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Abstract 
Motivation: The biclustering of large-scale gene expression data holds promising potential for detect-

ing condition-specific functional gene modules (i.e., biclusters). However, existing methods do not ad-

equately address a comprehensive detection of all significant bicluster structures and have limited 

power when applied to expression data generated by RNA-Sequencing (RNA-Seq), especially single-

cell RNA-Seq (scRNA-Seq) data, where massive zero and low expression values are observed. 

Results: We present a new biclustering algorithm, QUalitative BIClustering algorithm Version 2 

(QUBIC2), which is empowered by: (i) a novel left-truncated mixture of Gaussian model for an accurate 

assessment of multimodality in zero-enriched expression data, (ii) a fast and efficient dropouts-saving 

expansion strategy for functional gene modules optimization using information divergency, and (iii) a 

rigorous statistical test for the significance of all the identified biclusters in any organism, including 

those without substantial functional annotations. QUBIC2 demonstrated considerably improved perfor-

mance in detecting biclusters compared to other five widely-used algorithms on various benchmark 

datasets from E. coli, Human, and simulated data. QUBIC2 also showcased robust and superior per-

formance on gene expression data generated by microarray, bulk RNA-Seq, and scRNA-Seq.  

Availability: The source code of QUBIC2 is freely available at https://github.com/OSU-BMBL/QUBIC2. 
Contact: qin.ma@osumc.edu; czhang87@iu.edu 

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 

Since the advent of high throughput sequencing technologies, large scale 

gene expression profiles have been accumulating at an increasingly faster 

pace (Goodwin, et al., 2016). Recent single-cell RNA-Seq (scRNA-Seq) 

techniques enable the measuring of the whole-genome level transcriptome 

of 103-108 individual cells at the same time (Gierahn, et al., 2017; Hwang, 

et al., 2018). The wealth of gene expression datasets available provides an 

opportunity to computationally identify condition-specific functional gene 

modules (FGMs), each of which is defined as a highly structured expres-

sion pattern on a specific gene set (Chen, et al., 2016; Wang, et al., 2012). 

These FGMs tend to be functionally related or co-regulated by the same 

transcriptional regulatory signals (TRSs) under a specific condition or in 

a particular disease cell type. Specifically, the identification of FGMs from 
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scRNA-Seq data can further facilitate the discovery of gene signatures of 

specific cell types, and most importantly, the identified FGMs can be used 

to study the complex interactions among individual cells in response to 

certain stimuli, that is, cell type prediction. Our recent identification of 

FGMs specific to a subset of patients revealed biological characteristics of 

different disease subtypes and alternative drug resistance mechanisms in 

colorectal cancer (Cao, et al., 2018). In addition, we have demonstrated 

the correspondence between the cell sample-specific FMGs and gene co-

regulation modules in scRNA-Seq data (Wan, et al., 2018). Overall, suc-

cessful derivation of the FGMs may grant a higher-level interpretation of 

large-scale gene expression data, improve the functional annotation of 

condition-specific gene activities, facilitate the inference of gene regula-

tory relationships, hence, providing a better mechanism level understand-

ing of complex diseases.  

The computational identification of FGMs can be modeled as detecting 

data patterns occurring over a subset of genes and samples/cells that rep-

resents a highly distinguishable structure (a submatrix with significant lo-

cal low-rank, more details can be found in Note S1). This computational  

formulation falls under a biclustering approach (Ulitsky, et al., 2010), 

which is a two-dimensional data mining technique that simultaneously 

identifies co-expressed genes under a subset of conditions. Substantial ef-

forts have been made to advance the biclustering algorithm and tool de-

velopment since 2000 (Monier, et al., 2018; Xie, et al., 2018; Zhou, et al., 

2012), and a few review studies provided considerable guidance in choos-

ing suitable algorithms in different contexts. Eren et al. (Eren, et al., 2013) 

compared 12 algorithms and concluded that our in-house method, QUBIC 

(Li, et al., 2009; Zhang, et al., 2016), is one of the top-performing meth-

ods, as it achieved the highest performance in synthetic datasets and cap-

tured a high proportion of enriched biclusters on real datasets in compari-

son to Plaid (Lazzeroni and Owen, 2002), FABIA (Hochreiter, et al., 

2010) , ISA (Bergmann, et al., 2003) and Bimax (Prelić, et al., 2006). In 

2018, Saelens et al. ranked QUBIC, ISA, and FABIA as the top bicluster-

ing methods in terms of predicting gene modules from human and syn-

thetic data (Saelens, et al., 2018).  

Although numerous biclustering methods have been developed, our 

preliminary results indicated that they encountered an average 30.4% per-

formance drop in FGMs prediction on RNA-Seq data compared to micro-

array data (the drop can be up to 73.8% as shown in Figure S1). There are 

multiple underlying reasons, including, but not limited to, the following 

two: (i) The gene expression data derived from RNA-Seq has massive zero 

expression values, e.g., up to 60% of all the genes in a cell have zero read 

counts for scRNA-Seq data (Bacher and Kendziorski, 2016; Lun, et al.,  

2016). The expression distribution is thus highly skewed, and the normal-

ized read counts roughly follow lognormal distributions. However, un-

quantifiable errors occur as the raw zero counts of specific genes will re-

sult in negative infinity values after logarithmic transformation (Bengts-

son, et al., 2005; Hebenstreit, et al., 2011) (see more details in Note S2). 

