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The Pricing of Contingent Claims in a
Multivariate Gamma Distributed Economy

Abstract

In this paper we establish a Risk Neutral Valuation Relationship and de-

velop a framework for pricing multivariate European-style contingent claims

in a discrete-time economy using a multivariate gamma distribution. In our

framework, risk neutrality is obtained by using market equilibrium condi-

tions, leading to preference-free contingent claim pricing equations. Multi-

variate contingent claim pricing models are of particular interest when payo¤s

depend on two or more stochastic variables, such as options to exchange one

asset for another, options on mutual funds, and options with a stochastic

strike price in general. In our model each underlying stochastic variable

depends on a systematic gamma distributed term and on an idiosyncratic

one, where the former has a direct impact on the correlation structure of

the underlying variables. To illustrate the applicability of our framework, we

present multivariate gamma distributed versions of well-known multivariate

normally/lognormally distributed contingent claim pricing formulae. The

gamma distribution is particularly suitable to price stochastic variables that

present implied volatilities that are an increasing function of the strike price.

Keywords: Multivariate Gamma Distribution, Risk Neutral Valuation

Relationship, Multivariate Contingent Claim, Stochastic Strike Price, Gen-

eral Equilibrium.
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The Pricing of Contingent Claims in a
Multivariate Gamma Distributed Economy

1 Introduction

In this paper we establish a Risk Neutral Valuation Relationship (RNVR)

and develop a framework for pricing multivariate European-style contingent

claims in a discrete-time economy using a multivariate gamma distribution.

Risk neutrality is obtained by using market equilibrium conditions, which

leads to preference-free contingent claim pricing equations. The framework

developed here can be useful for pricing contingent claims whose payo¤s

depend on more than one underlying stochastic variables, such as options to

exchange one asset for another, options on mutual funds, currency option

bonds, and options with a stochastic strike price in general.

Most of the previous studies on the pricing of multivariate contingent

claims rely, in some way, on the assumption of normal or lognormal ran-

dom variables i.e. extensions of the Black and Scholes (1973) model (see

for instance Margrabe (1978), Stulz (1982), Stapleton and Subrahmanyam

(1984), Johnson (1987), Camara (2005)). In this paper we depart from the

well known Gaussian framework by letting the underlying stochastic vari-

ables have a multivariate gamma distribution. In our model the distribution

of each underlying stochastic variables depends on two independent gamma

distributed terms, where one of them can be regarded as idiosyncratic and

the other one as systematic. While the idiosyncratic terms are, of course,

independent of each other, the systematic term has a direct impact on all
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underlying stochastic variables and on their correlation structure. As our

framework is developed in a multivariate setting, it extends previous con-

tingent claim pricing models which are based on only one gamma distrib-

uted underlying stochastic variable (see for instance Heston (1993), Schroder

(2004), Vitiello and Poon (2010)).

The gamma distribution contains the normal distribution as a limiting

case and, as the lognormal distribution, it lies on a single line in the skewness-

kurtosis plane (see Johnson, Kotz and Balakrishnan (1994)). While the im-

plied volatility obtained from the lognormal distributed Black and Scholes

(1973) model is parallel to the  axis, the implied volatility obtained from

the gamma distribution is an increasing function of the strike price, which

makes it particularly interesting for pricing agricultural commodities for in-

stance (Zhou (1988), Savickas (2005)). Also, the gamma distribution has

been widely applied to model natural events, in particular rainfall (see for

example Simpson (1972), Gri¢ths (1990)).

In order to illustrate the applicability of our framework, we present pref-

erence free option pricing models that depend on one or more underlying

stochastic variables. Speci…cally, we present multivariate gamma distributed

versions of well-known multivariate normally/lognormally distributed con-

tingent claim pricing formulae. In this case, the limits of integration of the

pricing equation may involve functions of the underlying stochastic variables

themselves, which increases the complexity of the pricing equation. In such

situations, numerical solutions can be easily obtained.

