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Smith BJ, Cullingford L, Usherwood JR. Identification of
mouse gaits using a novel force-sensing exercise wheel. J Appl
Physiol 119: 704 –718, 2015. First published July 2, 2015;
doi:10.1152/japplphysiol.01014.2014.—The gaits that animals use
can provide information on neurological and musculoskeletal disor-
ders, as well as the biomechanics of locomotion. Mice are a common
research model in many fields; however, there is no consensus in the
literature on how (and if) mouse gaits vary with speed. One of the
challenges in studying mouse gaits is that mice tend to run intermit-
tently on treadmills or overground; this paper attempts to overcome
this issue with a novel exercise wheel that measures vertical ground
reaction forces. Unlike previous instrumented wheels, this wheel is
able to measure forces continuously and can therefore record data
from consecutive strides. By concatenating the maximum limb force
at each time point, a force trace can be constructed to quantify and
identify gaits. The wheel was three dimensionally printed, allowing
the design to be shared with other researchers. The kinematic param-
eters measured by the wheel were evaluated using high-speed video.
Gaits were classified using a metric called “3S” (stride signal sym-
metry), which quantifies the half wave symmetry of the force trace
peaks. Although mice are capable of using both symmetric and
asymmetric gaits throughout their speed range, the continuum of gaits
can be divided into regions based on the frequency of symmetric and
asymmetric gaits; these divisions are further supported by the fact that
mice run less frequently at speeds near the boundaries between
regions. The boundary speeds correspond to gait transition speeds
predicted by the hypothesis that mice move in a dynamically similar
fashion to other legged animals.
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MOST ANIMALS EXHIBIT CHANGES in gait as their speed changes,
most commonly (in quadrupeds) from walking to trotting, and
trotting to galloping, as they accelerate. These gait transitions
often occur at specific speeds that scale with animal size,
suggesting that the dynamics of legged locomotion are similar
across many terrestrial vertebrates (2, 16, 36). As well as
providing valuable information about the fundamental dynam-
ics of locomotion, measurements of gait parameters are in-
creasingly used in the detection and treatment of neuromuscu-
lar disorders (8, 15). Mice are one of the most commonly used
animals for this type of research, since they are easy to
maintain and breed, and there are numerous inbred and genet-
ically modified strains available that display a variety of
physical and behavioural characteristics. The literature on
mouse locomotion suggests that in mice the link between gait
and speed is much less clearly defined than in other, mostly
much larger, animals. Some studies have claimed that mice use
only walking and trotting gaits throughout their entire speed
range (10), while others have observed a transition from
trotting to galloping at a repeatable speed (16, 34), which

follows the scaling relationships found for other animals. A
comprehensive study of mouse gaits at a range of speeds found
that mice used symmetric gaits in 22.9% of samples and
nonsymmetric gaits in 77.1% of samples (17). The speed
ranges of the symmetric and nonsymmetric gaits were similar,
with the symmetric gaits occurring at velocities between 0.20
and 0.8 5 m/s, and the nonsymmetric gaits occurring at veloc-
ities between 0.09 and 0.88 m/s; however, no specific break
points between gaits could be identified, and therefore, it was
concluded that the formulas used to calculate gait transition
speeds did not apply in mice.

One commonly used technique for studying gait is to mea-
sure the ground reaction forces (GRF) between the animal’s
feet and the substrate. However, most commercially available
force plates are intended for use with humans and other large
animals and are not suitable for use with smaller animals such
as mice. Many researchers who wish to study rodent biome-
chanics (particularly for medical research) have opted to use
systems such as Digigait or CatWalk, which use cameras to
identify contacts between the paws and the substrate and hence
measure kinematic variables such as stance and stride periods
and stride lengths (29, 39). Although GRF can be estimated
from these parameters, it is sometimes desirable to measure
GRF directly; Zumwalt (41) opted to modify an existing plate
to measure the GRF exerted by mice running overground,
while others have built their own plates by placing load cells
under a walkway (9, 13, 28). However, mice tend to run
intermittently overground and on treadmills and often require
external stimulation to begin running; this can make collecting
datasets of repeated strides extremely time consuming. In
contrast, mice will voluntarily use exercise wheels both in the
laboratory (3) and in the wild (30), running for around 5 to 6
h total per day in the laboratory, and achieving speeds of more
than 1.1 m/s (3, 12). Assuming an average stride frequency of
6–7 Hz, this translates to more than 100,000 strides per day.
Large amounts of data can therefore be collected autono-
mously, with negligible disturbance or deviation from standard
husbandry. This may be particularly useful in pain studies,
where the presence of humans while measurements are being
made may suppress responses (35).

Roach et al. (33) describe a commercial wheel modified to
measure mouse GRF by removing one rung and replacing it by
a rung suspended between two strain sensitive brackets which
measured force in the normal and tangential directions (equiv-
alent to vertical and horizontal GRF). Although this system
was successfully used to collect force data from mice running
in the wheel, it had a number of limitations: firstly, only one of
the rungs was able to collect force data, making it more
difficult to collect data from multiple feet for a given stride or
to repeatedly collect data from the same foot over consecutive
strides. Secondly, the use of strain gauges to measure force
resulted in an error caused by gravitational forces on the
sensors as the wheel rotates. The construction of strain gauges
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makes them particularly susceptible to electromagnetic noise
due to parasitic capacitative coupling between the parallel
tracks (37), as well as changes in temperature causing the
sensor to expand or contract and therefore register a spurious
signal (38). Strain gauges also require the use of a slip ring (see
MATERIALS AND METHODS for further discussion).

MATERIALS AND METHODS

The first part of this section describes the construction and char-
acterization of a rodent exercise wheel with integrated force sensors,
while the second part describes an experiment using the wheel to
investigate mouse gaits.

Wheel Implementation

Design and construction. While most previous studies of wheel
running have used a traditional upright wheel (e.g., Refs. 3, 4), the
wheel design presented here is based on the “saucer” wheels com-
monly sold in pet shops and increasingly used for environmental
enrichment in scientific mouse colonies. Saucer wheels have a solid
surface rather than bars, which is preferred by mice (4) and minimizes
the risk of the animal being injured by slipping or catching a toe or tail
in the mesh. The angled configuration also allows for a large wheel
diameter (which mice also prefer; Ref. 4) while still keeping the
vertical profile low enough to fit into a standard mouse cage. One
disadvantage of this type of wheel is that the mouse is constantly
running around a bend and on a slight incline, which could affect
kinematic factors such as stance periods. The radius of the wheel
discussed here was therefore made as large as possible [given the
build size constraints of the available 3-dimensional (3D) printer] to
minimize the effect of running around a curve, and the angle of the
wheel was selected so that a mouse running at the front midpoint
would be running on as level a surface as possible.

