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Abstract 

In the current paper we present an integrated genetic programming 
environment, called java GP Modelling. The java GP Modelling environment is 
an implementation of the steady-state genetic programming algorithm. That 
algorithm evolves tree based structures that represent models of input – 
output relation of a system. The motivation of this paper is to compare the GP 
algorithm with neural network architectures when applied to the task of 
forecasting and trading the ASE 20 Greek Index using only autoregressive 
terms as inputs. This is done by benchmarking the forecasting performance of 
the GP algorithm and 6 different ARMA-Neural Network combination designs 
representing a Hybrid, Mixed Higher Order Neural Network (HONN), a Hybrid, 
Mixed Recurrent Network (RNN), a Hybrid, Mixed classic Multilayer 
Perceptron (MLP) with some traditional techniques, either statistical such as a 
an autoregressive moving average model (ARMA), or technical such as a 
moving average convergence/divergence model (MACD), plus a naïve trading 
strategy. More specifically, the trading performance of all models is 
investigated in a forecast and trading simulation on ASE 20 time series 
closing prices over the period 2001-2008 using the last one and a half years 
for out-of-sample testing. We use the ASE 20 daily series as many financial 
institutions are ready to trade at this level and it is therefore possible to leave 
orders with a bank for business to be transacted on that basis. 

As it turns out, the GP model does remarkably well and outperforms all other 
models in a simple trading simulation exercise. This is also the case when 
more sophisticated trading strategies using confirmation filters and leverage 
are applied, as the GP model still produces better results and outperforms all 
other neural network and traditional statistical models in terms of annualised 
return. 

 

 

 

 



1. INTRODUCTION 

The use of artificial intelligence for the purpose of forecasting market 
movements has been widely reviewed in academia. This study is a 
comparative analysis of the results yielded from utilizing a Genetic 
Programming Algorithm and various traditional Neural Network computing 
techniques when forecasting the Greek stock market. Additionally, we 
endeavour to develop more accurate and sophisticated techniques in order to 
increase the performance of our trading simulation. Due to the convergence 
and unification of global financial markets in recent years, this forecasting task 
has become increasingly challenging. Furthermore, traditional econometric 
methods on which forecasters have previously been reliant no longer satisfy 
the demands of market participants as they struggle to capture integrating 
features associated with today’s markets. As discussed by Lisboa et al 
(2000), neural networks are an emergent technology with an increasing 
number of real-world applications offering a unique aspect to the world of 
financial forecasting. Nevertheless, some practitioners have tainted the virtues 
of neural networks with scepticism criticising their capacity to forecast and 
highlighting their limitations. Hence, this paper investigates a new, 
contemporary and more proficient method of forecasting that is capable of 
identifying and dealing with discontinuities, nonlinearities and high frequency 
multi-polynomial components which are all prevalent in financial series of 
today’s markets. This model is most commonly known as the Genetic 
Programming (GP) algorithm.  

GP Algorithms are domain-independent problem-solving techniques that are 
run in various environments. These environments are structured in a manner 
which approximates problems in order to produce forecasts at a high level of 
accuracy. GP can be categorized in the forecasting bracket known in the 
finance world as ‘Evolutionary Algorithms’. The basis for this type of problem 
– solving technique derives from the Darwinian principle of reproduction and 
survival of the fittest. Additionally, GP is also similar to the biological genetic 
operations such as crossover and mutation. More importantly, Koza (1990, 
1992) stress that GP addresses and quantifies complex issues as an 
automated process via programming, which enables computers to process 
and solve problems. 
 
The Darwinian aspect of GP applies the theory of evolution to a population of 
computer programs of varying sizes and shapes. For instance, GP starts with 
an initial population of thousands or even millions of randomly generated 
computer programs. These programs comprise of programmatic elements 
built to apply the fundamental principles of biological evolution in order to 
create a new (and often improved) population of programs. As mentioned 
previously, the creation of this new population is generated in a domain-
independent system applying the Darwinian theory of natural selection under 
the principal known as survival of the fittest. An analogue of the naturally-
occurring genetic operation of sexual recombination (crossover), and 
occasional mutation, the crossover operation is designed to create 
syntactically valid offspring programs (given closure amongst the set of 
programmatic ingredients). GP combines the expressive high-level symbolic 
representations of computer programs with the near-optimal efficiency of 



learning of Holland’s (1975) genetic algorithm in order to produce highly 
accurate outputs. Koza (1998) mentioned that a computer program that 
solves or at the very least approximates a given problem often emerges from 
this process. Dissimilar to other models such as neural networks, GP does not 
require any prior knowledge of a model’s structure for the purpose of system 
modelling. Alternatively, GP evolves a system model with parameter values 
that best fit specific data without manipulating the data to fit ‘predefined’ 
model structures as many other preceding forecasting methods tend to do. In 
other words, GP creates an initial population of models and evolves using 
genetic operators in order to calculate the mathematical expression which 
best fits the specified data input into the system. Furthermore, GP 
simultaneously searches for and refines a model’s parameters and ultimately 
its structure. 
 
