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Abstract
Fossil tracks represent a direct window onto the lives of extinct organisms, being
formed and preserved in situ. Because track morphology is determined by limb
motion, foot anatomy and substrate consistency, studies of fossil tracks can
provide insight into producer, behaviour and palaeoenvironment. However, each
determining factor is subject to variation, either continuous or discrete, and this
variation may be co-dependent, making it difficult to correctly interpret a track. In
addition to variance from the track-forming variables, tracks and tracksites are
subject to further obfuscation because of time averaging, even before the effects of
weathering, erosion and exposure are accounted for. This paper presents a dis-
cussion of the factors that may confound interpretation of fossil tracks, trackways
and tracksites, and reviews experimental studies that have attempted to elucidate
and eliminate these sources of confusion.

Introduction

The fossilized tracks and trackways of extinct vertebrates can
offer a wealth of information about locomotion (Castanera
et al., 2013), behaviour (Bibi et al., 2012), anatomy (Milner
et al., 2009), ecology (Lockley, Hunt & Meyer, 1994a; Lockley
et al., 2009) and evolution (Lockley et al., 1992) that com-
plements the body fossil record (Thulborn, 1990), either by
preserving complimentary information or by providing a
secondary, independent source of data (Carrano & Wilson,
2001). Making inferences about such aspects of extinct organ-
isms is made possible because track morphology (at the time
of formation) is entirely determined by three factors: limb
dynamics, substrate properties and foot shape (Padian &
Olsen, 1984; Minter, Braddy & Davis, 2007), which means
that the type of animal, the way the animal moves and the
environment it moves through will all affect the shape of the
track left behind.

Locomotion – Because tracks are a direct record of limb
motion, they often receive particular attention for their utility
in understanding the locomotion of extinct animals, particu-
larly when the fossil taxa in question have no modern
analogue (Farlow et al., 2000; Day et al., 2002; Wilson,
Marsicano & Smith, 2009). For the majority of studies,
general trackway parameters tend to be used to make infer-
ences about locomotion; stride length and foot length,
enabling the calculation of speed (Alexander, 1976; Thulborn,
1990) are the most common, frequently accompanied by other

metrics such as pace angulation and track rotation (Leonardi,
1987). Relative placements (or even presence/absence) of the
manus and pes can be informative as to the gait of the track
maker – quadrupedal or bipedal, wide or narrow gauge,
whether the tail was held high, all of which may be difficult to
ascertain from bones alone (Wilson & Carrano, 1999; Wilson
& Fisher, 2003; Henderson, 2006; Romano, Whyte & Jackson,
2007; Castanera et al., 2013).

However, features of morphology within individual tracks
can also be highly informative. Particularly, deep tracks will,
by their very nature, record more of the foot motion than
shallow tracks. Such deep tracks can be used to describe the
path of the foot through the substrate (Gatesy et al., 1999;
Avanzini, Piñuela & García-Ramos, 2012). Although shal-
lower tracks may record less motion, skin impressions and
scale drag marks can still elucidate the angles at which the foot
contacted and subsequently moved off the substrate (Gatesy,
2001).

The motion of distal elements of the limb (i.e. the manus or
pes) is directly linked to the motion of more proximal limb
elements, and ultimately of the animal itself. As such, changes
in contact area, centre of pressure, and ground reaction force
orientation and magnitude occur throughout the step cycle
(Panagiotopoulou et al., 2012; Bates et al., 2013). As the pres-
sure exerted by the foot increases (e.g. during toe-off when
contact area is at a minimum), or when the applied force
changes angle, the load may overcome the substrate shear
strength and cause localized deformation (Falkingham et al.,
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2011a), resulting in deeper areas within a track (Thulborn,
1990; Manning, 2004). The variation in topography of indi-
vidual tracks within a trackway may therefore be indicative of
differences in limb dynamics between foot falls, although it
may also simply be a function of a spatially heterogeneous
substrate. The double peak pressure curve observed in extant
bipeds (Usherwood et al., 2012) has been posited as the
mechanism necessary for the generation of tracks in which the
anterior and/or posterior are impressed to a greater depth
than the centre of the track (Manning, 2004). Accelerations
and decelerations result in differences between relative forces
exerted by the foot at either foot strike or kick-off (Thulborn,
1990; Manning, 2004), with deceleration increasing force at
the rear of the foot during initial contact and acceleration
increasing that force anteriorly at kick-off. These forces may
in turn directly affect the relative depths of the front and rear
of a track, observable as variations in pitch or depth profile
that may correlate with other speed-related features such as
stride length (Mossman, Brüning & Powell, 2003; Bates et al.,
2013; Pataky et al., 2013).

