

CENTRE FOR EMEA BANKING, FINANCE & ECONOMICS

GP Algorithm versus Hybrid and Mixed Neural

Networks

Andreas Karathanasopoulos

Working Paper Series

No 16/11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by London Met Repository

https://core.ac.uk/display/36771926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

GP Algorithm versus Hybrid and Mixed Neural

Networks

Andreas Karathanasopoulos
London Metropolitan University

A.Karathanasopoulos@londonmet.ac.uk

Abstract

In the current paper we present an integrated genetic programming
environment, called java GP Modelling. The java GP Modelling environment is
an implementation of the steady-state genetic programming algorithm. That
algorithm evolves tree based structures that represent models of input –
output relation of a system. The motivation of this paper is to compare the GP
algorithm with neural network architectures when applied to the task of
forecasting and trading the ASE 20 Greek Index using only autoregressive
terms as inputs. This is done by benchmarking the forecasting performance of
the GP algorithm and 6 different ARMA-Neural Network combination designs
representing a Hybrid, Mixed Higher Order Neural Network (HONN), a Hybrid,
Mixed Recurrent Network (RNN), a Hybrid, Mixed classic Multilayer
Perceptron (MLP) with some traditional techniques, either statistical such as a
an autoregressive moving average model (ARMA), or technical such as a
moving average convergence/divergence model (MACD), plus a naïve trading
strategy. More specifically, the trading performance of all models is
investigated in a forecast and trading simulation on ASE 20 time series
closing prices over the period 2001-2008 using the last one and a half years
for out-of-sample testing. We use the ASE 20 daily series as many financial
institutions are ready to trade at this level and it is therefore possible to leave
orders with a bank for business to be transacted on that basis.

As it turns out, the GP model does remarkably well and outperforms all other
models in a simple trading simulation exercise. This is also the case when
more sophisticated trading strategies using confirmation filters and leverage
are applied, as the GP model still produces better results and outperforms all
other neural network and traditional statistical models in terms of annualised
return.

1. INTRODUCTION

The use of artificial intelligence for the purpose of forecasting market
movements has been widely reviewed in academia. This study is a
comparative analysis of the results yielded from utilizing a Genetic
Programming Algorithm and various traditional Neural Network computing
techniques when forecasting the Greek stock market. Additionally, we
endeavour to develop more accurate and sophisticated techniques in order to
increase the performance of our trading simulation. Due to the convergence
and unification of global financial markets in recent years, this forecasting task
has become increasingly challenging. Furthermore, traditional econometric
methods on which forecasters have previously been reliant no longer satisfy
the demands of market participants as they struggle to capture integrating
features associated with today’s markets. As discussed by Lisboa et al
(2000), neural networks are an emergent technology with an increasing
number of real-world applications offering a unique aspect to the world of
financial forecasting. Nevertheless, some practitioners have tainted the virtues
of neural networks with scepticism criticising their capacity to forecast and
highlighting their limitations. Hence, this paper investigates a new,
contemporary and more proficient method of forecasting that is capable of
identifying and dealing with discontinuities, nonlinearities and high frequency
multi-polynomial components which are all prevalent in financial series of
today’s markets. This model is most commonly known as the Genetic
Programming (GP) algorithm.

GP Algorithms are domain-independent problem-solving techniques that are
run in various environments. These environments are structured in a manner
which approximates problems in order to produce forecasts at a high level of
accuracy. GP can be categorized in the forecasting bracket known in the
finance world as ‘Evolutionary Algorithms’. The basis for this type of problem
– solving technique derives from the Darwinian principle of reproduction and
survival of the fittest. Additionally, GP is also similar to the biological genetic
operations such as crossover and mutation. More importantly, Koza (1990,
1992) stress that GP addresses and quantifies complex issues as an
automated process via programming, which enables computers to process
and solve problems.

The Darwinian aspect of GP applies the theory of evolution to a population of
computer programs of varying sizes and shapes. For instance, GP starts with
an initial population of thousands or even millions of randomly generated
computer programs. These programs comprise of programmatic elements
built to apply the fundamental principles of biological evolution in order to
create a new (and often improved) population of programs. As mentioned
previously, the creation of this new population is generated in a domain-
independent system applying the Darwinian theory of natural selection under
the principal known as survival of the fittest. An analogue of the naturally-
occurring genetic operation of sexual recombination (crossover), and
occasional mutation, the crossover operation is designed to create
syntactically valid offspring programs (given closure amongst the set of
programmatic ingredients). GP combines the expressive high-level symbolic
representations of computer programs with the near-optimal efficiency of

learning of Holland’s (1975) genetic algorithm in order to produce highly
accurate outputs. Koza (1998) mentioned that a computer program that
solves or at the very least approximates a given problem often emerges from
this process. Dissimilar to other models such as neural networks, GP does not
require any prior knowledge of a model’s structure for the purpose of system
modelling. Alternatively, GP evolves a system model with parameter values
that best fit specific data without manipulating the data to fit ‘predefined’
model structures as many other preceding forecasting methods tend to do. In
other words, GP creates an initial population of models and evolves using
genetic operators in order to calculate the mathematical expression which
best fits the specified data input into the system. Furthermore, GP
simultaneously searches for and refines a model’s parameters and ultimately
its structure.

The motivation for this paper is to investigate the use of GP algorithm and
several neural networks techniques combined with ARMA models in order to
improve the forecasting performance using autoregressive terms as inputs.
This is achieved by comparing six benchmark neural network combined
architectures with a forecast produced by the GP Algorithm. Most notably,
classic neural networks as Multilayer Perceptron (MLP), Higher Order Neural
Network (HONN), Recurrent Neural Network (RNN), autoregressive moving
average model (ARMA), or technical models such as a moving average
convergence/divergence model (MACD), plus a naïve trading strategy are all
reviewed as benchmark methods.

From the analysis it emerges that the GP algorithm demonstrates a
remarkable performance and outperforms all other models in a simple trading
simulation exercise. This is also true when more sophisticated trading
strategies are utilized with the application of confirmation filters and leverages
as GP still demonstrates superior forecasting ability in terms of annualised
return. It is worth mentioning the second best performance of the Hybrid
HONNs and the Mixed HONNs. Dunis et al. (2010a, b) stress that the
combination of neural networks can produce better forecasts compared with
alternative techniques. Furthermore the Hybrid MLP and the Mixed MLP also
perform well. Also, the RNNs which historically have performed remarkably
well display less impressive forecasting potential in this research. It is
observed that this might be due to the fact that they have an inability to
provide accurate results when only autoregressive terms are used as inputs.

The remainder of the paper is organised as follows. In section 2, we present
the literature relevant to GP modelling, the Hybrid, Mixed Neural Networks,
the Recurrent Neural Network, the Higher Order Neural Networks and the
Multilayer Percepton. Section 3 describes the dataset used for this research
and its characteristics. An overview of the different neural network models,
Genetic Programming algorithm and statistical techniques is given in section
4. Section 5 displays the empirical results of all the models considered and
investigates the possibility of improving their performance with the application
of more sophisticated trading strategies. Ultimately, Section 6 provides some
concluding remarks.

2. LITERATURE REVIEW

The purpose of this investigation is to apply the GP algorithm to the ASE 20
Greek Stock market data comparing its results with the most promising new
neural networks architectures combining them with autoregressive models (in
our case the ARMA model) which have been developed recently with the
purpose to overcome the numerous limitations of the more classic neural
architectures and to assess whether they can achieve a higher performance
in a trading simulation

GP was first developed by Barricelli (1954) as evolutionary algorithms.
Progressively into the 1960’s and 1970’s these ‘evolutionary algorithms’
became more commonly known and recognized as optimization methods. In
particular, Rechenberg (1971) and his research team were able to solve
complex engineering problems through the application of optimization
methods as documented in his 1971 PhD thesis. Furthermore Holland (1975)
was another influential figure in the 1970’s However, Fogel et al. (1964) are
among the earliest practitioners pioneering in GP methodology. They apply
evolutionary algorithms to the problem of discovering finite-state automata. In
the development of GP methodology it was later adapted to the Markov
decision making process. More importantly the first evidence of GP as the
‘tree based’ method that we are familiar with in modern financial forecasting
was provided by Cramer (1985). More recently, Cramer’s work has been
expanded further by John R. Koza (1990), Koza (1992), Koza (1994), Koza
(1998) and Koza et al. (1999, 2003) who apply these methodologies to
complex optimization and search problems.

Although GP has now been established as a credible and respected
technique this was not always the case. For example in the 1990’s GP was
considered incomprehensible. Enter the 2000’s and the theory of GP has
seen progressive and formidable growth. This has particularly been the case
in the area of probabilistic models as GP has been incorporated with schema
theories and Markov chain models. A variety of Genetic Programming
applications is shown in the papers below: Wincler (2004), Wincler et al.
(2004a, b), Madar et al. (2004, 2005), Willis et al. (1997), Tsang et al. (1998),
Fukunaga and Stechert (1998) and Werner and Fogarty (2001).