(ii) Existing biclustering methods adopt various optimization functions

(e.g., CC employs mean squared residue; ISA requires that the gene ex-

pression in each row and column have an average value above some pre-

defined thresholds), yet most of them cannot deal with a large gene pool 

and/or up to tens of thousands of conditions. Thus, these methods fail to 

effectively select the significantly function-related candidate genes in such 

scenarios. Additionally, existing algorithms lack rigorous statistical sig-

nificance evaluations for the identified biclusters, besides pathway enrich-

ment-based evaluations. The common practice is to output a group of bi-

clusters and then assess their biological significance. However, some sta-

tistically significant biclusters may carry novel biological meaning that are 

unavailable in the limited functional annotation. Considering these, novel 

biclustering methods taking full consideration of the particular statistical 

distribution of RNA-Seq data, integrating a new optimization function for 

FGM identification, and providing a robust statistical significance evalu-

ation framework are urgently needed.  

In this paper, we developed a novel QUalitative BIClustering algorithm 

version 2 (QUBIC2) for large-scale gene expression data analysis. Inher-

iting the qualitative representation and graph-theory based model from 

QUBIC, QUBIC2 has the following unique features: (i) it uses a mixture 

truncated model to handle the unquantifiable errors in RNA-Seq data and 

a reliable qualitative representation to reflect expression states corre-

sponding to various potential TRSs; (ii) it integrates an information-diver-

gence based objective function and a drop-outs saving expansion strategy 

in support of functional gene modules optimization; and (iii) it presents a 

novel method to enable the general statistical significance evaluation of 

all the identified biclusters in any organism. 

2 Methods 

2.1 Data acquisition 

A total of eight expression datasets were used in this study: two synthetic 

RNA-Seq datasets, two microarray datasets (one from E. coli and one 

from Human), two bulk RNA-Seq datasets (one from E. coli and the other 

from Human), and two scRNA-Seq human datasets (one SMART-Seq2 

and one 10X Genomics data). The synthetic datasets were simulated using 

our in-house simulation method (Method S1 and Table S1). A total of 10 

and 30 co-regulated modules were embedded in these two datasets, re-

spectively. The E. coli microarray data were downloaded from M3D 

(Faith, et al., 2008), and the human microarray data were retrieved from 

(Saelens, et al., 2018). The E. coli RNA-Seq data were integrated and ag-

gregated by our group. In short, 155 fastq files were downloaded from 

SRA(Leinonen, et al., 2011) using sratoolkit (v2.8.1) and then processed 

following a pipeline with quality check (FastQC), reads trimming (Btrim), 

reads mapping (HISAT2), and transcript counting (HTseq). Finally, the 

raw read counts were normalized to get the RPKM values. The human 

RNA-Seq data were obtained from (Saelens, et al., 2018). The scRNA-

Seq data were downloaded from (Kiselev, et al., 2017) as an RPKM ex-

pression matrix. The 10X Genomics peripheral blood mononuclear cells 

(PBMC) dataset was downloaded from https://support.10xge-

nomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k.  

Multiple sets of known modules/biological pathways were provided or 

collected to support the enrichment analysis of the above eight datasets. 

For synthetic data, the groups of pre-defined up-regulated genes were used 

as co-regulated modules. For E. coli data, we used five kinds of biological 

pathways, i.e., complex regulons (ComTF)  and regulons extracted from 

the RegulonDB database (version 9.4, accessed on 05/08/2017), KEGG 

pathways collected from the KEGG database (accessed on 08/08/2017), 

SEED subsystems from the SEED genomic database (accessed on 

08/08/2017) (Overbeek, et al., 2005), and EcoCyc pathways from the Eco-

Cyc database (version 21.1, as of 08/08/2017) (Keseler, et al., 2017). 

ComTF were defined as a group of genes that are regulated by the same 

transcription factor (TF) or the same set of TFs. For the human microarray 

and RNA-Seq data, we used the modules provided by (Saelens, et al., 

2018). For Yan’s scRNA-Seq data and 10X Genomics PBMCs data, we 

downloaded 647 ChIP-Seq datasets on embryonic stem cells from the 

Cistrome database (Mei, et al., 2017). Detailed information on the datasets 

is listed in Table S2.  

