
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Publications from USDA-ARS / UNL Faculty U.S. Department of Agriculture: Agricultural 
Research Service, Lincoln, Nebraska 

2016 

NlpC/P60 domain-containing proteins of Mycobacterium avium NlpC/P60 domain-containing proteins of Mycobacterium avium 

subspecies paratuberculosis that differentially bind and hydrolyze subspecies paratuberculosis that differentially bind and hydrolyze 

peptidoglycan peptidoglycan 

J. P. Bannantine 
USDA-ARS, National Animal Disease Center, john.bannantine@usda.gov 

Cari K. Lingle 
University of Missouri—Kansas City 

Philip R. Adam 
Oklahoma State University, Stillwater 

Kasra X. Ramyar 
University of Missouri—Kansas City 

William J. McWhorter 
University of Missouri-Kansas City, Kansas City 

See next page for additional authors 
Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub 

 Part of the Agriculture Commons 

Bannantine, J. P.; Lingle, Cari K.; Adam, Philip R.; Ramyar, Kasra X.; McWhorter, William J.; Picking, William 
D.; and Geisbrecht, Brian V., "NlpC/P60 domain-containing proteins of Mycobacterium avium subspecies 
paratuberculosis that differentially bind and hydrolyze peptidoglycan" (2016). Publications from USDA-
ARS / UNL Faculty. 2425. 
https://digitalcommons.unl.edu/usdaarsfacpub/2425 

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research 
Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion 
in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of 
Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usdaarsfacpub
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/usdaarsfacpub?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F2425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F2425&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/usdaarsfacpub/2425?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F2425&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
J. P. Bannantine, Cari K. Lingle, Philip R. Adam, Kasra X. Ramyar, William J. McWhorter, William D. Picking, 
and Brian V. Geisbrecht 

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/
usdaarsfacpub/2425 

https://digitalcommons.unl.edu/usdaarsfacpub/2425
https://digitalcommons.unl.edu/usdaarsfacpub/2425


NlpC/P60 domain-containing proteins of
Mycobacterium avium subspecies
paratuberculosis that differentially bind
and hydrolyze peptidoglycan

John P. Bannantine,1* Cari K. Lingle,2 Philip R. Adam,3 Kasra X. Ramyar,2

William J. McWhorter,2 Judith R. Stabel,1 William D. Picking,3 and
Brian V. Geisbrecht2*

1National Animal Disease Center, USDA-Agricultural Research Service, Ames, Iowa
2School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri
3Department of Microbiology & Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma

Received 19 November 2015; Accepted 19 January 2016
DOI: 10.1002/pro.2884

Published online 22 January 2016 proteinscience.org

Abstract: A subset of proteins containing NlpC/P60 domains are bacterial peptidoglycan hydro-
lases that cleave noncanonical peptide linkages and contribute to cell wall remodeling as well as

cell separation during late stages of division. Some of these proteins have been shown to cleave

peptidoglycan in Mycobacterium tuberculosis and play a role in Mycobacterium marinum virulence
of zebra fish; however, there are still significant knowledge gaps concerning the molecular function

of these proteins in Mycobacterium avium subspecies paratuberculosis (MAP). The MAP genome

sequence encodes five NlpC/P60 domain-containing proteins. We describe atomic resolution crys-
tal structures of two such MAP proteins, MAP_1272c and MAP_1204. These crystal structures,

combined with functional assays to measure peptidoglycan cleavage activity, led to the observa-

tion that MAP_1272c does not have a functional catalytic core for peptidoglycan hydrolysis. Fur-
thermore, the structure and sequence of MAP_1272c demonstrate that the catalytic residues

normally required for hydrolysis are absent, and the protein does not bind peptidoglycan as effi-

ciently as MAP_1204. While the NlpC/P60 catalytic triad is present in MAP_1204, changing the cata-
lytic cysteine-155 residue to a serine significantly diminished catalytic activity, but did not affect

binding to peptidoglycan. Collectively, these findings suggest a broader functional repertoire for

NlpC/P60 domain-containing proteins than simply hydrolases.

Keywords: Mycobacterium; Johne’s disease; crystal structure; peptidoglycan; proteins; antigens;

paratuberculosis

Additional Supporting Information may be found in the online version of this article.

Importance: Johne’s disease in ruminant livestock is caused by the bacterium Mycobacterium avium subspecies paratuberculosis. This
research describes the functional aspects of two proteins that show promise in a subunit vaccine for Johne’s disease. Through crystal
structure determination and amino acid modification, we demonstrate that although both proteins have a similar structure, one of them
lacked hydrolytic activity on peptidoglycan. We show that a specific amino acid is likely responsible for this lack of hydrolytic activity.
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Introduction

Mycobacterium avium subspecies paratuberculosis

(MAP) causes a chronic intestinal disease of rumi-

nants including cattle, sheep, and goats. This disease,

termed Johne’s disease, has a worldwide distribution

and >90% prevalence in U.S. dairy cattle herds,1

which results in an economic toll of more than 200

million dollars annually.2 The bacterium is transmit-

ted from cow-to-calf via the fecal–oral route and

through contaminated milk. Thus, a multipronged

research approach that encompasses epidemiology,

pathogenesis, diagnostics, vaccine development, and

ideal herd management strategies is warranted to

reduce the impact of Johne’s disease on farms.3–5

This economically significant veterinary patho-

gen is among the Mycobacteria which all contain a

unique cell wall structure that includes mycolic acids

covering the lipoarabinogalactan layer with a founda-

tional lattice of muropeptide cross-linked peptidogly-

can.6 Implicit with this sturdy cell wall are hydrolytic

mechanisms required for cell division, peptidoglycan

remodeling, nutrient uptake, as well as other biologi-

cal processes. Thus the peptidoglycan layer in partic-

ular must be constantly modified during growth and

at least partially disassembled to separate daughter

cells during the final stages of cell division. This is

accomplished by three classes of enzymes: glycosi-

dases, which cleave bonds between the repeating

disaccharides; amidases, which hydrolyze the bond

between the peptide moiety and the N-acetylmuramic

acid; and finally, the NlpC/P60 endopeptidases, which

cleave the interchain bonds of the muropeptide. The

high lipid content and heavy cross-linking of these

layers in the cell wall is thought to enable mycobacte-

ria to resist antibiotics, UV exposure, heat treatment,

and other environmental insults.7–10

Proteins containing the NlpC/P60 superfamily

domain (pfam00877) are important in bacterial

physiology11 and virulence.12,13 A Mycobacterium

tuberculosis gene, Rv2190c, encodes an NlpC/P60

protein that is required for virulence in the mouse

model of TB and was shown to be immunogenic in

the context of infection.12 The NlpC/P60 domain typ-

ically has hydrolytic activity and enzymes contain-

ing this domain include acyltransferases, amidases,

and endopeptidases.11 NlpC/P60 proteins have also

been localized at the septa of dividing bacteria and

mutations are phenotypically manifested by septa-

tion defects,14,15 suggesting a role in separation of

daughter cells during cell division or general main-

tenance of the cell wall.16 Two genes in Mycobacte-

rium marinum, a fish pathogen, which encode NlpC/

P60 domain-containing proteins are required for

infection in zebra fish and cord formation seen in

virulent mycobacteria,13 thus adding to the diverse

functions associated with proteins containing this

domain.