This article is organised as follows: in Section 2 the basic economy and

the multivariate gamma distribution are introduced and the forward asset
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speci…c pricing kernel is obtained. In Section 3 an equilibrium relationship

for the price of the underlying stochastic variables is obtained and a general

multivariate gamma contingent claim pricing model is derived. Special cases

of the general pricing model are introduced and new preference free option

pricing models are presented in Section 4. In Section 5 the estimation of

parameters is brie‡y discussed. Section 6 concludes. Proofs and a list of

relevant variables are provided in the Appendix.

2 The Valuation Model

2.1 The Economy

The basic setting introduced in this section is similar to the economy devel-

oped by Stapleton and Subrahmanyam (1984) and Camara (2005), in which

there is a representative investor who maximises her expected utility of ter-

minal consumption,  [ ], where  is the investor’s utility function of

consumption and  [¢] is the expectation taken with respect to the physical

probability measure.

In equilibrium, it follows from the …rst order condition for a maximum

that

P (V (X)) =
 [V (X) ]

 [ ]

=  [V (X) (X)]  (2.1)

where  is the …rst derivative of the utility function with respect to con-

sumption, V (X) is the vector of payo¤s of the claims V (¢) as a function of

the payo¤ of underlying stochastic variables X, P (V (X)) is the vector of
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current forward prices of V (X) and

 (X) =
 [ jX]

 [ ]
(2.2)

is de…ned as the forward asset-speci…c pricing kernel (see Brennan, 1979).

Equation (2.1) is referred to as the basic valuation equation. It fol-

lows that the forward value of the underlying random variables can be ob-

tained from equation (2.1). For instance, if V (X) = X then P (X) =

 [X (X)] where P (X) is the vector of forward values of the underlying

random variables X.

2.2 The Multivariate Gamma Distribution

There are several ways of constructing a multivariate gamma distribution.

An overview is given in Kotz, Balakrishnan and Johnson (2000). Here we

follow the Mathai and Moschopoulos (1991) approach, which amongst other

features, guarantees gamma distributed marginal densities.

De…nition 2.1 (The gamma distribution) The random variable  is said

to be gamma distributed,  »  (  ), when its three-parameter density

function is given by

 (;   ) =
( ¡ )¡1

¡ ()
exp

·

¡

µ
 ¡ 



¶¸

     1 (2.3)

where   0 is the shape parameter,   0 is the scale parameter,  is the

location parameter and ¡ (¢) is the gamma function.

Proposition 2.2 (The multivariate gamma distribution) If

 =

0

0 +   = 1     (2.4)
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then the vector Z = (1      ) is said to have a multivariate gamma distri-

bution, where  »  (  ), for  = 0     , are mutually independent.

Thus,  » 
³
0 +    + 0


0

´


Given Proposition 2.2, one can think of  as an idiosyncratic gamma

distributed term and 0 as a gamma distributed systematic term (a distur-

bance on ), leading to correlated 0. Note that according to Proposition

2.2 the 0 are mutually independent but the 0 are positively correlated

with  ( ) = 0,  6= .

Also, considering Proposition 2.2, the joint density of 1      is given

by

 (1     ) =
Y

=1

Z

0

(0 ¡ 0)
0¡1

¡ (0) ¡ ()
0
0 




( ¡ 00 ¡ )
¡1

exp (¡ (0 ¡ 0) 0 ¡ ( ¡ 00 ¡ ) ) (2.5)

which is obtained by using equation (2.3), Proposition 2.2 and integrating

with respect to 0.

2.3 The Asset Speci…c Pricing Kernel

In this subsection we present three propositions. The …rst one states that

if the  element of Z represents consumption, then  = exp () and

 = exp () for  = 1     ¡ 1. The second states that investors have a

power marginal utility function, which denotes Constant Proportional Risk

Aversion. These results and Proposition 2.2 lead to the functional form for

the asset speci…c pricing kernel, presented in the third proposition, which is

used in the subsequent sections to price the underlying stochastic variables

1 2     ¡1, and contingent claims written on them.
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Proposition 2.3 (The distribution of the underlying stochastic variables)

The natural logarithm of the terminal consumption and the natural logarithm

of the payo¤ of the underlying stochastic variables have a multivariate gamma

as in Proposition (2.2).

Proposition 2.4 (The marginal utility function) The representative investor

has a marginal utility function given by  =  where the constant  is a

preference parameter.

