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Abstract 

Hospitals with strong and consistently activated rapid response teams (RRTs) have significantly 

fewer cardiac arrests. Early recognition of clinical deterioration supports the timely activation of 

RRTs, which increases earlier assessment and intervention. Current early warning tools are not 

sufficient and reliable for recognizing patient deterioration, and they are evolving, incorporating 

artificial intelligence (AI) to identify clinical decline much earlier. The project organization had 

previously implemented the medical early warning score tool into the RRT nurses’ practice to 

prioritize patient assessments, but this was not sustained due to its unreliability in identifying 

patients at risk. 

Aiming to reduce the number of in-hospital cardiac arrests by implementing AI to recognize and 

notify the RRT of patient deterioration, the primary key performance indicator was the number 

of in-hospital cardiac arrests outside the intensive care setting. Outcomes data also included the 

number of rapid responses pre- and post-implementation. Qualitative data were collected from 

the project team and RRT nurses during the implementation and self-assessment. 

Outcomes showed decreased cardiac arrests from 13 to 9, but the pre- and post-intervention 

cardiac arrest rate remained the same at 7.2%. The number and rate of rapid responses increased 

as expected based on previous evidence from 1.04 to 1.25 per day, indicating that the addition of 

AI technology stimulated recognition of patient deterioration. With more time and data as we 

continue to improve AI implementation, we can better understand the true effect. Future 

utilization of AI technology to support faster, more reliable clinical warnings should be 

considered. 

Keywords:  artificial intelligence, rapid response, cardiac arrest, quality improvement 
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Section II: Introduction 

Problem Description 

Approximately 200,000 patients a year will have a cardiac arrest while hospitalized 

(Nallamothu et al., 2018), and of those, only 20% will survive to discharge (Churpek et al., 

2012). Studies show that delays in recognizing deterioration can lead to cardiac arrest (Subbe, 

Duller, & Bellomo, 2017). Every minute of a delay in treatment of cardiac arrest can decrease 

the survival rate by 10% (Nallamothu et al., 2018). Despite standard treatment algorithms for 

advanced cardiovascular life support, variations in early interventions continue to correlate with 

low cardiac arrest survival rates (Nallamothu et al., 2018). Rapid response teams (RRTs) were 

created to address this gap, with early detection and interventions to prevent cardiac arrest and 

increase survival rates (Bingham et al., 2018). Hospitals with a rapid response activation rate of 

greater than 15 per 100,000 discharges had a significant decrease in the number of cardiac arrests 

(Astroth, Woith, Jenkins, & Hesson-McInnis, 2017). RRTs are effective if activated; however, 

RRT activation is dependent on clinical staff monitoring, identifying, and initiating the call to the 

team for help (Subbe et al., 2017). Automation of reliant early warning systems can increase 

rapid assessment and intervention, which could be achieved by using a real-time RRT calculation 

and notification system that is based on a statistically derived and validated score (Kang et al., 

2016). 

The organization for this evidence-based change of practice project setting is a non-

profit, acute care hospital in California.  The organization has 443 licensed beds with two 

campuses, which include 300 licensed beds at the Mountain View campus and 143 licensed beds 

at the Los Gatos campus. On average, the hospital has 202,662 outpatient encounters yearly and 
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serves 400,000 annually (El Camino Hospital, 2019). The staff includes 1,300 registered nurses, 

400 active physicians, 35 pharmacists, 110 laboratory staff, and 54 respiratory therapists.   

In January 2006, in response to the Institute for Healthcare Improvement’s 100,000 Lives 

Campaign (Simmonds, 2005), the organization implemented a rapid response alert procedure. 

The new procedure allowed any hospital staff to call a rapid response alert if a patient met any of 

the defined clinical criteria. Shortly after the RRT formed, the RRT nurses began proactively 

reviewing active patient records to identify deteriorating patients. The chart review process was 

time consuming, and it did not have a set methodology, so practice varied. In November 2015, 

with the implementation of a new electronic health record (EHR), the decision was made to use 

the medical early warning score (MEWS) tool to prioritize which patients the RRT nurses would 

proactively evaluate for deterioration. However, because MEWS did not reliably and accurately 

identify patients at risk for deterioration, the tool was not incorporated into the RRT nurses’ daily 

practice. 

The organization’s response to clinical deterioration was shifting. Between January 1, 

2018, and December 31, 2018 (calendar year 2018) there were 63 code blues for cardiac arrest 

and 648 rapid response alerts. Between January 1, 2019, and December 31, 2019 (calendar year 

2019) there was an increase of code blues for cardiac arrests to 80 and a decrease of rapid 

response alerts to 356. The organization’s performance was compared with the external risk-

adjusted benchmark information from Premier Quality Advisor Top Quartile, and while the 

hospital’s risk-adjusted mortality index was 1.0 and on target, the organization had an internal 

goal for an improved quality outcome of a 0.95 mortality index score.  
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Available Knowledge 

PICOT Question 

 The patient/problem, intervention, comparison, outcome, time (PICOT) question for this 

project is: In adult inpatients (P), how does implementation of an artificial intelligence based 

automated early warning system (I), compared to nurse-driven activation of rapid response (C), 

effect in-hospital cardiac arrests outside the ICU setting (O) over a six-month period (T)? 

Search Methodology 

A search of the literature was limited to adult inpatient studies in English between 2014 

and 2020. Cochrane, CINAHL, PubMed, Medline, and Scopus databases were used to find 

articles related to the PICOT question and resulted in 4,758 studies (280 Cochrane, 2,966 

CINAHL, 53 PubMed, 1,458 Medline, and one Scopus). Narrowing the search words to only 

auto* and rapid response and cardiac arrest, safety, and quality resulted in 71 peer-reviewed 

studies. Studies considered for review met the following inclusion criteria: focused on adult 

patients (> 18 years old) in the acute-care hospital setting; described the impact of rapid response 

teams on quality outcomes; compared clinical deterioration recognition tools; offered 

interventions shown to enhance rapid response systems; were published between January 2014 

and September 2020; and were published in English. The exclusion criteria were articles that did 

not contain original research; included pediatric patients; limited to specialty area (e.g., 

emergency department); conducted outside of the acute-care hospital setting; focused on the 

rapid response team makeup; analyzed the cost of rapid response teams; had a limited sample 

size, or that focused on hardware. After eliminating articles not relevant to the study aim or 

duplicative, 30 studies remained for manual review. 
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Search Outcome 

The Johns Hopkins research evidence appraisal tools (Dang & Dearholt, 2018) were used 

to determine the level and quality of each of the articles reviewed. An evidence evaluation table 

was then created using Johns Hopkins individual evidence summary tool (Dang & Dearholt, 

2018) to summarize the articles (see Appendix A). Twenty two studies were excluded: five were 

expert opinion, three focused on the RRT development, three had limited sample size, one had 

weak results, one focused on hardware, and nine others had findings covered in higher quality 

articles. The 11 reviewed articles are the most relevant and robust for the area of interest. The 

evidence levels were limited to the most rigorous studies of good to high quality, which resulted 

in three Level I systematic reviews (Gao et al., 2007; Lyons, Edelson, & Churpek, 2018; Winters 

et al., 2013); four Level III quantitative studies (Angel, 2016; Churpek et al., 2012; Churpek, 

Yuen, Park, Gibbons, & Edelson, 2014; Subbe et al., 2017); two Level III qualitative studies 

(Astroth, Woith, Stapleton, Degitz, & Jenkins, 2013; Wakeam, Hyder, Ashley, & Weissman, 

2014); one Level III mixed methods study (Astroth et al., 2017); and one Level V article, a 

summary of expert opinion from a national conference (Rojas, Shappell, & Hube, 2017). 

Review of the Evidence   

A review of the literature helped to define the problem further and to identify quality and 

safety initiatives to improve patient outcomes. Angel (2016) described the evidence on the value 

of a high-quality RRT. Although this study had a limited sample size, the researchers of this 

retrospective correlational study, suggested that early intervention from a knowledgeable and 

experienced RRT could reduce the occurrence of cardiac arrest and improve patient outcomes.   

Focusing on the strengths and weaknesses of rapid response systems (RRSs), Astroth et 

al. (2013) conducted a qualitative study and found that team characteristics and unit culture were 
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barriers to staff calling rapid responses. The researchers identified level of nursing experience 

and level of education as barriers to RRT activation (Astroth et al., 2013). The strengths of the 

RRT were further examined by Astroth et al. in 2017, in a study in which they developed and 

tested a tool to identify the specific factors and barriers to RRT activation. They concluded that 

RRTs that included not only team members that were knowledgeable, but supportive in sharing 

their knowledge with the staff that called the rapid response, were more successful in promoting 

the use of the RRS and contributed positively to the organizational culture. 

