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Abstract 

Accumulating evidence now suggests that purinergic signalling exerts significant regulatory effects in 

the musculoskeletal system. In particular, it has emerged that extracellular nucleotides are key 

regulators of bone cell differentiation, survival and function. This review discusses our current 

understanding of the effects of purinergic signalling in bone, cartilage and muscle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



1. Introduction 

Adenosine triphosphate (ATP) has long been recognized for its role in intracellular energy metabolism; 

however, it is also an important extracellular signalling molecule.  The potent actions of ATP were first 

described in 1929, yet it was 1972 before the concept of purinergic neurotransmission was proposed 

(Burnstock, 1972).  Extracellular nucleotides, signalling via purinergic receptors, are now known to 

participate in numerous biological processes in both neuronal and non-neuronal tissues. The receptors 

for purines and pyrimidines are classified into two groups; P1 receptors and P2 receptors.  There are 

four P1 receptor subtypes (A1,A2a,A2b,A3); these receptors are G-protein coupled and activated by 

adenosine. P2 receptors respond to a number of different nucleotides including ATP, adenosine 

diphosphate (ADP), uridine triphosphate (UTP) and uridine diphosphate (UDP).  The P2 receptors are 

further subdivided into the P2X ligand-gated ion channels and P2Y G-protein-coupled receptors 

(Abbracchio et al., 1994; Burnstock et al., 1985; Ralevic et al., 1998). To date, seven P2X receptors 

(P2X1-7) and eight P2Y receptors (P2Y1,2,4,6,11,12,13,14) have been identified; each receptor has been 

cloned, characterised and displays distinct tissue expression and pharmacology (Burnstock, 2007). 

Over the last two decades, it has emerged that purinergic signalling plays a key regulatory role in 

the musculoskeletal system.  In particular, the regulation of bone cell function by extracellular 

nucleotides has emerged as a particularly active and promising area of research.  This review will 

summarise current understanding into the role of purinergic signalling in bone, cartilage and muscle. 

2. Bone 

Bone is a composite tissue containing inorganic mineral salts deposited within an organic collagenous 

matrix, and three cell types: osteoblasts, osteoclasts and osteocytes.  Osteoblasts, which are derived 

from mesenchymal stem cells, are the bone-forming cells.  When osteoblasts become incorporated 

within the bone matrix they may undergo a terminal differentiation to form an osteocyte.  Osteocytes, 

the most abundant cells in bone (Jande et al., 1973), form a regular interconnected network of cells that 

is thought to regulate bone remodelling and mediate the responses to mechanical loading (Bonewald, 

2011). Osteoclasts, the bone-resorbing cells, are usually multinuclear, and are formed by the fusion of 

mononuclear progenitors of the monocyte/macrophage lineage. The coordinated activity of these cells 

allows the skeleton to grow, adapt and repair itself; abnormalities in this process result in a variety of 

skeletal disorders. 

The first indication that purinergic signalling could be important in modulating bone cell function 

came over 20 years ago when P1 (A2-like) adenosine receptors were reported on osteoblasts (Lerner 

1987).  The expression of multiple P1 and P2 receptor subtypes in bone cells has now been widely 

reported (see review by (Burnstock et al., 2013)).  More recently, analysis of knockout mouse models 

has provided evidence for the important role of purinergic signalling in bone remodelling in vivo 

(Gartland et al., 2003b; Ke et al., 2003; Orriss et al., 2011a; Su et al., 2012; Wang et al., 2012) (Fig. 1) 

2.1. The role of purinergic signalling in osteoblast biology 

P2 receptor expression by osteoblasts was first reported in the late 1980’s when fluorescence studies 

demonstrated that extracellular nucleotides could transiently increase [Ca2+]I and induce IP3 formation 

(Kumagai et al., 1991; Kumagai et al., 1989).  Subsequent pharmacological studies revealed that 

extracellular nucleotides interacted with at least two P2 receptors (P2Y1 and P2Y2) on rat osteoblast-

like cells (Reimer et al., 1992; Yu et al., 1993b). The first molecular evidence for P2Y receptor expression 

was shown in 1995 by Bowler et al, who used RT-PCR and in situ hybridisation to demonstrate P2Y2 

receptor expression in human osteoblasts (Bowler et al., 1995).  A detailed investigation of both single 



cells and populations of human osteoblasts indicated that there was a heterogeneity in P2 receptor 

expression in any one culture (Dixon et al., 1997).  This observation raised the possibility that the 

differentiation status of the osteoblast influences P2 receptor expression, an idea which was later 

confirmed in several separate studies (Nishii et al., 2009; Orriss et al., 2012; Orriss et al., 2006).  

 The expression of multiple P2 receptors by osteoblasts has now been widely reported (Fig. 2).  

Studies using primary rat and mouse calvarial osteoblasts, human osteoblast-like cell lines (MG-63, 

OHS-4, SaM-1, SaOS-2, Te85) and rat osteosarcoma cell lines (UMR106-01, ROS17/2,8) have all 

described expression of most or all P2X and P2Y receptor subtypes in osteoblasts (see reviews 

(Burnstock et al., 2013; Gartland et al., 2012a)). P2 receptor mediated signalling has now been shown 

to exert many effects on osteoblast proliferation, differentiation, function, gene expression and cell 

signalling.  

