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ABSTRACT: Several organizations have developed 
prediction models for molecular breeding values (MBV) 
for quantitative growth and carcass traits in beef cattle 
using Bovine SNP50 genotypes and phenotypic or EBV 
data. Molecular breeding values for Angus cattle have 
been developed by IGENITY, Pfi zer Animal Genetics, 
and a collaboration between researchers from Iowa State 
University and the University of Missouri-Columbia 
(ISU/UMC). The U.S. Meat Animal Research Center 
(USMARC; Clay Center, NE) has also developed MBV 
for 16 cattle breeds using 2 multibreed populations, the 
Germplasm Evaluation (GPE) Program and the 2,000 
Bull Project (2KALL), and 2 single breed subpopulations 
of the 2,000 Bull Project, Angus (2KAN) and Hereford 
(2KHH). In this study, these MBV were assessed 
relative to commercial ranch EBV estimated from the 
progeny phenotypes of Angus bulls naturally mated in 
multisire breeding pastures to commercial cows: 121 

for USMARC MBV, 99 for ISU/UMC MBV, and 29 for 
IGENITY and Pfi zer MBV (selected based on number 
of progeny carcass records). Five traits were analyzed: 
weaning weight (WW), HCW, marbling score (MS), 
rib-eye muscle area (RE), and, for IGENITY and 
Pfi zer only, feedlot ADG. The average accuracies of 
MBV across traits were 0.38 ± 0.05 for IGENITY, 0.61 
± 0.12 for Pfi zer, 0.46 ± 0.12 for ISU/UMC, 0.16 ± 
0.04 for GPE, 0.26 ± 0.05 for 2KALL, 0.24 ± 0.04 for 
2KAN, and 0.02 ± 0.12 for 2KHH. Angus-based MBV 
(IGENITY, Pfi zer, ISU/UMC, and 2KAN) explained 
larger proportions of genetic variance in this population 
than GPE, 2KALL, or 2KHH MBV for the same traits. 
In this data set, IGENITY, Pfi zer, and ISU/UMC MBV 
were predictive of realized performance of progeny, 
and incorporation of that information into national 
genetic evaluations would be expected to improve EPD 
accuracy, particularly for young animals.
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K. L. Weber,* D. J. Drake,* J. F. Taylor,† D. J. Garrick,‡ L. A. Kuehn,§ R. M. Thallman,§ R. D. 
Schnabel,† W. M. Snelling,§ E. J. Pollak,§ and A. L. Van Eenennaam*4

*Department of Animal Science, University of California, Davis, 95616; †Division of Animal Sciences, University of 
Missouri, Columbia 65211; ‡Department of Animal Science, Iowa State University, Ames 50011; and §USDA, ARS, U.S. 

Meat Animal Research Center, Clay Center, NE 68933

INTRODUCTION

Marker-assisted selection for quantitative traits has 
evolved rapidly in the past 5 years. Mapping causative 
mutations has been successful for a number of Mende-
lian traits, including double muscling (McPherron and 
Lee, 1997) and deleterious recessive disorders (e.g., 
Neuropathic Hydrocephalus in Angus cattle; Beever, 
2009; Teseling and Parnell, 2011). Although individ-
ual loci have been associated with a large proportion 
of genetic variance for some quantitative traits (e.g., 
DGAT1 for milk fat percentage; Grisart et al., 2002), 
single marker selection has generally proved less use-
ful for such traits. For example, Van Eenennaam et al. 
(2007) found that commercial marker tests using small 
marker panels associated with carcass traits were often 
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not signifi cantly associated with the target trait in inde-
pendent validation populations.

Meuwissen et al. (2001) proposed an approach called 
genomic selection to incorporate genotypic data from a 
large number of markers evenly distributed throughout 
the genome into breeding value estimation, by summing 
individual marker effects, creating molecular breeding 
values (MBV). This approach has been implemented in 
the dairy industry (VanRaden et al., 2009) using the Il-
lumina Bovine SNP50 Bead Chip assay (50K SNP; Il-
lumina, San Diego, CA; Matukumalli et al., 2009).

A number of organizations have developed MBV 
for quantitative growth and carcass traits in beef cattle 
based on 50K SNP. Two commercial companies are cur-
rently selling DNA test products for use in U.S. Angus 
cattle, and a collaboration between researchers at Iowa 
State University and the University of Missouri-Colum-
bia (ISU/UMC) and the U.S. Meat Animal Research 
Center (USMARC; Clay Center, NE) have indepen-
dently developed MBV based on the 50K SNP for use 
in Angus and multibreed beef cattle, respectively. In this 
study, the accuracies of these MBV were assessed rela-
tive to ranch-based EBV derived from commercial prog-
eny phenotypes of purebred Angus bulls.

MATERIALS AND METHODS

Phenotypic Data

Individual progeny phenotypes were recorded for 
weaning weight (WW), feedlot in-weight (In-WT), HCW, 
marbling score (MS), and rib-eye muscle (LM) area (RE) 
from 5,170 Angus-sired progeny produced by 3 com-
mercial ranches (Herds A, B, and C) located in Siskiyou 
County, CA, and 1 research herd (Herd D) maintained by 
the Sierra Field Research and Extension Center in Browns 
Valley, CA. Descriptive statistics for phenotypic records 
are provided in Table 1.

Weaning weight phenotypes (n = 4,702) were col-
lected on progeny born between January 2009 and Jan-
uary 2011 in all herds and were pooled with those for 

progeny born between September 2007 and December 
2008 in Herd A and September 2006 to December 2008 
in Herd D. Weaning weights were adjusted for age at 
weaning and age of dam in accordance with Beef Im-
provement Federation standards (BIF, 2010) before 
analysis. Hair samples were collected on cattle at wean-
ing and extracted DNA was genotyped with the 99 SNP 
Bovine SeekSire parentage panel (GeneSeek, a Neogen 
Company, Lincoln, NE). Paternity assignment was con-
ducted using SireMatch software (John Pollak, Cornell 
 University, Ithaca, NY), and sires were assigned if a 
single bull had no more than 1 genotype exclusion (sire 
and progeny possessing alternate homozygous geno-
types). Electronic radio frequency identifi cation (RFID) 
ear tags were placed on all calves at weaning to facili-
tate animal identifi cation at feedlot and abattoir entry. 
Feedlot in-weights were collected for cattle from Herds 
A through C when they were shipped to Harris Feed-
ing Co. (Coalinga, CA) between fall 2008 and 2011 and 
were incorporated into the data set based on RFID.