Within a quality assurance framework, Lyons et al. (2018) reviewed the current aspects 

of RRSs, identifying that while rapid responses may decrease inpatient mortality and the number 

of cardiac arrests, future work on understanding the human factors that influence RRSs, as well 

as possible advancements in monitoring and informatics technologies that could enhance these 

systems, is needed. 

Incorporating automation from early warning systems into an RRS was tried and 

evaluated by Subbe et al. (2017). This study found that quality was improved with automation, as 

there was an increase in the number of RRT alerts. With a decrease in the rate of cardiac arrest 

from 3.5% in the control period to 0.4% in the intervention period, the researchers concluded that 

the automated warning system had a significant influence in preventing cardiac arrest. 

In their study describing the quality of the available track and trigger warning systems, 

Gao et al. (2007) reviewed the reliability, validity, and utility of these tools. They found the 

sensitivity and positive predictive values were low, retrospectively, with median (quartiles) of 

43.3 (25.4-69.2) and 36.7 (29.3-43.8). This systematic review concluded that there is low 

sensitivity of hospital-developed warning systems, which leaves patients vulnerable to not 

having their clinical deterioration recognized and should, therefore, be used only to aide with 
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clinical assessments. After completing a meta-analysis, Winters et al. (2013) concluded that the 

implementation of an RRS was associated with a statistical reduction in non-ICU 

cardiorespiratory arrest (RR, 0.66 [95% CI, 0.54 to 0.80]). Focusing on the need for quality 

improvement of RRTs, they summarized that outside of the intensive care unit (ICU), signs of 

patient deterioration are frequently unrecognized, track and trigger tools are not reliant, and 

RRTs are underutilized.  

Addressing the patient safety issue of delay in clinical intervention, Wakeam et al. (2014) 

identified failure to rescue barriers, such as poor communication, insufficient training, and lack 

of ownership. They then identified strategies for improvement, which included having RRTs, 

utilizing data from the EHR to recognize signs of deterioration earlier, structured communication 

tools, and standardized care pathways.   

More recently, Rojas et al. (2017) summarized annual conference presentations from the 

International Conference on Rapid Response Systems and Medical Emergency Teams to form a 

synopsis of the current thoughts in the field. Overall, the investigators found there is a strong 

adoption of RRSs. However, they concluded, there is a need for integration of subjective and 

objective data from the EHRs to develop safer, more reliable, and accurate RRS notifications. 

Churpek et al. (2012) published their work on developing a more accurate cardiac arrest 

prediction tool. The researchers found that the multivariable logistic regression tool they 

developed more accurately predicted cardiac arrest a median of 48 hours sooner than the 

commonly used MEWS. Later, the tool was expanded to incorporate vital sign, demographic, 

and laboratory data already available in the EHR (Churpek et al., 2014). Churpek et al. (2016) 

further expanded this work in a study comparing the accuracy of machine learning methods to 

MEWS for detecting clinical deterioration. Overall, the researchers found clinical deterioration 
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was more accurately predicted by machine learning methods (AUC 0.77 vs. 0.74; p < 0.01) than 

the MEWS (AUC 0.70 [95% CI 0.70–0.70]). These findings support the PICOT intervention of 

implementing an artificial intelligence (AI) based automated early warning system to support 

RRT activation. 

Rationale 

Description of the Conceptual Framework 

A combination of Lippitt’s classic theory on the dynamics of planned change (Lippitt, 

Watson, & Westley, 1958) and the integrated Promoting Action on Research Implementation in 

Health Services (i-PARIHS) framework (Kitson & Harvey, 2016) along with the nursing process 

forms the conceptual framework that guided the search for evidence and the development of this 

evidence-based, change of practice, quality improvement project (see Appendix B). In 1958, 

Lippitt et al. were the first to describe Lippitt’s phases of change theory as an evolution of 

Lewin’s three-step change theory. Aligning with the nursing process of assessment, planning, 

implementation, and evaluation, Lippitt’s theory of change is broken down into seven phases 

(Mitchell, 2013). Developed in 2016, the i-PARIHS framework by Alison L. Kitson and Gillian 

Harvey describes that a successful implementation includes the quality of the evidence, the 

context of the evidence, and the level of facilitation needed to implement familiarity translation 

into practice (Kitson et al., 2008). The i-PARIHS framework further adds direction for the 

various levels of necessary facilitation and the facilitator’s role in implementing knowledge 

translation (Kitson & Harvey, 2016). This framework guided the review of the evidence 

establishing how the work is to be sequenced. Lippitt’s change theory defines each of the project 

phases, and i-PARHIS describes the change agent activities.  
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The review of the evidence began with the assessment phase, which identified three 

studies (Angel, 2016; Gao et al., 2007; Subbe et al., 2017) that added to defining the problem.  

These studies also related to Phase 1, diagnose the problem of Lippitt’s change theory and the i-

PARHIS framework characteristics of the innovation, in which the facilitator identifies the 

problem. Next, the evidence reviewed focused on a study that analyzed the characteristics of 

high-quality RRSs (Winters et al., 2013), aligning with Lippitt’s Phase 2, assess the 

motivation/capacity for change, and i-PARHIS recipients focus area. In Lippitt’s Phase 4, select 

a progressive change object, and i-PARHIS inner context local level, the intervention is 

described as the evolution of a reliable machine learning automated RRS (Churpek et al., 2012; 

Churpek et al., 2016). Finally, with sustainment in mind, the research focused on the 

characteristics of top-performing hospitals (Rojas et al., 2017), how to address common barriers 

for effective RRTs (Astroth et al., 2017; Astroth et al., 2013), and how RRTs incorporate 

technology to support human characteristics. This evidence can be used to guide project 

implementation, which relates to Lippitt’s Phase 6, maintain change, and the i-PARHIS outer 

context focus area (Kitson & Harvey, 2016; Mitchell, 2013). 

Specific Aims 

The project aim was to develop, implement and evaluate a RRT activation program to 

reduce in-hospital cardiac arrest outside the ICU setting by increasing the reliability of RRT 

activation through the implementation of an AI driven notification system by July 2020. Epic’s 

machine learning deterioration index AI module was implemented into the target organization’s 

EHR. Using the plan-do-study-act (PDSA) quality improvement process, automated alerting was 

integrated into the established RRS to increase earlier recognition, notification, and patient 
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deterioration intervention and, therefore, reduce in-hospital cardiac arrests outside the ICU 

setting.  
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Section III: Methods 

Context 

The key stakeholders included the project team members, the organization’s CPR 

committee, direct care nursing staff, respiratory therapy staff, and medical staff. The team, led by 

the DNP student, the nursing director of cardiovascular services, included representatives from 

clinical informatics, patient care services, the RRT, and clinical education. The steering 

committee, also led by the DNP student, included the chief nursing officer (CNO), chief medical 

officer (CMO), chief information officer (CIO), nursing director for patient care services, 

nursing director for Los Gatos campus, and nursing director of clinical education.   

During the planning phase, executive support of the CNO, CMO, and CIO was acquired, 

and a letter of support from the CNO was obtained (see Appendix C). The project charter was 

then approved by both the CNO and CIO (see Appendix D). An overview of the project idea was 

then communicated to the organization’s clinical leaders, the CPR committee, and the RRT for 

buy-in and support. 

Intervention 
 

The project’s scope was to implement Epic’s deterioration index AI module and 

incorporate automated alerting functionality into the organization’s current rapid response 

process. The main objective was to form a team to determine the automated notification criteria, 

using the AI technology to augment RRT activation and develop new workflows to incorporate 

the AI into the RRT nurses’ routine assessments of patients at high risk for deterioration. The 

team defined the deterioration risk levels, established the appropriate automated notification 

criteria, determined the display formatting of deterioration index information in the EHR, and 

developed the new workflows.  
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The deterioration index AI model is an ordinal logistic regression program that arranges 

patients into risk categories based on the likelihood that patients will be transferred to the ICU, 

have a rapid response alert, cardiac arrest, or die during their hospital stay. Epic used information 

from 2012 to 2016 from approximately 325,000 observations over 130,000 patient encounters to 

develop the deterioration index AI model (Epic, 2020). This tool examines demographic 

information, vital signs, lab results, and nursing assessments for each patient each time a new 

result or observation is documented in the EHR, resulting in approximately 125 points of 

analysis.   

The AI analysis produced a deterioration index score for each adult inpatient.  This score 

was used as the primary criterion for automated notifications. Initially, the team planned to alert 

the entire RRT with automated notifications. However, during the implementation, the team 

determined that only the RRT nurse and the nursing unit charge nurses would receive automated 

notifications via the organization’s wearable communication device, in the form of a text 

message and an audio tone, later as a full text to speech announcement.   