2.2 Overall design of QUBIC2 



Biclustering algorithm for large-scale RNA-Seq data analysis 

The essence of the algorithm design in QUBIC2 is outlined as follows, 

with an overview of the workflow showcased in Figure 1. The original 

expression data was first qualitatively represented based on the assump-

tion that a gene should receive 𝐾 possible TRSs under all the conditions; 

hence, its expression profile would follow a mixture of 𝐾 Gaussian distri-

butions. Specifically, a mixture of Gaussian distributions was used to fit 

the microarray data, while for bulk RNA-Seq and scRNA-Seq data,  a 

large number of observed zeros and low expressions was treated as left-

censored data in the mixture Gaussian model of each gene (Cohen, 1959; 

Stegle, et al., 2015). In our recent study, the mixture of Left-truncated 

Gaussian distributions (LTMG) model was applied to fit large-scale gene 

expression data (Wan, et al., 2018). An Expectation-Maximization algo-

rithm was employed to estimate the parameters of the distributions, and 

the gene expression value under a specific condition was labeled to the 

most likely distribution. Accordingly, a row consisting of discrete values 

(1,2, ⋯, 𝐾) for each gene was generated. Then this qualitative row was 

split into 𝐾 new rows, such that in the 𝑖th row those labeled initially as 𝑖 

are labeled as 1, denoting that the gene received a particular TRS under 

the current condition, while the rest were labeled as 0, meaning that the 

gene did not receive any TRS under the condition. Finally, a binary repre-

senting matrix MR was generated (Figure 1a). 

Figure1. Illustration of QUBIC2 algorithm design.  a. Discretization of gene expression 

data. The LTMG model was applied to fit the expression profile of a gene. A representing 

row for each gene was generated with integers denoting the most likely component distri-

bution that an expression value belongs to, and then this representing row was split into 

multiple rows. Finally, a binary representing matrix was generated after applying the above 

procedure to all the genes; b. Core biclustering. By sorting all the gene pairs (seeds) in 

decreasing order of their weight, an initial seed list was obtained. For a feasible seed, 

QUBIC2 selected highly correlated genes with the seed in support of the build of an initial 

Core. c. Dual biclustering. QUBIC2 expanded the Core vertically and horizontally to re-

cruit more genes and conditions under a preset consistency level, respectively. The inter-

sected zone created by extended genes and conditions formed a searching pool. QUBIC2 

identified a Core in the pool (denoted as Dual) using the same procedure in b and output 

the bicluster with genes and conditions that came from the Core and Dual. 

All the gene pairs (seeds) were sorted in decreasing order of their 

weight, which is defined as the number of conditions under which the two 

genes have 1s in MR (Figure 1b). The algorithm will iterate this list of 

seeds. Specifically, given a feasible seed, it will recruit genes and condi-

tions to build an initial Core. We assumed that a bicluster should consist 

of genes receiving the same TRSs in a subset of conditions, while the 

genes outside the bicluster may receive different TRSs. According to our 

LTMG model, genes receiving the same TRSs under certain conditions 

will be labeled as 1s under those conditions, giving rise to a clue to group 

these genes. The Kullback-Leibler divergence score (KL score) is de-

signed to select candidate genes and conditions such that the 1s concen-

trate within biclusters while 0s mainly appear in the outside, i.e., it makes 

sure the difference between a bicluster and its background is more signif-

icant than the difference between an arbitrary same-size submatrix and its 

background. The KL score can quantify this difference and facilitate bi-

cluster optimization and candidate selection (Figure 1b. Details in KL 

score for biclusters optimization). 

The above process will generate a Core bicluster consisting of 1s. We 

believe that some 0s outside the cores might be dropouts, therefore the 

core needs to be expanded. Since it is difficult to determine cutoffs for the 

expansion, we first expand the Core both horizontally and vertically, and 

then we heuristically search for another Core in the expanded region, so-

called a Dual bicluster (Figure 1c). The genes and conditions from both 

the Core and Dual constitute a submatrix (I, J) of MR, which is one biclus-

ter ready for output. We assumed that 0s induced in this way are more 

likely to be dropouts and can support gene expression recovery and further 

FGM identification.  

Furthermore, a statistical framework based on the size of the biclusters 

was implemented to calculate a P-value for each of the identified biclus-

ters. The problem of assessing the significance of identified biclusters was 

formulated as calculating the probability of finding at least one submatrix 

enriched by 1 from a binary matrix with a given size, with a beta distribu-

tion employed during the process. This P-value framework enables users 

to evaluate the statistical significance of all the identified biclusters, espe-

cially for those from less-annotated organisms.  

2.3 Left-truncated Mixed Gaussian(LTMG) model for gene 

expression data discretization 

To accurately model the gene expression profile of RNA-Seq and scRNA-

Seq data, we specifically developed a mixed Gaussian model with a left 

truncation assumption. Denoting the log-transformed FPKM, RPKM, or 

CPM expression values of gene X over 𝑁 conditions as X = {𝑥1,𝑥𝑛}, 

we assumed that 𝑥𝑗 𝑋 follows a mixture of 𝑘 Gaussian distributions cor-

responding to 𝑘 possible TRSs. The density function of 𝑥𝑗 is: 

𝑝(𝑥𝑗; Θ) = ∑ 𝛼𝑖𝑝(𝑥𝑗 ; 𝜃𝑖)

𝑘
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And the density function of X is: 

𝑝(X; Θ) = ∏ 𝑝(𝑥𝑗; Θ)

𝑛
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where 𝛼𝑖 is the mixing weight, 𝜇𝑖  and 𝜎𝑖 are the mean and standard de-

viation of ith Gaussian distribution, which can be estimated by an EM al-

gorithm with given X: 

Θ∗ =        Θ
arg max 𝐿(Θ;𝑋)

 

