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SUMMARY
Intravenous fluid therapy has become a ubiquitous intervention in both human and veterinary 

medicine. The field of fluid therapy is characterised by numerous controversies, and despite their 

widespread use, fluids should be considered as drugs, as their use is associated with potential side 

effects and complications. This paper will review the differences between crystalloids and colloids, 

and how their clinical use has changed according to recent scientific evidence. Due to their 

theoretical advantages, hydroxyethyl starches (HES) have become the most commonly used colloids 

in both human and veterinary medicine. However, the results of human studies have revealed clear 

adverse effects on renal and haemostatic functions and an increase in mortality when comparing 

colloids versus crystalloids for fluid resuscitation. A quantitative toxicity has also been identified 

and excessive fluid resuscitation appears to be associated with an adverse outcome. These recent 

studies should prompt the veterinary profession to undertake an appraisal of current fluid therapy 

practices and recommendations that have thus far been largely based on theoretical benefits rather 

than clinical evidence. In this review we will focus on some common controversies and how our 

approach to fluid therapy may be adapted in light of the most recent veterinary and human data.
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Introduction

The first report in the medical literature of the intravenous 

administration of a salt-based solution was described 

in 1832 by Thomas Latta for the treatment of patients 

affected by cholera[1]. Since then, intravenous fluid therapy 

has become a ubiquitous intervention in both human 

and veterinary medicine and it represents a cornerstone 

in the treatment of ill patients. The field of fluid therapy 
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is characterised by numerous controversies regarding 

whether there are optimal fluid types, optimal doses and 

even whether there is a preferable timing and rate of fluid 

administration. Despite widespread use, fluid therapy is 

associated with potential side effects and complications, 

as recently revealed by the results of several large human 

randomised clinical trials [2,3,4]. These recent studies in the 

human field should prompt the veterinary profession to 

undertake an appraisal of current fluid therapy practices 

and recommendations that have been thus far largely 

based on theoretical benefits rather than clinical evidence. 

In this review we will focus on some common controversies 

and how our approach to fluid therapy may be adapted in 

light of the most recent veterinary and human data.
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Basic principles of fluid therapy

To be able to appreciate the nuances of fluid therapy 

a basic understanding of normal body fluid physiology 

is required. Total body water (TBW) accounts for 

approximately 60% of total body weight. Total body 

water is distributed between the intracellular fluid 

compartment (approximately 66%) and the extracellular 

fluid compartment (approximately 33%). These two 

spaces are separated by cell membranes. The extracellular 

fluid compartment is, in turn, further subdivided into an 

intravascular (8% TBW) and an interstitial space (25% 

TBW) [5], and these compartments are separated by the 

capillary wall (Figure 1). 

due to osmolarity gradients (osmotic pressure). Oncotic 

pressure, also known as colloid osmotic pressure, is a 

particular type of osmotic pressure that is generated by 

colloid molecules present in solutions. 

Clinical signs associated with fluid deficits vary accordingly 

to the compartment affected (Table 1). Dehydration is 

defined as total body water deficit, while hypovolemia 

indicates a purely intravascular volume deficit. The total 

intravascular volume, including both plasma and cellular 

components, is estimated to be approximately 88 ml/kg 

in dogs and 66 ml/kg in cats [6]. The intravascular volume, 

despite containing only a small proportion of the TBW, 

is the main determinant of cardiac preload and, as such, 

plays a fundamental role in maintaining cardiovascular 

stability. Preload, along with cardiac contractility and 

afterload, determines cardiac output and blood flow to 

peripheral tissues (perfusion). As a consequence of this, 

during hypovolemia, oxygen delivery to peripheral tissues 

is affected: when the metabolic needs of the body are 

no longer matched by the blood flow provided by the 

cardiovascular system, circulatory shock ensues. If left 

untreated circulatory shock will result in organ dysfunction 

and eventually death. Therefore, rapidly restoring and 

maintaining an effective intravascular volume is essential 

to reverse the progression of the shock state. This 

therapeutic intervention is referred to as fluid resuscitation 

and will be the main focus on this review. Other 

common reasons to administer fluids include restoration 

of the interstitial and intracellular fluid balance (i.e. 

rehydration), compensation for on-going fluid losses and 

to induce diuresis and maintain acid-base and electrolyte 

homeostasis.

