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The classical Navier–Stokes equation (NSE) is the fundamental partial differential equation that describes the flow of
fluids, but in certain cases, like high local density and temperature gradient, it is inconsistent with the experimental results.
Some extended Navier–Stokes equations with diffusion terms taken into consideration have been proposed. However,
a consensus conclusion on the specific expression of the additional diffusion term has not been reached in the academic
circle. The models adopt the form of the generalized Newtonian constitutive relation by substituting the convection velocity
with a new term, or by using some analogy. In this study, a new constitutive relation for momentum transport and a
momentum balance equation are obtained based on the molecular kinetic theory. The new constitutive relation preserves
the symmetry of the deviation stress, and the momentum balance equation satisfies Galilean invariance. The results show
that for Poiseuille flow in a circular micro-tube, self-diffusion in micro-flow needs considering even if the local density
gradient is very low.
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1. Introduction
In the past decades, the applicability of the classical

Navier–Stokes equation (NSE) of fluid dynamics has been
questioned by some researchers. It is believed that there is an
additional mass diffusion flux when the local density and tem-
perature are very high. The mass diffusion is mass transport
caused by molecular number density gradient or temperature
gradient. A few so-called extended NSEs in which the fluid
diffusion is taken into consideration, have been proposed.[1–8]

Brenner was the first to propose a bi-velocity model, which a
volume velocity and a mass velocity are incorporated into.[1–4]

The difference between the two velocities is due to molecular
diffusion. He deemed that in the Newtonian constitutive rela-
tion the volume velocity instead of the mass velocity should be
used. A physical mechanism was not offered for this consti-
tutive relation. Dadzie et al.[9–11] and Abramov[12] derived
a Boltzmann equation with a diffusion term taken into ac-
count, based on statistical mechanics. However, the same as-
sumption as Brenner’s was adopted that the general Newtonian
constitutive relation was still valid using an appropriate veloc-
ity. Chakraborty and Durst[8] derived a new constitutive rela-
tion for fluid flow from the viewpoint of molecular transport.
However, many analogies were assumed in the derivation, and
the physical mechanism was not explained. Sambasivam[13]

attempted to derive the constitutive relation solely from the

viewpoint of molecular motion. His formulation suggested
that the change of the superficial area of the control volume
can induce deviation stress, which has the same viscosity as
the deviation stress induced by the strain rate. The contribu-
tions of the convection and diffusion termare in the same form.
Therefore, the derivation of the relation between the volumet-
ric strain rate and the deviation stress is inadequate.

The formulations[13] of the constitutive relation for mo-
mentum transport and momentum balance equation are revised
in this study, and a new constitutive relation and a momen-
tum balance equation are presented from the molecular mo-
tion point of view. This study provides a foundation for ex-
tended NSEs. The new relation retains the symmetry of the
deviation stress, and the proposed momentum balance equa-
tions satisfy Galilean invariance. Different models previously
available from the literature are also compared and discussed.

2. Derivation of new constitutive relation

By the same method as that given by Sambasivam,[13]

the time-average momentum flux per unit time in direction i
through a micro-plane δA parallel with the coordinate plane j
can be represented as follows (Fig. 1):

ρCiC j = ρ
(
ui +uM

i

)(
u j +uM

j

)
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= ρ

(
uiu j +uM

i u j +uiuM
j +uM

i uM
j

)
= ρuiu j +ρuM

i u j +ρuiuM
j +ρuM

i uM
j , (1)

where 𝐶 is the molecular velocity, 𝑢 is the macroscopic con-
vection velocity, 𝑢M is the molecular thermal velocity, ρ is the
density, subscripts i and j indicate the coordinate directions,
and the bar over variable denotes the time-averaged value. The
first term on the right-hand side in Eq. (1) represents the mo-
mentum flux per area per time induced by convection velocity.
The second and third term are momentum transports due to
molecular thermal motion. When i 6= j, the fourth term equals
zero, as molecular motions are independent of direction and
isotropy. However, when i = j, this term results in the pres-
sure caused by the time-averaged molecular motion.[13]
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Fig. 1. j-direction momentum through i-direction micro-plane.

