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Comparative water quality and channel catfish production
in earthen ponds and a biofloc technology production
system
Bartholomew W. Green and Matthew E. McEntire

U.S. Department of Agriculture, Agriculture Research Service, Harry K. Dupree Stuttgart National
Aquaculture Research Center, Stuttgart, Arkansas, USA

ABSTRACT
This 210-day study compared variation in water quality and fish
growth for channel catfish (Ictalurus punctatus; 47 g/fish) stocked in
earthen ponds (1.5 fish/m2, 14,820/ha) and in a biofloc technology
(BFT) production system with high-density polyethylene-lined rec-
tangular tanks (12.6 fish/m2, 126,000/ha). Feed input and culture
environment affected water-quality dynamics. In ponds, phyto-
plankton uptake predominated and little nitrification occurred,
whereas in the BFT system phytoplankton uptake and nitrification
maintained low ammonia-nitrogen concentrations. Size classes of
fish were skewed toward the larger market sizes in ponds and
toward smaller market sizes in the BFT system. Mean final fish
weight was 630 g/fish in ponds and 542 g/fish in the BFT system.
Despite these differences, fish yield was higher in the BFT system
(7.7 kg/m3 v. 1.5 kg/m3) because of the greater initial stocking rate.
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Introduction

Pond management strategies to produce food-size catfish are varied and have
evolved over time toward increased intensification (Johnson et al. 2014).
Pond catfish culture is intensified further using the split-pond system
(Brown et al. 2016; Park et al. 2014), which evolved from the partitioned
aquaculture system (Brune et al. 2004). In split-pond catfish culture, a
traditional earthen pond is divided into two sections: a fish-production
section (ca. 10%–20% of original pond area) and a waste-treatment section.
Water is circulated continuously between the two sections during the day,
but circulation ceases at night. Photosynthesis supplies dissolved oxygen
during the day, and flow rate between the two sections of the split pond
is adjusted to ensure the minimum required oxygen concentration for fish
growth (Brown et al. 2016). Paddlewheel aeration is used in the fish-production
section at night.
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The biofloc technology (BFT) production system could represent a
further intensification of catfish culture. High yields of fish or shrimp
are produced in the BFT system because two important production-limit-
ing factors, dissolved oxygen and total ammonia-nitrogen (TAN) concen-
trations, are maintained at near-optimal levels despite high stocking and
feeding rates (Hargreaves 2006). In an outdoor BFT production system, a
complex of living organisms is closely associated with particulate organic
matter and is maintained in suspension by continuous aeration. TAN
excreted by the culture animal is utilized by the phytoplankton and
bacteria that are part of this complex of living organisms. Channel catfish
have been grown successfully in an outdoor experimental BFT production
system (Green 2010; Green et al. 2014), which differs substantially from
traditional earthen pond grow-out. In traditional earthen pond culture,
mechanical aeration is used at night to maintain dissolved oxygen con-
centration above critical levels, and algal photosynthesis is the primary
source of dissolved oxygen and the principal sink for excreted TAN. The
objective of this study was thus to evaluate variation in water quality and
fish growth for channel catfish stocked in earthen ponds or the BFT
production system.

Materials and methods

Three 0.04-ha earthen ponds (228 m3) and three outdoor, rectangular wood-
framed, high-density polyethylene-lined tanks (18.6 m2, 15.7 m3) located at
the Harry K. Dupree Stuttgart National Aquaculture Research Center
(HKDSNARC), Stuttgart, Arkansas, were used for this study. Each earthen
pond was equipped with an electric paddlewheel aerator (13.8 kW/ha, 208 V,
3-phase) that was activated by data logger to maintain minimum dissolved
oxygen concentration above 40% of saturation. One 2.6-kW blower provided
air continuously to three BFT tanks through a diffuser grid on the bottom of
each tank. Water only was added to replace losses to evaporation (ponds and
tanks) and seepage (ponds), but the volume added was not quantified. Salt
was added to all culture units to ensure that chloride concentration exceeded
100 mg/L. Feed-grade sodium bicarbonate was added as needed to the BFT
tanks to maintain pH and total alkalinity.