Behaviour – Locomotion is implicit in the formation of a
track (at least, a non-termination trace). However, tracks may
offer glimpses of rare locomotory behaviours that an organ-
ism may undertake even if the skeleton does not display evo-
lutionary adaptions indicating such behaviour. There are, for
instance, several examples of potential swimming (or punting)
traces made by dinosaurs (Coombs, 1980; Ishigaki, 1989;
Wilson & Fisher, 2003; Milner, Lockley & Kirkland, 2006;
Ezquerra et al., 2007; Xing et al., 2013) indicating behaviour
that would otherwise remain unknown, although in many
cases such interpretations remain untested.

Behaviours other than locomotion may also be expressed,
including actions such as feeding (Ensom, 2002; Falk, Hasiotis
& Martin, 2010; Kim et al., 2012) or resting (Hitchcock, 1858;
Milner et al., 2009), which may be inferred from a single trace,
or behaviours observable at the larger scale of tracksites such
as gregarious behaviour (Lockley, Meyer & Santos, 1994b;
Bibi et al., 2012) or predator–prey interactions.

Palaeoecology – As noted above, tracksites can potentially
record both inter- and intraspecific interactions. The in situ
nature of tracks, in contrast to the transportability of body
fossils, makes tracksites a more confident indicator of
diversity in a given environment (Dentzien-dias, Schultz &
Bertoni-Machado, 2008; Smith, Marsicano & Wilson, 2009;
Kukihara & Lockley, 2012) as each track represents an
animal that lived, at least temporarily, in that location, the
sedimentology of which can directly inform us of the
palaeoenvironment (Phillips et al., 2007). The necessity of
water in making a substrate soft enough to form and preserve
tracks means that many tracksites can be focal points for
communities of animals, being formed around watering holes
or along shores for example.

There is, therefore, a wealth of information to be read from
the morphology of a track. However, reading that informa-
tion requires understanding how a track is formed. The best
way to attain that understanding is through experimental
neoichnology, and many authors have pursued this to great
effect, using live animals, cadaveric feet or models, or basic

shapes to produce tracks in real, artificial and virtual simu-
lated substrates (Davis, Minter & Braddy, 2007; Marty,
Strasser & Meyer, 2009).

The contributions of limb dynamics,
anatomy and substrate to track morphology

The idea that foot anatomy affects the shape of the track is, of
course, obvious. The substrate is directly deformed by the
contact between the foot and the ground. A large round
elephant foot will produce a very different track to one pro-
duced by a slender toed bird, irrespective of any other consid-
erations. The converse is also true, that animals sharing a
common pedal morphology will, if substrate and motion are
consistent, produce tracks that are fundamentally alike. It
is for this latter reason that neoichnological studies can
be so enlightening – the conservative pedal morphology of
theropods and their avian descendants has enabled workers to
draw insightful conclusions about theropod dinosaur tracks
from work with extant birds (Gatesy et al., 1999; Milàn, 2006;
Milàn & Bromley, 2006; Ellis & Gatesy, 2013).

