

# **Centre for International Capital Markets**

# **Discussion Papers**

ISSN 1749-3412

# Central Bank Independence: An Updated Set of Indices and the Implications for Inflation

Joseph Pearlman, Nicholas Sarantis

No 2009-16

# Central Bank Independence: An Updated Set of Indices and the Implications for Inflation\*

Joseph Pearlman and Nicholas Sarantis Centre for International Capital Markets London Metropolitan University, UK

August 2009

#### Abstract

The Grilli-Masciandaro-Tabellini and Cukierman indices of central bank independence, as well as the turnover of central bank governors, are updated for the late 1990s and early 2000s using the most recently published central banking laws for 90 industrial and developing countries. Included in our indices are most of the Eastern European and South-East Asian countries and a subset of African states. We examine how these CBI indices correlate among themselves and how they compare with previous estimates of CBI indices based on legislation available in the 1980s. We also provide an assessment of how well the new CBI indices correlate with inflation for the periods following any new legislation.

JEL classification: E58, E52

Keywords: Central bank independence; updated indices; inflation

<sup>(\*)</sup> We are grateful to Jonathan Riley, sadly deceased, for his excellent research assistance.

*Corresponding author*. Professor Joseph Pearlman, London Metropolitan Business School, London Metropolitan University, 84 Moorgate, London EC2M 6SQ, UK.. Tel. 020 7320 1435. *Email: j.pearlman@londonmet.ac.uk* 

#### **1. Introduction**

The main purpose of this paper is to present updated indices of central bank independence (CBI) based on the latest legislation available, using the criteria of Grilli, Masciandaro and Tabellini (1991) - henceforth GMT, and of Cukierman (1992) - henceforth CUK. Our study includes all the countries covered by Grilli *et al* (1991) and Cukierman (1992), plus a much larger number of emerging and developing countries from South-East Asia, Eastern Europe<sup>1</sup>, Latin America and Africa. In addition we provide values for the turnover of central bank governors (TOR) for all countries.

There are several reasons for writing this paper. The most obvious is that we have a relatively large number of industrial and developing countries (90) whose legislation we have analysed. Secondly, there appears to be no study that has attempted to construct all these indices for such a large set of countries, and especially for developing countries<sup>2</sup>. Thirdly, we have carefully documented how we have scored each of the criteria of the two indices. This is of particular importance given the discrepancy between the interpretation of central banking legislation. As Mangano (1998) has pointed out, in only one out of 17 countries originally analysed in GMT and CUK, and for only one of the criteria, do the scores agree with one another. In addition, Mangano finds that "they disagree in nearly 60% of countries when deciding whether the CB is legally allowed to purchase Government debt in the primary market or not." Although we do not follow the detail of Mangano's analysis, we evaluate the CBI scores of each of the indices using simple correlations. We also compare our updated indices with those reported in previous studies.

Central bank independence has been viewed in the theoretical literature as a means of ensuring low inflation, without harming output or growth. Influential in the support for this view has been the empirical work of Alesina and Summers (1993), Cukierman (1992) and Grilli *et al*; (1991), all of whom have compiled (differing) indices of CBI. All these authors have run regressions demonstrating their results, although a cursory glance at the relevant graphs is convincing. Although Posen (1998) has questioned the conventional view, and has demonstrated that some of the implications, in particular with regard to observations of wages, are not in line with theory, it is not our intention here to grapple with these analytical issues. Our aim is to update and analyse the CBI indices which have been the most influential

<sup>&</sup>lt;sup>1</sup> A more detailed analysis of the central bank legislation for ten of this group of countries has been conducted by Hochreiter and Kowalski (2000) and for the whole group by Cukierman et al (2002).

 $<sup>^{2}</sup>$  To our knowledge, neither Grilli *et al* (1991) nor any other study has calculated the GMT index for developing countries. Our calculation of the GMT index for both industrial and developing countries enables us

in the empirical literature, and to compare them with more recent figures on inflation. A follow-up study will incorporate various control variables and carry out an econometric investigation of the CBI effects on inflation and output growth.

In addition to these two indices, we also calculate the turnover rate of Central Bank governors (TOR). This was introduced in Cukierman (1992, p384) and de Haan and Kooi (2000), and it was shown to be a reasonably good proxy for actual CBI, especially for developing countries. We retain the approach taken in Radzyner and Riesinger (1997) and Dvorsky (2000). Thus acting governors, usually for an interim period, are ignored, and governors reappointed for a second or third term will be counted only once.

The world of the early 21st century is very different from that of 10 years ago, in particular with regard to low inflation, increasing numbers of central banks becoming independent, and lower unemployment in many OECD countries. Despite this, the continuing research work on CBI largely draws on indices from the studies mentioned above. The only exceptions appear to be the work of de Haan et al (1999), which updates Eijffinger and Schaling (1993), but which uses a much smaller set of measures to compile the GMT index, and Cukierman et al (2002), which updates Cukierman's indices for the transition economies of Eastern Europe. Ilieva and Gregoriou (2005) cover 22 of these countries for both GMT and CUK, and in addition suggest a modified index specially tailored for the transition economies, to include measures of changeability of central banking law, tradition, and the existence of conflicting laws. Daunfeldt and de Luna (2003) appear to have updated measures of CBI for 23 OECD countries, although no details are supplied; intriguingly, they show that price stability precedes increased independence<sup>3</sup>.

In contrast to the above papers, our study provides a comprehensive cover for all major CBI indices and most countries in the world for which legislation is available. One important innovation of our work is that we have created a record of which articles of the central banking Act for each country are relevant to each of the criteria of the CBI indices. These will be available on the website of the Centre for International Capital Markets at

to provide a comprehensive comparison of central bank independence across countries.

<sup>&</sup>lt;sup>3</sup> Polillo and Guillen (2005) have coded the Cukierman index for 71 countries, but have neither recorded the values in their paper, nor any of the details. Their work offers a sociological perspective, with the hypothesis that countries compete to maintain their position and status, with increasing foreign exposure leading to increased competition of this form.

London Metropolitan University, and will enable other researchers to take issue with us on our scoring.<sup>4</sup>

Section 2 discusses the theories behind CBI and motivates the construction of the indices, with a discussion of central bank accountability. Section 3 discusses some of the more detailed issues concerning the creation of the updated indices. Section 4 analyses the relationship between the various measures of CBI, the ranking of countries, and compares the new indices to those reported by previous studies. Section 5 examines how the CBI indices relate to subsequent consumer price inflation. Section 6 concludes.

### 2. Independence, Accountability and Transparency

The theories behind CBI are grounded in the time inconsistency literature, exemplified by Barro and Gordon (1983). If governments lack credibility, private agents expect temporary boosts in demand from an increase in the money supply. This leads to expectations of higher prices, and thereby higher wage demands. If governments were to shift their preferences away from output stabilisation to inflation stabilisation, this would lead to a lower inflation bias, but a greater volatility of output. Such a shift in government preferences, other than when a new party comes into power, is unlikely to be taken seriously by economic agents. As a consequence, this shift can only be effective if the government appoints an agent, namely an independent central banker, with these preferences. As Rogoff (1985) has shown, it is possible to obtain a second-best outcome by optimally choosing a banker with a particularly desirable set of preferences.

Walsh (1995) and Persson & Tabellini (1993) have demonstrated that it is theoretically possible to arrive at an optimal contract that will force the central banker to behave in a way which is best for society as a whole. The contract creates incentives for the central banker, which force him or her to act as though there were a negative inflation target. These incentives could be in the form of bonuses on the attainment of a particular inflation target, or penalties such as dismissal. However, as pointed out by McCallum (1997), this contract represents a redistribution of the time inconsistency problem, since the government may be unwilling to dismiss the central banker when the time comes. The anticipated reneging of a contract which neither party, government or central banker, really wants, will

<sup>&</sup>lt;sup>4</sup> Together with our research assistant Jon Riley, sadly deceased, we read through the central bank legislation for each country; if there was a disagreement, it was resolved by discussion and if necessary, majority decision. Riley, in email correspondence with Cukierman, pointed out a number of discrepancies in the indices calculated

alter the expectations of private agents, and lead to a re-emergence of the time-inconsistency problem.

Both of the above approaches to monetary policy involve appointing an independent central bank. In addition the 'Walsh contract', if it is to be effective, requires some kind of accountability, so that Parliament and the electorate can judge whether the contract has been adhered to. The importance of accountability has been pointed out by numerous authors such as Fischer (1994) and Briault et al (1996). The latter refer to the 'democratic deficit' incurred by delegating power to an unelected, unaccountable authority, in particular if it is permitted to set the goals of monetary policy as well as to implement them. Persson & Tabellini (1993) show that a reduction in central bank secrecy is important, since an optimal policy must be supported by clear announcements. Nolan & Schaling (1996) develop a theoretical approach to accountability, which is represented by uncertainty in the central bank's stabilisation preferences. The greater the degree of uncertainty, the higher will be inflation expectations. Therefore, using the Rogoff (1985) notion of CBI, the lower is the degree of central bank independence, the higher must be the optimal Nolan-Schaling degree of accountability. Using the Briault et al (1996) indicator of central bank accountability, they find a negative relationship with the Eijffinger & Schaling (1993) measure of CBI, which accords with their theoretical result. However, further comparison by de Haan (1997) using the GMT and the Cukierman indices showed no relationship. This motivated de Haan et al (1999) to propose a more detailed set of indicators for central bank accountability.

The de Haan et al indicator uses 13 aspects of accountability, divided into three main features: ultimate objectives, transparency and final responsibility of monetary policy. The ultimate objectives aspect relates to the democratic deficit referred to earlier, and four features are identified. These refer to whether the objectives are stipulated in central bank law, whether they are clearly defined and prioritised, and if they are anywhere quantified. Transparency, which relates to the Nolan & Schaling (1998) concept of accountability, covers three features of public reporting of minutes and of success in meeting targets. The final responsibility aspect concerns the bank's relationship with Parliament, which covers override mechanisms, dismissal of the governor and ease of changing central bank law.

de Haan et al (1999) go on to discuss why there need not be any correlation between CBI and accountability. Firstly they note that in the Lohmann (1992) and Walsh (1995) solutions, which are both welfare-enhancing, government bears final responsibility for

in Cukierman et al (2002). Cukierman graciously conceded in most cases.

monetary policy; this measure of accountability is therefore negatively correlated with CBI. The same may well be true of transparency, as discussed above. However if the ultimate objective of the bank is price stability, this correlates positively with what is seen as the Rogoff (1985) conservative choice of independent banker. When de Haan et al (1999) compared their indicator with the updated Eijffinger & Schaling (1993) measure of CBI, they found little evidence of any relationship between CBI and accountability, although the correlation between CBI and the final responsibility measure of accountability had a strong negative correlation.

Transparency focuses on whether asymmetric information is a good or bad thing. It is discussed in its own right by Geraats (2002), and five aspects are distinguished: political, economic, procedural, policy and operational. Political transparency is exemplified by Svensson and Woodford (2003) who emphasise inflation targeting, while Walsh (2001) covers contracts and Schaling and Nolan (2001) address preference uncertainty. Economic transparency concerns information on economic data and forecasts; Cukierman (2001) and Gersbach (2003) have shown how information on supply shocks removes the benefit supplied by the Central Bank inflation/output trade-off. Amato et al (2002) and Pearlman (2005) provide contrasting theoretical results on the benefits of full information on money supply targets. Operational transparency has been discussed by Faust and Svensson (2001), and involves the degree to which the imperfectness of control (i.e. the control error) over inflation is revealed. Their additional focus on the indirect observability of central bank's preferences and objectives has its roots in Cukierman and Meltzer (1986). Procedural transparency centres around individual voting records, and minutes of monetary policy committee meetings; recent research on this has been done by Gerlach-Kristen (2002) and Spencer (2005). Associated with this, is an analysis by Ehrmann and Fratzscher (2005) of the differing effects of communication within the central bank committees of the ECB, Bank of England and the Fed, and the response by financial markets. Policy transparency is the disclosure of policy decisions and of likely future policy. Geraats (2002) makes the point that "accountability directly affects the central bank's incentives, whereas incentive effects of transparency only operate indirectly through private sector expectations". Some form of transparency is therefore essential, for as Blinder (1998) argues, with central banks only controlling the overnight rate, there needs to be some other mechanism by which monetary policy can coordinate expectations. Note however that there is some motivation for central banks not being fully transparent. Firstly, there is the potential for market participants to be unduly influenced by a central bank judgement that may (hopefully no more than occasionally) be misguided (Amato and Shin, 2003). Secondly, there is a trade-off between early publication of data and the discovery of subsequent error, and the consequent loss of reputation due to the latter is likely to be the main factor in deciding not to be fully transparent.

The creation of a measure of transparency, unlike that of CBI, requires considerably more than the assessment of a single piece of legislation, and involves the examination of information published by central banks and other government sources, and feedback from senior officials at those banks. It has been achieved for nine major central banks by Eijffinger and Geraats (2005), who have shown (Eijffinger and Geraats, 2004) that transparency is associated with lower interest rates.