Ponds and BFT tanks were filled on 8–9 April 2013 with well water
(total alkalinity = 226.4 mg/L as CaCO3). Once full, 2.3 m3 of water from
a HKDSNARC pond containing an algal bloom was added to each BFT
tank to speed development of the algal bloom. Over the next 26 d BFT
tanks each were fertilized with a total of 0.5 kg 9–27-0 (N-P-K), 0.4 kg
46–0-0, and 4.5 kg dried molasses and beet pulp (Sweet45; Westway Feed
Products, New Orleans, LA), and ponds each were fertilized with a total of
0.9 kg 9–27-0 (N-P-K), 3.1 kg 46–0-0, and 146.7 kg rice bran.
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Channel catfish (Ictalurus punctatus) fingerlings (2012 year class; 47 g/
fish) were stocked into ponds at 1.5 fish/m2 (14,820 fish/ha) and into BFT
tanks at 12.6 fish/m2 (126,000 fish/ha) on 19 April 2013. The fish popula-
tion in each culture unit was sampled periodically using a seine net to
monitor fish growth. On each sample date at least three samples per culture
unit of 25 fish/sample were weighed and the fish returned to the culture
unit. No mortalities were recorded during sampling. All culture units were
harvested completely 210 d after stocking. At harvest, a minimum of 75 fish
per culture unit were weighed individually and remaining fish were
weighed in bulk. Fish number was calculated by dividing the bulk weight
by the mean individual weight. Individually weighed fish were assigned to
size classes (kg/fish [size range]): submarketable (<0.34 kg/fish), out-of-size
(0.34–0.45 kg/fish), 0.45 (0.45–0.57 kg/fish), 0.57 (0.57–0.68 kg/fish), 0.68
(0.68–0.79 kg/fish), 0.79 (0.79–0.91 kg/fish), 0.91 (0.91–1.02 kg/fish) and
1.02 (≥1.02 kg/fish). Fish were fed a 32% protein commercially extruded
feed daily to apparent satiation and quantities recorded. Feed conversion
ratio was calculated for each pond as the total feed (dry-weight basis) fed
divided by the net fish yield. Animal care and experimental protocols were
approved by the HKDSNARC Institutional Animal Care and Use
Committee and conformed to ARS Policies and Procedures 130.4 and
635.1.

Water samples were collected weekly from each culture unit at about
0800 h: A 90-cm column sample was collected from ponds, and a 0.5-L
grab sample was collected from BFT tanks. Sample pH was measured elec-
trometrically. Water was filtered through 0.2-μm pore size membrane filter
and analyzed for nitrite-nitrogen (NO2-N, diazotization), nitrate-nitrogen
(NO3-N, cadmium reduction), and soluble reactive phosphorus (PO4-P,
ascorbic acid method) using flow injection analysis according to manufac-
turer instructions (FIAlab 2500; FIAlab Instruments, Bellevue, WA, USA).
Flow injection analysis also was used to quantify total ammonia-nitrogen
(TAN) fluorometrically in filtered samples using the o-phthaldialdehyde
method (Genfa and Dasgupta 1989). Water samples were filtered through a
0.45-μm pore size glass fiber filter for chlorophyll a analysis. Chlorophyll a
was extracted in 2:1 chloroform:methanol from the phytoplankton (plank-
tonic algae and cyanobacteria as well as those associated with the biofloc)
retained on the filter, and the chlorophyll a concentration in the extract was
determined by spectroscopy (Lloyd and Tucker 1988).

