT_1 0.360 WPR16FA144 

TT_1 0.413 LAX06CA279 TT_1 0.359 CHI06LA061 

TT_1 0.477 DEN01LA054 TT_1 0.359 CHI06CA209 

TT_1 0.466 CHI04FA043 TT_1 0.359 SEA02LA004 

TT_1 0.406 LAX01LA135 TT_1 0.355 ERA09CA219 

TT_1 0.395 CEN14LA086 TT_1 0.353 WPR11FA155 

TT_1 0.394 LAX02LA222 TT_1 0.352 DEN03LA080 

TT_1 0.391 LAX08LA179 TT_1 0.352 CHI04LA036 

TT_1 0.387 CHI04LA097 TT_1 0.352 DEN01FA028 

TT_1 0.385 IAD99LA037 TT_1 0.351 IAC02LA006 

TT_1 0.383 IAD98LA040 TT_1 0.351 FTW01LA080 

TT_1 0.382 SEA04LA056 TT_1 0.350 SEA01LA081 

TT_1 0.378 LAX99LA142 TT_1 0.349 DEN05LA069 

TT_1 0.377 DEN99LA069 TT_1 0.349 CEN14FA102 

TT_1 0.376 LAX02LA068 TT_1 0.348 DFW05CA173 

TT_1 0.375 CEN18LA172 TT_1 0.348 DEN05LA109 

TT_1 0.373 WPR09LA221 TT_1 0.347 FTW02LA066 

TT_1 0.372 LAX03LA195 TT_1 0.347 CHI07CA223 

Note. The topic label is Wind Factors. The topic terms include +knot, +wind, +degree, +runway, +gust. The 

plus (+) indicates a parent term.
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_2 0.893 ERA12FA023 TT_2 0.729 WPR11FA403 

TT_2 0.809 CEN13LA283 TT_2 0.728 ANC06LA078 

TT_2 0.809 NYC00LA157 TT_2 0.727 IAD00LA045 

TT_2 0.796 WPR16LA128 TT_2 0.724 CHI01LA088 

TT_2 0.792 CEN16LA380 TT_2 0.722 WPR10LA001 

TT_2 0.790 ERA12LA001 TT_2 0.721 ERA13LA117 

TT_2 0.784 MIA07LA152 TT_2 0.719 ERA10LA454 

TT_2 0.783 IAD03LA064 TT_2 0.717 WPR18LA040 

TT_2 0.782 CEN13LA330 TT_2 0.713 ERA16LA062 

TT_2 0.776 ERA19LA024 TT_2 0.710 LAX05LA033 

TT_2 0.775 ERA14LA183 TT_2 0.709 ANC14LA038 

TT_2 0.775 ERA16FA289 TT_2 0.709 ATL07LA014 

TT_2 0.769 NYC01LA153 TT_2 0.708 WPR12LA246 

TT_2 0.767 MIA03LA184 TT_2 0.707 ERA09LA004 

TT_2 0.767 CEN16LA115 TT_2 0.704 MIA03LA131 

TT_2 0.765 ERA12LA480 TT_2 0.703 CEN17LA242 

TT_2 0.765 NYC03LA116 TT_2 0.701 SEA06LA057 

TT_2 0.755 ERA13LA179 TT_2 0.701 LAX01LA247 

TT_2 0.753 ERA14LA378 TT_2 0.699 DEN03LA051 

TT_2 0.746 ANC18FA022 TT_2 0.699 CEN13LA381 

TT_2 0.735 CHI03LA288 TT_2 0.698 ATL04LA024 

TT_2 0.733 NYC04LA151 TT_2 0.697 MIA01LA185 

TT_2 0.731 GAA17CA472 TT_2 0.696 ERA16LA090 

TT_2 0.730 CHI01LA038 TT_2 0.691 CHI04LA101 

TT_2 0.729 NYC01LA026 TT_2 0.690 ANC99LA097 

Note. The topic label is Fuel Issues. The topic terms include +fuel, +tank, +gallon, +fuel tank, +selector. 

The plus (+) indicates a parent term.
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_3 0.959 ERA15FA340 TT_3 0.697 CEN14FA032 

TT_3 0.879 NYC01FA040 TT_3 0.695 CEN13LA088 

TT_3 0.877 ERA09FA145 TT_3 0.69 MIA06FA008 

TT_3 0.871 NYC02FA060 TT_3 0.689 MIA08FA163 

TT_3 0.822 SEA07FA262 TT_3 0.687 NYC07FA041 

TT_3 0.801 ERA09FA514 TT_3 0.687 MIA05LA083 

TT_3 0.792 WPR11FA147 TT_3 0.685 LAX98FA188 

TT_3 0.784 NYC98FA095 TT_3 0.684 LAX01LA110 

TT_3 0.775 MIA03FA071 TT_3 0.678 WPR16FA054 

TT_3 0.773 ERA15FA099 TT_3 0.674 DEN04LA055 

TT_3 0.761 MIA03FA025 TT_3 0.673 ERA15FA144 

TT_3 0.751 CHI01LA322 TT_3 0.673 MIA99FA172 

TT_3 0.749 MIA99FA034 TT_3 0.669 ERA09FA083 

TT_3 0.744 WPR11FA073 TT_3 0.668 ERA14FA192 

TT_3 0.739 NYC02FA044 TT_3 0.667 ERA17FA135 

TT_3 0.736 LAX06FA066 TT_3 0.665 WPR16FA041 

TT_3 0.725 ERA14FA232 TT_3 0.663 ERA09FA376 

TT_3 0.719 SEA02GA053 TT_3 0.662 WPR14FA349 

TT_3 0.717 ATL04FA093 TT_3 0.658 MIA03LA012 

TT_3 0.715 IAD01FA070 TT_3 0.656 LAX01FA004 

TT_3 0.713 CEN11FA557 TT_3 0.655 LAX03FA072 

TT_3 0.712 ERA14LA117 TT_3 0.655 MIA01FA152 

TT_3 0.712 LAX05FA032 TT_3 0.653 WPR11FA170 

TT_3 0.708 MIA04FA100 TT_3 0.650 CEN11FA302 

TT_3 0.708 ERA18FA114 TT_3 0.641 DEN06FA114 

Note. The topic label is IMC Flight. The topic terms include +controller, +radar, +advise, +acknowledge, 

+tower. The plus (+) indicates a parent term. 
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_4 0.557 CHI00FA180 TT_4 0.388 SEA98FA170 

TT_4 0.520 CHI99FA341 TT_4 0.388 ATL04FA061 

TT_4 0.504 CHI01FA100 TT_4 0.384 ATL02FA074 

TT_4 0.502 CHI00FA234 TT_4 0.384 ATL02FA074 

TT_4 0.501 CHI99FA167 TT_4 0.379 SEA98FA179 

TT_4 0.495 CHI98FA287 TT_4 0.378 MIA99LA091 

TT_4 0.493 CHI02FA006 TT_4 0.378 CEN11FA195 

TT_4 0.488 DEN03FA113 TT_4 0.374 DEN03FA137 

TT_4 0.481 DEN01FA033 TT_4 0.370 ANC00FA052 

TT_4 0.454 CHI01FA247 TT_4 0.369 DEN02FA050 

TT_4 0.454 DEN03FA025 TT_4 0.368 ERA14FA077 

TT_4 0.454 DEN03FA074 TT_4 0.366 MIA99FA126 

TT_4 0.446 DEN04FA057 TT_4 0.366 CEN10FA493 

TT_4 0.443 ATL04FA079 TT_4 0.365 FTW03LA209 

TT_4 0.435 SEA00FA033 TT_4 0.365 FTW03FA225 

TT_4 0.432 DFW05FA065 TT_4 0.363 SEA99FA150 

TT_4 0.421 ATL04FA130 TT_4 0.363 CHI01FA220 

TT_4 0.420 ATL04FA099 TT_4 0.363 DEN05FA124 

TT_4 0.415 CEN10FA324 TT_4 0.362 FTW02FA211 

TT_4 0.409 DEN06FA028 TT_4 0.362 ERA11LA150 

TT_4 0.405 ATL05FA082 TT_4 0.361 ANC12FA009 

TT_4 0.399 SEA98FA042 TT_4 0.360 ATL02FA076 

TT_4 0.398 CHI99FA003 TT_4 0.360 ATL02FA076 

TT_4 0.395 DEN03FA114 TT_4 0.358 ERA10FA259 

TT_4 0.391 DEN06FA018 TT_4 0.358 FTW03FA027 

Note. The topic label is LOC-Stalls. The topic terms include +propeller, +nose, aft, +blade, 

+approximately. The plus (+) indicates a parent term. 
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_5 0.858 NYC07FA196 TT_5 0.583 ATL02LA014 

TT_5 0.713 ATL00LA045 TT_5 0.570 WPR09LA040 

TT_5 0.680 ATL05CA134 TT_5 0.566 ATL99LA110 

TT_5 0.669 FTW03LA157 TT_5 0.566 IAD00LA022 

TT_5 0.660 DEN04FA002 TT_5 0.565 NYC04LA169 

TT_5 0.637 CEN13LA342 TT_5 0.562 ATL06CA068 

TT_5 0.633 FTW00LA260 TT_5 0.562 ERA17LA267 

TT_5 0.620 IAD98LA041 TT_5 0.56 CHI08LA273 

TT_5 0.610 ATL06CA025 TT_5 0.558 ERA09LA189 

TT_5 0.609 CHI01LA280 TT_5 0.554 SEA03LA053 

TT_5 0.609 LAX05CA017 TT_5 0.553 CEN10CA328 

TT_5 0.609 ATL05CA015 TT_5 0.551 ERA12FA540 

TT_5 0.607 NYC02LA016 TT_5 0.550 NYC05CA112 

TT_5 0.606 FTW04CA163 TT_5 0.548 ATL04CA133 

TT_5 0.602 NYC02FA173 TT_5 0.547 SEA04LA002 

TT_5 0.600 NYC00LA235 TT_5 0.547 ERA19LA078 

TT_5 0.598 CHI07CA192 TT_5 0.546 ERA10CA392 

TT_5 0.598 NYC00LA224 TT_5 0.546 ATL06CA046 

TT_5 0.597 GAA17CA337 TT_5 0.545 NYC03LA014 

TT_5 0.593 LAX06LA032 TT_5 0.544 ERA18LA034 

TT_5 0.591 ATL07CA095 TT_5 0.542 NYC04FA171 

TT_5 0.589 ERA13LA347 TT_5 0.538 NYC99LA168 

TT_5 0.588 NYC99LA196 TT_5 0.538 IAC02LA067 

TT_5 0.587 ATL01LA089 TT_5 0.538 WPR11LA067 

TT_5 0.583 FTW04LA138 TT_5 0.536 ATL98LA044 

Note. The topic label is Student Pilots. The topic terms include +student, +student pilot, solo, +solo flight, 

instructional. The plus (+) indicates a parent term. 
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_6 0.483 FTW03LA026 TT_6 0.388 ERA11LA395 

