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Abstract

Crocodiles and their kin (Crocodylidae) use asymmetrical (bounding and galloping) gaits when moving rapidly.

Despite being morphologically and ecologically similar, it seems alligators and their kin (Alligatoridae) do not.

To investigate a possible anatomical basis for this apparent major difference in locomotor capabilities, we

measured relative masses and internal architecture (fascicle lengths and physiological cross-sectional areas) of

muscles of the pectoral and pelvic limbs of 40 individuals from six representative species of Crocodylidae and

Alligatoridae. We found that, relative to body mass, Crocodylidae have significantly longer muscle fascicles

(increased working range), particularly in the pectoral limb, and generally smaller muscle physiological cross-

sectional areas (decreased force-exerting capability) than Alligatoridae. We therefore hypothesise that the

ability of some crocodylians to use asymmetrical gaits may be limited more by the ability to make large, rapid

limb motions (especially in the pectoral limb) than the ability to exert large limb forces. Furthermore, analysis

of scaling patterns in muscle properties shows that limb anatomy in the two clades becomes more divergent

during ontogeny. Limb muscle masses, fascicle lengths and physiological cross-sectional areas scale with

significantly larger coefficients in Crocodylidae than Alligatoridae. This combination of factors suggests that

inter-clade disparity in maximal limb power is highest in adult animals. Therefore, despite their apparent

morphological similarities, both mean values and scaling patterns suggest that considerable diversity exists in

the locomotor apparatus of extant Crocodylia.
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Introduction

Smaller individuals of some species of extant Crocodylia use

asymmetrical bounding and galloping gaits for rapid terres-

trial locomotion. This remarkable behaviour has been

reported in only two of the three extant crocodylian clades:

Gavialoidea [the gharial, Gavialis gangeticus (Singh &

Bustard, 1976)] and Crocodylidae [the Australian freshwater

crocodile, Crocodylus johnstoni (Webb & Gans, 1982;

Renous et al. 2002), the Australian saltwater crocodile, Croc-

odylus porosus (Zug 1974), the mugger crocodile Crocodylus

palustris and the New Guinea crocodile Crocodylus novae-

guineae (Whitaker & Andrews, 1988), and the West African

dwarf crocodile Osteolamus tetraspis (Whitaker, 1981)].

Despite numerous analyses (e.g. Gatesy, 1991; Blob &

Biewener, 1999; Blob, 2001; Willey et al. 2004), such asym-

metrical gaits have yet to be observed in Alligatoridae

[although Reilly & Elias (1998) describe one individual Amer-

ican alligator (Alligator mississippiensis) as ‘attempt(ing) to

gallop’ for part of a stride]. Remarkably, this suggests that

Alligatoridae, despite being morphologically more similar

to Crocodylidae than either is to Gavialoidea (e.g. Brochu,

1997, 2012; Meers 1999), may lack a major locomotor trait

found in both of those clades (Hutchinson, 2012). Addition-

ally, anecdotal evidence (e.g. Cott 1960; Singh & Bustard,

1976) supports the inference that both Crocodylidae and

Gavialoidea may lose the use of asymmetrical gaits past a

certain size boundary (~2 m total length). Such ontogenetic

gait loss is rare among tetrapods, so analysis of crocodylian

asymmetrical gaits is not only a source of comparative data
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on quadrupedal gaits in general (crocodylians represent the

only non-mammalian vertebrates known to use asymmetri-

cal quadrupedal gaits), it is also a useful case study in verte-

brate locomotor ontogeny.

While the symmetrical gaits of Crocodylia (mainly A. mis-

sissippiensis) are reasonably well studied, equivalent system-

atic observations of asymmetrical (galloping and bounding)

gaits unfortunately are scarce. To date, only two studies

(Webb & Gans, 1982; Renous et al. 2002) have gathered suf-

ficient data to quantify kinematic parameters of asymmetri-

cal gaits, both in the Australian freshwater crocodile,

C. johnstoni.

However, unlike behavioural data from living animals,

descriptive anatomical data from crocodylian cadavers can

be obtained relatively easily. These data can also be indi-

rectly informative on comparative locomotor capabilities,

inspiring hypotheses about locomotor function that future

experimental or theoretical studies can test. Here, we inves-

tigate whether an anatomical basis for asymmetrical gait

use can be found in the limbs of extant Crocodylia by com-

paring muscle architecture from representative Alligatori-

dae and Crocodylidae.

Muscle ‘architecture’ refers to anatomical properties of

muscle (fascicle length, fascicle cross-section, and mass)

directly linked to biomechanical principles of muscle func-

tion. Briefly stated (although see Calow & Alexander, 1973;

Sacks & Roy, 1982; Alexander & Ker, 1990; Payne et al. 2005;

Smith et al. 2006; and Allen et al. 2010 for more-in depth

discussion), when comparing muscles of otherwise similar

properties (muscle fibre type, internal and external tendon

components and the size and geometry of the bony levers

to which they attach), fascicle length determines the ‘work-

ing range’ over which a muscle may contract, whereas fasci-

cle cross-sectional area (physiological cross-sectional area,

PCSA) determines the force a muscle may generate. Muscle

mass sets a constant, inverse relationship between fascicle

length and area (a muscle may have either shorter fascicles

or fewer long fascicles in a given volume), and so deter-

mines muscle work (force times distance) and, again, assum-

ing equal fibre velocities, muscle power (force times

distance/time). Analysis of significant differences and differ-

ential ontogenetic scaling patterns in muscle architecture

among taxa with differing locomotor abilities may there-

fore be an informative proxy for functional differences

underlying use/non-use of asymmetrical gaits.