The wheel is made up of a frame and 16 pads, arranged into four
groups of 4 (Fig. 1). Each of these pads is attached to the frame by
meandered elements that act as springs. On the underside of each pad
is a socket for a magnet. The base is hollow to allow electronics to be
mounted inside. Both the wheel and base were printed in Polyactide
(PLA) using a Replicator 2 Desktop 3D printer (MakerBot Industries,
Brooklyn, NY). PLA is a bioplastic derived from plant starch; it is
nontoxic, presenting no risk to the mice if they ingest it. In more
than 1,000 h of exposure to mice, minimal damage has occurred
due to gnawing. Support material remaining after 3D printing was
removed using a rotary tool and a scalpel. Magnets (10 mm
diameter, 1.5 mm height, N42 Neodymium available at http://
www.first4magnets.com/circular-disc-rod-magnets-c34/10mm-
dia-x-1-5mm-thick-n42-neodymium-magnet-1kg-pull-p3632)
were superglued into the sockets on each pad. The .stl files for the
wheel and base, and a .gerber file for the Printed Circuit Board
(PCB) layout is available on our website: http://www.rvc.ac.uk/
Media/Default/staff/files/bsmith-wheel-files.zip.

An array of nine A1301ELHLT-T Hall effect sensors (Allegro
Microsystems, Worcester, MA) were soldered onto the PCB and
glued to the wheel base. Each sensor was positioned to align with the
path of the centers of the magnets. When a pad is deflected down-
wards, the distance between the magnet and the sensor is reduced, and
thus the strength of the magnetic field experienced by the Hall sensor
directly below the pad is increased. The output voltage of the Hall
sensor increases proportionally to the increase in magnetic field
strength, and therefore; the force applied to the pad can be calculated
from the voltage output from the Hall sensor. Throughout a given
limb’s stance phase the foot exerts a varying force on a pad; however,
over the course of this stance phase the pad will pass over a number
of adjacent Hall sensors as the wheel rotates. For a typical half-sine
running signal the force measured by consecutive sensors will there-
fore increase until mid-stance, after which the force measured by

consecutive sensors will decrease back to zero. A complete force trace
for a stance is therefore produced by concatenating the samples
measured by these adjacent sensors by selecting the maximum mea-
surement at each time point for inclusion in the force trace. The GRF
trace is therefore made up of single limb signals, rather than whole
body forces; however, if multiple legs are producing similar forces,
then two or more stances may be merged together; this typically
occurs at the beginning and end of the stance phases when forces are
lowest.

One advantage of using Hall sensors is that no physical or electrical
contacts are required between the sensors and the wheel; this means
that no slip ring is required, avoiding the associated noise, turning
resistance, and cost. The sensors were connected to an NI USB-6218
DAQ (Data Acquisition) device (National Instruments, Austin, TX),
which also provided them with 5-V DC power. Data were sampled
simultaneously from all nine sensors in parallel at a rate of 3 kHz,
using Labview SignalExpress 2009 (National Instruments). Data col-
lection was triggered when the signal measured by the central sensor
increased or decreased by 0.2 V; this is well above the noise threshold
of 0.04 V and indicates that the wheel has begun to rotate. Data were
saved in 5-s blocks to limit the impact of a power failure or system
crash, which could corrupt the file currently being recorded; after
saving the trigger was reset ready for the next wheel movement.

Calibration and characterization. Calibration was carried out while
the wheel was rotating, based on the mean values when a range of
masses was applied. This was because it is not possible to know
exactly which pad is over which sensor while a mouse is running on
it. Identical masses were attached to each pad using Blu-tack (the
mass of the Blu-tack was taken into account). The wheel was then
rotated for 5 s, with readings taken from all sensors simultaneously at
a rate of 3 kHz. A relationship between force and mean voltage
measured by each sensor was then determined to produce a matrix of
coefficients, which could be used to convert between voltage and
force.

The effect of speed was measured by placing masses on each pad
and rotating the wheel by hand at a range of speeds; this was repeated
both unloaded and with masses of 4.9, 10.6, and 29.8 g (see APPENDIX B).
Significant effects of speed were observed in no sensors in the unloaded
case, four sensors in the 4.9-g load case, one sensor in the 10.6-g load
case, and two sensors in the 29.8-g load case. Only one sensor detected
a significant effect in more than one case (the 10.6- and 29.8-g loads).
This suggests that overall there is little systemic effect of speed on the
voltage measured by the sensors.

The measurements for impulse response, linearity, and point of
force application were made individually for each of the 16 pads on
the wheel. Measurements were made while the wheel was stationary
to minimize variation due to changes in the distance between the pad
and the sensor, and to prevent vibrations other than the applied
impulse. The impulse response was characterized for each pad by
striking it with an aluminum rod and recording the vibrations. A fast
Fourier transform (FFT) was then used to find the frequency with the
strongest vibrations. The settling time was calculated as the time taken
for the signal amplitude to return to within the noise limits. Table 1
lists the means and standard deviations of the impulse response
characteristics of the pads.

Linearity for each pad was measured by placing calibration masses
of increasing size on each pad. The masses ranged from 1 to 41 g or
3 to 137% body mass of a typical FVB mouse. The effect of the
position of the calibration mass was also investigated; measurements
were taken with the mass at the center of the pad for all the pads on
the wheel, and at regular intervals from the outer to the inner edge and
from the left to the right edge for a single pad. Figure 2 shows these
values: Fig. 2A shows the variation in linearity as the point of contact
moves from the outer to the inner edge of the pad, while Fig. 2B
shows the variation as the point of contact moved from the left to the
right of the pad. In each case voltage varies linearly with force (R2 �
0.9). The central point measures the highest force in both Fig. 2, A and
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B, with measured force values dropping off as the foot fall position
gets further from the central point. Although there is some variation
between the mean values for the different positions, the measurements
for the outer and inner points are within one standard deviation of the
middle point. One goal of this system is to collect data on mouse
locomotion kinematics and kinetics without requiring a high-speed
camera. Since without a camera it is not possible to determine the
exact point of contact between a mouse’s foot and a pad, we have
instead attempted to reduce the effect of foot position on measured
force. This is achieved firstly by designing the hardware to reduce

moments due to off centre foot contacts; the width of the pads is fairly
small relative to a mouse (hind) footprint, while the spring elements
take up as much room on the sides of the pad as possible within the
geometric constraints of the design. Secondly, the force reconstruction
algorithm uses the highest force measurement at each sample interval.
It is therefore more likely that measurements from footfalls near or at
the centre of the pad are included in the force signal, so in large
datasets there will only be minimal impact from foot position, as very
little of the force signal will be comprised of footfalls on the edges of
the pad.