Extracellular nucleotides and the regulation of bone mineralisation 

Initial functional studies showed that ATP and UTP (≥1µM), acting via the P2Y2 receptor, strongly 

inhibited bone formation by cultured rat osteoblasts (Hoebertz et al., 2002).  A follow up investigation 

demonstrated that ATP and UTP selectively inhibited the mineralisation of the organic matrix and 

alkaline phosphatase (TNAP) expression and activity (Orriss et al., 2007).  It also provided further 

evidence for the involvement of the P2Y2 receptor (Orriss et al., 2007).  Subsequent skeletal analysis of 

P2Y2 receptor knockout mice by dual energy x-ray absorbtiometry (DEXA) and micro computed 

tomography (µCT) demonstrated large increases in trabecular and cortical bone parameters in the long 

bones(Orriss et al., 2011a; Orriss et al., 2007) (Fig. 1).  Recently, it was also demonstrated that the 

P2X1, P2X3 and P2X7 receptor agonists, α,β-meATP, β,γ-methylene ATP and 2'(3')-O-(4-

benzoylbenzoyl) adenosine 5'-triphosphate (Bz-ATP) reduced bone mineralization in vitro (Orriss et al., 

2012). This study used selective P2 receptor antagonists to suggest that the effects were mediated via 

the P2X1 and P2X7 receptor subtypes (Orriss et al., 2012). Furthermore, another investigation 

demonstrated increased bone mineralisation in osteoblast cultures treated with apyrase, suggesting that 

endogenous ATP released by osteoblasts acts as an important local brake on mineralisation (Orriss et 

al., 2013).  Combined these data suggest that ATP acts as a key endogenous inhibitor of bone 

mineralisation. 

The ATP concentration in cell cytosol is between 2-5mM.  Following membrane damage or necrosis, 

all cells can release ATP into the extracellular environment, which can then act in an autocrine/paracrine 

manner to influence local purinergic signalling.  Controlled ATP release has been demonstrated from 

numerous excitatory and non-excitatory cells.  In the bone microenvironment, osteoblasts (Buckley et 

al., 2003; Genetos et al., 2005; Orriss et al., 2009; Romanello et al., 2001; Rumney et al., 2012), 

osteoclasts (Brandao-Burch et al., 2012) and MLO-Y4 osteocyte-like cells (Genetos et al., 2007; 

Kringelbach et al., 2014) have  all been shown to constitutively release ATP.  

Once released, nucleotides are rapidly broken down by an extracellular hydrolysis 

cascade.  Molecular and functional characterisation has shown there are four families of ecto-

nucleotidases: (1) the NTPdases (ecto-nucleoside triphosphate diphosphohydrolase); (2) the NPPs 

(ecto-nucleotide pyrophosphatase/phosphodiesterase); (3) alkaline phosphatases and, (4) ecto-5’-

nucleotidase (Zimmermann et al., 2012).  Many ecto-nucleotidases have overlapping specificities. For 

example, NTPdases catalyse the reactions: nucleotide triphosphate (NTP) → nucleotide diphosphate 

(NDP) + phosphate (Pi) and NDP → nucleotide monophosphate (NMP) + phosphate (P i), whereas 

NPPs hydrolyse NTP → NMP + pyrophosphate (PPi) or NDP → NMP + Pi. Thus, the combined activities 

of these ecto-enzymes limit the actions of extracellular nucleotides to cells within close proximity of the 

release site.  Osteoblasts express three members of the NPP family (NPP1-3) (Hessle et al., 2002; 



Johnson et al., 2000; Orriss et al., 2007) and at least six members of the NTPdase family (NTPdase 1-

6)(Orriss et al., 2010).   This hydrolysis of ATP and other NTPs by NPPs is particularly important in 

bone because the product, pyrophosphate (PPi), is the key, local physicochemical inhibitor of 

mineralisation (Fleisch et al., 1962; Fleisch et al., 1961).  Of the NPPs expressed in bone, NPP1 

(previously called plasma cell membrane glycoprotein 1 or PC-1), is thought to be the most important 

in PPi generation (Johnson et al., 2000). A recent, detailed study of the mouse model lacking NPP1 

showed that this enzyme is essential for normal bone development and control of physiological bone 

mineralization (Mackenzie et al., 2012). There is now significant evidence suggesting that extracellular 

ATP is a key source of PPi in bone (Orriss et al., 2012; Orriss et al., 2013; Orriss et al., 2007).  Thus, it 

is likely that nucleotide triphosphates exert a dual inhibitory action on bone mineralisation via both P2 

receptor mediated signalling and direct hydrolysis to PPi (Fig. 3) 

P2X receptors and osteoblasts 

The mitogenic effects of ATP were first reported by Suzuki and colleagues in the early 1990’s (Suzuki 

et al., 1993). Subsequent work showed that ATP acting via the P2X5 receptor promotes DNA synthesis 

in human osteoblast-like cells (Nakamura et al., 2000). 

 The role of the P2X7 receptor in osteoblast biology has been the focus of significant research albeit 

often with conflicting results. Expression of the P2X7 receptor was first demonstrated in a subpopulation 

of differentiated human osteoblasts (Gartland et al., 2001); later studies also described P2X7 receptor 

expression in rat (Orriss et al., 2006) and mouse osteoblasts (Ke et al., 2003).  Early reports suggested 

that P2X7 receptor activation caused enhanced osteoblast apoptosis (Gartland et al., 2001).  

Subsequent studies suggested that P2X7 stimulation leads to increased membrane blebbing and bone 

formation; an effect thought to be mediated via increased production of lyophosphatidic acid (LPA) and 

prostaglandin E2 (PGE2)(Li et al., 2005; Panupinthu et al., 2008; Panupinthu et al., 2007).   In contrast, 

a recent investigation found that Bz-ATP acting via the P2X7 receptor inhibited bone mineralisation 

(Orriss et al., 2012).  