The second term of Eq. (1) indicates the j-direction mo-
mentum through the micro-plane δA due to time-average
molecular thermal motion in the i-direction. Because the
molecular thermal motion is isotropic, the molecular ther-
mal motion mean speed ūM meets the equality uM =∣∣uM

i

∣∣ = ∣∣∣uM
j

∣∣∣. The average distance between the micro-
plane δA and the molecules passing through it from the
positive and negative side is the mean free path l of the
molecules. Since the thermal motion of molecules is
isotropic, the number of molecules moving in each direction
is 1/6. The momentum fluxes per unit area per time through
the micro-plane δA are 1

6 ρ (xi− l) ūM (xi− l)u j (xi− l) and
− 1

6 ρ (xi + l) ūM (xi + l)u j (xi + l) from the i and −i directions
respectively. Neglecting the quadratic terms of the partial
derivative, the net momentum flux can be expressed as

1
6

ρ (xi− l) ūM (xi− l)u j (xi− l)

− 1
6

ρ (xi + l) ūM (xi + l)u j (xi + l)

≈ − 1
3

lρ ūM︸ ︷︷ ︸
µ

[
1
ρ

∂ρ

∂xi
u j +

1

uM

∂ ūM

∂xi
u j +

∂u j

∂xi

]
, (2)

where µ is the viscosity. The net momentum flux through unit
area of the micro-plane per unit time, induced by molecular

self-diffusion in the i-direction, can be expressed as[13]

ji =−µ

(
1
ρ

∂ρ

∂xi
+

1
ūM

∂ ūM

∂xi

)
=−µ

(
1
ρ

∂ρ

∂xi
+

1
2T

∂T
∂xi

)
. (3)

Self-diffusion is the spatial transport of mass, momentum, or
energy caused by the number density or temperature gradient
of the same kind of molecules. The second equal sign in the
above equation is due to the assumption that the molecular
velocity distribution satisfies the Maxwell distribution. There-
fore, the molecular mean speed and the temperature are related
by

ūM =

√
8kT
πMm

, (4)

where k is the Boltzmann constant, Mm is the molecular mass,
and T is the thermodynamic temperature. Therefore, the mo-
mentum transport due to the second term is given as

jiu j−µ
∂u j

∂xi
. (5)

The second term in the momentum transport expres-
sion (5) belongs to the deviation stress, and the first term is
not a deviation stress because it does not satisfy Galilean in-
variance.

For the third term of Eq. (1), our explanation is much dif-
ferent from others’.[8,13] Due to the gradient of velocityuiin
the j-direction, the number of molecules with thermal motion
ūM in the + j direction and that in the − j direction, moving
through the micro-plane δA per unit time interval by velocity
ui, are not equal. This means that the j-direction momentum
is transported in the i-direction by velocity ui (Fig. 1). There-
fore, the third term of momentum transport in Eq. (1) can be
written as

1
6

ρui (x j− l) ūM− 1
6

ρui (x j + l) ūM

≈ − 1
3

lρ ūM︸ ︷︷ ︸
µ

∂ui

∂x j
=−µ

∂ui

∂x j
. (6)

After an average time τ , the molecular group, which is
the fluid mass that can define a macroscopic quantity in a local
equilibrium, passes through the micro-plane δA. The molecu-
lar group has a local density before time τ , which is different
from the instantaneous local density ρ . The density of the
molecular group at that moment can be expressed as(

ρ +
∂ jk
∂xk

τ

)(
1+

∂uk

∂xk
τ

)
. (7)

The Einstein summation convention is used in this equation.
Therefore, the fourth term in Eq. (1) can be expressed as

ρuM
i uM

j =

(
ρ +

∂ jk
∂xk

τ

)(
1+

∂uk

∂xk
τ

)
uM

i uM
i

≈ 1
3

(
1+

1
ρ

∂ jk
∂xk

τ +
∂uk

∂xk
τ

)
ρ(uM)2. (8)
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The average molecular motion time τ can be identified
with the time needed to travel the distance of the molecular
mean free path l at the mean speed ūM. Subsequently τ can be
expressed as

τ =
αl
ūM , (9)

where α is a coefficient, which is equal to 1 in the present case.
According to a more rigorous theory,[14] the average distance
between the last collision and the micro-plane δA is (2/3)l,
which implies that α = 2/3.