Overall then, the literature indicates that each of independence, accountability and transparency has a role to play in the effectiveness of monetary policy. Our objective is to update the measures of independence only, and in order to be as comprehensive as possible we have chosen to update both of the main CBI indicators. There is a possibility that the GMT indicator of CBI is preferable to both the Cukierman and the Alesina & Summers indicators; a study by Hadri et al (1998) on the relationship between inflation, CBI and the political business cycle showed that the GMT index gave more significant parameter estimates. In addition, both the Alesina & Summers and the Cukierman indicators include measures of accountability in them, namely the provision for dismissal of the governor. Since our discussion has indicated that accountability and CBI represent differing or complementary approaches to stabilisation and control of inflation, it may seem sensible to separate them. However, there is still some overlap between the CBI and accountability indicators, since they all contain features relating to final say over monetary policy and the override mechanism. However, with GMT and Cukierman indices overwhelmingly measuring independence, we have chosen to update these. We also update the turnover rate of central bank governors (TOR) using data for the period 1991-2002, which will allow us to provide a comparison with the TOR indices obtained by Cukierman (1992) and de Haan and Kooi (2000) for the 1980s.

### 3. The Construction of CBI Indices

All the data that we employ is based on the latest central bank legislation, with the dates of the laws listed in Table 1. We have utilised English translations, which are available

from central bank websites. In certain cases, where the available legislation does not appear to cover some of the criteria, we have examined central bank annual reports and monetary policy statements, which are also available on these websites.

For the GMT index there are 15 criteria of CBI, while for the Cukierman index there are 16. As far as possible, we have listed all the legal articles in each of the central banking laws which are relevant to each of the criteria, and these will be available for every country in our website<sup>5</sup>. The tabulation of the data also appears on the website. Apart from enabling our indices to be more readily checked, we are motivated by Mangano (1998) who has pointed out inconsistencies in the interpretation of banking legislation between GMT and CUK. Part of our later analysis therefore involves establishing the correlation between the indices of CBI. Mangano also discusses the differing criteria and weights of each of the criteria of the indices, but this is not our concern here.

The various indices of CBI have focused on the institutional features, and have ignored any behavioural indicators, in particular that of reputation. The latter is obviously crucial, in that it affects expectations of wage and price setters in the economy, but it is not easily measurable. Furthermore, behaviour is likely to be affected by the institutional framework. Thus, to paraphrase our earlier discussion, the increasing popularity of central bank independence in the industrialised world is due in large part to the view that central bankers will have no incentive to stimulate growth temporarily in the run-up to election by an increase in the money supply. This is notably the case if the term of office of the monetary policy committee is not linked to the government's term of office, but is of course linked to all the CBI criteria.

### (a) GMT index

Grilli *et al* (1991) divide their CBI index into political and economic criteria. The political independence of a central bank is associated with how the members of the central bank board are appointed, its relationship with government and its responsibilities. These measures are all about autonomy, with the first four criteria covering the appointment of the governor and the other members of the board and whether their appointments are for longer than the usual duration of the government. Independence is enhanced if they are not appointed by the government (or sovereign), and if they are appointed for a period longer

<sup>&</sup>lt;sup>5</sup> We are planning to set up a special website later this Summer which will include the central bank legislation for all countries, as well as details on the construction of the LGT and CUK indices.

than five years. The latter period is typical of the maximum length of office of most democratically elected governments, although it fails to take account of the USA and New Zealand where the length of office is only four years. As a consequence, we award New Zealand a lower score than is accorded it by Dowd and Baker (1994), since both governor and board are appointed for five-year terms.

The fifth political independence criterion concerns the presence of a government representative on the board, with a score of zero whether or not that representative has voting rights. There appears to be a possible ambiguity here, since the Bundesbank allows a non-voting government representative. According to Grilli *et al* (1991), this was not the case prior to 1991. It is surprising, given the Bundesbank's record over the years in curbing inflation, to view it as having become less politically independent over time. We have therefore departed from Grilli *et al* (1991), and assigned a positive score if the government representative has no voting rights. In the case of Belgium, the minister only has voting rights on non-ECB issues. Since the only non-ECB issue is banking supervision, over which the Belgian central bank has no say, it too receives a positive score. These criteria of the governor and of the board are summarised in our website.

The sixth criterion measures whether government approval of monetary policy is required; the scoring of this is often a matter of interpretation of somewhat ambiguous legal phrasing. The seventh criterion is whether monetary or price stability is one of the goals of the central bank. This is probably the only contentious criterion, in that it does not differentiate between price stability and control of output. Thus if both are on the agenda, this gets the same score as if price stability were the sole objective. However, if one views the relationship between government and central bank within a principal-agent framework (e.g. Persson & Tabellini, 1993, Walsh, 1995), then the objective of the government is to have the bank pursue an unemployment/inflation trade-off while maintaining credibility. One might therefore argue that price stability as the sole objective is inappropriate for a central bank. The compromise is that any mention of price stability is accorded a positive score. There is a further ambiguity when it comes to less developed countries or countries which have suffered currency crises, so for example in the case of Banco de Mexico we see that 'its primary objective shall be to seek the stability of the purchasing power of [the] currency'.<sup>6</sup> It is difficult not to interpret this as in part a pursuit of price stability, but it is evidently a legal article designed to focus the bank's attention on the exchange rate. Nevertheless, we give

<sup>&</sup>lt;sup>6</sup>Prior to 1998, the objective of the Dutch Central Bank was to regulate the guilder in a welfare-enhancing way.

Mexico a positive score. The eighth criterion gives a positive score if there is an explicit legal provision strengthening the bank when it is in conflict with the government; once again there are cases where interpretation of the law is difficult, and is part of the reason we have lodged our detailed scoring. One of the reasons for the UK not being constitutionally able to be part of the European system of Central Banks is that under the 1998 legislation, the government is permitted to override monetary policy in emergencies (Cranston, 1998). This provision is in keeping with the analysis of Lohmann (1992), and is not out of step with some other countries' legislation.

The next set of criteria covers economic issues. The first five represent the ease of access of government to central bank credit. The first four cover direct credit facilities, with positive scores for these being non-automatic, at the market interest rate, being temporary, and of limited amount. The fifth refers to the central bank not participating in the primary market for public debt, and is again a little difficult to interpret in some of the legislation.

For the ESCB countries, Austria, Belgium, Finland, France, Germany, Ireland, Italy, Netherlands, Portugal, Spain (Luxembourg being omitted from the tables) all such credit is denied under ECB Article 21.1. All these countries are therefore given positive scores for these five criteria. Although the indices are to a large extent irrelevant for those countries that are now part of the European Central Bank, it may be of use to other researchers, so we include them all for completeness. Clearly there is a common interest rate set by the ECB, but the term structure of individual government debt can be set independently; in some countries there is the equivalent of the UK's Debt Management Office that is separate from the Bank of England, so this aspect of independence may be irrelevant. Furthermore, banking supervision differs in each of the ECB countries, so these two features could affect voting preferences at monetary policy meetings, and also therefore the CBI index of the ECB.

The sixth criterion concerns whether the central bank sets the discount rate, while the final criterion concerns supervision of the banking system. The issue here is about conflict of interest. If banking failures could be triggered by an increase in the interest rate, the central bank might be unwilling to undertake the monetary policy which is required at the macroeconomic level. In addition, if banking failures did occur, the central bank might be regarded as responsible, and this could undermine its reputation. Two stars are given if the bank has no responsibility for banking supervision, and one star if it shares responsibility. Di Noia & di Giorgio (1999) discuss several more arguments both for and against functional separation of banking supervision and monetary policy. In a smaller sample of countries to

ours (notably with the exclusion of Latin American and East European states) they find both higher and more volatile inflation in countries where the central bank has sole responsibility for banking supervision.

#### (b) CUK LVAU and LVAW Indices

The Cukierman CBI index shares the same objective of the GMT index in measuring the legal independence of the central bank, so that it can be compared with those elsewhere and over different periods of time. It also shares similar groupings of questions regarding central bank operations in interpreting the various legal statutes.

However, while the GMT index is a simple binary zero or one answer to a set question, the CUK index lays out a choice of preordained answers for each area of interest. These are weighted, and those statements which are thought of as leading to greater independence, are given a larger weight. Furthermore, the CUK index has a broader set of questions within each sub-group.

Nevertheless, it should be stated at the outset, that this is not an easy task, being dependent on the subjective interpretation of each country's central bank law. As Cukierman (1992, p 371) states:

"At times the spirit of the law and its application in practice are more important than the letter of the law and its application in practice are more important than the letter of the law. Ranking CB charters by their degree of legal independence is therefore a difficult task involving an inescapable amount of subjective judgement."

The first step in constructing the index of independence is to interpret a number of narrowly defined legal criteria. A corresponding code is given to the statement most appropriate for that particular country. The legal criteria are sub-divided into four groups, Chief Executive Officer, Policy Formulation, Final Objectives and Limitations on lending (to the public sector). The resulting process gives sixteen criteria for each central bank law.

Unfortunately, because the variables are defined very narrowly, there is a problem that some laws do not contain adequate information to answer each question, resulting in missing values. To overcome this problem, Cukierman (1992) scores the CBI index as a proportion of the criteria available.

The legal categories are as follows: Chief Executive Officer (CEO) group, made up of term of office of CEO in years, who appoints the CEO, provisions for dismissal of CEO, and

whether CEO allowed to hold another office; these are aggregated as one variable by applying an unweighted mean.

The Policy formulations group, made up of who formulates monetary policy, government directives and resolution of conflict, and whether the central bank is given an active role in the formulation of government's budget, are aggregated into a second variable using a weighted mean. The weights are 0.25, 0.50 and 0.25 respectively.

The next five criteria are central bank objectives, limitations on advances, limitations on securitized lending, terms of lending, and how wide is the circle of potential borrowers from central bank. These are left unchanged as the next five variables.

The final four criteria: type of limit on loans to government when such a limit exists, maturity of loans, restrictions on interest rates, and prohibition on lending in the primary market, are aggregated into an eighth variable using an unweighted average.

It should be noted that in this paper we deviate slightly from the original coding process. Following Cukierman et al. (2002, p242, Table 1, footnote b), where a government is prohibited from borrowing at a central bank, that is advances to government are prohibited, we also set the remaining lending variables equal to one.

Where there is no entry for a variable in one of the subgroups, the weight(s) of the missing criterion/(a) is/(are) allocated proportionally to the remaining variables in the group which contain a value.

With the eight variables at hand, a second round of aggregation takes place to construct the two Cukierman (1992) indices. First, an unweighted index LVAU is calculated. This is a simple average of the eight variables constructing in the first stage. Second, a weighted index LVAW is computed. Here subjective weights are assigned to each of the eight variables created in the second round of aggregation. These weights are 0.2, 0.15, 0.15, 0.15, 0.15, 0.1, 0.05 and 0.1 respectively.

### (c) The Turnover rate of Governors Index (TOR)

The final measure of CBI is the turnover rate of governors (TOR), which is defined as the average term of office of central bank governors<sup>7</sup>. It is calculated by dividing the number of governors within a given period of time by the length of this reference period (expressed in years). This excludes acting governors serving for an interim period without being formally

<sup>&</sup>lt;sup>7</sup> See Cukierman (1992) and de Haan and Kooi (2000).

appointed to the position of governors. In addition, governors reappointed for a second or third term will be counted only once.

### 4. Analysis of the CBI Indices

The results for the four measures of CBI are presented in Table 1, together with the latest legislation on which the GMT, LVAU and LVAW indices are based. In the case of the turnover rates of central bank governors (TOR) we construct two measures, one for the 1991-2002 period and the other for the 1996-2002 period.

There are four main issues that need to be addressed for the indices that we have created. The first is how countries are ranked by these CBI indices. The second is how correlated are these indices. The third issue is how the updated indices compare with those reported by previous studies, which could provide us with useful information about the trend in granting central banks independence across countries. The final issue is how well the new indices are correlated with inflation, which will be examined in the following section.

Tables 2-4 show the ranking of countries by the various indices. We divide the countries into industrial and non-industrial in order to compare the experience of developing countries to that of industrial countries. Looking at the GMT index, we notice that the mean value is higher in the industrial than the developing countries, which implies a higher degree of central bank independence in the developed countries. The latter also demonstrate a lower variability for the GMT index. In the case of industrial countries, Sweden has the largest index followed closely by Finland and Germany, while Denmark, Iceland, Japan, New Zealand and Norway have the smallest indices. For the non-industrial countries, we notice that some of the Central and Easter European countries display the largest indices and hence the strongest degree of central bank independence, while India and Maldives come at the bottom of the list.

The Cukierman indices (Table 3) confirm the finding with the GMT index; the average values for both the LVAU and LVAW indices are larger for the industrial than the non-industrial countries, thus supporting our expectation that the degree of central bank independence is much stronger among the industrial than the developing countries. The ranking of countries is similar for both the LVAU and LVAW indices, In the case of the industrial countries, Spain shows the largest index followed by Finland and France, while Norway has the lowest index, as with the GMT index.

The TOR indicator (Table 4), which is supposed to be a better CBI measure for the developing countries (de Haan and Kooi, 2000), provides further support for the proposition that central bank independence is much stronger among the industrial than the developing countries<sup>8</sup> - the average TOR value for the industrial countries is considerably smaller than for the non-industrial countries. The ranking of countries changes quite significantly from the other indicators, with Greece now topping the list and the US coming at the bottom among industrial countries<sup>9</sup>. In the case of non-industrialised countries, Brazil has the highest value followed by Argentina, while seven countries have a zero value (indicating no change in the governor of the central bank).