During the PDSA implementation iterations, the logic rules for the automated 

notifications evolved based on the RRT nurses’ feedback on the sensitivity to reduce the risk of 

alert fatigue.  Based on The Joint Commission (TJC) recommendations related to alarm systems 

(TJC, 2013), the team identified situations when notifications were not clinically necessary and 

tailored notification settings for individual patient groups to minimize alerts. The automated 

notifications’ final criteria were adult inpatients with a deterioration index value of 62 or more or 

a 15 or more point increase of the patient’s deterioration index score within 35 minutes.  Patients 

in procedural areas and patients with comfort care orders or admitted as general inpatient hospice 

were excluded. To continue minimizing alerts, once indicated in the EHR that the patient’s 
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condition was reviewed, notifications would be suppressed for that patient for 8 hours and 24 

hours for patients with do not resuscitate (DNR) code status orders.  

The team also developed new standard workflows for the RRT nurses (see Appendix E).  

A change of shift workflow detailed the RRT nurse’s process for reviewing patients with clinical 

deterioration from the previous shift and any patients in the included departments meeting the 

defined high-risk threshold for deterioration. Next, workflows were designed on how the RRT 

nurses would track significant changes in the patient’s deterioration index score, any AI-initiated 

RRTs, and any staff-initiated RRTs. The expected outcomes were to increase the number of 

rapid responses and decrease the number of in-hospital cardiac arrests outside the ICU setting. 

Gap Analysis 

A gap analysis was conducted comparing the organization’s current state and the future 

state with the proposed project intervention in place (see Appendix F). The current state was that 

the organization had an established RRT that was being activated if a patient met any defined 

clinical criteria or if the staff had concerns about the patient’s clinical presentation. The gaps 

identified were that although the RRT nurses were taught to use the MEWS tool to assess 

patients for deterioration proactively and to use the tool to prioritize which patients they would 

conduct an in-person assessment, because MEWS did not reliably and accurately identify 

patients at risk for decline, it was not adopted into practice. There was also a possible failure to 

recognize patient deterioration and delays in RRT activation, as reflected by an increase in code 

blue cardiac arrest and decreased RRT activations from 2018 to 2019. This information 

supported the future state that addressed the need to recognize patient deterioration and the 

augmentation of  RRT activation. The literature also supported the earlier activation of RRTs 

through an automated alert system based on AI technology to decrease the rate of in-hospital 
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cardiac arrests. Overall, the previous literature and the organization’s current state and gaps 

supported this project to implement Epic’s deterioration index AI module into the organization’s 

RRS to increase earlier identification, notification, and intervention to improve clinical outcomes 

and reduce cardiac arrest. 

Gantt Chart   

A Gantt chart provided a detailed list of the needed tasks and included the anticipated 

start and end dates throughout the project phases. The Gantt chart served as a tool to track 

progress throughout the phases, and when needed, adjustments were made to the schedule. Based 

on the conceptual framework, the Gantt chart was broken down into five sections: assessment, 

planning, implementation, evaluation, and project termination. Each section included critical 

milestones for the project (see Appendix G). 

The two critical milestones in the assessment phase were determining the feasibility and 

obtaining support. The assessment phase was February to April of 2019. The first milestone was 

to establish that the intervention was even feasible and that its EHR system could support AI. 

Once that was confirmed, the DNP student was able to move to the milestone of securing 

executive sponsorship. A Project Charter was presented to the CIO, CNO, and CMO to secure 

the project’s support. 

In the second phase, planning began in May 2019 and lasted through January 2020. The 

key milestones included establishing the workgroup, defining project scope, describing the 

detailed intervention specifications, and designing communication and training plans. This phase 

took longer than anticipated because the AI software needed 90 days to mature in the 

organization’s EHR. This time then had to be extended 30 days due to a configuration issue. 
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The implementation phase was dependent on the completion of the planning phase.  

Implementation started in February 2020, but because of the COVID-19 pandemic, the project 

was put on hold for eight weeks. The PDSA cycles resumed in April 2020 and were completed in 

July 2020. The milestones in this phase were hospital-wide communication and training of the 

modifications to the RRS, followed by activation of the AI notification into the RRS. 

The last two phases mapped out using the Gantt chart were the evaluation and project 

termination phases. While evaluation was ongoing throughout implementation via the PDSA 

process, the outcome metrics were evaluated in August 2020. The key milestones in these phases 

were post-activation data collection, analysis, and monitoring. During the PDSA cycle 

implementation, it was anticipated that there would be needed adjustments to the notification 

criteria and the RRT nurse workflows. Discussions of the needed adjustments occurred in the 

ongoing project meetings. Once the specifications and workflow were solidified and sustained, 

the DNP student initiated the project termination phase. 

Work Breakdown Structure   

This project’s work breakdown structure was divided into the five phases of the nursing 

process (see Appendix H). Starting with the assessment phase, tasks included a review of the 

evidence to support the rationale for implementation, analysis of the current rapid response 

performance data, readiness for change assessment, and a system feasibility check with the 

information technology (IT) team. This information was useful in the development of the project 

charter. 

As the project moved into the planning phase, the focus was on finalizing the team 

members, establishing regular team meetings, and reviewing the project scope. During the kick-

off meeting, the team defined the key performance indicators (KPIs) used to compare baseline 
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performance with post-activation performance. Based on the evidence, the KPIs chosen included 

the number of code blue cardiac arrests outside the ICU setting and the number of rapid 

responses.  

Once the outcome measures were determined and the steering committee approved the 

final project plan, communication to all the clinical leadership began. Then, work started in 

developing the new workflows and working with the IT team to determine the organizational 

specific configuration of the deterioration index. This phase included the time needed to allow 

the AI software to mature within its EHR. Once the AI was mature, the team reviewed the 

software vendor’s analysis of the organization’s AI performance and conducted a retrospective 

analysis of the AI’s identification of patient deterioration to previous cardiac arrest and rapid 

response events to determine the initial notification threshold criteria. In the planning phase, the 

team also designed how the AI scoring data would be displayed in the EHR to the clinical staff. 

Lastly, the training and communication plan was developed. 

The implementation phase included making the needed EHR changes available in the live 

system and starting the automated notification, via the wearable device, based on the defined 

trigger criteria. Through the PDSA process, the AI-driven notification criteria and workflows 

were implemented and adjusted. After numerous PDSA cycles, the final criteria and workflows 

were in place. During the last few phases of the PDSA implementation process, integrating the 

AI into the RRS was communicated to the direct care staff. Once the final automated notification 

criteria and workflows were stable, a communication was shared with the medical staff on the 

enhancement to the organization’s RRS. 
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The evaluation phase began when the AI-driven notifications and new workflows were 

incorporated into the RRS and lasted through July 2020. For sustainment post-activation, the 

team continues to meet to review any issues related to adoption and monitors clinical outcomes. 

 Finally, the project moved into the termination phase in August 2020. All project files 

and records were updated in this phase, any materials archived as needed, and formal acceptance 

gained. The DNP student collaborated with the team and steering committee to document lessons 

learned and celebrate the accomplishment of a well-executed project and improvement in clinical 

outcomes. 

SWOT Analysis  

 During the project’s assessment phase, a strengths, weaknesses, opportunities, and threats 

(SWOT) analysis was conducted to help determine the overall feasibility and needed areas of 

focus to support the project’s success (see Appendix I). The strengths internal to the organization 

were identified as having Epic in place, access to Epic resources, an established RRT, and 

alignment with organizational goals. The three key organizational goals that were supported by 

this project were the organization’s core value of innovation to embrace solutions and forward-

thinking approaches that lead to better health (El Camino Hospital, 2020), the strategic goal to 

reduce mortality, and the Heart and Vascular Institute’s goal to prevent cardiac arrest. External 

opportunities included RRT nurses’ inconsistent use of the embedded MEWS tool, lack of 

reliability and accuracy of the MEWS tool, and RRT activation dependent on a nurse action. 

Internal areas of weakness identified were competing priorities and projects, resource allocation 

and stakeholder buy-in, and staff’s mistrust of the black box AI calculations. Lastly, external 

threats to the project’s success to be addressed included medical staff engagement and 

acceptance and reliance on other organizations to share implementation methodologies. Initially, 
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there was a concern that other organizations would be unwilling to share their experiences with 

implementing and utilizing the deterioration index. However, after attending the annual Epic user 

group meeting, several organizations presented, so this was not a threat to the project.   

Budget  

The project budget included the labor cost for staff to participate (see Appendix J). The 

estimated cost of labor to participate in the project and ongoing stabilization meetings was 

$66,641 for the first 18 months. Approximately $19,460 (29%) of the estimated budget was for 

the nurse leader’s time. In 2015, the organization implemented Epic’s EHR for around $150 

million (Miliard, 2015). This software's ongoing cost was included in the overall organization's 

2020 IT capital budget of $6 million (Woods, Hussain, & Griffith, 2019), there was no 

delineated line item in the budget for this Epic software. Therefore, software costs were not 

included in the project budget. 