Dissolved oxygen (DO) and temperature in each pond and tank were
monitored continuously (10-s scan rate) by a galvanic oxygen sensor (Type
III, Oxyguard, Birkerød, Denmark) and a thermister (Model 109, Campbell
Scientific, Logan, UT, USA) connected to a data logger (Model CR206 or
CR1000, Campbell Scientific, Logan, UT, USA). Mean (±SD) DO was
6.4 ± 1.7 and 7.2 ± 1.3 mg/L in ponds and BFT tanks, respectively. Mean
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(±SD) water temperature was 25.0 ± 5.0 and 24.6 ± 5.2ºC in ponds and BFT
tanks, respectively.

The one essential employee authorized to work during the 1–16 October
2013 U.S. government shutdown ensured fish well-being, fed fish, and
maintained water levels as needed. All other activities were suspended.

After confirming homogeneity of variance and normality, data were ana-
lyzed using the two-tailed t-test (TTEST), linear regression (REG), and
frequency (FREQ) procedures of SAS version 9.4. The repeated measures
mixed-models procedure (MIXED) was used to compare slopes of growth
curves. Percent data were arcsin transformed. Feed conversion ratio (FCR)
data could not be normalized and were analyzed by nonparametric one-way
analysis of variance (NPAR1WAY).

Results and discussion

Water-quality dynamics varied between treatments. Feed input and culture
environment were the main factors that affected water quality. Compared
to ponds, daily feed rate in BFT tanks was high beginning at stocking
because stocking rate was 8.4 times greater. During the first 60 d, fish in
BFT tanks were fed a mean of 35.6 g/m3 feed daily, significantly greater
(P < 0.001) than the 5.2 g/m3 mean daily ration for fish in ponds. A total of
1,828 g/m3 of feed was fed to fish in BFT tanks compared to 292 g/m3 fed to
fish in ponds during this time. High daily feed rates were sustained from
days 86–162 and averaged 100.4 and 18.0 g/m3 for BFT tanks and ponds,
respectively. And the 13.7 kg/m3 of feed consumed by fish in the BFT
system during the entire study was significantly higher (P < 0.001) than
the 2.2 kg/m3 consumed by fish in earthen ponds. Mean daily feed ration
and total feed consumed by fish in ponds and the BFT system were
consistent with results from previous channel catfish studies in ponds and
in the BFT system (Green 2010; Green and Rawles 2010, 2011; Green and
Schrader 2015; Green et al. 2014; Schrader et al. 2011).

Chlorophyll a concentration (Figure 1), an indicator of phytoplankton
biomass, was similar in ponds and the BFT system at the beginning of the
study (averaging 264.0 mg/m3) and corresponded to a moderate phytoplank-
ton bloom. During the first 60 d after fish were stocked, chlorophyll a
averaged 144 mg/m3 in ponds compared to 1,720 mg/m3 in the BFT system.
Low nutrient input likely contributed to the initial decline in pond chlor-
ophyll a concentration. In the BFT system, high feed nutrient input begin-
ning at stocking resulted in rapid phytoplankton growth, and mean
chlorophyll a concentration during the first 4–8 weeks was consistent with
concentrations reported previously for channel catfish BFT culture (Green
2010; Green et al. 2014; Schrader et al. 2011). Subsequently, chlorophyll a
concentration in both treatments converged to a mean of 534 mg/m3 that
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persisted throughout the remainder of the experiment. Chlorophyll a con-
centration did not differ significantly between treatments on day 159 (imme-
diately before the government shut down; P = 0.878) or on day 207 (just
before harvest; P = 0.175).

Increased phytoplankton biomass can be important in sustaining dissolved
oxygen concentration in aquaculture systems, particularly when the algal
community is dominated by eukaryotes such as chlorophytes and diatoms,
which are better oxygenators of the water compared to bloom-forming
cyanobacteria. Blooms of planktonic, filamentous cyanobacteria (e.g.,
Raphidiopsis spp., Planktothrix [Oscillatoria] agardhii, P. perornata) com-
monly dominate phytoplankton communities during late summer in catfish
production ponds (Van der Ploeg and Tucker 1993), whereas the consistently
high nutrient loading rates and constant mixing of water in the BFT system
contributes to phytoplankton communities dominated by chlorophytes and
diatoms (Schrader et al. 2011). Some cyanobacteria species produce toxins
and off-flavor compounds, and bloom-forming cyanobacteria are a poor base
for aquatic food chains and can deplete dissolved oxygen in ponds following
the sudden die-off of the bloom (Paerl and Tucker 1995).