In the footfall-based classification of Hildebrand (see Hil-

debrand, 1985 and references therein for full discussion of

gait patterns), symmetrical gaits in Crocodylia studied to

date can be generally be characterised as lateral sequence

walking or a walking trot (Gatesy, 1991; Reilly & Elias 1998,

Renous et al. 2002). Asymmetrical gaits were found to be

highly variable, with four broad classes recognised (Renous

et al. 2002). These include the bound (forelimbs then hind-

limbs make successive ground contact as near-synchronous

pairs), half-bound (individual forelimbs make contact in

succession, followed by near-synchronous hindlimb contact)

and two forms of gallop [individual forelimbs and hind-

limbs make contact in a four-beat sequence, either with

ipsilateral (transverse gallop) or contralateral (rotary gallop)

fore-hind lead limbs].

In equivalently sized taxa [~0.3 m snout-vent length

(SVL)], maximum recorded relative velocities for trotting

were generally far slower (~1 SVL s�1, Reilly & Ellias 1998)

than for bounding and galloping (~9 SVL s�1, Webb &

Gans, 1982; ~15 SVL s�1, Renous et al. 2002, both using a

bound). Minimum speeds recorded for asymmetrical gaits

come close to, but do not overlap with, maximum symmet-

rical gait speeds (~1.4 SVL s�1, Renous et al. 2002). Although

duty factor (stance time/stride time) was in general less for

asymmetrical gaits (~0.5, Renous et al. 2002) than for sym-

metrical (~0.7, Reilly & Elias 1998) gaits, no significant rela-

tionship between speed and duty factor was found for

either gait class (Renous et al. 2002). Duty factors therefore

remained high for an asymmetrical gait, and speed

increases were achieved by increasing both stride length

and frequency (Reilly & Elias 1998; Renous et al. 2002).

Asymmetrical gaits may therefore be tentatively associ-

ated with absolutely higher speeds and, because duty fac-

tor remains constant, larger and faster arcs of limb

motion during stance as speed increases. Faster speeds (in

addition to the presence of an aerial phase) require gen-

erally greater forces from limb extensor (antigravity) mus-

cles (Weyand et al. 2000; Hutchinson, 2004a). Given the

association of muscle architectural and functional proper-

ties, this suggests that crocodylian bounding/galloping

may require generally longer muscle fascicles (to cycle the

limbs through larger arcs), and larger extensor muscle

PCSA (to provide greater support forces). Considering that

these parameters cannot both be increased without

increasing muscle mass, asymmetrical gaits may require

larger extensor muscles.

Given the above points, we used our muscle architecture

data to test the following hypotheses: first, that the appar-

ent lack of asymmetrical gait usage ability in Alligatoridae

is associated with significantly shorter limb muscle fascicles,

smaller muscle PCSA, and less massive limb extensors (com-

pared to Crocodylidae) and second, that the ontogenetic

loss of asymmetrical gaits in Crocodylidae is associated with

negatively allometric (compared with Alligatoridae) onto-

genetic scaling of fascicle length, PCSA and muscle mass

(i.e. scaling patterns will act to reduce differences in muscle

architect-ure between Crocodylidae and Alligatoridae as

ontogeny progresses).

Methods

We took the bulk of anatomical data from two species, Ameri-

can alligators (A. mississippiensis, n = 15, body mass ~0.5–57.7 kg),

and Nile crocodiles (Crocodylus niloticus, n = 16, body mass

~0.1–278 kg). We also obtained smaller anatomical datasets from
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the following species of Crocodylidae: Morelet’s Crocodile (Crocody-

lus moreletii, n = 3, body masses ~9.5–28 kg), Crocodylus johnstoni

(n = 2, body masses ~1.5–20 kg), and Osteolaemus tetraspis (n = 3,

body masses ~5.5–10 kg). Other than A. mississippiensis, the only

other representative of Alligatoridae sampled was a single black

caiman (Melanosuchus niger, body mass 90 kg). Our data on

A. missisippiensis were taken from a previous publication (Allen

et al. 2010) with minor modifications. We collected all other data

from dissection of specimens obtained from La Ferme aux Croco-

diles (Pierlatte, France), where they had died from natural causes

unrelated to this study. All species other than A. mississippiensis

were reared in captivity, which may influence body masses (see

Results).

As the range in body masses for Alligatoridae (0.1–90 kg) differed

by an order of magnitude from that for Crocodylidae (0.1–278 kg),

we repeated our analyses restricting body masses for both clades to

the same range (0.1–60 kg) to assess any associated bias in our

results. The distribution of body masses in both samples is roughly

similar (see Supporting Information Fig. S3 for a frequency scatter

plot), although in the body mass range 10–20 kg Crocodylidae are

better represented in our sample than Alligatoridae (10 individuals

vs. 4).

