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Abstract

Mycobacteria are able to enter into a state of non-replication or dormancy, which may result in their chronic persistence in
soil, aquatic environments, and permissive hosts. Stresses such as nutrient deprivation and hypoxia provide environmental
cues to enter a persistent state; however, a clear definition of the mechanism that mycobacteria employ to achieve this
remains elusive. While the concept of sporulation in mycobacteria is not novel, it continues to spark controversy and
challenges our perceptions of a non-replication. We investigated the potential role of sporulation in one-year old broth
cultures of Mycobacterium subsp. paratuberculosis (MAP). We show that dormant cultures of MAP contain a mix of
vegetative cells and a previously unknown morphotype resembling a spore. These spore-like structures can be enriched for
using sporulating media. Furthermore, purified MAP spore forms survive exposure to heat, lysozyme and proteinase K. Heat-
treated spores are positive for MAP 16SrRNA and IS900. MAP spores display enhanced infectivity as well as maintain acid-fast
characteristics upon germination in a well-established bovine macrophage model. This is the first study to demonstrate a
new MAP morphotype possessing spore-like qualities. Data suggest that sporulation may be a viable mechanism by which
MAP accomplishes persistence in the host and/or environment. Thus, our current understanding of mycobacterial
persistence, pathogenesis, epidemiology and rational drug and vaccine design may need to be reevaluated.
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Introduction

Mycobacteria represent a group of highly successful organisms

that range from free-living saprophytes to those that have adapted

full dependence on a living host [1,2]. During their life cycle,

mycobacterial species may encounter a number of stresses

including nutrient deprivation, hypoxia, acidic pH, and even

competition with other organisms for limited resources and

occupation of a specific niche, such as soil and water [3,4,5,6].

In order to survive in such unfavorable conditions, mycobacteria

have developed mechanisms to achieve dormancy, latency and

persistence [7,8,9]. While several studies have investigated

persistence in mycobacteria, the definition remains loosely

explained and the mechanisms that lead to and sustain this state

of non-replication are poorly understood. A recent study by Ghosh

et al. stated the formation of endospores in two month old cultures

of M. marinum and M. bovis, which may serve as an unprecedented

method employed by mycobacteria to withstand harsh conditions

[10]. The concept of sporulation in mycobacteria continues to

spark controversy and challenges our current perceptions of the

facets involved in mycobacterial persistence. Follow-up studies

conducted by Traag et al. could not reproduce endospore

formation in 4 week to ,8.5 month liquid cultures of M. marinum,

which questioned the purity of cultures used in ultrastructural

characterization by Ghosh et al. [11]. The current research trend

focusing on sporulation in mycobacteria remains to reproduce

findings by Ghosh et al. using identical isolation methods;

however, we investigated whether the potential for sporulation

was limited to M. marinum or may encompass another saprophyte

and animal pathogen, Mycobacterium avium subsp. paratuberculosis

(MAP).

MAP, the causative agent of Johne’s disease (JD) in ruminants, is

one of the most prevalent and well-documented infections of dairy

cattle worldwide [12]. To date, JD eradication remains implau-

sible and control efforts are hampered due to MAP’s persistence

within soil and water as well as shedding by subclinical and clinical

cattle [12,13,14,15]. Therefore, it is critical to augment our

knowledge of the events that precede non-replication as well as the

various mechanisms used to attain it. Our data showed that one

year old broth cultures of MAP strains K-10, 7565, Linda and Ben

have the potential to produce a previously undocumented

morphotype possessing a spore-like structure given optimal

sporulation conditions. All isolated MAP spore-like morphotypes

shared appropriate spore ultrastructures, presence of dipicolinic

acid and the MAP specific insertion sequence, IS900, and heat

resistance. More importantly, heat treated MAP spore structures
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retained macrophage infectivity as well as acid-fast characteristics

upon germination. These data suggest that sporulation may be a

viable route by which MAP accomplishes persistence in the

environment.

Results and Discussion

MAP produces a new morphology when grown on Arret-
Kirshbaum sporulation agar under physiologically
relevant temperature

One year old Middlebrook 7H9 (MB7H9) broth cultures (herein

referred to as dormant cultures) of MAP strains K-10 (cattle isolate)

and 7565 (sheep isolate) were used to examine sporulation activity

and isolate spores. It is important to note that the culture medium

was never changed and agitation was not supplied for ,6 months

(mo.); therefore, MAP strains were assumed to be subject to

nutrient starvation and hypoxia. These methods differ from those

utilized by Ghosh et al. in which M. marinum and M. bovis were

grown on 7H10 agar plates for 2 and 12 weeks, respectively [10].