Carcass records, including phenotypes for HCW, MS, 
and RE, were collected on cattle harvested between spring 
2007 and summer 2011 at Harris Ranch Beef Co. (Selma, 
CA) for Herds A through C and at the Los Banos Abattoir 
(Los Banos, CA) for Herd D. Abattoir records were used 
to integrate live animal and carcass data, but for identity 
confi rmation, meat samples were collected for DNA ex-
traction and genotyping. Genotypes derived from DNA 
extracted from the hair and meat samples were directly 
compared to verify animal identifi cation for each carcass 
record. As BW at slaughter was not measured, feedlot 
ADG was estimated using rate of BW gain from In-WT 
to estimated feedlot fi nal BW derived from a function of 
CW, backfat thickness, and RE.

Genotyping of Angus Sires

The collective group of natural mating sires used in 
herds A through D are described here as the University 
of California-Davis (UCD) assessment population. The 
UCD sires (n = 127) of progeny born from 2009 to 2011 
were genotyped with the 50K SNP at different times us-
ing different versions of the assay (Table 2) as new bulls 
were added to breeding groups between 2008 and early 
2011. Illumina Bovine SNP50 Bead Chip assay geno-
types for 95 of the 127 bulls were provided by collabo-
rators at UMC using a noncommercial version of 50K 
SNP. Genotypes were provided for 55,074 SNP loci for 
53 bulls (UMC-A) and 53,785 SNP loci for the remain-
ing 42 bulls (UMC-B). Missing genotype values for the 
latter were imputed by UMC using fastPHASE (Scheet 
and Stephens, 2006). Illumina Bovine SNP50 Bead 
Chip assay (52,156 loci) genotypes for 6 Angus bulls 
used via AI at Herd D were provided by USMARC, as 

Table 1. Descriptive statistics for phenotypes collected 
from herds A through D

Trait1
Angus
sires

Progeny
phenotypes Mean SD Minimum Maximum

WW, kg 129 4,702 230.1 34.6 107.5 391.1
ADG, kg/day 75 1,902 1.44 0.26 0.53 2.87
HCW, kg 136 2,865 336.0 32.1 225.9 454.1
MS 136 2,864 5.83 0.95 3.00 9.33
RE, cm2 136 2,864 81.4 7.6 23.2 111.0

1WW = weaning weight (205-d adjusted, kg); MS = marbling score (3 = 
traces, 4 = slight, 5 = small, 6 = modest, 7 = moderate, 8 = slightly abundant, 
and 9 = moderately abundant); RE = rib-eye muscle area.
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they had been genotyped as part of the USMARC 2,000 
Bull Project (Kuehn et al., 2011; Weber et al., 2012).
The remaining 26 bulls were genotyped by GeneSeek (a 
Neogen Company, Lincoln, NE), which provided geno-
types for 54,609 loci corresponding to the commercial 
C manifest (second commercial version of 50K SNP). 
Genotype datasets were combined based on unique SNP 
identifi cation and, to generate complete genotypes for 
predicting USMARC MBV, missing values due to less 
than 100% call rate and differences in 50K SNP ver-
sion (Table 2) in the combined dataset were imputed 
using BEAGLE version 3.3 (Browning and Browning, 
2007). The distribution of animals genotyped per locus 
is provided in Supplementary Table 1 (see online ver-
sion of the article at http://journalofanimalscience.org). 
Molecular breeding values derived from these imputed 
genotypes were compared with those derived from as-
suming the average genotype for each missing value for 
the purpose of comparing the effect on accuracy. Geno-
typing for predicting MBV for commercial products was 
performed at undisclosed laboratories by the respective 
companies, IGENITY (Merial, Duluth, GA), using DNA 
samples anonymously provided through Angus Genetics 
Inc. (St. Joseph, MO) or Pfi zer Animal Genetics (Ka-
lamazoo, MI).

Molecular Breeding Values Tested

The number of bulls tested for each MBV and the 
number of tested bulls with phenotyped progeny for 
each trait are presented in Table 3. A brief description of 

the source and derivation of the DNA test products that 
were evaluated is provided below.

IGENITY

IGENITY markets in the Angus breed a 384-SNP 
marker panel derived from 50K SNP based on associa-
tions with a suite of traits (residual feed intake, ADG, 
tenderness, MS, percent choice, yield grade, backfat 
thickness, RE, HCW, yearling weight, heifer pregnancy 
rate, stayability, maternal calving ease, and docility). The 
IGENITY MBV (MBVIG) values used in this study refer 
to the estimates of genetic merit produced by IGENITY 
using only the genotypes and their effects. These are the 
same values used for incorporation into the Angus Ge-
netics Inc. (AGI) genomic-enhanced EPD. The genetic 
correlations (MacNeil et al., 2010; Northcutt, 2011) used 
to incorporate MBVIG results into Angus national cattle 
evaluations as correlated traits are shown in Table 4.

Table 2. Differences between Illumina Bovine SNP50 
Bead Chip assay (50K SNP) versions and number of 
markers imputed to obtain complete genotypes for pre-
dicting U.S. Meat Animal Research Center (USMARC) 
molecular breeding values

50K SNP genotype
data sets UMC-A1 UMC-B1 USMARC C manifest

No. of bulls 53 42 6 26
No. of loci

50,416 X X X X
1,366 X X X
180 X X X
159 X X
30 X X
5 X
Total 52,156 52,121 51,782 52,156 50,626

BEAGLE2 imputation
Loci imputed due to
50K SNP version

35 374 0 1,530

1UMC-A = fi rst 50K SNP genotype set provided by collaborators at UMC; 
UMC-B = second 50K SNP genotype set provided by collaborators at UMC; 
C manifest = Illumina Bovine SNP50 v2 

2Browning and Browning (2007).