The gas pressure obeys the relation

p =
1
3

ρ(uM)2. (10)

Therefore, the fourth term in Eq. (1) can be written as

ρuM
i uM

j = p+αµ

(
1
ρ

∂ jk
∂xk

+
∂uk

∂xk

)
= p+λ

(
1
ρ

∂ jk
∂xk

+
∂uk

∂xk

)
, (11)

where λ is a viscosity parameter. The first term determines
the pressure, and the second and third term correspond to the
deviation stress. They are consistent with Galilean invariance.
In fluid mechanics, the second viscosity coefficient is defined
as

µ
′ =

2
3

µ−λ . (12)

According to a more rigorous molecular kinetic theory, α =

2/3,[14] at this time µ ′ = 0. This is consistent with the usual
assumptions of fluid mechanics.

The time variation of density is ignored in the derivation
of the momentum transport induced by the first and second
term in Eq. (1). In those terms, the time partial derivative
of density is always multiplied by the space partial deriva-
tives of other variables, thus can be neglected. Combining the
aforementioned momentum transport, the momentum balance
equation can be written as follows:

∂ (ρu j)

∂ t
+

∂ (ρuiu j)

∂xi
=− ∂ p

∂x j
−

∂τi j

∂xi
−

∂ ( jiu j)

∂xi
+ρg j. (13)

In Eq. (13), the integrated constitutive relation for the devia-
tion stress is

τi j =−µ

(
∂u j

∂xi
+

∂ui

∂x j

)
+λδi j

(
1
ρ

∂ jk
∂xk

+
∂uk

∂xk

)
. (14)

If the self-diffusion-induced terms are neglected, equation (13)
is the momentum balance equation of the classical NSEs, and
equation (14) has the form of a classical general Newtonian
constitutive relation.

3. Model comparisons and discussion
The constitutive relation in Eq. (14) shows that the devi-

ation stress is caused by the velocity gradient and molecular
self-diffusion. In this constitutive relation there is more devia-
tion stress term due to molecular self-diffusion than in the clas-
sical generalized Newtonian constitutive relation. In the mo-
mentum balance equation, each molecular self-diffusion term
has a corresponding velocity gradient term, but their forms are
different.

There are some differences between the constitutive rela-
tions developed in this study and in other theories developed
for momentum transport. The equation provided by Brenner
replaces the mass velocity in the classical generalized Newto-
nian constitutive relation with a volume velocity, which leads
to an additional diffusion term. The proposed momentum bal-
ance equation is very similar to the result of Sambasivam,
which is presented as follows:[13]

τ
T
i j = −µ

(
∂u j

∂xi
+

∂ui

∂x j

)
+

2
3

µδi j
∂uk

∂xk

+ jiu j + j jui−
2
3

δi j jkuk. (15)

But the new momentum balance equation has one less mo-
mentum transport term related to mass diffusion. Other major
difference is in the sign and the form of the terms related to
the second viscosity. The two mechanisms causing momen-
tum transport have different effects on the molecular groups.
The diffusion just reduces the fluid density, while the convec-
tion velocity gradient causes volume to expand. However, they
are assumed to work in the same way as that in Sambasivam’s
work.[13] Reddy et al.[15] proposed a re-casted Navier–Stokes
equations based on the generalized Newtonian constitutive re-
lation as follows:

𝜏RNS
v = 𝜏NS

v +
k2

m

ρ
∇ρ∇ρ− km𝑈v∇ρ− km∇ρ𝑈v, (16)

where km is the molecular diffusion coefficient, τNS
v is the de-

viation stress and converted from the generalized Newton con-
stitutive equation by substituting 𝑈v into it, and it is equal to
the deviation stress of the generalized Newton constitutive.
The average volume velocity 𝑈v has the following relation
with the conventional convection velocity 𝑢:

𝑢=𝑈v−
km

ρ
∇ρ. (17)

This constitutive relation is consistent with all thermo-
mechanical properties. The momentum balance equation has
two additional terms similar to those proposed in this paper,
but other terms are different.

New extended NSEs can be composed of the proposed
momentum balance equation and momentum constitutive re-
lation in this study, the continuity equation and energy equa-
tion given by Sambasivam.[13] It is easy to verify that these
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equations satisfy Galilean invariance, which is proved in the
Appendix, because the energy equation is added to only by
dissipation terms related to mass diffusion compared with the
classical NSEs. For closed systems, there is no mass diffu-
sion at the system boundaries. Considering that NSEs obey
the second law of thermodynamics, the equations of the ex-
tended NSEs also conform to this law.