Tables 5 and 6 report the Pearson and Spearman<sup>10</sup> correlations among our different CBI indicators. Unsurprisingly, there is a very strong correlation between LVAU and LVAW indices. More heartening is the strong correlation between the GMT index and LVAU and LVAW. The correlation is consistently around 0.8 for both industrial and non-industrial countries. On the other hand, for turnover rate, evaluated over various different time periods, there is no significant correlation. Indeed apart from the case of the correlation between GMT and TOR for industrialised countries, the correlation is almost never even negative! The above results remain robust to the use of either linear or rank correlation coefficients.

In Table 7 we compare our GMT index with the GMT index obtained by Grilli *et al* (1991) for those countries common in both studies<sup>11</sup>. It is interesting to note that our mean index is considerably larger than that obtained by Grilli *et al* for the 1980s, which implies greater CBI among industrial countries over the recent years. Greece, Portugal and Spain appear to have experienced the strongest increase in central bank independence. We also note that our indices are significantly less volatile than those of Grilli *et al*. The decomposition of the index suggests that the increasing central bank independence among industrial countries is due to both the political and economic components.

The significant increase in the degree of CBI not only among the industrial countries but also among the developing countries is confirmed by the comparison of the Cukierman indices for the countries common to both studies (Table 8). The average values of our LVAU and LVAW indices (based on the latest legislation) are almost twice the size of those

<sup>&</sup>lt;sup>8</sup> Note that a higher value for TOR indicates lower level of central bank independence.

<sup>&</sup>lt;sup>9</sup> The value of zero for the USA reflects the fact that there was no change in the governor of the Federal Reserve during the 1990s.

<sup>&</sup>lt;sup>10</sup> Pearson is the linear correlation coefficient, and Spearman is the rank correlation coefficient.

<sup>&</sup>lt;sup>11</sup> The comparison is restricted to industrial countries because neither Grilli *et a*l (1992) nor any other study has calculated the GMT index for developing countries.

obtained by Cukierman (1992) on the basis of legislation available in the 1980s. Poland, Spain, Belgium and Uruguay show the most significant increase in central bank independence since the 1980s.

Table 9 compares our TOR indicator for the 1990s with those reported by Cukierman (1992) and de Haan and Kooi (2000) for the 1980s. The last two studies calculated the TOR measure only for developing countries. The average value of our TOR index is about 35-38% lower than those reported by the previous two studies. For some countries (i.e. Argentina, Botswana, Jamaica, Mexico, Morocco, Poland, Singapore, Venezuela) the TOR index is reduced by over 50%. Our indices are also considerably less volatile than those for the 1980s. These findings confirm those obtained with the Cukierman LVAU and LVAW indices; i.e. CBI among developing countries became considerably stronger during the 1990s.

#### 5. Central Bank Independence and Inflation

Now consider the relationship between the CBI measures and CPI inflation. Here we have been careful to avoid the following potential pitfall: it is a reasonable hypothesis that a period of high inflation might be followed by new central bank legislation which provides for greater CBI. Thus if we use data on inflation prior to the latest legislation, the correlation between inflation and the GMT and CUK measures of CBI could be biased upwards. All the correlations that we provide on a year-by-year basis avoid this. For example, in Table 10, the correlations between CPIM9802 and the GMT and CUK measures involve all countries with no new legislation after 1997, and mean CPI inflation over the years 1998-2002.

In addition to listing in Table 10 the correlations for all the countries, in Tables 11 and 12 we also list the correlations for the industrial and non-industrial countries respectively.

Charts 1-3 give an indication of the correlations listed in the tables. As can be seen from these three charts, there appears to be very little correlation between the GMT and LVAU measures for countries with most recent legislation in 1996 and earlier, and subsequent inflation over the period 1997-2002. The same appears to be the case for TOR compared with inflation.



Chart 1: GMT for 1996 Legislation and earlier vs CPI 97-02

Chart 2: LVAU for 1996 Legislation and earlier vs CPI 97-02



Chart 3: TOR Governors 1996-2002 vs CPI 97-02



In Table 10, the fifth row directly tests the correlation between the data depicted in Charts 1-3. It is evident that there is no significant correlation between CBI legislation and subsequent inflation. Other rows of Table 10 correspond to different time periods and show a similar lack of any significant relationship between CBI and inflation<sup>12</sup>. The reason that the number of countries is lower for earlier periods is that we have only used the most recent CBI legislation in our tests of correlation, so that most countries are therefore excluded from row 1; most of the recent legislation is post-1992. A similar table has been produced for the Spearman rank correlation coefficient, from which similar conclusions were drawn.

What is particularly striking in row 1 is that if anything, high CBI scores are associated with high inflation, completely counter to the accepted theory of ten years ago! This counter-intuitive result is less prevalent among OECD countries, as we see in Table 11, but nevertheless, even among these, there is no significant correlation between CBI measures and inflation of any significance. A similar pattern of insignificant correlations for all sample periods is observed among non-industrial countries.

<sup>&</sup>lt;sup>12</sup> When the TOR indicator of CBI is used, we notice significant correlations (at the 10% significance level) between CBI and inflation for the short period of 2000-2002. However, when we split the sample between industrial and non-industrial countries, even these correlations become insignificant.

#### **6.** Conclusions

We have created a set of indices for 90 countries covering their most recent central banking legislation. This study contains all the details of which legal articles were used to score each criterion. This will enable subsequent researchers to both criticise us more readily than they are able to criticise others who have created CBI indices, and also more easily to update amendments to central banking legislation.

We have established that creating indices simultaneously for both the GMT and CUK indices leads to a fairly high correlation between the two, and alleviates the problems identified by Mangano (1998).

Our estimates of CBI indices show that on average the degree of CBI is much higher among industrial countries than among developing countries.

We have compared the more recent measures of CBI with those of the past, and found that there has been some relative movement among countries. Notably however, the average level of CBI has increased considerably with the new legislation, which implies much stronger and less volatile CBI among both industrial and developing countries. This increase in CBI is particularly pronounced when we look at the Cukierman indices, whose average values are almost twice the size of those obtained on the basis of central bank legislation available in the 1980s.

We have shown that there is no significant correlation between CBI and subsequent inflation either among industrial or among developing countries – if anything, the correlation is in the wrong direction in certain sample periods. These empirical findings contrast sharply with the earlier evidence that was based on the original CBI indices (obtained from the legislation available in the 1980s) and inflation during the 1980s. The main implication of this is that more research needs to be done to take into account other country specific issues such as the labour market, as addressed by Berger et al (2002). The inclusion of country-specific control variables is the subject of future research by the authors. In addition, this preliminary work appears to indicate that further work on creating indices of accountability and transparency is essential; if CBI is relatively unimportant for lowering inflation, then a fuller assessment of the benefits of accountability and transparency is essential.

#### References

Alesina, A and Summers, L H. (1993), Central Bank Independence and Macroeconomic Performance: Some comparative evidence, *J Money, Credit and Banking*, 25, 151-162.

Amato, J D, Morris, S and Shin, H S (2002), Communication and Monetary Policy, *Oxford Review of Econ Policy* 18,:495-503.

Amato, J D and Shin, H S (2003), Public and Private Information in Monetary Policy Models, mimeo.

Barro, R and Gordon, R (1983), Rules, Discretion and Reputation in a Model of Monetary Policy, *Journal of Monetary Economics*, 12, 101-121.

Berger, H, de Haan and Eijffinger, S (2002) Central Bank Independence: An Update of Theory and Evidence, *Journal of Economic Surveys*, 15, 3-40.

Blinder, A. S. (1998), Central Banking in Theory and Practice. M.I.T. Press.

Briault, C B, Haldane, A G and King, M A (1996), Independence and Accountability, *Bank* of *England* Working Paper no. 49.

Cranston, R (1998), Monetary Policy, in *Blackstone's Guide to the Bank of England Act 1998*, Michael Blair et al (eds), Blackstone Press.

Cukierman, A (1992), *Central Bank Strategy, Credibility and Independence,* Cambridge, MIT Press.

Cukierman, A. (2001), Accountability, Credibility, Transparency and Stabilization Policy in the Eurosystem. In C. Wyplosz, editor, *The Impact of EMU on Europe and Developing Countries*, pp. 40–75. OUP.

Cukierman, A and Meltzer, A. (1986), A Theory of Ambiguity, Credibility, and Inflation Under Discretion and Asymmetric Information, *Econometrica*, 54, 1099-1128.

Cukierman, A, Miller, G and Neyapti, B (2002) Central Bank Reform, Liberalization and Inflation in Transition Economies – an International Perspective, *Journal of Monetary Economics*, 49, 237-264.

Daunfeldt, S and de Luna, X, (2003), Central Bank Independence and Price Stability: Evidence from 23 OECD countries, mimeo, Swedish Research Institute of Trade (HUI).

de Haan, Jakob (1997) The European Central Bank: Independence, Accountability and Strategy: A Review, *Public Choice*, 93 (3-4), 395-426

de Haan, J, Amtenbrink, F and Eijffinger, S (1999), Accountability of Central Banks: Aspects and Quantification, *Quarterly Review, Banca Nazionale del Lavoro*, 209, 169-193.

de Haan, J. and Kooi, W. J. (2000), Does Central Bank Independence Matter? New Evidence for Developing Countries Using a New Indicator, *Journal of Banking and Finance*, 24, 643-664.

di Noia, C & di Giorgio, G (1999) Should Banking Supervision and Monetary Policy Tasks be Given to Different Agencies? *International Finance*, 2, 361-378.

Dowd, K and Baker, S (1994), The New Zealand Monetary Policy Experiment: A Preliminary Assessment, *World Economy*, 17, 855-867.

Dvorsky, S. (2000), Measuring Central Bank Independence in Selected Transition Countries and the Disinflation Process. BOFIT Discussion Paper 13.

Ehrmann, M and Fratzscher, M (2005), Communicaation and Decision-Making by Central Bank Committees: Different Strategies, Same Effectiveness, ECB Working Paper.

Eijffinger, S and Geraats, P (2004), How Transparent Are Central Banks? Cambridge Working Papers in Economics, 04-11.

Eijffinger, S and Schaling, E (1993), Central Bank independence in twelve industrial countries, *Quarterly Review, Banca Nazionale del Lavoro*, 184, 1-41.

Faust, J and Svensson, L E O (2001), Transparency and Credibility: Monetary Policy with Unobservable Goals, *International Economic Review*, 42, 369-397.

Fischer, S (1994), The costs and Benefits of Disinflation, in *A Framework for Monetary Stability*, de Beaufort Wijnholds, J, Eijffinger, S and Hoogduin, L (eds), Kluwer Academic Publishers.

Gersbach, H (2003), On the Negative Social Value of Central Banks' Knowledge Transparency, *Economics of Governance* 4(2), 91-102.

Geraats, P (2002), Central Bank Transparency, Economic Journal, 112 (483), F532-558.

Gerlach-Kristen, P. (2002), Is the MPC's Voting Record Informative About Future UK Monetary Policy? Mimeo, University of Basel.

Grilli, V, Masciandaro, D and Tabellini,G (1991), Political and monetary institutions, and public finance policies in the industrial countries, *Economic Policy*, 13, 341-392.

Hochreiter, E and Kowalski, T (2000) Central Banks in European Emerging Market Economies in the 1990s, *Oesterreichische Nationalbank* Working Paper 40.

Hadri, K, Lockwood, B and Maloney, J (1998), Does Central Bank Independence Smooth the Political Business Cycle in Inflation? Some OECD Evidence, *Manchester School*, *66*, 377-395.

Ilieva, J and Gregoriou, A (2005), Central Bank Independence and Inflation Performance in Transition Economies: New Evidence from a Primary Data Approach, Manchester Metropolitan University Business School WPS065.

Lohmann, S (1992), The Optimal Degree of Commitment: Credibility vs Flexibility, *American Economic Review*, 82, 273-286.

Mangano, G (1998), Measuring Central Bank Independence: A Tale of Subjectivity and of its Consequence, *Oxford Economic Papers*, 50, 468-492.

McCallum, B (1997), Crucial Issues Concerning Central Bank Independence, *Journal of Monetary Economics*, 39, 99-112.

Nolan, C & Schaling, E (1996), Monetary Policy, Uncertainty and Central Bank Accountability, *Bank of England* Working Paper no. 54.

Pearlman, J G (2005), Central Bank Transparency and Private Information in a Dynamic Macroeconomic Model, ECB Working Paper 455.

Persson, T and Tabellini, G (1993), Designing Institutions for Monetary Stability, *Carnegie-Rochester Conference Series on Public Policy*, 39, 53-84.

Polillo, S and Guillén (2005), Globalization Pressures And The State: The Worldwide Spread Of Central Bank Independence, *American Journal of Sociology* 110 (2005), 1764–1802.

Posen, A (1998) Central Bank Independence and Disinflationary Credibility: A Missing Link? Oxford Economic Papers, 50, 335-359.

Radzyner, O. and Riesinger, S. (1997), Central Bank Independence in Transition: Legislation and Reality in Central and Eastern Europe. In: Focus on Transition 1. Vienna: Oesterreichische Nationalbank. 57-90.

Rogoff, K (1985), The Optimal Degree of Commitment to an Intermediate Monetary Target, *Quarterly Journal of Economics*, 100, 1169-1189.