Table 3. Number of University of California-Davis as-
sessment bulls assayed for each DNA test

DNA test

Trait1

WW ADG
HCW, MS, 

or RE
No. of tested bulls

ISU/UMC2 99 99
MBVIG or MVP3 29 29 29
GPE, 2KALL, 2KAN, or 2KHH

4 121 121
Subset of tested bulls with progeny

ISU/UMC2 85 80
MBVIG or MVP3 28 28 29
GPE, 2KALL, 2KAN, or 2KHH

4 96 85
Mean progeny number (range)

ISU/UMC2 44 (1 to 151) 26 (1 to 130)
MBVIG or MVP3 73 (21 to 151) 44 (15 to 105) 48 (11 to 130)
GPE, 2KALL, 2KAN, or 2KHH

4 42 (1 to 151) 25 (1 to 130)
1WW = weaning weight (205-d adjusted, kg); MS = marbling score (3 = 

traces, 4 = slight, 5 = small, 6 = modest, 7 = moderate, 8 = slightly abundant, 
and 9 = moderately abundant); RE = rib-eye muscle area.

2ISU/UMC = Iowa State University and the University of Missouri-Co-
lumbia [derived from genomic BLUP of 3,570 registered Angus bulls and 
deregressed American Angus Association EPD (Saatchi et al.,2011)].

3MBVIG = IGENITY molecular breeding values [derived by IGENITY 
(Merial, Duluth, GA) using a 384-marker panel]; MVP = molecular value 
prediction [Illumina Bovine SNP50 Bead Chip assay (50K SNP) prediction 
derived by Pfi zer Animal Genetics (Kalamazoo, MI) using GenSel (Fernando 
and Garrick, 2009) analysis of between 1,097 and 1,445 Angus cattle].

4GPE = Germplasm Evaluation; 2KALL = 2,000 Bull Project; 2KAN = 
2,000 Bull Project Angus; 2KHH = 2,000 Bull Project Hereford. Illumina Bo-
vine SNP50 Bead Chip assay prediction derived using GenSel analysis of the 
U.S. Meat Animal Research Center Germplasm Evaluation phenotypes, the 
2000 Bull Project, Angus subset of the 2000 Bull Project, and the Hereford 
subset of the 2000 Bull Project, respectively (Weber et al. 2012).
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Pfi zer Animal Genetics Molecular Value Predictions

Pfi zer Animal Genetics markets a 50K SNP-based 
product that includes molecular value predictions 
(MVP) for 13 traits (birth weight, calving ease direct, 
WW, DMI, net feed intake, HCW, backfat thickness, RE, 
MS, tenderness, maternal calving ease, milk or maternal 
component of WW, and an index, $MVP feedlot). Pfi zer 
MVP are genomic predictions derived using an unspeci-
fi ed GenSel model (Fernando and Garrick, 2009). The 
complete dataset used for training and internal evalu-
ation included up to 5,101 Angus cattle records, with 
between 1,097 and 1,445 records used for training, de-
pending on trait (Pfi zer Animal Genetics, 2010). A tech-
nical summary including methodology and estimates of 
test accuracy was released by Pfi zer Animal Genetics, 
and accuracies estimated by Pfi zer Animal Genetics in 
internal yearling bull assessment populations are provid-
ed in Table 4. The genetic correlations used to incorpo-
rate these MVP into the Angus national cattle evaluation 
(Northcutt, 2011) are also in Table 4.

Iowa State University/University of Missouri-Columbia

A population of 3,570 registered Angus bulls with 
American Angus Association (AAA; St. Joseph, MO) 
pedigree and EPD data were genotyped using the 50K 

SNP panel at UMC (Saatchi et al., 2011). Expected prog-
eny differences were deregressed according to Garrick 
et al. (2009), with appropriate residual weights applied. 
This dataset represents a population of animals spread 
over a 50-yr period (about 10 generations) during which 
selection had been applied to the breed. Quality control 
was performed to remove SNP with call rates of less than 
90%, minor allele frequencies of less than 1%, or signifi -
cant deviations from Hardy-Weinberg equilibrium (P < 
0.001 genomewide) resulting in a total of 45,082 SNP 
used in the genomic selection analyses. All missing gen-
otype values were imputed with fastPHASE (Scheet and 
Stephens, 2006). Molecular breeding values for 16 traits 
(birth weight, WW, milk or the maternal component of 
WW, yearling weight, yearling height, HCW, MS, RE, 
backfat thickness, mature weight, mature height, scro-
tal circumference, calving ease direct, maternal calving 
ease, heifer pregnancy rate, and docility) were derived 
using a genomic relationship matrix described by Van-
Raden [2008; genomic BLUP (GBLUP)]. Estimated 
accuracies for individual MBV were derived from in-
version of the GBLUP coeffi cient matrix in the mixed 
model equations (Henderson, 1974) using a genomic re-
lationship matrix (Nejati-Javaremi et al., 1997).

Table 4. Published estimates of accuracies of DNA-based genetic merit prediction equations

DNA test Reference

Accuracy (± SE where available)

Trait1

WW ADG HCW MS RE

AN2

MBVIG
3 Northcutt, 2011 0.45 0.54 0.65 0.58

MVP3 Pfi zer Technical Summary, 20105 0.53 0.52 0.50 0.49 0.49
Northcutt, 2011 0.52 0.48 0.57 0.60

2KAN
4,6 Weber et al., 2012 0.05 ± 0.07 0.07 ± 0.06 0.24 ± 0.07 0.24 ± 0.06

MB2

GPE4,7 Weber et al., 2012 0.12 ± 0.05 0.35 ± 0.10 0.23 ± 0.06 0.25 ± 0.07
2KALL

4,8 Weber et al., 2012 0.24 ± 0.04 0.12 ± 0.05 0.23 ± 0.04 0.35 ± 0.05
HH2

2KHH
4,9 Weber et al.,2012 0.24 ± 0.04 0.01 ± 0.04 0.22 ± 0.04

1WW = weaning weight; MS = marbling score; RE = rib-eye muscle area.
2AN = Angus; MB = multibreed; HH = Hereford.
3MBVIG = IGENITY molecular breeding values [derived by IGENITY (Merial, Duluth, GA) using a 384-marker panel]; MVP = molecular value prediction 

[Illumina Bovine SNP50 Bead Chip assay (50K SNP) prediction derived by Pfi zer Animal Genetics (Kalamazoo, MI) using GenSel (Fernando and Garrick, 
2009) analysis of between 1,097 and 1,445Angus cattle].