Types of fluids

Fluids used in veterinary patients can be classified into 

Figure 1. Distribution of total body water (TBW) within the 
body showing the proportion allocated into the intracellular 
and extracellular fluid compartments. 

The barriers between fluid compartments have different 

permeability to different solutes based on size, charge 

and conformation. This selective permeability, along 

with hydrostatic and oncotic forces (i.e. Starling forces), 

determines the movement of fluids and electrolytes between 

compartments. Two other concepts that also play a role in 

the movement of fluid between compartments are osmolarity 

and oncotic pressure. Osmolarity is a measure of the number 

of particles present in a solution, independently of their size 

or weight. Water tends to distribute between compartments 

Table 1. Differentiation of hypoperfusion from dehydration via clinical signs

Signs consistent with hypoperfusion Signs consistent with dehydration

Increased heart rate Dry mucous membranes 

Hyperdynamic or hypodynamic pulses Prolonged skin tenting

Hypothermia or cold distal limbs Normal pulses

Prolonged capillary refill time Sunken eyeballs

Pale mucous membranes
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4 basic types: crystalloids, colloids, haemoglobin-based 

oxygen carriers and blood products [7]. Crystalloids are 

solutions of water and electrolytes or glucose. Some 

formulations might also contain buffers (e.g. lactate, 

acetate or gluconate) that, once administered, are 

metabolised to bicarbonate and can influence acid-

base balance. Crystalloids are classified into hypotonic, 

isotonic or hypertonic solutions based on their relative 

osmolarity compared to plasma. Isotonic fluids have an 

osmolarity that is similar to that of plasma (approximately 

300 mOsm/L), while hypertonic and hypotonic fluids 

have an osmolarity that is, respectively, higher and 

lower than plasma. Isotonic solutions are the most 

commonly used type of crystalloids. Hypotonic solutions 

are contraindicated during fluid resuscitation and their 

use should be reserved to treat specific conditions (e.g. 

treatment of severe electrolyte imbalances). Hypertonic 

solutions, and in particular hypertonic saline, may be useful 

in certain cases that require fluid resuscitation; a dramatic 

increase in plasma osmolarity leads to a shift of water from 

the interstitium and intracellular fluid compartments to the 

intravascular space, resulting in a transient intravascular 

volume expansion. Isotonic crystalloids available in clinical 

practice include normal saline (0.9% NaCl) and balanced 

solutions (e.g. compound sodium lactate, Hartmann’s, 

Ringer’s lactate solution, Ringer’s acetate solution, Plasma-

Lyte). Balanced solutions differ from normal saline in the 

fact that they contain electrolytes in more physiological 

concentrations, closely resembling the electrolyte 

composition of human plasma.

Shortly after administration of crystalloids most of the 

infused volume will redistribute to the interstitium and 

intracellular space and by 1 hour only 20-25% of the 

infused volume will still be within the intravascular space 
[6]. With this in mind, one can see that if intravascular 

volume expansion is the main therapeutic target, 

crystalloid fluid therapy would seem to be an inefficient 

way of achieving this and their use might promote the 

formation of interstitial oedema (Figure 2).

Colloids are high-molecular-weight compounds (molecular 

weight higher than 30 KDa) that, in the normal physiological 

condition, do not readily leave the intravascular space 

and contribute to maintaining, or possibly improving, the 

patient’s plasma oncotic pressure. Colloids are classified as 

synthetic (e.g. hydroxyethyl starches, gelatins, dextrans) 

or natural (e.g. plasma, albumin solutions, blood). The 

potential benefits of colloids include prolonged intravascular 

effect, smaller volume requirements and decreased risk 

of oedema formation when compared with crystalloids [8]. 

Therefore, if the goal of fluid administration is to address 

hypovolemia, colloids seem to present some obvious 

advantages over crystalloids. Ideal colloid solutions should 

be isotonic, iso-oncotic, rapidly degradable, inexpensive 

and have minimal side effects [9]. On first inspection, 

hydroxyethyl-starch solutions (HES) are the colloids that 

most closely match these criteria. For this reason they have 

become, up to recently, the most commonly used colloids in 

both human and veterinary medicine.