Proposition 2.5 (The forward asset speci…c pricing kernel) Assume that

propositions 2.2, 2.3 and 2.4 hold. Then for X =(1     ¡1) the forward

asset speci…c pricing kernel is given by

 (X) =
¡1Y

=1

0 ¡ (0 + )

00 ¡ (0) ¡ ()

(1¡ )
0

(ln ¡ ¤ )
0+¡1

Z

0

0¡10

µ

ln  ¡

0
(0 + 0)¡ 

¶¡1

exp

µ

0

0

¶

0(2.6)

where ¤ = 00 + 

Proof. See Appendix B.

3 Prices in Equilibrium

Using equation (2.1), propositions 2.3 and 2.5, and letting  () =  for

 = 1 2    ¡ 1 the equilibrium relationship for the forward price of the
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underlying stochastic variables is given by

 () =  [ (X)]

=  [exp () (X)]

=

Z

1

Z

2

¢ ¢ ¢

Z

¡1

exp () (X)  (1 2     ¡1) 12    ¡1

=
(1¡ )

0

(1¡  ¡ )
0

exp (¤ )

(1¡ )
   = 1 2    ¡ 1 (3.1)

where P (X) = ( (1)       (¡1)).

It is interesting to note that, as in the univariate gamma models of Heston

(1993) and Vitiello and Poon (2010), the preference parameter has a direct

impact on the scale parameter. This contrasts, for instance, with the mul-

tivariate (transformed) normal economies of Stapleton and Subrahmanyam

(1984) and Camara (2005), in which the preference parameter impacts on

the location parameter only.

In the particular case of multivariate gamma distributed payo¤s, it is

possible to use the forward equilibrium relationship in equation (3.1) to solve

for the preference parameter , yielding the following relationship

 =

"

1¡
 (1¡ )

0 exp (¡¤ 0)

(1¡ )
0 exp (¡¤ 0)¡  ()

¡10

#
1


8 = 1 2    ¡ 1

(3.2)

The equation above is of particular interest since it shows that the prefer-

ence parameter can be expressed as a function of the price of the underlying

stochastic variables. This allows us to obtain the forward price of contingent

claims in a preference free form such that P (V (X)) =  [V (X) (X)] =

 [V (X)] 

Equations (3.1) and (3.2) prove the following proposition and corollary.
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Proposition 3.1 (The existence of a RNVR) If the payo¤ of the stochas-

tic variables have a distribution according to Proposition 2.3 and the asset

speci…c pricing kernel in Proposition 2.5 holds then a risk neutral valuation

relationship exists.

Corollary 3.2 (Su¢cient condition for a RNVR) A su¢cient condition for

a RNVR to hold under Proposition 2.3 is that the marginal utility function of

consumption of the representative investor has a power form as in Proposition

2.4.

According to Proposition 3.1, in a multivariate gamma economy risk neu-

trality is achieved by construction, based on market equilibrium conditions

alone. Thus, it is possible to price more complex payo¤ functions. Using

Proposition 3.1 and following the same procedure adopted in equation (3.1),

one obtains

P (V (X)) =  [V (X) (X)]

=  [ (exp (1     ¡1)) (X)]

=

Z

1

Z

2

¢ ¢ ¢

Z

¡1

 (exp (1     ¡1)) (X)

 (1 2     ¡1) 12    ¡1 (3.3)

Speci…c forms of equation (3.3) are discussed in the following section.
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4 Applications

4.1 The Vanilla Call Option

We are interested in a call option written on  with strike price , and

payo¤  () =  ( ¡  0). Using Proposition 2.3, the price of such

option can be obtained by the following speci…c forms of equation (3.3)

 ( ()) =  [ () ()]

=

Z



 (exp ()¡  0) ()  ()  (4.1)

Using propositions 2.2 and 2.5 one obtains

 ( ()) =

Z



 (exp ()¡ 0)
(1¡ )