Cost/Benefit Analysis 

The three options for reducing cardiac arrest outside the ICU in the organization were 

analyzed for their financial impact (see Appendix K). To make no change to the organization’s 

RRS, the first option would have no projected cost-benefit, essentially a return on investment 

(ROI) of 0. This option would cost the organization approximately $3,357 for the project lead 

and other stakeholders’ time in analyzing the options based on the hourly personnel rate. 

The second option, to implement an AI-driven recognition tool to detect patient 

deterioration and trigger the RRT automated activation, would yield the highest ROI of 5.85.  

Other organizations that have implemented this solution have reported significant reductions in 

codes outside the ICU. Ochsner Health reported a 44% reduction, and North Oaks reported a 

39.3% reduction (Ho, 2018; Robinson & Tyler, 2019). Based on these reported outcomes, it was 
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estimated that this solution could reduce the number of inpatient cardiac arrests outside the ICU 

by approximately 42%. In the calendar year 2019, there were 80 codes in the organization. with 

38 outside the ICU. A 42% reduction would be an estimated 16 fewer codes per year. 

Calculating in the code team hourly rate, code medication, and supply costs, each code would 

cost approximately $2,061. Factoring in inflation, a reduction of 16 codes per year could yield 

the organization a cost avoidance of $8,621 over the next four years. An additional cost savings 

was determined using a statistically developed average value for a year of quality human life of 

$129,000 (Lee, Chertow, & Zenios, 2009). Assuming at least one human life would be saved 

through this solution each year and calculating inflation, there is a potential for an additional 

$539,688 cost avoidance. The total cost savings with this option was estimated to be $677,627 

over four years. The expenditures would be the cost of the project lead and other stakeholders’ 

time during the project. The team would need more time to meet through the project’s 

assessment, planning, and implementation phases. Afterward, the team would continue to meet 

during the evaluation and project termination phases, but with reduced frequency to monitor and 

support sustainment. Based on the hourly personnel rate, factoring in a 10% contingency and a 

3% inflation rate, this option would be approximately $98,862 for the organization over four 

years. 

The third option was to continue with the current early warning system but add 

automation of RRT activation. This option would offer a moderate ROI of 4.92. Cost avoidance 

calculations regarding code events were based on the assumption that this option would prevent 

at least one code a year. Estimating the cost of the code team’s hourly rate, code medication, and 

supply costs, each code costs approximately $2,061. Factoring in inflation, reducing one code 

per year could save the organization $5,839 over the next four years. An additional cost savings 
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was determined using a statistically developed average value for a year of quality human life of 

$129,000 (Lee et al., 2009). Assuming at least one human life would be saved through this 

solution each year and calculating inflation, there is a potential for an additional $539,688 cost 

avoidance. The total cost savings with this option could be $548,309 over four years. Similar to 

option two, this option’s expenditures would include the cost of the project lead and other 

stakeholders’ time. The team would need more time during the assessment, planning, and 

implementation phases of the project than the evaluation and termination phases. However, 

because this solution does not include implementing the AI recognition tool, the team would not 

need time in the assessment and planning phases. Based on an hourly personnel rate, factoring in 

a 10% contingency and a 3% inflation rate, this option would be an approximate $92,574 

expenditure for the organization over four years. Although this option has a similar ROI as 

option two, this option will likely over-identify patients as at-risk, thereby over alerting the RRT 

nurses, which would result in alert fatigue. The term alert fatigue describes how clinicians 

become desensitized to safety alerts and, consequently, fail to respond appropriately (Henneman 

& Rothschild, 2019). Alert fatigue is a serious risk that could result in the RRT nurse not 

responding to a notification of the patient’s condition change; thereby, the patients would not 

benefit from early intervention.  

Overall, based on the analysis of these three options, the organization’s executive team 

approved the second option. The first option to remain the status quo would be the least valuable, 

and the third option had a high risk of failure due to alert fatigue. The second option, to 

implement Epic’s deterioration index AI module and build in the automation of RRT activations 

best addressed the organization’s need for more reliable recognition and earlier activation of 
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their RRT. The evidence had also shown that this solution would reduce the number of cardiac 

arrests, which would improve patient outcomes. 

Return on Investment Plan 

The ROI for this project was calculated on avoiding costs associated with 

cardiopulmonary resuscitation and litigation related to loss of life. Based on other organizations’ 

performance, an estimated reduction of 16 cardiac arrests outside the ICU per year, plus the 

average value for a year of quality human life, came to a total cost avoidance of $161,971. The 

total costs for implementation were based on the labor costs for stakeholders’ time for startup 

and first year of implementation, which was estimated at $66,640. The estimated cost avoidance 

and labor costs would yield an estimated year one total net savings of $95,331 and an ROI of 

1.43. Over the next three years, the ongoing cost to sustain and maintain the intervention is 

estimated to be $32,221 ($10,740 per year). The ongoing cost is significantly less than startup 

and first year of implementation, resulting in an increased ROI of 15 for 2021, 2022, and 2023 

and an overall ROI of 5.85(see Appendix L). 

Responsibility/Communication Plan   

A responsibility and communication matrix was developed to ensure that all stakeholders 

and impacted staff received information on changes to the rapid response process (see Appendix 

M). This matrix identified stakeholders who would require communication throughout the 

project and included the principal executives, the project team, clinical and medical staff 

leadership, clinical education, the CPR committee, and the direct care nursing and medical staff. 

For each stakeholder group, the matrix described the objectives, format, timing of when and how 

often the communication would occur, and the responsible person. The DNP student owned the 

majority of the responsibility for communication. Such communications included monthly in-
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person meetings with the CNO to give an update on project status and to communicate any 

barriers to project success that needed executive-level assistance.  

Quarterly, during regularly scheduled meetings with clinical leadership, information on 

project status and any needed support requests were presented. At the monthly CPR committee 

meeting, brief status updates were also presented. The team met every two weeks; meetings 

reviewed progress, follow-up tasks, and responsibilities. The DNP student worked with the 

Clinical Education Department to teach the RRT nurses the new standard workflows for 

incorporating the AI into their regular practice (see Appendix N) and to develop and distribute 

education for all hospital staff on the AI enhancement to the RRS (see Appendix O). Through 

presentations at the Quality Council, Department of Medicine meetings, and in a newsletter to all 

medical staff, the DNP student also worked with the medical staff office to inform the physicians 

practicing at the organization of the addition of AI to augment RRT activation. 

Project momentum was maintained with in-person meetings, using slide presentations to 

illustrate the information. Combining in-person presentations with colorful slides helped engage 

the audience on the need and importance of the project. Due to busy schedules, executives 

received in-person briefings on project status, and formalized meetings were limited to address 

issues that required executive-level assistance. Initially, the team met in person with a call-in 

number for members at the other campus. However, since the emergence of the COVID-19 

social distancing rules, project meetings moved to a web-conferencing platform. Meeting 

agendas and minutes were used with the team to maintain engagement by communicating 

decisions, action items, and timelines.  

Shortly before implementing changes to the RRS, the Clinical Education Department led 

a campaign of informational fliers and department huddles to communicate to direct care staff.  
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Timing and saturation of this effort were crucial because if provided too early, staff could forget 

about the upcoming changes; if too close to the process change, some team members may have 

not yet received the information and may become upset for not understanding expectations. 

Study of the Intervention 

To assess the impact of the project aim, quantitative and qualitative approaches were 

used. The quantitative data included the number of cardiac arrests outside the ICU setting, the 

number for rapid responses, and the number for AI notifications. As the highest level of care in 

the organization, the ICU settings were excluded from the intervention and excluded from the 

outcome measure. Other areas excluded from the intervention and outcome measure were the 

emergency departments and procedural areas, such as Interventional Services and Endoscopy.   

The qualitative data comprised team feedback collected during project meetings and from 

the rapid response nurse standard work self-assessment survey. During project meetings, RRT 

nurses gave feedback on the automated notification criteria, standard workflow processes, and 

the implementation processes. In early project meetings, the variation in RRT nurse practice was 

identified. Once the standard workflow process for incorporating the AI into the RRS was 

defined and implemented, the RRT nurses participated in a self-assessment survey, collecting 

information on their adoption and adherence to the new processes at the end of each shift.   

