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Abstract 
 

Almost all relevant literature has characterized implied volatility as a biased predictor of 
realized volatility. This paper provides new time series techniques to assess the validity 
of this finding within a foreign exchange market context. We begin with the empirical 
observation that the fractional order of volatility is often found to have confidence 
intervals that span the stationary/non-stationary boundary. However, no existing 
fractional cointegration test has been shown to be robust to both regions. Therefore, a 
new test for fractional cointegration is developed and shown to be robust to the relevant 
orders of integration. Secondly, employing a dataset that includes the relatively new Euro 
markets, it is shown that implied and realized volatility are fractionally cointegrated with 
a slope coefficient of unity. Moreover, the non-standard asymptotic distribution of 
estimators when using fractionally integrated data is overcome by employing a bootstrap 
procedure in the frequency domain. Strikingly, tests then show that implied volatility is 
an unbiased predictor of realized volatility! 
 
JEL classification: C14, C22, C32, F31, G14. 
Keywords: market efficiency, traded volatility, narrow band least squares, fractional 
cointegration, bootstrap 
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I. Introduction 

Market efficiency in options markets is typically examined by estimating the following 

regression 

ττ βσασ ++ ++= t
IV
t

RV
t u  (1) 

where IV
tσ  is the implied volatility (IV) over a period of time τ  and RV

t τσ +  is the realized 

volatility (RV). Unbiasedness holds in (1) when 0=α , 1=β  and τ+tu  is serially 

uncorrelated. Of course, unbiasedness is a sufficient condition for market efficiency but is 

not necessary in the presence of either a constant or a time-varying option market risk 

premium. 

Conventional tests in the previous literature have generally led to the conclusion 

that IV is a biased forecast of RV in the sense that the slope parameter in (1) is not equal 

to unity (see, inter alia, Christensen and Prabhala, 1998, and Poteshman, 2000). This 

conclusion is found to be robust across a variety of asset markets (see Neeley, 2004) and 

has thus provided the motivation for several attempted explanations of this common 

finding. Popular suggestions include computing RV with low-frequency data 

(Poteshman, 2000); that the standard estimation with overlapping observations produces 

inconsistent parameter estimates (Dunis and Keller, 1995, Christensen et al., 2001); and 

that volatility risk is not priced (Poteshman, 2000, and Chernov, 2006). However, Neeley 

(2004), evaluates these possible solutions and finds that the bias in IV is not removed. 

Of course, the optimality of the estimation procedure applied to (1) depends 

critically on the order of integration of the component variables. Given the acknowledged 

persistence in individual volatility series, the recent literature suggests they are well 

represented as fractionally integrated processes (see, inter alia, Anderson et al., 2001a and 
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2001b). Notably Bandi and Perron (2006), Christensen and Nielson (2006) and Nielsen 

(2006) have begun to examine the consequences of this approach for regression (1). 

Employing stock market data, Bandi and Perron (2006), Christensen and Nielson 

(2006) and Nielsen (2006) suggest that IV and RV are fractionally cointegrated series1. 

Interestingly, Bandi and Perron (2006) stress the fractional order of volatility is found in 

the non-stationary region whereas Christensen and Nielson (2006) and Nielsen (2006) 

indicate the stationary region. However, each conclusion could be considered 

questionable given 95% confidence intervals would include both regions. In any case, 

Marinucci and Robinson (2001) stress that it is typically difficult to determine the 

integration order of fractional variables because a smooth transition exists between 

stationary and non-stationary regions. Christensen and Nielson (2006) and Nielsen (2006) 

note that when the fractional nature of the data is accounted for a slope parameter of unity 

in equation (1) cannot be rejected. Bandi and Perron (2006), noting the non-standard 

asymptotic distribution of conventional estimators in the non-stationary region, cannot 

test the relevant null hypothesis although they also claim their results give support to the 

unbiasedness hypothesis. 

This paper extends the empirical work of Bandi and Perron (2006), Christensen 

and Nielson (2006) and Nielson (2006) in three steps. Firstly, we employ data for several 

foreign exchange markets including the relatively new Euro market. Importantly, the IV 

data collected is traded on the market (and hence is directly observable). Since these data 

are directly quoted from brokers, they avoid the potential measurement errors associated 

with the more common approach (see, inter alia, Christensen and Prabhala, 1998) of 

                                                 
1Although this recent work predominantly investigates stock markets, Bandi and Perron (2006) also analyse 
options on Deutsche Mark/US Dollar futures. Finding similar results to those for stock markets they 
suggest that fractional cointegration in the implied-realized relation is a stylised fact. 
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backing out implied volatilities from a specific option-pricing model. 

Secondly, the possibility of fractional cointegration is examined formally using a 

new adaptation of the recently developed semi-parametric technique of Hassler et al. 

(2006) [hereafter HMV]. Under certain assumptions HMV prove that a residual-based log 

periodogram estimator, where the first few harmonic frequencies have been trimmed, has 

a limiting normality property. In particular, this methodology provides an asymptotically 

reliable testing procedure for fractional cointegration when the fractional order of 

regressors are strongly non-stationary. However, given the noted empirical uncertainty, 

(foreign exchange) volatility may present an integration order that violates the 

assumptions for the HMV test, as well as other fractional cointegration tests. To 

circumvent this uncertainty, we develop, examine and apply a fractional cointegration 

test robust to both stationary and (weak and strong) non-stationary regions. 

Thirdly, given the non-standard asymptotic distribution of conventional 

estimators when using fractionally integrated data, we employ a bootstrap procedure to 

compute appropriate confidence intervals in (1). Again, this specifically overcomes the 

difficulties encountered by Bandi and Perron (2006) when estimators are applied in the 

non-stationary region. 