0

00 

 ¡ (0) ¡ ()

exp

µ

¡
 ¡ ¤


¶

Z

0

0¡10 ( ¡ 00 ¡ ¤ )
¡1 exp (00) 0

which after changing variables, interchanging integrals, using the equilibrium

and simplifying yields relationship in equation (3.2) and simplifying yields

the multivariate gamma vanilla call option

 ( ()) =

Z 1

0

 (0 )
¡10¡1

0 (1¡ 0)
¡1 ()

0

h
exp (¤ ) (1¡ (1¡ )0 ¡ )

¡(0+) [1¡  (1)]

¡ (1¡ (1¡ )0)
¡(0+) [1¡  (2)]

i
0 (4.2)

where  (0 ) = ¡ (0) ¡ () ¡ (0 + ) is the beta function,

¤ = (1¡ )
0

¤ = 00 + 
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 = 
¤
 exp (¡¤ 0)

 = ¤ exp (¡¤ 0)¡  ()
¡10

1 = (ln ()¡ ¤ ) (1¡ (1¡ )0 ¡ ) 

2 = 1 + (ln ()¡ ¤ )

for   1, 
¤
  0,   0 ln ()  ¤ .

We calculated theoretical prices according to equation (4.2) and then

searched for a value for the Black and Scholes (1973) volatility parameter

that would make the Black and Scholes price equal to the theoretical price for

a range of strike prices. These (implied) volatilities are an increasing function

of the strike price, as shown in Figure 1, which depicts the implied volatility

for di¤erent strikes prices, with 0 = 2 = 1, 0 = 1 = 2 = 05, 0 = 1;

the solid line represents 2 = 2 and the dotted line 2 = 1. In particular,

increasing (decreasing) 0 leads to a higher (smaller) implied volatility while

increasing (decreasing) all other parameters leads to an opposite result.

[Figure 1 about here]

4.2 An Option on a Mutual Fund

The option pricing formula in equation (4.2) can be easily extended to price

other types of derivatives, such as an option written on a mutual fund. Fol-

lowing Stapleton and Subrahmanyam (1984), the value of a company can be

viewed as a vanilla call option given by  = max ( ¡  0), where  is the

equity in the  levered company for  = 1     ¡ 1,  is the multivariate

gamma distributed market value of the  company, and  is company 
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promised payment to bondholders. Clearly, if  ¡   0 shareholders will

default on the debt.

Since a mutual fund can be viewed as a weighted average of such com-

panies, its value is given by  =
P

  =
P

 max ( ¡  0), where ,
P

  = 1, is the weight of security  in the mutual fund. Thus the value of a

call option with strike price  written on this mutual fund can be obtained

by the following equation

 = max

Ã
¡1X

=1

max ( ¡  0)¡ 0

!



Considering the similarity between  and the payo¤ function of a call

option  () =  ( ¡ 0), each one of the  ¡ 1 levered companies

can be priced as in Example 4.1, yielding the following general solution

 =
¡1Y

=1

Z



max

"
¡1X

=1

 ( ¡ )¡  0

#

 (X)  (1 2     ¡1) 

(4.3)

which can be solved in a similar manner as in Section 4.1 by using equations

(2.6) and (3.1).

4.3 The Option to Exchange one Underlying Asset for

Another

The value of an option to exchange one underlying stochastic variable for

another based on the Black and Scholes (1973) equation was …rst proposed

by Margrabe (1978). Here we present, for a multivariate gamma distrib-

uted framework, an exact solution for a call option to exchange the sto-

chastic random variable 1 for 2 with payo¤ function given by  (1 2) =

13



 (1 ¡ 2 0). Using a specialization of equation (3.3) yields

 ( (1 2)) =  [ (1 2) (1 2)]

=

Z

1

Z

2

 ( ()  0) (1 2)  (1 2) 12(4.4)

where  () = exp (1)¡ exp (2).