Chlorophyll a concentration increased in ponds (R2 = 0.651, P < 0.001)
but decreased in the BFT system (R2 = 0.671, P < 0.001) as the weekly mean
of daily feed input increased during the 210-d study. Increasing chlorophyll a
concentration in response to increasing feed nutrient input is common in
earthen ponds used for the intensive culture of channel catfish (Boyd and
Tucker 1998; Torrans 2005). However, the negative chlorophyll a-feed input
relationship in the BFT system is in contrast to other published studies on
channel catfish BFT culture where chlorophyll a concentration was indepen-
dent of feed input (Green et al. 2014) or increased with increased feed input
(Green 2010; Schrader et al. 2011). Variation among studies in fish stocking
rate and initial size and the rapid increase to sustained high chlorophyll a

Figure 1. Mean chlorophyll a concentration in earthen ponds or the biofloc technology production
system stocked with channel catfish during the 210-day study. The gap in data corresponds to the
1–16 October 2013 shutdown of the U.S. government.
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concentrations likely contributed to the different observed chlorophyll a-feed
input relationships.

Dissolved inorganic nitrogen (DIN) dynamics differed between ponds and
the BFT system (Figure 2). Concentrations of TAN and NO2-N in ponds
were higher and more variable, and NO3-N was lower. Excretion of feed
nitrogen by fish in ponds exceeded phytoplankton TAN uptake and resulted
in a TAN spike of 3.2 mg/L on day 54 followed by a secondary TAN spike of
1.0 mg/L on day 96. Phytoplankton productivity in ponds likely was nitro-
gen-limited prior to the first TAN spike because chlorophyll a concentration
increased rapidly from a mean of 149.8 mg/m3 on day 54 to 503.8 mg/m3 on
day 75. Phytoplankton TAN uptake in ponds during the remainder of the
study kept TAN concentration low. Algal uptake of TAN is the primary
mechanism that controls TAN concentration in catfish ponds (Hargreaves
1998, 2006; Hargreaves and Tucker 1996). A NO2-N spike (days 110–138)
that followed the TAN spike (day 96) may indicate that some nitrification
occurred in ponds. Nitrate concentration would be expected to increase
following nitrification, but data are not available because it was not possible
to conduct water-quality analyses during the government shutdown. Mean
NO3-N concentration increased from 0.5 mg/L immediately preceding the
shutdown to 2.6 mg/L afterwards, which supports the occurrence of nitrifica-
tion. The observed DIN dynamics in ponds in the present study, including
the minor role of nitrification, were consistent with those observed in
commercial catfish ponds (Tucker and Van der Ploeg 1993). In the BFT
system, DIN dynamics were driven initially by phytoplankton TAN uptake
followed by onset of nitrification beginning about day 30: An initial TAN
spike was followed by a NO2-N spike followed subsequently by increasing
NO3-N concentration. Nitrification typically begins 4–6 weeks into the
culture period (Green 2010; Green et al. 2014; Ray et al. 2011) because

Figure 2. Mean total ammonia-nitrogen (NH4-N, top), nitrite-nitrogen (NO2-N, middle), and
nitrate-nitrogen (NO3-N, bottom) concentrations in earthen ponds or the biofloc technology
production system stocked with channel catfish during the 210-day study. The gap in data
corresponds to the 1–16 October 2013 shutdown of the U.S. government.
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nitrifying bacteria grow slowly (Hargreaves 2006). Algal uptake and nitrifica-
tion acted to maintain TAN and NO2-N concentrations at low levels in the
BFT system despite the high feed rates. No significant differences (P > 0.050)
between treatments on days 159 or 207 were detected for TAN or NO2-N
concentration, but NO3-N concentration was significantly higher (P < 0.001)
in the BFT system on both days.