TT_6 0.458 CEN11FA274 TT_6 0.387 CEN15LA038 

TT_6 0.454 ERA16LA040 TT_6 0.383 ERA14LA281 

TT_6 0.452 CEN09LA024 TT_6 0.383 NYC03LA075 

TT_6 0.446 CEN18LA229 TT_6 0.382 CEN15LA297 

TT_6 0.442 CEN15LA243 TT_6 0.381 CHI02LA091 

TT_6 0.428 CEN18LA363 TT_6 0.379 CEN16LA082 

TT_6 0.424 FTW01LA212 TT_6 0.379 DFW07LA009 

TT_6 0.417 CEN15LA392 TT_6 0.377 WPR11LA284 

TT_6 0.416 DFW06LA199 TT_6 0.376 WPR10LA284 

TT_6 0.414 DFW07LA017 TT_6 0.376 FTW01LA207 

TT_6 0.408 CHI07LA307 TT_6 0.375 CEN17LA065 

TT_6 0.406 FTW02LA191 TT_6 0.375 FTW98LA305 

TT_6 0.401 ERA17FA210 TT_6 0.375 WPR13LA078 

TT_6 0.400 ERA13LA214 TT_6 0.374 CEN11FA433 

TT_6 0.400 ERA16LA268 TT_6 0.374 NYC03LA155 

TT_6 0.398 MIA03LA186 TT_6 0.373 FTW04LA119 

TT_6 0.395 ANC03LA039 TT_6 0.373 CEN16LA078 

TT_6 0.394 ERA12LA034 TT_6 0.372 ERA14LA388 

TT_6 0.393 FTW98LA366 TT_6 0.371 ERA12LA312 

TT_6 0.393 CEN14LA234 TT_6 0.371 FTW04LA059 

TT_6 0.393 FTW99FA199 TT_6 0.371 CHI98LA160 

TT_6 0.392 ERA15LA071 TT_6 0.370 CEN11FA228 

TT_6 0.390 ERA14LA085 TT_6 0.370 CEN17LA263 

TT_6 0.388 MIA01LA109 TT_6 0.369 CEN12FA520 

Note. The topic label is Forced Landings. The topic terms include +engine, +power, forced, +forced 

landing, +loss. The plus (+) indicates a parent term. 
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_7 0.729 LAX07LA215 TT_7 0.579 ERA10LA478 

TT_7 0.721 MIA03LA009 TT_7 0.569 LAX05LA168 

TT_7 0.717 ATL04IA054 TT_7 0.564 CHI03LA032 

TT_7 0.682 ERA11LA231 TT_7 0.560 LAX06LA034 

TT_7 0.674 WPR12FA193 TT_7 0.555 ERA18LA215 

TT_7 0.652 WPR18LA057 TT_7 0.554 FTW04IA078 

TT_7 0.652 WPR17LA210 TT_7 0.554 LAX07LA158 

TT_7 0.642 CHI03LA039 TT_7 0.553 MIA06CA139 

TT_7 0.638 WPR16LA015 TT_7 0.55 LAX00LA112 

TT_7 0.636 ERA16LA042 TT_7 0.55 CHI06LA080 

TT_7 0.632 LAX06LA114 TT_7 0.549 ERA16LA135 

TT_7 0.631 DEN08LA021 TT_7 0.546 MIA03LA033 

TT_7 0.625 CEN16LA374 TT_7 0.544 ERA13LA398 

TT_7 0.619 WPR10LA347 TT_7 0.541 LAX02LA027 

TT_7 0.618 WPR16LA058 TT_7 0.539 CHI00LA161 

TT_7 0.615 CEN12LA387 TT_7 0.535 WPR18LA022 

TT_7 0.614 MIA98LA248 TT_7 0.532 CEN16LA190 

TT_7 0.609 WPR10LA140 TT_7 0.532 GAA16CA074 

TT_7 0.607 MIA06LA055 TT_7 0.531 LAX99LA278 

TT_7 0.604 CEN11LA494 TT_7 0.527 GAA17CA126 

TT_7 0.598 ERA16LA190 TT_7 0.527 CEN17LA148 

TT_7 0.598 ERA17LA287 TT_7 0.522 ERA16LA271 

TT_7 0.592 NYC08LA162 TT_7 0.518 ANC18LA009 

TT_7 0.586 MIA04LA038 TT_7 0.516 LAX98LA229 

TT_7 0.581 ANC05LA029 TT_7 0.514 ERA15LA249 

Note. The topic label is Landing Gear. The topic terms include +gear, gear, +landing gear, +landing, 

+extend. The plus (+) indicates a parent term. 
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_8 0.602 FTW98FA100 TT_8 0.431 SEA99FA104 

TT_8 0.576 SEA00LA110 TT_8 0.427 SEA04LA110 

TT_8 0.535 DEN08IA130 TT_8 0.426 WPR16LA080 

TT_8 0.519 SEA03FA041 TT_8 0.420 SEA99LA058 

TT_8 0.499 SEA00FA023 TT_8 0.419 SEA04FA009 

TT_8 0.495 SEA03FA015 TT_8 0.418 LAX00FA148 

TT_8 0.489 SEA03FA173 TT_8 0.413 SEA00LA186 

TT_8 0.478 SEA99LA081 TT_8 0.412 SEA03LA007 

TT_8 0.478 SEA04LA014 TT_8 0.41 SEA04FA188 

TT_8 0.475 SEA02LA012 TT_8 0.408 SEA01LA120 

TT_8 0.474 FTW02FA112 TT_8 0.406 SEA00LA104 

TT_8 0.472 LAX99FA080 TT_8 0.403 SEA01LA102 

TT_8 0.470 SEA99FA116 TT_8 0.401 SEA02LA084 

TT_8 0.468 SEA99FA176 TT_8 0.400 DEN00FA086 

TT_8 0.467 SEA04FA143 TT_8 0.400 LAX99FA311 

TT_8 0.464 LAX98FA141 TT_8 0.399 SEA03FA121 

TT_8 0.460 CEN09LA440 TT_8 0.394 CHI99FA105 

TT_8 0.458 SEA02FA171 TT_8 0.394 LAX00FA209 

TT_8 0.445 SEA02FA005 TT_8 0.392 CHI00LA085 

TT_8 0.445 FTW04LA072 TT_8 0.389 SEA04CA105 

TT_8 0.443 MIA99LA057 TT_8 0.387 SEA98FA047 

TT_8 0.441 MIA01LA228 TT_8 0.383 SEA98FA040 

TT_8 0.440 SEA99FA105 TT_8 0.383 SEA04FA060 

TT_8 0.432 LAX98LA279 TT_8 0.382 SEA05LA188 

TT_8 0.431 DEN99FA120 TT_8 0.380 SEA05CA150 

Note. The topic label is Flight Envelope Exceedance. The topic terms include aircraft, +approximately, 

+refer, +find, accident aircraft. The plus (+) indicates a parent term. 
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_9 0.597 ANC99FAMS1 TT_9 0.497 ANC02FA025 

TT_9 0.592 ERA15FA220 TT_9 0.497 LAX08LA253 

TT_9 0.590 SEA06FA036 TT_9 0.497 ERA14FA093 

TT_9 0.587 ANC98GA036 TT_9 0.494 WPR11FA256 

TT_9 0.579 FTW03FA016 TT_9 0.493 SEA04LA095 

TT_9 0.578 LAX99FA020 TT_9 0.492 CEN14FA019 

TT_9 0.558 CEN11FA347 TT_9 0.491 ERA11FA074 

TT_9 0.555 LAX02FA179 TT_9 0.488 DEN06FA065 

TT_9 0.549 LAX01FA208 TT_9 0.484 WPR12FA305 

TT_9 0.544 WPR15FA166 TT_9 0.483 MIA08FA001 

TT_9 0.543 LAX05FA076 TT_9 0.481 FTW98FA121 

TT_9 0.540 FTW01LA032 TT_9 0.481 CEN15FA092 

TT_9 0.537 ANC98FA043 TT_9 0.480 ERA14LA006 

TT_9 0.532 SEA01FA070 TT_9 0.479 ANC99FA108 

TT_9 0.532 CHI04FA043 TT_9 0.479 LAX04LA324 

TT_9 0.531 LAX05FA167 TT_9 0.474 WPR12FA136 

TT_9 0.526 ANC03LA029 TT_9 0.470 SEA99FA152 

TT_9 0.524 NYC00FA245 TT_9 0.469 FTW00FA144 

TT_9 0.522 CEN15FA174 TT_9 0.467 DEN07FA054 

TT_9 0.519 FTW01FA101 TT_9 0.466 WPR09FA192 

TT_9 0.510 DFW08FA204 TT_9 0.466 IAD03FA069 

TT_9 0.508 NYC00FA257 TT_9 0.465 CEN09FA340 

TT_9 0.507 CEN10LA055 TT_9 0.465 MIA02FA173 

TT_9 0.505 NYC04FA157 TT_9 0.464 SEA05FA092 

TT_9 0.500 CHI00FA123 TT_9 0.462 ERA09LA392 

Note. The topic label is Weather Factors. The topic terms include aircraft, +foot, +cloud, +mile, +visibility, 

+ceiling. The plus (+) indicates a parent term. 
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_10 0.543 ERA11FA354 TT_10 0.407 ATL98FA060 

TT_10 0.506 CHI01FA044 TT_10 0.407 ATL98FA060 

TT_10 0.496 CHI06FA077 TT_10 0.407 CEN09FA518 

TT_10 0.495 LAX05LA215 TT_10 0.406 CHI00FA039 

TT_10 0.493 ERA11FA391 TT_10 0.406 LAX08FA122 

TT_10 0.490 ANC07FA006 TT_10 0.404 CEN11FA431 

TT_10 0.490 LAX02FA214 TT_10 0.401 DEN05FA045 

TT_10 0.479 FTW02FA004 TT_10 0.400 CEN13FA352 

TT_10 0.460 CHI05FA260 TT_10 0.398 CHI02FA177 

TT_10 0.458 SEA05FA105 TT_10 0.395 CHI06FA010 

TT_10 0.456 CEN16FA158 TT_10 0.395 CHI06FA010 

TT_10 0.447 CEN14FA057 TT_10 0.394 LAX05FA184 

TT_10 0.441 CEN10LA427 TT_10 0.391 LAX00GA158 

TT_10 0.439 CHI02FA284 TT_10 0.391 FTW98FA186 

TT_10 0.435 CEN09FA070 TT_10 0.391 CEN17FA005 

TT_10 0.434 DEN03FA068 TT_10 0.388 DFW07FA044 

TT_10 0.431 CEN16FA224 TT_10 0.388 WPR09FA398 

TT_10 0.429 LAX04FA057 TT_10 0.387 CEN14FA522 

TT_10 0.429 CHI05FA189 TT_10 0.384 NYC07FA065 

TT_10 0.429 ERA14FA144 TT_10 0.384 DEN99FA075 

TT_10 0.417 WPR13FA115 TT_10 0.382 CHI03FA080 

TT_10 0.416 CHI06FA232 TT_10 0.382 CHI08FA027 

TT_10 0.416 FTW03FA229 TT_10 0.382 CEN13FA338 

TT_10 0.411 ERA09FA345 TT_10 0.381 MIA04FA049 

TT_10 0.410 CEN11LA669 TT_10 0.381 CEN13FA141 

Note. The topic label is Flight Hours. The topic terms include aircraft, +hour, total, +time, +engine, 