Spencer, C (2005), Committee Decisions and Monetary Policy, PhD Thesis, University of Surrey, UK.

Svensson, L E O & Woodford, M (2003), Implementing Optimal Policy through Inflation-Forecast Targeting, NBER Working Papers 9747.

Walsh, C (1995), Optimal Contracts for Central Bankers, American Economic Review, 85, 150-167.

| Country           | Legislation<br>Date | GMT | LVAU   | LVAW    | TOR 9102R | TOR 9602R         |
|-------------------|---------------------|-----|--------|---------|-----------|-------------------|
| Albania           | 1997                | 12  | 0 7247 | 0 7943  | 0.333     | 0 286             |
| Algeria           | 1990                | 8   | 0.6114 | 0 5948  | 0.000     | 0.200             |
| Argentina         | 1995                | q   | 0 7822 | 0 7365  | 0.500     | 0.714             |
| Armenia           | 2002                | ğ   | 0 7847 | 0.8213  | 0.000     | 0.143             |
| Aruba             | 1998                | 6   | 0.6004 | 0.5713  | 0.167     | 0.140             |
| Δustralia         | 1998                | q   | 0.3546 | 0.07 10 | 0.107     | 0.140             |
| Δustria           | 1990                | 12  | 0.0040 | 0.4000  | 0.000     | 0.140             |
| Azerbaijan        | 1996                | 8   | 0.7957 | 0.0010  | 0.000     | 0.000             |
| Rahamas The       | 2000                | 8   | 0.7007 | 0.5553  | 0.000     | 0.000             |
| Belarue           | 2000                | 5   | 0.4310 | 0.5555  | 0.000     | 0.140             |
| Belgium           | 1008                | 12  | 0.0413 | 0.3073  | 0.230     | 0.200             |
| Botswana          | 1006                | 12  | 0.3100 | 0.0730  | 0.005     | 0.140             |
| Duiswana          | 1990                | 4   | 0.3423 | 0.3525  | 0.107     | 0.200             |
| Bulgaria          | 2000                | 10  | 0.7003 | 0.0100  | 0.007     | 0.200             |
| Duiyana           | 1999                | 10  | 0.9556 | 0.9354  | 0.250     | 0.200             |
| Callaua           | 1990                | 10  | 0.4900 | 0.4004  | 0.107     | 0.143             |
| China Llang Kang  | 2002                | 11  | 0.8691 | 0.8241  | 0.083     | 0.143             |
| China - Hong Kong | 1997                | 3   | 0.3138 | 0.2998  | 0.000     | 0.000             |
| China - Mainland  | 1979                | 3   | 0.3033 | 0.4130  | 0.250     | 0.143             |
| Croatia           | 2000                | 12  | 0.9400 | 0.9165  | 0.250     | 0.286             |
| Czech Republic    | 1993                | 11  | 0.8589 | 0.8740  | 0.083     | 0.143             |
| Denmark           | 1936                | 8   | 0.5450 | 0.5566  | 0.083     | 0.000             |
| Egypt             | 1993                | 5   | 0.5002 | 0.4683  | 0.167     | 0.143             |
| Estonia           | 1993                | 11  | 0.9384 | 0.9115  | 0.250     | 0.000             |
| Finland           | 1998                | 14  | 0.9322 | 0.9040  | 0.167     | 0.143             |
| France            | 1998                | 13  | 0.9322 | 0.9040  | 0.083     | 0.000             |
| Georgia           | 2001                | 11  | 0.5956 | 0.6353  | 0.333     | 0.143             |
| Germany           | 1997                | 14  | 0.9141 | 0.8750  | 0.250     | 0.143             |
| Ghana             | 1992                | 4   | 0.3850 | 0.3961  | 0.167     | 0.286             |
| Greece            | 1997                | 11  | 0.9322 | 0.9040  | 0.333     | 0.143             |
| Hungary           | 1997                | 10  | 0.8736 | 0.8525  | 0.250     | 0.143             |
| Iceland           | 1998                | 8   | 0.3509 | 0.3204  | 0.250     | 0.000             |
| India             | 1949                | 2   | 0.3503 | 0.3565  | 0.167     | 0.143             |
| Indonesia         | 1999                | 10  | 0.9634 | 0.9415  | 0.167     | 0.143             |
| Ireland           | 1998                | 11  | 0.9244 | 0.8915  | 0.167     | 0.143             |
| Israel            | 1988                | 6   | 0.4125 | 0.3880  | 0.083     | 0.143             |
| Italy             | 1998                | 11  | 0.8803 | 0.8460  | 0.083     | 0.000             |
| Jamaica           | 2001                | 6   | 0.5855 | 0.5467  | 0.250     | 0.143             |
| Japan             | 1997                | 8   | 0.3955 | 0.4415  | 0.167     | 0.143             |
| Kazakhstan        | 1995                | 7   | 0.3079 | 0.3613  | 0.417     | 0.429             |
| Kenya             | 1996                | 7   | 0.6942 | 0.6598  | 0.167     | 0.143             |
| Korea             | 1997                | 7   | 0.3182 | 0.3903  | 0.417     | 0.286             |
| Kuwait            | 2003                | 5   | 0.4546 | 0.4885  | 0.000     | 0.000             |
| Kvravz Republic   | 2000                | 13  | 0.9463 | 0.9240  | 0.167     | 0.143             |
| Latvia            | 1992                | 11  | 0.9150 | 0.8865  | 0.083     | 0.143             |
| Lithuania         | 1996                | 10  | 0.9228 | 0.8865  | 0.333     | 0.143             |
| Malawi            | 1989                | 6   | 0.4986 | 0.5395  | 0.250     | 0.143             |
| Malavsia          | 1994                | 5   | 0.2704 | 0.2931  | 0.250     | 0.286             |
| Maldives          | 1981                | 2   | 0,1022 | 0.0978  | 0.000     | 0.000             |
| Mauritius         | 1966                | - 5 | 0 3636 | 0 3568  | 0 167     | 0 286             |
| Mexico            | 1993                | 10  | 0.6063 | 0.5850  | 0.083     | 0.143             |
| Moldovia          | 1995                | 9   | 0.6858 | 0 7322  | 0.000     | 0.000             |
| Mongolia          | 1006                | 10  | 0.5531 | 0 6340  | 0.000     | 0.000<br>A 22 C D |
| wongolia          | 1990                | 10  | 0.0004 | 0.0040  | 0.200     | 0.200             |

# Scores for the GMT, LVAU and LVAW Indices for Each Country's Most Recent Legislation, and for the TOR Index (1991-2002 and 1996-2002)

| Variance             |      | 8.6092 | 0.0535 | 0.0459 | 0.0150 | 0.0169 |
|----------------------|------|--------|--------|--------|--------|--------|
| Mean                 |      | 8.4444 | 0.6378 | 0.6350 | 0.1870 | 0.1651 |
| Zambia               | 1996 | 6      | 0.5025 | 0.4650 | 0.333  | 0.143  |
| Venezuela            | 1992 | 12     | 0.9072 | 0.8740 | 0.250  | 0.143  |
| Uruguay              | 1995 | 9      | 0.9188 | 0.9025 | 0.41/  | 0.429  |
| United States        | 1995 | 12     | 0.5516 | 0.5133 | 0.000  | 0.000  |
| United Kingdom       | 1998 | 11     | 0.8447 | 0.7990 | 0.083  | 0.000  |
| United Arab Emirates | 1980 | 8      | 0.6786 | 0.6568 | 0.000  | 0.000  |
| Ukraine              | 2000 | 10     | 0.8484 | 0.7816 | 0.333  | 0.286  |
| Uganda               | 1993 | 8      | 0.6129 | 0.6070 | 0.083  | 0.143  |
| Turkey               | 1994 | 6      | 0.6900 | 0.7121 | 0.250  | 0.286  |
| Tunisia              | 1958 | 8      | 0.5425 | 0.5444 | 0.083  | 0.143  |
| Trinidad             | 1986 | 5      | 0.4043 | 0.4493 | 0.250  | 0.286  |
| Thailand             | 1942 | 4      | 0.1696 | 0.1404 | 0.333  | 0.571  |
| Tanzania             | 1995 | 6      | 0.5828 | 0.5655 | 0.167  | 0.000  |
| Switzerland          | 1997 | 11     | 0.6650 | 0.6025 | 0.167  | 0.286  |
| Sweden               | 1998 | 15     | 0.8994 | 0.8740 | 0.083  | 0.000  |
| Sri Lanka            | 1998 | 7      | 0.4958 | 0.5357 | 0.167  | 0.000  |
| Spain                | 1998 | 12     | 0.9400 | 0.9165 | 0.167  | 0.143  |
| South Africa         | 2000 | 5      | 0.3125 | 0.3000 | 0.250  | 0.143  |
| Slovenia             | 1991 | 8      | 0.6515 | 0.7093 | 0.083  | 0.143  |
| Slovak Republic      | 1999 | 12     | 0.6617 | 0.6974 | 0.167  | 0.143  |
| Singapore            | 1999 | 3      | 0.3146 | 0.3670 | 0.083  | 0.143  |
| Serbia               | 2003 | 10     | 0.5961 | 0.6665 | 0.333  | 0.286  |
| Rwanda               | 1997 | 8      | 0.7382 | 0.7093 | 0.333  | 0.286  |
| Russia               | 1999 | 9      | 0.9556 | 0.9290 | 0.250  | 0.286  |
| Romania              | 1998 | 8      | 0.6400 | 0.6763 | 0.167  | 0.286  |
| Qatar                | 1997 | 6      | 0.4963 | 0.5257 | 0.000  | 0.000  |
| Portugal             | 2001 | 10     | 0.8931 | 0.8415 | 0.250  | 0.143  |
| Poland               | 1997 | 12     | 0.9278 | 0.8988 | 0.250  | 0.143  |
| Philippines          | 1993 | 8      | 0.6521 | 0.6458 | 0.167  | 0.143  |
| Peru                 | 1994 | 9      | 0.7891 | 0.7291 | 0.167  | 0.143  |
| Papua New Guinea     | 2000 | 10     | 0.5911 | 0.6203 | 0.417  | 0.429  |
| Pakistan             | 1956 | 5      | 0.3299 | 0.3482 | 0.167  | 0.143  |
| Norway               | 1995 | 8      | 0,1765 | 0.2315 | 0.250  | 0.286  |
| Nigeria              | 1999 | 6      | 0.5839 | 0.6580 | 0.167  | 0.143  |
| New Zealand          | 1995 | 8      | 0.4422 | 0.4400 | 0.083  | 0 143  |
| Netherlands          | 1998 | 12     | 0.9088 | 0.8665 | 0.083  | 0 143  |
| Namihia              | 1997 | 7      | 0.5303 | 0.5570 | 0.000  | 0.000  |
| Morocco              | 1993 | 6      | 0 5369 | 0.5205 | 0 000  | 0 000  |

# GMT Index by Descending Order

| (a) Industrial |     |
|----------------|-----|
| Countries      |     |
| Country        | GMT |
| Sweden         | 15  |
| Finland        | 14  |
| Germany        | 14  |
| France         | 13  |
| Austria        | 12  |
| Belgium        | 12  |
| Netherlands    | 12  |
| Spain          | 12  |
| United States  | 12  |
| Greece         | 11  |
| Ireland        | 11  |
| Italy          | 11  |
| Switzerland    | 11  |
| United Kingdom | 11  |
| Canada         | 10  |
| Portugal       | 10  |
| Australia      | 9   |
| Denmark        | 8   |
| Iceland        | 8   |
| Japan          | 8   |
| New Zealand    | 8   |
| Norway         | 8   |

Mean 10.9090909 Variance 4.46753246

| (b) Non-Industrial<br>Countries |     |
|---------------------------------|-----|
| Country                         | GMT |
| Kyrgyz Republic                 | 13  |
| Albania                         | 12  |
| Croatia                         | 12  |
| Poland                          | 12  |
| Slovak Republic                 | 12  |
| Venezuela                       | 12  |
| Chile                           | 11  |
| Czech Republic                  | 11  |
| Estonia                         | 11  |
| Georgia                         | 11  |
| Latvia                          | 11  |
| Bulgaria                        | 10  |
| Hungary                         | 10  |
| Indonesia                       | 10  |
| Lithuania                       | 10  |
| Mexico                          | 10  |
| Mongolia                        | 10  |
| Papua New Guinea                | 10  |
| Tapua New Odinea                | 10  |
|                                 | 10  |
| Argonting                       | 10  |
| Argentina                       | 9   |
| Annenia                         | 9   |
| IVIOIOOVIA                      | 9   |
| Puosio                          | 9   |
| Russia                          | 9   |
| Oluguay                         | 9   |
| Algena                          | 0   |
| Azerbaijan                      | 0   |
| Banamas, The                    | 8   |
| Brazil                          | 8   |
| Philippines                     | 8   |
| Romania                         | 8   |
| Rwanda                          | 8   |
| Slovenia                        | 8   |
| l unisia                        | 8   |
| Uganda                          | 8   |
| United Arab Emirates            | 8   |
| Kazakhstan                      | 7   |
| Kenya                           | 7   |
| Korea                           | 7   |
| Namibia                         | 7   |
| Sri Lanka                       | 7   |
| Aruba                           | 6   |
| Israel                          | 6   |
| Jamaica                         | 6   |
| Malawi                          | 6   |
| Morocco                         | 6   |
| Nigeria                         | 6   |

| Qatar             | 6 |
|-------------------|---|
| Tanzania          | 6 |
| Turkey            | 6 |
| Zambia            | 6 |
| Belarus           | 5 |
| Egypt             | 5 |
| Kuwait            | 5 |
| Malaysia          | 5 |
| Mauritius         | 5 |
| Pakistan          | 5 |
| South Africa      | 5 |
| Trinidad          | 5 |
| Botswana          | 4 |
| Ghana             | 4 |
| Thailand          | 4 |
| China - Hong Kong | 3 |
| China - Mainland  | 3 |
| Singapore         | 3 |
| India             | 2 |
| Maldives          | 2 |