Measures 

This project’s primary key performance indicator was the number of in-hospital cardiac 

arrests outside the ICU setting pre- and post-implementation. The CPR committee defined these 

events as a code blue resuscitation for cardiac arrest. Cardiac arrest was selected as a 

performance measure based on the literature, in which other studies found that increased 

recognition and earlier notification of clinical deterioration decreased in-hospital cardiac arrests 
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(Bingham et al., 2018; Nallamothu et al., 2018; Subbe et al., 2017). There was a rise in cardiac 

arrests from 60 in 2018 to 80 in 2019. Of the 80 cardiac arrests in 2019, 46% (37) were outside 

the ICU setting. 

Additional outcome data included the number of rapid responses pre- and post-

implementation. The number of rapid responses had decreased by 55% in the previous years, 

from 648 in 2018 to 356 in 2019. The organization’s RRT policy defines rapid response events 

as events in which a patient needs immediate assessment or intervention. Before the project 

intervention rapid response events were only initiated by staff members. Therefore, the impact 

AI-automated notifications would have on staff-initiated RRT activations was measured. 

Additionally, based on the previous research findings, there was an anticipated increase in the 

number for rapid responses with the increased recognition and automated notification (Subbe et 

al. 2017; Wakeam et al., 2014). 

Using Lippitt’s Phase 6 and the i-PARHIS outer context focus area (Kitson & Harvey, 

2016; Mitchell, 2013) from the project’s conceptual framework to guide implementation, the 

iterative change management PDSA process was used. This change management process had not 

been used for previous changes to the organization’s RRS. It was selected for this project 

because it allowed the team to test changes to the RRS as they were implemented and make any 

needed adjustments.  

Source of Data 

Most project data collection was through a retrospective chart review of the EHR and included 

data from the CPR committee on the number for cardiac arrests and rapid responses. The 

organization’s CPR committee collects data on the number of cardiac arrests and rapid responses 

from multiple sources: the code blue documentation worksheets reviewed during the data 
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abstraction process, quality review reports, and the hospital operator’s overhead page log. The 

CPR committee chair cross-checks all the cases from the various inputs to determine the absolute 

number of cardiac arrests and rapid responses that occurred that month. Information on the 

impact on the RRS was collected from the team through the PDSA process. Further, a web-based 

survey tool was used to collect RRT nurse self-assessments on adherence to the new standard 

workflow processes. 

Data Collection Instruments 

Outcome data collected from the CPR committee on the number of cardiac arrests outside 

the ICU setting and rapid responses were maintained in an Excel spreadsheet (see Appendix P). 

The IT team developed a tracking report within the EHR system that recorded the automated AI 

notifications. The EHR report included details on the date and time of notification, patient name, 

location, and trigger source for notification. Qualitative data documented on the PDSA 

worksheet included project team feedback and findings throughout the implementation cycles 

(see Appendix Q). The web-based survey tool was used to collect data on adopting the new 

standard workflows, including questions related to adherence to the three main rapid response 

nurse workflows: change of shift review, AI-driven RRT notifications during the shift, and staff-

initiated RRT activations during the shift. 

Analysis 

Quantitative Data 

The project outcome measures were reviewed to determine if the addition of AI-

automated RRT notifications improved clinical outcomes at the target organization. Project data 

presented in a bar graph format display the number of cardiac arrests outside the ICU, the total 

number of rapid responses pre- and post-intervention, and individual hospital campus (see 
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Appendix R, Figure 1 and Figure 2). Since the post-intervention data are from February through 

July 2020, the previous year’s corresponding months were used for pre-intervention comparison.   

Qualitative Data 

Throughout the PDSA implementation process, the number of AI notifications was 

monitored and used to determine if the criteria were set at a meaningful sensitivity (see 

Appendix S). This iterative process made adjustments to the notification thresholds, starting with 

a conservatively low value high threshold score and gradually increasing. Based on other 

organizations’ experiences, and as the notification threshold trigger point increased, the team 

decided to add notification criteria for significant increases in the AI score between filing 

periods. As well, exclusionary criteria and notification suppression rules were determined during 

the PDSA cycle implementation. 

Adopting the new RRT nurse workflows was monitored during PDSA cycles two, three, 

and four via a self-assessment tool completed at the end of each RRT nurse shift (see Appendix 

T).  The new RRT nurse change of shift and staff-initiated rapid response workflows had the 

most consistent compliance.  However, the new workflow for an AI-initiated rapid response 

varied related to the follow-up EHR documentation and incidence reporting.  After further 

exploration in the project workgroup meetings with the RRT nurses, it was identified that not all 

AI-notifications resulted in an AI-initiated rapid response.  Therefore, not all AI-notifications 

required the same level of EHR documentation nor incidence reporting. 

Ethical Considerations 

The project aimed to improve the quality of the organization’s rapid response procedure 

through enhanced recognition of patient deterioration. This aim was planned to be achieved by 

implementing AI into the existing EHR to recognize and notify the RRT nurse and unit charge 
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nurses of patient deterioration. Designed as a quality improvement project, all patients received 

standard care, and the project did not override any clinical decision-making. This project was not 

intended to test a new intervention; it was to implement care practices based on evidence. This 

project was reviewed and approved by the organization’s Nursing Research Council as quality 

improvement. Institutional Review Board (IRB): This is a quality improvement project and does 

not require IRB approval for implementation. The project has been evaluated and approved as a 

quality improvement initiative through the University of San Francisco School of Nursing and 

Health Professionals (see Appendix U). 

The detailed patient outcomes related to cardiac arrests and rapid responses were 

collected and processed by a quality review coordinator to maintain patient privacy. The DNP 

student received only the de-identified outcome measure performance results.   

The psychological wellbeing of the RRT members during this practice change project 

was assessed and addressed throughout the PDSA process: first, by recruiting RRT 

representatives to join the team during the planning stage; then, by eliciting their participation in 

the design of the intervention and testing; and finally, after implementation, by maintaining 

ongoing and frequent communication with the RRT members and other stakeholders on the 

practice change and making any needed adjustments.    

The American Nurses Association’s Code of Ethics Provision 4 states, “The nurse has the 

authority, accountability, and responsibility for nursing practice; makes decisions and takes 

actions consistent with the obligation to promote health and to provide optimal care” (Fowler, 

2015, p. 191). Specifically, Section 4.2 Accountability for Nursing Judgments, Decisions, and 

Actions, states, “Systems and technologies that assist with clinical practice are adjunct to, not 

replacements for, the nurse’s knowledge and skill” (Fowler, 2015, p. 191). This project 
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addressed this ethical concern by retaining the nursing staff’s autonomy to initiate a rapid 

response and implementing the AI only as a supplemental tool to RRT activation. The nursing 

staff continued to go to the bedside and assess the patient to determine the next steps. 

This project reflected the Jesuit values of the University of San Francisco (USF, 2019) by 

aligning with the people for others value by improving the quality outcomes of rapid responses 

further and, thereby, reducing harm. In summary, there were no ethical concerns related to the 

implementation of this project. 

 

.
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Section IV: Results 

Cardiac Arrests 

There were nine cardiac arrests outside the ICU during the 125 days the AI-automated 

notifications were on (February 4 to February 27, 2020, and April 20 through July 2020); seven 

at the larger Mountain View campus and two at the Los Gatos campus. Compared to February 

through July 2019 (181 days), pre-intervention with no AI-notification there were 13 cardiac 

arrests, 12 at the Mountain View campus and one at the Los Gatos campus. Therefore, the 

cardiac arrest rate pre- and post-intervention remained the same at 7.2%. While there is no 

statistically significant change, the decrease in the number of cardiac arrests shows that when AI 

is utilized, it is trending in the correct direction and aligns with the research findings on AI 

automation decreasing cardiac arrest (Churpek et al., 2016). With more time and data as we 

continue to improve AI implementation, we can better understand the true effect (see Appendix 

S).  

Rapid Responses 

There was a total of 188 staff-initiated rapid responses from February through July 2019, 

compared to 156 from February through July 2020. Since there was a break in the PDSA cycles 

due to the COVID-19 pandemic, the AI-automated notifications were turned off for 56 days, so 

the post-intervention rate was calculated based on the 125 days the AI was on. The pre-

intervention rate was based on 181 days. The per-day average number of staff-initiated rapid 

responses pre-intervention was 1.04 and post-intervention was 1.25. This change was an increase 

of 20% in the average number of rapid responses per day. The average number of AI 

notifications per day varied during the PDSA cycles, running as low as 6.4 during PDSA cycle 2 

and as high as 21.67 during PDSA cycle 3. Overall, there was an average of 12.43 AI 
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notifications per day. The 20% increase in rapid responses was an expected outcome and was 

supported by the evidence, in which researchers found that an increase in staff recognition of 

clinical deterioration resulted in an increase of nursing staff alerting RRTs (Subbe et al. 2017; 

Wakeam et al., 2014).  While the AI-notifications alerted the RRT nurse and charge nurses to 

changes in patient conditions, the increase in rapid responses may also have resulted from the 

communication and educational efforts related to implementing the deterioration index AI 

module. 