The momentum equation with additional diffusion terms
can be obtained directly from a Boltzmann equation involv-
ing a diffusion term in the literature,[10] but the classical
generalized Newtonian constitutive relation has also been
considered for the constitutive relation of deviation stress.
Dadzie[16] pointed out that these relations cannot ensure con-
servation of local angular momentum. Similarly, in the case
of Abramov,[12] the momentum equation is not conservative.
In the present study the deviation stress is symmetrical. Ac-
cording to the momentum balance equation proposed in this
study, ignoring the gravity term, the following local angular
momentum balance equation exists:[17]

∂ li
∂ t

=− ∂

∂xl

[
ul li + εi jkr j ( jluk + pδkl + τkl)

]
− εi jk j juk. (18)

The last term on the right-hand side of Eq. (18) is the an-
gular momentum transport caused by mass diffusion. There-
fore, the momentum balance equation proposed in this study
does not satisfy the conservation of local angular momentum.
But for the closed system, the total angular momentum is con-
served. Furthermore, the conservation of local angular mo-
mentum is not necessary. The local conservation of angu-
lar momentum requires that the vector sum of the external
moment vectors acting on a particle system should be zero
in magnitude, which is composed of fixed particles. Equa-
tion (18) is only applicable for the macroscopic system, and
the molecules that make up of this system are not completely
fixed due to molecule diffusion. This is the origin of the angu-
lar momentum transport in Eq. (18).

The constitutive relation for momentum transport in this
study is based on the primary theory of molecular motion the-
ory. A more rigorous derivation should use statistical mechan-
ics to obtain a modified Boltzmann equation to take into ac-
count the molecular self-diffusion term.[18] No specific form
of the self-diffusion term has yet been widely accepted.[9–12]

Based on a modified Boltzmann equation, a constitutive re-
lation for momentum transport and energy transport can be
derived in the same way as that used by Enskog.[19]

For a circular micro-tube, the mass flux of convection for
isothermal Poiseuille flow can be written as

MC =−πρR4

8µ

∂ p
∂x1

, (19)

where R is the radius of the circular tube, and x1 is the coordi-
nate along the length of the circular tube. Assuming the ideal

gas state equation to be applicable, the mass flux of molecular
self-diffusion can be directly obtained from Eq. (3) as follows:

MD = j1 ·πR2 =−µπR2

ρ

∂ρ

∂x1
=−µπR2

pMm

RmT

∂

∂x1

(
pMm

RmT

)

= −µπR2

p
∂ p
∂x1

, (20)

where Rm is the universal gas constant. The total mass flux
is composed of convection mass flux and diffusion mass flux.
This result is similar to that given by Stamatiou et al.,[20] but
with different coefficients. Dividing Eq. (20) by Eq. (19), the
mass flux ratio can be described by the following formula:

RDC =
MD

MC =
8µ2

pρR2 . (21)

The ratios between convection flux to molecular self-
diffusion flux of helium under different pressures and tube
radii can be obtained by using Eq. (21), and the results are
shown in Fig. 2. The thermo-physical properties are cited from
the NIST Chemistry Webbook. It can be found that the lower
the pressure, the higher the contribution of the molecular self-
diffusion is. When the pressure is below 1 MPa and the radius
of the circular tube is 100 nm, the mass flux of molecular self-
diffusion exceeds 19% that of convection. If the circular tube
radius is less than 10 nm, the molecular self-diffusion flux can-
not be ignored even when the pressure reaches up to 10 MPa.
For a 10-nm-radius pipe, when the pressure is less than 1 MPa,
the flux of molecular self-diffusion is more than 10 times that
of convection. It is notable that in these calculation results the
density gradient is not taken into consideration. Therefore, for
a micro-scale flow, the molecular self-diffusion is a very im-
portant mechanism of the total mass transport, and should be
considered even when the local density gradient is very small.
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Fig. 2. Plots of mass flux ratio of self-diffusion to convection for circular
micro-tubes of different radii.