On the other hand combining different models can increase the chance to
capture different patterns in the data and improve forecasting performance.
Several empirical studies have already suggested that by combining several
different models, forecasting accuracy can often be improved over the
individual model. Using hybrid models or combining several models has
become a common practice to improve the forecasting accuracy since the
well-known M-competition (Makridakis et al.(1982)) in which combination of
forecasts from more than one model often led to improved forecasting
performance. The basic idea of the model combination in forecasting is to use
each model’s unique feature to capture different patterns in the data. Both
theoretical and empirical findings suggest that combining different methods
can be an effective and efficient way to improve forecasts (Makridakis (1989),
Newbold et al. (1974), Palm et al. (1992)). Research in time series forecasting
argues that predictive performance improves in combined models. (Bishop

(1994), Clemen (1989), Hansen et al. (2003), Hibbert et al. (2000), Terui et al.
(2002), Tseng et al. (2002), Zhang, (2003), Zhang et al. (2005).

RNNs have an activation feedback which embodies short-term memory
allowing them to learn extremely complex temporal patterns. Their superiority
against feedfoward networks when performing nonlinear time series prediction
is well documented in Connor et al. (1993) and Adam et al. (1994). In financial
applications, Kamijo et al. (1990) applied them successfully to the recognition
of stock patterns of the Tokyo stock exchange while Tenti (1996) achieved
remarkable results using RNNs to forecast the exchange rate of the Deutsche
Mark. Tino et al. (2001) use them to trade successfully the volatility of the
DAX and the FTSE 100 using straddles while Dunis and Huang (2002), using
continuous implied volatility data from the currency options market, obtain
remarkable results for their GBP/USD and USD/JPY exchange rate volatility
trading simulation.

HONNs were first introduced by introduced by Giles and Maxwell (1987) as a
fast learning network with increased learning capabilities. Although their
function approximation superiority over the more traditional architectures is
well documented in the literature (see among others Redding et al. (1993),
Kosmatopoulos et al. (1995) and Psaltis et al. (1998)), their use in finance so
far has been limited. This has changed when scientists started to investigate
not only the benefits of Neural Networks (NNs) against the more traditional
statistical techniques but also the differences between the different NNs
model architectures. Practical applications have now verified the theoretical
advantages of HONNs by demonstrating their superior forecasting ability and
put them in the front line of research in financial forecasting. For example
Dunis et al. (2006b) use them to forecast successfully the gasoline crack
spread while Fultcher et al. (2006) apply HONNs to forecast the AUD/USD
exchange rate, achieving a 90% accuracy. However, Dunis et al. (2006a)
show that, in the case of the futures spreads and for the period under review,
the MLPs performed better compared with HONNs and recurrent neural
networks. Moreover, Dunis et al. (2008a), who also study the EUR/USD
series for a period of 10 years, demonstrate that when multivariate series are
used as inputs the HONNs, RNN and MLP networks have a similar
forecasting power. Finally, Dunis et al. (2008b) in a paper with a methodology
identical to that used in this research, demonstrate that HONN and the MLP
networks are superior in forecasting the EUR/USD ECB fixing until the end of
2007, compared to the RNN networks, an ARMA model, a MACD and a naïve
strategy.

3. THE ASE 20 GREEK INDEX AND RELATED FINANCIAL

DATA

For Futures on the FTSE/ASE-20 that are traded in derivatives markets the

underlying asset is the blue chip index FTSE/ASE-20. The FTSE/ASE-20

index is based on the 20 largest ASE stocks. It was developed in 1997 by the

partnership of ASE with FTSE International and is the established benchmark.

It represents over 50% of ASE's total capitalisation and currently has a

heavier weight on banking, telecommunication and energy stocks.

The FTSE/ASE 20 index is traded as a futures contract that is
upon maturity of the contract with the value of the index fluctuating on a daily
basis. The cash settlement of this index is simply determined by calculating
the difference between the traded price and the closing price of the index on
the expiration day of the contract. Furthermore, settlement is reached
between each of the participating counterparties. Whilst the futures contract is
traded in index points the monetary value of the contract is calculated by
multiplying the futures price by the
a contract trading at 1,400 points is valued at 7,000 EUR.

As a result, our application is deemed more realistic and specific to the series
that we investigate in this paper

Name of Period
Total Dataset
Training Dataset
Out- of- sample Dataset(Validation Set)

Fig. 1:

The observed ASE 20 time series is non
confirms this at the 99% confidence interval) containing slight skewness and
high kurtosis. It is also non
20 series into a stationary series of rates of return

Given the price level P1,

1
 We examine the ASE 20 since its first trading day on 21 January 2001 (Greece’s entrance in

the European Monetary Zone), and until 31 December 2008, using the continuous data
available from DataStream.
2
 The percentage return is linearly additive but the

portfolio components.

It represents over 50% of ASE's total capitalisation and currently has a

heavier weight on banking, telecommunication and energy stocks.

The FTSE/ASE 20 index is traded as a futures contract that is
upon maturity of the contract with the value of the index fluctuating on a daily
basis. The cash settlement of this index is simply determined by calculating
the difference between the traded price and the closing price of the index on

iration day of the contract. Furthermore, settlement is reached
between each of the participating counterparties. Whilst the futures contract is
traded in index points the monetary value of the contract is calculated by
multiplying the futures price by the multiple of 5 euros per point. For example,
a contract trading at 1,400 points is valued at 7,000 EUR.

As a result, our application is deemed more realistic and specific to the series
that we investigate in this paper1.

Name of Period Trading Days Beginning
2087 21 January 2001
1719 29 January 2001

sample Dataset(Validation Set) 349 31 August /2007

Table 1: The ASE 20 dataset

: ASE 20 fixing prices (total dataset).

The observed ASE 20 time series is non-normal (Jarque-Bera statistics
confirms this at the 99% confidence interval) containing slight skewness and
high kurtosis. It is also non-stationary and we decided to transform
20 series into a stationary series of rates of return2.

, P2,…,Pt, the rate of return at time t is formed by:

We examine the ASE 20 since its first trading day on 21 January 2001 (Greece’s entrance in

the European Monetary Zone), and until 31 December 2008, using the continuous data

The percentage return is linearly additive but the log return is not linearly additive across

It represents over 50% of ASE's total capitalisation and currently has a

heavier weight on banking, telecommunication and energy stocks.

The FTSE/ASE 20 index is traded as a futures contract that is cash settled
upon maturity of the contract with the value of the index fluctuating on a daily
basis. The cash settlement of this index is simply determined by calculating
the difference between the traded price and the closing price of the index on

iration day of the contract. Furthermore, settlement is reached
between each of the participating counterparties. Whilst the futures contract is
traded in index points the monetary value of the contract is calculated by

multiple of 5 euros per point. For example,

As a result, our application is deemed more realistic and specific to the series

End
31 December 2008

30 August 2007
31 December 2008

Bera statistics
confirms this at the 99% confidence interval) containing slight skewness and

stationary and we decided to transform the ASE

is formed by:

We examine the ASE 20 since its first trading day on 21 January 2001 (Greece’s entrance in
the European Monetary Zone), and until 31 December 2008, using the continuous data

log return is not linearly additive across

1

1

−

=

−t

t

t
P

P
R [1]

Fig. 2: ASE 20 returns summary statistics (total dataset)

As inputs to our GP algorithm and our networks, based on the autocorrelation
function and some ARMA experiments we selected 3 sets of autoregressive
and moving average terms of the ASE 20 returns and the 1-day Risk Metrics
volatility series.

Number Variable Lag
1 Athens Composite all share return 1
2 Athens Composite all share return 3
3 Athens Composite all share return 6
4 Athens Composite all share return 8
5 Athens Composite all share return 10
6 Athens Composite all share return 13
7 Athens Composite all share return 14
8 Moving Average of the Athens Composite all share return 15
9 Athens Composite all share return 16

10 Athens Composite all share return 18
11 Moving Average of the Athens Composite all share return 19

Table 2: Explanatory variables for traditional Neural Networks and the GP
algorithm

Number Variable Lag
1 Athens Composite all share return 1
2 Athens Composite all share return 3
3 Athens Composite all share return 5
4 Athens Composite all share return 7
5 Athens Composite all share return 8
6 Athens Composite all share return 9
7 Athens Composite all share return 12
8 Athens Composite all share return 13
9 Moving Average of the Athens Composite all share return 14

10 Athens Composite all share return 15
11 Athens Composite all share return 16
12 Moving Average of the Athens Composite all share return 17
13 1-day Riskmetrics Volatility 1