The MAP genome sequence encodes a total of

five NlpC/P60 domain-containing proteins, which

have been designated MAP_0036, MAP_1203 (ortho-

log of RipA in M. tuberculosis), MAP_1204 (RipB in

M. tuberculosis), MAP_1272c (RipD in M. tuberculo-

sis), and MAP_1928c (Rv2190c in M. tuberculosis) in

the bovine strain K-10.17 This is the same number of

NlpC/P60 proteins annotated in M. tuberculosis12

and Corynebacterium glutamicum genomes.15

MAP_1203 shows increased expression, nearly 25-

fold, when MAP is exposed to milk,18 a hyperosmo-

lar environment that triggers a more invasive form

of the bacterium. Although both MAP_1204 and

MAP_1272c proteins are immunogenic, MAP_1272c

in particular has been observed as a strong antigen

in multiple studies.19–21 Our group has also eval-

uated MAP_1204 and MAP_1272c as part of a subu-

nit vaccine cocktail against Johne’s disease in

mice.21 Those results showed a significant decrease

in MAP colonization of the vaccinated mouse intes-

tine. Two monoclonal antibodies were also developed

against MAP_1272c and their binding sites and bio-

chemical properties have been determined.19 We

have now extended those studies by examining the

structure and catalytic properties of these proteins

in MAP. Here we demonstrate that while both pro-

teins display a conserved substrate-binding groove,

one NlpC/P60 domain-containing protein hydrolyzes

peptidoglycan while a second one is nonhydrolytic.

Results

Characteristics of MAP_1204 and MAP_1272c

Based on BLAST analysis of the NCBI sequence

database combined with experimental data,19 we

suggest that the MAP_1272c protein is 279 amino

acids in length (29.2 kDa) and not 316 as annotated

in the K-10 genome sequence.17 MAP_1204 encodes

a 244 amino acid protein with a calculated molecular

weight of 25.4 kDa. Both proteins contain an N-

terminal signal sequence predicted by the SignalP

4.1 server.22 MAP_1204 cleavage is predicted

between Ala-33 and Asp-34, whereas MAP_1272c

cleavage is predicted between Ala-29 and Asp-30 of

the revised annotation. While MAP_1204 contains a

canonical NlpC/P60 domain near its C-terminal end

(amino acids 128–243) similar to most mycobacterial

NlpC/P60 proteins, the domain is more centrally

located in MAP_1272c (Fig. 1). Specifically, it is

present at 52–166 amino acids in MAP_1272c, fol-

lowed by a glutamine-rich region (169–273) contain-

ing the repeat sequence (QQAPLQ)6 .

NlpC/P60 domain structures in MAP_1272c and
MAP_1204

A truncated form of MAP_1272c, consisting of resi-

dues 27–168, was overexpressed, purified, and

Bannantine et al. PROTEIN SCIENCE VOL 25:840—851 841



crystallized. These crystals belong to the primitive

monoclinic space group P21 and diffracted X-rays to

1.75 Å Bragg-limiting resolution. The truncated

MAP_1272c structure (Protein Data Bank entry

3GT2) was determined ab initio by single-

wavelength anomalous dispersion (SAD) phasing

using diffraction data collected from crystals of pro-

tein labeled in vivo with selenium-substituted methi-

onine. This structure was refined to R/Rfree values of

18.3 and 20.1%, respectively (Table I). Similarly, a

truncated form of MAP_1204, consisting of residues

109–244, was overexpressed, purified, and crystal-

lized. These crystals belong to the primitive cubic

space group P213 and diffracted X-rays to 2.4 Å

Bragg-limiting resolution. The truncated MAP_1204

structure (Protein Data bank Entry 3I86) was deter-

mined by molecular replacement using the refined

truncated MAP_1272c structure as a search model.

This structure was subsequently refined to R/Rfree

values of 22.0 and 28.0%, respectively (Table II).

The structures of the two NlpC/P60 domains are

characterized by a helix–loop–helix in their N-

terminal regions, while their C-terminal regions con-

tain a b hairpin motif consisting of six antiparallel

strands [Fig. 2(A)]. As might be expected for two

proteins that share 52% sequence identity with one

another, the structures of MAP_1204 and

MAP_1272c share a high level of structural homol-

ogy when superimposed (Supporting Information,

Fig. S1); 135 of 136 residues align within 5.0 Å dis-

tance with a root-mean-square deviation (RMSD) of

0.69 Å. Consistent with these minor differences in

tertiary structure, both MAP_1272c and MAP_1204

share a striking feature when viewed as molecular

surfaces. Specifically, an elongated groove is formed

at the interface between the helix–loop–helix and b

hairpin regions [Fig. 2(B)]. This grove very likely

represents a substrate access channel since residues

that comprise the canonical catalytic triad of NlpC/

P60 domains lie at the center of the groove (as is

discussed below). Nevertheless, comparison of the

electrostatic surface potentials within this groove

shows notable differences between MAP_1272c and

MAP_1204 [Fig. 2(C)]. Whereas the MAP_1204

channel is largely uncharged, the corresponding sur-

face from MAP_1272c appears highly acidic. Given

the proximity of this groove to the NlpC/P60 active

site, these electrostatic differences may reflect both

the substrate/ligand preferences and distinct physio-

logical roles of MAP_1204 and MAP_1272c, though

the specific function of MAP_1272c remains unclear.

Considering NlpC/P60 domains more broadly,

extensive homology between MAP_1272c and

MAP_1204 is also found in M. tuberculosis RipD

(Rv1566c), which is the most closely related structure

in the PDB (4JXB; 87% identity to MAP_1272c).23

However, when the MAP structures are superimposed

onto other more distantly related NlpC/P60 domains,

such as those found in Bacillus cereus BCE_2878

(3H41; 36% identity)24 and Desulfovibrio vulgaris

DVU_0896 (3M1U; 20% identity; unpublished), more

structural diversity becomes evident (Fig. 3). While

this diversity expectedly becomes more significant as

Table I. Data Collection Statistics, Determination, and
Refinement for MAP_1272c

Parameters
Data collection and
structure solution

Beamline APS 22-ID
Wavelength (Å) 0.97242
Space group P21

Unit cell dimensions (Å; 8) a 5 34.72, b 5 53.21,
c 5 38.33; b 5 102.95

Molecule/ASU 1
Resolution limits (Å) 22.68–1.75

(1.81–1.75)a

Completeness (%) 96.1 (78.1)
Total reflections 47,147
Unique reflections 13,278
Rmerge (%)b 7.2 (21.6)
�I>/<r� 9.45 (3.31)
Redundancy 3.6
Heavy atom sites (Se) 7
Figure of Merit <m> 0.64
Refinement statistics
Rcryst/Rfree (%)c 18.3/20.1
RMS deviations from ideality

Bond length (Å) 0.006
Bond angle (8) 0.971
Dihedral angle (8) 15.002

Ramachandran core (disallowed) (%) 93.3 (1.9)
Average B factor (Å2) 23.63
RMSD of B factor (Å2) 6.37
Proteins atoms modeled 993
Ordered solvent molecules 100

a Numbers in parentheses correspond to the highest resolu-
tion shell.
b Rmerge 5 RhRi|Ii(h) 2<I(h)>|/RhRiIi(h), where Ii(h) is the
ith measurement of reflection h and <I(h)> is the weighted
mean of all measurements of h.
c R 5 Rh|Fobs(h) 2 Fcalc(h)|/RhjFobs|. Rcryst and Rfree were
calculated from the working and test reflection sets, respec-
tively. The test set constituted 10% of the total reflections
not used in refinement.