When studying the problems of high density and tempera-
ture gradients such as shock wave structures, some researchers
believe that mass diffusion must be considered.[13,21] The anal-
ysis in this case shows that for micro-flow, mass diffusion must
also be considered. This point has also been proved by other
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studies through using the Navier–Stokes equation modified by
the mass diffusion term to fit the experimental results of high
Knudsen number micro-flow.[13,22,23] Although these support
this research, they cannot strictly demonstrate the correctness
of the model proposed in this study, which requires a lot of
subsequent experimental researches.

4. Conclusions and perspectives
In this study, a new constitutive relation for fluid mo-

mentum transport and a momentum balance equation are de-
rived from the viewpoint of microscopic molecular motion. In
contrast to the assumptions of classical NSEs, the momentum
transport caused by the molecular self-diffusion is also consid-
ered. The proposed momentum balance equation is consistent
with Galilean invariance. The deviation stress tensor is sym-
metric in this constitutive relation. Unlike phenomenological
methods or analogies in the literature, the method proposed in
this study is based on the molecular motion theory, and can
offer a physical foundation for the extended Navier–Stokes
equations. This study is just a preliminary theory based on
molecular motion, and a more rigorous derivation would re-
quire a modified Boltzmann equation to consider the diffusion
term. Through the analysis of flows in micro-scale circular
tubes, it is found that for a micro-scale flow, the molecular self-
diffusion should still be taken into consideration even when the
local density gradient is very low.

Data availability statement
The data that support the findings of this study are avail-

able from the corresponding author upon reasonable request.

Appendix A: Proof of Galilean invariance
Assuming that the coordinate system x′y′z′ moves at a

uniform velocity 𝑣0 relative to the coordinate system xyz, the
Galilean transformation is as follows:{

𝑟′ = 𝑟−𝑣0t,
t ′ = t, (A1)

where 𝑟′, t ′, 𝑟, and t are the radius vector and time in the co-
ordinate system x′y′z′ and xyz, respectively. The following can
be obtained from Eq. (A1):

𝑢′ = 𝑢−𝑣0, (A2)

where 𝑢′ and 𝑢 are the velocity in the coordinate system x′y′z′

and xyz, respectively. For any function A(𝑟, t), according to
the chain rule, the following equations hold:

∂A
∂ t ′

=
∂ t
∂ t ′
· ∂A

∂ t
+

∂𝑟

∂ t ′
· ∂A

∂𝑟

=
∂A
∂ t

+
∂ t
∂ t ′
·𝑣0 ·

∂A
∂𝑟

=
∂A
∂ t

+𝑣0 ·
∂A
∂𝑟

, (A3)

∂A
∂𝑟′

=
∂A
∂ t
· ∂ t

∂𝑟′
+

∂A
∂𝑟
· ∂𝑟

∂𝑟′
=

∂A
∂𝑟

, (A4)

that is,

∂

∂ t ′
=

∂

∂ t
+𝑣0 ·∇, ∇

′ = ∇. (A5)

For convenience, the continuity equation proposed by
Sambasivam[13] and the momentum equation and momentum
constitutive relation proposed in this study are written in the
form of the following vectors:

∂ρ

∂ t
+∇ · (ρ𝑢) =−∇ ·𝑗, (A6)

∂

∂ t
(ρ𝑢)+∇ · (ρ𝑢𝑢) =−∇ · (p𝐼)−∇ ·𝜏 −∇ · (𝑗𝑢)+ρ𝑔,

(A7)

𝜏 =−µ

[
∇𝑢+(∇𝑢)T

]
+λ𝐼

(
1
ρ

∇ ·𝑗+∇ ·𝑢
)
, (A8)

𝑗 =−µ

(
1
ρ

∇ρ +
1

2T
∇T
)
, (A9)

where 𝐼 is the second-order unit tensor. Combining Eq. (A5),
considering that none of the viscosity, density and temperature
changes with the coordinate system, the following formula ob-
viously holds:

𝑗 =−µ

(
1
ρ

∇
′
ρ +

1
2T

∇
′T
)
= 𝑗 ′. (A10)

Therefore, the mass diffusion flux 𝑗 is objective. According to
Eqs. (A2), (A5), and (A10), the following equation holds for
the deviation stress τ:

𝜏 =−µ

[
∇𝑢+(∇𝑢)T

]
+λ𝐼

(
1
ρ

∇ ·𝑗+∇ ·𝑢
)

=−µ

{
∇
′ (𝑢′+𝑣0

)
+
[
∇
(
𝑢′+𝑣0

)]T}
+λ𝐼

[
1
ρ

∇
′ ·𝑗 ′+∇

′ ·
(
𝑢′+𝑣0

)]
=−µ

[
∇
′𝑢′+

(
∇
′𝑢
)T
]
+λ𝐼

(
1
ρ

∇
′ ·𝑗 ′+∇

′ ·𝑢′
)
= 𝜏 ′.