We measured whole-body mass (Mbody) for each specimen using

a hanging scale (Cely CR-200, accurate to 100 g) for animals larger

than 1 kg, and electronic scales (Medler PM480 DeltaRange, accu-

rate to 0.001 g) for smaller specimens, as well as for all individual

muscle masses. We recorded muscle mass (Mmusc) after trimming all

external tendon. The sum of all limb muscle masses was also calcu-

lated for the pectoral and pelvic limbs. We bisected muscle bellies

parallel to fascicle orientation and recorded exposed fascicle

lengths. Because fascicle lengths vary within individual muscles, we

repeated bisection and measurement at multiple sites (approxi-

mately five per belly, varying with the complexity of the muscle)

and calculated a mean value (Lfasc). We estimated fascicle pennation

angle (angular difference between fascicles and internal tendons/

aponeuroses) using a protractor. Again, multiple measurements

were taken (also approximately five) and a mean value (h, in

degrees) calculated.

We estimated muscle volume (Vmusc) from Mmusc using a density

value of 1.06 g cm�3 (typical vertebrate muscle, Mendez & Keys,

1960). PCSA was then estimated to be Vmusc divided by Lfasc, multi-

plied by the cosine of h (Eq. 1, below):

PCSA ¼ Vmusc

Lfasc

� �
cosh ð1Þ

To analyse differences in muscle architectural properties between

Crocodylidae and Alligatoridae, we used a simple means-difference

test on normalised muscle architectural datasets [Mmusc/Mbody, Lfasc/

Mbody
1/3 and PCSA/Mbody

2/3, making the implicit assumption that

these parameters do not stray too far from geometric similarity, i.e.

isometry)] from both clades using R (v0.97, R Development Core

Team 2008). Data for several species had significantly non-normal

distributions (based on a Shapiro–Wilks test, a = 0.05); hence we

used a bootstrap method (boot package for R set at 10 000 replica-

tions, http://cran.r-project.org/web/packages/boot/index.html) to

derive confidence intervals for mean architectural data in each

clade. The null hypothesis, zero difference in clade means, was

rejected (at a = 0.05) if the 95% confidence intervals did not

overlap.

To compare scaling patterns in muscle architectural properties

between the two clades, we log-transformed muscle architecture

datasets (Mmusc, Lfasc and PCSA) and regressed them against (also

log-transformed) Mbody using a reduced major axis method (lmod-

el2 package for R, http://cran.r-project.org/web/packages/lmodel2/

index.html). As above, due to non-normality in the input datasets,

we tested hypotheses of significant inter-clade differences in

architectural property scaling coefficients using a 10 000-replication

bootstrap, generating 95% confidence intervals. The null hypothe-

sis of no difference in scaling coefficient was rejected (again at

a = 0.05) if the confidence intervals for each clade did not overlap.

Additionally, we tested for positive or negative allometry in our

architectural data by comparing our confidence intervals for regres-

sion coefficients against isometry, represented by a coefficient of 1

for muscle mass, 2/3 for PCSA, and 1/3 for fascicle length.

Results

We obtained 27 225 measurements of 36 pectoral and 38

pelvic limb muscles (see Table 1 for names, estimated func-

tions, and abbreviations, and Figs 1 and 2 for in situ anat-

omy of pectoral and pelvic limbs, respectively) from 40

individual crocodylians representing six species. Here we

present our results for muscle architecture first for mean

values (shown in Figs 3–5) and then for scaling relationships

(shown in Figs 6–8). We found no significant differences in

our results using all available specimens vs. restricting body

mass to 0.1–60 kg for either clade. The results of both mean

value comparisons and scaling analysis can be found, along

with the raw data, in the Supporting Information Data S1

(fascicle length), S2 (muscle mass), S3 (PCSA), S4 (summed

limb data) and S5 (raw data). Also included as Supporting

Information are high-resolution versions of Figs 1 and 2

(Figs S1 and S2).

Due to the potentially confounding effects of body

mass in captive vs. wild animals (captive animals tend to

be overweight), we also analysed a test subset of our

data (muscle fascicle length) normalised to muscle belly

length (i.e. muscle total length from origin to insertion,

minus tendon length), rather than derivatives of body

mass. We found no qualitative differences between these

results and those obtained using body mass as a normal-

iser (see Fig. S4).

Mean values

Fascicle length

Both clades of Crocodylia showed proximal-distal decreases

in fascicle length in both the pectoral and pelvic limbs

(Fig. 3). Crocodylidae had significantly longer fascicles in

most pectoral limb muscles (Fig. 3, red outlines), with the

largest differences seen in pectoral girdle muscles. Excep-

tions to the trend were the digital muscles [M. flexor digito-

rum brevis (FDBF) and M. extensor digitorum brevis (EDBF),

Fig. 3] and, interestingly, the largest single pectoral limb

muscle [the shoulder adductor/extensor M. pectoralis (PEC)].