Pond pH oscillated around pH 8.1 throughout the study, whereas in the
BFT system pH declined beginning about day 40 because of nitrification but
was maintained around pH 7.4 by periodic addition of sodium bicarbonate
(Figure 3). Pond pH was significantly lower (P < 0.001) than BFT system pH
on day 159, but not different (P = 0.060) on day 207.

Chronic or acute exposure to elevated unionized ammonia concentration
can decrease fish growth or be toxic (Hargreaves and Kucuk 2001). The
proportion of unionized ammonia can be calculated based on water tem-
perature and pH (Emerson et al. 1975) and will vary diurnally in ponds in
response to photosynthesis. Pond pH is lowest in the morning because of
nocturnal pond community respiration and increases throughout the day
until maximum photosynthesis, after which it declines until photosynthesis
resumes the next day. Elevated TAN concentrations occurred during the
present study on days 40–61 (TAN = 2–4 mg/L) and on days 82–110
(TAN = 0.5–1.3 mg/L). Based on mean water temperature (27.9 and
29.7ºC, respectively) and mean early morning pH (8.1 and 8.2, respectively)
during each event, mean unionized ammonia concentration was 0.19 mg/L
(range 0.01–0.34 mg/L) and 0.07 mg/L (range 0.01–0.14 mg/L) during the
first and second events respectively. These concentrations are less than the
LC50 and growth-limiting unionized ammonia concentrations reported for
channel catfish (Hargreaves and Kucuk 2001).

Soluble reactive phosphorus (PO4-P) concentration (Figure 4) was similar
in ponds and the BFT system at the start of the experiment. Pond PO4-P

Figure 3. Mean pH in earthen ponds or the biofloc technology production system stocked with
channel catfish during the 210-day study. The gap in data corresponds to the 1–16 October 2013
shutdown of the U.S. government.
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concentrations remained low throughout the culture cycle, averaging
0.04 mg/L. Similar PO4-P concentrations were observed in other catfish
pond production trials at HKDSNARC and elsewhere (Green and Rawles
2010, 2011; Tucker et al. 1996). In contrast, PO4-P concentration increased
linearly (R2 = 0.915, P < 0.001) with time beginning on day 40 in the BFT
system and was a consequence of the high feed input. Mean PO4-P concen-
tration in the BFT system was significantly higher (P < 0.001) than in ponds
on days 159 and 207.

In addition to feed input, two other factors contributed to the differences
in water quality observed between the two systems: The BFT system did not
contain soil and did not lose water to seepage because of the HDPE liner.
Major interactions occur between sediment and the overlying water column
in catfish ponds. Sediment oxygen demand is a major component of whole-
pond respiration and in a 1.5-m-deep pond is estimated to comprise 20% of
whole-pond respiration (Steeby et al. 2004). However, water column respira-
tion in a BFT system, measured either by dark-bottle respiration or 5-d
biochemical oxygen demand, is about 30 times greater than in catfish
ponds (Boyd and Gross 1999; Vinatea et al. 2010; Ray and Lotz 2014; B.
W. Green, unpublished data). In ponds, nutrient transformations that occur
in pond sediment include nitrification and denitrification (Gross et al. 2000;
Hargreaves 1998), accumulation of organic nitrogen (Gross et al. 2000), and
PO4-P adsorption and solubilization in sediment pore water (Masuda and
Boyd 1994a, 1994b) and can be affected by the status of sediment oxygena-
tion (Hargreaves and Tucker 1996). Nitrification clearly occurred in the BFT
system, and PO4-P accumulated because sediment was absent, and while not
measured, denitrification may have occurred in anaerobic microenviron-
ments, possibly within the core of larger (>100 μm diameter) floc particles.
Seepage represents the major source of water loss from earthen catfish ponds