Methods also varied from those described by Traag et al. since

MAP broth cultures were kept at a constant 37uC as opposed to

intermittent incubations at 4uC and 33uC. Furthermore, we

included a spore enrichment process in which MAP broth cultures

were separately plated on Arret-Kirshbaum (A–K) sporulating

agar and grown at 37uC and 39uC. Since A–K sporulating agar is

used for induction of sporulation, particularly from Bacillus spp., we

hypothesized that MAP may also produce spores upon nutrient

exhaustion in this medium. We showed that MAP is capable of

growth and sporulation on A–K agar after 72 h of incubation at

39uC, which was validated by differential staining for spores using

malachite green and safranin (Figure 1A and B). These results are

in stark contrast to E. coli K-12 A–K growth, which is negative for

malachite green staining (Figure 1B). It is interesting to note that

successful MAP growth on A–K medium occurred at 39uC and not

at 37uC, the physiological body temperature of cattle in contrast to

the B. subtilis control which grew at 37uC and 39uC (Figure 1A).

Previous studies from our laboratory demonstrate that physiolog-

ically relevant temperatures greatly influence MAP gene expression

profiles and speed of macrophage invasion [16]. It is well

recognized that mycobacteria are sensitive to changes in

temperature, which influence growth, cell morphology and

pathogenesis [16,17,18,19]. Temperature also impacts sporulation

efficiency [20,21,22]. As previously mentioned, dormant cultures

of M. marinum used by Traag et al. were stored at 4uC for an

unspecified period of time, which may provide one explanation to

the lack of spore detection [11]. Thus, additional pressures like

host related temperature may be one of several contributing

stressors capable of inducing differential rates of sporulation.

Due to the age of MAP cultures, a valid concern arose that

isolated morphotypes were not of a MAP origin but a known

endospore contaminant. In order to confirm MAP purity, dormant

MAP K-10 cultures used for spore enrichment were streaked on

Brain-Heart Infusion (BHI) agar. While B. subtilis produced visible

colonies, MAP K-10 showed no growth and was determined to be

Figure 1. MAP morphotype induction is dependent upon temperature. One year old MB7H9 MAP broth cultures were inoculated on A) A–K
agar and C) BHI agar for 72 h at 37uC and 39uC. MAP showed growth only at 39uC compared with B. subtilis and E. coli K-12 controls, which had
substantial growth at both temperatures (A). Spore enrichment was determined by malachite green staining (B). In order to confirm purity of MAP
culture, the year old MAP culture was grown on BHI agar and determined to be free of any contaminating organisms (C).
doi:10.1371/journal.pone.0030648.g001

Spore-Like Morphotype of M. paratuberculosis
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devoid of any contaminating organisms (Figure 1C). Also, MAP K-

10 was revived on MB7H9 agar indicating that dormant cultures

remained viable. Therefore, MAP K-10 has the potential to

produce spore-like structures given sufficient and appropriate cues.

Environmental cues that are involve nutrient and moisture

limitation, temperature, hypoxia, and competing microbes are

hypothesized to be sufficient to cause mycobacterial sporulation

but may not all be necessary at the same time.

Transmission Electron Microscopy (TEM) shows presence
of spore-like forms

Since malachite green primarily functions by permeating the

mother cell through heat and is retained within the cell coat layers

due to their thickness, the possibility remained that malachite

green may be bound to the complex, waxy mycobacterial cell wall.

In fact, malachite green has been used to stain flagella and leprosy

bacilli in addition to endospores [23,24]. To validate A–K agar

and malachite green staining results and characterize the MAP

spore-like structure, we examined the spore forms during different

phases of growth: log, dormant, and induced (A–K isolated) spore

phases (Figure 2A). Dormant MAP K-10 cultures displayed a mix

of bacilli and spores, while the induced phase contained only

spores (Figure 2A). Next, we increased the stringency of our testing

for possible contamination and conducted duplex and normal

polymerase chain reactions (PCRs) to demonstrate the presence

and/or absence of IS900 integration sites in MAP, Bacillus spoIVA

gene and Clostridium 16SrDNA gene in all MAP and control samples

(Figure 2B). MAP dormant, log phase, germinated and A–K

isolated spore cultures showed the presence of IS900 integration

sites but did not display amplification of specific Bacillus and

Clostridium gene elements, which suggested the unlikelihood of

isolated MAP morphotypes containing Bacillus and Clostridium

species (Figure 2B). As expected, control spore samples from B.

subtilis and C. perfringens did not amplify the MAP specific IS900

integration sites (Figure 2B).