Mean Variance 7.647058824 7.39596137

# Table 3Cukierman Indices by descending Order

| (a) Industrial |          |
|----------------|----------|
| Countries      |          |
| Country        | LVAU     |
| Spain          | 0.94     |
| Finland        | 0.932188 |
| France         | 0.932188 |
| Greece         | 0.932188 |
| Ireland        | 0.924375 |
| Belgium        | 0.916563 |
| Germany        | 0.914063 |
| Netherlands    | 0.90875  |
| Sweden         | 0.899375 |
| Portugal       | 0.893125 |
| Italy          | 0.880313 |
| Austria        | 0.874375 |
| United Kingdom | 0.84469  |
| Switzerland    | 0.665    |
| United States  | 0.551563 |
| Denmark        | 0.545    |
| Canada         | 0.490625 |
| New Zealand    | 0.442188 |
| Japan          | 0.395476 |
| Australia      | 0.354583 |
| Iceland        | 0.350938 |
| Norway         | 0.176458 |

Mean0.716546432Variance0.06316343

| Country        | LVAW     |
|----------------|----------|
| Spain          | 0.9165   |
| Finland        | 0.904    |
| France         | 0.904    |
| Greece         | 0.904    |
| Ireland        | 0.8915   |
| Belgium        | 0.879    |
| Germany        | 0.875    |
| Sweden         | 0.874    |
| Netherlands    | 0.8665   |
| Italy          | 0.846    |
| Portugal       | 0.8415   |
| Austria        | 0.8315   |
| United Kingdom | 0.79900  |
| Switzerland    | 0.6025   |
| Denmark        | 0.556583 |
| United States  | 0.51325  |
| Canada         | 0.488375 |
| Japan          | 0.441458 |
| New Zealand    | 0.44     |
| Australia      | 0.400042 |
| Iceland        | 0.320375 |
| Norway         | 0.231542 |

| Mean     | 0.696664773 |
|----------|-------------|
| Variance | 0.052141225 |

| (b) Non-Industrial |             |
|--------------------|-------------|
| Countries          |             |
| Country            | LVAU        |
| Indonesia          | 0.963438    |
| Bulgaria           | 0.955781    |
| Russia             | 0.955625    |
| Kyrgyz Republic    | 0.94625     |
| Croatia            | 0.94        |
| Estonia            | 0.938438    |
| Poland             | 0.927813    |
| Lithuania          | 0.922813    |
| Uruguay            | 0.91875     |
| Latvia             | 0.915       |
| Venezuela          | 0.9071875   |
| Hungary            | 0.873571    |
| Chile              | 0.8690625   |
| Czech Republic     | 0.858928571 |
| Ukraine            | 0.848438    |
| Azerbaijan         | 0.795714    |
| Peru               | 0.789063    |
| Armenia            | 0.784688    |
| Argentina          | 0.782188    |
| Rwanda             | 0.738214    |

| Country         | LVAW     |
|-----------------|----------|
| Indonesia       | 0.9415   |
| Bulgaria        | 0.935438 |
| Russia          | 0.929    |
| Kyrgyz Republic | 0.924    |
| Croatia         | 0.9165   |
| Estonia         | 0.9115   |
| Uruguay         | 0.9025   |
| Poland          | 0.89875  |
| Latvia          | 0.8865   |
| Lithuania       | 0.8865   |
| Czech Republic  | 0.874    |
| Venezuela       | 0.874    |
| Hungary         | 0.8525   |
| Chile           | 0.824125 |
| Armenia         | 0.82125  |
| Azerbaijan      | 0.811    |
| Albania         | 0.79425  |
| Ukraine         | 0.781625 |
| Argentina       | 0.7365   |
| Moldovia        | 0.732167 |
|                 |          |

| Albania              | 0.724688 |
|----------------------|----------|
| Brazil               | 0.70625  |
| Kenya                | 0.694167 |
| Turkey               | 0.69     |
| Moldovia             | 0.685833 |
| United Arab Emirates | 0.678571 |
| Slovak Republic      | 0.661667 |
| Philippines          | 0.652143 |
| Slovenia             | 0.651548 |
| Belarus              | 0.64125  |
| Romania              | 0.64     |
| Uganda               | 0.612857 |
| Algeria              | 0.611429 |
| Mexico               | 0.60625  |
| Aruba                | 0.600357 |
| Serbia               | 0.596071 |
| Georgia              | 0.595625 |
| Papua New Guinea     | 0.591071 |
| Jamaica              | 0.585476 |
| Nigeria              | 0.583929 |
| Tanzania             | 0.582813 |
| Mongolia             | 0.553438 |
| Namibia              | 0.544063 |
| Tunisia              | 0.5425   |
| Morocco              | 0.536875 |
| Zambia               | 0.5025   |
| Eavot                | 0.500238 |
| Malawi               | 0.498571 |
| Qatar                | 0.49631  |
| Sri Lanka            | 0 495833 |
| Bahamas, The         | 0.491786 |
| Kuwait               | 0 454643 |
| Israel               | 0 4125   |
| Trinidad             | 0 404306 |
| Ghana                | 0.385    |
| Mauritius            | 0.363571 |
| India                | 0 350313 |
| Botswana             | 0.3425   |
| Pakistan             | 0 329881 |
| Korea                | 0.318229 |
| Sindanore            | 0 314583 |
| China - Hong Kong    | 0 31375  |
| South Africa         | 0 3125   |
| Kazakhstan           | 0 307917 |
| China - Mainland     | 0 303333 |
|                      | 0.000000 |
| Malaysia             | 0.270357 |
| Thailand             | 0.169643 |
| Maldives             | 0.102222 |

| Peru                | 0.729125 |
|---------------------|----------|
| Turkey              | 0.712125 |
| Slovenia            | 0.709333 |
| Rwanda              | 0.70925  |
| Slovak Republic     | 0.697417 |
| Romania             | 0.67625  |
| Serbia              | 0.6665   |
| Kenya               | 0.659833 |
| Nigeria             | 0.658    |
| United Arab         | 0.65675  |
| Emirates            |          |
| Philippines         | 0.64575  |
| Georgia             | 0.63525  |
| Mongolia            | 0.634    |
| Papua New           | 0.62025  |
| Guinea              |          |
| Brazil              | 0.61     |
| Uganda              | 0.607    |
| Algeria             | 0.59475  |
| Belarus             | 0.58725  |
| Mexico              | 0.585    |
| Aruba               | 0.57125  |
| Tanzania            | 0 5655   |
| Namibia             | 0.557    |
| Bahamas The         | 0 55525  |
| Jamaica.            | 0.546667 |
| Tunisia             | 0 544375 |
| Malawi              | 0.5395   |
| Sri Lanka           | 0.535667 |
| On Lanka            | 0.535667 |
| Morocco             | 0.020007 |
| Kuwait              | 0.0200   |
| Equat               | 0.4000   |
| Zambia              | 0.400202 |
| Zanibia<br>Tripidad | 0.403    |
| China - Mainland    | 0.443    |
| China - Mainland    | 0.413    |
| Korea               | 0.390123 |
| lerael              | 0.390333 |
| Singaporo           | 0.300    |
| Kozokhotop          | 0.307    |
| Mouritiuo           | 0.301333 |
| Iviauriuus          | 0.33675  |
| Inuia               | 0.3505   |
| Boliswana           | 0.3525   |
| Pakistan            | 0.348167 |
| South Africa        | 0.3      |
| Unina - Hong        | 0.29975  |
| Nolovsia            | 0.000405 |
|                     | 0.293125 |
| i nalland           | 0.1403/5 |
| ivialuives          | 0.097633 |

Г

| Mean     | 0.615010735 |
|----------|-------------|
| Variance | 0.043012263 |

| Mean     | 0.612357641 |
|----------|-------------|
| Variance | 0.048560197 |

# TOR Index by Descending Order

| <u>(a) Industrial</u> |           |
|-----------------------|-----------|
| <u>Countries</u>      |           |
| Country               | TOR 9102R |
| Greece                | 0.3333    |
| Germany               | 0.2500    |
| Iceland               | 0.2500    |
| Norway                | 0.2500    |
| Portugal              | 0.2500    |
| Canada                | 0.1667    |
| Finland               | 0.1667    |
| Ireland               | 0.1667    |
| Japan                 | 0.1667    |
| Spain                 | 0.1667    |
| Switzerland           | 0.1667    |
| Australia             | 0.0833    |
| Austria               | 0.0833    |
| Belgium               | 0.0833    |
| Denmark               | 0.0833    |
| France                | 0.0833    |
| Italy                 | 0.0833    |
| Netherlands           | 0.0833    |
| New Zealand           | 0.0833    |
| Sweden                | 0.0833    |
| United Kingdom        | 0.0833    |
| United States         | 0.0000    |
| Mean                  | 0.1439    |
| Variance              | 0.0067    |

| Country        | TOR 9602R |
|----------------|-----------|
| Norway         | 0.2857    |
| Switzerland    | 0.2857    |
| Australia      | 0.1429    |
| Belgium        | 0.1429    |
| Canada         | 0.1429    |
| Finland        | 0.1429    |
| Germany        | 0.1429    |
| Greece         | 0.1429    |
| Ireland        | 0.1429    |
| Japan          | 0.1429    |
| Netherlands    | 0.1429    |
| New Zealand    | 0.1429    |
| Portugal       | 0.1429    |
| Spain          | 0.1429    |
| Austria        | 0.0000    |
| Denmark        | 0.0000    |
| France         | 0.0000    |
| Iceland        | 0.0000    |
| Italy          | 0.0000    |
| Sweden         | 0.0000    |
| United Kingdom | 0.0000    |
| United States  | 0.0000    |
|                |           |
| Mean           | 0.1039    |
| Variance       | 0.0081    |

| Variance           | 0.0067 |
|--------------------|--------|
|                    |        |
| (b) Non-Industrial |        |

| (b) Non-Industrial |           |
|--------------------|-----------|
| <u>Countries</u>   |           |
| Country            | TOR 9102R |
| Brazil             | 0.6667    |
| Argentina          | 0.5000    |
| Kazakhstan         | 0.4167    |
| Korea              | 0.4167    |
| Papua New Guinea   | 0.4167    |
| Uruguay            | 0.4167    |
| Albania            | 0.3333    |
| Georgia            | 0.3333    |
| Lithuania          | 0.3333    |
| Rwanda             | 0.3333    |
| Serbia             | 0.3333    |
| Thailand           | 0.3333    |
| Ukraine            | 0.3333    |
| Zambia             | 0.3333    |
| Belarus            | 0.2500    |
| Bulgaria           | 0.2500    |
| China - Mainland   | 0.2500    |
| Croatia            | 0.2500    |
|                    |           |

| Country          | TOR 9602R |
|------------------|-----------|
| Argentina        | 0.7143    |
| Thailand         | 0.5714    |
| Kazakhstan       | 0.4286    |
| Papua New Guinea | 0.4286    |
| Uruguay          | 0.4286    |
| Albania          | 0.2857    |
| Belarus          | 0.2857    |
| Botswana         | 0.2857    |
| Brazil           | 0.2857    |
| Bulgaria         | 0.2857    |
| Croatia          | 0.2857    |
| Ghana            | 0.2857    |
| Korea            | 0.2857    |
| Malaysia         | 0.2857    |
| Mauritius        | 0.2857    |
| Mongolia         | 0.2857    |
| Romania          | 0.2857    |
| Russia           | 0.2857    |

| Estonia                      | 0.2500 |
|------------------------------|--------|
| Hungary                      | 0.2500 |
| Jamaica                      | 0.2500 |
| Malawi                       | 0.2500 |
| Malaysia                     | 0.2500 |
| Mongolia                     | 0.2500 |
| Poland                       | 0.2500 |
| Russia                       | 0.2500 |
| South Africa                 | 0.2500 |
| Trinidad                     | 0.2500 |
| Turkey                       | 0.2500 |
| Venezuela                    | 0.2500 |
| Algeria                      | 0.1667 |
| Armenia                      | 0.1667 |
| Aruba                        | 0.1667 |
| Botswana                     | 0.1667 |
| Favot                        | 0 1667 |
| Ghana                        | 0 1667 |
| India                        | 0 1667 |
| Indonesia                    | 0 1667 |
| Kenva                        | 0.1667 |
| Kyrayz Republic              | 0.1667 |
| Mauritius                    | 0.1667 |
| Nigeria                      | 0.1667 |
| Dakistan                     | 0.1667 |
| Parisian                     | 0.1007 |
| Philippines                  | 0.1007 |
| Pomonia                      | 0.1007 |
| Slovak Popublic              | 0.1007 |
| Siovak Kepublic<br>Sri Lanka | 0.1007 |
| Jii Lalika                   | 0.1007 |
| Talizalia<br>Azorbajian      | 0.1007 |
| Azerbaijan<br>Pohomoo Tho    | 0.0033 |
|                              | 0.0033 |
| Crille<br>Crach Derublic     | 0.0833 |
| Czech Republic               | 0.0833 |
| ISTAEL                       | 0.0833 |
| Latvia                       | 0.0833 |
| IVIEXICO                     | 0.0833 |
| Namibia                      | 0.0833 |
| Singapore                    | 0.0833 |
| Slovenia                     | 0.0833 |
| Tunisia                      | 0.0833 |
| Uganda                       | 0.0833 |
| China - Hong Kong            | 0.0000 |
| Kuwait                       | 0.0000 |
| Maldives                     | 0.0000 |
| Moldovia                     | 0.0000 |
| Morocco                      | 0.0000 |
| Qatar                        | 0.0000 |
| United Arab Emirates         | 0.0000 |
| Mean                         | 0.2010 |