HES are synthesised from amylopectin, a highly 

branched polymer of glucose, and chemically modified 

by substitution of some hydroxyl- with hydroxyethyl- 

residues. These modifications provide some of the 

desired characteristics of colloidal fluid solutions. The 

various preparations of HES are classified based on 

their molecular weight, molar substitution (number of 

hydroxyethyl- residues per unit of glucose), pattern 

of substitution (C2:C6 ratio) and type of solutions in 

which they are suspended (e.g., balanced or unbalanced 

crystalloid solutions). Higher molecular weights and molar 

substitutions are associated with a longer half-life. Despite 

their widespread use and their perceived better safety 

profile compared to other synthetic colloids, HES use is 

associated with numerous side effects.

Undesirable side effects

Coagulopathy
Coagulopathy is one of the most common side effects 

associated with the use of synthetic colloids. The 

mechanism of this coagulopathy is not fully understood, 

Figure 2. Dog with marked interstitial oedema where fluid 
has accumulated in the extracellular fluid compartment. 
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but some of the proposed pathways include decreased 

circulating factor VIII and von Willebrand factor 

concentration, impairment of platelet function and 

interference with fibrin polymerization [10]. These effects 

have been reported in dogs as well, although the clinical 

significance of the abnormalities reported is undetermined 
[11-15]. It should be noted that current veterinary dose 

recommendations for colloids (approximately 50 ml/kg/

day for low molecular weight HES and 20 ml/kg/day for 

high molecular weight HES) are not based on efficacy 

data, but on human safety limits developed to minimise 

the risk of bleeding [8]. The coagulation disorder associated 

with HES administration appears to be proportional to 

the dose administered and the molecular weight and 

molar substitution of the molecule used. To reduce these 

risks, novel colloid solutions were developed with a lower 

molecular weight and lower degree of hydroxyethyl molar 

substitution [9]. 

Renal dysfunction
Renal dysfunction is another commonly discussed 

complication induced by colloid administration in people 

and this complication has become the focal point of 

the controversy surrounding the use of starch-based 

colloids in critically ill patients. All synthetic colloids 

undergo renal excretion and therefore have the potential 

to cause acute kidney injury (AKI). The first reports on 

colloid-induced renal failure were published in the late 

1960s in association with the use of dextrans [16,17], but 

in more recent years, the potential for inducing kidney 

damage has been reported in other colloids classes [18]. 

Several hypotheses have been formulated to explain AKI 

following colloid administration [9]. The increase in the 

intra-glomerular COP determines a decrease in glomerular 

filtration rate. The filtration of colloid molecules in the 

glomerulus increases intra-tubular viscosity and decreases 

urine flow. In addition, some molecules are re-absorbed 

by the proximal tubular epithelial cells where they induce 

vacuolar lesions. This can result in cellular swelling, with 

an additional decrease in urine flow. Renal interstitial 

inflammation has also been reported [19].

Colloids vs. crystalloids

HES solution should be theoretically less nephrotoxic given 

their biochemical characteristics. However, tubular lesions 

were noticed with the use of high-molar substitution HES 

in brain dead kidney donors [20]. Studies regarding the renal 

safety of colloids started to appear in the early 1990s[21]. 

A trend similar to that observed with coagulopathy 

appeared: the use of solutions with higher concentrations, 

higher molecular weight and molar substitution colloids 

were associated with increased risk of renal toxicity. Low 

molecular weight, molar substitution and iso-oncotic HES 

appeared to have the best safety profile [22].

Despite their theoretical advantages HES were approved 

for medical use without adequate testing regarding safety 

and efficacy [21]. Up to very recently, limited evidence 

had been in support of colloids over crystalloids for fluid 

resuscitation. A Cochrane Collaboration meta-analysis 

published in 2007 concluded that “…as colloids are not 

associated with an improvement in survival, and as they 

are more expensive than crystalloids, their use should be 

limited to randomised clinical trials” [23].

In 2008 the first large randomised clinical trial (RCT) 

comparing HES versus crystalloids for fluid resuscitation 

was published [2]. This study revealed a dose related 

effect linking HES administration with higher incidence 

of AKI, need for renal replacement therapy (a form of 

haemodialysis) and number of blood transfusions. In 2011 

numerous studies from a leading author regarding the 

safety and efficacy of starch-based colloids were retracted 

by a number of journals due to scientific misconduct and 

data fabrication [24], decreasing even further the level 

of evidence in support of HES use. The following year 

two other large high-quality RCT (6S and CHEST studies) 

investigating the use of HES versus crystalloids for fluid 

resuscitation in critically ill patients were published [3,4]. 