+logbook. The plus (+) indicates a parent term. 
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_11 0.782 SEA03FA038 TT_11 0.573 LAX98LA131 

TT_11 0.762 CEN10IA059 TT_11 0.570 CEN12LA326 

TT_11 0.719 LAX07LA236 TT_11 0.569 NYC01LA013 

TT_11 0.698 CHI07LA121 TT_11 0.564 WPR15LA157 

TT_11 0.682 ERA13LA382 TT_11 0.562 MIA99LA032 

TT_11 0.670 WPR15LA032 TT_11 0.558 NYC01LA194 

TT_11 0.669 CEN16LA391 TT_11 0.554 DEN05LA070 

TT_11 0.659 WPR15LA175 TT_11 0.554 ERA17LA109 

TT_11 0.649 ERA10FA074 TT_11 0.552 CEN16LA107 

TT_11 0.639 WPR13LA015 TT_11 0.546 ERA15LA189 

TT_11 0.631 WPR09LA362 TT_11 0.545 ERA16FA329 

TT_11 0.627 FTW01LA143 TT_11 0.535 LAX05LA273 

TT_11 0.626 SEA03LA082 TT_11 0.535 ERA12LA394 

TT_11 0.625 LAX08LA008 TT_11 0.532 WPR11LA038 

TT_11 0.613 IAD99FA025 TT_11 0.531 ERA16LA114 

TT_11 0.610 DEN01LA103 TT_11 0.530 WPR13FA169 

TT_11 0.604 WPR09LA458 TT_11 0.526 NYC00LA125 

TT_11 0.602 CEN18LA031 TT_11 0.524 CHI03LA095 

TT_11 0.601 MIA04LA013 TT_11 0.522 WPR17LA038 

TT_11 0.597 WPR12LA108 TT_11 0.519 LAX07LA058 

TT_11 0.591 ERA16LA022 TT_11 0.518 MIA01LA168 

TT_11 0.584 CEN17LA058 TT_11 0.518 ERA10LA335 

TT_11 0.578 ERA17LA185 TT_11 0.517 WPR12LA161 

TT_11 0.578 CEN14LA204 TT_11 0.516 LAX05LA172 

TT_11 0.574 ANC17LA006 TT_11 0.516 CEN12FA025 

Note. The topic label is Engine Oil Loss. The topic terms include aircraft, +oil, +rod, +connect, +cylinder, 

+number. The plus (+) indicates a parent term. 



225 

 

Text Topic Weight Report ID Text Topic Weight Report ID 

TT_12 0.317 WPR13CA327 TT_12 0.277 GAA18CA569 

TT_12 0.299 GAA18CA285 TT_12 0.276 GAA17CA550 

TT_12 0.297 GAA17CA449 TT_12 0.276 GAA18CA055 

TT_12 0.296 GAA17CA339 TT_12 0.276 GAA18CA395 

TT_12 0.294 GAA18CA448 TT_12 0.276 GAA17CA054 

TT_12 0.291 GAA18CA219 TT_12 0.275 GAA18CA225 

TT_12 0.291 GAA17CA363 TT_12 0.275 GAA18CA018 

TT_12 0.291 GAA17CA281 TT_12 0.275 GAA17CA441 

TT_12 0.289 GAA18CA303 TT_12 0.275 GAA17CA469 

TT_12 0.288 GAA17CA499 TT_12 0.275 GAA17CA209 

TT_12 0.287 GAA17CA518 TT_12 0.275 GAA18CA056 

TT_12 0.287 GAA19CA072 TT_12 0.275 GAA18CA279 

TT_12 0.286 GAA18CA527 TT_12 0.274 GAA17CA091 

TT_12 0.285 GAA17CA486 TT_12 0.274 GAA17CA270 

TT_12 0.284 GAA18CA176 TT_12 0.274 GAA18CA201 

TT_12 0.283 GAA18CA298 TT_12 0.274 GAA18CA556 

TT_12 0.283 GAA18CA196 TT_12 0.274 GAA17CA059 

TT_12 0.283 GAA17CA062 TT_12 0.274 GAA17CA396 

TT_12 0.282 GAA18CA130 TT_12 0.273 GAA18CA339 

TT_12 0.282 GAA19CA081 TT_12 0.273 GAA17CA364 

TT_12 0.281 GAA17CA377 TT_12 0.272 GAA18CA317 

TT_12 0.278 GAA18CA481 TT_12 0.272 GAA18CA328 

TT_12 0.278 GAA18CA523 TT_12 0.272 GAA18CA372 

TT_12 0.278 GAA17CA011 TT_12 0.271 GAA17CA290 

TT_12 0.277 GAA17CA280 TT_12 0.271 GAA19CA023 

Note. The topic label is Directional LOC. The topic terms include aircraft, +normal operation, +preclude, 

+malfunction, +failure, +operation. The plus (+) indicates a parent term. 
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_13 0.738 NYC08LA273 TT_13 0.555 ERA19LA055 

TT_13 0.731 ERA16LA113 TT_13 0.544 CEN12CA567 

TT_13 0.699 WPR17LA141 TT_13 0.534 DFW06LA038 

TT_13 0.687 WPR17LA192 TT_13 0.531 WPR15LA253 

TT_13 0.670 ERA14LA022 TT_13 0.531 WPR15LA253 

TT_13 0.665 ERA16LA213 TT_13 0.529 SEA99LA131 

TT_13 0.644 CEN16LA274 TT_13 0.525 WPR17LA114 

TT_13 0.636 WPR12LA207 TT_13 0.523 IAD99LA049 

TT_13 0.613 LAX05LA109 TT_13 0.519 WPR15LA218 

TT_13 0.612 ANC17LA005 TT_13 0.515 DEN01LA160 

TT_13 0.611 CEN19LA046 TT_13 0.515 CEN12LA023 

TT_13 0.608 CHI07LA135 TT_13 0.511 WPR13FA430 

TT_13 0.604 WPR18LA089 TT_13 0.510 ERA15LA186 

TT_13 0.594 MIA05LA143 TT_13 0.510 ERA19LA030 

TT_13 0.590 ERA13IA192 TT_13 0.504 NYC01LA216 

TT_13 0.584 WPR18LA216 TT_13 0.504 CEN15LA057 

TT_13 0.584 ERA17LA290 TT_13 0.503 ATL07CA047 

TT_13 0.583 ANC07LA059 TT_13 0.496 ERA17LA262 

TT_13 0.579 ERA15LA322 TT_13 0.496 MIA06LA052 

TT_13 0.575 SEA98LA178 TT_13 0.494 WPR12LA135 

TT_13 0.575 ATL07CA058 TT_13 0.493 ERA12LA016 

TT_13 0.571 CHI01LA126 TT_13 0.493 GAA16CA042 

TT_13 0.570 WPR09LA307 TT_13 0.492 CHI08CA032 

TT_13 0.565 ERA18LA023 TT_13 0.489 LAX98LA081 

TT_13 0.563 GAA18CA432 TT_13 0.485 CEN12LA516 

Note. The topic label is Braking Issues. The topic terms include aircraft, +brake, +brake, +apply, +rudder, 

+wheel. The plus (+) indicates a parent term. 
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_14 0.349 CHI07LA013 TT_14 0.250 ANC98LA127 

TT_14 0.329 CHI99LA307 TT_14 0.249 ANC00LA134 

TT_14 0.323 ANC04LA012 TT_14 0.249 ANC98LA088 

TT_14 0.321 ANC01LA040 TT_14 0.249 ANC00LA111 

TT_14 0.312 ANC05FA098 TT_14 0.249 ANC98LA107 

TT_14 0.296 ANC08LA075 TT_14 0.248 CEN17LA283 

TT_14 0.294 ANC02FA106 TT_14 0.245 ANC09LA103 

TT_14 0.290 ANC05LA133 TT_14 0.241 ANC08LA047 

TT_14 0.288 ANC05LA009 TT_14 0.241 ANC09TA005 

TT_14 0.279 ANC98TA128 TT_14 0.240 ANC01LA067 

TT_14 0.275 ANC01LA113 TT_14 0.239 ANC03LA021 

TT_14 0.270 ANC08FA079 TT_14 0.238 ANC00LA079 

TT_14 0.268 ANC03LA064 TT_14 0.237 ANC05CA122 

TT_14 0.267 ANC00LA116 TT_14 0.236 ANC00LA016 

TT_14 0.266 ANC05LA073 TT_14 0.236 ANC98LA147 

TT_14 0.265 ANC02LA126 TT_14 0.236 ANC01LA142 

TT_14 0.263 ANC98LA080 TT_14 0.235 ANC03LA112 

TT_14 0.262 ANC99LA088 TT_14 0.234 ANC05CA151 

TT_14 0.262 FTW98LA105 TT_14 0.234 ANC02LA088 

TT_14 0.261 ANC99LA078 TT_14 0.233 ANC99FA070 

TT_14 0.260 ANC00LA019 TT_14 0.233 ERA16LA181 

TT_14 0.259 ANC05TA106 TT_14 0.232 ANC07LA092 

TT_14 0.258 ANC00LA050 TT_14 0.232 WPR12FA385 

TT_14 0.258 ANC06FA136 TT_14 0.232 ANC00LA043 

TT_14 0.256 ANC04CA089 TT_14 0.232 ANC03LA116 

Note. The topic label is Water – Remote Airstrips. The topic terms include +airstrip, +passenger, +water, 

+lake, +seat. The plus (+) indicates a parent term. 
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_15 0.659 ERA10LA377 TT_15 0.422 NYC01LA012 

TT_15 0.519 ERA16FA257 TT_15 0.420 NYC00LA166 

TT_15 0.513 DEN99LA156 TT_15 0.418 ANC16LA054 

TT_15 0.490 LAX05LA160 TT_15 0.418 FTW98FA365 

TT_15 0.485 CHI01FA312 TT_15 0.417 LAX04LA328 

TT_15 0.481 ATL07LA111 TT_15 0.415 ERA13LA370 

TT_15 0.479 ERA10LA267 TT_15 0.414 ERA16LA224 

TT_15 0.478 ERA13LA037 TT_15 0.411 CHI98LA191 

TT_15 0.472 LAX07FA258 TT_15 0.410 LAX07CA254 

TT_15 0.462 WPR16FA095 TT_15 0.409 ERA17LA024 

TT_15 0.461 CHI05LA257 TT_15 0.406 SEA98LA066 

TT_15 0.460 WPR10FA449 TT_15 0.404 ERA10LA055 

TT_15 0.454 NYC08LA271 TT_15 0.403 NYC00FA001 

TT_15 0.451 ERA13LA264 TT_15 0.403 ERA09LA530 

TT_15 0.450 CHI03LA158 TT_15 0.401 WPR17FA166 

TT_15 0.448 ERA15LA282 TT_15 0.394 NYC00LA120 

TT_15 0.445 NYC00FA226 TT_15 0.394 NYC06LA197 

TT_15 0.443 GAA17CA347 TT_15 0.391 CEN13LA539 

TT_15 0.440 WPR12FA339 TT_15 0.385 NYC04IA054 

TT_15 0.437 DEN05LA088 TT_15 0.384 NYC02FA166 

TT_15 0.429 SEA02LA152 TT_15 0.383 WPR18LA179 

TT_15 0.427 CEN18TA374 TT_15 0.380 CHI04CA266 

TT_15 0.427 CHI99FA174 TT_15 0.379 LAX01LA177 

TT_15 0.425 DEN99LA101 TT_15 0.379 ERA11LA451 

TT_15 0.423 LAX08LA179 TT_15 0.378 ERA15LA238 

Note. The topic label is Excess Weight. The topic terms include +takeoff, +weight, +foot, +pound, +end. 