To model the errors at zero and the low expression values, we introduce 

a parameter 𝑍𝑐𝑢𝑡 for each gene expression profile and consider the expres-

sion values smaller than 𝑍𝑐𝑢𝑡 as left-censored data. With the left truncation 

assumption, the gene expression profile is split into 𝑀 truly measured ex-

pression values (> 𝑍𝑐𝑢𝑡) and 𝑁 − 𝑀 left-censored gene expression values 

(≤𝑍𝑐𝑢𝑡) for the 𝑁 conditions. Latent variables 𝑦𝑗  and 𝑍𝑗 are introduced to 

estimate Θ by the following Q function: 

𝑄(Θ; Θ𝑡−1) = ∑ 𝑝(𝑦𝑗|𝑥𝑗 ; 𝛩𝑡−1) ∑ ∑ log (𝛼𝑖𝑝(𝑥𝑗 ; 𝜇𝑖 , 𝜎𝑖)

𝑘

𝑖=1

)

𝑚

𝑗=1

+ ∑ 𝑝(𝑦𝑗|𝑧𝑗 ; 𝛩𝑡−1) ∑  ∑ log (𝛼𝑖𝑝(𝑧𝑗 ; 𝜇𝑖 , 𝜎𝑖)

𝑘

𝑖=1

)

𝑛

𝑗=𝑚+1

 

The parameters Θ that maximize the likelihood function can be esti-

mated by an EM algorithm (Method S2), and the number of Gaussian com-

ponents is selected by the Bayesian Information Criterion (Method S3).  
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Then the original gene expression values are labeled to the most likely 

distribution under each cell. In detail, the probability that 𝑥𝑗 belongs to

distribution 𝑖 is formulated by:  

 𝑝(𝑥𝑗 ∈ 𝑇𝑅𝑆 𝑖|𝐾, Θ∗) ∝
𝛼𝑖

√2𝜋𝜎𝑗
2

𝑒

−(𝑥𝑗−𝜇𝑖)2

2𝜎𝑖
2

And 𝑥𝑗   is labeled by TRS 𝑖  if 𝑝(𝑥𝑗 ∈ 𝑇𝑅𝑆 𝑖|𝐾, Θ∗) =

max
𝑖=1,⋯,𝐾

(𝑝(𝑥𝑗 ∈ 𝑇𝑅𝑆 𝑖|𝐾, 𝛩∗)). In such a way, a row consisting of discrete

values (1,2, , 𝐾) for each gene will be generated. 

2.4 KL score for biclusters optimization 

A KL score is introduced in QUBIC 2 to guide candidate-selection and 

biclustering optimization. The KL score of a bicluster is defined as: 

𝐾𝐿𝐵 =
1

𝑁
∑ ∑ 𝑅(𝑖, 𝑗) × 𝑙𝑜𝑔

𝑅(𝑖, 𝑗)

𝑄(𝑖, 𝑗)
+

1

𝑀𝑖∈{0,1}

𝑁

𝑗=1
∑ ∑ 𝐶(𝑖, 𝑘)

𝑖∈{0,1}

𝑀

𝑘=1

× 𝑙𝑜𝑔
𝐶(𝑖, 𝑘)

𝑃(𝑖, 𝑘)

where 𝑁 and 𝑀 are the numbers of rows and columns of a submatrix B 

in MR, respectively. 𝑅(𝑖, 𝑗) represents the proportion of element 𝑖 in row 𝑗 

of B, 𝑄(𝑖, 𝑗) is the proportion of 𝑖 in the corresponding entire row, 𝐶(𝑖, 𝑘) 

is the proportion of 𝑖 in column 𝑘 of B, and 𝑃(𝑖, 𝑘) is the proportion of 𝑖 

in the entire corresponding column.  Meanwhile, the KL score for a gene 

quantifies the similarity between a candidate gene 𝑗 and a bicluster, which 

is defined as follows: 

𝐾𝐿𝑗 = ∑ 𝑅(𝑖, 𝑗) × 𝑙𝑜𝑔
𝑅(𝑖, 𝑗)

𝑄(𝑖, 𝑗)𝑖∈{0,1}

where 𝑅(𝑖, 𝑗) represents the proportion of 𝑖  under corresponding col-

umns of the current bicluster.  

2.5 Evaluation of the functional modules 

The capability of algorithms to recapitulate known functional modules is 

assessed using precision and recall. First, for each identified bicluster, we 

use the P-value of its most enriched functional class (biological pathway) 

as the P-value of the bicluster(Li, et al., 2009). The bicluster is deemed 

enriched with that function if its P-value is smaller than a specific cutoff 

(e.g., 0.05). 

Given a group of biclusters identified by a tool under a parameter 

combination, the precision is defined as the fraction of observed biclus-

ters whose genes are significantly enriched with the one biological path-

way/known modules (Benjamini-Hochberg adjusted p<0.05), 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
# 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑏𝑖𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

# 𝑜𝑓 𝑏𝑖𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 

For recall, we compute the fraction of known modules that were redis-

covered by the algorithms among all known modules in a functional an-

notation database, 

𝑅𝑒𝑐𝑎𝑙𝑙 =
# 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

# 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 

Precision and recall reflect relevance and diversity of the biclusters, 

respectively. To balance these two aspects, the harmonic mean of preci-

sion and recall was calculated to represent the performance of an algo-

rithm on a given dataset and parameter setting, denoted as f score: 

𝑓 =
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+
1

𝑅𝑒𝑐𝑎𝑙𝑙

Note that the number of biclusters used to calculate precision and re-

call may affect the results. To make sure the evaluation is as fair as pos-

sible, for each dataset, we select the first 30 biclusters. 