We found fewer significant differences in the pelvic limb.

Fascicle lengths for the majority of hip and knee actuators
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Table 1 Crocodylian limb muscles, abbreviations and estimated primary functions.

Pectoral limb Pelvic limb

Short name Full name Estimated function

Short

name Full name Estimated function

SVT Serratus ventralis thoracis Pectoral girdle extensors CFL Caudofemoralis longus Hip extensors/knee

flexors

COCS Costocoracoideus superficialis Pectoral girdle extensors CFB Caudofemoralis brevis Hip extensors/knee

flexors

COCP Costocoracoideus profundus Pectoral girdle extensors ISTR Ischiotrochantericus Hip extensors/knee

flexors

LS Levator scapulae Pectoral girdle flexors ILFB Iliofibularis Hip extensors/knee

flexors

TRA Trapezius Pectoral girdle flexors PIT Pubo-ischio-tibialis Hip extensors/knee

flexors

SVC Serratus ventralis cervicus Pectoral girdle flexors FTE Flexor tibialis externus Hip extensors/knee

flexors

RHO Rhomboideus Pectoral girdle

adductors

FTI 1 Flexor tibialis internus 1 Hip extensors/knee

flexors

LD Latissimus dorsi Shoulder extensors FTI 2 Flexor tibialis internus 2 Hip extensors/knee

flexors

SS Subscapularis Shoulder extensors FTI 3 Flexor tibialis internus 3 Hip extensors/knee

flexors

SC Supracoracoideus Shoulder flexors FTI 4 Flexor tibialis internus 4 Hip extensors/knee

flexors

DC Deltoideus clavicularis Shoulder flexors PIFE 1 Pubo-ischio-femoralis

externus 1

Hip adductors

CBD Coracobrachialis brevis dorsalis Shoulder flexors PIFI 2 Pubo-ischio-femoralis

internus 2

Hip flexors

PEC Pectoralis Shoulder adductors PIFI 1 Pubo-ischio-femoralis

internus 1

Hip flexors

CBV Coracobrachialis brevis ventralis Shoulder adductors ADD 1 Adductor 1 Hip adductors

DS Deltoideus scapularis Shoulder abductors ADD 2 Adductor 2 Hip adductors

SHC Scapulohumeralis caudalis Shoulder abductors PIFE 2 Pubo-ischio-femoralis

externus 2

Hip adductors

TM Teres major Shoulder abductors PIFE 3 Pubo-ischio-femoralis

externus 3

Hip adductors

TB Triceps brevis Elbow extensors IF Iliofemoralis Hip abductors

TLL Triceps longus lateralis Elbow extensors IT 1 Iliotibialis 1 Knee extensors

TLM Triceps longus medialis Elbow extensors IT 2 Iliotibialis 2 Knee extensors

BB Biceps brachii Elbow flexors IT 3 Iliotibialis 3 Knee extensors

HR Humeroradialis Elbow flexors FMTE Femorotibialis externus Knee extensors

BR Brachialis Elbow flexors FMTI Femorotibialis internus Knee extensors

FUL Flexor ulnaris Elbow flexors AMB 1 Ambiens 1 Knee extensors

ABR Abductor radialis Elbow flexors AMB 2 Ambiens 2 Knee extensors

PT Pronator teres Elbow pronators GE Gastrocnemius externus Ankle plantarflexors

PQ Pronator quadratus Elbow pronators GI Gastrocnemius internus Ankle plantarflexors

SUP Supinator Elbow supinators FDL Flexor digitorum

longus (pelvic)

Ankle plantarflexors

FCU Flexor carpi ulnaris Wrist plantarflexors IC Interosseus cruris Ankle plantarflexors

FDL-1 Flexor digitorum longus

1 (pectoral limb)

Wrist plantarflexors FL Fibularis longus Ankle plantarflexors

FDL-2 Flexor digitorum longus

2 (pectoral limb)

Wrist plantarflexors FHL Flexor hallucis longus Ankle plantarflexors

ECRB Extensor carpi radialis brevis Wrist dorsiflexors FB Fibularis brevis Ankle plantarflexors

ECRL Extensor carpi radialis longus Wrist dorsiflexors PP Pronator profundus Ankle plantarflexors

ECUL Extensor carpi ulnaris longus Wrist dorsiflexors TA Tibialis anterior Ankle dorsiflexors
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were statistically indistinguishable between the two clades,

although Crocodylidae had significantly longer fascicles in

the more ventral heads of the M. puboischiofemoralis exter-

nus (PIFE 2 and 3) and the M. femorotibialis group (FMTI

and FMTE, Fig. 3, red outlines). However, with the excep-

tion of the internal head of M. gastrocnemius (GI), we

found Crocodylidae to have significantly longer fascicles

in their ankle plantarflexors. We found no muscles in

Table 1. (continued)

Pectoral limb Pelvic limb

Short name Full name Estimated function

Short

name Full name Estimated function

FDBF Flexor digitorum brevis

(pectoralis)

Digital plantarflexors

(pectoral)

EDL Extensor digitorum

longus

Ankle dorsiflexors

EDBF Extensor digitorum brevis

(pectoralis)

Digital dorsiflexors

(pectoral)

FDBH Flexor digitorum

brevis (pelvic)

Digital plantarflexors

(pelvic)

EDBH Extensor digitorum

brevis (pelvic)

Digital dorsiflexors

(pelvic)

EHL Extensor hallucis

longus

Digital dorsiflexors

(pelvic)

Fig. 1 Pectoral limb anatomy of a generalised crocodylian. See Table 1 for muscle abbreviations. Colour denotes hypothesised primary locomotor

function: Blue/purple (extensors), red (flexors), gold (supinators), green (pronators).
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which Alligatoridae had significantly longer fascicles than

Crocodylidae.