Fig. 1. Cut away diagram of wheel. All di-
mensions are in mm. An array of 9 Hall
sensors is mounted in the base; deflections of
the pads produce changes in Hall sensor volt-
age that correspond to vertical ground reac-
tion forces (GRF). All sensors are sampled
simultaneously in parallel at 3 kHz to allow
force measurement of multiple foot contacts.
Data collection is triggered automatically
when the wheel starts to rotate; data are saved
in 5-s blocks until rotation stops.
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Drift. Drift was measured by sampling each of the sensors at 1-s
intervals overnight (in total a period of 15.7 h). The mean change in
voltage per hour over this time was 0.63 � 0.10 mV (see APPENDIX A

for more detail). While this drift is negligible for the period over
which the experiments reported here were carried out, if the wheel is
to be used continuously over a longer period of time, regular adjust-
ment of the zero points of the sensors might be desirable.

Automated Recording and Classification of Gaits Using the Wheel

Animal experiments. All observations were carried out in accor-
dance with the United Kingdom Home Office recommendations for
animal experiments. The subjects were five adult female FVB mice
(age 4 mo, mass 34.3 � 4.29g), which were housed in a temperature
controlled room in the Royal Veterinary College Biological Services
Unit. The usual 12-h light-dark cycle was maintained, and the mice
were allowed food and water ad libitum. The mice had access to an
exercise wheel similar to the one used in this study in their home cage
and were acclimatized runners. Mice were placed in pairs in an arena
with the wheel and allowed to explore and use the wheel voluntarily.
A high-speed AOS X-PRI Mono camera (AOS Technologies) was
placed in the arena pointing horizontally at the front midpoint of the
wheel. A clear Perspex barrier was used to prevent the mice coming
in contact with the camera or cables. When a mouse started running,
the observer would start recording high-speed video of the wheel at
250 Hz.

Data processing. Figure 3 illustrates the gait reconstruction
process. A custom MATLAB script (available from our website:

http://www.rvc.ac.uk/Media/Default/staff/files/bsmith-wheel-
files.zip) was used to calculate speeds and forces from the voltage signals
from the Hall sensors and combine the signals into a single trace: speed was
calculated from the voltage signal of the central sensor; since there is no
magnet on the wheel’s support struts there is a minimum in the voltage signal
every time a strut passes over the sensor. Speed of the wheel (in revolutions
per second) is calculated using the formula � � f/4s where f is the sample
frequency (here 3 kHz) and s is the number of samples between peaks.
Force is calculated by first scaling the voltage signals using the calibration
values and then by concatenating the maximum values at each time point.
This means that if two legs are in contact at the same time only the greater
exerted force is included in the force signal; the force signal is therefore
comprised of the maximum force values over time, rather than the sum of
force values (except in the case where both feet hit a single pad
simultaneously, when the measured force is the summed force of the 2
feet). Finally, the signal was smoothed by interpolating with a cubic
spline, using the MATLAB “spline” function (29a). To extract periodic
gait parameters, the raw force data were first passed through an FFT. The
two highest peaks of the FFT (neglecting the DC component) were
identified. The rest of the FFT output was set to 0 (taking into account the
fact that in the frequency domain the signal should be symmetric about
fs/2, where fs is the sample frequency; Ref. 32), and the heights of the two
peaks were scaled such that the energy of the signal remained the same,
so that it would still satisfy Parseval’s theorem (31). An inverse fast
Fourier transform (IFFT) was then applied to the signal to convert it back
to a GRF. The overall effect of this algorithm is to apply a very selective
band pass filter at frequencies determined from the data itself to the GRF,
allowing any periodic signals due to inconsistencies in wheel construction
to be removed, as well as higher frequency vibrations. Kinematic data
were extracted from the reconstructed signals: the signal was divided into
strides by identifying repeating features, and each stride was segmented
into stances by identifying points where the force dropped to zero or very
close to zero. Stance periods were measured between the minima, stride
periods were measured between the repeating features, and duty factors
were calculated as stance periods divided by the relevant stride periods.
Only stances with a single peak were used for comparison with the stance
periods and duty factors calculated from the high-speed video to ensure

Table 1. Unloaded wheel impulse response

Variable

Natural frequency, Hz 94.3 � 12.1
Settling time, s 0.06 � 0.01
Max. � amplitude, V 0.01 � 0.01
Phase at max. amplitude, s 0.04 � 0.03

Values are means � SD.

A B

Fig. 2. Linearity of wheel pads measured by placing calibration weights on the pads at a variety of positions. A: linearity measured across the pad from the outer
to inner edge. B: linearity measured across the pad from the right to left edge. Voltage varies linearly with force (R2 � 0.9) in all cases.
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as much as possible that only the stance period of a single leg was being
measured.

Peak forces measured by the wheel were compared with peak
forces predicted from duty factor using an equation developed by

Alexander et al. (1). This equation models GRF as a half sine wave,
so that the peak force is a function of body weight, stance period, and
stride period. In large animals such as horses, a bias factor is usually
included in this calculation to take into account the fact that a greater

A B

C D

E F

Fig. 3. Reconstructing the gait from raw force data. A, C, and E: relate to a trotting gait. B, D, and F: relate to a half-bounding gait. A and B: raw forces and
the smoothed signal. C and D: outputs of the inverse fast Fourier transform (IFFT). E and F: Hildebrand style gait diagrams that relate to the reconstructed signals
in C and D (with dimensions taken from high-speed video). T1, T2, T3, and T4 illustrate how the reconstructed force signals and high-speed video were compared;
mean stance times were compared with t2–t1, and mean stride periods were compared with t3-t1 (t4-t1 in the case of half bounding).
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proportion of bodyweight is supported by the fore legs than by the
hind (40). Typically the ratio is 60% of body weight supported by the
fore legs and 40% supported by the hind legs. However, Clarke and
Still (9) found no significant difference between the impulses pro-
duced by fore and hindlimbs in mice.

Fore and hind leg impulses were calculated from the reconstructed
force traces. Traces produced by a half bounding gait (e.g., Fig. 3B)
were used, as signals produced by fore and hindlimbs could be
distinguished. Similarly to Ref. 9, very little difference between
fore and hindlimb impulses was found, with hindlimb impulses
being 96.5 � 2.45% of forelimb impulses. A fore: hind bias ratio
of 0.51:0.49 was therefore used to calculate the peak forces
predicted from the high-speed video kinematics.

While in some animals, such as cheetahs, the proportion of body
weight supported by the hindlimbs increases significantly with speed
(23), this does not appear to be the case with mice; even though the
support ratios presented here were calculated at the upper end of
mouse speeds using half bounding strides, they are very similar to the
ratios in Ref. 9 that were calculated at the lower end of mouse speeds,
using walking and trotting strides. Roach et al. (33) also measured
kinematic parameters and forces of mice running in wheels and
compared their results to values predicted by duty factors (1). They
found that the hind legs had a much greater proportion of body
support than the fore legs (0.84:0.16); it is possible that the disc like
shape of the wheel presented here allows the animal to run on a less
curved surface than the upright wheel used in (33), and therefore, it
produces results more similar to overground or treadmill running.