 Work using selective P2X7 receptor antagonists indicated that this receptor also plays a role in 

mediating ATP release from osteoblasts (Brandao-Burch et al., 2012). Furthermore, the P2X7 receptor 

is thought to mediate the ERK1/2 activation, NF-κB translocation and PGE2 synthesis caused by fluid 

shear stress in osteoblast-like cells (Genetos et al., 2005; Liu et al., 2008).  Other suggested roles for 

the P2X7 receptor in osteoblasts include the regulation of metabolic acid production (Grol et al., 2012) 

and callus remodelling during fracture repair (Li et al., 2009).  

 To date, several studies using P2X7 receptor knockout mice from different genetic backgrounds have 

been performed. The initial investigation by Ke et al. reported a reduced bone mineral content and 

periosteal circumference accompanied by decreased bone formation parameters and increased bone 

resorption parameters (Ke et al., 2003). A separate study by Gartland et al. (Gartland et al., 2003b) 

reported no differences in bone mineral density or trabecular bone but an increase in cortical bone was 

observed. It was subsequently reported that the knockout model used by Gartland et al. expressed a 

P2X7 splice variant in some tissues (Nicke et al., 2009); therefore the results from this model should be 

interpreted with caution. Further complicating the analysis of this knockout mouse model, a recent study 

found that the genetic background strongly influenced the bone phenotype (Syberg et al., 2012b).  

Several P2X receptors (P2X2, P2X3, P2X4, P2X6) expressed by osteoblasts still have no known 

functional effects and present interesting areas for future study. Of particular note is the P2X4 receptor, 

which displays the highest expression of all the P2 receptors present on osteoblasts (Orriss et al., 2012). 

Furthermore, since osteoblasts express all P2X receptor subtypes it is plausible that they may combine 



to form functional heteromultimers. Heteromultimers often display the pharmacology of both 

participating subunits, thus increasing the diversity of ATP-mediated signalling and downstream 

functional effects. At present, it is not known whether functional heteromultimers are expressed by 

osteoblasts. 

P2Y receptors and osteoblasts 

Studies into the role of P2Y receptors in osteoblasts have identified a wide range of functional effects. 

The P2Y2 receptor was initially thought to mediate intercellular signalling since an early report 

demonstrated that mechanically stimulated human osteoblasts propagate fast intercellular Ca2+ waves 

via the autocrine activation of P2Y2 receptors (Jorgensen et al., 2000).  A follow-up study showed that 

intercellular signalling between osteoblasts and osteoclasts was not mediated via P2Y receptors but 

instead appeared to require the P2X7 receptor (Jorgensen et al., 2002). However, in a separate 

investigation  P2Y2 receptors were shown to mediate the Ca2+ mobilisation induced by oscillatory fluid 

flow in mouse osteoblasts (You et al., 2002).   

Activation of the P2Y2 receptor in osteoblast-like cells has been shown to activate a number of 

intracellular signalling pathways including protein kinase C (PKC),  p38 mitogen-activated protein 

kinase (p38 MAPK), and c-Jun NH2-terminal protein kinase (JNK) (Costessi et al., 2005; Katz et al., 

2006; Katz et al., 2008; Pines et al., 2005).   

Purinergic signalling can also interact with other intracellular pathways to regulate osteoblast 

function. In early studies, P2 receptors were found to mediate the potentiation of parathyroid hormone 

(PTH) receptor-mediated increases in [Ca2+]i and IP3 in ostoebast-like cells (Kaplan et al., 1995; Sistare 

et al., 1995).  Later work found that synergistic co-activation by PTH and ATP, acting via P2Y receptors, 

increased mRNA levels of c-fos, a transcription factor important in osteoblast activation and bone 

remodelling. The authors suggested that this may be a mechanism to generate strong localised 

responses to systemic growth and differentiation factors (Bowler et al., 1999). A follow-up study 

demonstrated that PTH potentiated nucleotide-induced [Ca2+]i release in rat osteoblasts independently 

of Gq activation or cyclic adenosine monophosphate (cAMP) accumulation (Buckley et al., 2001). ATP 

can also act via P2Y receptors to induce the release of IL-6 (Ihara et al., 2005).   

Clopidogrel (Plavix®), a selective P2Y12 receptor antagonist, acts to inhibit platelet aggregation. It is 

an antithrombotic widely prescribed to reduce the risk of heart attack and stroke. A recent investigation 

by Syberg and colleagues found that low micromolar concentrations of clopidogrel inhibit osteoblast 

proliferation, differentiation and function and reduce cell viability in vitro (Syberg et al., 2012a). Reduced 

trabecular bone was also observed in ovariectomised mice treated with clopidogrel for 4 weeks (Syberg 

et al., 2012a). In contrast, a paper by Su et al. demonstrated increased bone in mice treated with 

clopidogrel (Su et al., 2012). The two investigations used very different dosing regimens (oral dosing in 

the former compared to clopidogrel treated water in the latter) and thus the divergent results may reflect 

variations in the final dose received by the animals. In agreement with this notion, a study looking at a 

cohort of Danish patients found that clopidogrel was associated with fracture risk; however, these 

effects were biphasic with high doses (the recommended range) being associated with increased 

fracture risk and low doses being associated with decreased fracture risk (Jorgensen et al., 2012). 