Figure 1. Schematic of the five NlpC/P60 domain-containing

proteins present in the MAP genome. Locations of the NlpC/

P60 domain within each protein are shown drawn to scale

based upon their preproteins; enzymatically active domains

are colored grey while inactive domains are white. The loca-

tions of signal peptide regions are designated with a striped

box. The dotted region at the C-terminus of MAP_1272c rep-

resents a polyglutamine repeat of unknown structure and

function.
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identity decreases, it is important to note that most of

the divergence is seen in regions removed from the

NlpC/P60 catalytic core. Much similar to the changes

in electrostatic potential mentioned above, these

structural differences at the active site periphery

have probably accompanied alterations in substrate/

ligand specificity and function during the evolution of

NlpC/P60 domain-containing proteins.

Divergent catalytic triads in MAP_1204 and

MAP_1272c

A catalytic triad that consists of a cysteine, histi-

dine, and a polar residue enables the hydrolytic

activity that is conserved within the NlpC/P60

superfamily.11 In this regard, all but one of the MAP

NlpC/P60 proteins contain the signature motif

“FDCSGL,” where the cysteine residue is part of the

catalytic triad. The lone exception to this is

MAP_1272c, where the Cys residue at position 82 is

replaced by Ala [Fig. 4(A)]. Amino acid sequence

alignment of other mycobacterial homologs of

MAP_1272c shows the same alanine residue is con-

served (Supporting Information, Fig. S2). However,

alignment with all MAP NlpC/P60 proteins, except

MAP_1272c, to corresponding mycobacterial homo-

logs shows the cysteine residue is preserved (Sup-

porting Information, Figs. S3–S6).

Similar to MAP_1272c and MAP_1204, the puta-

tive cell wall anchored hydrolase, Spr, from Esche-

richia coli also belongs to the NlpC/P60

superfamily.25 The catalytic triad for Spr includes

Cys-68, His-119, and His-131.25 Superimposition of

the Spr and MAP_1272c structures reveals that the

amino acid side chains in the corresponding loca-

tions of MAP_1272c are Ala-82, Ser-131, and Glu-

143 [Fig. 4(B)]. Although it is interesting to note

that these three side chains do not adopt the same

relative orientations in MAP_1272c as is found in

Spr, the lack of a substrate or substrate analog in

either crystal precludes a more thorough considera-

tion of the functional consequences of such differen-

ces. Nevertheless, there is no proton in the alanine

side chain that is sufficiently acidic as to be capable

of generating a nucleophile that facilitates substrate

hydrolysis. Intriguingly, this limitation is not seen

for MAP_1204, where side chain orientations of cata-

lytic triad residues Cys-155, His-204, and Glu-216

are congruent with one another [Fig. 4(C)].

MAP_1272c, but not MAP_1204, lacks hydrolytic

activity against Bacillus subtilis peptidoglycan
Given the apparent absence of a catalytic site in

MAP_1272c, we hypothesized that this mycobacte-

rial NlpC/P60 protein may not have hydrolytic activ-

ity akin to that predicted for the E. coli Spr

protein.25 To test this hypothesis, a suitable assay

was designed to assess bacterial survival in the

presence of exogenous quantities of peptidoglycan

remodeling enzymes. The concept of this assay is

straightforward in that the integrity of the bacterial

cell should be compromised in the presence of NlpC/

P60 hydrolase activity, and that cell wall integrity is

essential for cell viability. Because the long genera-

tion time of MAP makes its use impractical for sur-

vival assays, we used Bacillus subtilis as a model

Gram-positive system for the studies presented here.

The B. subtilis peptidoglycan substrate was also cho-

sen since its muropeptide sequence (L-Ala, D-Glu,

meso-diaminopimelic acid, D-Ala) is identical with

that present in mycobacterial peptidoglycan.26

To establish whether MAP proteins were capa-

ble of acting upon B. subtilis peptidoglycan layers,

we first assessed B. subtilis survival in the presence

of MAP_0318. MAP_0318 is 85% identical to M.

tuberculosis Rv3717, which is an N-acetylmuramyl-

L-alanine amidase known to play a role in cell wall

formation and remodeling.27 Indeed, incubation with

exogenously added MAP_0318 significantly dimin-

ished B. subtilis survival compared to the irrelevant

control protein, IpaD, from Shigella flexneri [Fig.

5(A)]. A significant decrease in B. subtilis viability

was also observed in the presence of MAP_1204 [Fig.

5(A)], suggesting that this NlpC/P60 protein is

Table II. Data Collection Statistics, Determination,
and Refinement for MAP_1204

Parameters
Data collection and
structure solution

Beamline APS 22-BM
Wavelength (Å) 1.000
Space group P21 3
Unit cell dimensions (Å) a 5 97.11
Resolution limits (Å) 43.43–2.40

(2.64–2.40)a

Completeness (%) 99.6 (100)
Total reflections 12,254
Unique reflections 1,213
Rmerge (%)b 16.9 (85.6)
�I>/<r� 14.1 (2.2)
Redundancy 13.0
Refinement statistics
Rcryst/Rfree (%)c 22.0/28.0
RMS deviations from ideality

Bond length (Å) 0.008
Bond angle (8) 1.21
Dihedral angle (8) 16.995

Ramachandran core (disallowed) (%) 91.1 (1.9)
Average B factor (Å2) 30.21
RMSD of B factor (Å2) 7.72
Proteins atoms modeled 2042
Ordered solvent molecules 45

a Numbers in parentheses correspond to the highest resolu-
tion shell.
b Rmerge 5 Rh Ri|Ii(h) 2 <I(h)>|/Rh RiIi(h), where Ii(h) is
the ith measurement of reflection h and <I(h)> is the
weighted mean of all measurements of h.
c R 5 Rh|Fobs(h) 2 Fcalc(h)|/Rh RFobs|. Rcryst and Rfree were
calculated from the working and test reflection sets, respec-
tively. The test set constituted 5% of the total reflections
not used in refinement.
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capable of hydrolyzing substrates found in B. subtilis

peptidoglycan. To test whether this activity required

an intact catalytic triad, we overexpressed and puri-

fied a mutant form of MAP_1204 where the active

site Cys-155 was replaced with serine (MAP_1204-

C155S). As expected, B. subtilis cells exposed to this

Figure 2. Three-dimensional structures of NlpC/P60 domains from MAP_1272c and MAP_1204. (A) Refined 1.75 Å resolution

structure of MAP_1272c and 2.4 Å resolution structure of MAP_1204. The proteins are rendered as cartoons with the N-

terminus in red and the C-terminus in blue. (B) Molecular surface of MAP_1272c and MAP_1204, where residues of the catalytic

triad are colored light orange. Note that the dashed white lines represent the boundaries of putative substrate/ligand-binding

channels in each protein. (C) Distribution of electrostatic potential at the surface of each protein contoured at 65e/kT. The ori-

entation of all structures has been kept constant in each panel for clarity.