These studies confirmed the increased need for renal 

replacement therapy and blood transfusions associated 

with the use of HES and also showed a significant increase 

in mortality in the most severe population treated with 

HES. Based on these data the most recent Surviving Sepsis 

Guidelines [25] advised against the use of HES for the 

treatment of severe sepsis and septic shock. An updated 

Cochrane Collaboration meta-analysis published in 2013 

failed to identify any benefit of the administration of 

colloids (any) versus crystalloids, and concluded that “…

it is difficult to see how HES use can be justified in clinical 

practice.”[26] Another meta-analysis focused on the effect 

of HES on kidney function and identified an increased risk 

of developing AKI and a higher need for renal replacement 

therapy [27]. These two meta-analyses revealed that the 

risk associated with HES administration is independent 

from the type of HES or the severity of the population 

treated. As a consequence, the European Medicines 
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Agency recommended the suspension of the marketing 

authorisation for all products containing HES [28] and the 

Food and Drug Administration of the United States issued 

a warning against the use of HES in critically ill patients 
[29]. At the time of writing HES-containing solutions have 

been withdrawn from the market in several European 

countries, although the European Union has ratified a 

recommendation allowing the use of HES in some selected 

situations such as hypovolaemia not associated with sepsis 

or burns [30]. Veterinary access to HES depends on local 

medical regulatory agencies authorising the trade of these 

products. 

To date, there are no reports of nephrotoxicity induced 

by the use of HES in veterinary patients, but both renal 

lesions and renal dysfunction have been reported in 

experimental studies in dogs receiving dextran [17,31] and 

the pathophysiology of the nephrotoxicity appears to 

be similar across different classes of colloids. Although 

there is currently no evidence that HES-based colloids can 

worsen outcome in veterinary patients these fluids should 

be used cautiously, especially in patients predisposed to 

coagulopathy, AKI or with severe sepsis. Studies evaluating 

the incidence of AKI in veterinary patients treated with 

starch-based colloids are urgently needed. 

It should be noted that the cost of colloids is significantly 

higher compared to crystalloids just as they are in human 

medicine, and this aspect should not be overlooked 

when deciding what type of solution to use for fluid 

resuscitation. In the context that resuscitation with 

colloids offers no real benefits in outcome, justification for 

their use can be problematic.

Other colloid solutions are available as alternatives to HES: 

gelatins, dextrans, haemoglobin-based oxygen carriers 

(HBOC), albumin and plasma. Gelatins are derived from 

bovine collagen and have a low molecular weight (30-35 

KDa). Their immediate volume effect is similar to that of 

HES, but due to their low molecular weight they determine 

a much shorter duration of volume expansion. Compared to 

HES, the use of gelatins is associated with a higher risk of 

anaphylactic reactions [9]. There have also been concerns 

that the use of gelatins may pose a risk of inducing 

renal dysfunction, although this is not well described [9]. 

Dextrans are polysaccharides synthesised from sucrose by 

bacterial fermentation. Dextrans have the worst safety 

profile among colloids in terms of coagulopathy, renal 

dysfunction and for these reasons are not used commonly 

in human medicine. Oxyglobin® is a veterinary-specific 

stroma-free HBOC derived from bovine haemoglobin 

and licensed for the treatment of anaemia in the dog. 

Compared to other colloids, HBOC has the advantage of 

providing additional oxygen carrying capacity that can 

thereby improve tissue oxygenation. The use of HBOC has 

been demonstrated to enable more rapid achievement 

of resuscitation endpoints when compared with HES in 

both experimental and clinical veterinary studies [32,33,34]. 

However, it should be noted that HBOC has not been 

approved for human use due to safety concerns, and its use 

in veterinary patients is associated with significant side 

effects, especially in terms of volume overload [35]. Albumin 

has recently substituted HES as the most used colloid 

solution in human medicine, although there is no extensive 

evidence of a clinical benefit over crystalloids alone [25,36]. 