Table 3: Explanatory variables for the hybrid neural networks

0

100

200

300

400

500

600

700

800

-0.10 -0.05 -0.00 0.05 0.10

Series: RETURNS

Sample 1 2087

Observations 2087

Mean -0.000240

Median 0.000000

Maximum 0.108214

Minimum -0.093318

Std. Dev. 0.015088

Skewness -0.036670

Kurtosis 9.514666

Jarque-Bera 3691.056

Probability 0.000000

Number Variable Lag

1 Athens Composite all share return 1

2 Athens Composite all share return 2

3 Athens Composite all share return 4

4 Athens Composite all share return 5

5 Athens Composite all share return 7

6 Athens Composite all share return 9

7 Moving Average of the Athens Composite all share return 10

8 Athens Composite all share return 13

9 Athens Composite all share return 14

10 Athens Composite all share return 15

11 Moving Average of the Athens Composite all share return 16

12 Athens Composite all share return 17

Table 4: Explanatory variables for the mixed neural networks

In order to train the neural networks and the GP algorithm we further divided
our dataset as follows:

Name of Period Trading Days Beginning End
Total Dataset 2087 21 January 2001 31 December 2008
Training Dataset 1373 29 January 2001 03 May2006
Test Dataset 346 04 May 2006 30 August 2007
Out-of- sample Dataset (Validation Set) 349 31 August 2007 31 December 2008

Table 5: The neural networks and GP algorithm datasets

4. FORECASTING MODELS

4.1 Benchmark Models
In this paper, we benchmark our neural network models with 3 traditional
strategies, namely an autoregressive moving average model (ARMA), a
moving average convergence/divergence technical model (MACD) and a
naïve strategy.

4.1.1 Naïve strategy

The naïve strategy simply takes the most recent period change as the best
prediction of the future change. The model is defined by:

tt YY =+1

ˆ [2]

Where tY is the actual rate of return at period t

 1
ˆ

+tY is the forecast rate of return for the next period

The performance of the strategy is evaluated in terms of trading performance
via a simulated trading strategy.

4.1.2 Moving Average
The moving average model is defined as:

 ()
n

YYYY
M ntttt

t

121 ... +−−− ++++
= [3]

Where tM is the moving average at time t

 n is the number of terms in the moving average

tY is the actual rate of return at period t

The MACD strategy used is quite simple. Two moving average series are
created with different moving average lengths. The decision rule for taking
positions in the market is straightforward: If the short-term moving average
intersects the long-term moving average from below a ‘long’ position is taken.
Conversely, if the long-term moving average is intersected from above a
‘short’ position is taken3.

The forecaster must use judgement when determining the number of periods
n on which to base the moving averages. The combination that performed
best over the in-sample sub-period was retained for out-of-sample evaluation.
The model selected was a combination of the ASE 20 and its 7-day moving
average, namely n = 1 and 7 respectively or a (1, 7) combination. The
performance of this strategy is evaluated solely in terms of trading
performance.

4.1.3 ARMA Model
Autoregressive moving average models (ARMA) assume that the value of a
time series depends on its previous values (the autoregressive component)
and on previous residual values (the moving average component)4.

The ARMA model takes the form:

 qtqtttptpttt wwwYYYY −−−−−− −−−−+++++= εεεεφφφφ 221122110 [4]

where tY is the dependent variable at time t

1−tY , 2−tY , and ptY − are the lagged dependent variable

0φ , 1φ , 2φ , and pφ are regression coefficients

tε is the residual term

1−tε , 2−tε , and pt−ε are previous values of the residual

 1w , 2w , and qw are weights.

Using as a guide the correlogram in the training and the test sub periods we
have chosen a restricted ARMA (7, 7) model. All of its coefficients are
significant at the 99% confidence interval. The null hypothesis that all
coefficients (except the constant) are not significantly different from zero is
rejected at the 99% confidence interval (see Appendix A1).

The selected ARMA model takes the form:

3
A ‘long’ ASE 20 position means buying the index at the current price, while a ‘short’ position

means selling the index at the current price.
4
 For a full discussion on the procedure, refer to Box et al. (1994) or Pindyck and Rubinfeld

(1998).

tY = 2.90 · 10-4 + 0.376 1−tY - 0.245Yt-3 - 0.679Yt-7 + 0.374εt-1 - 0.270εt-3 -0.677εt-7

[6]

The model selected was retained for out-of-sample estimation. The
performance of the strategy is evaluated in terms of traditional forecasting
accuracy and in terms of trading performance5.

4.2 Various Neural Network Architectures
Neural networks exist in several forms in the literature. The most popular
architecture is the Multi-Layer Perceptron (MLP).
A standard neural network has at least three layers. The first layer is called
the input layer (the number of its nodes corresponds to the number of
explanatory variables). The last layer is called the output layer (the number of
its nodes corresponds to the number of response variables). An intermediary
layer of nodes, the hidden layer, separates the input from the output layer. Its
number of nodes defines the amount of complexity the model is capable of
fitting. In addition, the input and hidden layer contain an extra node, called the
bias node. This node has a fixed value of one and has the same function as
the intercept in traditional regression models. Normally, each node of one
layer has connections to all the other nodes of the next layer.

The network processes information as follows: the input nodes contain the
value of the explanatory variables. Since each node connection represents a
weight factor, the information reaches a single hidden layer node as the
weighted sum of its inputs. Each node of the hidden layer passes the
information through a nonlinear activation function and passes it on to the
output layer if the calculated value is above a threshold.

The training of the network (which is the adjustment of its weights in the way
that the network maps the input value of the training data to the
corresponding output value) starts with randomly chosen weights and
proceeds by applying a learning algorithm called backpropagation of errors6
(Shapiro (2000)). The learning algorithm simply tries to find those weights
which minimize an error function (normally the sum of all squared differences
between target and actual values). Since networks with sufficient hidden
nodes are able to learn the training data (as well as their outliers and their
noise) by heart, it is crucial to stop the training procedure at the right time to
prevent overfitting (this is called ‘early stopping’). This can be achieved by
dividing the dataset into 3 subsets respectively called the training and test
sets used for simulating the data currently available to fit and tune the model
and the validation set used for simulating future values. The network
parameters are then estimated by fitting the training data using the above
mentioned iterative procedure (backpropagation of errors). The iteration
length is optimised by maximising the forecasting accuracy for the test
dataset. Our networks, which are specially designed for financial purposes,
will stop training when the profit of our forecasts in the test sub-period is

5
 Statistical measures are given in section 4.2.5 below.

6
Backpropagation networks are the most common multi-layer networks and are the most

commonly used type in financial time series forecasting (Kaastra and Boyd (1996)).

maximized. Then the predictive value of the model is evaluated applying it to
the validation dataset (out-of-sample dataset).

There is a range of combination techniques that can be applied to forecasting
the attempt to overcome some deficiencies of single models. The combining
method aims at reducing the risk of using an inappropriate model by
combining several to reduce the risk of failure. Typically this is done because
the underlying process cannot easily be determined (Hibon and Evgeniou
(2005)).

Combining methods involves using several redundant models designed for
the same function, where the diversity of the components is thought important
(Brown et al. 2005). The procedure of making a hybrid or a mixed forecasting
time series model can be achieved by combining an ARMA process in order
to learn the linear component of the conditional mean pattern through an
artificial neural network process designed to learn its nonlinear elements. In
summary, the proposed methodologies of the hybrid and mixed system will be
explained in the next section in figures 6 and 7.

4.2.1 The Multi-Layer Perceptron Model Architecture

The network architecture of a ‘standard’ MLP looks as presented in figure 47:
0251658240251659264

Fig. 4: A single output, fully connected MLP model

Where:
][n

tx ()1,,2,1 += kn L are the model inputs (including the input bias node) at

time t

][m

th ()1,...,2,1 += jm are the hidden nodes outputs (including the hidden bias

node)

ty~
 is the MLP model output

7
 The bias nodes are not shown here for the sake of simplicity.

MLP

][k

tx][j

th

jku

jw

ty~

jku and jw are the network weights

0251663360 is the transfer sigmoid function: ()
x

e
xS

−+
=

1

1
,

[6]

 is a linear function: () ∑=
i

ixxF [7]

The error function to be minimised is:

() ()()∑
=

−=
T

t

jjkttjjk wuyy
T

wuE
1

2
,~1

, , with ty being the target value [8]

4.2.2 The Recurrent Network Architecture

Our next model is the recurrent neural network. While a complete explanation
of RNN models is beyond the scope of this paper, we present below a brief
explanation of the significant differences between RNN and MLP
architectures. For an exact specification of the recurrent network, see Elman
(1990).

A simple recurrent network has activation feedback, which embodies short-
term memory. The advantages of using recurrent networks over feedforward
networks, for modelling non-linear time series, has been well documented in
the past. However as described in Tenti (1996) “the main disadvantage of
RNNs is that they require substantially more connections, and more memory
in simulation, than standard backpropagation networks”, thus resulting in a
substantial increase in computational time. However having said this RNNs
can yield better results in comparison to simple MLPs due to the additional
memory inputs.

A simple illustration of the architecture of an Elman RNN is presented below.