The plus (+) indicates a parent term. 
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_16 0.639 LAX08FA109 TT_16 0.448 ERA18LA258 

TT_16 0.571 ERA16FA170 TT_16 0.447 FTW98LA150 

TT_16 0.559 LAX98LA164 TT_16 0.445 ANC01LA025 

TT_16 0.559 LAX98LA164 TT_16 0.445 ANC01LA025 

TT_16 0.558 ERA10LA302 TT_16 0.442 IAD04LA005 

TT_16 0.552 ERA10LA446 TT_16 0.441 ANC06LA105 

TT_16 0.548 CHI05CA219 TT_16 0.441 ATL05LA140 

TT_16 0.538 GAA17CA337 TT_16 0.440 CHI00LA216 

TT_16 0.523 LAX98LA196 TT_16 0.437 FTW99LA272 

TT_16 0.508 IAD05LA038 TT_16 0.434 GAA18CA358 

TT_16 0.508 SEA05FA125 TT_16 0.433 IAD03LA002 

TT_16 0.507 NYC00FA240 TT_16 0.433 ATL05CA030 

TT_16 0.495 FTW02FA004 TT_16 0.432 ERA09LA435 

TT_16 0.486 CHI08LA273 TT_16 0.429 FTW00LA036 

TT_16 0.482 WPR15FA021 TT_16 0.428 WPR17FA063 

TT_16 0.477 CEN15LA280 TT_16 0.428 FTW99FA153 

TT_16 0.471 NYC99FA216 TT_16 0.428 FTW99FA153 

TT_16 0.467 WPR14LA153 TT_16 0.428 FTW99FA223 

TT_16 0.459 SEA04LA183 TT_16 0.425 DFW06LA209 

TT_16 0.455 LAX05LA283 TT_16 0.425 CHI03LA122 

TT_16 0.452 ANC00LA014 TT_16 0.423 IAD05LA039 

TT_16 0.450 CEN13LA342 TT_16 0.419 GAA18CA234 

TT_16 0.449 FTW99LA084 TT_16 0.418 NYC98LA169 

TT_16 0.449 ERA17FA115 TT_16 0.417 SEA01LA087 

TT_16 0.449 FTW02LA073 TT_16 0.414 ANC01LA082 

Note. The topic label is Instructional. The topic terms include +instructor, +instruction, +instructional 

flight, instructional, +student. The plus (+) indicates a parent term. 
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_17 0.443 LAX06LA056 TT_17 0.346 ERA09FA116 

TT_17 0.443 LAX06LA056 TT_17 0.345 NYC04FA033 

TT_17 0.441 NYC05LA002 TT_17 0.345 NYC04FA033 

TT_17 0.441 NYC05LA002 TT_17 0.341 DEN99FA077 

TT_17 0.416 CEN16FA333 TT_17 0.341 DEN99FA077 

TT_17 0.404 SEA04LA048 TT_17 0.341 NYC08FA056 

TT_17 0.401 SEA01TA050 TT_17 0.338 FTW03LA022 

TT_17 0.388 IAD05LA099 TT_17 0.337 NYC00LA243 

TT_17 0.382 CEN11FA008 TT_17 0.336 WPR16LA061 

TT_17 0.372 SEA08FA116 TT_17 0.335 NYC98FA060 

TT_17 0.372 SEA08FA116 TT_17 0.335 IAD02LA025 

TT_17 0.369 ERA14LA181 TT_17 0.333 NYC08FA046 

TT_17 0.369 ERA14LA181 TT_17 0.333 ERA14TA435 

TT_17 0.367 CHI01LA050 TT_17 0.332 CEN11FA417 

TT_17 0.364 NYC05FA021 TT_17 0.332 SEA08LA057 

TT_17 0.362 WPR13FA296 TT_17 0.332 SEA08LA057 

TT_17 0.362 WPR13FA296 TT_17 0.331 IAD00LA027 

TT_17 0.357 ERA15LA084 TT_17 0.331 IAD00LA027 

TT_17 0.357 ERA15LA084 TT_17 0.330 ERA15LA257 

TT_17 0.356 IAD00FA082 TT_17 0.330 NYC05LA106 

TT_17 0.355 IAD01LA068 TT_17 0.329 CEN12LA629 

TT_17 0.355 WPR16LA093 TT_17 0.329 CEN12LA629 

TT_17 0.353 CHI00MA066 TT_17 0.327 DEN00LA036 

TT_17 0.353 NYC04FA100 TT_17 0.326 NYC06MA192 

TT_17 0.351 NYC02LA167 TT_17 0.325 FTW01FA033 

Note. The topic label is Unstable Approach. The topic terms include +approach, +runway, final, +airport, 

+end. The plus (+) indicates a parent term. 
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_18 0.737 ERA12LA575 TT_18 0.502 CEN17LA295 

TT_18 0.685 ERA17LA341 TT_18 0.498 NYC98LA078 

TT_18 0.662 ERA13LA269 TT_18 0.495 WPR14LA232 

TT_18 0.661 ERA16LA270 TT_18 0.490 ANC16CA056 

TT_18 0.621 ERA16LA281 TT_18 0.490 CEN15LA292 

TT_18 0.609 CEN14LA134 TT_18 0.486 WPR11LA359 

TT_18 0.599 FTW00LA175 TT_18 0.480 IAD02LA034 

TT_18 0.596 CEN13LA398 TT_18 0.475 ANC13CA056 

TT_18 0.592 CEN12LA175 TT_18 0.475 ANC04LA031 

TT_18 0.585 CEN14LA161 TT_18 0.473 CEN12LA477 

TT_18 0.565 CEN18LA151 TT_18 0.471 DEN00LA054 

TT_18 0.544 GAA16CA393 TT_18 0.463 CEN14LA244 

TT_18 0.539 CEN19LA015 TT_18 0.462 ANC09LA036 

TT_18 0.530 WPR13CA252 TT_18 0.461 NYC01LA060 

TT_18 0.527 CHI07CA169 TT_18 0.459 NYC06LA167 

TT_18 0.526 ANC01LA029 TT_18 0.458 NYC07LA085 

TT_18 0.524 CEN16LA349 TT_18 0.452 ERA15LA063 

TT_18 0.524 ANC04LA045 TT_18 0.451 LAX98LA107 

TT_18 0.522 ERA12LA432 TT_18 0.449 ATL07CA075 

TT_18 0.520 ANC04LA003 TT_18 0.448 WPR14LA147 

TT_18 0.518 CEN17FA332 TT_18 0.446 CEN18LA013 

TT_18 0.513 NYC06LA193 TT_18 0.444 ERA18TA255 

TT_18 0.512 MIA03LA035 TT_18 0.444 IAD05LA101 

TT_18 0.504 CHI01LA328 TT_18 0.442 ERA18LA162 

TT_18 0.503 NYC03LA055 TT_18 0.441 LAX05LA163 

Note. The topic label is Carburetor Icing. The topic terms include +carburetor, +heat, icing, carburetor heat, 

ice. The plus (+) indicates a parent term. 
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_19 0.544 LAX06LA183 TT_19 0.439 NYC01FA193 

TT_19 0.519 NYC03FA153 TT_19 0.435 ERA15FA361 

TT_19 0.505 ERA10LA162 TT_19 0.432 LAX06LA214 

TT_19 0.501 WPR13LA147 TT_19 0.428 LAX00FA151 

TT_19 0.500 ERA15LA030 TT_19 0.426 ATL06LA028 

TT_19 0.496 CEN16LA296 TT_19 0.424 WPR16LA048 

TT_19 0.490 ERA17FA327 TT_19 0.420 LAX05LA173 

TT_19 0.478 ERA10LA222 TT_19 0.418 SEA08LA073 

TT_19 0.476 ATL06LA114 TT_19 0.417 LAX01FA027 

TT_19 0.476 WPR09LA324 TT_19 0.417 ERA17FA139 

TT_19 0.468 ERA17FA107 TT_19 0.416 MIA08LA142 

TT_19 0.461 WPR15LA131 TT_19 0.414 ERA12LA442 

TT_19 0.457 ERA14LA389 TT_19 0.414 ERA15FA191 

TT_19 0.455 WPR18FA150 TT_19 0.412 WPR09LA364 

TT_19 0.453 WPR14LA199 TT_19 0.410 WPR11LA374 

TT_19 0.452 FTW03FA067 TT_19 0.410 NYC05LA086 

TT_19 0.451 LAX06LA153 TT_19 0.408 WPR12LA394 

TT_19 0.449 ATL07LA067 TT_19 0.407 WPR10LA053 

TT_19 0.447 ERA10LA151 TT_19 0.407 MIA99FA246 

TT_19 0.446 MIA05FA085 TT_19 0.406 WPR18LA002 

TT_19 0.445 CEN18LA285 TT_19 0.405 WPR16LA005 

TT_19 0.443 ERA16LA152 TT_19 0.404 FTW02LA023 

TT_19 0.443 ERA14FA074 TT_19 0.403 CEN14FA219 

TT_19 0.440 ERA17FA112 TT_19 0.403 MIA02LA057 

TT_19 0.440 LAX00LA247 TT_19 0.402 LAX03LA012 

Note. The topic label is Loss of Power. The topic terms include +pump, +magneto, +valve, +cylinder, 

+spark. The plus (+) indicates a parent term. 