Mice lacking the P2Y13 receptor display reduced trabecular bone mass, decreased osteoblast numbers 

in vivo and a reduced rate of bone remodelling (Wang et al., 2012).  Osteoblasts cultured from P2Y13 

knockout mice also displayed a down regulation of RhoA/ROCK I signalling and a reduced ratio of 

receptor activator of nuclear factor kappaB ligand (RANKL) / osteoprotegerin expression (Wang et al., 

2012).  A follow up study by the same group demonstrated that P2Y13 knockout mice display enhanced 



osteogenic responses to mechanical loading which the authors attribute to reduced levels of 

extracellular ATP metabolism (Wang et al., 2013).  The P2Y13 receptor has also been shown to play an 

important role in phosphate metabolism (Wang et al., 2014) and the terminal differentiation of 

osteoprogenitor cells into osteoblasts or adipocytes (Biver et al., 2013).   

ATP release from osteoblasts 

Controlled ATP release from osteoblast-like cells was first described by Romanello et al in 2001 

(Romanello et al., 2001). Since then several studies have indicated that the primary method of ATP 

release from osteoblasts is by vesicular exocytosis (Genetos et al., 2005; Orriss et al., 2009; Romanello 

et al., 2005). However, it has been suggested that the P2X7 receptor may also be involved (Brandao-

Burch et al., 2012). The amount of ATP released from osteoblasts depends on their differentiation state, 

with mature, bone-forming cells releasing up to seven-fold more than immature, proliferating cells 

(Orriss et al., 2009). Several studies have demonstrated enhanced ATP release in response to different 

external stimuli including hypoxia (Orriss et al., 2009), mechanical stress (Hecht et al., 2013), fluid flow 

(Genetos et al., 2005; Romanello et al., 2005), vitamin D (Biswas et al., 2009) and ultrasound 

(Alvarenga et al., 2010; Hayton et al., 2005).  A recent investigation examined the effect of different 

forms of mechanical stimulation on ATP release from human osteoblast-like SaOS-2 cells, including 

turbulent fluid flow, laminar fluid flow, substrate strain and 3D compressive loading (Rumney et al., 

2012). Rumney et al concluded that the concentration of ATP released in response to mechanical 

loading varied in a time-, direction- and strain-dependent manner representing a local mechanostat in 

bone that could influence bone mineralisation (Rumney et al., 2012). Osteoblasts cultured from P2Y13 

receptor knockout mice display increased levels of extracellular ATP suggesting a role for this receptor 

in the modulation of ATP metabolism (Wang et al., 2013). 

P1 receptor signalling and osteoblasts 

The role of adenosine and P1 receptor-mediated signalling in the regulation of bone cell function has 

become an area of increasing interest in recent years.  Osteoblasts have been shown to express all 

four P1 receptor subtypes (Gharibi et al., 2011; Vincenzi et al., 2013); however, the actions of 

extracellular adenosine on osteoblasts appear to be less clear-cut than those of ATP.  Initial work found 

that synthetic adenosine analogues elicited a receptor-mediated rise in cAMP levels in calvarial 

osteoblasts (Lerner et al., 1987).  Subsequently, it was reported that adenosine acts as a mitogen for 

osteoblast-like cells by stimulating DNA synthesis (Shimegi, 1996).  An important early study found that 

human osteoblast precursors produced extracellular adenosine, probably via the breakdown of 

released ATP, which modulated their secretion of Il-6 and osteoprotergerin (Evans et al., 2006). 

 Since the late 1990’s, several studies have failed to find an effect of adenosine on mineralised bone 

nodule formation by rat calvarial osteoblasts (Jones et al., 1997; Hoebertz et al., 2002).  However, 

another study indicated that adenosine, acting via the A2B receptor, may increase the osteogenic 

differentiation of rat long bone mesenchymal stem cells (Gharibi et al., 2011).   Furthermore, a synthetic 

A2B receptor agonist has been shown to increase bone formation, and osteoblasts from A2B receptor 

knockout mice display reduced activity in vitro (Carroll et al., 2012). Recently, it was reported that the 

adenosine generated by ecto-5’-nucleotidase (CD-73) was important in promoting osteoblast 

differentiation (Takedachi et al., 2012).  In contrast, adenosine analogues, acting via the A1 or A2A 
receptors, have been shown to inhibit the differentiation of rodent osteoblast-like cells (Gharibi et al., 

2012).   

2.2. Purinergic signalling and mesenchymal stem cells 



Osteoblasts are derived from mesenchymal stem cells (MSCs) and thus these cells play a key role 

within the bone.  Although information is limited a role for extracellular nucleotides in the regulation of 

MSC proliferation and differentiation is emerging. Initial work showed that fluid flow induced vesicular 

release of ATP from human MSCs, which then stimulated proliferation via a P2 receptor-mediated 

increase in [Ca2+]i (Riddle et al., 2007). More recent studies have shown that human MSCs express the 

P2X3-7 receptors and all P2Y receptors (Noronha-Matos et al., 2012; Zippel et al., 2012). P2 receptors 

and extracellular nucleotides are now thought to be important modulators of human MSC differentiation, 

with the P2X6, P2Y4, P2Y6 and P2Y14 receptors identified as playing pivotal roles in this process (Ferrari 

et al., 2011; Zippel et al., 2012; Noronha-Matos et al., 2012). Furthermore, a detailed investigation using 

knockout mice identified that the P2Y13 receptor regulates the terminal differentiation of MSCs into 

osteoblasts or adipocytes (Biver et al., 2013). It has also been reported that NTPDases influence which 

osteoblast progenitors are driven into proliferation or differentiation (Noronha-Matos et al., 2012). 

To date, many of the studies investigating the role of adenosine in osteoblasts have utilised MSCs 

(as described above). In addition, A1, A2A, A2B and A3 receptor activation has been shown to increase 

the proliferation (mainly via A1 and A2A receptors) and differentiation (via A2B receptors) of MSCs (Costa 

et al., 2011).  