4GPE = Germplasm Evaluation; 2KALL = 2,000 Bull Project; 2KAN = 2,000 Bull Project Angus; 2KHH = 2,000 Bull Project Hereford. Illumina Bovine SNP50 
Bead Chip assay prediction derived using GenSel analysis of the U.S. Meat Animal Research Center Germplasm Evaluation phenotypes, the 2000 Bull Project, 
Angus subset of the 2000 Bull Project, and the Hereford subset of the 2000 Bull Project, respectively(Weber et al. 2012).

550K Technical Summary (Pfi zer Animal Health, 2010), accuracies estimated in yearling bull external assessment populations.
6Accuracy estimated in animals with at least 50% Angus breed composition in GPE Cycle VII and continuously sampled GPE.
7Accuracy estimated in Angus animals of 2000 Bull Project.
8Accuracy estimated in animals with at least 25% Angus breed composition in GPE Cycle VII and continuously sampled GPE.
9Accuracy estimated in GPE Cycle VII and continuously sampled GPE.
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U.S. Meat Animal Research Center Germplasm 
Evaluation Program

United States Meat Animal Research Center Germ-
plasm Evaluation (GPE) Program MBV were developed 
as described in Weber et al. (2012). Briefl y, the training 
population included 3,358 cattle from Cycle VII of the 
GPE and the current continuously sampled GPE (2007 
to 2008), consisting of F1 and F1 × F1 (F1

2) crosses and 
backcrosses of 16 breeds: Angus, Red Angus, Brahman, 
Braunvieh, ChiAngus, Charolais, Gelbvieh, Hereford, 
Limousin, Maine-Anjou, MARCII (one-quarter Angus, 
one-quarter Hereford, one-quarter Gelbvieh, and one-
quarter Simmental), MARCIII (one-quarter Angus, one-
quarter Hereford, one-quarter Pinzgauer, and one-quarter 
Red Poll), Salers, Santa Gertrudis, Shorthorn, and Sim-
mental. These cattle were genotyped using 50K SNP, and 
52,156 SNP marker loci were used for genomic predic-
tion analyses. The MBV were derived from phenotypic 
data adjusted for age, sex, contemporary group, breed, 
and heterosis for 6 traits (birth weight, WW, yearling 
weight, HCW, MS, and RE) using the BayesCπ model in 
GenSel (Fernando and Garrick, 2009; Habier et al., 2011).

U.S. Meat Animal Research Center 2,000 Bull Project 
Evaluation

The 2,000 Bull Project (2KALL) was developed by 
USMARC to evaluate genetic merit in 16 of the most wide-
ly used beef cattle breeds, using data from approximately 
2,000 infl uential bulls submitted by participating breed as-
sociations. Its aim was to provide across-breed genomic 
predictions to the participating breed associations, and this 
was accomplished in 2011. Development of genomic pre-
diction equations from these data was described by Weber 
et al. (2012). Briefl y, the training population for 2KALL 
included EPD for 2,026 bulls from 13 breeds available 
at the time of the analysis: Angus, Red Angus, Beefmas-
ter, Brangus, Brahman, Braunvieh, Charolais, Gelbvieh, 
Hereford, Limousin, Maine-Anjou, Shorthorn, and Sim-
mental. Although the 2KALL was not designated for this 
purpose, subsets of Angus (n = 373) or Hereford bulls (n 
= 463) were used as training populations to produce pre-
diction equations based on the 2,000 Bull Project Angus 
(2KAN) or 2,000 Bull Project Hereford (2KHH) breeds, 
respectively, to examine the effi cacy of training in single 
breeds, using the largest single breeds available in 2KALL. 
The American Hereford Association does not provide EPD 
for CW; therefore, no 2KHH MBV were produced for this 
trait. The EPD were deregressed according to Garrick et al. 
(2009). The MBV prediction equations were derived us-
ing the Bayes Cπ model in GenSel (Fernando and Garrick, 
2009; Habier et al., 2011). Weber et al. (2012) presented 
an analysis that excluded from 2KALL the 234 sires with 

progeny represented in the GPE population to minimize the 
genetic relationship between the population used to devel-
op MBV (2KALL) and the population used for validation 
(GPE). The prediction equations used here were derived 
using the full 2KALL population including records for these 
234 GPE sires and are those released to breed associations 
by USMARC in summer 2011.

Known Relationships between Training and 
Assessment Populations

Many bulls used for natural mating are the offspring 
of widely used AI sires. If those AI sires had been part 
of the training populations used to derive MBV, the pre-
dictive accuracies in their sons will be much greater than 
when validation is undertaken in distant relatives (Saat-
chi et al., 2011). Accordingly, the relationships between 
the bulls in the UCD assessment population and the bulls 
known to be used in development of a particular MBV 
were assessed. The ISU/UMC training population includ-
ed bulls in the UCD assessment population and, in many 
cases, the sires of these bulls as well (Figure 1). How-
ever, none of the UCD assessment bulls had commercial 
progeny records sent to the AAA for inclusion in national 
evaluation, so the data available on these animals in the 
ISU/UMC training population included only ancestral in-
formation plus the phenotypic records of the bulls where 
available. Therefore, although their genotypes were pres-
ent, these bulls contributed little information to the ISU/
UMC analysis. In comparison, no members of the UCD 
assessment population were present in 2KAN (and by ex-
tension 2KALL); however, many sires of these bulls were 
included (Figure 1). The GPE training population was the 
least related to the UCD assessment population, with no 
UCD assessment bulls or their sires present. There were 
10 bulls present in the 2KAN population that were sires 
of both GPE and UCD assessment bulls; therefore, half-
siblings are the greatest known relationship between the 
GPE and UCD assessment populations. It should be noted 
that the lack of information about the IGENITY and Pfi z-
er training populations does not preclude the presence of 
close genetic relationships between them and the UCD 
assessment population.

Sire Breeding Value Estimation

The EPD and 4-generation pedigrees were obtained 
for all registered bulls from the AAA.

Single-trait genetic evaluations were conducted 
to generate ranch-based EBV using progeny pheno-
typic records and a relationship matrix based upon the 
4-generation pedigree provided by AAA for the reg-
istered bulls that sired the commercial progeny. AS-
Reml version 3 software (VSN International, Hemel 
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Hempstead, UK; Gilmour et al., 2009) was used for 
all genetic evaluations, including estimation of vari-
ance components.