233 

 

Text Topic Weight Report ID Text Topic Weight Report ID 

TT_20 0.450 IAD04FA017 TT_20 0.329 CEN14FA163 

TT_20 0.449 WPR13LA050 TT_20 0.328 DFW05FA055 

TT_20 0.448 IAD03FA035 TT_20 0.326 CEN16FA172 

TT_20 0.423 WPR12FA326 TT_20 0.324 CEN13FA044 

TT_20 0.414 NYC02FA089 TT_20 0.322 IAD00LA047 

TT_20 0.411 SEA08FA013 TT_20 0.321 LAX04FA226 

TT_20 0.403 IAD03FA039 TT_20 0.321 DEN00FA175 

TT_20 0.399 SEA03FA106 TT_20 0.320 SEA05LA098 

TT_20 0.393 CEN09FA518 TT_20 0.317 FTW98FA127 

TT_20 0.382 SEA98FA083 TT_20 0.316 CHI02FA120 

TT_20 0.378 FTW03FA174 TT_20 0.314 MIA06FA120 

TT_20 0.378 CHI98FA187 TT_20 0.309 NYC01FA223 

TT_20 0.376 FTW04FA204 TT_20 0.309 FTW99FA199 

TT_20 0.376 LAX08FA286 TT_20 0.306 ATL07CA061 

TT_20 0.366 SEA04FA009 TT_20 0.306 DFW06FA140 

TT_20 0.361 LAX00FA213 TT_20 0.305 CHI02FA262 

TT_20 0.357 CHI06FA067 TT_20 0.305 DEN99FA113 

TT_20 0.355 LAX02LA010 TT_20 0.303 IAD02FA018 

TT_20 0.353 CHI99FA052 TT_20 0.303 CEN15LA059 

TT_20 0.346 CHI99MA269 TT_20 0.303 FTW04FA144 

TT_20 0.345 SEA00LA186 TT_20 0.301 IAD00FA003 

TT_20 0.340 CHI98FA123 TT_20 0.301 CHI98LA270 

TT_20 0.339 DEN05FA047 TT_20 0.301 NYC00LA184 

TT_20 0.335 CHI07LA013 TT_20 0.300 ERA11FA222 

TT_20 0.333 NYC02LA129 TT_20 0.300 WPR11FA166 

Note. The topic label is Slow Flight - Stalls. The topic terms include +witness, left, +hear, +state, +turn. 

The plus (+) indicates a parent term. 
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_21 0.582 ERA13FA256 TT_21 0.491 ERA11FA210 

TT_21 0.577 MIA02FA148 TT_21 0.484 ANC15FA050 

TT_21 0.573 WPR18FA116 TT_21 0.483 MIA08FA027 

TT_21 0.567 ATL05FA048 TT_21 0.480 CEN13FA476 

TT_21 0.566 CEN13FA219 TT_21 0.479 IAD01FA013 

TT_21 0.555 ERA19FA010 TT_21 0.475 ATL99FA081 

TT_21 0.551 ATL07FA038 TT_21 0.475 CEN15FA378 

TT_21 0.546 CEN14FA467 TT_21 0.474 WPR10FA162 

TT_21 0.545 ERA16FA032 TT_21 0.474 ATL02FA008 

TT_21 0.538 ERA16FA169 TT_21 0.473 ERA13FA348 

TT_21 0.532 CEN17FA028 TT_21 0.470 CEN13FA172 

TT_21 0.531 NYC02FA126 TT_21 0.469 LAX06FA289 

TT_21 0.531 ERA15FA330 TT_21 0.469 ERA14LA330 

TT_21 0.527 CEN18FA147 TT_21 0.465 NYC05FA117 

TT_21 0.526 ERA13FA349 TT_21 0.465 NYC05FA117 

TT_21 0.518 ATL05FA041 TT_21 0.464 CEN18FA003 

TT_21 0.510 ATL99FA074 TT_21 0.464 DEN06FA013 

TT_21 0.510 ERA12FA093 TT_21 0.462 ATL06FA038 

TT_21 0.510 CEN16FA361 TT_21 0.460 ATL04FA016 

TT_21 0.508 ATL03FA049 TT_21 0.460 CEN10FA322 

TT_21 0.504 ATL05FA128 TT_21 0.458 CHI01FA291 

TT_21 0.500 ATL04FA130 TT_21 0.457 ERA11FA431 

TT_21 0.496 ERA11FA462 TT_21 0.456 ERA12FA484 

TT_21 0.492 ATL04FA099 TT_21 0.456 ATL0FFA082 

TT_21 0.491 ATL00FA016 TT_21 0.455 ATL04FA056 

Note. The topic label is Flight Control. The topic terms include +attach, +aileron, +control, +cable, 

+remain. The plus (+) indicates a parent term. 
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_22 0.592 CHI06FA206 TT_22 0.354 GAA19CA079 

TT_22 0.592 CHI06FA206 TT_22 0.351 LAX02LA274 

TT_22 0.493 WPR09LA024 TT_22 0.349 MIA04LA074 

TT_22 0.493 WPR09LA024 TT_22 0.348 NYC08LA004 

TT_22 0.470 ERA11LA361 TT_22 0.347 WPR15LA154 

TT_22 0.470 ERA11LA361 TT_22 0.347 WPR15LA154 

TT_22 0.435 CEN09LA182 TT_22 0.339 WPR11CA171 

TT_22 0.435 CEN09LA182 TT_22 0.336 ANC09LA069 

TT_22 0.419 CHI01IA248 TT_22 0.334 CHI03LA280 

TT_22 0.419 CHI01IA248 TT_22 0.333 NYC98LA189 

TT_22 0.411 FTW98LA317 TT_22 0.328 LAX00LA011 

TT_22 0.411 FTW98LA317 TT_22 0.327 WPR18LA118 

TT_22 0.410 DEN08CA115 TT_22 0.325 CEN15FA386 

TT_22 0.398 ERA16LA225 TT_22 0.325 SEA07LA081 

TT_22 0.386 MIA00FA103 TT_22 0.325 SEA07LA081 

TT_22 0.383 FTW99LA245 TT_22 0.3232 LAX08LA235 

TT_22 0.383 FTW99LA245 TT_22 0.322 NYC02LA006 

TT_22 0.367 LAX99LA025 TT_22 0.322 NYC02LA006 

TT_22 0.367 LAX99LA025 TT_22 0.319 ANC03CA006 

TT_22 0.366 IAD05LA043 TT_22 0.317 MIA98LA111 

TT_22 0.366 IAD05LA043 TT_22 0.317 SEA99LA009 

TT_22 0.358 SEA98LA187 TT_22 0.316 FTW02LA047 

TT_22 0.357 WPR09IA128 TT_22 0.316 FTW02LA047 

TT_22 0.355 MIA01LA012 TT_22 0.315 LAX07CA157 

TT_22 0.355 MIA01LA012 TT_22 0.308 FTW99LA232 

Note. The topic label is Surface Accidents. The topic terms include +taxiway, +taxi, +runway, +park, +fire. 

The plus (+) indicates a parent term. 
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_23 0.582 WPR17LA038 TT_23 0.395 DEN08IA044 

TT_23 0.544 LAX99LA111 TT_23 0.386 WPR15LA101 

TT_23 0.521 WPR15LA220 TT_23 0.386 CEN17LA292 

TT_23 0.500 CEN13LA233 TT_23 0.386 CEN10LA123 

TT_23 0.496 CEN10IA059 TT_23 0.383 NYC00LA187 

TT_23 0.495 MIA02LA107 TT_23 0.382 SEA03LA113 

TT_23 0.478 NYC01LA013 TT_23 0.381 CEN13LA103 

TT_23 0.468 CEN16LA218 TT_23 0.378 ERA15LA225 

TT_23 0.463 ATL06LA050 TT_23 0.378 WPR14LA079 

TT_23 0.463 WPR10LA248 TT_23 0.378 MIA01LA168 

TT_23 0.458 DEN07IA066 TT_23 0.377 CEN16LA107 

TT_23 0.455 SEA01LA067 TT_23 0.375 WPR10LA130 

TT_23 0.453 CHI07IA017 TT_23 0.369 CEN10LA037 

TT_23 0.437 LAX08LA168 TT_23 0.368 CHI04LA144 

TT_23 0.435 LAX99LA201 TT_23 0.367 CEN17LA333 

TT_23 0.433 NYC06LA089 TT_23 0.366 WPR16LA047 

TT_23 0.430 WPR11LA102 TT_23 0.364 MIA99LA166 

TT_23 0.426 ERA13LA382 TT_23 0.362 ERA09LA050 

TT_23 0.413 MIA04LA127 TT_23 0.358 DEN00IA093 

TT_23 0.408 NYC01IA211 TT_23 0.357 ERA13LA112 

TT_23 0.406 CHI02LA100 TT_23 0.355 CHI02LA179 

TT_23 0.404 NYC98LA074 TT_23 0.349 WPR15LA175 

TT_23 0.404 SEA98TA152 TT_23 0.348 CHI04LA187 

TT_23 0.401 CEN12LA326 TT_23 0.346 ERA17LA194 

TT_23 0.396 LAX02LA204 TT_23 0.346 ERA12LA274 

Note. The topic label is Engine Component Failure. The topic terms include +fracture, +bolt, +rod, fatigue, 

+surface. The plus (+) indicates a parent term. 



237 

 

Text Topic Weight Report ID Text Topic Weight Report ID 

TT_24 0.418 CEN11FA479 TT_24 0.300 CEN10LA470 

TT_24 0.380 CEN12LA203 TT_24 0.300 CHI01FA204 

TT_24 0.369 CEN15LA026 TT_24 0.300 LAX08FA122 

TT_24 0.362 CEN09FA043 TT_24 0.300 MIA07LA009 

TT_24 0.362 WPR15FA016 TT_24 0.300 WPR10LA297 

TT_24 0.361 DFW08LA157 TT_24 0.299 CHI00LA282 

TT_24 0.350 WPR11FA268 TT_24 0.296 WPR09LA308 

TT_24 0.347 CEN13LA046 TT_24 0.294 WPR12FA062 

TT_24 0.336 SEA08LA145 TT_24 0.294 LAX08LA231 

TT_24 0.332 WPR11LA223 TT_24 0.293 WPR10FA399 

TT_24 0.327 CHI01LA294 TT_24 0.293 WPR14LA230 

TT_24 0.325 SEA04LA168 TT_24 0.292 ERA09LA230 

TT_24 0.325 CEN09LA311 TT_24 0.292 CEN14LA485 

TT_24 0.321 CHI99LA137 TT_24 0.291 NYC07LA098 

TT_24 0.320 CEN09LA263 TT_24 0.290 WPR14FA355 

TT_24 0.318 SEA08LA158 TT_24 0.290 CEN15FA291 

TT_24 0.316 CEN16FA346 TT_24 0.289 WPR11FA333 

TT_24 0.315 ERA15FA139 TT_24 0.289 WPR13LA002 

TT_24 0.313 CEN09LA061 TT_24 0.286 ERA16LA201 

TT_24 0.307 WPR09LA026 TT_24 0.286 CEN09LA385 

TT_24 0.305 LAX00FA170 TT_24 0.284 LAX04LA110 

TT_24 0.305 WPR13FA269 TT_24 0.284 WPR12FA044 

TT_24 0.303 ERA12FA271 TT_24 0.283 LAX06LA170 

TT_24 0.303 ATL05LA121 TT_24 0.282 CEN11LA090 

TT_24 0.301 ERA10LA280 TT_24 0.280 LAX04FA223 

Note. The topic label is Medical. The topic terms include +detect, +witness, medical, +test, +brake. The 

plus (+) indicates a parent term. 
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Text Topic Weight Report ID Text Topic Weight Report ID 