Figure 3. Superposition of NlpC/P60 domains from MAP_1272c with non-mycobacterial NlpC/P60 domain-containing proteins.

(A) Shown is superposition of MAP_1272c (blue) and B. cereus BCE_2878 (magenta) and (B) superposition of NlpC/P60

domains from MAP_1272c (blue) and D. vulgaris DVU_0896 (rust). Note that residues of the MAP_1272c catalytic triad are col-

ored light orange for the purposes of orientation. The orientation of all structures is identical to that shown in Figure 2.

844 PROTEINSCIENCE.ORG Mycobacterium paratuberculosis NlpC/P60 Proteins



mutant did not display a significant decrease in cell

viability [Fig. 5(A)], even though this site-directed

mutation exhibited nearly identical structural fea-

tures to its wild-type counterpart as judged by circu-

lar dichroism spectropolarimetry (Supporting

Information, Fig. S7). Similarly, B. subtilis exposed to

exogenously added MAP_1272c showed little or no

decrease in viability [Fig. 5(A)]; in fact, this result

was largely indistinguishable from that obtained for

the MAP_1204 active site mutant.

This study was expanded using B. subtilis pepti-

doglycan fragments obtained commercially to rule

out any potential nonspecific effects on B. subtilis

viability. This purified peptidoglycan was incubated

with each protein and degradation was measured for

optical clearance at 540 nm over time. Both the non-

tagged and MBP-tagged MAP_1204 proteins hydro-

lyzed peptidoglycan as did MAP_0318 [Fig. 5(B)].

Conversely, MAP_1272c and MAP_1204 C155S did

not degrade peptidoglycan.

Collectively, these data demonstrate that

MAP_1204 is an active peptidoglycan hydrolase and

indicate that mutation of the proposed catalytic Cys-

155 residue greatly diminishes the enzyme’s activity.

Furthermore, the functional differences in the

MAP_1204 and MAP_1204 C155S proteins are likely

due to loss of specific side chains rather than altered

protein structure (Supporting Information, Fig. S7).

These results are also consistent with the notion that

MAP_1272c lacks the hydrolytic activity characteris-

tic of most other members of the NlpC/P60 family.

Similarity searches suggest that this catalytic cyste-

ine is missing only in mycobacteria. Thus, we propose

that MAP_1272c is a noncatalytic member of the

NlpC/p60 family found only in Mycobacterium spp.

MAP_1272c does not bind peptidoglycan as
efficiently as MAP_1204

Both MAP_1272c and MAP_1204 have what appears

to be a substrate-binding groove on their surface.

However, since MAP_1204 hydrolyzes peptidoglycan

while MAP_1272c does not, we investigated whether

both of these proteins might bind peptidoglycan

[Fig. 2(B)]. Purified recombinant proteins were

tested for their ability to bind insoluble peptidogly-

can fragments from B. subtilis. Consistent with the

functional assays in Figure 5, MAP_1204 was able

to bind peptidoglycan since this protein accumulated

in the pellet with the peptidoglycan [Fig. 6(A)]. Con-

versely, MAP_1272c was observed primarily in the

supernatant suggesting that MAP_1272c has only

weak affinity for peptidoglycan. The positive control,

lysozyme, did bind peptidoglycan, whereas the nega-

tive control, BSA, did not [Fig. 6(A,B)]. The MBP

Figure 4. Comparison of the catalytic triads of MAP NlpC/P60 proteins, and E. coli Spr. (A) Shown is a partial alignment of the

five MAP proteins surrounding the cysteine catalytic residue. Conserved amino acids among all 5 proteins are highlighted and

the catalytic residue is shown in red. (B) Three-dimensional overlay of MAP_1272c (blue) with E. coli Spr (grey). Residues com-

prising the catalytic triads have been rendered as ball-and-stick and colored distinctly for MAP_1272c (orange) and Spr (cyan).

(C) Overlay of MAP_1204 (blue) with E. coli Spr (grey). Residues comprising the catalytic triads have been rendered as ball-

and-stick and colored distinctly for MAP_1204 (orange) and Spr (cyan). The identity and position of each residue of interest is

inset.
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fusions of MAP_1204 and MAP_1272c showed the

same peptidoglycan binding characteristics as their

untagged counterparts, yet the size of the MBP

fusion proteins eliminated comigration with the pep-

tidoglycan fragments [Fig. 6(B)]. Both the wild-type

and C155S mutant of MAP_1204 bound peptidogly-

can in a similar manner [Fig. 6(C)], suggesting that

a mutation in the catalytic site did not significantly

affect binding, only hydrolysis. Thus, it remains

unknown as to what substrate is recognized by the

binding groove on the surface of MAP_1272c.

Discussion

Both serendipitous and engineered deletions of

NlpC/P60 protein-encoding genes have been shown

by others to reduce pathogenicity and vegetative

growth of bacteria.13 As a consequence, members of

this family of enzymes are considered attractive

targets for next-generation antibiotic development.

A notable validation of NlpC/P60 proteins as anti-

biotic targets has been done for M. marinum IipA

(homolog of MAP_1203), where the gene knockout

was constructed and complemented to show a lack

of growth and infectivity in macrophages.13 Since

MAP is resistant to many antibiotics,28,29 novel

approaches must be explored in treating infections

by this organism. Furthermore, since NlpC/P60

proteins are found in all Eubacteria, any com-

pounds that are capable of inhibiting these

enzymes have the potential to be developed into

Figure 5. Measurement of hydrolytic activity using B. subtilis

and peptidoglycan substrates. (A) Effect of MAP NlpC/P60

domains on viability of B. subtilis. Actively growing B. subtilis

cells were incubated with 32 lM of each NlpC/P60 domain

protein, known peptidoglycan modifying enzymes (e.g., hen

egg white lysozyme (HEWL, 4 lM), or a negative control pro-

tein (i.e., S. flexneri IpaD) and plated to assess bacterial via-

bility as described in materials and methods. Total colony

forming units were counted, and the results were compared

to a mock treatment (culture medium alone) to assess the

percent loss of viability. The mean values of each treatment

(6SD) were calculated and compared to that of the negative

control (IpaD) by an unpaired t-test to assess statistical sig-

nificance. ****p�0.0001; ns, not significant. (B) Hydrolytic

activity of MAP_1204 and MAP_1272c on B. subtilis peptido-

glycan measured at 540 nm over time. BSA and HEWL are

positive and negative controls, respectively.