Fig. 5: Elman recurrent neural network architecture with two nodes on the
hidden layer

Where:

][n

tx ()1,,2,1 += kn L ,
]2[]1[

, tt uu are the model inputs (including the input

bias node) at time t

ty~
 is the recurrent model output

][f

td)2,1(=f and
][n

tw ()1,,2,1 += kn L are the network weights

][f

tU)2,1(=f is the output of the hidden nodes at time t

0251666432 is the transfer sigmoid function: ()
x

e
xS

−+
=

1

1
,

[9]

 is the linear output function: () ∑=
i

ixxF [10]

The error function to be minimised is:

() ()()∑
=

−=
T

t

tttttt wdyy
T

wdE
1

2
,~1

, [11]

In short, the RNN architecture can provide more accurate outputs because

the inputs are (potentially) taken from all previous values (see inputs
]1[

1−jU

and
]2[

1−jU in the figure above).

4.2.3 The Higher Order Neural Network Architecture

Higher Order Neural Networks (HONNs) were first introduced by Giles and
Maxwell (1987) and were called “Tensor Networks”. Although the extent of
their use in finance has so far been limited, Knowles et al. (2009 – page 52)

ty~

]2[

jU

]1[

jU

]1[

jx

]2[

jx

]3[

jx

]1[

1−jU

]2[

1−jU

show that, with shorter computational times and limited input variables, “the
best HONN models show a profit increase over the MLP of around 8%” on the
EUR/USD time series (p. 7). For Zhang et al. (2002), a significant advantage
of HONNs is that “HONN models are able to provide some rationale for the
simulations they produce and thus can be regarded as “open box” rather than
“black box”. HONNs are able to simulate higher frequency, higher order non-
linear data, and consequently provide superior simulations compared to those
produced by ANNs (Artificial Neural Networks)” (p. 188). Furthermore HONNs
clearly outperform in terms of annualised return and this enables Dunis et al.
(2008a) to conclude with confidence over their forecasting superiority and
their stability and robustness through time.

While they have already experienced some success in the field of pattern
recognition and associative recall8, HONNs have only started recently to be
used in finance. The architecture of a three input second order HONN is
shown below:

Fig. 6: Left, MLP with three inputs and two hidden nodes; right, second order

HONN with three inputs

Where:
][n

tx ()1,,2,1 += kn L are the model inputs (including the input bias node) at

time t

ty~
 is the HONNs model output

jku are the network weights

 are the model inputs.

8
 Associative recall is the act of associating two seemingly unrelated entities, such as smell

and colour. For more information see Karayiannis et al. (1994).

0251669504

()
x

e
xS

−+
=

1

1
, [12]

The error function to be minimised is:

() ((∑
=

−=
T

t

ttjjk yy
T

wuE
1

~1
,

HONNs use joint activation functions; this technique reduces the need to
establish the relationships between input
reduces the number of free weights and means that HONNS are faster to train
than even MLPs. However because the number of inputs can be very large for
higher order architectures, orders of 4 and over are rarely used.

Another advantage of the reduction of free weights means that the problems
of overfitting and local optima affecting the results of neural networks can be
largely avoided. For a complete description of HONNs see Knowles
(2005- page 52).

4.2.4 THE HYBRID HONN, MLP AND RNN ARCHITECTURES

Fig. 7: The architecture of a Hybrid ARMA

The methodology we follow to construct the Hybrid Neural Network is divided
into 3 steps. In the first step we take the residual from an ARMA model.
second step we forecast the ARMA residual with our neural network. In a third
step we create the hybrid model by adding the forecasted returns from the
ARMA model with the forecasted residuals from the second step.

4.2.5 THE MIXED HONN, MLP AND RNN

Original or
transformed data

 is the transfer sigmoid function:

is a linear function: () ∑=
i

xxF

The error function to be minimised is:

())
jku

2
, , with ty being the target value

HONNs use joint activation functions; this technique reduces the need to
establish the relationships between inputs when training. Furthermore this
reduces the number of free weights and means that HONNS are faster to train
than even MLPs. However because the number of inputs can be very large for
higher order architectures, orders of 4 and over are rarely used.

er advantage of the reduction of free weights means that the problems
of overfitting and local optima affecting the results of neural networks can be
largely avoided. For a complete description of HONNs see Knowles

HONN, MLP AND RNN ARCHITECTURES

The architecture of a Hybrid ARMA - Neural Network Model

The methodology we follow to construct the Hybrid Neural Network is divided
into 3 steps. In the first step we take the residual from an ARMA model.
second step we forecast the ARMA residual with our neural network. In a third
step we create the hybrid model by adding the forecasted returns from the
ARMA model with the forecasted residuals from the second step.

4.2.5 THE MIXED HONN, MLP AND RNN ARCHITECTURES

ARMA model to
extract linear
elements in DGP*

ARMA Forecasted
Returns

is the transfer sigmoid function:

ix [13]

 [14]

HONNs use joint activation functions; this technique reduces the need to
s when training. Furthermore this

reduces the number of free weights and means that HONNS are faster to train
than even MLPs. However because the number of inputs can be very large for

er advantage of the reduction of free weights means that the problems
of overfitting and local optima affecting the results of neural networks can be
largely avoided. For a complete description of HONNs see Knowles et al.

Neural Network Model

The methodology we follow to construct the Hybrid Neural Network is divided
into 3 steps. In the first step we take the residual from an ARMA model. In a
second step we forecast the ARMA residual with our neural network. In a third
step we create the hybrid model by adding the forecasted returns from the
ARMA model with the forecasted residuals from the second step.

ARMA Forecasted
Returns

*DGP= Data Generating Process

Fig. 8: The architecture of a Mixed Neural Network Model

The methodology we follow to construct the mixed ARMA-NNR model is

divided into 2 steps. In the first step the ASE 20 index is modelled with a

traditional ARMA model. In the second step the forecasted returns of the

ARMA model are used as an input to the neural network for forecasting the

selected time series.

4.3 The Genetic Programming Algorithm

For the purpose of our research, the GP application is coded and
implemented to evolve tree based structures that present models (sub trees)
of input – output. In the design phase of our GP application we focused
primarily on execution time optimization as well as limiting the ‘bloat effect’.
The bloat effect is similar to the issue of overfitting experienced in Neural
Networks however in our case we run a risk of continuously increasing and
expanding the tree size. This algorithm is run in a steady state in that a single
member of the population is replaced at a time. Furthermore, our GP
application reproduces newer models replacing the weaker ones in the
population according to their fitness. Reasoning behind the decision to use a
steady state algorithm is justified as they hold a greater selection strength and
genetic drift over other algorithms such as a typical generational GAs.
Additionally, steady state algorithms also offer exceptional multiprocessing
capabilities.

In our application of the genetic programming we utilize formulas to evolve
algebraic expressions that enable the analysis / optimization of results in a
‘tree like structure’. This genetic tree structure consists of nodes (depicted as
circles in the diagram below) which are essentially functions that perform
actions within this structure. Furthermore, these functions are in place to
generate output signals. On the other hand, the squares in the tree signify
terminal functions representing the end of a function once the most superior
sub tree (model) is achieved. For example, the below tree structure (model) is
characterized by the algebraic expression 4.0/x1 (t-1) + ln(x2(t-2)). In this case
there is one output and the terminal nodes are constant at 4. Additionally, the

Saved ARMA
forecasted returns as
NNR model input

Output

Mixed ARMA-NNR
forecast

Neural Network
Regression Model

Other inputs

outputs are expressed by x1(t-1) and x2(t-2). In the execution of the genetic
algorithm it has to be understood that each individual in the population
correspond to a single sub tree structure. Each of these sub trees are limited
by the predefined maximum tree size set to 6 in our application.

Fig. 9, Example of a tree structure

Koza (1998) summarises the functionality aspect of the GP algorithm in the
following steps:

(1) The generation of an initial population of randomly constructed models is

developed with each model being represented in a tree like structure as
discussed previously. Additionally, the evolutionary algorithm represents
each chromosome of the population as a tree of variable length (i.e. total
number of functions and terminals) or a maximum depth of the model tree.
The process of randomly reproducing each variable of the population is
completed once all of these functions of the tree are terminal symbols.
However, until the process is halted by these ‘terminal symbols’ then the
tree like structure of chromosomes continues to multiply (grow) with each
generation as the population expands to not only include the parents but
also their offspring. This is achieved by crossover and mutation
operators. On the whole, it also has to be understood that the majority of
these models produced in the initial population are, in most cases,
unsatisfactory when tested for their performance with some individual
models ‘fitting’ better than others. However, one of the virtues offered by
Genetic Programming is that they exploit and manipulate these
differences until the best fitting models, in terms of least error, are
produced.

(2) Following this initial generation of randomly selected models a random

subset (sub tree) of the population is then selected for a tournament.
Hence this process is known as a tournament selection phase. This
process (tournament procedure) is essentially a selection mechanism to
decipher which individuals from the population are to be selected for
reproduction to develop the next generation.