We tested if MAP dormant and A–K spore cultures represented

true spores and not a simple thickening of the cell wall as has been

reported by Cunningham et al. by determining the presence of

dipicolinic acid (DPA; pyridine-2,6 dicarboxylic acid), a chemical

commonly found in spores [25]. Calcium bound DPA is found

Figure 2. Ultrastructural characterization of MAP morphologies. Fine MAP morphotype structure was determined by TEM (A). TEM images
were taken of log-phase, dormant and A–K MAP cultures. While the dormant MAP culture showed a mix of vegetative cells and spores, A–K MAP
cultures displayed typical spore characteristics, including a cortex, plasma membrane and coat layers. (B) All MAP cultures were assessed for
contamination of duplex and normal PCR of IS900, spoIVA and Clostridium 16SrDNA. Only MAP samples contained the IS900 element and did not
amplify Bacillus and Clostridium related genes. (C) Spore formation was confirmed by the detection of dipicolnic acid (DPA) using a colorimetric assay.
DPA is a chemical found within the spore core of endospores. Intact and autoclaved mycobactin J (250.0 mg/mL) were used as controls. Each sample
was conducted in triplicate.
doi:10.1371/journal.pone.0030648.g002

Spore-Like Morphotype of M. paratuberculosis
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within the spore core and contributes to spore DNA resistance to

wet and dry heat, desiccation and hydrogen peroxide [26,27,28]. In

order to detect DPA, we used a colorimetric assay that releases DPA

after autoclaving and acetic acid treatment and is subsequently

available to bind to iron under an acidic pH [29]. Since

mycobacteria secrete, contain, and are supplemented with side-

rophores, which form complexes with iron, we included a

mycobactin J control to ensure abrogation of potential reactions

with iron involved in DPA detection (Figure 2C) [30]. Elevated

levels of DPA were found in MAP dormant and spore cultures and

B. subtilis spores (matched for wet pellet weight) (Figure 2C). Not

surprisingly, isolated MAP spores contained increased amounts of

DPA (470.0 mg/mL) compared to any other MAP culture, which

was not due to reactive mycobactin J (Figure 2C). It has been noted

that DPA synthesis in addition to endospore formation occurs with

low guanine (G) and cytosine (C) % content among Firmicutes,

which conflicts with the high percentage of G+C found in

mycobacteria [11]. Although rare, members of the Streptomyces (S.

globisporus and S. avermitilis) are capable of endospore production

given conditions conducive to endsporulation such as incubation in

submerged cultures and phosphate limitation [31,32]. Also, the

presence of DPA was found by Stastná et al. despite the lack of the

spoVF locus, which encodes a DPA synthetase [32]. Orsburn et al.

has described that the spoVF locus is also absent in certain clostridia

and that an electron transfer flavoprotein may compensate for DPA

generation [33]. Therefore, spoVF may not be a strict requirement

for DPA production and endosporulation may infrequently

encompass genera from Actionbacteria and may not be restricted

solely to low G+C% bacteria. Future studies should involve

mechanistic based experiments to determine if DPA production in

MAP depends upon an electron transfer flavoprotein. It is possible

that novel morphotypes of MAP may not be strict endspores and are

more reminiscent of Streptomyces spp. spore structures.

Sporulation in MAP is reproducible and consistent in a
different culture, medium and multiple strains

Our enrichment technique using A–K agar was validated by

another laboratory (National Animal Disease Center (NADC),

USDA) using a separate MB7H9 liquid culture of MAP K-10

(Figure 3A). TEM images of MAP K-10 showed characteristic spore

features (e.g. condensed core and coat layers) (Figure 3A). Since A–

K agar is not a typical method used to induce sporulation from

bacterial cultures, we included spore enrichment using potato

extract agar (PEA) using a described method (Figure 3B) [34].

Again, year old liquid culture of MAP K-10 was capable of

producing spore-like morphotypes and displayed identifiable spore

structures (Figure 3B). B. subtilis and E. coli K-12 were included as

positive and negative controls, respectively (Figure 3B). MAP K-10

PEA spore-like structures were free of contamination as determined

by the absence of growth on blood agar (Figure 3d). Furthermore,

we sought to determine if other MAP strains were capable of

sporulation. A–K enrichment of and TEM visualization showed

that MAP 7565 (sheep strain), Ben (human strain) and Linda (human

strain) sporulated (Figure 4). Both Ben and Linda strains were isolated

from patients with Crohn’s disease [35,36]. Although controversial,

the presence of MAP (either in blood or intestinal tissue) has been

shown to be associated with Crohn’s disease but an etiological link

between the two remains to be established [37,38,39].

MAP spore-like forms survive heat treatment and are
positive for MAP 16SrRNA and IS900

To be considered a true spore former, isolated novel MAP

morphotypes must survive exposure to heat and be capable to

germinate given a nutrient source [26]. We heat treated MAP K-10

spores at 70uC and 90uC for 30 min in addition to 2% lysozyme,

proteinase K (PK), kanamycin and anaerobic exposure. Heat

treatment served two purposes to: 1) determine temperature

threshold for survival and 2) eliminate any remaining vegetative

cells such that the re-grown culture only originated from spores.