Gait analysis. The kinematic parameters measured from the high-
speed videos were used to manually classify the gaits in the videos
corresponding to the force traces. The gaits were classified into four
categories: creeping (an exploratory, fairly intermittent walking gait
typically observed just as the mouse has climbed onto, or is about to
climb off, the wheel), trotting, galloping, and half bounding. A true
walk was not observed, probably because the inertia of the wheel
makes it harder to maintain constant movement for long bouts at low
speeds, but perhaps also reflecting a true unwillingness to adopt steady
walking.

A gait was defined as trotting when the smallest difference in
footfall timings occurred between diagonal pairs of legs and as
galloping or half bounding when the smallest difference in footfall
timings occurred between the fore or hind pair of legs. Half bounding
was distinguished from galloping when the hind legs met and left the
ground near simultaneously (i.e., a difference of �0.025 s). A gait was
classified as creeping when the footfall timings between diagonal
pairs, and between fore and hind pairs, were similar.

While the two types of gait in Fig. 3 can be distinguished by eye
based on the number and relative height of the peaks, not all the
reconstructed traces fall into these two categories; therefore, a quan-
tifiable characterization metric based on the half wave symmetry of
the peaks of the stride force traces was designed. This metric is
referred to as 3S (stride signal symmetry). We also wanted to
determine whether mice transition between gaits at specific speeds, or
whether as Herbin et al. (17) suggest they use a continuum of gaits,
and if so, we wanted to characterize this continuum. The algorithm
therefore classifies gaits by assigning them continuous variables,
rather than by assigning them to discrete gait categories. A further
advantage of this approach compared with traditional gait categoriza-
tion is that it can be independent of video data, which typically is time
and computationally intensive to collect and analyze. A “square” trot
(25) would have the highest 3S value, while a half bound would have
the lowest 3S value. A theoretical “ideal” bounding gait, with syn-
chronous hind contacts evenly spaced with synchronous forelimb
contacts, would also fall within the same 3S category as trotting;
however, this gait has not been observed in “wild-type” mice in the
laboratory (10) (although mice may use a wider range of gaits in the
wild). 3S was calculated as follows: the time between peaks in the gait
signal was differentiated numerically to produce a triangle or saw-

tooth wave. The more skewed this wave was, the lower the 3S value.
To compare the skewness of the wave, it was differentiated a second
time, and then was tested for half wave symmetry by calculating the
mean square error between the wave and a copy of the wave that had
been half wave shifted. A gait such as a trot would result in a
triangular wave with equal peaks and trough magnitudes and would
therefore have high half wave symmetry and a correspondingly high
3S value. A gait such as a half bound would result in a sawtooth wave
which would have low half wave symmetry and hence a low 3S value.

Statistics

Statistical analyses were carried out using MATLAB. All values
are reported as means � SD, and 95% confidence intervals are plotted
in grey in the figures. Paired sample t-tests were used to evaluate the
differences between the kinematic data from the video and the wheel,
in all cases statistical significance was set as P � 0.05.

RESULTS

Automated Recording and Classification of Gaits Using the
Wheel

Kinematics and force measurements. Stride frequency, duty
factor, and stance periods were determined from high-speed
video and used to provide an initial validation of the recon-
structed force traces. The video and force data were synchro-
nized based on their respective time stamps (the time stamps
were both generated from the internal clock of the same PC)
and segmented into blocks of three strides. Figure 4 shows
means � SD of kinematic parameters for each block, plotted
against the mean speed of the block. Any block where the
speed varied by more than 1 revolution per second (0.25 m/s)
over the course of the block was discarded, so as to avoid
accelerating and decelerating strides.

Figure 4A shows that stride frequency increases with speed
when calculated from the video (r � 0.81, P � 0.01) and from
the reconstructed GRF (r � 0.35, P � 0.024); however, the
gradients of the lines of best fit are different. In particular, at
speeds slower than 0.5 m/s the frequencies calculated from
the video kinematics are lower than those calculated from
the reconstructed signal, and at speeds higher than 1 m/s the
frequencies calculated from the video kinematics are higher
than those calculated from the reconstructed GRF. The
standard deviations of the frequencies calculated from the
video kinematics are much greater than those calculated
from the reconstructed GRF; this is because the IFFT
produces a periodic signal based on all three strides taken
together, while the video kinematics are based on three
unique strides. The root mean square (RMS) difference
between the two sets of stride frequencies is 1.20 Hz. The
stride frequencies calculated from the reconstructed signal
range from 5.26 Hz (at a speed of 0.31 m/s) to 8.33 Hz (at
a speed of 1.01 m/s). The stride frequencies calculated from
the video range from 3.6 0 Hz (at a speed of 0.08 m/s) to
9.12 Hz (at a speed of 1.1 m/s). A paired sample t-test did
not reject the hypothesis that the differences between the
stride frequencies measured from the high-speed video and
the wheel were drawn from a distribution with a mean of 0
(P � 0.30).

Figure 4B shows how the stance times of the fore and hind
legs change with speed and how this compares to the recon-
structed GRF. Both fore and hindlimb stance times decrease as
speed increases (r � �0.69, P � 0.01 and r � �0.72, P �
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0.001, respectively), although the hindlimb stance times reduce
more quickly. As speed increases the fore and hindlimbs
converge, becoming approximately the same around 1 m/s. The
stance times calculated from the reconstructed signals also
decrease as speed increases (r � �0.41, P � 0.008), however,
at a different rate than fore and hindlimbs; at low speeds the
reconstructed stance times are more similar to the forelimb
stance times, while at higher speeds they become more similar
to the hindlimb stance times (although as previously mentioned
at speeds above 1 m/s both hind and forelimbs have similar
stance times). As with the stride frequencies the video kine-
matic stance times have much higher standard deviations than
the reconstructed stance times, again because the IFFT pro-
duces a periodic signal. The RMS errors between the recon-
structed signal stance periods and the fore and hind leg stance
periods are 0.024 and 0.035 s, respectively. Overall, fore legs
had shorter stance periods than hind legs, with fore leg stance
periods ranging between 0.13 s (at a speed of 0.45 m/s) to 0.03
s (at a speed of 1.1 m/s) and hind leg stance periods ranging
between 0.20 s (at a speed of 0.08 m/s) and 0.04 s (at a speed
of 0.87 m/s). Stance periods from the reconstructed signal
ranged from 0.09 s (at a speed of 0.61 m/s) to 0.05 s (at a speed
of 0.93 m/s). A paired sample t-test rejected the hypothesis that
the differences between the fore leg stance times measured
from the high-speed video and the wheel were drawn from a
distribution with a mean of 0 (P � 0.03) but did not reject the
hypothesis that the differences between the hind leg stance
times measured from the high-speed video and the wheel were
drawn from a distribution with a mean of 0 (P � 0.06). It also
did not reject the hypothesis that the differences between the
mean stance time of the fore and hind legs measured from the
high-speed video and the wheel were drawn from a distribution
with a mean of 0 (P � 0.98).