(3) An evaluation of the members of this subset is then carried out and
assigned a fitness value. As stated by Koza (1998) the fitness cases are
either selected at random or in some structured manner (e.g. at regular
intervals). In our application, as mentioned briefly in the first step, the
fitness value is defined as the mean squared error (MSE) with the lowest
MSE being targeted as the best. Furthermore, the fitness may be
measured in terms of the sum of the absolute value of the differences
between the output produced by the model and/or the desired output (i.e.
the Minkowski distance) or, alternatively, the square root of the sum of the
squared errors (i.e. the Euclidean distance).

(4) Following the establishment of fitness values the tournament winners are

then determined. To reiterate, the winners of this scenario are the models
with the lower MSE.

(5) Having identified the tournament winners in the previous step we then

proceed by exposing the models to two genetic operators known as
mutations and crossovers. Both operators are discussed in more detail
below:

Mutation: This is the creation of a new model that is mutated randomly from
an existing one as circled in the diagram below (1*). This one mutation point is
indiscriminately chosen as an independent point and the resulting sub-tree is
to be omitted. From this resulting sub-tree, another new sub-tree (2*) is then
reproduced using the same procedure that was initially implemented to create
the original random population. Although this was the procedure we
implemented for mutation there are also a number of alternative methods that
are explored in other research.

Fig 10, Mutation tree structure example

Crossover: This operator creates two new models from existing models by
genetically recombining randomly chosen parts of them. This is achieved by
using the crossover operation applied at a randomly chosen crossover point
within each model. Due to the fact that entire sub-trees are swapped (from
point 1* to point 2* and from points 3* to 4*), the crossover operation
produces models as offsprings. Furthermore, the models are selected based
on their fitness and the crossover allocates future trials to regions of the

search space whose models contain parts from superior models. As a full
explanation of crossovers is beyond the scope of this paper please refer to
Koza (1992) for more details.

Fig. 11 , Crossover family tree like structure example

(6) The population is then altered with the tournament losers being replaced

by the winners (superior) offspring.
(7) Provided the termination criterion (depicted as the symbol ‘?’ in the

following flow of stages) is not reached, the algorithm returns to step 2
and these steps are repeated until the predefined termination criterion for
genetic programming is satisfied. In our study we have set the termination
criterion to 100,000 at which point the cycles are stopped and forecasted
results can be obtained.

(8) Ultimately, this protocol produces the best individual (model) of the
population as a result.

*note: the symbol ‘?’ is the termination criterion which iterates or terminates
the procedure of GP.

Fig. 12: The architecture of Genetic Programming Algorithm

4.4 Settings for Genetic Programming Parameters (See Appendix A.4)

The parameters used for the optimization of our individual models are defined

in order to yield better results and are specified as follows:

1. Population size 200. The population size is the total number of

randomly chosen models in our experiment. This number can be

altered however in our specific case we found that it was more

beneficial (in terms of annualised returns) to set the population to 200

individuals. Each individual model has a tree structure composed of a

set of functions and terminals. In summary, every model is a

mathematical equation which participates in the program until the GP

produces the best individual program.

The generation of an
initial population

Evaluation

Selection

Reproduction

New Generation

 *?

End

Crossover Mutation

yes

No

2. Maximum tree depth 6. The maximum tree depth is the maximum

length of each model (of each tree structure). In neural networks this is

commonly known as hidden nodes. The depth depends on the

functions and terminals of each individual model.

3. Tournament size 4. Tournament size is the size of models in the

subset. Through trial and error we found this to be the most appropriate

size.

4. Crossover trial 1. Crossover trial means the number of generations that

we let the genetic programming algorithm to run. Crossover is achieved

by creating two new offspring models for the new population by

randomly recombining parts from two selected parents. In this

experiment we have one crossover trial per generation.

5. Mutation probability 0.75. The mutation probability is the probability that

can mutate parts of individual models from an existing one. Specifically

mutation is performed by randomly selecting a parent with a probability

related to its fitness, after that mutation randomly changes one or more

genes representing part of the solution it encodes. Due to the fact that

the population is 200 models, we use a relatively large probability. The

mutation probability extends from an initial 0.1 and finishes at 0.9.

5 EMPIRICAL TRADING SIMULATION RESULTS

The trading performance of all the models considered in the validation subset
is presented in the table below. We choose the network with the higher profit
in the test sub-period. Our trading strategy applied is simple and identical for
all the models: go or stay long when the forecast return is above zero and go
or stay short when the forecast return is below zero. Appendix A.3 provides
the performance of all the NNs and the GP Algorithm in the training and the
test sub-periods while Appendix A.5, A.4 and A.2 provide the characteristics
of our models and the performance measures. The Hybrid-RNNs, Mixed-
RNNs are trained with gradient descent as for the Hybrid-MLPs and Mixed-
MLPs. However, the increase in the number of weights, as mentioned before,
makes the training process extremely slow: to derive our results, we needed
about ten times the time needed with the Hybrid-MLPs and Mixed-MLPs. As
shown in table 6 below, the Mixed-RNN, Hybrid-RNN have a slightly lower
performance compared to the Hybrid-MLP, Hybrid-HONN, Mixed-MLP, Mixed-
HONN and GP algorithm.

 NAIVE MACD ARMA MLP RNN HONN

Information Ratio
 (excluding costs)

0.32 0.46 0.20 0.60 0.59 0.70

Annualised Volatility
 (excluding costs)

36.70% 38.12% 38.13% 38.11% 38.11% 38.10%

Annualised Return
 (excluding costs)

11.42% 17.63% 7.68% 22.99% 22.51% 26.75%

Maximum Drawdown -49.41% -50.63% -36.50% -36.26% -36.22% -38.71%

(excluding costs)

Positions Taken
 (annualised)

119 38 72 105 147 98

Table 6: Trading performance results

We can see that the GP algorithm performs significantly better than the
Hybrid-HONNs, Hybrid-MLPs, Mixed HONNs, Mixed MLPs Hybrid-RNNs, and
the Mixed-RNNs with similar sorts of drawdowns, and significantly better than
the standard neural network architectures.

Up to now, we have presented the trading results of all our models without

considering transaction costs. Since some of our models trade quite often,

taking transaction costs into account might change the whole picture.

Following Dunis et al. (2008a), we check for potential improvements to our

models through the application of confirmation filters. Confirmation filters are

trading strategies devised to filter out those trades with expected returns

below a threshold d around zero. They suggest to go long when the forecast

is above d and to go short when the forecast is below d. It just so happens

that the Mixed ARMA-Neural Network models perform best without any filter.

This is also the case of the MLP and HONN models. Still, the application of

confirmation filters to the benchmark models and the RNN model could have

led to these models outperforming the Mixed, MLP HONN models. This is not

 Hybrid MLP Hybrid RNN HybridHONN

Information Ratio (excluding costs) 0.86 0.81 0.94

Annualised Volatility (excluding costs) 38.08% 38.09% 38.07%

Annualised Return (excluding costs) 32.80% 30.72% 35.67%

Maximum Drawdown (excluding costs) -59.05% -59.05% -59.05%

Positions Taken (annualised) 94 93 94

 Mixed MLP Mixed RNN Mixed HONN

Information Ratio (excluding costs) 0.83 0.78 0.91

Annualised Volatility (excluding costs) 38.08% 38.09% 38.07%

Annualised Return (excluding costs) 31.79% 29.63% 34.75%

Maximum Drawdown (excluding costs) -26.29% -27.94% -28.20%

Positions Taken (annualised) 41 57 65

 GP Algorithm

Information Ratio (excluding costs) 1.03

Annualised Volatility (excluding costs) 38.04%

Annualised Return (excluding costs) 39.33%

Maximum Drawdown (excluding costs) -28.20%

Positions Taken (annualised) 67

the case however but, in order to conserve space, these results are not

shown here but they are available from the authors.

5.1 Transaction Costs

According to the Athens Stock Exchange, transaction costs for financial

institutions and fund managers dealing a minimum of 143 contracts or 1

million Euros is 10 Euros per contract (round trip). Dividing this transaction

cost of the 143 contracts by average size deal (1 million Euros) gives us an

average transaction cost for large players of 14 basis points (1 basis

point=1/100 of 1%) or 0.14% per position.