Both lysozyme and PK are typically used as a standard DNA

extraction protocol that functions by damaging the cell wall of

vegetative MAP cells, which causes bacterial lysis. MAP K-10

spores survived exposure to 70uC but not at 90uC (Figure 5a).

Heat exposed spores treated in combination with either lysozyme,

PK or kanamycin were capable of re-growth due to the coat layer

resistance to these enzymes (Figure 5a). Incubation under

anaerobic conditions was included to rule out Clostridium spp.

contamination. Exposure to anaerobic conditions post heat

treatment failed to produce any visible growth (Figure 5a).

Contamination during heat treatment was also eliminated as can

be observed by the absence of growth on blood agar plates

(Figure 5b). Ten colonies from each heat treated MAP plate (70uC
alone/and+lysozyme, +PK, +kanamycin) were selected and

submitted to 16SrRNA sequencing. Sequencing results showed

that all colonies were positive for MAP 16SrRNA (Figure 5c).

These colonies were also positive for MAP-specific IS900

(Figure 5d). MAP spore survival post exposure to 70uC may in

fact not be extremely surprising since many studies have shown

the presence of MAP as a food contaminant in pasteurized (also

treated at 70uC) milk, cheeses and yogurt [40,41,42,43]. It is

currently unknown if the MAP found in these dairy products may

exist in a spore or spore-like state. It is important to note that

MAP is hypothesized to be one potential trigger or causative

agent for Crohn’s disease (CD) onset [37,38,39,44]. Several

studies indicate that the gross pathology of JD and CD are

similar, such as the thickened intestinal mucosa and transmural

inflammation [36,45,46]. It is proposed that MAP survival in

pasteurized dairy products may serve as a vehicle for MAP

infection in a subset of CD patients [41,47,48]. If MAP does

survive pasteurization as a spore, this may result in an important

finding and further understanding of MAP’s potential role in

public health.

Dormant MAP cultures express elevated transcript levels
of sporulation related genes

In addition to spore visualization, we have identified a number

of mycobacterial candidate genes corresponding to those in the

sporulation pathway of several Bacillus and Streptomyces species

(Figure 6a). We show that MAP 1002c, which has a 57% similarity

to the sporulation response regulator spo0A in Bacillus spp., has a

40-fold increase expression in dormant MAP K-10 compared to

respective log-phase culture (Figure 6b). Other studies have also

noted the presence of spore related genes in M. tuberculosis and

other mycobacterial species [49].

Research investigating Bacillus spp. and S. coelicolor A3(2)

morphology indicate that the stringent response is essential to

robust spore production [50,51]. A recent study by Stallings et al.

showed that the mycobacterial gene, carD, is an essential regulator

of the stringent response that is also found in a number of

sporulating bacteria that downregulates rRNA by binding onto the

b-subunit of RNA polymerase (RNAP) in response to nutrient

starvation and oxidative stress (Figure 6c) [52]. Transcript levels in

dormant MAP culture show a 15 and 2-fold upregulation of MAP

0475 and MAP 0987(carD orthologues), respectively (Fig. 6b). The

presence and absence of orthologous genes alone is unlikely to

shed any deeper understanding of the sporulation process in

mycobacteria but will require the addition of an evolutionary

Spore-Like Morphotype of M. paratuberculosis
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systems biology approach [53]. In other words, functional assays

on identified genes are necessary to assess their impact on the

generation of this new MAP morphotype. Evolutionary systems

biology, which focuses on the changing relationships between

genes and gene products, will reveal developmental networks that

may include regulatory molecules and feed-forward networks.

Ongoing studies in our laboratory are seeking to create knock-out

and knock-in mutations of genes identified in Table 1 to determine

what role if any they may have in formation of the MAP spore-like

morphotype.

MAP spores retain infectivity and germinate into acid-fast
bacilli during exposure to bovine monocyte derived
macrophages (MDMs)

Previous studies have reported that MAP can readily be isolated

in soil and aquatic environments, which may come into contact

with animals and serve as transmission routes [15,54,55,56,57,58].