Results employing the new fractional cointegration test confirm that foreign 

exchange RV and IV are fractionally cointegrated with a slope coefficient of unity. 

Strikingly, this result holds across a range of currencies. Moreover, tests using 

bootstrapped estimates then allow us to show that a slope parameter of unity in equation 

(1) cannot be rejected. In summary, and contrary to almost all previous research, foreign 

exchange implied volatility is shown to be unbiased. The paper is divided into five 

sections: Section 2 presents the empirical methodology; section 3 describes the data; 
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section 4, the results and finally, section 5 concludes. 

 

II. Empirical methodology 

A. Fractional integration 

Many in the literature (see, inter alia, Bandi and Perron, 2006, Vilasuso, 2002, and Baillie 

et al. 1996) have suggested that asset price volatility is neither an I(1) nor an I(0) process 

but rather a fractionally integrated or I(d) process. The introduction of the autoregressive 

fractionally integrated moving average (ARFIMA) model by Granger and Joyeux (1980) 

and Hosking (1981) allows the modeling of persistence or long memory where 

0 d 1 . A time series ty  follows an ARFIMA (p, d, q) process if  

),0(~,)()1)(( 2σεεµ iidLyLL ttt
d Θ+=−Φ  (2) 

where p
p LLL φφ −−−=Φ ...1)( 1  and q

q LLL θθ −−−=Θ ...1)( 1 . Such models may be 

better able to describe the long-run behaviour of certain variables. For example, when 

2/10 << d , ty  is stationary but contains long memory, possessing shocks that disappear 

hyperbolically not geometrically. Contrastingly, for 12/1 << d , the relevant series is 

non-stationary, the unconditional variance growing at a more gradual rate than when 

1=d , but mean reverting. 

The memory parameter d  can be estimated by a number of different techniques. 

The most popular, due to its semi-parametric nature, is the log periodogram estimator 

(Geweke and Porter-Hudak, 1983; Robinson, 1995a) henceforth known as the GPH 

statistic. This involves the least squares regression  

mlljudI jjj ,...,2,1,)}2/(sin4log{)(log 2
0 ++=+−= λβλ  (3) 

where )( jI λ  is the sample spectral density of ty  evaluated at the Tjj /2πλ =  
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frequencies, T  is the number of observations and m  is small compared to T . Inter alia, 

Pynnönen and Knif (1998) and HMV, note that the least-squares estimate of d  can be 

used in conjunction with standard t-statistics. For the stationary range, 2/12/1 <<− d , 

Robinson (1995a, 1995b) demonstrated that the GPH estimate is consistent and 

asymptotically normally distributed. Additionally, Velasco (1999a, 1999b) shows that 

when the data are differenced, the estimator is consistent for 22/1 << d  and 

asymptotically normally distributed for 4/72/1 << d . 

 

B. Fractional cointegration 

As discussed in the introduction, some recent literature has presented the possibility that 

RV and IV are fractionally cointegrated. Fractional cointegration can be defined by 

supposing ty  and tx  are both I(d), where d  is not necessarily an integer and the 

residuals, ttt xyu β−= , are I( bd −=δ ). When db < , where b  is also not necessarily 

an integer, series are fractionally cointegrated. Testing for fractional cointegration can be 

accomplished using a multi-step methodology (see HMV) where (i) the order of 

integration of the constituent series are estimated and tested for equality and (ii) the long-

run equilibrium relationship is estimated2 and the residuals examined for long-memory. 

Alternative methodologies include the joint estimation of memory parameters of the 

constituent series, the cointegrating residuals and the equilibrium relationship (see 

Velasco, 2003) or the use of bootstrap methods (see Davidson, 2005). 

A frequently used approach is to adopt a multi-step methodology where the 

                                                 
2The long-run equilibrium relationship itself could be approximated by OLS, a fractional version of the 
Fully Modified method suggested by Kim and Phillips (2001), Gaussian semi-parametric estimation 
developed by Velasco (2003) or narrow band spectral estimates (see Robinson and Marinucci, 1998). 
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concluding step estimates the GPH statistic, δ , for the least squares residual of the 

equilibrium relationship (see Dittman, 2001). Inter alia, Tse et al. (1999) experimentally 

noted that t-statistics associated with δ̂  might not be normally distributed. 

 

C. Nonstationary fractional cointegration 

If d  is in the strongly non-stationary region, HMV demonstrate that as long as β̂  can 

converge fast enough, δ̂  possesses a limiting normal distribution3 provided the very first 

harmonic frequencies are trimmed. Specifically, this entails setting 0>l  in (3). 

Moreover, Monte Carlo experiments show that trimming only one frequency, 1=l , 

provides a satisfactory normal approximation for the distribution of GPH statistic in finite 

samples. Of course, given (asymptotically) normal estimators, standard inference 

procedures can be legitimately applied. 

A priori, it is useful to note the HMV test theoretically requires certain 

assumptions to hold to generate limiting normality for the distribution of δ̂ . The most 

relevant to our discussion are listed below 

5.00 <≤ δ  (4) 

15.0 <−< dδ  (5) 

5.172.0 << d  (6) 

In particular, it should be stressed that condition (6) implies that for what might be 

termed the weakly non-stationary region (i.e. 72.05.0 << d ), there is no limiting normal 

distribution theory. This is due to the slower convergence rate of β̂ . 