Figure 4C shows how duty factors for the fore and hindlimbs
change with speed and how this compares to the duty factors
calculated from the reconstructed GRF. Both fore and hindlimb
duty factors decrease as speed increases (r � �0.68, P �
0.001 and r � �0.66, P � 0.001, respectively) and at similar
rates. Duty factors for the hindlimbs are higher than those for
forelimbs throughout the speed range, with forelimb duty
factors ranging from 0.68 (at a speed of 0.61 m/s) to 0.27 (at a
speed of 0.80 m/s) and hindlimb duty factors ranging from 0.80
(at a speed of 0.31 m/s) to 0.28 (at a speed of 0.87 m/s). Duty
factors for the reconstructed signals also reduce as speed
increases (r � �0.48, P � 0.002); similarly to the stance times
at low speeds the duty factors are more similar to the forelimbs,

A

B

C

Fig. 4. Comparisons of kinematic parameters between video and wheel data. A:
stride frequencies vs. speed calculated using the reconstructed GRF signals and
the video kinematics. There was a significant positive relationship with speed
using both the reconstructed signals (P � 0.01) and the video kinematics (P �
0.001). B: stance periods vs. speed calculated using the reconstructed GRF
signals and the video kinematics for fore and hind feet separately. There are
significant negative relationships with speed for the stance periods calculated
from the videos (fore: P � 0.001, hind: P � 0.001) and the stance periods
calculated from the reconstructed signals (P � 0.008). C: duty factor vs. speed
calculated using the reconstructed GRF signals and the video kinematics for
fore and hind feet separately. Duty factor was calculated as stance period/stride
period. There are significant negative relationships with speed for the duty
factors calculated from the videos (fore: P � 0.003, hind: P � 0.001) and the
duty factors calculated from the reconstructed signals (P � 0.007).
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and at higher speeds they are more similar to the hindlimbs.
Duty factors for the reconstructed signals range from 0.53 (at
a speed of 0.61 m/s) to 0.28 (at a speed of 1.01 m/s). The RMS
errors between the reconstructed duty factors and the fore and
hind leg duty factors are 0.11 and 0.12, respectively. Once
again the data from the video kinematics has much higher
standard deviations than the data from the reconstructed GRF,
since the IFFT produces a periodic signal. A paired sample
t-test rejected both the hypothesis that the differences between
the duty factors measured from the high-speed video and the
wheel were drawn from a distribution with a mean of 0 (P �
0.001), and the hypothesis that the differences between the
duty factors measured from the high-speed video and the wheel
were drawn from a distribution with a mean of 0 (P � 0.001).
However, it did not reject the hypothesis that the differences
between the mean duty factors measured from the high-speed
video and the wheel were drawn from a distribution with a
mean of 0 (P � 0.62).

Figure 5 compares the measured peaks forces with the forces
estimated from the kinematic parameters, using the equation
found in Ref. 1. As speed increases the forces estimated from
the fore and hindlimb duty factors increase (r � 0.68, P �
0.001 and r � 0.70, P � 0.001, respectively), forces estimated
from the wheel duty factors increase (r � 0.53, P � 0.001),
and the forces measured by the wheel also increase (r � 0.58,
P � 0.001). Force estimates are higher in the forelimbs than
the hindlimbs throughout the speed range, ranging from 79.1%
of body weight to 230.4% for the forelimbs and 33.2 to 102.4%
for the hindlimbs. This reflects the fact that the duty factors
were higher for the hindlimbs. Forces estimated from the wheel
duty factors ranged from 48% body weight to 106%. The
forces measured by the wheel range from 23.6% of body
weight to 199.7%; however, the gradient of the change in force

is more similar to that of the forelimbs than the hindlimbs. This
could be because the forelimb forces were greater, so were
more likely to comprise the peak forces.

DISCUSSION

Wheel Implementation

In this paper we have presented a novel design for a rodent
exercise wheel that can measure GRF. A wheel combines
advantages of both treadmill and overground running; large
amounts of running data at a range of speeds can be collected
quicker and more easily than with overground running, and
mice are allowed to move voluntarily, reducing the amount of
human interaction required, which might affect results. This
also means that the wheel can be left in an animal’s cage
overnight to take advantage of the fact that mice are most
active at night and to gather data on circadian rhythms. A
previous study to design a force-sensing exercise wheel used
an upright wheel with rungs, whereas we have used a solid
horizontal wheel. This allows mice to run in a more natural
posture.

The wheel is able to measure GRF and kinematic parameters
without requiring a high-speed camera; this increases data
throughput and reduces storage requirements. The wheel is
able to detect trends in stride frequency, stance time, and duty
factor associated with speed; however, it tends to underesti-
mate times at low speeds (and hence overestimate stride
frequencies and underestimate duty factors). This is most likely
because it is not sensitive enough to detect the lower forces at
slower speeds, so the beginning and end of stances where the
forces are lowest get cut off. At higher speeds, the measured
time intervals are more similar to those measured by the hind
legs, which tend to have longer contact times than the fore legs;
this leads to the underestimation of stride frequency at high
speeds, stance times, and duty factors, most similar to the hind
leg values.

Overall, the trends in stance time and duty factor tend to be
most similar to the average of the fore and hindlimbs, rather
than either the fore or hindlimbs; this is likely because at lower
speeds the measured stance times and duty factors tend to be
more similar to those of the fore legs and at intermediate and
higher speeds they tend to be more similar to those of the hind
legs. This also affects the forces estimated from the wheel duty
factors; however, the slope of force data is very similar to that
of the fore leg estimate, since the fore legs have a lower duty
factor and therefore are more likely to be the source of the
maximum force at a given sample time.

In the case where two feet hit a single pad simultaneously it
is not possible to distinguish them. However, this mostly only
occurs during the half bounding gait and only with the hind
legs. It is therefore possible to determine whether a peak is
from a front or hind leg based on the direction the wheel is
rotating and the position of the sensor that reads the highest
voltage; for example, if the wheel is rotating clockwise and
signals are detected by Hall sensors 0 and 8 (i.e., the sensors on
the right and left edges of the array, respectively), then the peak
detected by sensor 0 must be due to a fore leg, and the peak
detected by sensor 8 must be a hind leg.