Using propositions 2.2 and 2.5, the de…nition of the beta function and

simplifying it, one obtains

 ( (1 2)) =
2Y

=1

Z

1

Z

2

 ( ()  0)
(1¡ )

0

¡ (0) ¡ () 
+0


exp (¡ + ¤ ) ( ¡ ¤ )
0+¡1

Z

0

0¡1
0

(1¡ 0)
¡1 exp (0 ( ¡ ¤ ) ) 012

After changing variables, interchanging integrals, using the equilibrium

relationship in equation (3.2), the de…nition of the beta function yields and

simplifying yields the option pricing equation to exchange one underlying

asset for another

 ( (1 2)) =
2Y

=1

Z

0

0¡1
0 (1¡ 0)

¡1 ()
0

(1¡ 0 (1¡ ))
0+

"
 (0 1)

¡1

¡ (2)

exp (¤1) (1¡ 0 (1¡ ))
0+1

(1¡ 1 ¡ 0 (1¡ ))
0+1

Z

2

exp (¡2) 
0+2¡1
2 [1¡  (1)] 2

¡
 (0 1)

¡1

¡ (2)

exp (¤2) (1¡ 0 (1¡ ))
0+2

(1¡ 2 ¡ 0 (1¡ ))
0+2

Z

2

exp (¡2) 
0+2¡1
2 [1¡  (2)] 2

¸

0 (4.5)

where for  = 1 2,  (0 ) = ¡ (0) ¡ () ¡ (0 + ) is the beta function,

¤ = (1¡ )
0
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¤ = 00 + 

 = 
¤
 exp (¡¤ 0)

 = ¤ exp (¡¤ 0)¡  ()
¡10

1 =

µ
22

1¡ 0 (1¡ )
+ ¤2 ¡ ¤1

¶
1¡ 1 ¡ 0 (1¡ )

1

2 =

µ
22

1¡ 2 ¡ 0 (1¡ )
+ ¤2 ¡ ¤1

¶
1¡ 0 (1¡ )

1

5 Estimation of Parameters

The applicability of equations (4.2), (4.3), and (4.5) depends on the es-

timation of the relevant parameters. One way of estimating the parame-

ters is through historical data. If information on the idiosyncratic gamma

distributed term is available,  for  = 1     ¡ 1, the method of mo-

ments can applied. Otherwise, if only information on  is available, for

 = 1     ¡ 1, one can apply the methodology suggested by Mathai and

Moschopoulos (1991) for instance.

However, parameters estimated through these methods capture events

that have already passed and therefore may not be an appropriate estimate

of their future behaviour. An alternative method is the use of parameters im-

plied by the option pricing equation, as these are essentially forward looking

(see Poon and Granger 2003). This method consists of using market option

prices as an input to the model and then (numerically) searching for a value

of the unknown parameters that minimise a certain objective function, such

as the absolute (or squared) value of the di¤erence between the current and

15



the theoretical option prices based on the estimated parameters (see Mayhew

1995).

The estimation of unknown parameters using the implied method requires

that the number of market option prices must be equal to or greater than

the number of parameters to be estimated. Also, it may be necessary to

impose arbitrary constraints on the value of the parameters in order to ob-

tain a unique solution or to guarantee convergence. A potential source of

error in the estimation comes from the fact that option prices are usually

asynchronous, as trading does not necessarily takes place on the underlying

asset and on all options at the same time. This may cause distortions on the

estimation procedure, mainly with less liquid options.

6 Conclusion

In this paper we obtain a risk neutral valuation relationship for an econ-

omy in which the underlying stochastic variables are multivariate gamma

distributed. This setting allows us to develop a framework for the pricing

of contingent claims in a multivariate gamma distributed economy, hence

extending the work of Stapleton and Subrahmanyam (1984) and Camara

(2005) to a non-Gaussian setting. Risk neutrality is obtained by using mar-

ket equilibrium conditions alone and the resulting contingent claim pricing

equations are consequently free of preference parameters.

The gamma distribution may be particularly useful for pricing agricul-

tural commodities, as it captures the increasing implied volatility of contin-

gent claims as a function of the strike price (see Zhou (1998), Vitiello and

16



Poon (2010)). Thus one could price an option on a basket of agricultural com-

modities using the framework developed here, which also allows the impact of

a systematic variable on option prices to be considered. In the particular case

of agricultural commodities it could be temperature or rainfall, measured by

the HDD/CDD (Heating Degree Day and Cooling Degree Days respectively)

index futures or the Rainfall index futures for instance. Given the discussion

in Section 5, the option formulae presented here can be applied even if such

a systematic variable is not known. The only requirement is that there are

more traded options than the number of unknown parameters.