                                                 
3See Appendix for an outline of relevant theorem in Hassler et al. (2006). 
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D. Stationary fractional cointegration 

If 5.0<d , OLS estimates of β  are inconsistent suggesting the above approach may be 

inappropriate. However, Robinson and Marinucci (1998) and Christensen and Nielson 

(2006) have shown that narrow band least squares (NBLS) estimation can result in an 

estimator zβ̂  that is consistent and normally distributed. To explain NBLS consider first 

that a matrix form of (1) could be written 

uXy +β=  (7) 

where β  is a 12×  vector of unknown coefficients and u  is a 1×T  vector of 

disturbances. Additionally define the complex TT ×  Fourier matrix, V , which has as its 

jth element 

{ }[ ] TtjtiTv jjt ,...,1,,exp 1
2/1 =−= −

− λ  (8) 

and presents the frequencies 

T
j

j
πλ 2

=  (9) 

A transformation to the frequency domain (see Harvey, 1993) can be made by pre-

multiplying the observation matrices in (7) by V  and expressing the transformed model 

as 

uXy &&& +β=  (10) 

OLS estimation of (10) will produce identical estimates to that of (1). Note however 

different frequency components may be omitted by removing zT −  corresponding 

transformed observations. This is band spectrum regression and it can be shown that the 

β  in (1) will be estimated by the statistic 
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where )( jIV
I λσ  is the sample spectral density of IV and )( jRVIV

I λσσ  is the cross-spectrum 

between IV and RV4. Additionally, such band spectrum regression is called NBLS if 

∞→→+ Tas
T
z

z
01  (12) 

A number of assumptions are required for the generation of a limiting normal distribution 

for zβ̂ . These include 

0>d  (13) 

0≥δ  (14) 

5.0<+δd  (15) 

Christensen and Nielson (2006) recently employed a multi-step methodology, where the 

concluding step semi-parametrically estimates δ  for the NBLS residual of the 

equilibrium relationship. Hypothesis testing is then conducted on zδ̂  as if the residuals 

were observed. Although possibly an appropriate procedure (see Nielsen, 2006) this has 

not been ascertained in the literature5. 

 

E. Boundary fractional cointegration 

The fractional order of volatility has typically been found to have confidence intervals 

that span the stationary/non-stationary boundary (i.e. 7.03.0 << d ). In any case, 

                                                 
4Therefore, 1

ˆ
−Tβ  is a special case, equivalent to the OLS estimate of β  in (1). 

 
5However, Nielsen (2006) uses a local Whittle QMLE to jointly estimate the integration order of the 
regressors, the integration order of the residuals and the coefficients of the cointegrating vector. Under 
certain conditions, this estimator is shown to be asymptotically normal for the stationary region. 
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Marinucci and Robinson (2001) suggest determining the stationarity or otherwise of time 

series variables is often difficult. This difficulty is particularly pronounced in a fractional 

context, where a smooth transition exists between stationary and non-stationary regions. 

However, the use of the fractional cointegration methodology discussed above relies on 

the identification of the appropriate region. Furthermore, point estimates for d  are often 

found in the weakly non-stationary region (i.e. 72.05.0 << d ), a result for which there is 

no limiting normal distribution theory. Therefore, we require an estimator which is robust 

in finite samples to orders of integration for d  that span the boundary. As a first step, it 

would seem more appropriate to use NBLS rather than OLS to estimate the equilibrium 

relationship. As discussed above NBLS, in contrast to OLS, provides a consistent 

estimator in the stationary region. However, analogously to OLS, NBLS is consistent in 

the non-stationary region (see Marinucci and Robinson, 2001). Furthermore, in the non-

stationary region, NBLS generally converges faster than OLS (see Marinucci and 

Robinson, 2001) and thus may resolve the lack of a normal distribution for δ̂  in the 

weakly non-stationary region shown by HMV. In a second step, it would appear useful to 

examine the effect of trimming on the distribution of zδ̂ . 

To assess the distribution of zδ̂  across the boundary we performed a simple 

simulation. Let tx  be generated by an ARFIMA ( 0,,0 d ) series 

tt
d xL 1)1( ε=−  (16) 

where the fractional difference operator is defined by the Maclaurin series 

1;
)1(

;
)1()(

)()1( 0
1

00

=
−−

==
+Γ−Γ

+−Γ
=− −

∞

=

∞

=
∑∑ d

j
ddj

dLd
jd

LjdL j
j

j
j

j

j

j

d  (17) 

and (.)Γ  is the gamma function. To avoid the initial conditions effect, sample sizes 
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wTt += ,...,1  are generated and the first 1000=w  observations removed. Additionally, 

 
0

j
jj Ld∑∞

=  is approximated by allowing 0=jd  when 1000>j . The true regression 

model is  

ttttt vLvxy 2)1(; εδ =−+=  (18) 

and is estimated by NBLS 

ttzzt vxy ˆˆˆ ++= βα  (19) 

GPH statistics zδ̂  are then computed for tv̂  and the statistics below calculated 

)ˆ(

ˆ

z

z

se δ
δδ −  (20) 

In the experiments two-sided tests at the 1%, 5% and 10% level are calculated. To allow 

comparison with HMV we set 5.0Tm = , allowed the trimming parameter )1,0(∈l  and 

use 2000 replications. Indeed, simulations not reported here, and using OLS instead of 

NBLS, replicate the Monte Carlo results of HMV. In our reported simulations we also 

vary the NBLS estimation by applying both 3.0Tz =  and 75.0Tz = . Recent work has 

recommended the use of a low number of frequencies (see Christensen and Nielson, 

2006, Marinucci and Robinson, 2001, and Robinson and Marinucci, 1998) and thus the 

two settings will allow some assessment of this approach. To begin with Tables 1 and 2 

show the size of the GPH tests, without trimming, employing different values of d  and 

δ . 