2.3. P2 receptors and osteocytes 

Osteocytes are the most abundant cell type within bone (Jande et al., 1973) yet little is known about 

the role of purinergic signalling in their survival and function.  Because they are embedded within the 

bone matrix, primary osteocytes are difficult to isolate in significant amounts; therefore most work to 

date has been performed on osteocyte-like cell lines.  An early study found that the calcium signals 

induced by fluid flow were decreased by suramin and thapsigargin, suggesting involvement of ATP 

acting via P2Y receptors (Huo et al., 2008).  Expression of functional P2X2, P2X7, P2Y2, P2Y4, P2Y12 

and P2Y13 receptors on MLO-Y4 osteocyte-like cells has recently been described (Kringelbach et al., 

2014) 

Several studies have also reported that osteocytes release ATP in a controlled manner (Genetos et 

al., 2007; Kringelbach et al., 2014; Thompson et al., 2011).  This release is enhanced by UTP and 

mechanical stimulation and is thought to be mediated primarily by vesicular exocytosis (Kringelbach et 

al., 2014).  Mechanically induced ATP release can also be regulated by the α2δ1 auxillary subunit of T-

type voltage sensitive calcium channels (Thompson et al., 2011).   

Since ATP can inhibit bone mineralisation it is possible that release from osteocytes in vivo could 

act to reduce progressive, age-related mineral encroachment from the surrounding bone, thus 

preventing eventual cell ‘fossilation’ and death.   

2.4. Purinergic signalling and osteoclasts 

The first description of P2 receptor expression by osteoclasts was in the early 1990’s, when it was 

shown that ATP induced a rapid and transient increase in [Ca2+]I in rabbit osteoclasts (Yu et al., 1993a). 

The human P2U (P2Y2/P2Y4) receptor was subsequently cloned and sequenced from osteoclastoma, 

indicating that this receptor was probably expressed by osteoclasts (Bowler et al., 1995). Early 

investigations also provided evidence for the presence of P2X receptors, giving rise to non-selective 

cation currents, and P2Y receptors, mediating Ca2+ release from intracellular stores (Weidema et al., 

1997; Wiebe et al., 1999).  Initially it was thought that P2X4 receptors mediated the ATP-activated non-

selective cation currents in rabbit osteoclasts (Naemsch et al., 1999). However, it was subsequently 

found that the nucleotide-induced elevation of [Ca2+]i arose primarily from activation of P2Y receptors 

(Weidema et al., 2001)(Weidema AF 2001). 



Expression of multiple P2 receptor subtypes by osteoclasts has now been described (see review 

(Burnstock et al., 2013)).  Initial studies demonstrated expression of mRNA and protein for the P2X2, 

P2X4, P2X7, P2Y1 and P2Y2 receptors by rat long bone-derived osteoclasts (Hoebertz et al., 2000). 

Osteoclasts generated from human peripheral blood were later shown to express the P2X1, P2X4, 

P2X7, P2Y1, P2Y2, P2Y4, P2Y6 and P2Y11 receptors (Buckley et al., 2002). Recently, osteoclasts 

derived from mouse bone marrow were found to express all P2 receptors, with the exception of the 

P2X6 and P2Y4 receptors (Orriss et al., 2011b). This study also demonstrated large differences in the 

expression levels of the different P2 receptors, with the P2Y6 receptor being the most abundant (Orriss 

et al., 2011b). 

Functional effects of P2 receptor-mediated signalling in osteoclasts 

The first indication that purinergic signalling could play a role in the regulation of osteoclast function 

came in 1995 when Bowler et al. reported that ATP stimulated resorption by cells from human 

osteoclastoma (Bowler et al., 1995). Originally, the P2Y2 receptor was thought to mediate this effect; 

however, in a follow up study UTP failed to stimulate resorption suggesting this was not the case (Bowler 

et al., 1998). Subsequently ATP was found to increase the formation and activity of rodent osteoclasts, 

effects that were inhibited by suramin or apyrase (Morrison et al., 1998). These stimulatory actions on 

resorption were further enhanced when osteoclasts were first activated by culture in acidified medium 

(Morrison et al., 1998). Since the P2X2 receptor is the only P2 receptor that requires extracellular 

acidification to show its full sensitivity to ATP (Wildman et al., 1998) it was suggested that the P2X2 

receptor could mediate these pro-resorptive effects. Further investigation revealed that ADP, 2-

meththioADP and ATP all stimulated osteoclast formation and activity, suggesting involvement of P2Y 

receptors.  Pharmalogical and cytochemical evidence indicated that these effects were mediated by the 

P2Y1 receptor (Hoebertz et al., 2001).    

DEXA and µCT analysis of P2Y1 receptor knockout mice showed reduced trabecular bone in the 

long bones (Orriss et al., 2011a; Orriss et al., 2008) (Fig. 1). Given the suggested role for the P2Y1 

receptor in promoting osteoclast activity this decrease in bone mass was unexpected. However, a 

recent study found that ADP still stimulated osteoclast formation and resorption in cells derived from 

P2Y1 receptor knockout mice (Su et al., 2012), indicating the involvement of another P2Y receptor. 

Based on pharmacology, the P2Y12 receptor was the logical alternative candidate for mediating these 

effects.  The P2Y12 receptor was only identified in 2001 (Hollopeter et al., 2001), the same year as the 

study by Hoebertz et al., and thus it was not considered in the original investigation.  Expression of the 

P2Y12 receptor by osteoclasts has recently been reported (Orriss et al., 2011b) and P2Y12 receptor 

knockout mice display impaired responses to ADP, increased trabecular bone and decreased arthritis 

associated bone loss (Su et al., 2012).  Furthermore, the P2Y12 receptor antagonist, clopidogrel, inhibits 

osteoclast formation, viability and resorptive activity (Syberg et al., 2012a). Taken together these data 

suggest a role for the P2Y12 receptor in mediating the effects of ADP on osteoclast formation and 

activity.  