The motivation for this paper is to investigate the use of GP algorithm and 
several neural networks techniques combined with ARMA models in order to 
improve the forecasting performance using autoregressive terms as inputs. 
This is achieved by comparing six benchmark neural network combined 
architectures with a forecast produced by the GP Algorithm. Most notably, 
classic neural networks as Multilayer Perceptron (MLP), Higher Order Neural 
Network (HONN), Recurrent Neural Network (RNN), autoregressive moving 
average model (ARMA), or technical models such as a moving average 
convergence/divergence model (MACD), plus a naïve trading strategy are all 
reviewed as benchmark methods. 

From the analysis it emerges that the GP algorithm demonstrates a 
remarkable performance and outperforms all other models in a simple trading 
simulation exercise. This is also true when more sophisticated trading 
strategies are utilized with the application of confirmation filters and leverages 
as GP still demonstrates superior forecasting ability in terms of annualised 
return. It is worth mentioning the second best performance of the Hybrid 
HONNs and the Mixed HONNs. Dunis et al. (2010a, b) stress that the 
combination of neural networks can produce better forecasts compared with 
alternative techniques.  Furthermore the Hybrid MLP and the Mixed MLP also 
perform well. Also, the RNNs which historically have performed remarkably 
well display less impressive forecasting potential in this research. It is 
observed that this might be due to the fact that they have an inability to 
provide accurate results when only autoregressive terms are used as inputs. 

The remainder of the paper is organised as follows. In section 2, we present 
the literature relevant to GP modelling, the Hybrid, Mixed Neural Networks, 
the Recurrent Neural Network, the Higher Order Neural Networks and the 
Multilayer Percepton. Section 3 describes the dataset used for this research 
and its characteristics. An overview of the different neural network models, 
Genetic Programming algorithm and statistical techniques is given in section 
4. Section 5 displays the empirical results of all the models considered and 
investigates the possibility of improving their performance with the application 
of more sophisticated trading strategies. Ultimately, Section 6 provides some 
concluding remarks. 

 



2. LITERATURE REVIEW 

The purpose of this investigation is to apply the GP algorithm to the ASE 20 
Greek Stock market data comparing its results with the most promising new 
neural networks architectures combining them with autoregressive models (in 
our case the ARMA model) which have been developed recently with the 
purpose to overcome the numerous limitations of the more classic neural 
architectures and to assess whether they can achieve a higher performance 
in a trading simulation 

GP was first developed by Barricelli (1954) as evolutionary algorithms. 
Progressively into the 1960’s and 1970’s these ‘evolutionary algorithms’ 
became more commonly known and recognized as optimization methods. In 
particular, Rechenberg (1971) and his research team were able to solve 
complex engineering problems through the application of optimization 
methods as documented in his 1971 PhD thesis. Furthermore Holland (1975) 
was another influential figure in the 1970’s However, Fogel et al. (1964) are 
among the earliest practitioners pioneering in GP methodology. They apply 
evolutionary algorithms to the problem of discovering finite-state automata. In 
the development of GP methodology it was later adapted to the Markov 
decision making process. More importantly the first evidence of GP as the 
‘tree based’ method that we are familiar with in modern financial forecasting 
was provided by Cramer (1985). More recently, Cramer’s work has been 
expanded further by John R. Koza (1990), Koza (1992), Koza (1994), Koza 
(1998) and Koza et al. (1999, 2003) who apply these methodologies to 
complex optimization and search problems. 

Although GP has now been established as a credible and respected 
technique this was not always the case. For example in the 1990’s GP was 
considered incomprehensible. Enter the 2000’s and the theory of GP has 
seen progressive and formidable growth. This has particularly been the case 
in the area of probabilistic models as GP has been incorporated with schema 
theories and Markov chain models. A variety of Genetic Programming 
applications is shown in the papers below: Wincler (2004), Wincler et al. 
(2004a, b), Madar et al. (2004, 2005),  Willis et al. (1997), Tsang et al. (1998),  
Fukunaga and Stechert (1998) and Werner and Fogarty (2001). 