Fig. 5. Peak limb forces measured by the wheel compared with peak forces
predicted from duty factors. Comparing the impulses produced by fore and
hindlimbs produced a fore: hindlimb bias of 0.51:0.49, this was used to
calculate peak forces from duty factors using the equation found in Ref. 1.
There are significant positive relationships between speed and the forces
calculated from the video kinematics (P � 0.001) and those calculated from
the reconstructed signals (P � 0.001).
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Comparison of Kinematic Parameters and Forces with
Previous Studies

Previous studies have measured kinematic parameters of
mouse gaits, some of these are summarized in Table 2. Al-
though some of these studies only measured gait parameters
across a small speed range, together they cover the range of
speeds used by the mice in this article; 0.29–1.1 m/s. The
substrate used does not appear to have much of an effect on
stride frequency. There is fairly good agreement with the stride
frequencies measured by this study with the overground results
from Ref. 18; however, particularly at high speeds, the results
measured with the wheel and from the video kinematics are
lower than other studies. This could be because on our wheel
the mice mostly used asymmetric gaits at higher speeds, as
opposed to Ref. 17, where mice used both symmetric and
asymmetric gaits equally throughout their speed range and Ref.
18 where the mice used the same gait throughout the speed
range. Animals using asymmetric gaits tend to increase speed
by increasing stride length, rather than by increasing stride
frequency (16, 17), so stride frequencies would be lower than
for symmetric gaits where stride frequency continues to in-
crease with speed.

On the other hand, at low speeds the values for stance time
measured overground are much lower than those measured on
treadmills, at higher speeds the overground stance times are
higher. There is good agreement between the values measured
on our wheel and the stance times from Refs. 9 and 18,
particularly the hindlimb stance times. The other wheel study
(33) only reports average stance time over a fairly low speed
range; however, the reported values are much closer to the
values measured here than values measured overground or on
treadmills. Interestingly, although the value reported in Ref. 33
is for a hindlimb stance time, it is much closer to the forelimb
stance time measured in this article. There is not much differ-
ence between duty factors measured overground, on the tread-
mill and on the wheel; our results also agree with these
reported values.

These comparisons suggest that running on both the flat
wheel and the upright wheel in Ref. 33 is more similar to
running overground than running on a treadmill, particularly in
terms of stance time. Other studies have also found that horse
and human stance times were increased on treadmills (5, 7),
possibly because the subject’s body weight affects the speed
control of the treadmill. Although the reported values for wheel
running in Ref. 33 are for the hindlimb, they appear more
similar to the forelimb values measured using our wheel, with
the hindlimbs having longer stance times and higher duty

factors. It is possible that this is because the wheel used had a
fairly small diameter, meaning that the angle through which the
paw could comfortably remain in contact was smaller than it
would be on a flatter surface, and consequently, stance times
were reduced.

Automated Recording and Classification of Gaits Using
the Wheel

Rather than attempting to place the gait samples into tradi-
tional gait categories, we seek to quantify the spectrum of gaits
noted in Ref. 17 and suggested by the lack of “breakpoints” in
our kinematic data. This quantity, 3S, is calculated based
purely on the GRF traces and can be done automatically by
computer. This quantity is calculated using the equation de-
scribed in MATERIALS AND METHODS.

Hildebrand (19) identifies a number of footfall timing mea-
surements that are necessary and sufficient to describe gaits
quantitatively; fore and hind stance times (typically presented
as proportions of total stride time), difference in time between
footfalls of the fore and hind pairs of legs (typically presented
as a proportion of the appropriate stance time), difference in
time between footfalls for ipsilateral fore and hind legs (typi-
cally presented as proportions of total stride time), and the
sequence in which the legs of a pair contacts (typically pre-
sented as a proportion of the appropriate stance time). Gaits
can also be described as “symmetric,” when the footfalls of the
fore and hind leg pairs are spaced evenly in time (i.e., the time
difference between footfalls is close to 50% of the stride time),
or “asymmetric,” when the footfalls of a pair are not spaced
evenly in time.

Figure 6A uses Hildebrand gait diagrams to illustrate a
number of symmetric and asymmetric gaits. The phase differ-
ences between the fore, hind, and diagonal pairs of legs have
been marked F, R, D1, and D2, respectively. Since symmetric
gaits must have the footfalls of the fore and hind leg pairs out
of phase, the smallest phase difference is seen between diag-
onal leg pairs. Conversely, since the footfalls of the fore and
hind legs are not evenly spaced in asymmetric gaits they can be
in phase (or close to in phase). This means that the phase
difference between the fore and hind footfalls is less than the
largest phase difference between the diagonal footfalls. In
general, the phase difference between the hind legs is also less
than between the fore legs.

Our gait classification algorithm also has a close relationship
with footfall phase differences, in particular between the hind
legs R, and between the two diagonal leg pairs D1 and D2.
Figure 6B shows that there is a significant positive relationship

Table 2. Values from literature for mouse gait parameters

Substrate Speed Range, m/s Stride Frequency, Hz Stance Period, s Duty Factor Peak Vertical GRF, %body wt

Wheel measurement Wheel 0.29–1.1 5.26 � 0.0–8.70 � 0.15 0.09 � 0.0–0.05 � 0.0 0.53 � 0.02–0.28 � 0.05 23.6–199.7
Video data Wheel 0.29–1.1 3.59 � 1.0–8.92 � 0.7 (F) 0.13 � 0.04–0.03 � 0.01 (F) 0.68 � 0.0–0.29 � 0.06 N/A

(H) 0.20 � 0.11–0.05 � 0.01 (H) 0.80 � 0.24–0.28 � 0.0
Ref. 33 Wheel 0.28–0.60 N/A 0.108 � 0.4 0.58 � 0.01 (H) 90–115
Ref. 17 Treadmill 0.09–0.88 2.4–8.6 0.41–0.04 N/A N/A
Ref. 18 Treadmill 0.08–1.01 1.8–11.4 0.44–0.03 0.83–0.25 N/A
Ref. 9 Overground 0.14–0.43 2.4–6.0 (F) 0.164 � 0.01 (F) 0.62 (F) 63.5 � 0.6

(H) 0.19 � 0.01 (H) 0.70 (H) 58.4 � 0.7
Ref. 18) Overground 0.20–1.30 3.2–10.4 0.21–0.03 0.83–0.25 N/A
Ref. 34 Overground 0.05–1.15 1.5–12.5 N/A 0.75–0.15 N/A

Values are means � SD (where available). F, forelimbs; R, hindlimbs; GRF, ground reaction forces.
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(r � 0.73, P � 0.01) between 3S as calculated above, and Tdiff,
where Tdiff is defined as R � max(D1, D2) (normalized as a
proportion of total stride duration). This corresponds to a 3S
value of 0.17. We shall therefore refer to samples with 3S �
0.17 as “symmetric” gaits and samples with 3S � 0.17 as
“asymmetric” gaits.

Figure 6C plots specificity and sensitivity for the gait clas-
sification system. These two values express how well the
algorithm is able to distinguish symmetric from asymmetric
gaits; specificity measures the proportion of symmetric gaits
that were correctly classified as symmetric, while sensitivity
measures the proportion of asymmetric gaits that were cor-
rectly classified as not symmetric. The intersection of these two
curves confirms that the optimum cut off between symmetric
and asymmetric is 0.17, with a 95% probability of correctly
classifying gaits at this threshold.