PDSA Cycles 

PDSA cycle one was February 4 to February 27, during which time there were no cardiac 

arrests outside the ICU setting, 27 staff-initiated rapid responses (0.89 per day), and 270 AI 

notifications (11.73 per day). At the end of this PDSA cycle, the team noted that the high-risk 

threshold score of 60 might have been too sensitive and was inappropriately triggering alerts. 

The team chose to make three changes to the notification logic to reduce the risk of alert fatigue: 

1. The high-risk threshold notification criterion was increased from a deterioration index 

value of 60 to 62 to reduce high-risk threshold notifications. 

2. Based on another organization's alert logic to notify the RRT nurses of patients with 

sudden increases in their deterioration index score, a new notification criterion would be 

added to send the RRT nurse a notification if the patient's score increased 15 or more 

within 35 minutes. 

3. To further eliminate notifications on patients actively dying, patients admitted to general 

inpatient hospice would be excluded from the alert logic. 

In this PDSA cycle, the final display settings in the EHR were also defined. The team 

acknowledged that although a standard workflow process for incorporating the AI into the RRS 
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had been defined, there was inconsistency in following the new workflow. Therefore, a fourth 

change was developed, a web-based self-assessment tool for the RRT nurses for the upcoming 

PDSA cycles. 

PDSA cycle two was from April 20 to May 5. There was one cardiac arrest outside the 

ICU setting, 13 staff-initiated rapid responses (0.81 per day), and 97 AI notifications (6.46 per 

day). At the time of this PDSA cycle, the organization had a dramatic drop in patient volume 

related to the COVID-19 pandemic and cancelation of elective procedures. This decreased 

volume helped to uncover an issue with AI notifications on discharged patients. Therefore, the 

team agreed for the next PDSA cycle to modify the AI notification logic to exclude discharged 

patients. The team also noted unnecessary AI notifications for patients undergoing procedures, so 

a rule to exclude them was added to the notification logic. The team expressed concerns that the 

criteria for sudden changes to a patient’s deterioration index score were not sensitive enough, so 

it was decided to decrease the notification criteria from an increase of 15 to 10 points. During 

this PDSA cycle, the RRT nurses noted several AI notifications for inaccurate Glasgow coma 

scale assessments, late or inaccurate documentation. Educational reminders were sent out to the 

involved units on the need for timely and accurate documentation, and RRT nurses gave one-on-

one coaching to nurses who inaccurately documented Glasgow coma scale assessments to reduce 

these inaccurate AI notifications. 

PDSA cycle three was from May 6 to May 14. There were two cardiac arrests outside the 

ICU setting, eight staff-initiated rapid responses (0.89 per day), and 195 AI notifications (22 per 

day). The RRT nurses reported that the automated notification logic was too sensitive, 

identifying patients not showing signs of clinical deterioration and that the number of AI 

notifications per day was too difficult to manage. Based on this feedback and to address alert 
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fatigue concerns, the team chose to adjust the AI score for the high-risk threshold notifications 

from 62 to a score of 65. Additionally, they decided to adjust the notification criteria to increase 

the AI score within 35 minutes from 10 points to 13 points. 

PDSA cycle four was May 15 to May 25, during which time there were no cardiac arrests 

outside the ICU setting, seven staff-initiated rapid responses (0.7 per day), and 154 AI 

notifications (15.4 per day). Nearly half of the AI notifications were for patients in the 

progressive care unit (PCU), the highest acuity unit included in the intervention. Many of these 

patients were noted to have DNR code status orders, without additional orders or goals of care 

documented to limit rapid response team interventions should the patient’s condition deteriorate. 

The automated notification logic was designed to suppress notifications for eight hours after the 

RRT nurse evaluated the patient’s condition, and the patient’s AI score was marked as reviewed 

within the EHR. To reduce the risk of alert fatigue from notifications on DNR patients, the team 

chose to add a 24-hour suppression rule to the notification logic. The team noted that there were 

times in which the RRT nurse was delayed in responding to AI notifications, so the team agreed 

to expand which nurses would receive AI notifications via the organization’s wearable device to 

include the unit charge nurses. This change supported increased recognition of patient 

deterioration and aligned with the staff-initiated RRT notification process. 

PDSA cycle five was from May 26 to July 12. There were three cardiac arrests outside 

the ICU setting, 16 staff-initiated rapid responses (0.88 per day), and 231 AI notifications (12.83 

per day). To reduce the workload on the RRT nurses for PCU patients with sustained high AI 

scores, the team decided to educate the PCU charge nurses on the workflow to evaluate the 

patient’s condition and marked as reviewed in the EHR. In cycle five, during the team meetings, 

the results from the standard workflow self-assessments were reviewed, and changes were 
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incorporated into the final workflows, which ended the self-assessment evaluative period. Lastly, 

the RRT nurses reported that some AI notifications had been missed due to the alert tone of a 

new text message to the wearable device being too quiet in some settings.  Therefore, the team 

lead worked with IT and the wearable device vendor to change the AI notifications from a text 

message to an automated text to speech format. 

Standard Workflow 

The standard work, web-based, self-assessment tool was used during PDSA cycles two, 

three, and four to monitor adoption and adherence to the standard work developed to incorporate 

the AI into the RRS. The RRT nurses were instructed to complete a self-assessment at the end of 

each shift. Eighty-nine self-assessments were completed, which was approximately 41% of the 

survey period’s RRT nurse shifts. The self-assessment questions were divided into the three 

workflows and designed for the RRT nurse to confirm yes or no on whether they had followed 

each standard work step. All 89 nurses surveyed responded to the first three questions. There was 

also a fourth question on response time to each type of RRT. 

The question “I followed the standard work process for change of shift” resulted in nearly 

all surveyed indicating that they reviewed the AI patient list with the off-going staff member 

(96.63%), but only 88.76% sorted the list by the highest AI score, and only 78.65% reviewed 

each patient whose score was over the high-risk threshold value of 62. Reasons noted in the 

comments for not completing the steps included no patients on the list with high-risk AI score, 

another alert event at the change of shift, and patients already known. 

In response to the question “I followed the standard work process for DI Alert During 

Shift,” the majority surveyed completed the steps related to reviewing the patient’s EHR 
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(85.39%), contacting the primary nurse (74.16%), and updating DI patient list with a note and 

checking mark as reviewed (76.14%).  

However, because many responded no DI alerts during the shift, only 11.24% of the AI 

notifications resulted in activation of the RRT. Only 34.48% responded that they documented 

interventions in the patient record. Only 2.27% completed a rapid response critique.   

In response to the question “I followed the standard work process for Rapid Response 

Alert,” the majority indicated there was no rapid response on their shift (87.64%). Of the nine 

survey respondents who did note responding to an RRT on their shift (10.11%), all documented 

in the Rapid Response Narrator in the EHR, but only eight completed an RRT critique. Even 

though only nine answered that they had responded to an RRT, 21 respondents (25.61%) 

answered that they did update the DI patient list with a note and by checking mark as reviewed. 

Lastly, 72 replied to the question “My response time was.” The response times of five 

staff were that they had responded to staff-initiated rapid responses within five minutes 80% of 

the time, and only one time was it reported that the RRT nurse responded in 15 to 30 minutes. 

However, for the 88 AI notifications, there was more variation in response time: 28 (32%) were 

responded to in zero to five minutes, 33 (38%) in five to 15 minutes, 13 (15%) in 15 to 30 

minutes, and 14 (16%) took more than 30 minutes to respond. Barriers to response times noted in 

the comments included busy with other patient care at the time of the alert, consecutive AI 

notifications, and missed hearing wearable device notification. 
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Section V: Discussion 

Summary 

Current early warning systems are not sufficient and reliable as a tool for recognition of 

patient deterioration. However, with the development and adoption of EHRs, hospitals have 

more data than ever to use. Unlike early warning systems that use limited data from a single 

point in time, AI machine learning systems use regression logic to analyze current and historical 

patient data to predict patient deterioration more reliably and accurately. Hillman, Lilford, and 

Braithwaite (2014) stated that RRSs need to evolve to improve patient safety further. Some 

hospitals have already successfully done this and implemented AI into their RRSs. In 2017, 

Ochsner Health announced its remarkable reduction of codes outside the ICU by 44% after 

implementing an AI-driven prediction tool based on Epic’s machine learning tools (Ho, 2018).  

Since then, Epic has continued to develop its machine learning platform, using data from over 

125,000 hospitalized patients (Milani, 2018). This evidence supported the project aim to 

implement Epic’s deterioration index AI module into the organization’s well-established, staff-

driven RRS to increase earlier identification, notification, and intervention to improve clinical 

outcomes and reduce cardiac arrest.  