TT_25 0.237 LAX03FA116 TT_25 0.175 DEN04FA104 

TT_25 0.221 SEA02FA109 TT_25 0.173 CHI07FA052 

TT_25 0.219 CHI98FA187 TT_25 0.173 MIA07CA099 

TT_25 0.215 FTW03LA017 TT_25 0.172 SEA05LA162 

TT_25 0.207 CHI04FA205 TT_25 0.171 FTW00LA185 

TT_25 0.204 CHI99FA140 TT_25 0.171 MIA00FA126 

TT_25 0.203 DEN03FA137 TT_25 0.171 ANC06LA058 

TT_25 0.202 NYC06FA162 TT_25 0.170 DFW05LA081 

TT_25 0.201 WPR09FA316 TT_25 0.170 ATL05CA123 

TT_25 0.195 DEN05FA003 TT_25 0.170 ERA14LA149 

TT_25 0.194 NYC06FA029 TT_25 0.169 IAD05FA125 

TT_25 0.190 NYC02FA082 TT_25 0.169 ATL03FA136 

TT_25 0.188 IAD02FA075 TT_25 0.168 CEN14FA051 

TT_25 0.188 MIA98LA204 TT_25 0.168 WPR12LA047 

TT_25 0.187 DEN01FA110 TT_25 0.166 SEA07FA189 

TT_25 0.187 WPR10LA171 TT_25 0.165 LAX03FA135 

TT_25 0.185 NYC99FA213 TT_25 0.164 CEN12FA188 

TT_25 0.183 DFW06FA187 TT_25 0.164 NYC07FA056 

TT_25 0.180 CHI99FA223 TT_25 0.164 ATL99FA132 

TT_25 0.179 CHI01FA024 TT_25 0.164 LAX99FA270 

TT_25 0.178 LAX04FA019 TT_25 0.163 ANC99LA078 

TT_25 0.178 MIA08FA070 TT_25 0.162 ANC02FA038 

TT_25 0.177 IAD03FA050 TT_25 0.162 ERA12LA287 

TT_25 0.176 CHI00FA237 TT_25 0.162 CHI00LA038 

TT_25 0.176 FTW04LA191 TT_25 0.160 DFW05FA058 

Note. The topic label is Obstructions. The topic terms include +tree, +runway, main, +landing gear, +tank. 

The plus (+) indicates a parent term. 
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Appendix B 

Figures    

B1 Accident Aircraft Engine Types  

B2 Accident Aircraft Engine Numbers  

B3 Accident Aircraft Landing Gear Types  

B4 Accident Aircraft Manufacture Types  

B5 Accident Pilot Total Flight Hours  

B6 Accident Pilot Total Flight Hours in Aircraft Make  

B7 Accident Pilot Total Flight Hours in Single-engine Aircraft  

B8 Accident Pilot Total Pilot-in-Command Flight Hours  

B9 Accident Pilot Total Hours at Night  

B10 Accident Pilot Total Hours—Last 90-days  

B11 Accident Pilot Total Hours—Last 30-days 
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Figure B1 

Accident Aircraft Engine Types 

 

 

Note. Reciprocating engines are piston engines that use a propeller for thrust. A 

representative aircraft from the accident database using a reciprocating engine is a Cessna 

172. A turboprop engine integrates a turbine to drive a propeller (El-Sayed, 2017). A 

representative aircraft from the accident database is a DeHavilland DHC-3. Very simply, 

a turbofan engine has a ducted fan as an internal propeller. It operates with two air 

sources, one through the structure like a turbojet engine, the other through the fan (El-

Sayed, 2017). A representative aircraft from the accident database is a Gulfstream G-V. 

A turbojet engine creates thrust from the turbine exhaust gas (El-Sayed, 2017). A 

representative aircraft from the accident database is the Aero Vodochody L-39. The sole 

electric engine in the accident database powered a Yuneec E430 airplane. 
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Figure B2 

Accident Aircraft Engine Numbers  

 

 
 

Note. The number of single-engine aircraft = 23,501; multi-engine aircraft = 2,553. There 

were 333 reports that did not specify engine numbers. 
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Figure B3 

Accident Aircraft Landing Gear Types  

 

 
 

Note. The number of aircraft with tricycle landing gear = 17,553; tailwheel gear = 7,779; 

other gear types = 539. There were 513 reports that did not specify landing gear type. 
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Figure B4 

Accident Aircraft Manufacture Types  

 

 

Note. The number of homebuilt aircraft = 3,967; factory built = 22,413. There were seven 

reports that did not specify a manufacture type. 
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Figure B5 

Accident Pilot Total Flight Hours  

 

 

Note. The bars represent 500-hr increments. The blue bar contains the median = 1,000 

total flight hours. 
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Figure B6 

Accident Pilot Total Flight Hours in Aircraft Make  

 

Note. The bars represent 500-hr increments. The blue bar contains the median = 122 total 

flight hours in the accident aircraft make. 
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Figure B7 

Accident Pilot Total Flight Hours in Single-engine Aircraft  

 

 

Note. The bars represent 500-hr increments. The blue bar contains the median = 728 total 

flight hours in single-engine aircraft. 
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Figure B8 

Accident Pilot Total Pilot-in-Command Flight Hours  

 

Note. The bars represent 500-hr increments. The blue bar contains the median = 848 total 

flight as pilot-in-command. 
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Figure B9 

Accident Pilot Total Hours at Night  

 

Note. The bars represent 500-hr increments. The blue bar contains the median = 57 total 

flight hours as pilot-in-command. 
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Figure B10 

Accident Pilot Total Hours—Last 90-days  

 

Note. The bars represent 10-hr increments. The blue bar contains the median = 26 total 

flight hours in the previous 90-days. 
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Figure B11 

Accident Pilot Total Hours—Last 30-days 

 

Note. The bars represent 5-hr increments. The blue bar contains the median = 11 total 

flight hours in the previous 30-days. 
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Appendix C 

Variable Dictionary  

C1 Variable Dictionary 

C2 As-built Modeling Variables 
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Table C1 
 
Variable Dictionary 

 
Variable Name Variable Description Variable Type Measure 

Age Age of the pilot Interval Years 

Air-medical flight The aircraft was an air medical 

flight 

Categorical Y / N 

Aircraft damage Damage categories: destroyed, 

substantial, minor, or none 

Categorical Damage Type 

Aircraft year Aircraft year of manufacture Interval Year 

Airplane rating Mishap pilot rating in more than 

one aircraft 

Categorical Y / N 

Airport location to crash Accident location in reference to 

the airport: OFAP, ONAP, ONAS 

Categorical Location Code 

Airspace Type of airspace where the mishap 

took place 

Categorical Airspace Code 

Atmospheric lighting Records the prevailing light 

condition 

Categorical Light Code 

Basic weather conditions Basic conditions at the accident 

site 

Categorical VMC / IMC 

Biennial flight review A biennial flight review was 

accomplished 

Categorical Y / N 

Cause narrative Probable cause narrative Text Unstructured 

Causes Combined cause descriptions Text Unstructured 

Crew position code Pilot category (pilot, copilot, 

student, check pilot) 

Categorical Type 

Defining events Investigator assigned defining 

event 

Categorical Event code 

Engine type Accident aircraft engine type Categorical Type Code 

Event state State where the accident took 

place 

Categorical State ID 

Event time Time the accident took place Interval HH:MM 

Factors Combined factors descriptions Text Unstructured 

Factual narrative Factual narrative Text Unstructured 

Fixed-retractable gear Fixed or retractable gear Categorical F / R 

Flight plan activated Flight plan activated with ATC Categorical Y / N 

Flight plan type Type of flight plan filed Categorical Plan Type 
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Variable Name Variable Description Variable Type Measure 

Flight purpose Reason for the flight Categorical Reason Code 

Ground collision Accident involved a ground 

collision 

Categorical Y / N 

Highest certificate Highest pilot certificate Categorical Cert type 

Homebuilt Amateur built or manufactured Categorical Y / N 

Hours last 24-hours Hours last 24-hrs, all a/c Interval Hours 

Hours last 30-days Hours last 30-days, all a/c Interval Hours 

Hours last 90-days Hours last 90-days, all a/c Interval Hours 

IFR equipped The aircraft was IFR avionics 

equipped 

Categorical Y / N 

Incident narrative FAA Incident Narr (8020-5) Text Unstructured 

Instructional Instructional flight Categorical Y / N 

Instructor Mishap pilot holds an instructor 

rating 

Categorical Y / N 

Med certificate validity Medical certificate validity Categorical Med Val Code 

Medical certificate Medical certificate held by the 

pilot 

Categorical Med Cert Code 

Mid-air Accident involved a midair 

collision 

Categorical Y / N 

Multi-engine aircraft Multi-engine a/c Categorical Y / N 

Multi-platform instructor Mishap pilot holds an instrument 

rating 

Categorical Y / N 

Occurrence_combined Combined occurrence descriptions Text Unstructured 

Professional pilot Employed professionally as a pilot Categorical Y / N 

Report narrative Narrative summary released at 

completion of accident 

Text Unstructured 

Runway condition Condition of the runway Categorical Runway Code 

Seat occupied by pilot Seat where the pilot was sitting / 

controlling the aircraft from 

Categorical Seat Code 

Second pilot on board A second pilot was on the aircraft Categorical Y / N 

Sex Sex of the pilot Categorical M / F 

Sightseeing flight The aircraft was a site-seeing 

flight 

Categorical Y / N 

Solo student pilot Student on a solo flight Categorical Y / N 

TARGET Accident Injury level Categorical F / NF 

Total flight hours Total flight hours, all a/c Interval Hours 
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Variable Name Variable Description Variable Type Measure 

Total hours make Total hours in a/c make Interval Hours 

Total hours multi-engine Total multi-engine hours Interval Hours 

Total hours night Total night hours Interval Hours 

Total hours single-engine Total single-engine hours Interval Hours 

Total PIC hours PIC hours, all a/c Interval Hours 

VFR approach Type of VFR approach being 

flown 

Categorical Approach Code 

Visibility Prevailing visibility in statute 

miles 

Continuous Statute Miles 

Weather factors Mishap had a weather component 

cited 

Categorical Y / N 

Wind gust speed Gust wind speed in nautical miles 

per hour 

Continuous Nautical Miles 

Wind gusts indicated Indicates whether gusts were 

present 

Categorical Y / N 
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Table C2 

As-built Modeling Variables 

Variable Description Status 

Age Pilot age Included 

Airport location to crash Proximity to airport Included 

Airspace Airspace Included 

Atmospheric lighting Lighting condition Included 

Basic weather conditions Basic weather condition Included 

Crew position code Pilot category Included 

Engine type Engine type Included 

Flight plan type Type of flight plan filed Included 

Flight purpose Flight purpose Included 

Gear Gear type Included (new) 