Muscle mass

Both clades also showed proximal-distal decreases in muscle

masses within their limbs (Fig. 4). Unlike fascicle lengths, we

found that masses for the majority of muscles in both limbs

were statistically indistinguishable between Alligatoridae

and Crocodylidae, and the remainder showed very small sig-

nificant differences (Fig. 4). One notable exception was the

M. serratus ventralis thoracis (SVT, Fig. 4, red outline),

which was dramatically more massive in Crocodylidae. Inter-

estingly, those significant differences that we did find indi-

cated generally (slightly) more massive pectoral limb

muscles in Crocodylidae (Fig. 4, red outlines), and (again,

slightly) more massive pelvic limb muscles in Alligatoridae

(Fig. 2, blue outlines).

Analysis of summed limb muscle masses (Fig. 4, boxout to

right) indicates that while both Crocodylidae and Alligatori-

dae have a similar percentage of body mass dedicated to

Fig. 2 Pelvic limb anatomy of a generalised crocodylian. See Table 1 for muscle abbreviations. Colour denotes hypothesised primary locomotor

function: Blue/purple (extensors), red (flexors), gold (abductors/adductors).
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limb muscles (~14% body mass, see Fig. 4, Data S4), the

ratio of pectoral limb muscle mass: pelvic limb muscle mass

differs significantly between clades – a ratio of 0.48 (Alliga-

toridae) vs. 0.62 (Crocodylidae – see Data S4). This is due to

Crocodylidae having significantly more massive pectoral

limbs (2.7% body mass vs. 2.2 in Alligatoridae see Fig. 4,

Data S4).

Muscle PCSA

Unlike fascicle length and mass, we observed no particular

proximal-distal trend in muscle PCSA (Fig. 5), which were

(slightly) larger in the mid-limb (elbow and knee extensors)

for both clades. We found that Alligatoridae had signifi-

cantly larger PCSA for the majority of pectoral limb muscles

(Fig. 5, blue outlines), and these differences were most pro-

nounced for the elbow extensors, pronators and supinators.

We found fewer and generally smaller significant differ-

ences in the pelvic limb (Fig. 5), most of which also indi-

cated (slightly) larger PCSA in Alligatoridae (Fig. 5, blue

outlines). However, the single largest locomotor muscle,

M. caudofemoralis longus (CFL, hip extensor and knee

flexor, Fig. 5) had a dramatically larger PCSA in Crocodyli-

dae (Fig. 5, red outline).

Scaling relationships

Fascicle length

In most muscles, scaling coefficients for fascicle lengths

could not be statistically distinguished between the two

clades (Fig. 6). There was only one exception to this pattern

in the pectoral limb [the M. latissimus dorsi (LD), a shoulder

extensor], and two in the pelvic limb [the third head of

M. flexor tibialis internus (FTI 3), a hip extensor/knee flexor,

and the M. tibialis anterior (TA), an ankle dorsiflexor], all of

which showed more positive scaling coefficients in Croco-

dylidae (Fig. 6, red outlines).

In general, scaling coefficients indicated slight positive

allometry in muscle fascicle lengths for both limbs in both

clades (Fig. 6, blue lines for Alligatoridae, red for Crocodyli-

dae). However, we did find some differences in patterns of

allometry vs. isometry in the two clades. We observed that

Crocodylidae scaled shoulder extensor and wrist dorsiflexor

Fig. 3 The 95% confidence intervals for mean limb muscle fascicle lengths, normalised to body mass1/3, in Alligatoridae (grey circles) and Croco-

dylidae (black triangles). Muscles with significantly longer fascicles in Crocodylidae are highlighted in red. See Table 1 for muscle abbreviations.
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fascicle lengths with mild positive allometry (Fig. 6, red

lines), whereas Alligatoridae scaled them isometrically. We

also identified (very slight) positive allometry of fascicle

lengths in the shoulder flexors of Alligatoridae (vs. isometry

in Crocodylidae). In the pectoral limb, Crocodylidae showed

a slightly greater tendency to scale fascicle lengths for hip

extensor/knee flexor and ankle/digital actuators (in general)

positively.