The P2Y6 receptor also appears to regulate osteoclast formation, activity and survival.   UDP, acting 

via the P2Y6 receptor, has been shown to prevent the apoptosis induced by tumour necrosis factor-α 

(TNF-), induce the translocation and activation of NF-κB and stimulate osteoclast formation and 

activity (Korcok et al., 2005; Orriss et al., 2011b). Consistent with a role for this receptor in bone 

resorption, osteoclasts derived from P2Y6 receptor knockout mice display defective activity (Orriss et 

al., 2011b). Analysis of P2Y6 receptor knockout mice by µCT revealed increased cortical bone in the 

long bones and spine (Orriss et al., 2011b) (Fig. 1). 



The role of the P2Y13 receptor in regulating osteoclast function is still unclear. However, P2Y13 

receptor knockout mice display reduced osteoclast numbers in vivo and protection from ovariectomy-

induced bone loss in females (Wang et al., 2012).  

The regulation of osteoclast formation, activity and survival by the P2X7 receptor has been the focus 

of many, often conflicting, studies.  P2X7 receptor blockade with selective antagonists or a monoclonal 

antibody has been shown to inhibit osteoclast formation formation (Agrawal et al., 2010; Gartland et al., 

2003a).  Analogues of the P2X7 receptor antagonist, KN-62, have also been shown to induce osteoclast 

apoptosis (Penolazzi et al., 2005). Combined, these studies suggest a role for the P2X7 receptor in 

osteoclast formation.  However, other investigations have demonstrated that P2X7 receptor knockout 

mice possess functional osteoclasts in vivo and that osteoclasts can be generated in vitro, using 

knockout precursor cells (Gartland et al., 2003b; Ke et al., 2003).  Furthermore, prolonged exposure to 

ATP has also been shown to down-regulate P2X7 receptor function and inhibit osteoclast formation and 

activity (Hiken et al., 2004; Naemsch et al., 2001).  

Other work has demonstrated that P2X7 receptor activation induces the translocation of NFĸB 

(Korcok et al., 2004) and an isoform specific PKC in osteoclasts and their precursors (Armstrong et al., 

2009). The P2X7 receptor may additionally play a role in the intercellular communication between 

osteoblasts and osteoclasts, cytoskeletal reorganisation at the sealing zone and the delivery and 

secretion of lytic granules into the resorption lacunae (Hazama et al., 2009; Jorgensen et al., 2002). 

Recently, it was reported that ATP release from osteoclasts is mediated via the P2X7 receptor 

(Brandao-Burch et al., 2012; Pellegatti et al., 2011). Thus, this receptor may promote osteoclast fusion 

by increasing the concentration of extracellular adenosine (via breakdown of released ATP) (Pellegatti 

et al., 2011).  It has also been suggested that ATP stimulates human osteoclast activity indirectly 

through upregulation of osteoblast-expressed RANKL (Buckley et al., 2002). 

At present, it is not known how activation of the other P2 receptor subtypes influences osteoclast 

formation and activity and this presents an interesting area for further study. 

P1 receptors, adenosine and osteoclasts 

A potential role for adenosine in regulating osteoclast function was first suggested in the 1980s when 

the P1 receptor agonist, 2-chloroadenosine, was shown to stimulate bone resorption in calvarial bones 

in organ culture (Lerner et al., 1983). However, a later investigation found that adenosine analogues 

had no effects on resorption in this culture system (Lerner et al., 1987).   In agreement, several studies 

have reported that adenosine has no effect on the formation or resorptive activity of rodent osteoclasts 

in vitro (Hoebertz et al., 2001; Morrison et al., 1998). Adenosine was also reported to have no effect on 

intracellular calcium levels in rabbit osteoclasts (Korcok et al., 2004). However, more recent work has 

suggested that stimulation of the A2A receptor by adenosine or selective agonists can both stimulate 

(Pellegatti et al., 2011) and inhibit (Mediero et al., 2012b) osteoclast formation.  A2A receptor activation 

has also been shown to prevent the osteolysis that occurs during prosthesis loosening, a common 

cause of joint implant failure (Mediero et al., 2012a).  

Pellegatti et al (2011) reported that the A1 receptor was only weakly expressed by osteoclasts and 

activation of the A1 receptor was recently shown to have no effect on mouse osteoclasts (Pellegatti et 

al., 2011; He et al., 2012).  In contrast, blockade or deletion of the A1 receptor can reduce the formation 

of mouse osteoclasts in culture (Kara et al., 2010a) and A1 receptor knockout mice display increased 

bone mineral density and resistance to ovariectomy-induced bone loss (Kara et al., 2010b) 



 Adenosine has also been reported to stimulate osteoclastogenesis indirectly.  Evans et al (2006) 

suggested that the adenosine produced from the hydrolysis of released ATP acts on P1 receptors to 

cause IL-6 release and inhibition of osteoprotegerin secretion (Evans et al., 2006).  

2.5. P2 receptor polymorphisms and bone  

Single nucleotide polymorphisms (SNPs) have been described in several P2 receptor genes (P2X4, 

P2X7, P2Y1, P2Y2, P2Y6, P2Y13). To date, only SNPs in the genes for the P2Y2, P2X4 and P2X7 

receptors have been studied for an association with osteoporosis risk or bone turnover (see review 

(Wesselius et al., 2012)).   