2.6 Size-based P-value framework 

For well-annotated organisms, the P-value of an identified bicluster en-

riched with a specific regulatory pathway can be calculated based on a 

hypergeometric distribution. However, known experimental annotations 

are currently limited, even for most well-studied model organisms (for ex-

ample, half of the protein-coding genes of E. coli have solid experimental 

evidence for their functions in KEGG and GO) (Monk, et al., 2014). This 

status still limits the capability of a systematic evaluation of all the identi-

fied biclusters. To fill this gap, we calculate an alternative size-based P-

value as follows. For a binary representing matrix MR containing 𝑚0 rows

and 𝑛0 columns, suppose we obtain an 𝑚1-by-𝑛1bicluster M1 with all the

elements being 1s. The probability of 𝑛1 ≥ 𝑊 can be assessed by the fol-

lowing formula (Sun and Nobel, 2008), giving rise to a P-value for the 

bicluster M1: 

𝑃(𝑛1 ≥ 𝑊) = lim
𝑛→∞

𝑛0
−(𝛽+1)(𝑊−𝑠(𝑛1,𝑛0,𝛽)) (log𝑏 𝑛0)𝛽+1 

where 𝛼 =
𝑚0

𝑛0
, 𝛽 =

𝑚1

𝑛1
, 𝑏 =

1

𝑝
, 𝑝 = 𝑃(𝑀𝑖,𝑗 = 1) = 1 − 𝑃(𝑀𝑖 ,𝑗 = 0) for ∀𝑖, 𝑗

𝑠(𝑛1, 𝑛0, 𝛽) =
𝛽 + 1

𝛽
log𝑏 𝑛0 −

𝛽 + 1

𝛽
log𝑏 (

𝛽 + 1

𝛽
log𝑏 𝑛0) + log𝑏 𝛼

+
(1 + 𝛽) log𝑏 𝑒 − 𝛽 log𝑏 𝛽

𝛽

2.7 Pseudo algorithm design of QUBIC2 

Step 1 (Data discretization and qualitative representation): Given an ex-

pression matrix with log-transformed FPKM, RPKM or CPM values for 

genes, use the LTMG model to fit the data. Label the values to the most 

likely distribution to get a representing row for each gene. Split these 

rows into multiple rows to get the representative matrix MR (Figure S2a). 

Step 2 (Graph construction and seed selection): Construct a weighted 

graph for MR, where nodes correspond to genes and edges connect every 

pair of genes. The edge weight indicates the similarity between the two 

corresponding genes, which is defined as the number of conditions in 

which the two genes have 1s in MR. Sort the list of edges in 𝐺 in decreas-

ing order of their weights (i.e., 𝑤(𝑒1) ≥ 𝑤(𝑒2) ≥ ⋯ , 𝑤(𝑒|𝐸|) ). An edge 

𝑒𝑖𝑗 = 𝑔𝑖𝑔𝑗  is selected as a seed if and only if at least one of 𝑔𝑖 and 𝑔𝑗  is 

not in any previously identified biclusters, or 𝑔𝑖  and 𝑔𝑗 are in two nonin-

tersecting biclusters in terms of genes. Select a feasible seed from the 

seed list. Go to Step 6 if the seed list is empty (Figure S2b). 

Step 3 (Build core bicluster): Build an initial bicluster by finding all 

the conditions under which the two genes of the seed have 1s in MR. Set 

these columns of the two genes as the current bicluster B = (I, J). Expand 

B by adding a new gene that has the most 1s in J, giving rise to a new bi-

cluster B’ = (I’, J’), where I’ is I after adding the new gene and J’ is J by 

deleting those columns with 0s. If two genes have the same number of 1s 

in J, choose the one with larger KL similarity with B  (Figure S2c). If 

KLB’ > KLB, set B to B’ and repeat Step 2, otherwise stop and denote B 

as Core. Go to Step 4. 

Step 4 (Core expansion): Expand the Core horizontally and vertically 

under preset consistency level as follows: for each gene(row) i not in B, 

if the ratio between the number of 1s in row i under J and |J| is ≥c, mark 

it as an extended gene; for each condition (column) j not in B, if the ratio 

between the number of 1s in the column j among I and |I| is ≥c, mark it 

as an extended condition. (Figure S2d). Mark the intersected zone cre-

ated by extended genes and conditions as a Dual searching pool (light 

blue box in Figure S2e). Go to Step 5. 

Step 5 (Search Dual): Search Dual in the intersected expanded zone, 

using the same process in Step 3, output the bicluster with genes and 

conditions that come from Core and Dual (red box in Figure S2e). De-

lete current seed, go to step 2. 