[Insert Tables 1 and 2] 

The results above clearly show that NBLS/GPH methodology, without trimming, does 

not typically produce a normally distributed test statistic. Tests are particularly oversized 
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when a relatively small number of frequencies ( )3.0Tz =  are employed6. This casts some 

doubt on the recent approach used in the literature and the twin assertions that z  should 

be relatively low and hypothesis testing can be conducted on zδ̂  as if the residuals were 

observed. Tables 3 and 4 below repeat the previous simulations, although now with 

.1=l  

[Insert Tables 3 and 4] 

Tables 3 and 4 clearly show that with trimming, the new methodology produces an 

approximately normally distributed test statistic. Strikingly, this result holds for when d  

is in the stationary region or the weakly non-stationary region. The reduction in size bias 

is particularly marked in the 3.0Tz =  case. These finite sample results have clear 

implications for testing option market efficiency using regression (1). They suggest that 

as long as trimming is employed an NBLS/GPH methodology can be legitimately used to 

assess whether RV and IV are fractionally cointegrated. We shall use this result in 

empirical tests of data discussed below. 

 

III. Data 

Daily and monthly time series of RV and IV were constructed from daily data for the 

period January 19917 to September 2005. As in Dunis and Keller (1995), Dunis and 

Huang (2002), and Sarantis (2005), IV is measured by at-the-money, one-month forward, 

                                                 
6Marinucci and Robinson (2001) also examine the NBLS estimate of the cointegrating vector and 
associated semiparametric methods for testing for the existence of fractional cointegration. Using a Monte 
Carlo approach, as one would expect, their Hausman test is shown to be similarly oversized. It should be 
noticed that their Monte Carlo investigation only examined the 5% size over the strongly non-stationary 
region (i.e. 2.18.0 << d ). See Marinucci and Robinson (2001) Table 11. 
 
7The choice of start date was governed by the availability of IV data. 
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market quoted volatilities at close of business in London, obtained from brokers by 

Reuters. These `traded' implied volatilities8 measure the market's expectation about the 

future volatility of the spot exchange rate for six currencies: Sterling/US dollar, US 

dollar/Swiss Franc, US dollar/Yen, Euro/Yen, Euro/Sterling and Euro/US dollar9. As 

currency volatility has now become a traded quantity in financial markets, it is therefore 

directly observable on the marketplace. The databank is maintained by CIBEF at 

Liverpool John Moores University. As noted in the introduction, since these data are 

directly quoted from brokers, they avoid the potential biases associated with backing out. 

Given IV data for each specific day, as in Christensen and Hansen (2002), RV is 

calculated over the remaining one month of the option 

2

1

)(
1

252
tit

i

RV
t rr −

−
= +

=
+ ∑

τ

τ τ
σ  (21) 

where )/ln( 1−= ttt SSr , τ  is the relevant number of trading days10 and tS  is the closing 

(London time) average of bid and ask quotes for the spot exchange rates11. The raw daily 

                                                 
8Implied volatilities are also annualised rates so that a quoted volatility of 5 per cent typically translates to a 
monthly variance rate of )252/21)(05.0( 2 . The calculations assume that annualised rates refer to a 252 
trading day year. 
 
9The three Euro IV series begin in January 1995 and comprise Deutsche Mark volatility until December 
1998; after the introduction of the Euro in January 1999, actual Euro volatility are used. The splicing 
together of Deutsche Mark and Euro series is to ensure we have enough observations (particularly when 
using monthly observations) to usefully employ semi-parametric estimation. For the exchange rate series, 
we compute 'synthetic' euro returns until December 1998 using the fixed Euro/Deutsche Mark rate of 
1.95583 agreed at the EU Brussels summit in May 1998 for the change over to the Euro on 31/12/1998 (i.e. 
combined with the 'time-varying' US dollar/Deutsche Mark rate to produce the synthetic Euro/US dollar 
rate). We did not use data prior to 1995 as the period 1992-1994 was one of sharp appreciation and 
revaluations of the Deutsche Mark versus the other ERM currencies prior to its stabilisation over 1995-
1998: using the fixed Euro/Deutsche Mark exchange rate agreed in Brussels in May 1998 to compute 
'synthetic' euro returns prior to January 1995 would therefore have been problematic. 
 
10Assumed to be 21 days. 
 
11It should be noted that this is only a proxy for the true, but unknown RV. Alternatively, a methodology 
using intra-day foreign exchange data and following Anderson et al. (2001a) could be employed. However, 
given that IV is drawn from a daily sampling frequency it seems appropriate to calculate RV from an 
analogous frequency. Recent studies that have also used a daily frequency include Bandi and Perron (2006) 
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dataset thus consists of (2770) 3780 time series observations for each (euro) volatility 

series. Of course, as pointed out by Christensen and Prabhala (1998), overlapping data 

problems will beset estimation of equation (1) if daily datasets are employed. To 

circumvent this a monthly dataset is derived from the daily version. Specifically, IV data 

is taken only from the subsequent trading day after the final day used in the calculation of 

the previous RV figure. This allows the data to cycle through the calendar and the 

resulting dataset contains (126) 172 non-overlapping observations for each (euro) 

volatility series12. 

 

IV. Empirical results 

GPH statistics13 for the logarithm14 of monthly15 volatility series were estimated using 

                                                                                                                                                 
and Christensen and Hansen (2002). Finally, Neeley (2004) has shown that using intra-day data does not 
explain the predictive bias in IV. 
 