Muscle mass

As we found for fascicle lengths, for most muscle masses,

scaling coefficients could not be statistically distinguished

between the two clades (Fig. 7), with some exceptions. In

the pectoral limb, Crocodylidae scaled Mmusc significantly

more positively (Fig. 7, red outlines) than Alligatoridae for

the PEC, M. brachialis (BR, an elbow flexor), M. extensor

carpi radialis brevis and M. extensor carpi ulnaris longus

(ECRB & ECUL, both wrist dorsiflexors). In the pelvic limb,

only the mass of M. interosseus cruris (IC, an ankle plantarfl-

exor) was found to be significantly different, again scaling

more positively in Crocodylidae.

Isometric vs. allometric scaling patterns did show marked

differences between the two clades, however. Although

positive allometry was more common in the pectoral than

pelvic limbs of both clades (Fig. 7, blue lines for Alligatori-

dae, red for Crocodylidae), Crocodylidae scaled shoulder,

wrist and interdigital muscle masses with positive allometry,

whereas Alligatoridae scaled them either isometrically or

with negative allometry (Fig. 7). There were few examples

of allometry in the pelvic limb, showing no clear pattern.

Muscle PCSA

We found more statistically significant differences in scaling

coefficients for muscle PCSA than for either fascicle length

or mass (Fig. 8). In the pectoral limb, Crocodylidae scaled

PCSA for elbow extensors and wrist dorsiflexors with signifi-

cantly higher coefficients than Alligatoridae (Fig. 8, red out-

lines). In the pelvic limb, we found the same relationship

for the CFL and the FMTE & FMTI.

Again, patterns of isometry vs. allometry differed

between the two clades. In the pectoral limb and the distal

pelvic limb, Crocodylidae scaled PCSA for most muscles with

positive allometry (Fig. 8), whereas Alligatoridae showed

mostly isometry (or mild negative allometry).

Discussion

Significant differences

Our analysis of mean architecture data indicates that signifi-

cant differences exist between the limb musculature of Alli-

gatoridae and Crocodylidae. Crocodylidae have longer

Fig. 4 The 95% confidence intervals for mean limb muscle masses, normalised to body mass, in Alligatoridae (grey circles) and Crocodylidae

(black triangles). Muscles with significantly larger masses in Crocodylidae are highlighted in red; those with larger masses in Alligatoridae are high-

lighted in blue. See Table 1 for muscle abbreviations. Boxes out on the right side shows the 95% confidence intervals for total limb muscle mass

normalised to body mass (above), and for M. pectoralis (PEC) and M. caudofemoralis longus (CFL) (above and below).
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muscle fascicles in both limbs, most markedly in the pectoral

limb, and particularly the muscles of the pectoral girdle

itself (Fig. 3). Crocodylian clades show less contrast in indi-

vidual limb muscle masses, although analysis of summed

limb muscle masses indicates that relative to Alligatoridae,

Crocodylidae invest much more of body mass in the pec-

toral limb (Fig. 4, Data S4). This result suggests that Croco-

dylidae are able to perform more work (or have more

available limb power) with their pectoral limbs, whereas

Alligatoridae appear closer to parity between available

power in the pectoral and pelvic limbs. PCSA for both limbs

are in general significantly greater in Alligatoridae, particu-

larly in the elbow extensor group. Strikingly, we observed

the reverse relationship for the M. caudofemoralis longus

(CFL), which has a markedly larger PCSA in Crocodylidae

(Fig. 5).

How, then, do these data compare with our predictions

for muscle architecture in crocodylian taxa that do and do

not use asymmetrical gaits? Previous studies (e.g. Renous

et al. 2002) inferred that faster-speed asymmetrical gaits

involve larger arcs of limb motion than slower-speed

symmetrical gaits. Muscle fascicle length, the architectural

proxy for working range of a muscle, was noted to be

generally lower in Alligatoridae (Fig. 3, although compar-

ative muscle moment arms, which determine the transmis-

sion of muscle movement to limb movement, are not

investigated here and could diminish or exaggerate this

difference). If we provisionally accept (pending evidence

to the contrary) that Alligatoridae lack the capacity to use

asymmetrical gaits (Hutchinson, 2012), then their signifi-

cantly shorter muscle fascicles may be a factor in this

inability.

Furthermore, the larger difference observed in pectoral

limb fascicle length suggests that the ability to perform

large pectoral limb motions, and in particular motions of

the pectoral girdle itself, may be important in crocodylian

asymmetrical gaits (Fig. 3). This speculation could be tested

by measurements of maximal limb joint ranges of motion in

cadavers or in vivo. The significantly more massive pectoral

limb muscles of Crocodylidae (Fig. 4) also indicate that gen-

erating (or absorbing) power with the pectoral limbs in par-

ticular may be important to asymmetrical gaits.