Step 6 (Biclusters filtering): Rank all the identified biclusters in de-

creasing order of their sizes (#row x #column). Output the first bicluster. 
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Go to the second bicluster, skip it if its overlap with the first bicluster ex-

ceeds f, otherwise output it. Go to the next bicluster, skip it if it overlaps 

with the either of the biclusters in output exceeds f, otherwise output it. 

Continue until the last bicluster is checked. Go to Step 7. 

Step 7 (Enrichment validation): For each output bicluster, we use the 

P-value of its most enriched functional class (biological pathway) as the 

P-value of the bicluster (details in Evaluation of the functional modules

section). A bicluster is deemed enriched with a function if its P-value is 

smaller than a specific cutoff (e.g., 0.05).

3 Results 

3.1 QUBIC2 achieves a better performance in the identifi-

cation of FGMs compared to other methods 

We compared QUBIC2 with eight biclustering algorithms, which include 

those evaluated as the top performed algorithms in the public domain (Bi-

max, ISA, FABIA, Plaid and QUBIC) and those published in the recent 

three years (BicMix(Gao, et al., 2016), Runibic and EBIC(Orzechowski, 

et al., 2018))(Method S4 and Table S3-S4). The comparison performance 

in FGMs identification was evaluated by the precision, recall, and f-score 

defined by the harmonic mean of the precision and recall. Eight gene ex-

pression datasets were used in the evaluation covering simulated, micro-

array, bulk RNA-seq, and scRNA-Seq data in E. coli and Human. To min-

imize the biases in performance comparison among multiple tools, for 

each of the eight datasets, we run the nine tools using more than 50 pa-

rameter combinations by adjusting their critical parameters around de-

fault/recommended values (Details in the Methods section). 

As showcased in Figure 2a, QUBIC2 achieved the highest median f- 

scores (f) on almost all the eight datasets. On simulation data, QUBIC2, 

QUBIC, and FABIA were the top three algorithms with very close median 

f-scores. On microarray data and bulk RNA-Seq data from E. coli,

QUBIC2 demonstrated particularly outstanding advantages. Specifically, 

the f-scores of QUBIC2 were significantly higher than the second-best al-

gorithms, i.e., FABIA, Plaid, and QUBIC, with one-tailed Wilcoxon test 

P-values as 1.67e-10, 6.72e-30, and 2.23e-62, respectively. It is also note-

worthy that QUBIC2 and ISA were the best choices on the scRNA-Seq 

data sets. EBIC achieved the best performance on only one scRNA-Seq 

dataset, while its performance on the other scRNA-Seq dataset was disap-

pointing.  

In regards to f-scores under the default parameters (d), QUBIC2 con-

sistently had the highest values across all eight datasets, suggesting that 

users can trust QUBIC2’s default settings in practical studies for getting 

satisfactory results. QUBIC ranked as the second-best on two datasets, 

namely one simulated dataset and one RNA-Seq dataset from E. coli; ISA 

was suboptimal on two scRNA-Seq datasets; and Bimax, FABIA, and 

BicMix occupied second place on one simulated dataset, microarray da-

taset from E. coli, and RNA-Seq dataset from human, respectively. 

QUBIC2 performed well in both precision (p) and recall (r), indicating 

that the identified FGMs are relevant and diverse. QUBIC2 also had a rel-

atively small variance of f-score (v), while the performance of some algo-

rithms on specific datasets was susceptible to parameter changes (e.g., 

FABIA, Bimax, and EBIC). ISA, QUBIC and BicMix were generally very 

stable, and their variances were often the second smallest among datasets. 

As for Bimax, although its recall was relatively low, it was characterized 

with high precision on four datasets.  
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Figure2. Overall performance of QUBIC2. a. Bar plot: Distribution of f-scores on each of the eight datasets under multiple runs (with at least 50 parameter combinations). The 

black line in the box denotes the median value, whiskers denote 10% and 90% percentiles, while the box denotes 25% and 75% percentiles. Q2, E, Bic, R, F, Q, B, I, and P 

represent QUBIC2, EBIC, BicMix, Runibic, FABIA, QUBIC, Bimax, ISA, and Plaid, respectively; Heatmap: Relative performance of six algorithms regarding d, v, p, and r, 

respectively (normalized over six algorithms). Note that v depends on the increment of parameters and therefore is only indicative; b. Lollipop plot: Overall scores of each algorithm 

summed across eight datasets; Spider plot: averaged scores of each algorithm in terms of f, d, v, p, r.
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3.2 QUBIC2 reaches robust performance across various da-

tasets and different sequencing technologies 

To intuitively show the performance of a given algorithm, we further as-

signed scores to it based on its rank among all the six algorithms, in terms 

of f, d, v, p, and r, respectively. Specifically, a score of 9 was assigned to 

the algorithm that has the best performance, and a score of 1 was assigned 

to the algorithm that has the worst performance. For f, d, p, and r, algo-

rithms with higher values had higher scores, while for v, those with lower 

values had higher scores. We then calculated each algorithm’s summed 

and average scores on eight datasets to get an idea about their overall per-

formance and their respective strengths and weaknesses. Specifically, 

QUBIC2, QUBIC, and BicMix were the top three algorithms across the 

eight datasets according to the above scores (Figure 2b). Overall, QUBIC2 

achieved the highest median f-scores and default f-scores, and for most of 

the cases, it also had higher precision and recall as well as lower variance 

than the others. The rest of the algorithms had unique advantages: QUBIC 

and BicMix had higher default and median f-scores, and QUBIC also had 

higher recall. ISA was remarkable for its low variance, and both Plaid and 

Bimax had relatively high precision. EBIC and FABIA were rather bal-

anced tools, performing neither badly nor well in the five aspects.  