The use of human serum albumin in critically-ill veterinary 

patients can be associated with both immediate and 

delayed side effects [37,38]. Its use in healthy patients under 

experimental conditions was associated with sometimes 

fatal hypersensitivity reactions [39]. A canine-specific serum 

albumin had been commercially produced in North America, 

but it is no longer available. Plasma can also be used for 

fluid resuscitation and has a better safety profile compared 

to albumin solution, however, the risk of transfusion 

reactions remains. It is also important to note that plasma 

is not particularly effective as a plasma expander, nor 

is it practical as it is usually stored frozen and not cost 

effective given the need for large volumes in order to alter 

the COP of the patient.

When compared with crystalloid fluid solutions, colloids are 

considered more potent plasma expanders and this is partly 

due to their greater persistence within the intravascular 

space. This means that smaller volumes of colloids are 

required to expand the intravascular space compared with 

crystalloid solutions. The ratio of colloids:crystalloids that 

needs to be administered to achieve a similar volume 

effect is approximately 1:4, and this has been confirmed 

in several experimental studies [40,41]. An interesting finding 

that has emerged from several human RCT is that the 

actual volume effect of HES in clinical settings is less 

than previously thought. The ratio of HES to crystalloids 

administered to achieve similar resuscitation endpoints 

actually only ranged from 1:1 to 1:1.6, far below the 

predicted 1:4 ratio [2,3,4]. This raises questions on the 

validity of the assumption that colloids are more effective 

plasma expanders. This discrepancy in the volume effect 

could be explained through the concept of “context 
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permeability. This structure can be damaged in several 

conditions, such as hypoalbuminaemia, sepsis, hypoxia, 

hyperglycaemia or hypervolemia. When the EGL is intact 

vascular permeability is preserved and colloids have a 

volume effect that exceeds that of crystalloids. However, 

damage to this structure leads to an increase in vascular 

permeability and consequently a loss of the “volume 

advantage” offered by the colloids.

Are crystalloids safe?

Given the side effects associated with the use of colloids, 

crystalloids are expected to continue to play a major 

role in human fluid resuscitation despite the higher risk 

of interstitial oedema. Sodium chloride (0.9% Saline) 

has historically been the most used solution for volume 

expansion in human patients. However, due to its 

composition, the use of 0.9% saline is associated with 

the development of hyperchloraemic metabolic acidosis 
[45]. When compared to balanced crystalloids solutions 

(e.g. lactated Ringer, Plasma-Lyte, Compounded Sodium 

Lactate), 0.9% saline use is associated with a higher 

morbidity and mortality [46,47,48]. The role of chloride-load 

and hyperchloraemic metabolic acidosis in veterinary 

critical illness is unknown, but it seems prudent to prefer 

the use of balanced crystalloids over saline for fluid 

resuscitation.

An alternative to isotonic crystalloids for fluid 

resuscitation is hypertonic saline. These solutions contain 

a higher percentage of sodium chloride of 7.2% and 

23.4%. As such they have a very high osmolarity and once 

infused produce an elevation in intravascular sodium. This 

in turn creates a concentration gradient that drives fluids 

from the interstitial and intracellular to the intravascular 

space with a short lived (20-30 minutes) intravascular 

volume expansion. The theoretical advantage is achieving 

fluid resuscitation whilst infusing a smaller volume of fluid. 

The displacement of fluid from the interstitium might also 

play a role in the treatment of traumatic brain injury. The 

use of hypertonic saline requires adequate intracellular 

and interstitial hydration and can cause bradycardia and 

hypernatremia as possible complications [5]. The safety 

and efficacy of hypertonic saline has not been established 

in human medicine and results of preliminary studies are 

contradictory [43].

Along this qualitative toxicity a quantitative toxicity has 

also been described. A positive fluid balance is associated 

sensitivity.” This concept proposes that the volume effect 

of administered fluid is variable and depends on the 

cardiovascular context of the patient. The cardiovascular 

context takes into account derangements in vascular 

permeability, intravascular volume and hydration status. 

In other words, the highly desirable behaviour of colloids 

may only be apparent in subjects with normal vascular 

endothelium and these advantages may not be appreciated 

in critically ill patients [42,43]. 