 At present, two SNPs have been identified which alter P2Y2 receptor activity.  The first of these is 

located at position 1000 (cytosine to thymine), changing arginine to cysteine at residue 334 (Arg334Cys) 

(Janssens et al., 1999).  The second SNP is located at position 936 (guanine to cytosine) and changes 

arginine to serine at residue 312 (Arg312Ser) (Buscher et al., 2006).  A recent study examining the 

association between the Arg312Ser SNP and bone status found that subjects homozygous for the C 

(variant) allele of the P2Y2 gene had a significantly increased bone mineral density (BMD) at 

menopause (Wesselius et al., 2013a).  Furthermore, the rate of bone loss for up to ten years post-

menopause was 20-30% lower than both the heterozygous and the homozygous for the common allele 

(Wesselius et al., 2013a).  

 Many SNPs have been identified in the P2X7 receptor gene (see the recent review by Wesselius et 

al (Wesselius et al., 2012) for detailed information). Loss of function polymorphisms in the P2X7 receptor 

have been associated with increased fracture risk, reduced BMD and osteoporosis (Gartland et al., 

2012b; Husted et al., 2013; Ohlendorff et al., 2007).  Recently, it was reported that a single SNP in the 

P2X4 receptor gene (tyrosine to cysteine at position 315) is associated with an increased risk of 

osteoporosis and lower lumbar spine BMD (Wesselius et al., 2013b).  

3. Cartilage 

Cartilage is a flexible connective tissue that is found throughout the body, including the surface of joints.  

It is composed of specialised cells called chondrocytes that synthesize large amounts of collagen, 

abundant ground substance rich in proteoglycans and elastin fibres. Unlike other connective tissues, 

cartilage does not have a blood supply and chondrocytes receive their nutrients by diffusion.  This lack 

of vasculature means that, compared to other tissues, cartilage grows and repairs itself more slowly. 

P2 receptor expression by chondrocytes 

Purinergic receptor expression in cartilage was first suggested in 1990 when ATP was found to 

stimulate resorption of bovine nasal cartilage (Leong et al., 1990). The following year, ATP was found 

to increase the production of PGE2 from articular chondrocytes (Caswell et al., 1991). Several early 

studies reported that chondrocytes were responsive to UTP as well as ATP indicating the presence of 

P2Y receptors (Caswell et al., 1992; Kaplan et al., 1996; Koolpe et al., 1997). Chondrocytes are now 

know to express multiple P2 receptor subtypes including the P2X1, P2X2, P2X3, P2X4, P2X7, P2Y1 

and P2Y2 receptors  (Koolpe et al., 1999; Knight et al., 2009; Varani et al., 2008b; Kudirka et al., 2007).  

Many of these receptors (P2X2, P2X4, P2X7 and P2Y1) are expressed throughout all the zones of 

articular cartilage, whilst others (e.g. the P2Y2 receptor) show more limited spatial expression (Knight 

et al., 2009).  A number of investigations have shown increased [Ca2+]I levels following treatment with 

ATP, ADP or UDP, indicating the presence of functional P2 receptors on chondrocytes (Bulman et al., 

1995; Hung et al., 1997; Kono et al., 2006). 



Functional effects of P2 receptor signalling in chondrocytes 

To date, many of the studies describing the effects of purinergic signalling on chondrocytes have been 

conflicting with some reports suggesting that extracellular nucleotides negatively regulate cartilage 

metabolism whilst others describe beneficial effects of ATP.  ATP has been reported to inhibit cartilage 

formation in micromass cultures (Meyer et al., 2001), promote proteoglycan breakdown and 

glycosaminoglycan release in bovine nasal cartilage (Brown et al., 1997) and increase the production 

of inflammatory mediators, nitric oxide (NO) and PGE2 (Varani et al., 2008b). Furthermore, P2Y2 

receptor stimulation increased IL-1-mediated PGE2 release from articular chondrocytes (Koolpe et al., 

1999) and induced a rapid rise in PGE2 synthesis via the ERK1/2 and p38 MAPK signalling pathways 

(Berenbaum et al., 2003).  In contrast, early work suggested that ATP caused articular cartilage 

mineralisation by promoting matrix vesicle-mediated calcium deposition (Ryan et al., 1992; Hsu, 1992).  

Extracellular ATP and UTP have also been shown to stimulate cartilage proteoglycan and collagen 

accumulation and suppress inflammatory mediator (NO) production (Chowdhury et al., 2006; Croucher 

et al., 2000).  

Other reported effects of purinergic signalling include increased chondrocyte differentiation (Fodor 

et al., 2009), elevated fibroblast growth factor-induced proliferation (Kaplan et al., 1996; Koolpe et al., 

1997) and increased responsiveness to IL-1β and TNF-α (Caswell et al., 1992; Leong et al., 1993). 

ATP release and breakdown in cartilage 

The first direct evidence for constitutive ATP release from chondrocytes came in 2000 from a study by 

Graff et al. (Graff et al., 2000). Subsequent studies have shown that P2Y receptor stimulation increases 

[Ca2+]i levels which trigger further release of ATP from adjacent cells (Kono et al., 2006; Millward-Sadler 

et al., 2004).   