12Similarly in Bandi and Perron (2006) the monthly dataset is also derived from daily data and contains 152 
observations. However, IV data is taken only from the closing value of each month. Although common 
practice, particularly in forward market analysis, this methodology does not ensure that periods of 
observation are strictly non-overlapping. For example, an IV figure drawn from the last trading day in 
January 1991 (Thursday 31st) would be matched with a RV figure calculated from 21 days of subsequent 
trading day returns (i.e. data up to and including Friday 1st March). Of course the next IV figure would be 
drawn from the last trading in February (Thursday 28th) causing subsequent periods of observation to 
overlap. In contrast, the cycling dataset suggested here ensures the non-overlapping nature of the data in 
construction. Additionally the cycling dataset does not draw data solely from one period of the month and 
therefore is not likely to be as susceptible to any intra-monthly seasonality. See Breuer and Wohar (1996) 
for an analogous application of cycling monthly datasets to the forward foreign exchange market. 
 
13Note that the GPH statistic was estimated at 75.0Tm =  following Maynard and Phillips (2001). As we 
have data at a monthly frequency, the use of much smaller bandwidths would produce standard errors too 
large to provide any meaningful information over the orders of integration we are interested in. Moreover, 
the estimated standard error of d  is that derived by Geweke and Porter-Hudak (1983) and shown in 
equation (4) of HMV, who show it to be more appropriate than the conventional and Robinson (1995a, 
1995b) alternatives. 
 
14Natural logarithms of all volatility series were taken to minimise the possibility of non-normal variables 
as shown by, inter alia, Christensen and Hansen (2002). 
 
15All empirical analysis is carried out on the monthly dataset to avoid the overlapping data problems 
discussed by Christensen and Prabhala (1998). 
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differenced data16 and Ox version 3.3 (see Doornik, 1999) and are shown in Table 5. An 

alternative approach would be to specify fully parametric ARFIMA ),,( qdp  models 

computed by exact maximum likelihood (EML). Of course this fully parametric approach 

is more efficient but will be inconsistent if the short-run dynamics are incorrectly 

specified17 

[Insert Table 5] 

Table 5 contains some interesting results. Firstly, the GPH point estimates of fractional 

differencing in foreign exchange volatility are spread over the range 0.71 to 0.29. Tests 

for 1=d  and 0=d  show that, in particular, the volatility series are fractionally 

integrated with 10 << d . These results confirm that foreign exchange market behaviour 

is analogous to stock market behaviour investigated by Bandi and Perron (2006), 

Christensen and Nielson (2006) and Nielsen (2006). Secondly, standard errors are such 

that it cannot be ascertained whether volatility series are typically stationary or non-

stationary fractionally integrated processes. Thirdly, RV and IV series appear to have 

similar orders of integration. To examine this in more detail we test that the fractional 

orders of the constituent variables are equal by applying the homogenous restriction 

0:0 =PDH  (22) 

where 







=

IV

RV

d
d

D  and [ ]11 −=P . Robinson (1995a) noted the relevant Wald test 

statistic could be expressed as 

                                                 
16The resulting estimate of d  was then increased by 1. If 5.0ˆ <d  then d  was re-estimated using data in 
levels. Also note that in (3) l  is set equal to zero, indicating no trimming of the harmonic frequencies. 
 
17Recent work by Nielsen (2006), Christensen and Nielson (2006) and Bandi and Perron (2006) all employ 
semi-parametric estimation of the long memory parameter. 
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( ) ( ){ }( ) DPPZZPPD ˆ,0,0ˆ
1

1
−

−





 ′Ω⊗′′′  (23) 

where Ω  is residual variance-covariance matrix from (3), [ ]′+= ml ZZZ ...1  and 

[ ])}2/(sin4log{,1 22 λ−=jZ . Table 6 contains the Wald test results 

[Insert Table 6] 

For all currencies the Wald test indicates equal fractional orders of d  for RV and IV. 

Thus it is now useful to examine the fractional differencing parameter of the possible 

cointegrating relationship. Of course, given that volatility series clearly have confidence 

intervals for d  that typically span the stationary/non-stationary boundary it would appear 

sensible to employ a fractional cointegration test robust to both these regions. Thus we 

next apply the new test proposed and examined in section II.E. Specifically, in a first 

step, regression (1) is estimated by NBLS and employing 75.0Tz = . In a second step, the 

NBLS residuals from (1) are tested for their order of integration using GPH with 1l = . 

The resulting estimates of δ , are shown below in Table 7 

[Insert Table 7] 

Interestingly, the point estimate of δ  is always lower than the fractional parameter d  of 

the constituent series, implying fractional cointegration. Furthermore, in all cases the null 

0=δ  cannot be rejected. Therefore, using our robust test, we cannot reject the null of bi-

variate fractional cointegration between RV and IV for any of the currencies. 

The fractional cointegration between RV and IV established above is a necessary 

but not sufficient condition for unbiasedness in the options foreign exchange market. 

Therefore we need to finally consider the intercept and slope parameters in (1). As a 

preliminary step and for comparative purposes we present conventional OLS estimates in 

Table 8 



 19

[Insert Table 8] 

These suggest that, as has previous literature, IV is a biased predictor of RV in the 

foreign exchange market. However, the slope coefficients found are generally much 

closer to unity than those estimated in previous studies (see Neeley, 2004). As we are 

employing traded volatility for the first time, this suggests that perhaps the measurement 

error in 'backing out' implied volatility from option pricing models may have more effect 

on biasing parameters than previously acknowledged. 