Available data support the inference that asymmetrical

gaits are used at faster speeds, involve an aerial phase,

Fig. 5 The 95% confidence intervals for mean limb muscle PCSA, normalised to body mass2/3, in Alligatoridae (grey circles) and Crocodylidae

(black triangles). Muscles with significantly larger PCSA in Crocodylidae are highlighted in red; those with larger PCSA in Alligatoridae are high-

lighted in blue. See Table 1 for muscle abbreviations.
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and have lower duty factors than symmetrical gaits in

Crocodylia (see Introduction). These gaits therefore must

require greater (and more rapid) forces, particularly from

extensor muscles. Muscle PCSA (the architectural proxy

for muscle force) would consequently be expected to be

larger, particularly for extensor muscles, in taxa that use

asymmetrical gaits vs. those that do not. However, of the

observed differences, only the larger PCSA (mean values

differ by 2.21 9 10�4 body mass2/3, see Fig. 5, Fig. S3)

of the CFL in Crocodylidae fits this prediction. All other

extensors (and the majority of limb muscles in general)

exhibit larger PCSA in Alligatoridae. Although differences

in muscle moment arms, muscle fibre types, and the pas-

sive storage and release of energy in tendons (which we

do not analyse) will all have significant effects on the

forces and energies a limb can sustain, this difference in

limb muscle PCSA leads us to speculate that active limb

force (i.e. provided by muscular contraction) may not

be a limiting factor in the use of asymmetrical gaits in

Crocodylia.

However, it is interesting to note that the only muscle

that does not follow this trend is M. caudofemoralis longus

(CFL). The CFL is a massive hip extensor that is vital to croco-

dylian locomotion in general (Gatesy, 1991), with most of

the belly housed in the ventral tail, attaching to the femur

via its primary tendon, but also sending an accessory ten-

don to blend with the origin of the external head of M.

gastrocnemius (GE, major plantarflexors of the ankle and

pes). This anatomy places most of the muscle mass extrinsic

to the limb, and allows the CFL to both (to some extent)

flex the knee and plantarflex the ankle and distal limb,

besides its hypothesised primary function of hip extension.

As the CFL does not extend the knee, and has no way of

actuating extension in the pectoral limb, a larger PCSA for

the CFL therefore does not seem sufficient to compensate

for the smaller PCSA of other pelvic limb extensors, or the

generally smaller PCSA in the pectoral limb (Fig. 5), in pro-

viding limb supportive forces. However, without wishing to

speculate further than our data allows (particularly as the

large extrinsic pectoral limb extensor, PEC, does not also

Fig. 6 The 95% confidence intervals for scaling coefficients of limb muscle fascicle lengths on body mass (log-log) in Alligatoridae (grey circles)

and Crocodylidae (black triangles). Muscles with significantly higher coefficients in Crocodylidae are highlighted with red markers. Muscles of Croc-

odylidae that show allometry have their confidence intervals drawn in red. Those of Alligatoridae that show allometry have their confidence inter-

vals drawn in blue. See Table 1 for muscle abbreviations.
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have a large PCSA in Crocodylidae – Fig. 5), a large PCSA

for the CFL does fit with our prediction, based on muscle

fascicle lengths, that rapid limb motion generated by mus-

cular length changes is important to crocodylian asymmetri-

cal gaits. Keeping limb muscle mass and hence inertia low

would be advantageous for rapid movement because

lighter limbs can be moved more quickly and (energetically)

cheaply. If intrinsic muscles at multiple joints can be par-

tially replaced by multi-articular extrinsic muscles (like the

tail-based CFL), this would be an effective way of achieving

this outcome. Quantitative data (EMG, ultrasound or sono-

micrometry) on CFL activity during asymmetrical locomo-

tion, and simulation-based analysis of its effect on distal

limb joints, would be useful in further investigating its

importance.

Scaling patterns

Our prediction that ontogenetic scaling would diminish dif-

ferences between Alligatoridae and Crocodylidae appears

to be false. We found very few statistically significant differ-

ences in scaling patterns for fascicle lengths (Fig. 6) and

muscle mass (Fig. 7), suggesting that the relatively longer

limb muscle fascicles of Crocodylidae remain so throughout

ontogeny. In fact, what differences there are indicate Croc-

odylidae show a greater tendency to scale fascicle lengths

and muscle masses with positive allometry, suggesting that

in direct contradiction to our hypothesis, relative differ-

ences in fascicle length become more pronounced during

ontogeny, not less.

The most consistent significant inter-clade differences in

scaling patterns were for limb muscle PCSA (Fig. 8). With

few exceptions, Alligatoridae scale limb muscle PCSA

either isometrically or with mild negative allometry,

whereas Crocodylidae PCSA generally scales with positive

allometry (although less consistently in the pelvic limb).

Considering the generally higher PCSA in Alligatoridae

(Fig. 8), this scaling relationship would diminish relative

inter-clade differences in at least some aspects of locomo-

tor anatomy, bringing adult Crocodylidae closer to parity

Fig. 7 The 95% confidence intervals for scaling coefficients of limb muscle masses on body mass (log-log) in Alligatoridae (grey circles) and Croco-

dylidae (black triangles). Muscles with significantly higher coefficients in Crocodylidae are highlighted with red markers. Muscles of Crocodylidae

that show allometry have their confidence intervals drawn in red. Those of Alligatoridae that show allometry have their confidence intervals drawn

in blue. See Table 1 for muscle abbreviations.
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with adult Alligatoridae in the ability to exert limb

forces.

However, lack of positive allometry in limb muscle PCSA

(and hence available muscle force), particularly for extensor

muscles, has been previously cited as evidence for an onto-

genetic decline in general locomotor performance in Alliga-

tor mississippiensis (Blob, 2001; Allen et al. 2010).