For example, livestock manure stored in liquid lagoons is often

applied to agricultural land and MAP may persist within this

environment upwards of 175 days [59]. Therefore, we asked the

question if MAP spore-like forms could transmit and maintain

Figure 3. Sporulation is reproducible on traditional sporulation medium. Spore enrichment was independently conducted by the National
Animal Disease Center (Ames, IA) using a separate MAP K-10 culture inoculated on A–K agar. MAP K-10 year old MB7H9 broth culture, B. subtilis and E.
coli K-12 were inoculated on B) Potato extract agar with mycobactin J at 37uC and 39uC. MAP K-10 growth was observed after two weeks of
incubation at 39uC in comparison to overnight growth of B. subtilis and E. coli K-12 controls. Biomasses were collected similarly to A–K cultures and
processed for TEM (B). MAP K-10 TEM images showed similar structures as those observed in Figure 2. Furthermore, biomasses were streaked on
blood agar and incubated at 37uC and 39uC for 4 weeks to confirm purity (C). MAP K-10 failed to grow for the entire duration of incubation in
comparison to B. subitlis and E. coli K-12 controls.
doi:10.1371/journal.pone.0030648.g003

Spore-Like Morphotype of M. paratuberculosis
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infection in a well-developed bovine monocyte derived macro-

phage (MDM) model. Both MAP and B. subtilis spores are readily

phagocytosed by MDMs; however, B. subtilis spores are cleared

within 6 h p.i. (post infection) (Figure 7). All vegetative cells were

lysed as stipulated in materials and methods. MAP spores are

maintained within MDMs and germinated by 24 h (Figure 7).

Spore germination into developed bacilli show strong acid-fast

staining, which is a major diagnostic feature of mycobacteria.

Furthermore, the progression of infection with MAP spores was

enhanced when compared to the MAP log-phase control and

MDMs lysed at 48 h p.i. (Figure 7). These data combined with

heat resistance suggest that sporulation in MAP may aid and

impact the rate of transmission and consequently establishment of

infection in host species.

Conclusions
This is the first study to identify and describe a new spore-like

morphotype in MAP associated with nutrient starvation. We

propose that MAP may utilize sporulation as a mechanism to

persist in unfavorable conditions such as those encountered in soil

and aquatic environments. MAP may also commit itself to a spore-

like state to survive the pressures applied by pasteurization and

thereby provide one explanation for MAP detection in commer-

cialized dairy products. Although significant strides have been

made, especially within the last ten years, in understanding

mycobacterial persistence, it continues to be fraught with

ambiguities and dissension. The findings by Ghosh et al., which

identified spores in M. marinum, and those presented in this paper

for MAP are difficult to grapple with as they defy key concepts and

change our perceptions of persistence, dormancy and transmission

for MAP. This new MAP morphotype or spore readily invaded

bovine MDMs, germinated and developed into acid-fast bacilli.

More importantly, enrichment and isolation of this new

morphotype was independently conducted by a second laboratory

(NADC) using a separate MAP culture grown at that facility.

Concerns are raised due to the similarities of spore formation in

MAP and Bacillus given widely divergent genera. However, 1)

certain species of Streptomyces, another genus of the Actinobacteria,

Figure 4. Sporulation occurs in multiple MAP strains. MAP strains 7565, Ben and Linda were inoculated on A–K agar. Biomasses were collected
and processed for TEM. All strains show characteristic spore structures.
doi:10.1371/journal.pone.0030648.g004

Figure 5. MAP morphotypes survive 706C and are positive for MAP 16SrRNA and IS900. (A) MAP K-10 log phase and spores, B. subtilis and C.
perfringens were heat treated at 70uC for 30 min and subsequently treated with 2% lysozyme, PK, or kanamycin. Heat treated samples were plated on
MB7H9 or blood agar and incubated at 37uC under aerobic or anaerobic conditions. (B) Heat treated cultures were plated on blood agar to determine
growth of any contaminates. (C) 16SrRNA sequences of germinated heat treated MAP spores compared to reference sequences from MAP, Bacillus
spp., Streptomyces spp. and Clostridium spp.. Ten colonies from each plate were selected for sequences. Sequences shown are a consensus from the
ten colonies. (D) IS900 duplex PCR of germinated heat treated MAP spores.
doi:10.1371/journal.pone.0030648.g005

Spore-Like Morphotype of M. paratuberculosis
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are capable of endospore formation at suitable conditions and 2)

DPA is also present in Streptomyces despite the lack of spoVF operon.

Identification of unique MAP spore coat proteins as well as the

cues leading to sporulation may aid in future diagnostics for food

and environmental safety. Further studies are needed to examine

the role of this newly described MAP morphotype in soil and

aquatic environments as well as post pasteurization in dairy

products utilizing the above aspects to assess impact in

transmission and persistence.

Materials and Methods

Bacterial and MDM Cell Culture
Dormant cultures of MAP strains K-10, 7565, Ben and Linda

were grown at 37uC in MB7H9 broth supplemented with oleic

acid, albumin, dextrose and catalase (OADC) enrichment and

mycobactin J (2.0 mg/L) (Allied Monitor, Fayette, MO) for one

year without agitation. MAP cultures were determined to be free of

contamination by absence of growth on BHI agar at 37uC and

39uC. Bacillus subtilis and Escherichia coli K-12 were cultured in

Luria-Bertani (LB) broth at 37uC with shaking at 150 rpm.