Figure 6. SDS-PAGE analysis of fractions from the peptido-

glycan binding assay. MAP proteins without terminal tags are

shown (A) along with positive (HEWL) and negative (BSA)

controls. I 5 input protein, F 5 free/unbound protein from the

supernatant, and B 5 bound protein from the pellet fraction.

(B) MBP–MAP fusion proteins are shown along with positive

(HEWL) and negative (BSA) controls. (C) The wild type and

mutant (C155S) forms of MAP_1204 bound peptidoglycan in

a similar manner. Protein size standards (in kDa) are at the

left of each image.
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new, broad-spectrum antibiotics. In this regard,

the structural information presented here, com-

bined with mutagenesis data consistent with iden-

tification of an active site and a slight, but

functionally significant variation therein may

prove useful in future screening for such inhibitory

compounds.

Substitution of the catalytic cysteine of Rv1477

(MAP_1203 homolog) to an alanine demonstrated

that Cys383 is an essential catalytic amino acid for

peptidoglycan hydrolysis.30 Likewise, a separate

study showed that mutation of glutamic acid to ala-

nine in Rv1477 inactivates catalysis by changing the

spatial configuration of Cys383.31 However, no one

has examined Rv1478 or its counterpart, MAP_1204,

using mutational substitutions. Thus, our work

extends these findings by demonstrating that the

Cys-to-Ser substitution in MAP_1204 also renders

the NlpC/P60 domain enzymatically inactive but

does not affect binding to peptidoglycan.

During the course of preparing this manuscript,

it was reported that another mycobacterial protein,

RipD/Rv1566c from M. tuberculosis, also displayed a

conspicuous lack of hydrolase activity that we

observed for MAP_1272c.23 In fact, owing to the

high levels of identity between the RipD and

MAP_1272c NlpC/P60 domains mentioned above,

Both et al.23 used our refined model of MAP_1272c

to determine the structure of the RipD core domain.

RipD was shown to lack a catalytic cysteine, and the

same substitution of a cysteine for alanine within

the active site was reported for RipD as for

MAP_1272c. Furthermore, RipD contains 8 repeats

of QAPVQ at its C-termini, which is similar to the

six QQAPLQ repeats in MAP_1272c. Thus, it

appears that RipD is the M. tuberculosis ortholog of

MAP_1272c. However, given the implicit biochemical

restrictions to forming the NlpC/P60 catalytic triad,

and relative permissibility of the third position,

which requires only a polar residue,11 it seems likely

that noncatalytic NlpC/P60-containing proteins exist

in other bacteria and have yet to be discovered.

Both et al.23 have shown that noncatalytic forms

of NlpC/P60 domains have diversified to include pep-

tidoglycan binding in addition to hydrolytic activ-

ities. The NlpC/P60 domain of RipD did bind

peptidoglycan fragments, but full-length RipD did

not. In our study, neither the full length nor the

Nlpc/P60 region of MAP_1272c was able to bind pep-

tidoglycan. Importantly, our crystal structure of

MAP_1272c reveals a prominent, negatively charged

substrate/ligand-binding groove on the surface of

MAP_1272c. This observation further supports a

role for MAP_1272c as a ligand binding protein for a

substrate other than peptidoglycan, which tenta-

tively broadens the role of NlpC/P60 domain con-

taining proteins.

Considerations of NlpC/P60 domains aside, both

catalytic and noncatalytic members of a protein fam-

ily have been observed previously. One such example

is members of the NTF2-like protein superfamily.32

Here the catalytic forms include enzymes that func-

tion intracellularly in polyketide and natural prod-

uct biosynthesis, while the extracellular,

noncatalytic proteins in this group possess small

molecule binding activity.32 Another example can be

derived from the chymotrypsin-like serine proteases

found in neutrophils. In this case, neutrophil azuro-

philic granules contain four enzymatically active ser-

ine proteases which include neutrophil elastase,

cathepsin G, proteinase-3, and neutrophil serine

protease-4 along with a single nonactive member,

named azurocidin.33–35 Interestingly, while azuroci-

din also contains point mutations that render its cat-

alytic triad inactive,36 a body of literature has also

reported chemotactic and immunoregulatory activity

associated with release of azurocidin during inflam-

matory events (reviewed in Ref. 35). Thus, noncata-

lytic members of diverse protein families are not

simply restricted to ligand binding roles, but can

serve as signaling mediators as well.

When compared to other bacterial pathogens, a

lingering issue that confounds many of the overrid-

ing scientific advancements in MAP biology and

Johne’s disease is that there are comparatively few

reagent systems available. An extensive recombi-

nant protein repository for MAP provides a vital and

powerful tool for proteome- and genome-scale

research of this organism.37 Such a resource makes

it possible to analyze the activities of proteins in cell

growth, maintenance, regulation, survival, and

pathogenesis. Additionally, this resource can provide

reagents for diagnostics38,39 and functional proteo-

mic experiments, including both the structural stud-

ies described herein as well as defining protein–

protein interactions. Finally, tools such as this repos-

itory build on genomic information by aiding in the

functional annotation of the hundreds of hypotheti-

cal proteins. Therefore, this work continues to build

on important advances in understanding MAP biol-

ogy for future countermeasures against Johne’s

disease.

Materials and Methods

Protein production and purification

Full-length expression and purification of

MAP_1203, MAP_1204, and MAP_1272c has been

described elsewhere using the maltose binding pro-

tein (MBP) expression system.19,37 In addition to

those MBP fusion proteins, truncated versions of

these genes were fused to a polyhistidine tag and

Tobacco Etch Virus (TEV) recognition site and sub-

cloned into the E. coli expression vector pT7HMT

using methods previously described.40 A series of
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His-tagged MAP_1272c truncations have been

described in detail elsewhere19; however, this article

made extensive use of only a form of MAP_1272c

consisting of residues Ala27 to Thr168. Similarly,

MAP_1204 was truncated such that only the 136

residues from Val109 to Tyr244 were expressed. The

sequence-confirmed plasmids were transformed into

E. coli strain BL21(DE3) for overexpression and

purification, which were carried out according to the

general protocols outlined previously.40 Upon com-

pleting the initial affinity purification, the polyhisti-

dine fusion tag was proteolytically removed by

adding recombinant TEV protease as described pre-

viously.40 The epitope tag, protease and most con-

taminating species were removed by IMAC

chromatography and the flow through was buffer

exchanged into 20 mM sodium formate buffer (pH

3.5). Final purification was achieved with Resource

S cation exchange chromatography using a GE Life-

sciences Akta fast protein liquid chromatography

(FPLC) system using a linear gradient of 0–1M

NaCl in 20mM sodium formate pH 3.5.