Ground-collision On ground collision Included 

Highest certificate Highest pilot certificate Included 

Highest instructor certificate Highest instructor rating Included (new) 

Homebuilt Homebuilt aircraft Included 

Hours last 30-days Hours last 30-days, all a/c Included 

Hours last 90-days Hours last 90-days, all a/c Included 

Instructor Pilot possessed instructor rating Included (new) 

Loss of control Loss of control (air or ground) Included (new) 

Med Certificate validity Medical certificate validity Included 

Mid-air Mid air collision Included 

Multi-engine aircraft Multi-engine a/c Included 

Multi-platform instructor Instructor rated in multiple a/c Included (new) 

Number of engines Number of engines Included (new) 

Professional pilot Professional pilot Included 

Report narrative Accident summary/report Included 

Runway condition Runway condition Included (new) 

Seat occupied by pilot Seat position of accident pilot Included (new) 

Second pilot on board Second pilot on board Included 

Solo student pilot Solo student pilot Included (new) 

Systems failure System failure cited Included (new) 

TARGET Accident Injury level Included 

Total flight hours Total flight hours, all a/c Included 
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Variable Description Status 

Total hours make Total hours in a/c make Included 

Total hours night Total night hours Included 

Total hours single-engine Total single-engine hours Included 

Total PIC hours PIC hours, all a/c Included 

Weather not a factor Weather not a factor Included (new) 

Wind gust indicated Gusts indicated Included 

Air-medical flight Air medical flight Rejected on review 

Cause narrative Probable cause narrative Rejected on review 

Causes Combined cause descriptions Rejected on review 

Defining events Defining event Rejected on import 

Factors Combined factors descriptions Rejected on review 

Factual narrative Factual narrative Rejected on review 

Fixed-retractable gear Gear type Rejected on import 

Hours last 24-hours Hours last 24-hrs, all a/c Rejected on import 

Incident narrative FAA Incident Narrative (8020-5) Rejected on review 

Occurrences Combined occurrence descriptions Rejected on import 

Sex Pilot sex Rejected on review 

Sightseeing flight Sightseeing flight Rejected on review 

Total hours multi-engine Total multi-engine hours Rejected on review 

Wind factors (TT 1) +knot, +wind, +degree, +runway, +gust Included 

Fuel issues (TT 2) +fuel, +tank, +gallon, +fuel tank, 

+selector 

Included 

IMC Flight (TT 3) +controller, +radar, +advise, 

+acknowledge, +tower 

Included 

LOC-stalls (TT 4) +propeller, +nose, aft, +blade, 

+approximately 

Included 

Student pilots (TT 5) +student,  +student pilot, solo, +solo 

flight, instructional 

Included 

Forced landings (TT 6) +engine, +power, forced, +forced 

landing, +loss 

Included 

Landing gear (TT 7) +gear, gear, +landing gear, +landing, 

+extend 

Included 

Flight envelope exceedance (TT 

8) 

aircraft, +approximately, +refer, +find, 

accident aircraft 

Included 

Weather factors (TT 9) +foot, +cloud, +mile, +visibility, 

+ceiling 

Included 
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Variable Description Status 

Flight hours (TT 10) +hour, total, +time, +engine, +logbook Included 

Engine oil loss (TT 11) +oil, +rod, +connect, +cylinder, 

+number 

Included 

Directional LOC (TT 12) +normal operation, +preclude, 

+malfunction, +failure, +operation 

Included 

Braking issues (TT 13) +brake, +brake, +apply, +rudder, +wheel Included 

Water-remote airstrips  

(TT 14) 

+airstrip, +passenger, +water, +lake, 

+seat 

Included 

Excess Weight (TT 15) +takeoff, +weight, +foot, +pound, +end Included 

Instructional (TT 16) +instructor, +instruction, +instructional 

flight, instructional, +student 

Included 

Unstable approach (TT 17) +approach, +runway, final, +airport, 

+end 

Included 

Carburetor icing (TT 18) +carburetor, +heat, icing, carburetor 

heat, ice 

Included 

Loss of power (TT 19) +pump, +magneto, +valve, +cylinder, 

+spark 

Included 

Slow flight-stalls (TT 20) +witness, left, +hear, +state, +turn Included 

Flight control (TT 21) +attach, +aileron, +control, +cable, 

+remain 

Included 

Surface accidents (TT 22) +taxiway, +taxi, +runway, +park, +fire Included 

Engine component failure (TT 

23) 

+fracture, +bolt, +rod, fatigue, +surface Included 

Medical (TT 24) +detect, +witness, medical, +test, +brake Included 

Obstructions (TT 25) +tree, +runway, main, +landing gear, 

+tank 

Included 

TextCluster_1 +landing  +report  +runway  +gear  left  

+land  +condition  visual  +damage  

+plan  +student  +nose  +prevail  +state  

+time 

Not used in modeling 

TextCluster_2 +power  +engine  +fuel  +tank  +hour  

+position  +reveal  medical  last  +record  

+issue  +hold  +wing  +damage  

+instrument 

Not used in modeling 
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Variable Description Status 

TextCluster_3 +record  weather  last  medical  +locate  

+hold  +issue  +instrument  +mile  +hour  

+impact  +knot  +turn  +instructor  

+wind 

Not used in modeling 

TextCluster_4 +report  +runway  left  +landing  

+condition  visual  +plan  +land  

+damage  +state  +prevail  +sustain  

+time  +nose  +operate 

Not used in modeling 

TextCluster_SVD1 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD2 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD3 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD4 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD5 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD6 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD7 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD8 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD9 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD10 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD11 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD12 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD13 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD14 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD15 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD16 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD17 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD18 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD19 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD20 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD21 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD22 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD23 Text Cluster SVD variable Not used in modeling 

TextCluster_SVD24 Text Cluster SVD variable Not used in modeling 
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Appendix D 

NTSB Most Wanted List Areas
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NTSB Most Wanted List Areas 

Year Issue Area 

2019-2000 Eliminate Distractions 

2019-2000 End Alcohol and Other Drug Impairment 

2019-2000 Improve the Safety of Part 135 Aircraft Flight Operations 

2019-2000 Reduce Fatigue-Related Accidents 

2019-2000 Strengthen Occupant Protection 

2017-2018 Eliminate Distractions 

2017-2018 End Alcohol and Other Drug Impairment 

2017-2018 Ensure the Safety Shipment of Hazardous Materials 

2017-2018 Expand Recorder Use to Enhance Safety 

2017-2018 Prevent Loss of Control in Flight in General Aviation 

2017-2018 Reduce Fatigue-Related Accidents 

2017-2018 Require Medical Fitness 

2017-2018 Strengthen Occupant Protection 

2016 Disconnect from Deadly Distractions 

2016 End Substance Impairment in Transportation 

2016 Expand the Use of Recorders to Enhance Transportation Safety 

2016 Prevent Loss of Control in Flight in General Aviation 

2016 Reduce Fatigue-Related Accidents 

2016 Require Medical Fitness for Duty 

2016 Strengthen Occupant Protection 

2015 Disconnect from Deadly Distractions 

2015 End Substance Impairment in Transportation 

2015 Enhance Public Helicopter Safety 

2015 Prevent Loss of Control in Flight in General Aviation 

2015 Require Medical Fitness for Duty 

2015 Strengthen Procedural Compliance 

2014 Address Unique Characteristics of Helicopter Operations 

2014 Eliminate Distraction in Transportation 
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Year Issue Area 

2014 General Aviation: Identify and Communicate Hazardous Weather 

2014 Improve Fire Safety in Transportation 

2014 Strengthen Occupant Protection in Transportation 

2013 Eliminate Distraction in Transportation 

2013 Improve Fire Safety in Transportation 

2013 Improve General Aviation Safety 

2013 Improve Safety of Airport Surface Operations 

2013 Preserve the Integrity of Transportation Infrastructure 

2011-2012 Addressing Human Fatigue 

2011-2012 General Aviation Safety 

2011-2012 Pilot & Air Traffic Controller Professionalism 

2011-2012 Recorders 

2011-2012 Runway Safety 

2011-2012 Safety Management Systems 

Note. Adapted from NTSB (2020a) and NTSB (n.d.b).
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Appendix E 

FAA GA Safety Enhancement Topic Fact Sheets
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FAA GA Safety Enhancement Topic Fact Sheets 

The following list of fact sheets was compiled from the FAA Safety Briefing site (FAA, 

2020a):  

Topic Area Title 

Aerodynamics Angle of Attack Awareness 

 Best Glide Speed and Distance 

  

Aeromedical Flight After Use of Medication with Sedating 

Effects 

 Pilots and Medication 

 Spatial Disorientation 

  

Aeronautical Decision Making Aeronautical Decision Making 

 Compliance Philosophy 

 Flight Data Monitoring 

 Flight Risk Assessment Tools (FRAT) 

 Introduction to Safety Risk Management 

 Managing Distractions 

 Managing Unexpected Events 

 Personal Minimums 

 Single-pilot Crew Resource Management 

 Startle Response 

  

Controlled Flight Into Terrain CFIT/Automation Overreliance 

 Controlled Flight Into Terrain 

  

Expanding Your Horizons General Aviation Survival 

 Mountain Flying 

 Pilot Proficiency Training 
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Topic Area Title 

Flight Training and Proficiency Avoiding Pilot Deviations 

 Emergency Procedures Training 

 Enhanced Vision Systems 

 Experimental/Amateur-Built Flight Testing 

 Flight Training after Period of Inactivity 

 Fly the Aircraft First 

 Maneuvering Flight 

 Runway Safety 

 Transition Training 

 VMC Scenario Training 

  

Mechanical, Maintenance, and Systems Advanced Preflight After Maintenance 

 Approval for Return to Service 

 Engine Maintenance and Performance 

Monitoring 

 Fuel Monitoring 

 Ignition Systems/FADEC 

 Maintenance Placards 

 Regulatory Roadblock Reduction 

 Smart Cockpit Technology 

  

Takeoff and Landing Aircraft Performance and Calculations 

 Aircraft Performance and Monitoring 

 Stabilized Approach and Landing 

  

Weather Personal Minimums and Weather Cameras 

 Personal Minimums for Wind 

 Use of Weather Information. 

 Weather Technology 

 



265 

 

APPENDIX F 

Data Mining Checklist 
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Dissertation TM Checklist 
using SAS® Enterprise Miner™ 

1. Text Pre-Processing 
Determine Data Sources Complete 
Download Data Complete 
Clean Data Complete 
Determine Variables Complete 
Text Import Complete 

 
2. Text Parsing   

Text Parsing Node 
Setup Node Complete 
Run Node Complete 
Review Results Complete 
Make Adjustments As req. 