 NAIVE MACD ARMA MLP RNN HONN

Information Ratio
 (excluding costs)

0.32 0.46 0.20 0.60 0.59 0.70

Annualised Volatility
 (excluding costs)

36.70% 38.12% 38.13% 38.11% 38.11% 38.10%

Annualised Return
 (excluding costs)

11.42% 17.63% 7.68% 22.99% 22.51% 26.75%

Maximum Drawdown
 (excluding costs)

-49.41% -50.63% -36.50% -36.26% -36.22% -38.71%

Positions Taken
 (annualised)

119 38 72 105 147 98

Transaction costs 15.47% 4.94% 9.36% 13.65% 19.11% 12.74%

Annualised Return
 (including costs)

-4.05% 12.69% -1.68% 9.35% 3.40% 14.01%

 Hybrid MLP Hybrid RNN Hybrid HONN

Information Ratio (excluding costs) 0.86 0.81 0.94

Annualised Volatility (excluding costs) 38.08% 38.09% 38.07%

Annualised Return (excluding costs) 32.80% 30.72% 35.67%

Maximum Drawdown (excluding costs) -59.05% -59.05% -59.05%

Positions Taken (annualised) 94 93 94

Transaction costs 12.22% 12.09% 12.22%

Annualised Return (including costs) 20.58% 18.63% 23.45%

 Mixed MLP Mixed RNN Mixed HONN

Information Ratio (excluding costs) 0.83 0.78 0.91

Annualised Volatility (excluding costs) 38.08% 38.09% 38.07%

Annualised Return (excluding costs) 31.79% 29.63% 34.75%

Maximum Drawdown (excluding costs) -26.29% -27.94% -28.20%

Positions Taken (annualised) 41 57 65

Transaction costs 5.74% 7.98% 9.10%

Annualised Return (including costs) 26.05% 21.65% 25.65%

 GP Algorithm

Information Ratio (excluding costs) 1.03

Annualised Volatility (excluding costs) 38.04%

Annualised Return (excluding costs) 39.33%

Maximum Drawdown (excluding costs) -28.20%

Positions Taken (annualised) 67

Transaction costs 9.40%

Annualised Return (including costs) 29.93%

Table 7: Out-of-sample results with transaction costs

We can see that, after transaction costs, the GP algorithm model outperforms

all the other strategies based on the annualized net return closely followed by

the Mixed-MLP, the Mixed HONN and the Hybrid HONNs strategy. On the

other hand, the naïve strategy and the ARMA model produce negative results

after transaction costs are taken into account. The HONN and MACD achieve

decent returns, yet well below those produced by our best models.

5.2 Leverage to Exploit High Sharpe Ratios

In order to further improve the trading performance of our models we

introduce a “level of confidence” to our forecasts, i.e. a leverage based on the

test sub-period. For the naïve model, which presents a negative return we do

not apply leverage. The leverage factors applied are calculated in such a way

that each model has a common volatility of 20%9 on the test data set.

The transaction costs are calculated by taking 0.14% per position into
account, while the cost of leverage (interest payments for the additional
capital) is calculated at 4% p.a. (that is 0.016% per trading day10). Our final
results are presented in table 8 below.

 NAIVE MACD ARMA MLP RNN HONN

Information Ratio

(excluding costs)

0.32 0.70 0.20 0.60 0.59 0.70

Annualised Volatility
(excluding costs)

36.70% 40.03% 38.13% 40.28% 40.21% 40.31%

9
 Since most of the models have a volatility of about 20%, we have chosen this level as our

basis. The leverage factors retained are given in table 8.
10

 The interest costs are calculated by considering a 4% interest rate p.a. divided by 252
trading days. In reality, leverage costs also apply during non-trading days so that we should
calculate the interest costs using 360 days per year. But for the sake of simplicity, we use the
approximation of 252 trading days to spread the leverage costs of non-trading days equally
over the trading days. This approximation prevents us from keeping track of how many non-
trading days we hold a position.

Annualised Return
(excluding costs)

11.42% 18.51% 7.68% 24.30% 23.75% 28.30%

Maximum Drawdown
(excluding costs)

-49.41% -53.16% -36.50% -38.32% -38.21% -40.96%

Leverage Factor - 1.050 - 1.057 1.055 1.058

Positions Taken
(annualised)

119 38 72 105 147 98

Transaction and
leverage costs

15.47% 4.94% 9.36% 13.65% 19.11% 12.74%

Annualised Return
(including costs)

-4.05% 13.57% -1.68% 10.65% 4.64% 15.56%

 Hybrid-MLP Hybrid-RNN Hybrid-HONN

Information Ratio (excluding costs) 0.86 0.81 0.94

Annualised Volatility (excluding costs) 40.14% 40.30% 40.24%

Annualised Return (excluding costs) 34.57% 32.50% 37.71%

Maximum Drawdown (excluding costs) -62.24% -62.48% -62.46%

Leverage Factor 1.054 1.058 1.057

Positions Taken (annualised) 94 93 94

Transaction and leverage costs 12.22% 12.1% 12.22%

Annualised Return (including costs) 12.35% 20.4% 24.89

 Mixed-MLP Mixed-RNN Mixed-HONN

Information Ratio (excluding costs) 0.83 0.78 0.91

Annualised Volatility (excluding costs) 40.22% 40.22% 40.17%

Annualised Return (excluding costs) 33.57% 31.29% 36.67%

Maximum Drawdown (excluding costs) -27.76% -29.50% -29.75%

Leverage Factor 1.056 1.056 1.055

Positions Taken (annualised) 41 57 65

Transaction and leverage costs 6.052% 8.30% 9.40%

Annualised Return (including costs) 27.51% 23.00% 27.27%

 GP Algorithm

Information Ratio (excluding costs) 1.03

Annualised Volatility (excluding costs) 41.84%

Annualised Return (excluding costs) 43.26%

Maximum Drawdown (excluding costs) -31.02%

Leverage Factor 1.10

Positions Taken (annualised) 67

Transaction and leverage costs 9.95%

Annualised Return (including costs) 33.34%

Table 8: Trading performance - final results

As can be seen from table 8, the GP algorithm continues to demonstrate a
superior trading performance despite significant drawdowns. The Mixed
HONN, the Mixed MLP and the Hybrid HONN strategies also perform well and
presents high annualised returns. In general, we observe that all models are
able to gain extra profits from the leverage as the increased transaction costs
countered by increased performance Again it is worth mentioning, that the
time needed to train the HONN, the Hybrid-HONN and the Mixed-HONN
network was considerably shorter compared with that needed for the MLP,
Hybrid-MLP, Mixed-MLP, RNN, Mixed-RNN and the Hybrid-RNN networks.

6. CONCLUDING REMARKS

In this paper, we apply a Genetic Programming algorithm, Multi-layer

Perceptron, Recurrent, Higher Order, Mixed-Multilayer Perceptron, Mixed-

Recurrent, Mixed-Higher Order neural networks, Hybrid-Multilayer Perceptron,

Hybrid-Recurrent, Hybrid-Higher Order neural networks to a one-day-ahead

forecasting and trading task of the ASE 20 fixing series with only

autoregressive terms as inputs. We use a naïve strategy, a MACD and an

ARMA model as benchmarks. We develop these different prediction models

over the period January 2001 - August 2007 and validate their out-of-sample

trading efficiency over the following period from September 2007 through

December 2008.

The GP algorithm demonstrates a higher trading performance in terms of

annualised return and information ratio before transaction costs. When more

elaborate trading strategies are applied and transaction costs are considered

the GP algorithm again continues to outperform all other models achieving the

highest annualised return. The Mixed-HONNs, the Mixed-RNNs and the

Hybrid-HONNs models perform remarkably as well and seem to have ability in

providing good forecasts when autoregressive series are only used as inputs.

It is also important to note that the Mixed-MLP network which presents a very

close second best performance needs less training time than the GP

algorithm, a much desirable feature in a real-life quantitative investment and

trading environment. In the circumstances, our results should go some way

towards convincing a growing number of quantitative fund managers to

experiment beyond the bounds of traditional statistical and neural network

models. In particular, the strategies consisting of modelling in a first stage the

linear component of a financial time series and then applying a neural network

to learn its nonlinear elements and the use of Genetic Programming appear

quite promising.

APPENDIX

A.1 ARMA Model

The output of the ARMA model used in this paper is presented below.

Dependent Variable: RETURNS

Method: Least Squares

Date: 03/17/09 Time: 22:18

Sample (adjusted): 8 1738

Included observations: 1731 after adjustments

Convergence achieved after 37 iterations

Backcast: 1 7

Variable Coefficient Std. Error t-Statistic Prob.