Variance

0.0170

| Ukialite                      | 0.2007 |
|-------------------------------|--------|
| Algeria                       | 0.1429 |
| Armenia                       | 0.1429 |
| Aruba                         | 0.1429 |
| Bahamas, The                  | 0.1429 |
| Chile                         | 0.1429 |
| China - Mainland              | 0.1429 |
| Czech Republic                | 0.1429 |
| Egypt                         | 0.1429 |
| Georgia                       | 0.1429 |
| Hungary                       | 0.1429 |
| India                         | 0.1429 |
| Indonesia                     | 0.1429 |
| Israel                        | 0.1429 |
| Jamaica                       | 0.1429 |
| Kenya                         | 0.1429 |
| Kyrgyz Republic               | 0.1429 |
| Latvia                        | 0.1429 |
| Lithuania                     | 0.1429 |
| Malawi                        | 0.1429 |
| Mexico                        | 0.1429 |
| Namibia                       | 0.1429 |
| Nigeria                       | 0.1429 |
| Pakistan                      | 0.1429 |
| Peru                          | 0.1429 |
| Philippines                   | 0.1429 |
| Poland                        | 0.1429 |
| Singapore                     | 0.1429 |
| Slovak Republic               | 0.1429 |
| Slovenia                      | 0.1429 |
| South Africa                  | 0.1429 |
| I UNISIA                      | 0.1429 |
| Uganda                        | 0.1429 |
| Venezuela                     | 0.1429 |
|                               | 0.1429 |
| Azerbaijan<br>China Hang Kang | 0.0000 |
| China - Hong Kong             | 0.0000 |
| ESIUMA                        | 0.0000 |
| NuWalt                        | 0.0000 |
| Maldavia                      | 0.0000 |
| Morocco                       | 0.0000 |
|                               | 0.0000 |
| Qalal<br>Sri Lonko            | 0.0000 |
| JII LAIIKA                    | 0.0000 |
| I Inited Arab Emirated        | 0.0000 |
| United Alab Ellillates        | 0.0000 |
|                               |        |

| Mean     | 0.1849 |
|----------|--------|
| Variance | 0.0183 |

### **Correlations for All Indices: Industrial Countries (Pearson and Spearman Rank)**

Correlations

|           |                     | GMT    | LVAU   | LVAW   | TOR 9102R | TOR 9195R | TOR 9602R | TOR 9902R |
|-----------|---------------------|--------|--------|--------|-----------|-----------|-----------|-----------|
| GRILLI    | Pearson Correlation | 1      | .789** | .784** | 173       | 052       | 198       | 092       |
|           | Sig. (2-tailed)     |        | .000   | .000   | .442      | .820      | .377      | .682      |
|           | Ν                   | 22     | 22     | 22     | 22        | 22        | 22        | 22        |
| LVAU      | Pearson Correlation | .789** | 1      | .995** | 039       | .116      | 221       | .048      |
|           | Sig. (2-tailed)     | .000   |        | .000   | .863      | .607      | .322      | .832      |
|           | Ν                   | 22     | 22     | 22     | 22        | 22        | 22        | 22        |
| LVAW      | Pearson Correlation | .784** | .995** | 1      | 035       | .111      | 208       | .042      |
|           | Sig. (2-tailed)     | .000   | .000   |        | .876      | .623      | .352      | .852      |
|           | Ν                   | 22     | 22     | 22     | 22        | 22        | 22        | 22        |
| TOR 9102R | Pearson Correlation | 173    | 039    | 035    | 1         | .776**    | .488*     | .543**    |
|           | Sig. (2-tailed)     | .442   | .863   | .876   |           | .000      | .021      | .009      |
|           | Ν                   | 22     | 22     | 22     | 22        | 22        | 22        | 22        |
| TOR 9195R | Pearson Correlation | 052    | .116   | .111   | .776**    | 1         | 173       | .107      |
|           | Sig. (2-tailed)     | .820   | .607   | .623   | .000      |           | .442      | .635      |
|           | Ν                   | 22     | 22     | 22     | 22        | 22        | 22        | 22        |
| TOR 9602R | Pearson Correlation | 198    | 221    | 208    | .488*     | 173       | 1         | .700**    |
|           | Sig. (2-tailed)     | .377   | .322   | .352   | .021      | .442      |           | .000      |
|           | Ν                   | 22     | 22     | 22     | 22        | 22        | 22        | 22        |
| TOR 9902R | Pearson Correlation | 092    | .048   | .042   | .543**    | .107      | .700**    | 1         |
|           | Sig. (2-tailed)     | .682   | .832   | .852   | .009      | .635      | .000      |           |
|           | Ν                   | 22     | 22     | 22     | 22        | 22        | 22        | 22        |

\*\*. Correlation is significant at the 0.01 level (2-tailed).

\*. Correlation is significant at the 0.05 level (2-tailed).

|                |           |                        | GMT      | LVAU   | LVAW   | TOR 9102F | TOR 9195F | TOR 9602F | TOR 9902F |
|----------------|-----------|------------------------|----------|--------|--------|-----------|-----------|-----------|-----------|
| Spearman's rho | GRILLI    | Correlation Coefficier | t 1.000  | .761** | .757** | 231       | 047       | 198       | 125       |
|                |           | Sig. (2-tailed)        |          | .000   | .000   | .301      | .835      | .378      | .581      |
|                |           | Ν                      | 22       | 22     | 22     | 22        | 22        | 22        | 22        |
|                | LVAU      | Correlation Coefficier | t .761** | 1.000  | .995** | .059      | .176      | 014       | .173      |
|                |           | Sig. (2-tailed)        | .000     |        | .000   | .794      | .433      | .951      | .442      |
|                |           | Ν                      | 22       | 22     | 22     | 22        | 22        | 22        | 22        |
| -              | LVAW      | Correlation Coefficier | t .757** | .995** | 1.000  | .060      | .201      | 039       | .144      |
|                |           | Sig. (2-tailed)        | .000     | .000   |        | .792      | .369      | .862      | .522      |
|                |           | Ν                      | 22       | 22     | 22     | 22        | 22        | 22        | 22        |
| -              | TOR 9102R | Correlation Coefficier | t231     | .059   | .060   | 1.000     | .700**    | .544**    | .559"     |
|                |           | Sig. (2-tailed)        | .301     | .794   | .792   |           | .000      | .009      | .007      |
|                |           | Ν                      | 22       | 22     | 22     | 22        | 22        | 22        | 22        |
|                | TOR 9195R | Correlation Coefficier | t047     | .176   | .201   | .700**    | 1.000     | 181       | .095      |
|                |           | Sig. (2-tailed)        | .835     | .433   | .369   | .000      | .         | .420      | .673      |
|                |           | Ν                      | 22       | 22     | 22     | 22        | 22        | 22        | 22        |
| -              | TOR 9602R | Correlation Coefficier | t198     | 014    | 039    | .544**    | 181       | 1.000     | .712"     |
|                |           | Sig. (2-tailed)        | .378     | .951   | .862   | .009      | .420      | .         | .000      |
|                |           | Ν                      | 22       | 22     | 22     | 22        | 22        | 22        | 22        |
| -              | TOR 9902R | Correlation Coefficier | t125     | .173   | .144   | .559**    | .095      | .712**    | 1.000     |
|                |           | Sig. (2-tailed)        | .581     | .442   | .522   | .007      | .673      | .000      |           |
|                |           | Ν                      | 22       | 22     | 22     | 22        | 22        | 22        | 22        |

Correlations

\*\*. Correlation is significant at the .01 level (2-tailed).

### **Correlations for All Indices: Non - Industrial Countries (Pearson and Spearman Rank)**

Correlations

|           |                     | GMT    | LVAU   | LVAW   | TOR 9102R | TOR 9195R | TOR 9602R | TOR 9902R |
|-----------|---------------------|--------|--------|--------|-----------|-----------|-----------|-----------|
| GRILLI    | Pearson Correlation | 1      | .827** | .850** | .213      | .231      | .081      | .110      |
|           | Sig. (2-tailed)     |        | .000   | .000   | .081      | .058      | .509      | .373      |
|           | Ν                   | 68     | 68     | 68     | 68        | 68        | 68        | 68        |
| LVAU      | Pearson Correlation | .827** | 1      | .983** | .148      | .208      | .001      | .088      |
|           | Sig. (2-tailed)     | .000   |        | .000   | .227      | .089      | .991      | .474      |
|           | Ν                   | 68     | 68     | 68     | 68        | 68        | 68        | 68        |
| LVAW      | Pearson Correlation | .850** | .983** | 1      | .129      | .189      | 009       | .069      |
|           | Sig. (2-tailed)     | .000   | .000   |        | .294      | .122      | .941      | .573      |
|           | Ν                   | 68     | 68     | 68     | 68        | 68        | 68        | 68        |
| TOR 9102R | Pearson Correlation | .213   | .148   | .129   | 1         | .802**    | .712**    | .466**    |
|           | Sig. (2-tailed)     | .081   | .227   | .294   |           | .000      | .000      | .000      |
|           | Ν                   | 68     | 68     | 68     | 68        | 68        | 68        | 68        |
| TOR 9195R | Pearson Correlation | .231   | .208   | .189   | .802**    | 1         | .151      | .081      |
|           | Sig. (2-tailed)     | .058   | .089   | .122   | .000      |           | .220      | .512      |
|           | Ν                   | 68     | 68     | 68     | 68        | 68        | 68        | 68        |
| TOR 9602R | Pearson Correlation | .081   | .001   | 009    | .712**    | .151      | 1         | .676**    |
|           | Sig. (2-tailed)     | .509   | .991   | .941   | .000      | .220      |           | .000      |
|           | Ν                   | 68     | 68     | 68     | 68        | 68        | 68        | 68        |
| TOR 9902R | Pearson Correlation | .110   | .088   | .069   | .466**    | .081      | .676**    | 1         |
|           | Sig. (2-tailed)     | .373   | .474   | .573   | .000      | .512      | .000      |           |
|           | Ν                   | 68     | 68     | 68     | 68        | 68        | 68        | 68        |

\*\*. Correlation is significant at the 0.01 level (2-tailed).

GMT LVAU LVAW TOR 9102R TOR 9195R TOR 9602R TOR 9902F Spearman's rho GRILLI Correlation Coefficier 1.000 .820 .855 .210 .259\* .085 .067 Sig. (2-tailed) .000 .000 .086 .033 .492 .585 Ν 68 68 68 68 68 68 68 LVAU Correlation Coefficien .975\* .041 .039 .820\* 1.000 .152 .215 Sig. (2-tailed) .000 .739 .750 .000 .215 .078 Ν 68 68 68 68 68 68 68 LVAW Correlation Coefficier .855 .975\* 1.000 .163 .219 .056 .045 Sig. (2-tailed) .000 .000 .185 .073 .653 .714 Ν 68 68 68 68 68 68 68 TOR 9102R Correlation Coefficien .407\* .210 .152 .163 1.000 .808\* .711 Sig. (2-tailed) .086 .215 .185 .000 .000 .001 Ν 68 68 68 68 68 68 68 TOR 9195R Correlation Coefficier .259 .215 .219 .808\* 1.000 .208 .126 Sig. (2-tailed) .033 .078 .073 .000 .089 .307 Ν 68 68 68 68 68 68 68 TOR 9602R Correlation Coefficien .085 .041 .056 .711\* .208 1.000 .588\* Sig. (2-tailed) .492 .739 .653 .000 .089 .000 Ν 68 68 68 68 68 68 68 TOR 9902R Correlation Coefficien .067 .039 .045 .407 .126 .588\* 1.000 Sig. (2-tailed) .585 .750 .714 .001 .307 .000 Ν 68 68 68 68 68 68 68

Correlations

\*\*. Correlation is significant at the .01 level (2-tailed).