Analysis of WW was carried out using a maternal ef-
fects animal model following Quaas and Pollak (1980):

y = Xb + Zu + Zmum + e

in which y is a vector of WW records preadjusted for 

Figure 1.
assessment population related to the training populations for Iowa State Univer-
sity and the University of Missouri-Columbia (ISU/UMC), 2,000 Bull Project 
(2KALL)/2,000 Bull Project Angus (2KAN), or Germplasm Evaluation (GPE) 
Program through self and sire (black), self only (dark gray), sire only (medium 
gray), half-sibling (light gray), or neither (white).

4, 5 to 10, and 11+ yr of age); X, Z, and Zm are incidence 
-

netic effects, and maternal effects; b, u, and um are vec-

maternal effects; and e is a vector of residuals. Additive 
genetic, nonadditive genetic, and nongenetic maternal 
effects could not be partitioned due to a scarcity of dam 

RE were performed using a univariate animal model 
that omits the term Zmum -
sociated with each trait were contemporary group for all 
traits, age for carcass traits, and sex for WW, HCW, and 

season for WW; herd, year, season, and feedlot lot for 

(P < 0.01) as computed by ASReml from incremental 
Wald F statistics (Gilmour et al., 2009).

Derivation of Molecular Breeding Value Accuracy

In this context, accuracy is the genetic correlation 
estimated between the MBV and the ranch-based esti-
mate of the genetic merit of the bulls as proposed by 
Kachman (2008). The proportion of genetic variance ac-
counted for by the MBV was estimated as the square of 
the estimated genetic correlation (accuracy) as derived 
by Thallman et al. (2009). Furthermore, a regression 
analysis was performed of progeny means corrected for 

MBV as follows:
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e

in which MBV is a vector of MBV, 1 is a vector of ones, 
ZMBV is an incidence matrix relating observations on 
the tested bulls to marker breeding values, MBV and 
uMBV are the MBV mean and the marker breeding val-
ues, and MBV is a vector of the MBV residuals. The 

var
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in which A is the numerator relationship matrix including 
4-generation Angus pedigree for sires, I is an identity ma-

uy
2 is the additive genetic variance of WW direct, 

uMBV
2 is the additive genetic variance of the WW MBV, 
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σum
2 is the variance of the maternal effects for WW, 

σuyuMBV is the additive genetic covariance between WW 
and MBV, σuyum is the covariance between WW direct 
and maternal effects, σuMBVum is the covariance between 
WW MBV and maternal effects, σe

2 is the residual vari-
ance for WW, and σεMBV

2 is residual variance for WW 
MBV. For all other traits, the same model was used, with 
Zmum excluded. The genetic correlation between MBV 
was estimated using a model and variance-covariance 
structure similar to Eq. [2], excluding Zmum, in which 
y is redefi ned as a correlated MBV with a single fi xed 
effect (the MBV mean). For comparison, the genetic cor-
relations between AAA EPD traits and ranch phenotypes 
were estimated using the same model after deregression 
of the EPD and using appropriate residual weights (Gar-
rick et al., 2009; Weber et al., 2012).

The genotypes provided by USMARC correspond-
ing to 6 bulls used via AI in Herd D and their AAA EPD 
were used directly in at least 2 of the training populations 
for MBV evaluated in this study. The accuracies corre-
sponding to the AAA EPD of these bulls were very high, 
ranging from >0.99 for WW, 0.84 to 0.97 for CW, 0.87 
to 0.97 for MS, and 0.88 to 0.98 for RE. As the focus 
of this study was to determine MBV accuracy for herd 
bulls with lower accuracy AAA EPD typical of yearling 
bulls, the MBV for these bulls were not included in the 
data used to estimate the MBV accuracy in the UCD as-
sessment population but were included in analyses used 
to determine the correlation between MBV. The remain-
ing genotyped Angus bulls (n = 121) represent the UCD 
assessment population used to evaluate MBV accuracy 
in this population.

RESULTS

Collection of Progeny Phenotypes

The DNA genotyping of both live progeny at weaning 

and their resultant carcasses at grading was necessary to 
verify animal–animal relationships for the genetic evalu-
ation of growth and carcass traits and provided the oppor-
tunity to assess the average error rate in live animal to car-
cass matching in harvest records. In 5 consecutive cohorts 
produced by Herd A, we found carcass misidentifi cation 
rates per cohort ranging from 3.5 to 19.3%, with an average 
misidentifi cation rate of 10.8%.

Estimation of Ranch-Based Breeding Values

Estimates of variance components, trait heritabili-
ties, and distributions of the accuracies of resulting EBV 
for tested bulls are presented in Table 5. Molecular 
breeding value heritabilities were consistently approxi-
mately 1. Rather than using fi xed variance components 
provided by AGI and estimated using data in the AAA 
database, variance components used in the genetic eval-
uation of commercial ranch data were estimated to re-
fl ect this environment and the conditions under which 
phenotypes were collected as they infl uence trait defi ni-
tion. Data available on the dams of terminal progeny in 
commercial ranch evaluation is often scarce, as was the 
case here. There were 1,393 dams that produced 2 or 
more calves; however, maternal grandsire was known 
only for replacement heifers kept from the start of this 
trial (n = 117). The limited data available on dams did 
not allow maternal genetic and permanent environmen-
tal effects to be separated as is generally modeled in 
beef cattle evaluation (BIF, 2010), and although direct 
and maternal variances and covariances were estimable, 
standard errors were large. The covariance between di-
rect and maternal effects was within a standard error of 
0 rather than negative as typically found in beef cattle 
evaluation (Dodenhoff et al., 1999). An unusual feature 
of the results of the analyses was the high heritability of 
feedlot ADG, due to a large additive genetic variance 
relative to literature estimates (Arthur et al., 2001), al-

Table 5. Variance component estimates from ranch-based breeding value estimation and mean accuracy of ranch-
based and American Angus Association (AAA) EPD for tested bulls

Parameter1
Trait2

WW ADG HCW MS RE
σA

2 ± SE 137.0 ± 31.0 0.0138 ± 0.004 321.5 ± 59.10 0.384 ± 0.05 17.4 ± 3.10
σAM ± SE 41.1 ± 58.1
σM