C 0.000290 0.000303 0.956602 0.3389

AR(1) 0.375505 0.052705 7.124626 0.0000

AR(3) -0.244662 0.024991 -9.789999 0.0000

AR(7) -0.678906 0.044902 -15.11958 0.0000

MA(1) -0.374290 0.053055 -7.054702 0.0000

MA(3) 0.269470 0.026409 10.20353 0.0000

MA(7) 0.677169 0.044295 15.28785 0.0000

R-squared 0.026582 Mean dependent var 0.000288

Adjusted R-squared 0.023194 S.D. dependent var 0.012549

S.E. of regression 0.012403 Akaike info criterion -5.937710

Sum squared resid 0.265213 Schwarz criterion -5.915645

Log likelihood 5146.088 F-statistic 7.846483

Durbin-Watson stat 1.856760 Prob(F-statistic) 0.000000

Inverted AR Roots .89-.44i .89+.44i .31-.92i .31+.92i

 -.54+.70i -.54-.70i -.93

Inverted MA Roots .88-.45i .88+.45i .31-.92i .31+.92i

 -.54+.70i -.54-.70i -.94

A.2 Performance Measures

The performance measures are calculated as follows:

 Performance

Measure
Description

Annualised Return ∑

=

=
N

t

t

A
R

N
R

1

1
*252 [14]

 with tR being the daily return

Cumulative Return ∑

=

=
N

t

t

C
RR

1

 [15]

Annualised

Volatility
()∑

=

−
−

=
N

t

t

A
RR

N 1

2
*

1

1
*252σ [16]

Information Ratio

A

A
R

IR
σ

= [17]

Maximum

Drawdown

Maximum negative value of ()∑ tR over the period

= ∑

=
==

t

ij

j
Ntti

RMinMD
,,1;,,1 LL

[18]

Table 9: Trading simulation performance measures

A.3 Empirical Results in the Training and Test Sub-Periods

 NAIVE MACD ARMA MLP RNN

HONN

Information Ratio (excluding costs) 1.55 1.24 1.24 1.57 1.53 1.61

Annualised Volatility (excluding costs) 19.32% 19.49% 19.83% 19.60% 19.60% 19.59%

Annualised Return (excluding costs) 29.86% 24.29% 24.66% 30.72% 30.02% 31.56%

Maximum Drawdown (excluding costs) -23.39% -25.42% -26.70% -27.52% -34.66% -39.70%

Positions Taken (annualised) 114 34 50 86 81 108

 Hybrid-MLP Hybrid-RNN Hybrid-HONN

Information Ratio (excluding costs) 2.13 2.01 2.26
Annualised Volatility (excluding costs) 19.42% 19.44% 19.40%

Annualised Return (excluding costs) 41.35% 39.01% 43.77%

Maximum Drawdown (excluding costs) -37.20% -26.86% -37.20%

Positions Taken (annualised) 102 79 77

 Mixed-MLP Mixed-RNN Mixed-HONN

Information Ratio (excluding costs) 2.07 1.93 2.11

Annualised Volatility (excluding costs) 19.45% 19.47% 19.44%

Annualised Return (excluding costs) 40.17% 37.57% 41.12%

Maximum Drawdown (excluding costs) -37.89% -41.47% -37.52

Positions Taken (annualised) 46 68 47

 GP

Information Ratio (excluding costs) 2.19

Annualised Volatility (excluding costs) 19.33%

Annualised Return (excluding costs) 42.24%

Maximum Drawdown (excluding costs) -31.23%

Positions Taken (annualised) 50

Table 10: In-sample trading performance

A.4 Genetic Programming Characteristics

We present below the characteristics of the Genetic Programming Algorithm

with the best trading performance on the test sub-period.

Population Size: 200
Max tree depth: 6
Function Set: +, -, *, /, ^, ^2, ^3, ^1/2, ^1/3, Exp,

If,sin, cos, tan
Fitness evaluation
function:

Mean Squared Error

Tournament Size: 4
Crossover trials: 1
Mutation Probability: 0,75

Table 11: Genetic Programming characteristics

A.5 Networks Characteristics

We present below the characteristics of the networks with the best trading

performance on the test sub-period for the different architectures.

Table 12: Network Characteristics for Traditional Neural Networks

 Parameters MLP RNN HONN

 Learning algorithm Gradient descent Gradient descent Gradient descent

 Learning rate 0.001 0.001 0.001

 Momentum 0.003 0.003 0.003

 Iteration steps 1500 1500 1000

 Initialisation of weights N(0,1) N(0,1) N(0,1)

 Input nodes 11 11 11

 Hidden nodes (1layer) 7 6 0

 Output node 1 1 1

 Parameters Hybrid-MLP Hybrid-RNN Hybrid-HONNs

Table 13: Network characteristics for Hybrid Neural Networks

Table 14: Network characteristics for Mixed Neural Networks

 Learning algorithm Gradient descent Gradient descent Gradient descent

 Learning rate 0.001 0.001 0.001

 Momentum 0.003 0.003 0.003

 Iteration steps 1500 1500 1000

 Initialisation of weights N(0,1) N(0,1) N(0,1)

 Input nodes 13 13 13

 Hidden nodes (1layer) 6 7 0

 Output node 1 1 1

 Parameters Mixed-MLP Mixed-RNN Mixed-HONN

 Learning algorithm Gradient descent Gradient descent Gradient descent

 Learning rate 0.001 0.001 0.001

 Momentum 0.003 0.003 0.003

 Iteration steps 1500 1500 1000

 Initialisation of weights N(0,1) N(0,1) N(0,1)

 Input nodes 12 12 12

 Hidden nodes (1layer) 6 7 0

 Output node 1 1 1

REFERENCES

Adam, O., Zarader, L. and Milgram, M., (1994) ‘Identification and Prediction of

Non-Linear Models with Recurrent Neural Networks’, Laboratoire de

Robotique de Paris.

Andreou, P, C., Charalambous, C. and Martzoukos, H, S. (2006) ‘Knowledge

Artificial Neural Networks to Enhanced Parametric Option Pricing’, Research

Paper Department of Public and Business Administration, University of

Cyprus.

Barricelli, N. A., (1954) ‘Esempi numerici di processi di evoluzione’,
Methodos, 45-68.

Bishop, C., (1994) ‘Mixture Density Networks’. Neural Computing Research

Group Report: NCRG/94/004, 1–25.

Box, G., Jenkins, G. and Gregory, G. (1994) ‘Time Series Analysis:

Forecasting and Control’, Prentice-Hall, Hoboken, New Jersey.

Brown, G., Wyatt, J., Harris, R., and Yao, X. (2005), ‘Diversity Creation

Methods: A Survey and Categorization’, Information Fusion, 6, 5–20.

Clemen, R. (1989), ‘Combining Forecasts: A Review and Annotated

Bibliography’, International Journal of Forecasting, 5, 559–583.

Connor, J. and Atlas, L. (1993), ‘Recurrent Neural Networks and Time Series

Prediction’, Proceedings of the International Joint Conference on Neural

Networks, 301-306.

Cramer, N. L., (1985) ‘A Representation for the Adaptive Generation of

Simple Sequential Programs’, in Proceedings of an International Conference

on Genetic Algorithms and the Applications, Grefenstette, John J., (ed.),

Carnegie Mellon University.

Dunis, C. and Huang, X. (2002), ‘Forecasting and Trading Currency Volatility:

An Application of Recurrent Neural Regression and Model Combination’,

Journal of Forecasting, 21, 5, 317-354.

Dunis, C., Laws, J. and Evans B. (2006a), ‘Trading Futures Spreads: An

Application of Correlation and Threshold Filters’, Applied Financial

Economics, 16, 1-12.

Dunis, C., Laws, J. and Evans B. (2006b), ‘Modelling and Trading the

Gasoline Crack Spread: A Non-Linear Story’, Derivatives Use, Trading and

Regulation, 12, 126-145.

Dunis, C., Laws, J. and Karathanasopoulos A. (2010a), ‘Modelling and

Trading the Greek Stock Market with Hybrid ARMA-Neural Network Models’,

CIBEF Working Papers. Available at www.cibef.com.

Dunis, C., Laws, J. and Karathanasopoulos A. (2010b), ‘Modelling and

Trading the Greek Stock Market with Mixed-Neural Network Models’, CIBEF

Working Papers. Available at www.cibef.com.

Dunis, C., Laws, J. and Sermpinis, G. (2008), ‘Modelling and Trading the

EUR/USD Exchange Rate at the ECB Fixing’, The European Journal of

Finance, 16, 6, 541 - 560

Dunis, C. and Huang, X. (2002), ‘Alternative Volatility Models for Risk

Management and Trading: Application to the EUR/USD and USD/JPY Rates’,

Derivative Use, Trading & Regulation, 11, 2, 126-156

Elman, J. L. (1990), ‘Finding Structure in Time’, Cognitive Science, 14, 179-

211.

Fatima, S. and Hussain, G., (2008) ‘Statistical Models of KSE100 Index Using

Hybrid Financial Systems’, Neurocomputing, 7, 2742-2746.

Fogel L. J., Owens A. J., and Walsh, M. J. (1964) ‘On the Evolution of Artificial

Intelligence’, Proceedings of the Fifth National Symposium on Human Factors

in Electronics, IEEE, San Diego, 63-76.

Fukunaga, A. and Stechert, A. (1998) ‘Evolving Nonlinear Predictive Models

for Lossless Image Compression with Genetic Programming’, Genetic

Programming 1998: Proceedings of the Third Annual Conference, Morgan

Kaufmann, Wisconsin USA, 95 -102.

Fulcher, J., Zhang, M. and Xu, S., (2006) ‘The Application of Higher-Order

Neural Networks to Financial Time Series’, Artificial Neural Networks in

Finance and Manufacturing, Hershey, PA: Idea Group, London.