The performance of these nine algorithms across various datasets and 

different sequencing technologies was also evaluated. QUBIC2 is recom-

mended among simulation, microarray, RNA-Seq, and scRNA-Seq data 

due to its highest median f-score, default f-score, median precision, and 

median recall, as well as its lowest variance. QUBIC had obvious ad-

vantages on simulation and RNA-Seq data; BicMix was also a good 

choice for RNA-Seq data; FABIA performed well on microarray data; 

both ISA and EBIC proved to be outstanding on scRNA-Seq data; and 

Plaid ranked the third-best on simulation and microarray data. While Bi-

max had no comprehensive advantages, it is known for high precision on 

simulation and RNA-Seq data. As far as species/organisms are concerned, 

QUBIC2 had the best performance on E. coli and human data, with its 

ranks in terms of f, d, v, p, and r almost always at the top; Plaid was ex-

traordinary in terms of low variance on data from E. coli and high preci-

sion on data from human; and ISA was balanced and second only to 

QUBIC2’s performance on data from human (Figure S3). 

3.3 QUBIC2 identifies FGMs with more biological charac-

teristics 

The above section demonstrated the outstanding performance of QUBIC2 

on FGMs identification, and in this section, we used a specific case to 

illustrate why QUBIC2 has such excellent power. Since QUBIC was over-

all the second-best algorithm, we took it as a reference in the illustration. 

A bicluster with 963 genes and 30 embryonic cells (BC001_Q) was iden-

tified from Yan’s data using QUBIC, with 16 cells being in the eight-cell 

stage and 14 cells being in the Morulae stage; and QUBIC2 found a bi-

cluster consisting of 1,264 genes and 15 embryonic cells (BC018_Q2), 

with all the cells being in the eight-cell stage. Six hundred thirty-one genes 

appeared in both BC018_Q2 and BC002_Q (shared genes) (Figure 3a). 

Due to the considerable overlap between the two biclusters, we concluded 

that BC001_Q and BC018_Q2 share the same Core.  Functional enrich-

ment analysis was conducted for the 631 shared genes based on the Reac-

tome database, and the top ten most enriched pathways were identified 

(Figure 3b). For each of the ten pathways, the adjusted P-values were sig-

nificantly lower in the genes of BC018_Q2 than in the shared genes (one-

tailed paired Wilcoxon-test P-value=0.000976), while genes of BC001_Q 

always had a significantly higher adjusted P-value than did the shared 

genes (one-tailed paired Wilcoxon-test P-value=0.000977). The above 

phenomena suggest that given a pathway, QUBIC2 tends to capture a 

higher proportion of genes involved in that pathway than does QUBIC. 

Hence, it is appropriate to claim that given the same Core, QUBIC2 is 

more likely than QUBIC to recruit genes that are functionally related to 

the core. 

Among the top ten most enriched pathways, DNA methylation encoun-

tered the most apparent change in terms of adjusted P-values. DNA meth-

ylation provides a potential epigenetic mechanism for maintaining cellular 

memory during self-renewal. The DNA methylation pathway consists of 

32 genes, and QUBIC2 captured 20 of them. Compared to QUBIC, 

QUBIC2 additionally secured seven genes DNMT1, DNMT3L, 

HIST1H2BO, HIST1H2BJ, HIST1H2AJ, HIST1H2BB, and HIST1H2AB, all of 

which play essential roles in the DNA methylation pathway. It is also note-

worthy that QUBIC2 has more comprehensive coverage of the histone 

family genes, which play essential roles in DNA strands compaction and 

chromatin regulation. An overview of pathways that BC018_Q2 genes are 

involved in are provided in Figure S4. 

Figure3. Comparison of two biclusters identified by QUBIC2 and QUBIC, respec-

tively. a. Visualization of the two biclusters. Red box denotes bicluster from QUBIC2, and 

a blue box indicates bicluster from QUBIC. The overlapped genes are marked as shared 

genes. The colors of the bar at the top denote cell types, with blue representing the eight-

cell stage and red being the Morulae stage; b. Comparison of adjusted P-values for the top 

ten most enriched pathways of shared genes, QUBIC genes, and QUBIC2 genes. 

3.4 QUBIC2 provides a robust statistical evaluation frame-

work for all the identified biclusters 

The significance of gene modules from the identified biclusters is usually 

evaluated by pathway enrichment analysis. However, many organisms (in-

cluding E. coli and human) have limited functional annotations supported 

by experimental verifications, which makes a systematic evaluation of all 

identified biclusters non-trivial. To fill this gap, a statistical method was 

proposed in this study, which can calculate a P-value for a bicluster purely 

based on its size (number of genes and conditions).  