\* Correlation is significant at the .05 level (2-tailed).

| Country        | GMT 1991 | Current Study | Difference |
|----------------|----------|---------------|------------|
| Australia      | 9        | 9             | 0          |
| Austria        | 9        | 12            | 3          |
| Belgium        | 7        | 12            | 5          |
| Canada         | 11       | 10            | -1         |
| Denmark        | 8        | 8             | 0          |
| France         | 7        | 13            | 6          |
| Germany        | 13       | 14            | 1          |
| Greece         | 4        | 11            | 7          |
| Ireland        | 7        | 11            | 4          |
| Italy          | 5        | 11            | 6          |
| Japan          | 6        | 8             | 2          |
| Netherlands    | 10       | 12            | 2          |
| New Zealand    | 3        | 8             | 5          |
| Portugal       | 3        | 10            | 7          |
| Spain          | 5        | 12            | 7          |
| Switzerland    | 12       | 11            | -1         |
| United Kingdom | 6        | 11            | 5          |
| United States  | 12       | 12            | 0          |
| Mean           | 7.6111   | 10.8333       |            |

# Comparison with Grilli et al's (1991) GMT Indices

Mean7.611110.8333Variance9.66342.9706

Political Component

| Country        | GMT 1991 | Current Study | Difference |
|----------------|----------|---------------|------------|
| Australia      | 3        | 4             | 1          |
| Austria        | 3        | 4             | 1          |
| Belgium        | 1        | 4             | 3          |
| Canada         | 4        | 4             | 0          |
| Denmark        | 3        | 3             | 0          |
| France         | 2        | 6             | 4          |
| Germany        | 6        | 6             | 0          |
| Greece         | 2        | 5             | 3          |
| Ireland        | 3        | 5             | 2          |
| Italy          | 4        | 6             | 2          |
| Japan          | 1        | 4             | 3          |
| Netherlands    | 6        | 6             | 0          |
| New Zealand    | 0        | 3             | 3          |
| Portugal       | 1        | 4             | 3          |
| Spain          | 2        | 6             | 4          |
| Switzerland    | 5        | 4             | -1         |
| United Kingdom | 1        | 3             | 2          |
| United States  | 5        | 5             | 0          |
|                |          |               |            |

| 2.8889 | 4.5556           |
|--------|------------------|
| 3.2810 | 1.2026           |
|        | 2.8889<br>3.2810 |

#### Economic Component

| Country        | GMT 1991 | Current Study | Difference |
|----------------|----------|---------------|------------|
| Australia      | 6        | 5             | -1         |
| Austria        | 6        | 8             | 2          |
| Belgium        | 6        | 8             | 2          |
| Canada         | 7        | 6             | -1         |
| Denmark        | 5        | 5             | 0          |
| France         | 5        | 7             | 2          |
| Germany        | 7        | 8             | 1          |
| Greece         | 2        | 6             | 4          |
| Ireland        | 4        | 6             | 2          |
| Italy          | 1        | 4             | 3          |
| Japan          | 5        | 4             | -1         |
| Netherlands    | 4        | 6             | 2          |
| New Zealand    | 3        | 5             | 2          |
| Portugal       | 2        | 6             | 4          |
| Spain          | 3        | 6             | 3          |
| Switzerland    | 7        | 7             | 0          |
| United Kingdom | 5        | 8             | 3          |
| United States  | 7        | 7             | 0          |
| •••            | 4 7000   | 0.0000        |            |

 Mean
 4.7222

 Variance
 3.6242

6.2222 1.7124

# Comparison with Cukierman's (1992) Indices

| Country      | CUK     | Current Study | Difference |
|--------------|---------|---------------|------------|
| Argentina    | 0 43906 | 0 78219       | 0 34313    |
| Australia    | 0.30552 | 0.35458       | 0.04906    |
| Austria      | 0.58063 | 0.87438       | 0 29375    |
| Bahamas      | 0.00000 | 0.07400       | 0.20070    |
| Belgium      | 0.43034 | 0.45175       | 0.04000    |
| Botswana     | 0.10073 | 0.31050       | -0.01812   |
| Brazil       | 0.30003 | 0.34230       | -0.01012   |
| Canada       | 0.25542 | 0.70023       | 0.45005    |
| Callaua      | 0.43030 | 0.49003       | 0.03400    |
| China        | 0.49229 | 0.00900       | 0.37077    |
| China        | 0.20270 | 0.30333       | 0.02056    |
| Denmark      | 0.46552 | 0.54500       | 0.07948    |
| Egypt        | 0.53125 | 0.50024       | -0.03101   |
| Finiand      | 0.26952 | 0.93219       | 0.66266    |
| France       | 0.27938 | 0.93219       | 0.65281    |
| Germany      | 0.65719 | 0.91406       | 0.25688    |
| Ghana        | 0.28219 | 0.38500       | 0.10281    |
| Greece       | 0.51031 | 0.93219       | 0.42188    |
| Hungary      | 0.23969 | 0.87357       | 0.63388    |
| Iceland      | 0.35948 | 0.35094       | -0.00854   |
| India        | 0.33063 | 0.35031       | 0.01969    |
| Indonesia    | 0.31719 | 0.96344       | 0.64625    |
| Ireland      | 0.38619 | 0.92438       | 0.53818    |
| Israel       | 0.42469 | 0.41250       | -0.01219   |
| Italy        | 0.21821 | 0.88031       | 0.66210    |
| Japan        | 0.15726 | 0.39548       | 0.23821    |
| Kenya        | 0.44063 | 0.69417       | 0.25354    |
| Korea        | 0.23240 | 0.31823       | 0.08583    |
| Malaysia     | 0.33500 | 0.27036       | -0.06464   |
| Mexico       | 0.35594 | 0.60625       | 0.25031    |
| Morocco      | 0.15698 | 0.53688       | 0.37990    |
| Netherlands  | 0.42281 | 0.90875       | 0.48594    |
| New Zealand  | 0.26865 | 0.44219       | 0.17354    |
| Nigeria      | 0.33344 | 0.58393       | 0.25049    |
| Norway       | 0.13656 | 0.17646       | 0.03990    |
| Pakistan     | 0.19458 | 0.32988       | 0.13530    |
| Peru         | 0.43000 | 0.78906       | 0.35906    |
| Philippines  | 0.41813 | 0.65214       | 0.23402    |
| Poland       | 0.09604 | 0.92781       | 0.83177    |
| Qatar        | 0.17698 | 0.49631       | 0.31933    |
| Romania      | 0.28806 | 0.64000       | 0.35194    |
| Singapore    | 0.26944 | 0.31458       | 0.04514    |
| South Africa | 0.30052 | 0.31250       | 0.01198    |
| Spain        | 0.20688 | 0.94000       | 0.73313    |
| Sweden       | 0 27250 | 0 89938       | 0.62688    |
| Switzerland  | 0 67262 | 0.66500       | -0 00762   |
| Tanzania     | 0 47875 | 0.58281       | 0 10406    |
| Thailand     | 0 26344 | 0 16964       | -0 09379   |
| Turkov       | 0.20044 | 0.0004        | 0.00070    |
| Llaanda      | 0.7036  | 0.00000       | 0.20044    |

| United Kingdom | 0.30875 | 0.84469 | 0.53594 |
|----------------|---------|---------|---------|
| United States  | 0.50490 | 0.55156 | 0.04667 |
| Uruguay        | 0.21917 | 0.91875 | 0.69958 |
| Venezuela      | 0.37344 | 0.90719 | 0.53375 |
| Zambia         | 0.30563 | 0.50250 | 0.19688 |
| Mean           | 0.34278 | 0.62420 |         |
| Variance       | 0.01635 | 0.05938 |         |

### (b) LVAW Index

| Country      | CUK     | Current Study | Difference |
|--------------|---------|---------------|------------|
| Argentina    | 0.40013 | 0.73650       | 0.33638    |
| Australia    | 0.35454 | 0.40004       | 0.04550    |
| Austria      | 0.61375 | 0.83150       | 0.21775    |
| Bahamas      | 0.41125 | 0.55525       | 0.14400    |
| Belgium      | 0.16450 | 0.87900       | 0.71450    |
| Botswana     | 0.32725 | 0.35250       | 0.02525    |
| Brazil       | 0.20858 | 0.61000       | 0.40142    |
| Canada       | 0.45063 | 0.48838       | 0.03775    |
| Chile        | 0.45946 | 0.82413       | 0.36467    |
| China        | 0.26500 | 0.41300       | 0.14800    |
| Denmark      | 0.49192 | 0.55658       | 0.06467    |
| Egypt        | 0.49263 | 0.46829       | -0.02433   |
| Finland      | 0.28038 | 0.90400       | 0.62363    |
| France       | 0.24063 | 0.90400       | 0.66338    |
| Germany      | 0.69488 | 0.87500       | 0.18013    |
| Ghana        | 0.30563 | 0.39613       | 0.09050    |
| Greece       | 0.55513 | 0.90400       | 0.34888    |
| Hungary      | 0.24313 | 0.85250       | 0.60938    |
| Iceland      | 0.34371 | 0.32038       | -0.02333   |
| India        | 0.33650 | 0.35650       | 0.02000    |
| Indonesia    | 0.26838 | 0.94150       | 0.67313    |
| Ireland      | 0.42558 | 0.89150       | 0.46592    |
| Israel       | 0.38963 | 0.38800       | -0.00162   |
| Italv        | 0.25050 | 0.84600       | 0.59550    |
| Japan        | 0.17458 | 0.44146       | 0.26687    |
| Kenva        | 0.43525 | 0.65983       | 0.22458    |
| Korea        | 0.26992 | 0.39033       | 0.12042    |
| Malavsia     | 0.35925 | 0.29313       | -0.06613   |
| Mexico       | 0.34246 | 0.58500       | 0.24254    |
| Morocco      | 0.14392 | 0.52050       | 0.37658    |
| Netherlands  | 0.41888 | 0.86650       | 0.44763    |
| New Zealand  | 0.24317 | 0.44000       | 0.19683    |
| Nigeria      | 0.36813 | 0.65800       | 0.28988    |
| Norway       | 0.17038 | 0.23154       | 0.06117    |
| Pakistan     | 0.21117 | 0.34817       | 0.13700    |
| Peru         | 0.43163 | 0.72913       | 0.29750    |
| Philippines  | 0.43288 | 0.64575       | 0.21288    |
| Poland       | 0.10396 | 0.89875       | 0.79479    |
| Qatar        | 0.20121 | 0.52567       | 0.32446    |
| Romania      | 0.30033 | 0.67625       | 0.37592    |
| Singapore    | 0.29617 | 0.36700       | 0.07083    |
| South Africa | 0 24617 | 0.30000       | 0 05383    |
| Spain        | 0.23088 | 0.91650       | 0.68563    |
| Sweden       | 0 29450 | 0 87400       | 0 57950    |
| Switzerland  | 0.64375 | 0.60250       | -0.04125   |

| Tanzania       | 0.43938 | 0.56550 | 0.12613  |
|----------------|---------|---------|----------|
| Thailand       | 0.26450 | 0.14038 | -0.12413 |
| Turkey         | 0.45538 | 0.71213 | 0.25675  |
| Uganda         | 0.37725 | 0.60700 | 0.22975  |
| United Kingdom | 0.26525 | 0.79900 | 0.53375  |
| United States  | 0.47392 | 0.51325 | 0.03933  |
| Uruguay        | 0.24196 | 0.90250 | 0.66054  |
| Venezuela      | 0.42713 | 0.87400 | 0.44688  |
| Zambia         | 0.32563 | 0.46500 | 0.13938  |
|                |         |         |          |
| Mean           | 0.34375 | 0.61562 |          |
| Variance       | 0.01609 | 0.04959 |          |

| Country      | TOR 9102R | TOR 9602R | TOR (CUK) | TOR (H&K) |
|--------------|-----------|-----------|-----------|-----------|
| Algeria      | 0.167     | 0.143     | na        | 0.3       |
| Argentina    | 0.500     | 0.714     | 1         | 1.1       |
| Bahamas, The | 0.083     | 0.143     | 0.2       | 0.2       |
| Botswana     | 0.167     | 0.286     | 0.4       | 0.4       |
| Brazil       | 0.667     | 0.286     | 0.8       | 0.8       |
| Chile        | 0.083     | 0.143     | 0.8       | 0.8       |
| China        | 0.250     | 0.143     | 0.3       | na        |
| Egypt        | 0.167     | 0.143     | 0.3       | 0.1       |
| Ghana        | 0.167     | 0.286     | 0.2       | 0.2       |
| Greece       | 0.333     | 0.143     | 0.2       | 0.2       |
| Hungary      | 0.250     | 0.143     | 0.1       | na        |
| India        | 0.167     | 0.143     | 0.3       | 0.4       |
| Indonesia    | 0.167     | 0.143     | 0.2       | 0.2       |
| Israel       | 0.083     | 0.143     | 0.2       | na        |
| Jamaica      | 0.250     | 0.143     | na        | 0.5       |
| Kenva        | 0.167     | 0.143     | 0.2       | 0.1       |
| Korea        | 0.417     | 0.286     | 0.5       | 0.5       |
| Kuwait       | 0.000     | 0.000     | na        | 0.2       |
| Malawi       | 0.250     | 0.143     | na        | 0.3       |
| Malavsia     | 0.250     | 0.286     | 0.2       | 0.2       |
| Maldives     | 0.000     | 0.000     | na        | 0.1       |
| Mauritius    | 0.167     | 0.286     | na        | 0.1       |
| Mexico       | 0.083     | 0.143     | 0.3       | 0.3       |
| Morocco      | 0.000     | 0.000     | 0.2       | 0.2       |
| Nigeria      | 0 167     | 0 143     | 0.1       | 0.1       |
| Pakistan     | 0.167     | 0.143     | 0.3       | 0.4       |
| Peru         | 0.167     | 0.143     | 0.3       | 0.3       |
| Philippines  | 0 167     | 0 143     | 0.2       | 0.2       |
| Poland       | 0.250     | 0.143     | 0.5       | na        |
| Portugal     | 0.250     | 0.143     | 0.3       | na        |
| Qatar        | 0.000     | 0.000     | 0         | 0         |
| Romania      | 0.167     | 0.286     | 0.2       | na        |
| Singapore    | 0.083     | 0.143     | 0.6       | 0.6       |
| South Africa | 0.250     | 0.143     | na        | 0.1       |
| Sri Lanka    | 0.167     | 0.000     | na        | 0.1       |
| Tanzania     | 0.167     | 0.000     | 0.1       | 0.1       |
| Thailand     | 0.333     | 0.571     | 0.1       | 0.1       |
| Trinidad     | 0.250     | 0.286     | na        | 0.3       |
| Tunisia      | 0.083     | 0 143     | na        | 0.4       |
| Turkey       | 0.250     | 0.286     | 0.4       | 0.3       |
| Unanda       | 0.083     | 0.143     | 0.4       | 0.2       |
| Urunuav      | 0 417     | 0 429     | 0.3       | 0.2       |
| Venezuela    | 0.250     | 0.123     | 0.5       | 0.5       |
| Zambia       | 0.333     | 0.143     | 0.5       | 0.0       |
| Zamola       | 0.000     | 0.110     | 5.0       | 0.1       |
| Mean         | 0.201     | 0.182     | 0.323     | 0.305     |
| Variance     | 0.0175    | 0.0193    | 0.0485    | 0.0524    |