(A11)

Therefore, the deviation stress τ is also objective, and has
Galilean invariance. From Eqs. (A2), (A5), continuity equa-
tion (A6) and Eq. (A10), the following equation can be ob-
tained:

∂ρ

∂ t ′
+∇

′ ·
(
ρ𝑢′
)

=
∂ρ

∂ t
+𝑣0 ·∇ρ +∇ · [ρ (𝑢−𝑣0)]

=
∂ρ

∂ t
+𝑣0 ·∇ρ−∇ · (ρ𝑣0)+∇ · (ρ𝑢)

=
∂ρ

∂ t
+∇ · (ρ𝑢) =−∇ ·𝑗 =−∇

′ ·𝑗 ′. (A12)

Therefore, the continuity equation (A6) has Galilean invari-
ance. For the momentum transport equation, the following
equations can also be obtained:

∂

∂ t ′
(
ρ𝑢′
)
=

∂

∂ t
[ρ (𝑢−𝑣0)]+𝑣0 ·∇ [ρ (𝑢−𝑣0)]
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=
∂

∂ t
(ρ𝑢)− ∂

∂ t
(ρ𝑣0)

+𝑣0 ·∇(ρ𝑢)−𝑣0 ·∇(ρ𝑣0) , (A13)

∇
′ ·
(
ρ𝑢′𝑢′

)
= ∇ · [ρ (𝑢−𝑣0)(𝑢−𝑣0)]

= ∇ · (ρ𝑢𝑢)−∇ · (ρ𝑢𝑣0)

−∇ · (ρ𝑣0𝑢)+∇ · (ρ𝑣0𝑣0) , (A14)

∇
′ ·
(
𝑗 ′𝑢′

)
= ∇ · [𝑗 (𝑢−𝑣0)] = ∇ · (𝑗𝑢)−∇ · (𝑗𝑣0) ,

(A15)

∇
′ ·𝜏 ′ = ∇ ·𝜏 . (A16)

Considering that in the case of the Galilean transforma-
tion (A1), neither of the pressure p and the acceleration of
gravity 𝑔 changes with the coordinate system, so the follow-
ing holds:

∇ · (p𝐼) = ∇
′ ·
(

p′𝐼
)
,𝑔 = 𝑔′. (A17)

The following equation can be obtained from Eqs. (A13)–
(A16):

∂

∂ t ′
(
ρ𝑢′
)
+∇

′ ·
(
ρ𝑢′𝑢′

)
=

∂

∂ t
(ρ𝑢)+∇ · (ρ𝑢𝑢)− ∂

∂ t
(ρ𝑣0)−∇ · (ρ𝑢𝑣0) . (A18)

The following can be obtained from Eq. (A6):

∂

∂ t
(ρ𝑣0)+∇ · (ρ𝑢𝑣0) =−∇ · (𝑗𝑣0) . (A19)

Substituting Eqs. (A19) and (A7) into the right side of
Eq. (A18), the following equation can be obtained:

∂

∂ t ′
(
ρ𝑢′
)
+∇

′ ·
(
ρ𝑢′𝑢′

)
=−∇ · (p𝐼)−∇ ·𝜏 −∇ · (𝑗𝑢)+∇ · (𝑗𝑣0)+ρ𝑔. (A20)

From Eqs. (A15)–(A17), equation (A20) can be written in the
following form:

∂

∂ t ′
(
ρ𝑢′
)
+∇

′ ·
(
ρ𝑢′𝑢′

)

=−∇
′ ·
(

p′𝐼
)
−∇

′ ·𝜏 ′−∇
′ ·
(
𝑗 ′𝑢′

)
+ρ𝑔′. (A21)

This shows that the momentum balance equation has Galilean
invariance.

In summary, the momentum balance equation, momen-
tum constitutive relation, and continuity equation, proposed in
this work, all have their own Galilean invariance.
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