2 ± SE 174.1 ± 60.8
σE

2 ± SE 411.9 ± 22.1 0.0379 ± 0.0034 496.3 ± 47.6 0.398 ± 0.06 32.2 ± 2.6
hA

2 ± SE 0.179 ± 0.04 0.267 ± 0.07 0.393 ± 0.07 0.509 ± 0.07 0.350 ± 0.06
Mean accuracy of sire EBV ± SE (minimum to maximum) 0.63 ± 0.02 0.54 ± 0.06 0.61 ± 0.02 0.63 ± 0.02 0.59 ± 0.02

(0.11 to 0.90) (0.08 to 0.88) (0.10 to 0.93) (0.11 to 0.94) (0.11 to 0.92)
Mean accuracy of AAA EPD ± SE (minimum to maximum) 0.36 ± 0.01 0.29 ± 0.01 0.36 ± 0.01 0.41 ± 0.01

(0.10 to 0.56) (0.10 to 0.44) (0.10 to 0.48) (0.10 to 0.52)
1σA

2 = direct additive genetic variance; σAM = direct-maternal genetic covariance; σM
2 =  maternal genetic variance; σE

2 = residual variance; hA
2 = heritability. 

2WW = weaning weight (205-d adjusted, kg2); ADG = (kg/day)2; HCW = kg2; MS = marbling score (units2), RE = rib-eye muscle area (cm4).
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though as feedlot fi nal weight was estimated, these are 
slightly different traits. The additive genetic variance 
and heritability of MS were greater than reported by 
AAA (MacNeil and Northcutt, 2008), as was the herita-
bility of RE although this was due to a small estimate of 
residual variance rather than a large estimate of additive 
genetic variance. This may be at least partially due to 
having corrected misidentifi cation errors by genotyping 
carcasses at grading.

Molecular Breeding Value Accuracy

The accuracies of the MBV, as estimated by the addi-
tive genetic correlation between MBV and ranch perfor-
mance, were variable between tests and traits, and large 
SE were observed for most estimates (Table 6). The ISU/
UMC, MBVIG, and MVP tests were the more accurate, 
explaining relatively large proportions of the genetic vari-
ance in WW (8 to 62%), CW (7 to 8%), MS (19 to 46%), 
and RE (9 to 41%) with the least accurately predicted 
trait being CW. Angus-trained MBV were more accurate 
than AAA EPD, on average. High correlations were also 
observed between MBV for these traits (Supplementary 
Table 2A and 2C through 2E; see online version of the 
article at http://journalofanimalscience.org), with ISU/
UMC and MVP being highly correlated (r = 0.64 to 0.77) 
for all traits. Nearly all MBV underestimated change in 
progeny mean relative to change in MBV, with regres-
sion coeffi cients approaching one for the more accurate 

MBV (Supplementary Table 3; see online version of the 
article at http://journalofanimalscience.org). Realized ac-
curacies for ADG were relatively low as was the correla-
tion between ADG test results although care should be 
taken not to over-interpret these results due to the small 
size of that data set. The 2KAN MBV (trained on about 
10% as many AI sires as the ISU/UMC predictions) were 
by far the least among the Angus-trained predictions. 
They perhaps should not be considered in the average for 
that category of predictions, as the 2KALL was neither 
designed nor intended to be used for single breed predic-
tion. The most important conclusion to be reached from 
this training on a subset of the data is that 373 AI sires is 
an insuffi cient training resource for genomic prediction. 
The GPE and 2KALL MBV were less accurate, with one-
half the accuracy of Angus-trained MBV, on average. 
The GPE and 2KALL MBV were lowly to moderately 
correlated with each other and the other Angus-trained 
MBV. The 2KHH MBV had the lowest average accura-
cies in this population. Although they were trained on 
slightly more AI sires than the 2KAN MBV, they were far 
less effective predictions.

DISCUSSION

The carcass misidentifi cation rate of 10.8% is simi-
lar to the 10% value reported by Thallman et al. (2003) in 
the carcass data collected for the Carcass Merit Project. 
We observed that misidentifi cations were primarily due 

Table 6. The DNA test accuracy relative to ranch-based breeding value

DNA test1

Accuracy ± SE

Average3

Trait2

WW-d WW-m ADG HCW MS RE

AAA data4 0.15 ± 0.08 0.14 ± 0.19 0.60 ± 0.20 0.53 ± 0.13 0.36 ± 0.14
AN Average 0.45 ± 0.14 0.15 ± 0.26 0.25 ± 0.04 0.50 ± 0.12 0.49 ± 0.12 0.42 ± 0.05
ISU/UMC Expected5 0.62 ± 0.005 0.56 ± 0.005 0.51 ± 0.008 0.54 ± 0.008 0.56 ± 0.03

Realized6 0.29 ± 0.14 0.96 ± 0.43 0.27 ± 0.14 0.64 ± 0.10 0.64 ± 0.10 0.46 ± 0.12
MBVIG Realized 0.47 ± 0.20 –0.36 ± 0.79 0.33 ± 0.22 0.29 ± 0.23 0.44 ± 0.18 0.30 ± 0.21 0.38 ± 0.05
MVP Realized 0.79 ± 0.10 –0.84 ± 0.43 –0.03 ± 0.24 0.29 ± 0.22 0.68 ± 0.12 0.68 ± 0.13 0.61 ± 0.12
2KAN Realized 0.24 ± 0.13 0.56 ± 0.44 0.15 ± 0.14 0.24 ± 0.12 0.32 ± 0.13 0.24 ± 0.04
MB Average 0.16 ± 0.14 0.19 0.25 ± 0.18 0.19 ± 0.03 0.20 ± 0.03
GPE Realized 0.06 ± 0.18 –0.68 ± 0.66 0.19 ± 0.15 0.18 ± 0.17 0.21 ± 0.13 0.16 ± 0.04
2KALL Realized 0.26 ± 0.13 0.40 ± 0.49 0.19 ± 0.14 0.37 ± 0.12 0.17 ± 0.14 0.26 ± 0.05
HH
2KHH Realized 0.01 ± 0.17 1.04 ± 0.65 –0.14 ± 0.14 0.20 ± 0.13 0.02 ± 0.12

1AAA = American Angus Association; AN = Angus; ISU/UMC = Iowa State University and the University of Missouri-Columbia; MBVIG = IGENITY 
molecular breeding values; MVP = molecular value prediction; 2KAN = 2,000 Bull Project Angus; MB = ; GPE = Germplasm Evaluation; 2KALL = 2,000 Bull 
Project; HH = Hereford; 2KHH = 2,000 Bull Project Hereford.