Figure 4. Mean soluble reactive phosphorus (PO4-P) concentrations in earthen ponds or the
biofloc technology production system stocked with channel catfish during the 210-day study.
Pond PO4-P concentration remained low throughout the study, averaging 0.04 mg/L. The gap in
data corresponds to the 1–16 October 2013 shutdown of the U.S. government.
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(Boyd 1982, 1985; Tucker 1996). Seepage rate is affected by soil type and
construction practices and varies from 10 to 25 mm/d in well-constructed
ponds on high shrink-swell soils (Boyd 1982; Tucker 1996).

Fish in both treatments grew rapidly throughout the study (Figure 5). Fish
were sampled periodically for growth, and growth curve analysis showed that
intercepts and slopes did not differ significantly (P = 0.243) between treat-
ments. However, at harvest, fish from ponds were significantly larger than
those from the BFT system (P = 0.035; Table 1). Stocking rate is known to
affect channel catfish growth over a variety of production environments (e.g.,
Baumgarner et al. 2005; Dunham et al. 1990; Li et al. 2003). Given that the
stocking rate in the BFT system was 8.4 times higher than in ponds, social
interactions among individual fish, specifically competition for food, could
result in higher size variation (as measured by the coefficient of variation,
CV) as was reported for other fish in response to increased stocking rate
(Brett 1979; Huss et al. 2008; Jobling 1983). Individual weight CV at stock-
out was 26.4% and at harvest CVs ranged from 25.2%–28.8% for fish in
ponds and 22.3%–27.4% for fish in the BFT system and would not be
expected to differ. Since fish were fed daily to apparent satiation, competition
for food should be negligible. In fact, mean feed consumption per fish was

Figure 5. Growth of channel catfish in earthen ponds and the biofloc system during the 210
study.

Table 1. Mean (±SE) gross and net fish yields, individual weight, survival, and feed conversion
ratio (FCR) for channel catfish harvested from earthen ponds or the biofloc system after a 210-
day experiment.
Treatment Gross Yield (kg/m3) Net Yield Individual Weight (g/fish) Survival (%) FCR

Pond 1.5 ± 0.0 1.4 ± 0.0 630 ± 18 92.2 ± 0.4 1.6 ± 0.0
Biofloc 7.7 ± 0.5 6.9 ± 0.5 542 ± 22 96.7 ± 1.0 2.0 ± 0.1
Pr > t <0.001 <0.001 0.035 0.442 0.038
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921 and 966 g/fish for the pond and BFT treatments respectively and did not
differ significantly (P = 0.275). Differential mortality does not explain the
treatment difference for mean final individual weight because mean survivals
were high and not significantly different. Concentrations of water-quality
variables in the present experiment would not be expected to affect indivi-
dual fish feed consumption or growth. Density-induced stress, as indicated
by serum cortisol concentration, is thought to negatively affect fish growth,
but results are equivocal (Ainsworth et al. 1985; Gatlin et al. 1986; Klinger
et al. 1983). Although feed consumption on an individual fish basis did not
differ significantly between treatments, FCR did. This may indicate that
density-induced stress negatively affected digestive physiology of fish in the
BFT system. It is possible that fish in the BFT system were overfed, which
also would result in an elevated FCR. However, no excess feed was noted on
the water surface of the BFT system tanks several hours after feeding.