Track morphology is also intuitively linked to substrate –
one only has to walk along a beach, moving closer to or
further from the water to see a distinct change in the shape
of the footprints left behind. A substrate can be described
either morphologically (as grain size, angularity, composi-
tion) or mechanically (with terms such as stiffness, strength,
compressibility, and cohesion). Although it is the latter that
describes how a substrate will respond to load, palaeontolo-
gists are predominantly limited to observing the former.
Unfortunately, most of the mechanical properties of a sub-
strate are highly dependent upon water content, which can
be almost impossible to determine from a lithified sediment.
Instead, experimental data must be used to produce tracks in
a range of substrates and compare these to fossil specimens.
This is easier for some organisms, where body weight and
kinematics can be relatively well constrained, such as with
hominid tracks (e.g. Hatala et al., 2013; Morse et al., 2013),
but can become somewhat circular in nature if the track
maker and associated mass are unknown; are the experi-
mental track and fossil track at the same depth because
the substrate is the same, or because the experimental track
was produced with a greater or lesser force than the fossil
track?

The dynamics of the distal limb, which include both the
motion of the foot and the associated forces applied to the
substrate, represent the third contributor to track morphol-
ogy. The orientation and force with which the foot interacts
with the substrate will ultimately determine the directions in
which the substrate deforms, and consequently the track mor-
phology. A foot which encounters the substrate while moving
forward at a low angle may produce a shallow rear to the track
from the metatarsus (Gatesy et al., 1999) while a vertically
emplaced foot will produce a track with steep, vertical walls
(providing the sediment can sufficiently hold such a form)
(Milàn, Christiansen & Mateus, 2005). The dynamic nature of
the foot-sediment interface and of the animal’s mass passing
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over the foot means that throughout the stance phase of the
step cycle (i.e. while the foot is in contact with the substrate)
the load applied to the substrate will vary in position, direc-
tion and magnitude, dynamically affecting the formation of
the track.

Each of the above factors can vary independently or in
conjunction with each other (e.g. when an organism must
adapt limb kinematics to deal with changes in substrate con-
sistency), and these variations can be both continuous (e.g.
substrate moisture content) and discrete (number of digits on
the foot). While Baird (1957) noted that a track was the
by-product of dynamic contact between an organism and its
environment, Padian & Olsen (1984) were the first to concep-
tualize the contributions to track morphology from anatomy,
kinematics and substrate by placing the three factors into a
ternary diagram. Their goal was to illustrate that the morphol-
ogy of a particular track (in this case, Pteraichnus) was heavily
influenced by substrate, to the extent that foot anatomy was
obscured, making track maker identification difficult. Minter
et al. (2007) presented a variation of these three factors in a
Venn diagram, using substrate, behaviour and producer as the
formational factors not only for tracks, but for all trace fossils.
Here, I suggest that, at least for tracks, the terms dynamics,
anatomy and substrate are the most apt descriptors of the
contributing factors to track morphology. ‘Dynamics’ encom-
passes both kinematics (motion) and kinetics (forces), and is
the means by which any given behaviour is expressed as a
trace. ‘Anatomy’ is preferable over ‘producer’, as producer
may vary while pedal anatomy remains conserved, and thus
‘producer’ sensu stricto is not the variable affecting the track
shape. Substrate is perhaps the most nebulous term of the
three, referring to a complex range of morphological and
mechanical properties, and to say that ‘the substrate varies’ is
to paint a broad brush over a highly complex factor. Never-
theless, substrate is discrete from anatomy and dynamics, and
it serves to consider it as an independent variable, or at least
suite of variables, when discussing track morphology.

Together, these three variables control all possible track
morphologies (at least prior to preservation), and therefore

define a morphospace (Fig. 1). If any one of these variables is
known (or constrained), the morphospace becomes a two-
dimensional plane. Fixing a second or third variable will
reduce the morphospace further, first to a one-dimensional
line, and finally to a single point.