Lending support to the aforementioned concept, a major 

advancement in the understanding of fluid homeostasis 

has been made possible by the recent characterisation of 

the endothelial glycocalyx layer (EGL) (Figure 3) [44]. This 

is an active interface between the blood and the capillary 

wall and appears to be the main determinant of vascular 

Figure 3: Endothelial glycocalyx layer in health (A) and 
damaged by disease (B). The integrity of the endothelial 
glycocalyx layer may dictate the permeability of membranes 
and may explain why there are differences in the response to 
colloid fluid therapy depending on the state of the animal. 
From N Engl J Med, Myburgh GA, Mythen MG. Resuscitation 
fluids. 369:1244. Copyright © (2013) Massachusetts Medical 
Society. Reprinted with permission from Massachusetts 
Medical Society
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PPV in veterinary practice is limited by the need to place 

an arterial catheter, a procedure that can be technically 

challenging, especially in small or collapsed patients, 

and carries a risk of bleeding and infection. Moreover, 

only some monitors support algorithms that allow the 

measurement of PPV. The application of an early goal-

directed haemodynamic optimisation protocol has been 

recently described in dogs undergoing surgery for pyometra 
[57]. Further studies are needed to identify the ideal end-

points of resuscitation and if a goal-directed protocol 

would improve the outcome in veterinary patients.

Conclusions

Current evidence in human medicine suggest that the use 

of colloids over crystalloids carries very little benefit, with 

the potential of significant side effects associated with the 

use of synthetic colloids. Experimental veterinary studies 

show theoretical advantages of colloids, but these effects 

have not proven to be associated with an improvement 

in outcome. Moreover, although the nephrotoxic effects 

of HES have not yet been observed in veterinary patients, 

the mechanisms of toxicity seem to be similar across all 

synthetic colloid classes, independent of their composition, 

concentration and molecular size. Further studies will be 

needed to assess the safety profile of synthetic colloids 

in veterinary patients. In the meantime, we believe that 

a precautionary principle should be applied to colloid 

administration in veterinary patients, and their use should 

be limited to selected circumstances. Synthetic colloids 

should be used with particular caution in critically ill 

patients with sepsis or an established acute kidney injury.

In conclusion, all fluids should be considered as drugs, and 

as such have the potential to cause toxicity if administered 

incorrectly. Context sensitivity appears essential in 

the selection process of fluid type, dose, and timing of 

administration. Fluid resuscitation protocols will therefore 

have to be tailored based on the clinical status of each 

individual patient. Veterinary research should focus on the 

identification of criteria for patients’ stratification in order 

to develop individualised fluid resuscitation plans.

The authors declare no conflict of interests.

 

with the development of interstitial oedema and worse 

outcome [49]. In a trial comparing restrictive versus liberal 

fluid strategies, the latter has been associated with a 

reduced morbidity [50]. As we will see in the next paragraphs 

clinical research is focusing on methods to identify the 

adequate dose of fluid to administer. 

How much fluid to give?

A variety of strategies have been developed to optimise 

tissue perfusion in critically ill patients and have been 

collectively defined as goal-directed therapies. The 

application of goal-directed therapy protocols has shown 

to improve both morbidity and mortality in people 

[51]. Restoring and maintaining an adequate circulating 

blood volume is considered the most important aspect in 

goal-directed therapy, however identifying the adequate 

fluid dose for each individual patient is not an easy 

task. Insufficient fluid resuscitation will be associated 

with inadequate tissue perfusion, but excessive fluid 

administration will also have negative consequences 

through the development of interstitial oedema, leading to 

organ dysfunction [52]. Therefore, identifying those patients 

that will benefit from fluid administration is essential. 

This concept is referred to as fluid responsiveness, and 

is defined as the ability of a patient’s cardiac output 

to improve following the administration of intravenous 

fluid therapy. Historically fluid-responsiveness was 

assessed through “static” indexes of cardiac preload (e.g. 

central venous pressure), but such markers appear to be 

inadequate [53]. For this reason, a new approach using 

“dynamic” indexes has been developed and is based on 

evaluating the effect of changes in cardiac preload on the 

cardiac output [54]. An example of a dynamic index of fluid 

responsiveness evaluated in veterinary patients is pulse 

pressure variability (PPV) [54]. Arterial pulse pressure is used 

as a surrogate marker of stroke volume and its variation is 

assessed in patients undergoing mechanical ventilation. 

Due to lung-heart interactions, each respiratory cycle 

decreases preload in a predictable manner and this causes 

a decrease in cardiac output proportional to the patient 

“fluid-dependency.” Therefore, patients that will benefit 

from fluid administration will have a proportionally higher 

PPV. This index has been validated in dogs [55,56]. The use of 
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