MAP_1272c from the strain K-10 genome may

have been incorrectly annotated. Its 316 annotated

residues start with the sequence VRSQ; however, com-

parison with other annotations of M. avium complex

strains has suggested that this protein is likely only

279 residues long with translation beginning at the

Met38 of the annotated K-10 sequence. Therefore, we

adopted the convention used in our previous study

that set Met38 as Met1, making the full-length

MAP_1272c protein from 1 to 279 amino acids and the

first 25 amino acids comprising the signal sequence.19

Preparation of selenomethionine proteins
Escherichia coli methionine auxotroph strain

B834(DE3) was transformed with a plasmid encod-

ing MAP_1272c residues Ala27–Thr168) and then

grown in 100 mL Luria Broth (LB) at 378C to an

OD600nm of �0.7. Cells were harvested by centrifuga-

tion and washed once with minimal media before

inoculation into 1 L of M9 minimal salts media sup-

plemented with 5 mg L-(1)-selenomethione (SeMet).

Cells were grown at 378C to OD600nm of 0.75 and

then cooled to 188C. IPTG was added to 1 mM along

with an additional 5 mg SeMet. After overnight

induction at 188C, the protein was purified identi-

cally to the native sample.

Protein crystallization
The truncated MAP_1272c protein was dialyzed

extensively against ddH2O and concentrated by cen-

trifugal ultrafiltration to 10 mg/mL as judged by UV

absorption spectrophotometry. Initial crystallization

screening was carried out by vapor diffusion of hang-

ing drops using commercially available sparse-matrix

kits (Hampton Research, Aliso Viejo, CA). Optimized

crystals were produced by the hanging drop vapor

diffusion technique. Rod-shaped crystals grew in

drops composed of 1 lL protein and 1 lL of well

buffer (0.1M BisTris–HCl, 1.6M ammonium sulfate,

4% (v/v) polyethylene glycol 400), and equilibrated

over 500 lL of the same buffer. Crystallization of the

selenomethionine-substituted protein was carried out

using an identical protocol. Crystals of the truncated

MAP_1204 protein were grown by hanging drop

vapor diffusion by mixing 1 lL protein at 10 mg/mL

in ddH2O with 1 lL of 1:1 diluted precipitant solution

containing 22% (w/v) polyethylene glycol 3,350, 10%

(v/v) 2-propanol, and 0.1M sodium HEPES, pH 7.5.

We also obtained crystals of a third NlpC/P60 protein,

MAP_1203, but these crystals did not diffract X-rays

in an interpretable manner.

Diffraction data collection, structure solution,
and refinement

Individual SeMet-labeled crystals of truncated

MAP_1272c were briefly transferred to a cryoprotec-

tion buffer consisting of well buffer with 30% (v/v)

ethylene glycol and flash cooled in liquid nitrogen.

Three-hundred and sixty 18 oscillation images were

recorded at a high-energy remote wavelength for the

Selenium K-edge (0.9724 Å; 12750 eV). Individual

reflections were indexed, integrated, and merged

such that Friedel mates were kept separate using the

HKL2000 software package.41 Selenium sites were

identified and refined using the AutoSol package

prior to automated model building in AutoBuild, as

implemented in PHENIX.42 The final model, includ-

ing SeMet substitutions, was the product of iterative

cycles of manual building in COOT43 and refinement

using PHENIX. Data collection and refinement statis-

tics are reported in Table I. With respect to the

MAP_1272c polypeptide chain, the final model con-

sists of residues Gly32–Leu166, contiguous. Additional

information can be found by consulting the Protein

Data Bank (PDB) accession code 3GT2.

Prior to flash cooling in liquid nitrogen,

MAP_1204 crystals were briefly transferred to a cry-

oprotection solution identical to the precipitant but

supplemented with 2-propanol to a final concentra-

tion of 18% (v/v). A native MAP_1204 dataset was

collected at 12398 eV (1 Å) at APS beamline 22-BM.

Reflections from 360 18 images were processed,

indexed, and scaled in HKL2000. The relatively high

Rmerge value associated with this diffraction dataset

likely arises from the observational redundancy pro-

vided by the high-symmetry cubic space group of

this crystal. Other metrics of data quality, such as

�I>/<r�, are in good agreement with generally

accepted criteria for defining the resolution limits of

X-ray diffraction data.44,45 The refined coordinates of

the MAP_1272c truncation were used as a search

model to perform molecular replacement in PHE-

NIX.42 The resultant model was iteratively refined

and manually modified as described above, with the
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exception of two cycles of simulated annealing to

remove model phase bias. Although two copies of the

MAP_1204 polypeptide were found in the asymmet-

ric unit of this crystal form, no noncrystallographic

symmetry averaging was used during the process of

building and refinement. Final data collection and

model refinement statistics are reported in Table II.

The final model accounts for the entire Val109–

Tyr244 polypeptide contiguously in both chains.

Additional information can be found by consulting

the Protein Data Bank (PDB) accession code 3I86.

Circular dichroism (CD) spectropolarimetry

CD spectropolarimetry was used to assess the over-

all secondary structure content in MAP NlpC/P60

proteins. Purified MAP_1272c, MAP_1204, or

MAP_1204 C155S proteins were dissolved in

phosphate-buffered saline (pH 7.4) and were passed

through a 0.45 lm centrifugal filter immediately

prior to analysis. Samples were diluted to a final

concentration such that the OD280nm was equal to

0.5, which corresponds almost exactly to � 0.5 mg/

mL for all proteins. CD spectra were measured from

190 to 260 nm in scanning mode using a Jasco J-815

spectropolarimeter. Five replicate spectra were col-

lected in normal sensitivity mode with a 1 nm band-

width at a speed of 50 nm/min prior to averaging

and mathematical smoothing using software pro-

vided by the manufacturer. Samples were not

degassed, nor were spectra collected under a vac-

uum; thus, the observations at shorter wavelengths

should be considered unreliable.

Peptidoglycan degradation assay

Purified Bacillus subtilis peptidoglycan (Sigma) was

resuspended in 50 mM NaH2PO4 (pH 6.0) to a con-

centration of 0.25 mg/mL and added to a 96-well

plate. Peptidoglycan was incubated with 32 lM of

each recombinant protein as determined in pilot

studies. Lysozyme, which served as the positive con-

trol, was used at a concentration of 4 lM. All reac-

tions had a final volume of 200 lL and were

performed in a 96-well plate at room temperature

with shaking at 200 rpm on a WVR microplate

shaker. Absorbance was measured at 540 nm every

15 min using a Victor X3 plate reader (Perkin

Elmer). Data were assembled and analyzed using

GraphPad Prism 6.0.

Bacillus subtilis viability assay
An LB broth culture of B. subtilis was incubated

overnight at 378C with shaking at 200 rpm. Mid-log

phase B. subtlilis cells (OD600nm 5 0.1) were added

to tubes containing 20 mM of lysozyme or recombi-

nant protein diluted in 0.13 phosphate-buffered

saline (PBS; 15mM NaCl, 1mM Na2HPO4; pH 7.3)

as indicated. The IpaD protein from Shigella flexneri

was used as a negative control.46 After 60 min,

enzyme activity was quenched in a 5 min ice bath

and serial dilutions were plated on LB broth and

incubated overnight at 378C to determine percent

survival. Each survival assay was run in triplicate.