The gamma distribution has been widely applied to model natural events,

rainfall in particular. Thus, as suggested by Mathai and Moschopoulos

(1991), the multivariate gamma distribution can be applied to check the

impact that rain has on two uncorrelated streams. Considering the case in

which these two uncorrelated streams pass through a town, rainfall may in-

crease the chance of ‡ooding. The framework developed here could help the

pricing of contingent claims on ‡ooding, for instance. It is important to note

that in an incomplete market setting, such as the one related to ‡ooding,

prices obtained through the forward asset speci…c pricing kernel in equation

(2.6) are not unique. However, actuaries have been using complete market

techniques, such as the Esscher transform and Wang transform, to calculate

premiums in an incomplete market (see Buhlmann (1980), Gerber and Shiu

(1994), Wang (2002, 2003), for instance). If one accepts such constraints,

the framework developed here could be used to price such payo¤s.
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Appendix A

In this appendix, for convenience, we summarise the notation used in the

text.

 number of stochastic variables in the economy

X =(0     ) vector of underlying stochastic variables

 (X) payo¤ function of a claim as a function of 

P (V (X)) vector of forward prices of V (X)

 Consumption

 utility function of consumption

 marginal utility function of consumption

 preference parameter

 (X) forward asset speci…c pricing kernel

   distributional parameters

 (;   ) marginal density function of , with parameters   

 (1) marginal density function of 1 (the notation is a short version of

the one above)

 (1 2) joint density of 1 and 2

 (1j2) marginal density function of 1 conditional to 2.

Z = (1      ) multivariate gamma vector

 = 00 +  for  = 1   

 = exp () for  = 1    ¡ 1

 = exp ()

 (¢) expected value under the physical distribution

 (¢) expected value under the risk neutral distribution
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Appendix B

Proof. (Proof of Proposition 2.5) For ease of reading, this proof is divided

in three parts, in which we obtain  [ ],  [ j], and  (X) respectively.

1. (The  [ ]) From propositions 2.2, 2.3, and 2.4 we obtain

 [ ] =  (exp ())

=

Z

0

Z



exp ()

¡ (0)
0
0 ¡ ()




(0 ¡ 0)
0¡1 ¡(0¡0)0

( ¡ 00 ¡ )
¡1 ¡(¡00¡ )0

which yields

 (exp ()) =
exp ( (00 + ))

(1¡ )
+0

 (B.1)

2. (The  [ j]) Using propositions 2.2 and 2.3, equation (2.5), and not-

ing that  »  (0 +    + 00), yields the density function

of  conditional  for  = 1     ¡ 1

 ( j1     ¡1) =

Z

0

¡1Y

=1

¡ (0 + )
0
 (0 ¡ 0)

0¡1

¡ (0) ¡ () ¡ ()
0
0 




( ¡ 00 ¡ )
¡1

( ¡ ¤ )
0+¡1

exp (¡ (0 ¡ 0) 0)

( ¡ 00 ¡ )
¡1 exp (( ¡ ¤ ) )

exp (¡ ( ¡ 00 ¡ ) )

exp [¡ ( ¡ 00 ¡ ) ] 0 (B.2)

where ¤ = 00 + .
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Letting [ j1 2     ¡1] = (exp () j1 2     ¡1), 0 =

0 ¡ 0 and using propositions 2.3 and 2.2 yields

 (exp () j1     ¡1) =
¡1Y

=1

0 ¡ (0 + )

00 ¡ (0) ¡ ()

1

(1¡ )


Z

0

0¡10

( ¡ 00 ¡ ¤ )
¡1

( ¡ ¤ )
0+¡1

exp (00 + ¤) 0 (B.3)

where ¤ = 00 +  .

3. (The asset speci…c pricing kernel) Finally, substituting equations (B.1)

and (B.3) into equation (2.2) and considering Proposition 2.3 yields the

asset speci…c pricing kernel.
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Figure 1: Implied volatilities: Values are obtained from simulated prices using

equation (4.2) for di¤erent strikes prices, with 0 = 2 = 1, 0 = 1 = 2 = 05,

0 = 1 (solid line), 0 = 2 (dotted line).
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