2WW-d = weaning weight direct; WW-m = weaning weight maternal; MS = marbling score; RE = rib-eye muscle area. 
3Average across traits excluding ADG.
4Derived from EPD for registered bulls and then deregressed and weighted to account for differences in EPD accuracy.
5The average ± SE of genomic BLUP accuracy of 87 of the 99 sires with ISU/UMC molecular breeding values (MBV), calculated by the direct inversion of 

the linear mixed model equations using the genomic relationship matrix.
6The additive genetic correlation ± SE, estimated in a multivariate genetic model, between MBV and phenotypes.
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to minor errors in animal order at slaughter with mis-
identifi cation rates in particular harvests less than 10% 
due to incorrect ordering of groups of 2 or 3 animals 
whereas those harvests with greater than 10% errors 
were due to rail-outs, leading to a sequence of carcass 
records offset by 1 or 2 from the correct identifi cation. 
Van Vleck (1970) determined that bias in variance com-
ponent estimation due to misidentifi ed records could re-
duce apparent genetic progress by up to 31% depending 
on the proportion misidentifi ed, and Geldermann et al. 
(1986) demonstrated reductions in estimated heritabil-
ity in experimental results for dairy cattle of up to 22%. 
Performing DNA genotyping of progeny meat samples 
in addition to hair samples collected earlier in life was 
a critical step to minimize bias in this analysis due to 
incorrect carcass to sire and live animal reconciliation.

The accuracy estimates of the IGENITY and Pfi zer 
DNA test products derived in this study generally agreed 
with Northcutt (2011) based on an analysis of genotyped 
animals in the AAA phenotypic database, despite the 
large SE associated with the small sample size in our 
study. Although little is known regarding the genetic 
relationship between the training populations used to 
develop the commercial tests and the UCD assessment 
population, the accuracies observed here suggest that 
there is likely a high degree of genetic relationship be-
tween animals in the training and the UCD assessment 
populations. The ISU/UMC MBV accuracies were high 
and of similar scale to Pfi zer MVP for carcass traits, 
with somewhat smaller SE due to the greater number 
of bulls evaluated with this test. Using ISU/UMC MBV 
as a correlated trait, the accuracy of ranch-based EBV 
improved for bulls without progeny but provided little 
improvement if progeny data were available.

The degree of relationship between the discovery or 
training population used to develop genotype-based pre-
diction equations and the assessment population is a pri-
mary determinant in the observed accuracy of genomic 
breeding values (Habier et al., 2007, 2010). As the ISU/
UMC and USMARC MBV were performed by research-
ers at collaborating institutions, information was avail-
able regarding pedigree relationships among the ISU/
UMC, 2KALL, and GPE populations and the UCD as-
sessment population. Specifi cally, it was known which 
bulls were used directly for both training and assessment 
and whether the sires of the assessed animals were pres-
ent in the training populations. In terms of known pedi-
gree relationships between the training and UCD assess-
ment population, the training populations can be ranked 
in order of most to least related: ISU/UMC, 2KALL, and 
GPE. Animal and pedigree information are not published 
for the IGENITY and Pfi zer training populations. How-
ever, as the herd bulls used in this study were sourced 
from the Angus seedstock sector, their sires were often 

infl uential AI sires with high accuracy EBV, and some of 
these AI bulls were likely selected for inclusion in train-
ing for IGENITY and Pfi zer tests.

As the ISU/UMC MBV were developed using ap-
proaches previously reported in the dairy industry, it is 
of interest to compare the performance of these MBV to 
those derived from training populations of similar scale 
using Holstein cattle. In VanRaden et al. (2009), train-
ing genomic predictions on the records of 3,576 Holstein 
bulls with predicted transmitting abilitiy and genotypic 
data (38,416 SNP after quality control) resulted in accura-
cies of linear prediction (comparable to genomic relation-
ship matrix approach) with fi rst use ranging from 0.57 to 
0.83 (mean 0.71) for 26 traits and the index Net Merit 
(mean heritability 0.25 ranging from 0.04 to 0.50). The 
ISU/UMC MBV were trained on a similar sized popu-
lation of registered Angus bulls (3,570) but yielded de-
creased average expected accuracies (mean = 0.56; range 
by trait = 0.51 to 0.62 and by animal = 0.28 to 0.71; Table 
6) and realized accuracies (mean 0.46; Table 6) for similar 
heritability traits in UCD assessment bulls. This is likely 
due to the reduced average accuracy of estimated genetic 
merits for beef compared with dairy cattle in the training 
populations and the relationship between the training and 
assessment populations. For example, the 6 AI bulls ex-
cluded from the UCD assessment population, which had 
greater accuracy EPD and greater genetic relationships to 
the training set, had greater expected accuracies (data not 
shown).

Another consideration is that the progeny used to 
estimate breeding values for the UCD assessment pop-
ulation were not purebred Angus in all cases due to the 
mixed breed composition of their dams. Although it has 
been shown that MBV can be developed specifi cally to 
select purebreds for performance in crossbred or admixed 
populations (Dekkers, 2007; Toosi et al., 2010), it is like-
ly that for Angus-trained MBV, the greatest accuracies 
would be observed in a purebred Angus population. Non-
Angus breeds contribute alternative haplotypes, infl uenc-
ing the extent and possibly the direction of marker–QTL 
linkage disequilibrium in the progeny population, and are 
also more genetically distant, with a reduced average rela-
tionship to an Angus-based training population. However, 
this study was designed to evaluate genomic prediction 
only of the contribution of Angus sires to the commercial 
progeny; therefore, the breed composition of the dams is 
relevant only to the extent of how the Angus haplotypes 
contributed by the sires would interact with the non-An-
gus haplotypes of the dams on both an intralocus (domi-
nance) and interlocus (epistasis) basis.