Detect Properties 
Different Parts of Speech Yes 
Noun Groups On 
Multi-word Terms As req. 
Find Entities None 
Custom Entities -- 

Ignore Properties 
Ignore Parts of Speech As req. 
Ignore Types of Entities -- 
Ignore Types of Attributes As req. 

Synonyms Properties 
Stem Terms Yes 
Synonyms As req. 

Filter Properties 
Start List As req. 
Stop List As req. 
Select Languages As req. 

Text Parsing Node Report Properties 
Number of Terms to Display 20,000 
 
3. Transformation 

Text Filter Node 
Setup Node Complete 
Run Node Complete 
Review Results Complete 
Make Adjustments As Required 

Spelling Properties 
Check Spelling No 

Weightings Properties 
Frequency Weighting None 
Term Weight Inverse Doc Freq 

Term Filters Properties 
Min Number of Documents  
Max Number of Terms  
Import Synonyms As req. 

Document Filters Properties 
Search Expression  
Subset Documents  

Results Properties 
Filter Viewer  
Spell-Checking Results  
Exported Synonyms  

Text Filter Node Report Properties 
Terms to View  
Number of Terms to Display  
 
4. Document Analysis 

Text Cluster Node 
Setup Node Complete 
Run Node Complete 
Review Results Complete 
Make Adjustments As req. 

General Train Properties 
Variables As req. 

Transform Properties 
SVD Resolution Low 
Max SVD Resolution 100 

Cluster Properties 
Exact or Max # Default 
# of Clusters 40 
Cluster Algorithm Hierarchical 
Descriptive Terms Default 

Results Properties 
Topic Viewer 15 
 

Text Topic Node 
Setup Node Complete 
Run Node Complete 
Review Results Complete 
Make Adjustments As Required 

General Train Properties 
Variables Edit as required 
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User Topics Edit as required 
Term Topic Properties 

# of Single-term Topics Default 
Learned Topics Properties 

# of Multi-term Topics Default 
Correlated Topics Default 

Results Properties 
Topic Viewer Edit as required 

 
Text Profile Node 

Setup Node Complete 
Run Node Complete 
Review Results Complete 
Make Adjustments As Req. 

Train Properties 
Variables Default 
Max # of Terms Default 
Date Binning Interval Default 
 

Text Rule Builder Node 
Setup Node Complete 
Run Node Complete 
Review Results Complete 
Make Adjustments As Req. 

Train Properties 
Variables Default 
Generalization Error Medium 
Purity of Rules Medium 
Exhaustiveness Medium 

Score Properties 
Content Cat. Code  
Change Target Values  

Dissertation DM Checklist 
using SAS® Enterprise Miner™ 

1. Data Pre-Processing 
Determine Data Sources Complete 
Download Data Complete 
Clean Data Complete 
Determine Variables Complete 
Data Import Complete 

 
2. Sample 

Data Partition Node 
Setup Node Complete 
Run Node Complete 
Review Results Complete 
Make Adjustments As Req. 

Train Properties 
Variables As Req. 
Output Type Data 
Partitioning Method Default 
Random Seed 12345 
Data Set Allocation 
Training 60 
Validation 20 
Test 20 

Report Properties 
Interval Targets Yes 
Class Targets Yes 
 
3. Explore 

StatExplore Node 
Setup Node Complete 
Run Node Complete 
Review Results Complete 
Make Adjustments As Req. 

Train Properties 
Variables As Req. 
Number of Observations 100000 
Validation No 
Test No 
Interval Distributions Yes 
Class Distributions Yes 
Level Summary Yes 
Use Segment Variables No 
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Cross-Tabulation As Req. 
Hide Rejected Variables Yes 
# of Selected Variables 1000 
Chi-square Yes 
Interval Variables No 
Number of Bins 5 
Correlations Yes 
Pearson Correlations Yes 
Spearman Correlations No 

 
4. Modify 

Impute Node 
Setup Node Complete 
Run Node Complete 
Review Results Complete 
Make Adjustments As Required 

Train Properties 
Variables  
Non-Missing Variables  
Missing Cutoff  

Class Variables 
Default Input Method  
Default Target Method  
Normalize Values  

Interval Properties 
Default Input Method  
Default Target Method  

Default Constant Value 
Default Character Value  
Default Number Value  

Method Options 
Random Seed  
Tuning Parameters  
Tree Imputation  

Score Properties 
Hide Original Variables  
 
 
 

Indicator Variables 
Type  
Source  
Role  

Report Properties 

Validation and Test Data No 
Distribution of Missing  

 
Transform Variables Node 

Setup Node Complete 
Run Node Complete 
Review Results Complete 
Make Adjustments As Req. 

Train Properties 
Variables  
Formulas  
Interactions  
SAS Code  

Default Methods 
Interval Inputs  
Interval Targets  
Class Inputs  
Class Targets  
Treat Missing as Level  

Sample Properties 
Method  
Size  
Random Seed 12345 
 

Optimal Binning 
Number of Bins  
Missing Values  

Grouping Method 
Cutoff Value  
Group Missing No 
Number of Bins  
Add Min. Value to Offset Value  
Offset Value  

Score Properties 
Use Meta Transformation  
Hide  
Reject  

Report Properties 
Summary Statistics Yes 
 
5. Model 

AutoNeural Node 
Setup Node Complete 
Run Node Complete 
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Review Results Complete 
Make Adjustments As Required 

Train Properties 
Variables As Req. 

Model Options 
Architecture Single Layer 
Termination Overfitting 
Train Action Search 
Target Layer Error Function Default 
Maximum Iterations 8 
Number of Hidden Units 2 
Tolerance Medium 
Total Time One Hour 

Increment and Search 
Adjust Iterations Yes 
Freeze Connections No 
Total # of Hidden Units 30 
Final Training Yes 
Final Iterations 5 

Activation Functions 
Direct Yes 
Exponential No 
Identity No 
Logistic No 
Normal Yes 
Reciprocal No 
Sine Yes 
Softmax No 
Square No 
Tanh Yes 

Score Properties 
Hidden Units No 
Residuals Yes 
Standardization No 

 
Neural Network Node 

Setup Node Complete 
Run Node Complete 
Review Results Complete 
Make Adjustments As Req. 

Decision Tree Node 
Setup Node Complete 
Run Node Complete 
Review Results Complete 

Make Adjustments As Req. 
Train Properties 

Variables As Req. 
Interactive As Req. 
Import Tree Model No 
Tree Model Data Set -- 
Use Frozen Tree No 
Use Multiple Targets No 

Splitting Rule 
Interval Target Criterion ProbF 
Nominal Target Criterion ProbChisq 
Ordinal Target Criterion Entropy 
Significance Level 0.2 
Missing Values Most corr. Branch 
Use Input Once No 
Maximum Branch 2 
Maximum Depth 6 
Minimum Categorical Size 5 

 
Node 

Leaf Size 5 
Number of Rules 5 
Number of Surrogate Rules 0 
Split Size . 

Split Search 
Use Decision No 
Use Priors No 
Exhaustive 5000 
Node Sample 20000 

Subtree 
Method Assessment 
Number of Leaves 1 
Assess. Measure Misclassification 
Assessment Fraction .25 

Cross Validation 
Perform Cross Validation NO 
Number of Subsets 10 
Number of Repeats 1 
Seed 12345 

Observation-Base importance 
Obs.-based Importance No 
Number single Var Importance 5 

P-Value Adjustments 
Bonferroni Adjustment Yes 
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Time of Bonferroni Adjust. Before 
Inputs  
Number of Inputs 1 
Depth Adjustment Yes 

Output Variables 
Leaf Variable Yes 

Interactive Sample 
Create Sample Default 
Sample Method Random 
Sample Size 10000 
Sample Seed 12345 
Performance Disk 

Score Properties 
Variable Selection Yes 
Leaf Role Segment 

Report Properties 
Precision 4 
Tree Precision 4 
Class Target Node Color %  … Class. 
Interval Target Node Color AVE 
Node Text  

 
Gradient Boosting Node 

Setup Node Complete 
Run Node Complete 
Review Results Complete 
Make Adjustments As Required 

Train Properties 
Variables As Required 

Series Options 
N Iterations 50 
Seed 12345 
 
Shrinkage 0.1 
Train Proportion 60 

Splitting Rule 
Huber M-Regression No 
Maximum Branch 2 
Maximum Depth 2 
Minimum Categorical Size 5 
Re-use Variable 1 
Categorical Bins 30 
Interval Bins 100 
Missing Values Use in search 

Performance Disk 
Node 

Leaf Fraction 0.001 
Number of Surrogate Rules 0 
Split Size . 

Split Search 
Exhaustive 5000 
Node Sample 20000 

Subtree 
Asses. Measure Misclassification 

Score Properties 
Subseries Best Assess. Value 
Number of Iterations 1 
Create H Statistic No 
Variable Selection Yes 

Report Properties 
Observation Based Importance No 
Number Single Var Importance 5 
 

Regression Node 
Setup Node Complete 
Run Node Complete 
Review Results Complete 
Make Adjustments As Required 

Train Properties 
Variables As Required 

Equations 
Main Effects Yes 
Two-Factor Interactions No 
Polynomial Terms No 
Polynomial Degree 2 
User Terms No 
Term Editor -- 

Class Targets 
Regression Type Log. Regression 
Link Function Logit 

Model Options 
Suppress Intercept No 
Input Coding Deviation 

Model Selection 
Selection Model Stepwise 
Selection Criteria None 
Use Selection Defaults Yes 
Selection Option -- 
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Optimization Options 
Technique Default 
Default Optimization Yes 
Max Iterations 0 
Max Function Cells 0 
Maximum Time 1 hour 

Convergence Criteria 
Uses Defaults Yes 
Options -- 

Output Options 
Confidence Limits No 
Save Covariance No 
Covariance No 
Correlation Yes 
Statistics No 
Suppress Output No 
Details Yes 
Design Matrix No 

Score Properties 
Excluded Variables Reject 
 

HP Forest Node 
Setup Node Complete 
Run Node Complete 
Review Results Complete 
Make Adjustments As Required 

Train Properties 
Variables As Req. 

Tree Options 
Maximum Number of Trees 100 
Seed 12345 

Type of Sample Proportion 
Prop. of Obs in Each Sample .6 
Number of Obs in Each Sample -- 

Splitting Rule Options 
Maximum Depth 20 
Missing Values Use in Search 
Minimum Use in Search 1 
# of vars to consider  
Significance Level 0.05 
Max Categories in Split Search 30 
Minimum Category Size 5 
Exhaustive 5000 

Node Options 
Method for Leaf Size Default 
Smallest % of Obs in Node .00001 
Smallest # of Obs in Node 1 
Split Size  
Use as Modeling Node Yes 

Score Properties 
Variable Selection  
Variable Importance Method  
Number of Variables to Consider  
Cutoff Fraction  

 
6. Assess 

Model Comparison Node 
Setup Node Complete 
Run Node Complete 
Review Results Complete 
Make Adjustments As Required 
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