On the other hand combining different models can increase the chance to 
capture different patterns in the data and improve forecasting performance. 
Several empirical studies have already suggested that by combining several 
different models, forecasting accuracy can often be improved over the 
individual model. Using hybrid models or combining several models has 
become a common practice to improve the forecasting accuracy since the 
well-known M-competition (Makridakis et al.(1982)) in which combination of 
forecasts from more than one model often led to improved forecasting 
performance. The basic idea of the model combination in forecasting is to use 
each model’s unique feature to capture different patterns in the data. Both 
theoretical and empirical findings suggest that combining different methods 
can be an effective and efficient way to improve forecasts (Makridakis (1989), 
Newbold et al. (1974), Palm et al. (1992)). Research in time series forecasting 
argues that predictive performance improves in combined models. (Bishop 



(1994), Clemen (1989), Hansen et al. (2003), Hibbert et al. (2000), Terui et al. 
(2002), Tseng et al. (2002), Zhang, (2003), Zhang et al. (2005). 
 
RNNs have an activation feedback which embodies short-term memory 
allowing them to learn extremely complex temporal patterns. Their superiority 
against feedfoward networks when performing nonlinear time series prediction 
is well documented in Connor et al. (1993) and Adam et al. (1994). In financial 
applications, Kamijo et al. (1990) applied them successfully to the recognition 
of stock patterns of the Tokyo stock exchange while Tenti (1996) achieved 
remarkable results using RNNs to forecast the exchange rate of the Deutsche 
Mark. Tino et al. (2001) use them to trade successfully the volatility of the 
DAX and the FTSE 100 using straddles while Dunis and Huang (2002), using 
continuous implied volatility data from the currency options market, obtain 
remarkable results for their GBP/USD and USD/JPY exchange rate volatility 
trading simulation. 

HONNs were first introduced by introduced by Giles and Maxwell (1987) as a 
fast learning network with increased learning capabilities. Although their 
function approximation superiority over the more traditional architectures is 
well documented in the literature (see among others Redding et al. (1993), 
Kosmatopoulos et al. (1995) and Psaltis et al. (1998)), their use in finance so 
far has been limited. This has changed when scientists started to investigate 
not only the benefits of Neural Networks (NNs) against the more traditional 
statistical techniques but also the differences between the different NNs 
model architectures. Practical applications have now verified the theoretical 
advantages of HONNs by demonstrating their superior forecasting ability and 
put them in the front line of research in financial forecasting. For example 
Dunis et al. (2006b) use them to forecast successfully the gasoline crack 
spread while Fultcher et al. (2006) apply HONNs to forecast the AUD/USD 
exchange rate, achieving a 90% accuracy. However, Dunis et al. (2006a) 
show that, in the case of the futures spreads and for the period under review, 
the MLPs performed better compared with HONNs and recurrent neural 
networks.  Moreover, Dunis et al. (2008a), who also study the EUR/USD 
series for a period of 10 years, demonstrate that when multivariate series are 
used as inputs the HONNs, RNN and MLP networks have a similar 
forecasting power. Finally, Dunis et al. (2008b) in a paper with a methodology 
identical to that used in this research, demonstrate that HONN and the MLP 
networks are superior in forecasting the EUR/USD ECB fixing until the end of 
2007, compared to the RNN networks, an ARMA model, a MACD and a naïve 
strategy. 
 

3. THE ASE 20 GREEK INDEX AND RELATED FINANCIAL 

DATA 

For Futures on the FTSE/ASE-20 that are traded in derivatives markets the 

underlying asset is the blue chip index FTSE/ASE-20. The FTSE/ASE-20 

index is based on the 20 largest ASE stocks. It was developed in 1997 by the 

partnership of ASE with FTSE International and is the established benchmark. 



It represents over 50% of ASE's total capitalisation and currently has a 

heavier weight on banking, telecommunication and energy stocks.

 
The FTSE/ASE 20 index is traded as a futures contract that is 
upon maturity of the contract with the value of the index fluctuating on a daily 
basis. The cash settlement of this index is simply determined by calculating 
the difference between the traded price and the closing price of the index on 
the expiration day of the contract. Furthermore, settlement is reached 
between each of the participating counterparties. Whilst the futures contract is 
traded in index points the monetary value of the contract is calculated by 
multiplying the futures price by the
a contract trading at 1,400 points is valued at 7,000 EUR.
 