Using the PDSA process, the project achieved the goal of incorporating AI-initiated rapid 

response notifications into its RRS. While not creating enough data to determine if 

improvements were statistically significant the aim to reduce cardiac arrests outside the ICU, 

suggests that the data is trending positively. Additionally, using the existing AI software 

available in the organization’s EHR, the project was highly cost-effective, and was relatively 

easy to implement into the established RRS. 
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One of the most valuable lessons learned during this project was the importance of 

establishing and monitoring adherence to the standard workflow processes. RRT nurses work 

independently during their shifts, so previous deviations in practice may have been more 

acceptable. However, integration of AI notification criteria into the RRS relies on the RRT nurse 

interacting with the EHR; the entire RRT nurses’ team must consistently follow the workflow 

practices. Another factor contributing to this project’s success was partnering with the 

organization’s IT team. The IT team members were able to make timely adjustments to the AI 

notification system, and they contributed significantly to the understanding of the AI module and 

design of the AI notification logic, inclusion, and exclusion criteria. The dissemination plan will 

be to share the project details and outcomes widely within the organization, eventually reaching 

outside of the organization to compare implementation and clinical outcome findings directly 

with other Epic sites and at larger regional or national conferences.  

Interpretation 

The project results indicate that the addition of AI technology stimulates earlier 

engagement of rapid response nurses and decreases in-hospital cardiac arrests outside the ICU.  

The research indicates that earlier activation of RRTs through an automated alert system based 

on AI would decrease in-hospital cardiac arrests. Future utilization of AI technology to support 

faster, more reliable clinical warnings should be considered. 

Limitations 

This project’s potential limitations include the documentation timeliness and its impact 

on the AI notifying the RRT. These limitations were addressed during the implementation 

process by adding education on the importance of timely documentation to support patient 

safety.  
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Results may have been impacted by a change in the organization’s code status policy. In 

January 2020, the options were reduced from full code, limited code, DNR, and DNR comfort 

care to only full code and DNR. This policy change may have led to an increase in the number of 

patients with the code status order for DNR, which may have skewed the results related to the 

number of cardiac arrest code blues.  

Lastly, the project implementation and outcomes were likely impacted by the COVID-19 

pandemic. Due to the pandemic’s onset, there was nearly an eight-week break between PDSA 

cycle one and cycle two. Additionally, the organization’s inpatient admission volume and the 

number of elective procedures dropped drastically. 

Conclusions 

In reviewing the literature related to the PICOT question, the evidence indicates that 

earlier activation of RRTs through an automated alert system based on AI technology would 

decrease in-hospital cardiac arrests outside the ICU. The evidence describes characteristics of 

robust RRSs and barriers to activation, which was useful because the organization had an 

established nurse-driven activation. Based on this evidence, the practice change of 

supplementing nurse-driven rapid response activation with automation has likely improved 

clinical outcomes.   

 Based on the findings from the literature and the quality and safety education for nurse 

competencies (Cronenwett et al., 2007), the executive nurse leader’s recommended action is to 

incorporate an AI-based trigger tool into the RRT activation procedure. Doing so will further 

promote safe patient care and facilitate the leveraging of technologies that support effective 

systems and performance to minimize patient harm. The executive nurse leader uses data, such 

as the number of cardiac arrests outside the ICU setting and rapid responses, monitoring care 
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process outcomes, and using quality improvement tools, like the PDSA tool, to lead the 

continuous improvement of earlier recognition intervention at the intra- and inter-professional 

level. 
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Section VI: Other Information  

Funding 

This DNP project had no outside funding.  
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Appendix A 

Evidence Evaluation Table 

PICOT question: In adult inpatients (P), how does implementation of an artificial intelligence based automated early warning system (I) compared to nurse-
driven activation of rapid response (C) effect in-hospital cardiac arrests (O) over a six-month period (T)? 
Article 

# 
Author and 

Date 
Evidence Type Sample, Sample 

Size, Setting 
Findings That Help Answer 

EBP Question 
Observable 
Measures 

Limitations Evidence 
Level, 

Quality 
1 Gao et al., 

2007 
Systematic 
review 

36 papers Review of track and trigger tools 
used / developed by hospitals to 
activate rapid response teams. 

Hospital- 
developed track 
and trigger tools 
used to identity 
patients at risk 
for deterioration - 
not reliable 

None of the 
studies meet 
quality standards 
for methods 

Level I 
Systematic 

review 
Good quality 

2 Lyons et al., 
2018 

Systematic 
review 

N/A Review of rapid response 
systems. Human factors, 
technology, future. 

Future direction Other factors 
decrease code 
events 

Level I 
Literature 

review 
Good 

3 Winters et al., 
2013 

Systematic 
review 

18 high-quality 
meta-analysis 
and 26 lower 
quality studies 
reviewed 

A review of 18 studies on the 
pros and cons of rapid response 
systems.  Findings include need 
to automate notifications of 
deteriorating patients.  

Rapid response 
systems shown to 
have moderately  
improved 
outcomes  

Review included 
studies of low to 
moderate quality 
and sample sizes 
varied in the 
various studies. 

Level I 
High quality 
Systematic 

review 

4 Angel, 2016 Quantitative All adult cardiac 
arrests over 3 
years, 273 
patients 

Early interventions by well-
functioning RRT could decrease 
cardiac arrests. 

Decrease 
mortality, 
reduced LOS in 
CCU post arrest 

Sample size Level III 
Retrospective 
cohort study 

Good 

5 Churpek et al., 
2012 

Quantitative 47,427 patients 
over 27 months 

CART (early warning tool) 
predicted cardiac arrest better 
than MEWS. 

Rate of cardiac 
arrest 

1. Single center 
study 
2. CART vs 
MEWs 

Level III 
Retrospective 
cohort study 

Good 
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6 Churpek et al., 
2016 

Quantitative Five hospitals, 
over 5 years, all 
hospitalized 
ward patients 

Found that several machine 
learning methods more 
accurately predicted clinical 
deterioration than logistic 
regression. Use of detection 
algorithms derived from these 
techniques may result in 
improved identification of 
critically ill patients on the 
wards. 

1. Number of 
cardiac arrests 
2. Number of 
transfers to ICU 

1. Only 5 
hospitals in one 
state 
2. Did not 
compare all 
available 
methods or their 
variations 

Level III 
Observational 
cohort study 

High 

7 Subbe et al. 
2017 

Quantitative 2,139 patients 
over 1 year 

Increase rapid responses, 
decrease cardiac arrests, and 
decrease mortality of select 
patients. 

Number of 
serious events 

During 
intervention 
period increase 
communication 

Level III 
High 

8 Astroth et al., 
2017 

Mixed 
quantitative & 
qualitative 

202 RNs Developed a possible scale to 
identify barriers for RRT teams. 

Relationship 
between 25 
different track 
and trigger tools 

Lower subject 
rates 

Level III 
Exploratory 

High 

9 Astroth et al., 
2013 

Qualitative 15 nurses, 1 
hospital 

Identify barriers to calling rapid 
responses. 

1. RRT 
characteristics 
2. Unit culture 

Sample size Level III 
High 

10 Wakeam et al., 
2014 

Qualitative, 
nonexperimental 

7 hospitals, 106 
interviews 

Describes that hospitals 
leveraging data in EHR to 
identify trends and recognize 
clinical deterioration sooner.  

Identified 
barriers and 
strategies to 
improve failure 
to rescue  

Possible bias 
because TJC 
conducting study 

Level III 
High Quality 
Good quality 

11 Rojas et al., 
2017 

Opinion of 
nationally 
recognized 
experts based on 
experimental 
evidence 

14 sessions  Discusses future use of machine 
learning to automate rapid 
response activation. 