Clostridium perfringes was grown on blood agar at 37uC in an

anaerobic chamber. Mitsubishi anaeropacks (Fisher Scientific,

Pittsburgh, PA) used for the anaerobic chamber were changed

every 24 h.

Peripheral blood was collected from the jugular veins of two JD

free cattle (542 and 2170) at the University of Minnesota’s dairy

barn and teaching facility. Monocyte derived macrophages

(MDMs) were elutriated using an established protocol [60]. All

cattle work performed was in concordance with the institutional

guidelines and approved animal care and use protocols at the

University of Minnesota.

Spore-like Morphotype Isolation
Approximately 250.0 mL of dormant cultures of MAP (K-10,

7565, Ben and Linda), log-phase B. subtilis (O.D.570 = 0.5) and log-

phase E. coli (O.D.600 = 0.5) were cultured separately on Arret-

Kirshbaum (A–K) sporulation agar (BD, Franklin Lakes, NJ) at

37uC and 39uC for either 72 (MAP) or 24 h (B. subtilis and E. coli).

A time point of 72 h for MAP cultures were selected based on the

time required to observe MAP growth on A–K plates. MAP

cultures were also grown on Potato Extract Agar (PEA) at 39uC
until growth was achieved (2 weeks) [34]. Upon completion of

incubation times, A–K and PEA agar plates were allowed to rest at

Figure 6. Dormant MAP cultures upregulate spore-related transcripts. (A) A BLAST comparison and reciprocal BLAST searches were
conducted between known sporulation genes from Bacillus spp.{ and Streptomyces spp.{ against MAP. Percent similarity was determined by protein
alignment. (B) Quantitative real-time PCR was performed on dormant MAP cultures to determine the presence of carD (MAP0475 and MAP0987) and
spo0A (MAP1002c). All three genes are upregulated in comparison to log-phase MAP K-10 culture. All samples were conducted in triplicate. C) Multiple
sequence alignment of selected CarD proteins. CarD has recently been shown by Stallings et al. to be necessary component of stringency regulation
in mycobacteria. Other studies indicate that the stringency response is also necessary for the initiation of sporulation. A multiple sequence alignment
of CarD amino acid sequences from mycobacteria and sporulating bacteria was conducted using CLUSTALW.
doi:10.1371/journal.pone.0030648.g006
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room temperature (RT) for 48 h. Biomasses were collected in

autoclaved distilled water (dH2O) and incubated at RT for 72 h..

Spores were washed 36 in 16 phosphate buffer saline (PBS),

centrifuged at 13,000 rpm for 10 min to sediment and resus-

pended in 20.0 mL of autoclaved dH2O. C. perfringes spores were

enriched by incubation with Duncan and Strong broth at 37uC for

24 h under anaerobic conditions. All spore samples were heat

treated at 70uC for 30 min to lyse any vegetative cells. All spore

samples were differentially stained with malachite green/safranin

and visualized on an Olympus IX70 inverted fluorescence

microscope (Olympus, Center Valley, PA).

DNA Extraction and Polymerase Chain Reaction (PCR)
DNA was extracted from 500.0 mg (wet weight) MAP K-10 log-

phase (O.D.600 = 0.5), dormant cultures and spores by incubating

samples for 10 min at 37uC with 10% sodium dodecyl sulfate

(SDS) followed by homogenization in a mini-bead beater (Roche)

using 0.2 mL of 0.1 mm sterile RNase free zirconium beads

(Biospec, Bartlesville, OK) for 4 min. DNA samples were cleaned

using PE buffer and spin columns (Qiagen, Valencia, CA). B.

subtilis DNA was isolated from subcultures grown for 16 h at 37uC
using the QIAamp DNA mini kit (Qiagen, Valencia, CA)

per manufacturer’s instructions. Clostridium perfringens DNA was

generously provided by Arpita Ghosh (University of Minnesota).

All DNA samples were checked for purity and concentration using

the 260/280 ratio provided by the NanoDrop sample retention

system (Thermoscientific, Wilmington, DE). All primers with the

exception of Clostridium 16SrDNA [61] were designed using Primer3

software (http://frodo.wi.mit.edu/primer3/) (Table 1). PCR was

conducted using Hot-Start Taq (Denville, Metuchen, NJ) per

manufacturer’s instructions. All MAP DNA reactions contained

5% dimethyl sulfoxide (DMSO). The following cycling programs

were used for the corresponding genes: IS900 95uC for 15 min.,

94uC for 15 s, 58uC for 20 s, 72uC for 20 s and 72uC for 7 min.

for 35 cycles, spoIVA 94uC 15 min., 94uC 15 s, 51.5uC for 15 s,

72uC for 30 s, and 72uC for 1 min. for 35 cycles, and Clostridium

16SrDNA 94uC for 15 min., 94uC for 15 s, 52uC for 15 s, 72uC
for 30 s and 72uC for 1 min for 35 cycles.