To validate the rationality of our statistical method, QUBIC2 was run 

on the RNA-Seq data from E. coli under multiple parameter settings, and 

a correlation test was conducted between the P-values of biclusters calcu-

lated via pathway enrichment analysis (named knowledge-based P-value) 

and the corresponding size-based P-values (Figure 4a, details in Method 

S5). Note that to distinguish the two, italic lowercase p was used to denote 

the p-value of the Spearman correlation test, while italic uppercase P was 

used to denote the significance of biclusters. Interestingly, we found that 

there was a strong correlation between the size-based P-values and the 

0 5 10 15

-log(adjusted P-value)

Share BC001_Q BC018_Q2

BC018_Q2

BC001_Q
Share

a b

Activated PKN1 

stimulates transcription

SIRT 1 negatively 

regulates rRNA expression

Telomere 

Maintenance

Condensation of Prophase 

Chromosomes

Meiotic 

recombination



Biclustering algorithm for large-scale RNA-Seq data analysis 

knowledge-based P-values. The average Spearman correlation coeffi-

cients (ρ) were higher than 0.40 (ComTF_ρ =0.50, TF_ρ=0.57, KEGG_ρ 

=0.47, SEED_ρ=0.46, and ECO_ρ =0.44), and the average p-values for 

the correlation tests were smaller than 0.01 (Figure 4b-c), suggesting that 

the correlations between knowledge-based P-values and size-based P-val-

ues were statistically significant at 0.01 level. As showcased in Figure 4, 

all the ρs in the five groups were positive. Also, ρs related to regulatory 

pathways (i.e., TF_ ρ and ComTF_ ρ) were generally larger than ρs those 

related to metabolic pathways (i.e., KEGG_ ρ and SEED_ ρ). This indi-

cated that the size-based P-value seemed to be more suitable for the eval-

uation of biclusters in terms of their regulatory significance. Besides, the 

parameter f, which controls the level of overlaps between biclusters, had a 

negative association with ρ (Figure S5), signifying that the size-based P-

values had a stronger association with knowledge-based P-values when 

the overlaps between biclusters are relatively low. 

Figure 4. Validation on the rationality of the statistical framework.  a. The workflow 

of correlation test between knowledge-based P-value and size-based P-value; b. The distri-

bution of correlation coefficients(ρ) between P-value obtained from enrichment analysis 

and size-based P-value. We run QUBIC2 under 70 different parameter settings, and ρ was 

calculated under each run; c. Scatter plot of correlation coefficients and p-values. The y-

axis denotes the correlation coefficient for the spearman association test, and the x-axis 

denotes the p-value of the association test. 

4 Conclusion and discussion 

QUBIC2 is a novel biclustering algorithm developed for FMGs detection 

from both simulated and real gene expression data and shows superior and 

robust performance across diverse biotechnology platforms, including mi-

croarray, bulk RNA-Seq, and scRNA-Seq. It is empowered by three 

unique features, which contribute to its significant advantages in func-

tional gene modules detection. The proposed significance evaluation 

framework based on bicluster size will provide a solid foundation for the 

systematic evaluation of all identified biclusters, especially for those from 

non-model species. We believe that QUBIC2 can serve for biologists and 

bioinformaticians as a useful tool to extract novel biological insights from 

large-scale gene expression data, and we believe that it can facilitate the 

study of distinct responses by different cell types in the same population 

when encountered by the same stimuli or stresses. However, most of the 

biclustering methods, including QUBIC2, encountered a dramatic perfor-

mance drop on scRNA-Seq data, especially 10X genomics based scRNA-

Seq data, compared to other RNA-Seq data. To fully excavate the potential 

of scRNA-Seq data, we must overcome several challenges.  

First, as sequencing costs decrease, more massive scRNA-Seq datasets 

will become increasingly common (e.g., researchers can easily obtain 

scRNA-Seq data covering tens of thousands of cells via 10x Genomics 

(Freytag, et al., 2018)). Thus, the scalability to large datasets and the effi-

ciency of tools will become the bottlenecks. Currently, the discretization 

and dual searching functions of QUBIC2 are time-consuming (Note S3 

and Figure S6). To improve the efficiency of QUBIC2, the OpenMP 

method will be implemented in the EM steps for discretization. 

Another challenge lies in the interpretation of time series data, which 

provides the potential to elucidate the cell trajectory process and recon-

struct causal gene regulatory networks from observational data. However, 

current scRNA-Seq protocols lose the true temporal coupling between 

measurements; thus existing tools fail to identify causal interactions to a 

satisfactory level (Qiu, et al., 2018). QUBIC2 was applied to another tem-

poral dataset (Result S1 and Figure S7) and discovered biclusters specific 

to time point. However, QUBIC2 could only separate cells collected at 

different time points, and the further finer differentiation was not captured. 

We are developing a new framework to rebuild the timeline of cell differ-

entiation from scRNA-Seq data, followed by a new algorithm to extract 

causal interactions from time-series expression data. The new algorithm 

will first group the expression change tendencies into several representa-

tive patterns to reduce the dimension of the timeline but keep the correla-

tion with time delay. Then it will detect significant biclusters by taking 

expression values and change tendency patterns into consideration simul-

taneously. 
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