Peptidoglycan binding assay

Proteins were quantitated by BCA assay and loaded

onto commercial SDS-PAGE gels (BioRad) stained

with GelCode blue (Thermo Scientific) to standard-

ize between samples. The binding assay was per-

formed essentially as described previously.30

Briefly, insoluble trichloroacetic acid treated pepti-

doglycan (1 mg/mL) from Staphylococcus aureus

(Sigma chemicals) or Bacillus subtilis (Sigma chem-

icals) was suspended in binding buffer (0.15M NaCl

and 25mM Na-Hepes, pH 7.0) and incubated with

0.2 mg/mL of each recombinant protein or the posi-

tive and negative controls, hen egg white lysozyme

(HEWL) and bovine serum albumin (BSA), all of

which were dialyzed in binding buffer. The protein–

peptidoglycan mixture was incubated for 5 min at

228C to allow binding. The samples were centri-

fuged at 12,000g for 5 min and only the top half of

the supernatant was collected. The remaining

supernatant was then removed and discarded. Both

the supernatant and pellet fractions were mixed

with loading dye (1% SDS; 50mM Tris, pH 6.8; 1%

2-mercaptoethanol; 10% glycerol) and then sepa-

rated on 12% SDS-PAGE gels followed by staining

with GelCode blue.

Statistical analysis

Measurements of statistical significance regarding dif-

ferences in B. subtilis survival were obtained by an

unpaired t test using GraphPad Prism 6.0. The mean

values of each treatment (6SD) were calculated and

compared to that of the negative control (IpaD) by an

unpaired t test to assess statistical significance. Nota-

tions: ****p� 0.0001; ns, not significant.

Acknowledgment

The technical assistance of Janis K. Hansen (NADC)

is gratefully acknowledged.

References

1. Lombard JE, Gardner IA, Jafarzadeh SR, Fossler CP,

Harris B, Capsel RT, Wagner BA, Johnson WO (2013)

Herd-level prevalence of Mycobacterium avium subsp.

paratuberculosis infection in United States dairy herds

in 2007. Prev Vet Med 108:234–238.
2. Stabel JR (1998) Johne’s disease: a hidden threat.

J Dairy Sci 81:283–288.
3. Sorge US, Lissemore K, Godkin A, Jansen J, Hendrick

S, Wells S, Kelton DF (2011) Changes in management

practices and apparent prevalence on Canadian dairy

farms participating in a voluntary risk assessment-

based Johne’s disease control program. J Dairy Sci 94:

5227–5237.

Bannantine et al. PROTEIN SCIENCE VOL 25:840—851 849



4. Lu Z, Schukken YH, Smith RL, Grohn YT (2013) Using
vaccination to prevent the invasion of Mycobacterium

avium subsp. paratuberculosis in dairy herds: a sto-
chastic simulation study. Prev Vet Med 110:335–345.

5. Espejo LA, Godden S, Hartmann WL, Wells SJ (2012)
Reduction in incidence of Johne’s disease associated
with implementation of a disease control program in
Minnesota demonstration herds. J Dairy Sci 95:4141–
4152.

6. Abdallah AM, Gey van Pittius NC, Champion PA, Cox
J, Luirink J, Vandenbroucke-Grauls CM, Appelmelk
BJ, Bitter W (2007) Type VII secretion–mycobacteria
show the way. Nat Rev Microbiol 5:883–891.

7. Donaghy J, Keyser M, Johnston J, Cilliers FP, Gouws
PA, Rowe MT (2009) Inactivation of Mycobacterium

avium ssp. paratuberculosis in milk by UV treatment.
Lett Appl Microbiol 49:217–221.

8. Whittington RJ, Marshall DJ, Nicholls PJ, Marsh IB,
Reddacliff LA (2004) Survival and dormancy of Myco-
bacterium avium subsp. paratuberculosis in the envi-
ronment. Appl Environ Microbiol 70:2989–3004.

9. Stabel JR, Lambertz A (2004) Efficacy of pasteurization
conditions for the inactivation of Mycobacterium avium

subsp. paratuberculosis in milk. J Food Prot 67:2719–
2726.

10. Eppleston J, Begg DJ, Dhand NK, Watt B, Whittington
RJ (2014) Environmental survival of Mycobacterium

avium subsp. paratuberculosis in different climatic
zones of eastern Australia. Appl Environ Microbiol 80:
2337–2342.

11. Anantharaman V, Aravind L (2003) Evolutionary his-
tory, structural features and biochemical diversity of
the NlpC/P60 superfamily of enzymes. Genome Biol 4:
R11

12. Parthasarathy G, Lun S, Guo H, Ammerman NC,
Geiman DE, Bishai WR (2012) Rv2190c, an NlpC/P60
family protein, is required for full virulence of Myco-

bacterium tuberculosis. PLoS One 7:e43429
13. Gao LY, Pak M, Kish R, Kajihara K, Brown EJ (2006)

A mycobacterial operon essential for virulence in vivo
and invasion and intracellular persistence in macro-
phages. Infect Immun 74:1757–1767.

14. Wuenscher MD, Kohler S, Bubert A, Gerike U, Goebel
W (1993) The iap gene of Listeria monocytogenes is
essential for cell viability, and its gene product, p60,
has bacteriolytic activity. J Bacteriol 175:3491–3501.

15. Tsuge Y, Ogino H, Teramoto H, Inui M, Yukawa H
(2008) Deletion of cgR_1596 and cgR_2070, encoding
NlpC/P60 proteins, causes a defect in cell separation in
Corynebacterium glutamicum R. J Bacteriol 190:8204–
8214.

16. Hett EC, Chao MC, Deng LL, Rubin EJ (2008) A myco-
bacterial enzyme essential for cell division synergizes
with resuscitation-promoting factor. PLoS Pathog 4:
e1000001

17. Li L, Bannantine JP, Zhang Q, Amonsin A, May BJ,
Alt D, Banerji N, Kanjilal S, Kapur V (2005) The com-
plete genome sequence of Mycobacterium avium sub-
species paratuberculosis. Proc Natl Acad Sci USA 102:
12344–12349.

18. Patel D, Danelishvili L, Yamazaki Y, Alonso M,
Paustian ML, Bannantine JP, Meunier-Goddik L,
Bermudez LE (2006) The ability of Mycobacterium

avium subsp. paratuberculosis to enter bovine epithe-
lial cells is influenced by preexposure to a hyperosmo-
lar environment and intracellular passage in bovine
mammary epithelial cells. Infect Immun 74:2849–2855.