Difficulties in interpreting tracks and
experimental work shedding light on
these difficulties

The three-dimensional (3D) nature of tracks
– volumes and topology

Because dynamics, substrate and anatomy ultimately deter-
mine the 3D morphology of the track, ichnologists can
attempt to reverse engineer track formation in order to tease
out data about how the limb moved, the shape of the foot (and
subsequently the identity of the producer) and the environ-
mental conditions when the track was formed. However, the
interplay of the three factors results not only in 3D topogra-
phy at the surface, but also 3D deformation subsurface either
through transmission of force (Allen, 1989, 1997; Manning,
2004; Milàn, Clemmensen & Bonde, 2004; Milàn & Bromley,
2006, 2008; Falkingham et al., 2011a; Thulborn, 2012) and/or
penetration of the sediment by the foot leading to the forma-
tion of deep tracks (Gatesy, 2003).

Surface morphology can – and should – readily be captured
and analysed. Historically vertebrate ichnology has been
limited to recording only two dimensions, initially by outline
and/or shaded drawings, later accompanied by photographs.
An initial movement towards adopting 3D documentation
techniques such as moire photography (Ishigaki & Fujisaki,
1989), anaglyph stereo imaging (Gatesy, Shubin & Jenkins,
2005), photogrammetry (Breithaupt & Matthews, 2001;
Breithaupt et al., 2001; Breithaupt, Matthews & Noble, 2004;
Matthews, Noble & Breithaupt, 2006) and laser scanning
(Bates et al., 2008a,b) has grown towards becoming a stand-
ard for ichnological documentation (Bates et al., 2009;

Figure 1 A conceptual morphospace of track morphology. From left to right: The 3D morphospace is defined by the three axes Substrate, Anatomy
and Dynamics. For a given substrate, the morphospace is limited to a plane, where track morphology varies only because of anatomy or dynamics.
If anatomy is also fixed (i.e. a single animal on a single substrate), variations in track morphology are limited to those resulting from changes in foot
dynamics, that is the intersection between the ‘substrate’ and ‘anatomy’ planes, constraining potential track morphology to a one-dimensional
morphospace. If limb dynamics were also known, the morphospace would be reduced to a single point, and only one track morphology could be
possible.
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Remondino et al., 2010; Farlow et al., 2012; Belvedere et al.,
2013; Bennett et al., 2013), aided by advances in consumer
digitization, particularly with photogrammetry (Falkingham,
2012, 2013).

It is not always possible to see beneath the exposed surface
of a fossil track, requiring either natural breaks or deliberate
cross-sectioning, both of which are destructive and thus not
possible for protected tracksites. It may also be that a track is
emplaced in what becomes a homogeneous rock layer, where
subsurface deformation cannot be observed even if the sub-
surface sediment is exposed, because the necessary delinea-
tions created by laminations are absent. Nevertheless, an
appreciation of subsurface geometry is required in order to
attempt to identify exposed surfaces as ‘true tracks’ or
‘undertracks’ (Milàn & Bromley, 2006). This is important
because apparent track morphology changes within the
volume, and so interpretations based on misidentified surfaces
can be flawed. Many experimental studies have focused on this
difficulty in considering tracks as 3D volumes, and have pre-
sented numerous methods for ‘seeing’ beneath the foot-
sediment interface including using plaster or cement between
friable layers (Manning, 2004; Milàn & Bromley, 2008), col-
oured plasticine (Allen, 1989, 1997), biplaner X-rays (Ellis &
Gatesy, 2013) and computer simulation (Falkingham et al.,
2009; Falkingham, Margetts & Manning, 2010b; Falkingham
et al., 2011a,b). Even observing or defining the foot-sediment
interface can be difficult if the sediment has sealed upon
removal of the trackmaker’s foot; the interface or direct track
sensu Gatesy (2003), will then exist within the volume and is
unlikely to be exposed at any natural break.