Of course, as already noted earlier, the fractional order of integration of volatility 

is likely to have an effect on the OLS estimation of (1). In particular, if 5.0<d  then OLS 

estimates will be inconsistent. However, even if 5.0>d , OLS will typically converge 

slower than NBLS. Therefore, Table 9 provides the NBLS18 point estimates for (1) 

[Insert Table 9] 

NBLS parameter estimates are consistent but have non-standard limit distributions in the 

non-stationary region. To circumvent this a bootstrap procedure is employed to generate 

90% and 95% confidence intervals for the slope coefficient in (1). Specifically, in the 

frequency domain, NBLS residuals u&  are resampled with replacement and used to 

generate a bootstrapped dependent variable ∗y& . The new dependent variable is regressed 

on the original frequency domain regressors X&  to get the bootstrapped coefficient vector 

∗β . Using the bootstrap class in OX, 1000 bootstrapped slope coefficients were generated 

in this manner. 

Strikingly, Table 9 shows that for all exchange rates the NBLS slope parameter is 

much closer to unity than the OLS version. In a similar vein, the NBLS constant 

                                                 
18Again employing 75.0Tz = . 
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approaches zero. Furthermore, the 90% and 95% confidence intervals for the NBLS slope 

coefficient all include unity. It would appear that when we account for the fractional 

nature of the variables the bias in IV is completely removed! 

 

V. Conclusions 

Almost all relevant literature has characterized foreign exchange implied volatility (IV) 

as a biased predictor of realized volatility (RV). The cause of this bias has been the 

subject of much debate but in a recent working paper, Neeley (2004), the popular 

suggestions (i.e. overlapping data; use of low frequency data; and the non-pricing of 

volatility premia) are rejected. 

A small strand of the literature (see Bandi and Perron, 2006, Christensen and 

Nielson, 2006, and Nielsen, 2006) has concentrated on the effect on the IV-RV relation 

of characterizing volatility series as fractionally integrated processes. This paper extends 

their work. We begin with the empirical observation that the fractional order of volatility 

is typically found to have confidence intervals that span the stationary/non-stationary 

boundary. However, no existing fractional cointegration test has been shown to be robust 

to both regions. Additionally, there is no limiting normal distribution theory currently 

developed for the weakly non-stationary region )72.05.0( << d . 

As a first step, we develop, examine and apply a new test for fractional 

cointegration which is shown to be robust to the typically relevant orders of integration. 

Specifically, we adopt a simple multi-stage approach where pertinently (i) the 

cointegrating relationship is estimated by narrow band least squares (NBLS) and (ii) a 

trimmed residual log-periodogram estimator is then employed. It shown that in finite 

samples the new estimator is approximately normally distributed and can thus be used for 
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inference in the volatility context. Strikingly, trimming is shown to dramatically reduce 

size when the literature recommended low number of bandwidths are used in the NBLS 

estimation. The normal approximation is shown to hold across the stationary/non-

stationary boundary and as a consequence even holds in the weakly non-stationary 

region. 

Secondly, whereas previous studies have concentrated primarily on equity 

markets, we employ data for foreign exchange including the relatively new Euro markets: 

Sterling/US dollar, US dollar/Swiss Franc, US dollar/Yen, Euro/Yen, Euro/Sterling and 

Euro/US dollar. Importantly, the IV data collected is traded on the market (and hence is 

directly observable). Since these data are directly quoted from brokers, they avoid the 

potential measurement errors associated with the more common approach (see, inter alia, 

Christensen and Prabhala, 1998) of backing out implied volatilities from a specific 

option-pricing model. 

Finally, employing the developed estimator, it is shown that foreign exchange RV 

and IV are fractionally cointegrated with an approximate slope coefficient of unity. 

However, and as in previous research, the use of conventional estimators may provide 

non-standard limiting distributions for the slope coefficient and as a consequence no 

reliable testing procedure can be employed in this long-run context. These issues are 

resolved by constructing a bootstrap confidence interval in the frequency domain. The 

confidence intervals are subsequently not able to reject the hypothesis that, in fact, IV is a 

unbiased predictor of RV. 

Neeley (2004) suggests that although the economic value of the information is very 

limited, foreign exchange IV is a biased predictor of RV. The results in this paper 

strongly suggest that, when we employ traded volatility data, account for its fractional 
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nature and use appropriate confidence intervals, the bias disappears! 
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Table 1: 
 

1% Size of NBLS Tests ( ;250=T  0;75.0 == lTz ) 
 

δ\d  0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 
0.8 0.022 0.027 0.029 0.021 0.023 0.021 0.021 0.021 0.021 
0.7 - 0.024 0.025 0.021 0.024 0.019 0.021 0.018 0.016 
0.6 - - 0.019 0.017 0.020 0.017 0.019 0.019 0.015 
0.5 - - - 0.015 0.015 0.017 0.018 0.014 0.014 
0.4 - - - - 0.012 0.015 0.017 0.016 0.014 
0.3 - - - - - 0.015 0.016 0.016 0.016 

 
 

5% Size of NBLS Tests ( ;250=T  0;75.0 == lTz ) 
 

δ\d  0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 
0.8 0.073 0.074 0.074 0.073 0.076 0.074 0.069 0.066 0.064 
0.7 - 0.066 0.070 0.067 0.066 0.065 0.066 0.060 0.060 
0.6 - - 0.064 0.067 0.063 0.062 0.059 0.059 0.056 
0.5 - - - 0.055 0.057 0.061 0.056 0.059 0.052 
0.4 - - - - 0.054 0.056 0.051 0.057 0.055 
0.3 - - - - - 0.052 0.050 0.051 0.053 

 
 

10% Size of NBLS Tests ( ;250=T  0;75.0 == lTz ) 
 