Ecto-nucleotidase activity in chondrocytes was first reported by Kanabe et al in 1983 (Kanabe et al., 

1983). It was later shown that NTPDases, NPPs, alkaline phosphatase and ecto-5’-nucleotidase, as 

well as adenylate kinase and nucleoside diphosphokinase which mediate regeneration of ATP, are all 

present in cartilage (Graff et al., 2003). A recent study found that P1 receptor agonists decreased 

extracellular PPi production in chondrocytes and cartilage explants, while ADP increased PPi levels, 

suggesting a homeostatic role for P1 and P2 receptors in stabilizing concentrations of PP i (Rosenthal 

et al., 2010). 

P1 receptors and chondrocytes 

Chondrocytes are known to express all the P1 receptors (Tesch et al., 2002; Varani et al., 2008a); 

however, information regarding the functional effects of receptor activation remains limited.  Pulsed 

electro-magnetic fields have been shown to promote chondrocyte proliferation via the up-regulation of 

A2A and A3 receptor expression (Varani et al., 2008a).  Adenosine, acting via A2A
 receptors, can also 

reduce IL-1β-induced inflammation (Campo et al., 2012) and VEGF secretion (Vincenzi et al., 2013).   

4. Muscle 

There are three types of muscle, skeletal, cardiac and smooth within the body.  Cardiac and smooth 

muscle are often termed involuntary as these muscles contract without conscious thought.  Whilst 

cardiac muscle is only found within the heart, smooth muscle is more widely distributed being found 

within the walls of many internal organs.  Skeletal (or voluntary) muscle is anchored to bones by 

tendons. It plays a key role in locomotion and posture and thus is a critical component of the 

musculoskeletal system.  Within muscle, extracellular ATP comes from a number of sources including 



motor nerves, stressed or exercising muscle and damaged or dying muscle and vascular endothelial 

cells (Buvinic et al., 2009; Mortensen et al., 2009; Tu et al., 2012). 

Skeletal muscle and purinergic signalling   

The first evidence for involvement of purinergic signalling in skeletal muscle came in the 1980’s when 

ATP analogues were found to induce the lengthening of muscle fibres in rigor (Schoenberg, 1989). 

Activation of P2 receptors was later shown to induce IP3 accumulation in cultured skeletal muscle cells 

(Keresztes et al., 1991).  Many studies have demonstrated the expression of multiple P2 receptor 

subtypes by skeletal muscle (Banachewicz et al., 2005; Cheung et al., 2003; Deli et al., 2007; Janssens 

et al., 1996);  however, the pattern of purinergic receptor expression is strongly influenced by 

developmental stage and species (see (Burnstock et al., 2013)). 

There is now abundant evidence showing that purinergic signalling plays an important role in 

modulating the development  and function of skeletal muscle (see review by (Burnstock et al., 2013) for 

detailed information).  For example, several studies have shown that extracellular ATP can regulate 

myoblast proliferation and the differentiation of mammalian skeletal muscle (Martinello et al., 2011; 

Ryten et al., 2002; Sciancalepore et al., 2012).  Extracellular nucleotides, acting via the P2Y1 receptor, 

can also enhance muscle contraction and influence muscle excitability (Choi et al., 2003; Voss, 2009). 

5. Summary and future directions 

Our knowledge about the role purinergic signalling in the musculoskeletal system has increased 

significantly in the past twenty years.  In particular, it is now evident that P2 receptor-mediated signalling 

exerts complex, local effects on bone cell function.  The effects of this signalling system are influenced 

by a number of factors including the receptor subtype, the extracellular nucleotides present locally and 

the expression of ecto-nucleotidases. At present, there is abundant evidence for the negative actions of 

extracellular nucleotides, with particularly notable effects on osteoblast function and matrix 

mineralisation.  However, given that purinergic signalling also exerts some positive effects on bone cells, 

it is likely that a balance exists in vivo between the positive and negative actions of this complex 

signalling system.  Selective receptor agonists and antagonists for the P2 receptor subtypes involved in 

bone remodelling are being developed, which ultimately could lead to new ways to treat bone disease. 

Bone, cartilage and muscle are often studied in isolation and the ability of one tissue to influence 

another is often overlooked. However, given the significant ATP release and widespread expression of 

purinergic receptors in the musculoskeletal system crosstalk between these tissues is likely and 

presents an important area for future work.  
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Figure Legends 

Figure 1.  Bone phenotypes of P2Y1, P2Y2 and P2Y6 receptor knockout mice 



Representative µCT images of the femurs of 8-week old P2Y1, P2Y2 and P2Y6 receptor knockout mice 

show that receptor deletion causes significant changes in the bone structure. (A) P2Y1 null mice have 

decreased trabecular bone volume and trabecular number.  (B) P2Y2 receptor knockout animals display 

increased trabecular bone volume, thickness and number.  (C) P2Y6 null mice have a higher cortical 

bone volume and thickness. 

Figure 2.  Expression of P2 receptors by osteoblasts 

The expression of P2 receptors by primary rat osteoblasts was studied by immunofluorescence using 

specific primary polyclonal antibodies, Cy3-labelled anti-rabbit secondary antibody (red) and DAPI 

nuclear stain (blue).  Expression of protein for all the P2 receptors was detected in in rat osteoblasts.  

Scale bar = 25µm.  

 

Figure 3. Extracellular ATP acts via P2-receptor dependent and independent mechanisms to 

inhibit bone mineralisation. 

Osteoblasts constitutively release ATP into the bone microenvironment, where it can act via two different 

mechanisms to inhibit mineralisation.  (1) P2-receptor dependent: activation of the P2Y2, P2X1 or P2X7 

receptor decreases TNAP activity and PPi breakdown.  (2) Receptor independent:  hydrolysis of ATP 

by NPP1 produces PPi.  The overall effect of either mechanism is increased levels of extracellular PPi, 

the key physicochemical inhibitor of mineralisation.  
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