Transmission Electron Microscopy (TEM)
TEM ultrastructural imaging was conducted on MAP log-

phase, dormant and isolated spore cultures using the methods

described by Ghosh et al. [10]. Dormant cultures and A–K and

PEA biomasses of MAP strains K-10, 7565, Linda and Ben were

centrifuged at 3,000 rpm and supernatants were discarded. Pellets

were fixed with 2.5% glutaraldhyde in 0.1 M sodium cacodylate

buffer overnight at 4uC. Samples were washed 36 using 0.1 M

sodium cacodylate buffer and post fixed in 1% osmium tetroxide

in 0.1 M sodium cacodylate buffer reduced with ferroyanide and

washed 36 in autoclaved water. After a series of acetone

dehydration, all samples were infiltrated with 1:2, 2:1 resin:acetone

mixtures and 3 100% resin. Samples were embedded and cured at

60uC for 48 h and later visualized using TEM.

DPA Assay
DPA was detected using a previously reported colorimetric

assay [29]. Wet pellet weight of 250.0 mg was used for each

bacterial sample. Autoclaved and ‘‘intact’’ mycobactin J (250 mg/

mL) were used as controls. DPA concentrations were calculated

based on a DPA (MP Biomedicals, Riverside CA) protein

concentration curve. DPA assay was performed six times and all

Table 1. Primers used in this study.

Gene and direction Sequence

IS900, L16 CCCGTGACAAGGCCGAAGA

IS900, L96 CGGCCCTGGCGTTCCTATG

IS900, 900 R ACGCTGTCTACCACCCCGCA

spoIVA, F AAATCGGCACACGAAAAGTC

spoIVA, R TGCCAATACCGGGATATCAT

Clostridium 16SrDNA, FY AAAGATGGCATCATCATTCAAC

Clostridium 16SrDNA, RY TACCGTCATTATCTTCCCCAAA

Universal 16SrRNA, F AGAGTTTGATCCTGGCTCAG

Universal 16SrRNA, R GGGTGGATCCTCCTT

MAP1002c, F CGGGTGTGGAACTACGACTT

MAP1002c, R TCTTCTTCCTCAGGTACGAGATGT

MAP0475, F GACAAGGTATTCCAGGTGCTG

MAP0475, R CTCGGCGACCTTGTTGAC

MAP0987, F GCACGACGGCATCGTTAT

MAP0987, R GTCAAGTCCGTCCGTCTCGGTGA

6Motiwala, A.S., et al. Molecular epidemiology of Mycobacterium avium subsp.
paratuberculosis: evidence for limited strain diversity, strain sharing, and
identification of unique targets for diagnosis. J Clin Micobiol, 2003. 41(5):2015–
26.

Bull, T.J., et al. Characterization of IS900 loci in Mycobacterium avium subsp.
paratuberculosis and development of multiplex PCR typing. Microbiology, 2000.
146:3285.
YWang, R.F., et al. A 16S rDNA-based PCR method for rapid and specific detection

of Clostridium perferingens in food. Mol Cell Probes,m1994. 8(2): 131–7.
doi:10.1371/journal.pone.0030648.t001

Figure 7. MAP spores retain infectivity and germinate into acid-fast bacilli in a bovine MDM model. MAP spores, MAP log-phase and
Bacillus subtilis spores were allowed to infect MDMs for 0.5, 2, 6, 24, and 48 h p.i.. MAP spores readily infected MDMs and germinated by 24 h p.i..
Upon 48 h p.i., MDMs were lysed and MAP spores successfully germinated into acid fast bacilli.
doi:10.1371/journal.pone.0030648.g007
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samples were conducted in triplicate with duplicate technical

replicates. Figure 2C shows a representative experiment.

Heat Treatment
MAP K-10 spores, B. subtilis spores and C. perfringes spores were

heat treated at 70uC and 90uC for 30 min. Additional treatments

post heating included exposure to 2% lysozyme at 37uC for

10 min, PK (100 mL of 2 mg/mL) digestion at 37uC for 10 min,

kanamycin (50 mg/mL) at 37uC for 2 h and anaerobic exposure at

37uC for 3 weeks. To ensure that MAP cultures were devoid of

contaminants post heat treatment, all samples were grown on

blood agar at 37uC for 4 weeks. Ten colonies were selected from

each MAP heat treatment plate and re-grown in MB7H9 broth at

37uC for 10 weeks. DNA was extracted from re-grown cultures

and sequenced for 16SrRNA (Table 1). The universal 16SrRNA

cycling program is as follows: 94uC for 15 min., 94uC for 15 s,

54uC for 15 s, 72uC for 30 s and 72uC for 1 min for 30 cycles.