Accuracies for GPE, 2KALL, and 2KHH MBV were 
less than those observed for Angus-trained MBV but 
comparable to those observed in other multibreed ge-
nomic prediction studies. In a simulation study modeled 
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on beef cattle, Kizilkaya et al. (2010) predicted multi-
breed-trained MBV to have accuracies ranging from 
0.20 to 0.39 for 50 to 500 QTL underlying a trait of in-
terest with a heritability of 0.5 for which no causative 
mutations were present on the genotyping panel. In the 
same study, Angus-trained MBV were expected to have 
accuracies of 0.39 to 0.51 given similar assumptions. 
Comparing our results to others for feedlot ADG, Mu-
jibi et al. (2011) reported average genetic correlations 
of 0.22 and 0.37 for MBV derived using Bayes B and 
random regression models and trained on 721 crossbred 
beef steers. Harris et al. (2008) reported that Holstein-
trained predictions were not effective in Jersey cattle, 
and Hayes et al. (2009) found realized accuracies from 
across-breed GBLUP with Holstein and Jersey breeds 
to be less than expected, but prediction of Jersey from 
a combined Holstein and Jersey reference population 
improved accuracies by up to 13%. Pryce et al. (2011) 
found genomic prediction accuracy to be greatest with-
in breed in Holstein (HO), Jersey (JE), and Fleckvieh 
(FLV) but also noted that training in 2 breeds (FLV+JE) 
to predict a third (HO) improved genomic prediction ac-
curacy from 0.22 to 0.42 relative to training in 1 breed 
(FLV) to predict another (HO).

In Weber et al. (2012), the accuracies of MBV trained 
in the USMARC GPE or 1,834 bulls of 13 breeds (includ-
ing the 373 Angus and 143 Red Angus) and validated in 
the Angus bulls of the 2,000 Bull Project and GPE with at 
least 25% Angus breed composition, respectively, ranged 
from 0.12 to 0.35. In this study, the accuracies of the 
2KALL MBV trained on 373 Angus bulls were roughly 
similar to those reported in Weber et al. (2012). This sug-
gests that inclusion of bulls of different breeds (including 
Red Angus) neither helped nor detracted from the predic-
tion accuracy of 2KALL. However, this conclusion must 
be tempered by the condition that the training was done 
with models that considered the effects of SNP alleles on 
the trait of interest to be identical regardless of breed ori-
gin of the SNP. It is possible that SNP effects that are es-
timated as breed-specifi c deviations from overall effects 
and in which the variance is estimated from all breeds (so 
that other breeds contribute more to which genes have an 
effect than to the phase between markers and functional 
polymorphisms) may be much more effective. Further-
more, analyses based on haplotypes (especially with 
marker density greater than the 50K SNP) may also make 
contributions from other breeds to training much more ef-
fective. Therefore, although more sophisticated statistical 
models will be required to realize their benefi ts, multi-
breed and crossbred training populations will likely con-
tribute more to genomic prediction than the results of this 
project suggest on the surface. As a practical matter, for 
most breeds of beef cattle, single breed training on pure-
bred populations will be severely limited by the lack of 

availability of high accuracy AI sires.
A factor that may be confounding the fi ndings of 

the current study regarding the 2KALL and GPE MBV 
is the imputation of genotypes using BEAGLE. Some 
loci with missing values may have a suffi cient contribu-
tion to the variance explained by the 2KALL and GPE 
prediction equations that the choice of method used to 
fi ll those missing values may have been important. Al-
though BEAGLE has been used to impute both sporadic 
missing values from unrelated individuals (Browning 
and Browning, 2007; Zhang et al., 2010) and to impute 
high density genotypes for low density genotypes of 
dairy cattle with high density genotyped relatives (John-
son et al., 2011), the accuracy of imputation of up to sev-
eral thousand SNP genotypes per animal due to the dif-
ferent versions of the 50K SNP used to genotype these 
cattle has not been evaluated. In this dataset, the largest 
difference between 50K SNP versions were approxi-
mately 1,400 loci present in the USMARC and UMC (A 
and B) versions that were not present in the C manifest 
(Table 2). However, the SNP imputed due to differences 
between 50K SNP versions composed at most 3% of the 
MBV variance, and including missing values, 96.5% of 
loci in the USMARC 50K SNP version were genotyped 
for at least 80% of animals (Supplementary Table 1; 
see online version of the article at http://journalofani-
malscience.org). Although the accuracy of imputation 
is not known, the average difference in MBV accuracy 
relative to assuming the average genotype for all miss-
ing values was small (data not shown). This will be a 
more signifi cant problem in small datasets, for which the 
power to predict haplotypes is limited.

If training populations are confi dential and assess-
ment is performed independently, as in external valida-
tions of commercial genetic test products (Van Eenen-
naam et al., 2007; Johnston, 2010), it is not possible 
to directly determine the expected genomic prediction 
accuracy due to genetic relationship. This was the case 
for the IGENITY MBV and Pfi zer MVP presented in 
this study. When training is performed by commercial 
entities with incentives for keeping their data propri-
etary, the accuracy observed in external assessment 
populations such as in the current study can be useful 
indicators of the accuracy that a typical commercial 
producer might expect. A simpler and more accurate ap-
proach would be to conduct the entire analysis in house 
and incorporate DNA test results into EPD evaluations. 
The AAA is the fi rst U.S. beef cattle breed association 
to incorporate genomic predictions into national cattle 
evaluation in the form of genomic-enhanced EPD. Other 
breeds are moving in a similar direction. The American 
Hereford Association announced in September 2011 that 
they are preparing to use genomic predictions developed 
and implemented in house, available in conjunction with 
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parentage and genetic abnormality testing (AHA, 2011), 
which will facilitate both the development and updating 
of Hereford-specifi c prediction equations.

In conclusion, the aim of this study was to present 
an analysis of the accuracy of commercial DNA test 
products and MBV developed by prominent research 
institutions in the fi eld of beef cattle genomics in a com-
mercial ranch setting. Despite the relatively small as-
sessment population size, MBV accuracies were similar 
to those reported for the Angus breed (Northcutt, 2011). 
The MBV derived in multibreed populations were less 
accurate than Angus-derived MBV but were comparable 
to those found in other studies and may improve in fu-
ture research with greater density marker panels.
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