Time averaging

A fossil track is a recording of a brief moment in an animal’s
life. In this regard, a track represents a very narrow window of
time preserved in the rock. A tracksite (multiple tracks and
trackways on a single surface), however, cannot be con-
strained so confidently, and while time averaging of a tracksite
is considered to operate over a much briefer time scale than for
body fossils (Cohen et al., 1991), it may still be significant. It
may be tempting to view a tracksite as being produced by
contemporaneous animals, particularly if tracks appear par-
allel or associated in some other way, but a sediment may be
exposed and susceptible to track formation continuously or
sporadically over minutes, days, months or even years. This
can make interpretations of gregarious behaviour and popu-
lation dynamics (Ostrom, 1972; Lockley et al., 2002, 2009;
Myers & Fiorillo, 2009) from fossil tracks difficult to substan-
tiate. While time averaging is difficult to investigate experi-
mentally, at least for specific sites, hypotheses of contem-
poraneity can be tested by examining the morphology of indi-
vidual tracks – do the tracks show similar deformation struc-
tures that would indicate comparable substrate conditions at
the time the tracks were made? For example, do displacement
rims around tracks indicate a similar level of consistency and
incompressibility within the substrate, or does the sediment
show shearing or cracking in the same way between tracks? To
phrase this differently, if all tracks at a site were placed con-

ceptually into the 3D morphospace of dynamics-substrate-
anatomy (Fig. 1), would the substrate contribution to
morphology remain constant?

Covariance of dynamics-substrate-anatomy

As mentioned briefly above, there are occasions when two or
more of the formational variables (dynamics, substrate,
anatomy) become intrinsically linked. An animal is unlikely to
be able to use the same gait to move over firm sand as for deep,
soupy mud and this can be seen in neoichnological experi-
ments (Falkingham, pers. obs. 2013). As such, tracks made in
two mechanically very different substrates will differ in mor-
phology because both sediments behave differently, and from
a change in the dynamics of the foot. Taken to an extreme, a
submerged substrate may result in the preservation of tracks
recording swimming (or at least ‘punting’), rather than terres-
trial locomotion (Milner et al., 2006).

Alternatively, substrate and limb dynamics may determine
which parts of the foot are able to make an impression, shift-
ing the morphospace of track morphology with respect to the
anatomy axis. The variable distribution of under-foot pressure
may mean that some parts of the pedes may fail to deform the
substrate; for instance, a tridactyl foot may produce enough
pressure under two digits to indent the substrate but fail to
leave a mark for the third, resulting in apparently didactyl
tracks (Falkingham et al., 2010a; fig. 5). In the same way, as a
substrate becomes softer and the foot sinks deeper, more of
the anatomy becomes involved in forming the track (e.g.
Gatesy et al., 1999). For instance, two tridactyl feet, identical
save for the orientation of the hallux, may produce identical
shallow tracks (providing dynamics and substrate remain con-
sistent) which occupy the same point in morphospace, but
produce tracks differing in morphology in deep substrates.

Conclusions
The wealth of information recorded in a track, trackway or
tracksite is immense and ranges from the specific locomotor
dynamics and behaviours of individual animals to the
complex interactions between multiple individuals and
species. Unfortunately, disentangling the contributions to
track morphology from dynamics, anatomy and substrate is
not trivial. It is not as though one factor contributes to track
morphology and is then subsequently altered by another
factor, enabling us to work backwards in a step-wise fashion.
Rather, it is that the three factors combine simultaneously to
produce a single morphology. Adding to this complexity, the
final morphology is inherently volumetric, but is almost
always expressed only as a single surface (which may or may
not represent the surface upon which the track was made),
limiting what data can be used to reverse engineer the forma-
tion of the track.

Experimental ichnology is the means with which we
explore the contributing factors and essentially ‘fill in’ track
morphospace with the resultant morphologies of known
dynamics, anatomy and substrate. In order to do this, it is
imperative that experimental neoichnological work details the
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sediment properties (ideally both mechanical and morphologi-
cal), the shape (and stiffness) of the foot, and the movement
and forces with which the foot was indented. Ideally, 3D
digital models of experimental tracks should be made and
distributed, enabling ichnologists to compare the experimen-
tal tracks with exposed surfaces seen in fossil tracks, and
provide more confidence with which to interpret the produc-
ers, behaviours and palaeoenvironments of extinct organisms
from their tracks.
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