# Comparison of TOR indices with Cukierman (1992) and de Haan and Kooi (2000)

*Note:* TOR (CUK )and TOR (H&K) indicate the Cukierman and de Haan & Kooi measures respectively. Both these indicators are for the period 1980-1989, while our indicator covers the periods 1991-2002 and 1996-2002 respectively.

| Legislation  | Inflation<br>Variable | Statistical Test          | GMT    | LVAU   | LVAW   | TOR9102R | TOR9195R | TOR9602R | TOR9902R |
|--------------|-----------------------|---------------------------|--------|--------|--------|----------|----------|----------|----------|
| Pre and 1992 | CPIM9302              | Pearson<br>Sig (2-tailed) | 0.483  | 0.583* | 0.573* | 0.272    | 0.404    | -0.034   | 0.335    |
|              |                       | N                         | 16     | 16     | 16     | 16       | 16       | 16       | 16       |
| Pre and 1993 | CPIM9402              | Pearson                   | 0.327  | 0.357  | 0.357  | 0.373    | 0.408    | 0.037    | 0.168    |
|              |                       | Sig. (2-tailed)           | 0.127  | 0.095  | 0.094  | 0.80     | 0.053    | 0.867    | 0.443    |
|              |                       | Ν                         | 23     | 23     | 23     | 23       | 23       | 23       | 23       |
| Pre and 1994 | CPIM9502              | Pearson                   | 0.136  | 0.292  | 0.313  | 0.353    | 0.259    | 0.180    | 0.166    |
|              |                       | Sig. (2-tailed)           | 0.506  | 0148   | 0.120  | 0.077    | 0.201    | 0.378    | 0.417    |
|              |                       | Ν                         | 26     | 26     | 26     | 26       | 26       | 26       | 26       |
| Pre and 1995 | CPIM9602              | Pearson                   | 0.074  | 0.272  | 0.302  | 0.192    | 0.221    | 0.083    | 0.013    |
|              |                       | Sig. (2-tailed)           | 0.679  | 0.120  | 0.083  | 0.276    | 0.208    | 0.641    | 0.941    |
|              |                       | Ν                         | 34     | 34     | 34     | 34       | 34       | 34       | 34       |
| Pre and 1996 | CPIM9702              | Pearson                   | -0.007 | 0.166  | 0.193  | 0.207    | 0.187    | 0.113    | 0.062    |
|              |                       | Sig. (2-tailed)           | 0.996  | 0.299  | 0.226  | 0.194    | 0.247    | 0.483    | 0.702    |
|              |                       | Ν                         | 41     | 41     | 41     | 41       | 41       | 41       | 41       |
| Pre and 1997 | CPIM9802              | Pearson                   | -0.060 | 0.110  | 0.137  | 0.171    | 0.126    | 0.124    | 0.114    |
|              |                       | Sig. (2-tailed)           | 0.664  | 0.427  | 0.323  | 0.216    | 0.364    | 0.370    | 0.411    |
|              |                       | Ν                         | 54     | 54     | 54     | 54       | 54       | 54       | 54       |
| Pre and 1998 | CPIM9902              | Pearson                   | -0.136 | 0.012  | 0.046  | 0.159    | 0.044    | 0.179    | 0.238    |
|              |                       | Sig. (2-tailed)           | 0.269  | 0.924  | 0.707  | 0.196    | 0.721    | 0.144    | 0.051    |
|              |                       | Ν                         | 68     | 68     | 68     | 68       | 68       | 68       | 68       |
| Pre and 1999 | CPIM0002              | Pearson                   | -0.110 | 0.068  | 0.102  | 0.216    | 0.069    | 0.235*   | 0.276*   |
|              |                       | Sig. (2-tailed)           | 0.352  | 0.566  | 0.386  | 0.064    | 0.559    | 0.044    | 0.017    |
|              |                       | Ν                         | 74     | 74     | 74     | 74       | 74       | 74       | 74       |
| Pre and 2000 | CPIM0102              | Pearson                   | -0.113 | 0.073  | 0.099  | 0.257*   | 0.105    | 0.287**  | 0.310*   |
|              |                       | Sig. (2-tailed)           | 0.320  | 0.522  | 0.381  | 0.021    | 0.354    | 0.010    | 0.05     |
|              |                       | Ν                         | 80     | 80     | 80     | 80       | 80       | 80       | 80       |

### **Correlation Between CBI Indexes and Mean of Price Inflation** for Corresponding Sample Period

\*\*. Correlation is significant at the 0.01 level (2-tailed). \*. Correlation is significant at the 0.05 level (2-tailed).

| Legislation  | Inflation | Statistical Test | GMT    | LVAU   | LVAW   | TOR9102R | TOR9195R | TOR9602R | TOR9902R |
|--------------|-----------|------------------|--------|--------|--------|----------|----------|----------|----------|
|              | Variable  |                  |        |        |        |          |          |          |          |
| Pre and 1995 | CPIM9602  | Pearson          | 0.492  | 0.135  | 0.149  | -0.074   | 0.421    | -0.351   | -0.715   |
|              |           | Sig. (2-tailed)  | 0.508  | 0.865  | 0.851  | 0.926    | 0.579    | 0.649    | 0.285    |
|              |           | Ν                | 4      | 4      | 4      | 4        | 4        | 4        | 4        |
| Pre and 1996 | CPIM9702  | Pearson          | 0.111  | -0.220 | -0.185 | 0.144    | 0.443    | -0.094   | -0.543   |
|              |           | Sig. (2-tailed)  | 0.860  | 0.723  | 0.766  | 0.818    | 0.455    | 0.880    | 0.344    |
|              |           | Ν                | 5      | 5      | 5      | 5        | 5        | 5        | 5        |
| Pre and 1997 | CPIM9802  | Pearson          | 0.063  | 0.170  | 0.173  | 0.171    | 0.372    | -0.198   | 0.234    |
|              |           | Sig. (2-tailed)  | 0.863  | 0.638  | 0.632  | 0.638    | 0.290    | 0.583    | 0.516    |
|              |           | Ν                | 10     | 10     | 10     | 10       | 10       | 10       | 10       |
| Pre and 1998 | CPIM9902  | Pearson          | -0.179 | -0.037 | -0.058 | 0.186    | 0.300    | -0.125   | 0.059    |
|              |           | Sig. (2-tailed)  | 0.437  | 0.873  | 0.804  | 0.421    | 0.186    | 0.591    | 0.799    |
|              |           | Ν                | 21     | 21     | 21     | 21       | 21       | 21       | 21       |
| Pre and 1999 | CPIM0002  | Pearson          | -0.156 | -0.014 | -0.034 | 0.152    | 0.267    | -0.130   | 0.067    |
|              |           | Sig. (2-tailed)  | 0.500  | 0.952  | 0.885  | 0.511    | 0.243    | 0.574    | 0.772    |
|              |           | Ν                | 21     | 21     | 21     | 21       | 21       | 21       | 21       |
| Pre and 2000 | CPIM0102  | Pearson          | -0.119 | 0.026  | 0.006  | 0.163    | 0.306    | -0.167   | 0.046    |
|              |           | Sig. (2-tailed)  | 0.608  | 0.911  | 0.978  | 0.481    | 0.178    | 0.470    | 0.842    |
|              |           | Ν                | 21     | 21     | 21     | 21       | 21       | 21       | 21       |

### **Correlation for Industrial Countries between CBI Indexes and Mean of Price Inflation for Corresponding Sample Period**

### Table 12

### **Correlation for Non-Industrial Countries between CBI Indexes and Mean of Price Inflation for Corresponding Sample Period**

| Legislation  | Inflation<br>Variable | Statistical Test | GMT    | LVAU   | LVAW   | TOR9102R | TOR9195R | TOR9602R | TOR9902R |
|--------------|-----------------------|------------------|--------|--------|--------|----------|----------|----------|----------|
| Pre and 1992 | CPIM9302              | Pearson          | 0.548* | 0.625* | 0.615* | 0.229    | 0.443    | -0.130   | 0.255    |
|              |                       | Sig. (2-tailed)  | 0.034  | 0.013  | 0.015  | 0.411    | 0.098    | 0.644    | 0.360    |
|              |                       | N                | 15     | 15     | 15     | 15       | 15       | 15       | 15       |
| Pre and 1993 | CPIM9402              | Pearson          | 0.350  | 0.365  | 0.367  | 0.355    | 0.429*   | -0.012   | 0.115    |
|              |                       | Sig. (2-tailed)  | 0.110  | 0.095  | 0.093  | 0.105    | 0.046    | 0.956    | 0.611    |
|              |                       | N                | 22     | 22     | 22     | 22       | 22       | 22       | 22       |
| Pre and 1994 | CPIM9502              | Pearson          | 0.149  | 0.295  | 0.318  | 0.339    | 0.270    | 0.152    | 0.130    |
|              |                       | Sig. (2-tailed)  | 0.476  | 0.152  | 0.122  | 0.097    | 0.191    | 0.467    | 0.534    |
|              |                       | N                | 25     | 25     | 25     | 25       | 25       | 25       | 25       |
| Pre and 1995 | CPIM9602              | Pearson          | 0.139  | 0.248  | 0.278  | 0.159    | 0.203    | 0.048    | -0.026   |
|              |                       | Sig. (2-tailed)  | 0.463  | 0.186  | 0.137  | 0.402    | 0.281    | 0.800    | 0.892    |
|              |                       | Ν                | 30     | 30     | 30     | 30       | 30       | 30       | 30       |
| Pre and 1996 | CPIM9702              | Pearson          | 0.056  | 0.135  | 0.162  | 0.177    | 0.168    | 0.084    | 0.039    |
|              |                       | Sig. (2-tailed)  | 0.747  | 0.432  | 0.345  | 0.302    | 0.326    | 0.628    | 0.820    |
|              |                       | Ν                | 36     | 36     | 36     | 36       | 36       | 36       | 36       |
| Pre and 1997 | CPIM9802              | Pearson          | 0.047  | 0.134  | 0.156  | 0.156    | 0.132    | 0.098    | 0.087    |
|              |                       | Sig. (2-tailed)  | 0.761  | 0.388  | 0.312  | 0.313    | 0.393    | 0.528    | 0.573    |
|              |                       | Ν                | 44     | 44     | 44     | 44       | 44       | 44       | 44       |
| Pre and 1998 | CPIM9902              | Pearson          | 0.044  | 0.116  | 0.149  | 0.108    | 0.029    | 0.124    | 0.190    |
|              |                       | Sig. (2-tailed)  | 0.768  | 0.439  | 0.317  | 0.470    | 0.846    | 0.405    | 0.201    |
|              |                       | Ν                | 47     | 47     | 47     | 47       | 47       | 47       | 47       |
| Pre and 1999 | CPIM0002              | Pearson          | 0.069  | 0.167  | 0.198  | 0.175    | 0.062    | 0.189    | 0.241    |
|              |                       | Sig. (2-tailed)  | 0.623  | 0.231  | 0.156  | 0.209    | 0.661    | 0.176    | 0.083    |
|              |                       | Ν                | 53     | 53     | 53     | 53       | 53       | 53       | 53       |
| Pre and 2000 | CPIM0102              | Pearson          | 0.046  | 0.162  | 0.184  | 0.214    | 0.085    | 0.249    | 0.279*   |
|              |                       | Sig. (2-tailed)  | 0.731  | 0.221  | 0.162  | 0.103    | 0.521    | 0.057    | 0.032    |
|              |                       | Ν                | 59     | 59     | 59     | 59       | 59       | 59       | 59       |

\*. Correlation is significant at the 0.05 level (2-tailed).