δ\d  0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 
0.8 0.127 0.124 0.123 0.126 0.126 0.128 0.127 0.122 0.115 
0.7 - 0.118 0.122 0.126 0.120 0.117 0.121 0.116 0.112 
0.6 - - 0.115 0.120 0.118 0.114 0.108 0.113 0.102 
0.5 - - - 0.113 0.119 0.113 0.108 0.106 0.102 
0.4 - - - - 0.107 0.109 0.102 0.103 0.096 
0.3 - - - - - 0.102 0.099 0.098 0.090 
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Table 2: 
 

1% Size of NBLS Tests ( ;250=T  0;3.0 == lTz ) 
 

δ\d  0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 
0.8 0.049 0.042 0.043 0.040 0.042 0.040 0.038 0.035 0.037 
0.7 - 0.049 0.050 0.037 0.043 0.037 0.037 0.040 0.034 
0.6 - - 0.047 0.042 0.042 0.046 0.043 0.039 0.035 
0.5 - - - 0.044 0.041 0.040 0.042 0.036 0.037 
0.4 - - - - 0.042 0.044 0.036 0.038 0.036 
0.3 - - - - - 0.046 0.042 0.037 0.038 

 
 

5% Size of NBLS Tests ( ;250=T  0;3.0 == lTz ) 
 

δ\d  0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 
0.8 0.114 0.108 0.100 0.096 0.101 0.105 0.100 0.092 0.090 
0.7 - 0.114 0.112 0.096 0.099 0.094 0.101 0.096 0.095 
0.6 - - 0.122 0.102 0.099 0.101 0.095 0.092 0.085 
0.5 - - - 0.120 0.104 0.094 0.096 0.089 0.079 
0.4 - - - - 0.110 0.104 0.097 0.090 0.080 
0.3 - - - - - 0.107 0.103 0.094 0.088 

 
 

10% Size of NBLS Tests ( ;250=T  0;3.0 == lTz ) 
 

δ\d  0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 
0.8 0.181 0.170 0.158 0.158 0.153 0.167 0.157 0.159 0.149 
0.7 - 0.179 0.171 0.164 0.160 0.156 0.165 0.159 0.158 
0.6 - - 0.186 0.177 0.166 0.167 0.155 0.157 0.151 
0.5 - - - 0.187 0.174 0.163 0.158 0.154 0.150 
0.4 - - - - 0.187 0.171 0.158 0.145 0.139 
0.3 - - - - - 0.173 0.161 0.149 0.138 
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Table 3: 
 

1% Size of NBLS Tests ( ;250=T  1;75.0 == lTz ) 
 

δ\d  0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 
0.8 0.014 0.018 0.018 0.016 0.017 0.017 0.015 0.014 0.013 
0.7 - 0.019 0.016 0.016 0.018 0.016 0.015 0.013 0.013 
0.6 - - 0.017 0.018 0.018 0.018 0.012 0.013 0.011 
0.5 - - - 0.019 0.017 0.015 0.011 0.015 0.011 
0.4 - - - - 0.015 0.016 0.013 0.012 0.012 
0.3 - - - - - 0.017 0.015 0.013 0.013 

 
 

5% Size of NBLS Tests ( ;250=T  1;75.0 == lTz ) 
 

δ\d  0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 
0.8 0.067 0.063 0.059 0.061 0.055 0.056 0.055 0.050 0.047 
0.7 - 0.064 0.061 0.061 0.059 0.054 0.058 0.054 0.050 
0.6 - - 0.061 0.064 0.059 0.057 0.057 0.053 0.053 
0.5 - - - 0.062 0.062 0.059 0.056 0.055 0.054 
0.4 - - - - 0.056 0.058 0.061 0.057 0.050 
0.3 - - - - - 0.055 0.059 0.055 0.051 

 
 

10% Size of NBLS Tests ( ;250=T  1;75.0 == lTz ) 
 

δ\d  0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 
0.8 0.114 0.120 0.109 0.110 0.105 0.106 0.108 0.102 0.102 
0.7 - 0.118 0.116 0.108 0.106 0.110 0.112 0.106 0.103 
0.6 - - 0.113 0.111 0.102 0.103 0.111 0.113 0.104 
0.5 - - - 0.111 0.102 0.110 0.115 0.112 0.101 
0.4 - - - - 0.102 0.107 0.113 0.109 0.105 
0.3 - - - - - 0.101 0.110 0.108 0.107 
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Table 4: 
 

1% Size of NBLS Tests ( ;250=T  1;3.0 == lTz ) 
 

δ\d  0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 
0.8 0.015 0.015 0.017 0.017 0.018 0.017 0.016 0.017 0.015 
0.7 - 0.021 0.018 0.015 0.014 0.014 0.015 0.016 0.014 
0.6 - - 0.020 0.016 0.018 0.018 0.016 0.016 0.013 
0.5 - - - 0.016 0.018 0.016 0.016 0.015 0.015 
0.4 - - - - 0.016 0.015 0.012 0.014 0.013 
0.3 - - - - - 0.017 0.016 0.012 0.012 

 
 

5% Size of NBLS Tests (T 250;  1;3.0 == lTz ) 
 

δ\d  0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 
0.8 0.062 0.060 0.059 0.060 0.057 0.054 0.056 0.053 0.055 
0.7 - 0.062 0.065 0.059 0.056 0.056 0.055 0.059 0.058 
0.6 - - 0.069 0.061 0.062 0.054 0.055 0.060 0.058 
0.5 - - - 0.066 0.061 0.061 0.061 0.058 0.057 
0.4 - - - - 0.068 0.064 0.068 0.062 0.056 
0.3 - - - - - 0.067 0.071 0.070 0.063 