Ghiassi, M., Saidane, H. and Zimbra D. K. (2005), ‘A Dynamic Artificial Neural

Network Model for Forecasting Series Events’, International Journal of

Forecasting, 21, 341-362.

Giles, L. and Maxwell, T. (1987) ‘Learning, Invariance and Generalization in

Higher Order Neural Networks’, Applied Optics, 26, 4972-4978.

Greg, T. and Hu, S. (1999), ‘Forecasting GDP Growth Using Artificial Neural

Network’, Working Paper, Bank of Canada, 99-3.

Hansen, J. and Nelson, R., (2003) ‘Time-Series Analysis with Neural

Networks and ARIMA-Neural Network Hybrids’, Journal of Experimental and

Theoretical Artificial Intelligence, 15 (3), 315–330.

Hibbert, H., Pedreira, C. and Souza, R., (2000) ‘Combining Neural Networks

and ARIMA Models for Hourly Temperature Forecast’, Proceedings of

International Conference on Neural Networks (IJCNN 2000), 414–419.

Hibon, M. and Evgeniou. T., (2005) ‘To Combine or not to Combine: Selecting

among Forecasts and their Combinations’, International Journal of

Forecasting, 22, 15-24.

Holland J. H., (1975) ‘Adaptation in Natural and Artificial Systems’, Ann Arbor,

The University of Michigan Press.

Kaastra, I. and Boyd, M. (1996), ‘Designing a Neural Network for Forecasting

Financial and Economic Time Series’, Neurocomputing, 10, 215-236.

Kamijo, K. and Tanigawa,T. (1990), ‘Stock Price Pattern Recognition: A

Recurrent Neural Network Approach’, In Proceedings of the International Joint

Conference on Neural Networks, 1215-1221.

Karayiannis, N. and Venetsanopoulos, A. (1994), ‘On the Training and

Performance of High-Order Neural Networks’, Mathematical Biosciences, 129,

143-168.

Knowles, A., Hussein, A., Deredy, W., Lisboa, P. and Dunis, C. L. (2009),

‘Higher-Order Neural Networks with Bayesian Confidence Measure for

Prediction of EUR/USD Exchange Rate’, in M. Zhang [ed.] Artificial Higher

Order Neural Networks for Economic and Business, Information Science

Reference, London, 48-59.

Kosmatopoulos, E., Polycarpou, M., Christodoulou, M. and Ioannou, P.,

(1995) ‘High-Order Neural Network Structures for Identification of Dynamical

Systems’, IEEE Transactions on Neural Networks, 6, 422-431.

Koza, J. R., (1990) ‘Genetic Programming: A Paradigm for Genetically
Breeding Populations of Computer Programs to Solve Problems’, Stanford
University Computer Science Department, Stanford

Koza, J. R., (1992) Genetic Programming: On the Programming of Computers
by Means of Natural Selection, MIT Press, New York

Koza, J. R., (1994) ‘Genetic Programming II: Automatic Discovery of
Reusable Programs’, MIT Press, New York

Koza J. R., (1998) ‘Genetic Programming’, In Williams, J. G.and Kent, A.,
[eds.]. Encyclopedia of Computer Science and Technology. New York, NY:
Marcel-Dekker. 39, (Supplement 24), 29–43,

Koza, J. R., Bennett, F. H., Andre, D. and Keane, M. A., (1999) Genetic
Programming III: Darwinian Invention and Problem Solving, Morgan
Kaufmann, San Fransisco

Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J. and Lanza, G.
(2003) Genetic Programming IV: Routine Human-Competitive Machine
Intelligence, Kluwer Academic Publishers, New York

Lisboa, P. J. G. and Vellido, A. (2000), ‘Business Applications of Neural
Networks’, vii-xxii, in P. J. G. Lisboa, B. Edisbury and A. Vellido [eds.]
Business Applications of Neural Networks: The State-of-the-Art of Real-World
Applications, World Scientific, Singapore,.

Madár, J., Abonyi, F. and Szeifert, F. (2005) ‘Genetic Programming for the
Identification of Nonlinear Input-Output Models’, Industrial and Engineering
Chemistry Research. p.o Box 158 Veszprem 8201 Hungary

Madár, J., Abonyi, F. and Szeifert, F. (2004) ‘Genetic Programming for
System Identification’, Intelligent Systems Design and Applications (ISDA).
University of Veszprem, Hungary

Makridakis, S., Anderson A., Carbone, R., Fildes, R., Hibdon, M.,

Lewandowski, R., Newton, J., Parzen, E. and Winkler, R. (1982) ‘The

Accuracy of Extrapolation (Time Series) Methods: Results of a Forecasting

Competition’, Journal of Forecasting, 1, 111–153.

Makridakis, S., (1989) ‘Why Combining Works?’, International Journal of

Forecasting, 5, 601–603.

Newbold, P. and Granger, C. W. J. (1974) ‘Experience with Forecasting

Univariate Time Series and the Combination of Forecasts (with discussion)’,

Journal of Statistics, 137, 131–164.

Palm, F. C. and Zellner, A., (1992), ‘To Combine or not to Combine? Issues of

Combining Forecasts’, Journal of Forecasting, 11, 687–701.

Pindyck, R. and Rubinfeld, D. (1998), Econometric Models and Economic

Forecasts, 4th edition, McGraw-Hill, New York.

Psaltis, D., Park, C. and Hong, J. (1988), ‘Higher Order Associative Memories

and their Optical Implementations’, Neural Networks, 1, 149-163.

Rechenberg, I. (1971) ‘Evolutionsstrategie - Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution’, (PhD thesis). Reprinted by
Fromman-Holzboog (1973). ISBN 3-7728-03-73-3

Redding, N., Kowalczyk, A. and Downs, T. (1993), ‘Constructive Higher-Order

Network Algorithm that is Polynomial Time’, Neural Networks, 6, 997-1010.

Shapiro, A. F. (2000), ‘A Hitchhiker’s Guide to the Techniques of Adaptive

Nonlinear Models’, Insurance, Mathematics and Economics, 26, 119-132.

Tenti, P. (1996), ‘Forecasting Foreign Exchange Rates Using Recurrent

Neural Networks’, Applied Artificial Intelligence, 10, 567-581.

Terui, N. and van Dijk, H. (2002), ‘Combined Forecasts from Linear and

Nonlinear Time Series Models’, International Journal of Forecasting, 18, 421–

438.

Theil, H. (1996), ‘Applied Economic Forecasting, North-Holland, Amsterdam,

Netherlands.

Tino, P., Schittenkopf, C. and Doffner, G. (2001) ' Financial Volatility Trading

Using Recurrent Networks' , IEEE transactions in Neural Networks, 12, 4,

856-874.

Tsang, E. P. K., Butler J. M. and Li, J. (1998) ‘EDDIE Beats the Bookies’,
Journal of Software – Practice and Experience, Wiley, 28, (10). 1033-1043

Tseng, F. M., Yu, H. C. and Tzeng, G. H. (2002) ‘Combining Neural Network

Model with Seasonal Time Series ARIMA Model’, Technological Forecasting

and Social Change, 69, 71–87.

Wang, Y. F., (2007) ‘Nonlinear Neural Network Forecasting Model for Stock

Index Option Price: Hybrid GJR-GARCH Approach’, Expert Systems with

Applications, 36, 564-570.

Werner, J. C. and Fogarty, T. C. (2001) ‘Genetic Programming Applied to
Collagen Disease & Thrombosis’, South Bank University, London.

Willis, M. J., Hiden, H. G., Marenbach, P., McKay, B, and Montague, G. A.
(1997)’ Genetic Programming: An Introduction and Survey of Applications’,
Second International Conference on Genetic Algorithms in Engineering
Systems, 65,314 – 319.

Winkler, S., (2004) ‘Identifying Nonlinear Model Structures Using Genetic
Programming’, Diploma Thesis, Institute of Systems Theory and Simulation,
Johannes Kepler University, Linz, Austria.

Winkler, S., Affenzeller, M. and Wagner, S. (2004a) ‘New Methods for the
Identification of Nonlinear Model Structures Based Upon Genetic
Programming Techniques’. Proceedings of the 15th International Conference
on Systems Science, 1, 386-393.

Winkler, S., Affenzeller, M. and Wagner, S. (2004b) ‘Identifying Nonlinear
Model Structures Using Genetic Programming Techniques’, Cybernetics and
Systems 2004, 1 689-694.

Zhang, M., Xu, S., X. and Fulcher, J. (2002), ‘Neuron-Adaptive Higher Order

Neural-Network Models for Automated Financial Data Modelling’, IEEE

Transactions on Neural Networks, 13, 1, 188-204.

Zhang, G. P., (2003) ‘Time Series Forecasting Using a Hybrid ARIMA and

Neural Network Model’, Neurocomputing, 50, 159–175.

Zhang, G. P., and Qi, M., (2005) ‘Neural Network Forecasting for Seasonal

and Trend Time Series’, European Journal of Operational Research, 160 (2),

501–514.