Furthermore, the tendency of Crocodylidae to scale both

fascicle lengths and muscle masses positively (Figs 6 and 7)

indicates a greater ability of adult Crocodylidae to generate

locomotor work and power, not just force.

Conclusions

Our comparative analysis of muscle architecture demon-

strates that significant differences in locomotor anatomy

exist between Alligatoridae and Crocodylidae. Relative to

body mass, Crocodylidae have generally longer muscle fasci-

cles (especially in the pectoral limb) and smaller muscle

PCSA than Alligatoridae. Large arcs of limb motion have

been suggested to be a feature of crocodylian asymmetrical

gaits (Renous et al. 2002), and fit with suggestions that

crocodylians generally achieve faster speeds by increasing

both stride length and frequency (Reilly & Ellias 1998). Use

of asymmetrical gaits is common in Crocodylidae but has

not been observed in Alligatoridae (Hutchinson, 2012). We

therefore (tentatively) suggest that longer muscle fascicles,

and hence the ability to cycle the limbs quickly through

large arcs of motion, may be a limiting factor in crocodylian

bounding and galloping. We also suggest that the more

massive pectoral limb may be particularly important to the

generation (and absorption) of locomotor power during

the use of asymmetrical vs. symmetrical gaits. However,

large muscle PCSA and the concomitant ability to exert

large limb forces may be less important.

While direct measurement of locomotor dynamics in a

broad sample of the two clades would be ideal, a more

complete analysis of differences in locomotor anatomy

between the two clades, including muscle fibre types,

moment arms, and detailed tendon anatomy would shed

further light on this interesting difference. Additionally, the

axial skeleton may play a greater role than the limb

Fig. 8 The 95% confidence intervals for scaling coefficients of limb muscle PCSA on body mass (log-log) in Alligatoridae (grey circles) and Croco-

dylidae (black triangles). Muscles with significantly higher coefficients in Crocodylidae are highlighted with red markers. Muscles of Crocodylidae

that show allometry have their confidence intervals drawn in red. Those of Alligatoridae that show allometry have their confidence intervals drawn

in blue. See Table 1 for muscle abbreviations.

© 2014 The Authors Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

Comparative Crocodilian Limb Anatomy and Gait, V. Allen et al.580



skeleton in symmetrical vs. asymmetrical gaits (Salisbury &

Frey, 2001; Molnar et al. 2014), but such questions remain

under-explored.

Interestingly, our analysis of scaling patterns suggests that

the divergence in locomotor anatomy becomes more pro-

nounced during ontogeny, rather than being restricted to

juveniles. While inter-clade differences in muscle scaling

PCSA may act to equalise the abilities of adult Crocodylia to

exert limb forces, the higher coefficients found for muscle

fascicle lengths and masses suggest increasing inter-clade

disparity in the maximal capacity to modulate limb power.

If these inter-clade differences in muscle architecture

relate to differences in muscle and overall limb function,

there may be appreciable diversity in crocodylian locomo-

tion, beyond the differential abilities of individuals from

different clades to use asymmetrical gaits. Mainly due to

biogeographical convenience, the majority of studies of

crocodylian locomotor dynamics involve the North Ameri-

can alligatorid, A. mississippiensis. However, as our results

(and principles of comparative biology) suggest, study of

this species alone is insufficient to describe Crocodylia as a

whole.

Present knowledge holds that, unusually among terrestri-

ally locomoting vertebrates, crocodylians make use of

highly variable gaits with large speed overlaps (Renous

et al. 2002), use both mediolateral and dorsoventral undu-

lations of the vertebral column to increase stride length

(e.g. Webb & Gans, 1982), and alter both stride length and

frequency (rather than duty factor) to increase speed (Reilly

& Ellias 1998). These features suggest important differences

between crocodylian terrestrial quadrupedalism and more

commonly studied mammalian and squamate forms (vide

Molnar et al. 2014). If we are to understand terrestrial loco-

motion as a whole, and its evolution in this fascinating and

unusual clade, more data on kinematics and kinetics in a

broad range of Crocodylia are sorely needed.
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Additional Supporting Information may be found in the online

version of this article:

Data S1. Analysis of muscle fascicle length.

Data S2. Analysis of muscle mass.

Data S3. Analysis of muscle PCSA.

Data S4. Analysis of summed limb muscle mass.

Data S5. Raw data (blank cells = missing data).

Fig. S1. High resolution version of figure 1.

Fig. S2. High resolution version of figure 2.

Fig. S3. Number of individual Alligatoridae (blue) and Crocodyli-

dae (red) specimens used in study vs. specimen body mass (in

10Kg bins).

Fig. S4. 95% confidence intervals for mean limb muscle fascicle

lengths, with alternative normalisation to individual muscle

length, in Alligatoridae (grey circles) and Crocodylidae (black tri-

angles). Muscles with significantly longer fasicles in Crocodyli-

dae are highlighted in red. See Table 1 for muscle

abbreviations. Overall pattern shown is similar to that when

data are normalised to body mass1/3.
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