19. Bannantine JP, Lingle CK, Stabel JR, Ramyar KX,
Garcia BL, Raeber AJ, Schacher P, Kapur V,

Geisbrecht BV (2012) MAP1272c encodes an NlpC/P60

protein, an antigen detected in cattle with Johne’s dis-

ease. Clin Vaccine Immunol 19:1083–1092.
20. Li L, Munir S, Bannantine JP, Sreevatsan S, Kanjilal

S, Kapur V (2007) Rapid expression of Mycobacterium

avium subsp. paratuberculosis recombinant proteins

for antigen discovery. Clin Vaccine Immunol 14:102–

105.
21. Stabel JR, Barnhill A, Bannantine JP, Chang YF,

Osman MA (2012) Evaluation of protection in a mouse

model after vaccination with Mycobacterium avium

subsp. paratuberculois protein cocktails. Vaccine 31:

127–134.
22. Petersen TN, Brunak S, von Heijne G, Nielsen H

(2011) SignalP 4.0: discriminating signal peptides from

transmembrane regions. Nat Methods 8:785–786.
23. Both D, Steiner EM, Izumi A, Schneider G, Schnell R

(2014) RipD (Rv1566c) from Mycobacterium tuberculo-

sis: adaptation of an NlpC/p60 domain to a non-

catalytic peptidoglycan-binding function. Biochem J

457:33–41.
24. Xu Q, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa

C, Cai X, Carlton D, Chen C, Chiu HJ, Chiu M, et al.

(2010) Structure of the gamma-D-glutamyl-L-diamino

acid endopeptidase YkfC from Bacillus cereus in com-

plex with L-Ala-gamma-D-Glu: insights into substrate

recognition by NlpC/P60 cysteine peptidases. Acta

Cryst F66:1354–1364.
25. Aramini JM, Rossi P, Huang YJ, Zhao L, Jiang M,

Maglaqui M, Xiao R, Locke J, Nair R, Rost B, et al.

(2008) Solution NMR structure of the NlpC/P60

domain of lipoprotein Spr from Escherichia coli: struc-

tural evidence for a novel cysteine peptidase catalytic

triad. Biochemistry 47:9715–9717.
26. Mahapatra S, Crick DC, McNeil MR, Brennan PJ

(2008) Unique structural features of the peptidoglycan

of Mycobacterium leprae. J Bacteriol 190:655–661.
27. Prigozhin DM, Mavrici D, Huizar JP, Vansell HJ, Alber

T (2013) Structural and biochemical analyses of Myco-

bacterium tuberculosis N-acetylmuramyl-L-alanine

amidase Rv3717 point to a role in peptidoglycan frag-

ment recycling. J Biol Chem 288:31549–31555.
28. Whittington RJ, Whittington AM, Waldron A, Begg DJ,

de Silva K, Purdie AC, Plain KM (2013) Development

and validation of a liquid medium (M7H9C) for routine

culture of Mycobacterium avium subsp. paratuberculo-

sis to replace modified Bactec 12B medium. J Clin

Microbiol 51:3993–4000.
29. Shin SJ, Collins MT (2008) Thiopurine drugs azathio-

prine and 6-mercaptopurine inhibit Mycobacterium

paratuberculosis growth in vitro. Antimicrob Agents

Chemother 52:418–426.
30. Both D, Schneider G, Schnell R (2011) Peptidoglycan

remodeling in Mycobacterium tuberculosis: comparison

of structures and catalytic activities of RipA and RipB.

J Mol Biol 413:247–260.
31. Squeglia F, Ruggiero A, Romano M, Vitagliano L,

Berisio R (2014) Mutational and structural study of

RipA, a key enzyme in Mycobacterium tuberculosis cell

division: evidence for the L-to-D inversion of configura-

tion of the catalytic cysteine. Acta Cryst D70:2295–

2300.
32. Eberhardt RY, Chang Y, Bateman A, Murzin AG,

Axelrod HL, Hwang WC, Aravind L (2013) Filling out

the structural map of the NTF2-like superfamily. BMC

Bioinf 14:327
33. Korkmaz B, Horwitz MS, Jenne DE, Gauthier F (2010)

Neutrophil elastase, proteinase 3, and cathepsin G as

850 PROTEINSCIENCE.ORG Mycobacterium paratuberculosis NlpC/P60 Proteins



therapeutic targets in human diseases. Pharmacol Rev
62:726–759.

34. Perera NC, Schilling O, Kittel H, Back W, Kremmer E,
Jenne DE (2012) NSP4, an elastase-related protease in
human neutrophils with arginine specificity. Proc Natl
Acad Sci USA 109:6229–6234.

35. Soehnlein O, Lindbom L (2009) Neutrophil-derived
azurocidin alarms the immune system. J Leukoc Biol
85:344–351.

36. Iversen LF, Kastrup JS, Bjorn SE, Rasmussen PB,
Wiberg FC, Flodgaard HJ, Larsen IK (1997) Structure
of HBP, a multifunctional protein with a serine pro-
teinase fold. Nat Struct Biol 4:265–268.

37. Bannantine JP, Stabel JR, Bayles DO, Geisbrecht BV
(2010) Characteristics of an extensive Mycobacterium
avium subspecies paratuberculosis recombinant protein
set. Protein Expr Purif 72:223–233.

38. Bannantine JP, Waters WR, Stabel JR, Palmer MV, Li
L, Kapur V, Paustian ML (2008) Development and use
of a partial Mycobacterium avium subspecies paratu-
berculosis protein array. Proteomics 8:463–474.

39. Bannantine JP, Paustian ML, Waters WR, Stabel JR,
Palmer MV, Li L, Kapur V (2008) Profiling bovine anti-
body responses to Mycobacterium avium subsp. paratu-

berculosis infection by using protein arrays. Infect
Immun 76:739–749.

40. Geisbrecht BV, Bouyain S, Pop M (2006) An optimized
system for expression and purification of secreted bac-
terial proteins. Protein Expr Purif 46:23–32.

41. Otwinowski Z (1997) Processing of X-ray diffraction
data collected in oscillation mode. Methods Enzymol
276:307–326.

42. Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger
TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC,
Sauter NK, Terwilliger TC (2002) PHENIX: building
new software for automated crystallographic structure
determination. Acta Cryst D58:1948–1954.

43. Emsley P, Cowtan K (2004) Coot: model-building tools
for molecular graphics. Acta Cryst D60:2126–2132.

44. Evans PR (1999) Some notes on choices in data collec-
tion. Acta Cryst D55:1771–1772.

45. Dauter Z (1999) Data-collection strategies. Acta Cryst
D55:1703–1717.

46. Barta ML, Guragain M, Adam P, Dickenson NE, Patil
M, Geisbrecht BV, Picking WL, Picking WD (YEAR)
Identification of the bile salt binding site on IpaD from
Shigella flexneri and the influence of ligand binding on
IpaD structure. Proteins 80:935–945.

Bannantine et al. PROTEIN SCIENCE VOL 25:840—851 851


	NlpC/P60 domain-containing proteins of Mycobacterium avium subspecies paratuberculosis that differentially bind and hydrolyze peptidoglycan
	
	Authors

	NlpC/P60 domain&#8208;containing proteins of Mycobacterium avium subspecies paratuberculosis that differentially bind and hydrolyze peptidoglycan