16SrRNA sequences were analyzed using Sequencher (Gene Codes

Corporation, Ann Arbor, MI) and aligned using MEGA software

(http://www.megasoftware.net/) [62]. Colonies were further

submitted to IS900 PCR. All samples were plated twice and heat

treatment experiments were conducted three separate times.

RNA Extraction and Qt-RT-PCR
1.0 mL of dormant and log-phase MAP K-10 cultures were

centrifuged separately in 1.5 mL eppendorf tubes for 10 min. at

13,000 rpm. Supernatants were decanted and pellets were washed

36 in 16 PBS. 1.0 mL of TRIzol reagent (Invitrogen, Carlsbad,

CA) was added to each sample and allowed to incubate at room

temperature for 5 min. MAP K-10 samples mixed with TRIZol

were homogenized using 0.3 ml of 0.1 mm sterile RNase-free

zirconium beads for 4 min. in the MagNa Lyser system (Roche,

Basel, Switzerland). RNA was extracted following TRIzol

protocol. RNA was subsequently treated with TurboDNase

(Ambion, Austin, TX) for 30 min at 37uC. All samples used had

a 260/280 ratio of at least 1.9 as measured by NanoDrop sample

retention system (Thermoscientific, Wilmington, DE). Primers

used for Qt-RT-PCR were designed using Primer3 software

(http://frodo.wi.mit.edu/primer3/) (Table 1). Qt-RT-PCR anal-

ysis was conducted on 50.0 mg of purified dormant or log-phase

MAP K-10 culture combined with the Quantifast one-step RT-

PCR reagents (Qiagen, Valencia, CA) using the Lightcycler 480 II

(Roche, Basel, Switzerland) programmed for the following: 50uC
for 10 min, 95uC for 5 min, 95uC for 10 s, 60uC for 30 s for 40

cycles. Fold change was calculated using the 22DDCt method. All

samples were conducted in triplicate.

Spore Invasion Assay
Bovine MDMs in RPMI containing 2% autologous serum were

seeded at 2.06104 cells/mL in a 24 well plate containing 1.0

No. 1.5 thickness glass coverslips and allowed to adhere for 2 h at

37uC in humidified incubator containing 5% CO2. Following

incubation, MDMs were washed 36 in 16Dulbecco’s phosphate

buffer saline (D-PBS) to remove non-adherent cells and medium

was replaced with fresh serum-free RPMI prior to infection. MAP

K-10 subculture and spores and B. subtilis spores were pelleted at

13,000 rpm for 5 min. or 10 min., respectively, washed 26 with

warm 16 D-PBS and resuspended in 37uC warmed serum-free

RPMI such that a MOI (multiplicity of infection) ratio of 10:1 was

achieved. Serum free RPMI was used to prevent spore

germination outside of MDMs. Spores were heat treated at

70uC for 30 min. Subsequently, cultures were vigorously vortexed

and allowed to rest for 5 min. at 37uC so that potential clumps

would settle to the bottom of the tube. An 18.5 gauge syringe

needle was used to repeatedly draw the upper three-fourths of the

newly suspended MAP cultures to disperse any remaining clumps.

MDMs were separately infected with upper three-fourths of

RPMI-MAP/spore cultures for 2 h at 37uC in humidified

incubator containing 5% CO2, rinsed 36 with 16 D-PBS and

resuspended in RPMI containing 2% autologous serum for the

following post infection (p.i.) time points: 0, 0.5, 6, 2, 24, and 48 h.

Upon completion of post infection time points, MDMs were rinsed

36 in D-PBS and fluorescently or acid-fast stained for visualiza-

tion. All time points were conducted in triplicate.

Cell Staining
Fluorescent staining was conducted as stipulated by Lamont

et al. [16] with the exception that log-phase and spore cultures were

pre-stained for 30 min in 2.0 mg/mL of 5-carboxyfluorescein

diacetate (CFDA) (Sigma-Aldrich, St. Louis, MO) at 37uC.

Fluorescent images were visualized and collected as a Z-series (step

size: 1.0 mm) using DAPI, FITC and Cy5 lasers on an Olympus

Fluoview 1000 upright confocal microscope (Olympus, Center

Valley, PA). Joint acid-fast images were stained using a modified

Zeil-Neelsen protocol (Trend Laboratories Inc., Atlanta, GA) and

imaged on an Olympus IX70 inverted fluorescence microscope.
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