N/A None identified Level V 
Conference 
Summary 

High quality 
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Appendix B 

Conceptual Framework 

Nursing Process Lippitt’s Theory  i-PARIHS 

Assessment 

Phase 1: Diagnose the problem Characteristics of the 
innovation  

Phase 2: Assess motivation and capacity 
for change Recipients Phase 3: Assess change agent’s motivation 
and resources 

Planning 
Phase 4: Select progressive change object Inner context: local level 
Phase 5: Choose appropriate role of the 
change agent 

Inner context: organizational 
level 

Implementation Phase 6: Maintain change 
Outer context Evaluation Phase 7: Terminate the helping 

relationship 
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Appendix C 

Letter of Support from Organization 
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Appendix D 

Project Charter 
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Appendix E 

Standard Process Description  
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Appendix F 

Gap Analysis 
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Appendix G 

Gantt Chart 
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Appendix H 

Work Breakdown Structure  
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Appendix I 

SWOT Analysis 
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Appendix J 

Budget 

  
Number of 

Employees 

Est. Average 

Hourly Rate 
Total Hours 

Total Cost  

+ 33% benefits 

Project Team:         

Executive Sponsors 2  $     250.00  4.5  $          1,496  
Directors         

Cardiovascular Services 1  $     101.61  144  $        19,460  

Other Nursing Directors 3  $     101.61  18  $          2,433  

Respiratory Therapy 1  $       53.04  6  $             463  

Managers         
Patient Care Resources 1  $       89.00  10  $          1,184  
Clinical Applications 1  $     101.61  120  $          1,351  

Educators 2  $       84.48  20  $          2,247  

IT Analysts 2  $       71.63  120  $        11,433  

Rapid Response RNs 5  $       80.45  180  $        19,260  

Rapid Response RTs 1  $       37.34  9  $             447  
Quality Analyst RN 1  $       60.77  10  $             808  

Total        $        60,582  
Contingency (10%)        $          6,058  

      Total Cost  $        66,640  
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Appendix K 

Cost/Benefit Analysis 

Return on Investment =  $578,765 / $98,862 = 5.85 

Assessment, Planning, Implementation Evaluation and Project Termination 
 

Expenditures 
Total Cost 
Start Up 

(2020) 

Year 1  
3% 

Inflation 
(2021) 

Year 2  
3% 

Inflation 
(2022) 

Year 3  
3% 

Inflation 
(2023) 

Total Costs  

Executive Sponsors  $1,496   $257   $265   $272   $2,290  
Directors 

     

Cardiovascular Services   $19,460   $835   $860   $886   $22,042  
Patient Care Resources  $811   $139   $143   $148   $1,241  
Los Gatos Nursing  $811   $-  $-  $-  $811  
Respiratory Therapy  $463   $-     $-     $-     $463  
Clinical Education  $811   $-     $-     $-     $811  
Patient Care Resources  $1,184  $732   $753   $776   $3,445  
Clinical Applications  $1,351   $835   $860   $886   $3,933  
Educators  $2,247   $1,389   $1,430   $1,473   $6,540  
I.T. Analysts  $11,433   $1,178   $1,213   $1,249   $15,073  
Rapid Response RNs  $19,260   $3,306   $3,405   $3,508   $29,479  
Rapid Response RTs  $447  $307   $316   $326   $1,396  
Quality Analyst RN  $808   $499   $514   $530   $2,352  

Total:  $60,582   $9,477   $9,761   $10,054   $89,875  
Contingency (10%)  $6,058   $948   $976   $1,005   $8,987  

Total Expenditures:  $66,640   $10,425   $10,737   $11,059   $98,862  

Cost Savings 

Total Cost 
Savings 

Base Year 
(2020) 

Year 1  
3% 

Inflation 
(2021) 

Year 2  
3% 

Inflation 
(2022) 

Year 3  
3% 

Inflation 
(2023) 

Total Cost Savings 

Estimated value of one 
year of life 

 $129,000   $132,870   $136,856   $140,962   $539,688  

Resuscitation medications  $550   $567   $583   $601   $2,301  
Resuscitation supplies  $615   $633   $652   $672   $2,573  
Code team for 1 hr.  $896   $923   $950   $979   $3,747  
Estimated cost of code  $2,061   $2,123   $2,186   $2,252   $8,621  

Estimate 16 less codes 
per year: 

 $161,971   $166,830   $171,835   $176,990   $677,627  

ROI 1.43 15.00 15.00 15.00 5.85 
ROI = (Total Cost Savings - Total Expenditures) / Total Expenditures 
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Appendix L 

Return on Investment Plan 

Total average cost avoidance: $161,971 

Total cost of implementation: $66,640 

Year one net total savings: 
$161,971 (Total average cost avoidance) - 
$66,640 (Total cost for implementation) = $95,331 

Return on investment (ROI): 

(Total Cost Savings - Total Expenditures) / 
Total Expenditures 
$95,331 / $66,640 = 

ROI = 1.43 
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Appendix M 

Responsibility/Communication Matrix 

Stakeholder Objective Timing Format Responsible 
Chief Nursing 
Officer, 
Executive 
Sponsor 

Inform on project status and 
communicate any barriers to project 
success that need executive level 
assistance. 

Monthly In-person 
meeting 

DNP Student 

Chief 
Information 
Officer 

Gain approval and prioritization to 
implement Deterioration Index, as 
well as commitment of needed IT 
resources to build and support project. 

Project 
initiation 
and as 
needed 

In-person 
meeting 

DNP Student 

Chief Medical 
Officer 

Gain approval of project to further 
support rapid response system as a 
quality improvement initiative.  

Once In-person 
meeting 

DNP Student 

Clinical 
Leadership 

Inform of project status and gain 
needed support of staff time to 
participate in supporting project. 

Project 
initiation 
then 
quarterly 

In-person at 
leadership 
meetings 

DNP Student 

Medical Staff 
Leadership 

Inform of project status and gain 
needed support of staff time to 
participate in supporting project. 

Once In-person at 
leadership 
meetings 

DNP Student 

Rapid 
Response 
Team Policy 
Owner 

Inform of project status and discuss 
potential need to modify policy to 
reflect revised rapid response team 
activation process. 

Project 
initiation 
and as 
needed 

In-person at 
project 
meetings and 
via e-mail 

DNP Student 

Rapid 
Response 
Team 

Inform of project and potential impact 
to rapid response team activation and 
number of code blues. Regularly 
communicate project progress. 

Monthly Once at in- 
person 
meeting, then 
via monthly 
project status 
update e-mails 

DNP Student 

Project Team Regularly communicate project 
progress, meeting times, agendas, 
follow-up tasks and responsibilities. 

Biweekly to 
monthly 

In-person at 
project 
meetings and 
via e-mail 

DNP Student 

Clinical 
Education 

Disseminate information on modified 
rapid response team activation process 
and policy.  

Biweekly 
prior to 
activation 

In-person at 
project 
meetings and 
via e-mail 

DNP Student 
and Director of 
Clinical 
Education 

CPR 
Committee 

Inform of project status and potential 
impact to rapid response team 
activation and number for code blues. 

Project 
initiation 
and as 
needed 

In-person at 
CPR 
Committee 
meeting  

DNP Student 

Direct Care 
Nursing 
Leadership 

Announce project, project aim, and 
gain direct care nursing support. 

Project 
initiation 
and as 
needed 

In-person at 
Central 
Partnership 
Council 
meeting 

DNP Student 
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Stakeholder Objective Timing Format Responsible 
Direct Care 
Nurses 

Announce project, project aim, and 
educate on modified rapid response 
team activation process and policy. 

Two weeks 
prior to 
activation 

Newsletter, e-
mail, flier, unit 
huddles 

DNP Student, 
Clinical 
Education, 
Department 
Leadership 

Medical Staff Announce project, project aim, and 
educate on modified rapid response 
team activation process and policy. 

Two weeks 
prior to 
activation 

Newsletter DNP Student, 
Medical Staff 
Office 
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Appendix N 

Educational Communication for Rapid Response Team 
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Appendix O 

Educational Communication for Hospital and Medical Staff  
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Appendix P 

Data Collection Tools 

Figure 1. Pre-Intervention 

 

 
Figure 2. Post-Intervention 

Campus 
Cardiac Arrest 

Outside ICU 

AI 

On/Off 

# of 

Rapid 

Responses 

# of DI 

Notifications 

MV 05/03/20 06:39 On 1 6 
MV 05/08/20 12:05 On 0 29 
LG 05/14/20 09:30 On 1 16 
MV 06/06/20 00:00 On 0 10 
LG 06/11/20 03:00 On 2 10 
MV 06/28/20 19:17 On 0 8 
MV 06/29/20 06:46 On 0 10 
MV 07/22/20 06:06 On 1 13 
MV 07/24/20 18:15 On 2 12 

 

  

Campus 
Cardiac Arrest 

Outside ICU 

AI 

On/Off 

# of 

Rapid 

Responses 

MV 02/06/19 Off 2 
LG 03/01/19 Off 2 
MV 03/26/19 Off 0 
MV 04/01/19 Off 3 
MV 04/04/19 Off 0 
MV 04/04/19 Off 0 
MV 05/12/19 Off 0 
MV 05/20/19 Off 0 
MV 06/06/19 Off 1 
MV 06/10/19 Off 4 
MV 07/01/19 Off 4 
MV 07/07/19 Off 2 
MV 07/20/19 Off 0 
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Appendix Q 

PDSA Worksheet  
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Appendix R 

Outcome Measures  

Figure 1. Cardiac Arrest Pre- and Post-Intervention 

 
 
Figure 2. Rapid Responses Pre- and Post-Intervention 
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Appendix S 

  Metrics Over Time 
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Appendix T 

Standard Work Self-Assessment 
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Appendix U 

Signed Statement of Non-Research Determination Form 
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