Overall, 193 traces (37.9%) were symmetric, while 316
traces (62.1%) were asymmetric. Conversely, in Ref. 17 it was

found that 22.9% of the gaits were symmetric and 77.1% of the
gaits were asymmetric. This could be because the speeds of
wheel running reported here were selected by the mice,
whereas the speeds of the treadmill in (17) were set by the
experimenters, so the mice were able to choose speeds at which
a symmetrical gait was preferable. This is corroborated by the
fact that the majority (56.2%) of the gaits plotted (see Fig. 8)
are between 0.4 and 0.7 m/s, the region where symmetric gaits
are most common. The range of speeds of symmetric gaits was
0.08 to 1.0 m/s, and the range of speeds of the asymmetric gaits
was 0.03 to 1.1 m/s. These results therefore agree with Ref. 17
that mice use both symmetric and asymmetric gaits throughout
their speed range, with the majority of gaits being asymmetric.

With the use of the equations proposed in Refs. 1 and 16, a
typical mouse with a hip height of 2.6 cm and a mass of 34 g
should transition from walking to trotting between the speeds
of 0.36 and 0.51 m/s and from trotting to galloping at a speed
of 0.68 m/s. This corresponds to a walk-trot transition between

B

A

C

Fig. 6. Comparison of 3S (stride signal symmetry) values and Hildebrand gait diagrams. A: example representative gait diagrams plotted using relative timings
from Refs. 18 and 19. The phase difference between the fore feet is denoted as F, the phase difference between the hind feet is R, the phase differences between
the diagonal pairs of legs are D1 and D2. B: plot of Tdiff measured from the high-speed video vs. 3S, where Tdiff � R � max(D1, D2). Markers denote the running
speed, V, at the time of observation. The dotted line marks the boundary between asymmetric and symmetric gaits (in the 3S sense) at 0.17.
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the Froude numbers of 0.5 and 1 (calculated as V2/gL where
V � speed, g � gravitational acceleration, and L � leg length;
Ref. 2),and a trot-gallop transition at a Froude number of 1.8.
In Ref. 34 a transition from trotting to a half bound was
observed at a speed of 0.7 m/s. However, the authors of Ref. 17
could not identify any clear breakpoint in gaits and therefore
suggested that rather than distinct gaits like many larger ani-
mals, mice display a “continuum of gaits.” This has a striking
analogy with bipedal gaits, where smaller birds blur the dis-
tinction between walking and running gaits (14).

In Fig. 7A speed is plotted against the frequency of obser-
vations at each speed for each mouse. All five mice covered a
similar speed range from 0.06 � 0.04 to 0.90 � 0.13 m/s. In all
cases most of the observations were at speeds around the middle
of the speed range, with a mean preferred speed of 0.50 � 0.13
m/s (1.99 � 0.52 rps), with the number of observations dropping
off as speed increased or decreased. This agrees with Ref. 12,
which found that mice spent most of their time running at a
“cruising speed” of 2.5 rps. However, unlike Ref. 12 the fre-
quency of observations increases before and after two minima at
0.38 � 0.05 and 0.74 � 0.04 m/s, resulting in two additional
possible “preferred speeds” at 0.33 � 0.04 and 0.88 � 0.04 m/s
(although these speeds are still not used as much as the peak
preferred speed). These could correspond to the preferred speeds
for different gaits (21).

Most cursorial quadrupeds use trotting or low speed gallops
when traversing long distances (6); these gaits tend to fall in
the middle of an animal’s speed range. Similarly, ground
squirrels in the wild run between feeding and nesting sites at
speeds close to or slightly above the middle of their speed
range; not only does this minimize their exposure to predators,
it reduces the net energy cost by 73% compared with walking
the same distance (26). While wheel running differs from these
examples in that the animal is not attempting to reach a
particular location in a limited amount of time, it is possible

that wheel use, as a relatively long-term, nonexploratory mode
of locomotion, may be subject to similar biomechanical con-
straints. Additionally, both mice (27) and ground squirrels (22)
are able to increase their running speed with relatively little
increase in rate of energy expenditure. Running could therefore
be preferable to walking, especially if the mouse is attempting
to maximize the distance it has “travelled.” It is also possible
that the inertia of the wheel makes continuous walking diffi-
cult, and therefore, the mouse runs instead. In both cases, the
preferred speed may be one that minimizes energetic cost for
the selected gait (21); typically this is near the middle of the
speed range for that particular gait, rather than at the minimum
or maximum speeds.

In Fig. 7B speed is plotted against frequency of 3S symmet-
ric gaits as proportions of the total number of traces in each
speed bin; the majority of symmetric gaits occur between the
speeds 0.29 � 0.04 and 0.69 � 0.06 m/s. These results suggest
that while the mice used both 3S symmetric and 3S asymmetric
gaits throughout their speed range, this “continuum of gaits”
can be divided into three distinct regions defined by the
frequency of 3S symmetric and 3S asymmetric gaits at each
speed. Hoyt and Taylor (21) found that, when allowed to
self-select its speed, a horse ran at speeds that minimized
metabolic cost and avoided using speeds close to the transition
speeds between gaits. Similarly, the reductions in observations
around 0.38 and 0.74 m/s suggest that these divisions in the
continuum of gaits are analogous to the gait transitions ob-
served in larger animals such as horses. These speeds are also
close to the predicted gait transition speeds for mice of 0.36–
0.51 and 0.68 m/s. If the continuum of gaits is split at these
points, relationships between speed and 3S values can be
observed (see Fig. 8): below 0.38 m/s there is a significant
positive relationship between 3S and speed (r � 0.24, P �
0.033), between 0.38 and 0.74 m/s there is no significant
relationship between 3S and speed (r � �0.006, P � 0.91),

A B

Fig. 7. Histograms of speed and 3S for each mouse. A: overall frequencies of observations over the entire speed range. B: proportion of gait observations which
were 3S symmetric vs. speed (relative to the total number of observations in each speed interval). Froude numbers (V2/gL where g � 9.81 m/s2 and L � 2.5
cm) are noted on the upper axis. The proportion of observed gaits that are 3S symmetric was highest between 0.29 and 0.69 m/s, and there are dips in frequency
of observations at 0.38 � 0.05 and 0.74 � 0.04 m/s, suggesting that the “continuum of gaits” can be split into 3 regions: slow speed with a preference for 3S
asymmetric (mostly creeping) gaits, medium speed with an equal division between 3S symmetric (trotting) and 3S asymmetric (mostly creeping or half bounding
depending on speed) gaits, and high speed with a preference for 3S asymmetric (galloping and half bounding) gaits.
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and above 0.74 m/s there is a negative relationship between 3S
and speed (r � �0.18, P � 0.054). The boundaries between
these regions are similar to the values predicted from the
equations in Refs. 1 and 16, suggesting that scaling relation-
ships based on dynamic similarity do hold true for mice and
that speed does have some influence on mouse gaits. However,
the variability of gaits suggests that this relationship is less
strict than in larger animals. Studies of locomotion energetics
in other small rodents have found that cost of transport re-
mained constant (24) or even decreased with speed (22),
suggesting that energy is less important in gait transitions than
for larger animals (21). Iriarte-Díaz et al. (24) also found that
increased body mass did not change trot-gallop transition speed
in degus, unlike horses, suggesting that mechanical stresses
also play less of a role in gait transitions for smaller animals.
If the “fitness function” determining energetic and mechanical
costs has a flatter landscape for smaller animals, this could
explain why mice are able to use both symmetric and asym-
metric gaits throughout their speed range.