Significant (P < 0.001) treatment differences were detected for size classes
of harvested fish (Figure 6). Results of frequency analysis showed that the
number of submarketable fish approximated the expected number for each
treatment. There were fewer than expected out-of-size and 0.45 kg/fish size-
class fish harvested from ponds, whereas for the BFT system there were
greater than expected numbers. Numbers of fish in the 0.57, 0.68, and
1.02 kg/fish size classes in each treatment approximated expected numbers.
And there were greater than expected 0.79 and 0.91 kg/fish size-class fish

Figure 6. Size distribution of channel catfish harvested after 210 days from earthen ponds or the
biofloc technology production system. Fish in the <0.34 and 0.34 kg/fish size classes are
considered submarketable and out-of-size, respectively.
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harvested from ponds, whereas for the BFT system there were fewer than
expected numbers. Density-related social interactions appear to have affected
fish growth more in the BFT system.

Gross fish yield (GFY) and net fish yield (NFY) were significantly greater
(P < 0.001) in the BFT system as would be expected from the higher stocking
rate (Table 1). Channel catfish yields in the current experiment were similar
to yields obtained in previous experiments in ponds (Green and Rawles 2010,
2011; Li et al. 2004) and the BFT system (Green and Schrader 2015; Green
et al. 2014; Schrader et al. 2011). Fish survival was high in ponds and the BFT
system and did not differ significantly between treatments. Feed conversion
ratio, as noted previously, was significantly higher in the BFT system; mean
FCR for pond- and BFT system-reared fish were consistent with reported
values (Green and Rawles 2010, 2011; Green and Schrader 2015; Green et al.
2014; Li et al. 2004).

There were significant differences between treatments among size
classes of harvested fish (Table 2). Catfish sizes accepted by processing
plants range from 0.45–0.57 to 1.81–2.26 kg/fish, but the preferred size
range varies from plant to plant and over time in response to market
demands (Wiese et al. 2006). Processors likely prefer a tighter size range
(0.68–1.13 kg/fish) with minimal numbers of fish 1.36 kg and larger.
Catfish that are too small to eat (generally <0.35 kg/fish) are rejected by
the plant, whereas fish that are large enough to eat but outside prevailing
specifications are considered out-of-size (0.35–0.45 and >2.26 kg/fish)
and are discounted (Wiese et al. 2006). In the present experiment,
submarketable fish did not differ significantly (P = 0.241) between
treatments and ranged from 3%–6% of the population. There were 50%
more out-of-size in the BFT system than in ponds, but the difference
was not significant (P = 0.071). Significantly greater percentages of fish
harvested from ponds were in the larger size classes. No fish in either
treatment exceeded 1.13 kg. Fish in both treatments would need to be
graded by size before being sent for processing to minimize the number
of fish rejected or discounted (Trimpey et al. 2004). Despite differences
in the size-class composition of harvested fish, gross fish yield was
higher in the BFT system because of the higher initial stocking density.

Table 2. Mean (±SE) percentage of channel catfish population harvested after a 210-day
experiment from earthen ponds or the biofloc technology production system that was <0.35
(submarketable), 0.35–0.45 (out-of-size), ≥0.45, ≥0.57, or ≥0.68 kg/fish.

Treatment

<0.35 0.35–0.45 ≥0.45 ≥0.57 ≥0.68

(%)

Pond 2.9 ± 0.0 14.1 ± 0.0 83.0 ± 0.0 64.0 ± 0.0 39.4 ± 0.3
Biofloc 6.0 ± 0.3 21.6 ± 0.1 72.1 ± 0.4 39.3 ± 0.4 18.0 ± 0.2
Pr > t 0.241 0.071 0.102 0.017 0.026
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In summary, pond culture of channel catfish is much less intensive than
the BFT system. Phytoplankton uptake is the main TAN sink in ponds,
whereas phytoplankton uptake and ammonia oxidation by nitrifying bacteria
are the main TAN sinks in the outdoor BFT system.

Total GFY and NFY from earthen ponds are less than from the BFT
system because of lower stocking and feeding rates. Although a significantly
higher percentage of fish harvested from earthen ponds were of market size,
the GFY and NFY of market-size fish from the BFT system was significantly
higher because of the higher stocking rate. Density-related social interactions
that appear to limit fish growth in the BFT system need to be studied and
resolved.
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