 
 

10% Size of NBLS Tests ( ;250=T  1;3.0 == lTz ) 
 

δ\d  0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 
0.8 0.108 0.106 0.107 0.107 0.103 0.101 0.107 0.104 0.105 
0.7 - 0.113 0.115 0.110 0.111 0.099 0.101 0.105 0.111 
0.6 - - 0.115 0.109 0.107 0.107 0.105 0.106 0.108 
0.5 - - - 0.118 0.119 0.113 0.111 0.107 0.103 
0.4 - - - - 0.123 0.126 0.120 0.114 0.109 
0.3 - - - - - 0.173 0.161 0.149 0.138 
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Table 5: GPH Tests for the d  of Individual Volatility Series 
 

  d̂  dd σ/)1ˆ( −  dd σ/ˆ  
UK£ /US$ RV 0.629 (0.111) -3.34 5.67 

 IV 0.617 (0.111) -3.45 5.56 
US$/SF RV 0.290 (0.111) -6.40 2.61 

 IV 0.598 (0.111) -3.62 5.39 
US$/Yen RV 0.482 (0.111) -4.67 4.34 

 IV 0.713 (0.111) -2.59 6.42 
Euro/Yen RV 0.579 (0.129) -3.26 4.49 

 IV 0.712 (0.129) -2.23 5.52 
Euro/UK£ RV 0.413 (0.129) -4.55 3.20 

 IV 0.712 (0.129) -2.23 5.52 
Euro/US$ RV 0.421 (0.129) -4.49 3.26 

 IV 0.609 (0.129) -3.03 4.72 
 
Note: numbers in parentheses alongside the estimates for d  are the standard errors dσ . 
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Table 6: Wald Tests for the Equality of the GPH Estimates for Realized and Implied 

Volatility 
 

UK£ /US$ US$/SF US$/Yen Euro/Yen Euro/UK£ Euro/US$ 
0.004 2.627 1.602 0.524 1.930 1.225 

[0.951] [0.105] [0.206] [0.469] [0.165] [0.268] 
 
Note: the Wald statistic has a )1(2χ  distribution. The figures in square brackets are p 
values. 
 
 

Table 7: Robust Tests for the Integration Order of the (Level) Residuals in (1) 
 

UK£ /US$ US$/SF US$/Yen Euro/Yen Euro/UK£ Euro/US$ 
0.173 0.011 0.081 0.132 -0.050 0.179 

(0.128) (0.128) (0.128) (0.152) (0.152) (0.152) 
 
Note: numbers in parentheses are standard errors. 
 
 

Table 8: OLS estimates of (1) 
 
 

 α̂  β̂  
UK£ /US$ -0.280 0.945 

US$/SF -0.537 0.791 
US$/Yen -0.571 0.790 
Euro/Yen -0.501 0.814 
Euro/UK£ -0.600 0.797 
Euro/US$ -0.631 0.780 

 
 

Table 9: NBLS estimates of (1) 
 

 ☺  95% CI for   90% CI for   
UK£ /US$ -0.100 1.019 [0.853 -1.199] [0.876 -1.162] 

US$/SF -0.057 1.011 [0.800 -1.250] [0.817 -1.223] 
US$/Yen -0.196 0.958 [0.800 -1.138] [0.824 -1.108] 
Euro/Yen -0.162 0.967 [0.784 -1.133] [0.817 -1.107] 
Euro/UK£ -0.218 0.945 [0.803 -1.094] [0.826 -1.071] 
Euro/US$ -0.236 0.953 [0.704 -1.216] [0.748 -1.167] 
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Appendix 
 
Let ty  and tx  be integrated of order d  and satisfy 
 Ttuxy ttt ,...,1,0, =≠+= ββ  
where ).(~ δIut  
 
Assumption 1 Allow for two cases 
Case 1: If 1≥+ dδ  then )(ˆ d

p TO −=− δββ  

Case 2: If 1<+ dδ  then )(ˆ 21 d
p TO −=− ββ  

These assumptions will hold if β̂  is estimated by OLS and d  ),0(),5.1,5.0( d∈∈ δ . 
 
Assumption 2 Hassler et al. (2006) choose 

∞<<<<< BAabBTlATm ba ,0,10,~,~  
 
Assumption 3 The (pseudo) spectral density )(λzzf  of zt , ),(},{ δ==∈ ux ddduxz  
satisfies, ∞<<≤< zG0,20 γ  

0as))(1()( 2 →+= − λλλλ γOGf zd
zzz  

and is differentiable within ),0( ε  of the origin with 

 0as)()( 21 →= −− λλλ
λ

zd
zz Of

d
d  

This assumption will hold, under certain conditions, for fractional series with 
)())2/sin(2()( 2 λλλ ∗−= ff zd  and ARFIMA models with 2=γ . 

 
Assumption 4 5.0,1)}5.0/()1(,0max{ >−<<<−−−− δδδ dabdd  
 
Assumption 5 )21/(2 γγ +<< ab  
 
Theorem Given assumptions 1,2,3 and 4 for Gaussian tu  and tx , with ,5.00 <≤ δ  

d 0.5 1 , as ∞→T  then 
 ( ) 0)ˆ(ˆlog puT →−δδ  
Moreover, given assumption 5 then 

 ( ) 





→−

24
,0)ˆ(ˆ2/1 πδδ Num d  

However, it should be noted that when 1<+δd , the slower convergence rate of β̂  in 
assumption 1 provide regions (i.e. 72.05.0 << d ) where no choices of m  and l  can be 
found to show m  limiting normality of δ̂ . 
 