Conclusions

Wheel implementation. The wheel presented here fills a
niche for a noninvasive, automated system for monitoring
rodent activity and locomotor biomechanics. Unlike conven-
tional force plates or treadmills the wheel can be installed in a
cage and mice will use it voluntarily, with no human supervi-
sion or interaction required. Furthermore, apart from an accli-
matization period, animals do not need to be trained to use the
wheel. Since the wheel is made up of multiple force pads data
can be collected for multiple legs throughout locomotion,
rather than just for a single foot as in Ref. 33, making it
possible for different gaits to be identified and analyzed.
Additionally, the use of 3D printing to manufacture the wheel
means that the design can be shared on the internet for the use

of other research institutes and can be easily deployed in
multiple cages in parallel

The system presented in this paper takes advantage of the
motivation of mice to run on exercise wheels; it is therefore
most useful for capturing large amounts of data (or data over a
long time period) relating to voluntary locomotion. However,
in some situations other setups may be more appropriate; for
example, if a researcher wishes to select the speed or duration
of running bouts, a treadmill would provide more control.
Similarly, although force magnitudes can be measured, the
wheel has a tendency to underestimate contact times at low
speeds, making stance and duty factor measurements less
accurate. This is most likely due to the fact that the lower
forces at these speeds (particularly at the beginning and end
of stance) fall below the sensitivity of the wheel. It might be
possible to improve sensitivity, for example, by using thin-
ner meandered elements to reduce their stiffness; however,
this would also impact the wheel’s robustness under con-
tinual use. Additionally, since it is not possible to determine
where each foot contacts a pad, center of pressure cannot be
determined from the wheel, so if it is desirable to calculate
internal joint angles, a more sensitive fixed force platform
may be preferable.

Automated recording and classification of gaits using the
wheel. The wheel was used to investigate how mouse gaits
change with speed, using a metric called 3S; gaits with 3S
values greater or equal to 0.17 were found to correspond well
with symmetric gaits as defined by Hildebrand, while gaits
with 3S values less than 0.17 corresponded with asymmetric
gaits. It was found that although mice can use both symmetric
and asymmetric gaits throughout their entire speed range, the
continuum of gaits can be split into three regions. At low
speeds, the mice mostly used asymmetric gaits; video data for
gaits in this range identified these as creeping. As speed
increased, symmetric gaits became more common, until the
first boundary where approximately half the gaits were sym-
metric and half were asymmetric. Symmetric gaits in this
region were identified as trotting, and asymmetric gaits were
identified as half bounding or galloping. This continued until
the second boundary, after which the majority of gaits were
asymmetric, and 3S values decreased as speed increased. Gaits
were identified from the video as being half bounding or
galloping. These data suggest that mouse gaits are dependent
on speed, although to a lesser extent than some larger animals.

One goal of this algorithm was to allow gait analysis without
requiring high-speed video; video storage and processing can
be expensive in terms of time and computational capability,
and setting up cameras to continually monitor activity over
long time periods can be difficult, especially in the home cage
environment where mice may move bedding in front of the
camera.

To some extent this has been achieved; it is possible to
distinguish symmetric and asymmetric gaits throughout the
speed range of the mice and to measure changes in kinematic
parameters with speed. However, there are still instances when
having access to camera data may be advantageous: the algo-
rithm alone cannot distinguish whether a lead leg is a right or
a left leg, and it cannot distinguish between similar gaits such
as rotary and transverse gallops, or diagonal and lateral walks.
A camera would also be useful for identifying anomalous
results caused by multiple mice running at once or a mouse

Fig. 8. 3S values of gaits vs. speed. Markers denote which mouse was running;
all mice used a range of both 3S symmetric and 3S asymmetric gaits
throughout their speed range. 3S significantly increased with speed at speeds
below 0.38 m/s (y � 0.06 	 0.23x, r � 0.32, P � 0.009), increased at a slower
rate between 0.38 and 0.74 m/s (y � 0.14 	 0.05x, r � 0.05, P � 0.43) and
decreased with speed at speeds above 0.74 m/s (y � 0.20 � 0.09x, r � �0.17,
P � 0.18).
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“coasting” rather than running. There are also limitations to
analyzing gaits based on wheel running, although it appears
wheel running results in more similar kinematics to overground
running than treadmill running. Mice do not tend to walk
consistently on wheels, making comparative studies of low
speed locomotion difficult. The inertia and curved shape of the
wheel may also have some effect on stance times and duty
factors.

In spite of these limitations, we believe that this wheel can
be a useful tool for mouse gait analysis, particularly in situa-
tions where large datasets can be collected and the impact of
anomalous signals would be reduced. The wheel could also be
used in conjunction with a camera to identify activity periods
of interest, reducing the need to go through hours of video to
find events.

The gait classification algorithm offers a way to describe
gaits that do not fit into the usual discrete gait categories; mice
(in common with many other small mammals and birds) do not
have clearly identifiable break points when kinematic param-
eters are plotted against speed, they also use much more
“grounded” gaits with higher duty factors than larger animals
moving at dynamically similar speeds. This could suggest that
smaller animals do not have as strict a relationship between
speed and gait as larger animals and may not transition be-
tween gaits due to the same biomechanical factors. Attempting
to classify small animal gaits in the same way as large animal
gaits may therefore be dividing them into artificial categories
that do not necessarily correspond to biomechanical state-
spaces. Instead, our quantitative gait metric aims to provide a
continuous scale on which two gaits with similar speeds can
have very different kinematics. By capturing these distinctions,
it may be easier to identify what physical and physiological
triggers lie behind gait selection in mice and other small
animals.

APPENDIX A: DRIFT IN SENSORS OVER TIME

Figure A1 shows drift over time of the wheel sensors. Table A1
shows drift values over time expressed in volts and as a percentage of
the starting value.

APPENDIX B: EFFECT OF SPEED ON SENSOR VOLTAGES

Figure B1 shows the effect of speed on sensor voltages at different
loads. Table B1 shows correlation coefficients and P values for speed
vs. sensor voltage.
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