As a result, our application is deemed more realistic and specific to the series 
that we investigate in this paper
 

Name of Period
Total Dataset 
Training Dataset 
Out- of- sample Dataset(Validation Set)

Fig. 1:

The observed ASE 20 time series is non
confirms this at the 99% confidence interval) containing slight skewness and 
high kurtosis. It is also non
20 series into a stationary series of rates of return

Given the price level P1, 

                                                
1
 We examine the ASE 20 since its first trading day on 21 January 2001 (Greece’s entrance in 

the European Monetary Zone), and until 31 December 2008, using the continuous data 
available from DataStream. 
2
  The percentage return is linearly additive but the 

portfolio components. 

It represents over 50% of ASE's total capitalisation and currently has a 

heavier weight on banking, telecommunication and energy stocks.

The FTSE/ASE 20 index is traded as a futures contract that is 
upon maturity of the contract with the value of the index fluctuating on a daily 
basis. The cash settlement of this index is simply determined by calculating 
the difference between the traded price and the closing price of the index on 

iration day of the contract. Furthermore, settlement is reached 
between each of the participating counterparties. Whilst the futures contract is 
traded in index points the monetary value of the contract is calculated by 
multiplying the futures price by the multiple of 5 euros per point. For example, 
a contract trading at 1,400 points is valued at 7,000 EUR. 

As a result, our application is deemed more realistic and specific to the series 
that we investigate in this paper1.  

Name of Period Trading Days Beginning 
2087 21 January 2001 
1719 29 January 2001 

sample Dataset(Validation Set) 349 31 August /2007 

Table 1:  The ASE 20 dataset 

: ASE 20 fixing prices (total dataset). 

The observed ASE 20 time series is non-normal (Jarque-Bera statistics 
confirms this at the 99% confidence interval) containing slight skewness and 
high kurtosis. It is also non-stationary and we decided to transform 
20 series into a stationary series of rates of return2. 

, P2,…,Pt, the rate of return at time t is formed by:

         
We examine the ASE 20 since its first trading day on 21 January 2001 (Greece’s entrance in 

the European Monetary Zone), and until 31 December 2008, using the continuous data 
 

The percentage return is linearly additive but the log return is not linearly additive across 

It represents over 50% of ASE's total capitalisation and currently has a 

heavier weight on banking, telecommunication and energy stocks. 

The FTSE/ASE 20 index is traded as a futures contract that is cash settled 
upon maturity of the contract with the value of the index fluctuating on a daily 
basis. The cash settlement of this index is simply determined by calculating 
the difference between the traded price and the closing price of the index on 

iration day of the contract. Furthermore, settlement is reached 
between each of the participating counterparties. Whilst the futures contract is 
traded in index points the monetary value of the contract is calculated by 

multiple of 5 euros per point. For example, 

As a result, our application is deemed more realistic and specific to the series 

End 
31 December 2008 

30 August 2007 
31 December 2008 

 

Bera statistics 
confirms this at the 99% confidence interval) containing slight skewness and 

stationary and we decided to transform the ASE 

is formed by: 

We examine the ASE 20 since its first trading day on 21 January 2001 (Greece’s entrance in 
the European Monetary Zone), and until 31 December 2008, using the continuous data 

log return is not linearly additive across 
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Fig. 2: ASE 20 returns summary statistics (total dataset) 

As inputs to our GP algorithm and our networks, based on the autocorrelation 
function and some ARMA experiments we selected 3 sets of autoregressive 
and moving average terms of the ASE 20 returns and the 1-day Risk Metrics 
volatility series. 

Number Variable  Lag 
1 Athens Composite all share return 1 
2 Athens Composite all share return 3 
3 Athens Composite all share return 6 
4 Athens Composite all share return 8 
5 Athens Composite all share return 10 
6 Athens Composite all share return 13 
7 Athens Composite all share return 14 
8 Moving Average of the Athens Composite all share return 15 
9 Athens Composite all share return 16 

10 Athens Composite all share return 18 
11 Moving Average of the Athens Composite all share return 19 

Table 2: Explanatory variables for traditional Neural Networks and the GP 
algorithm 

Number Variable Lag 
1 Athens Composite all share return 1 
2 Athens Composite all share return 3 
3 Athens Composite all share return 5 
4 Athens Composite all share return 7 
5 Athens Composite all share return 8 
6 Athens Composite all share return 9 
7 Athens Composite all share return 12 
8 Athens Composite all share return 13 
9 Moving Average of the Athens Composite all share return 14 

10 Athens Composite all share return 15 
11 Athens Composite all share return 16 
12 Moving Average of the Athens Composite all share return 17 
13 1-day Riskmetrics Volatility 1 

Table 3: Explanatory variables for the hybrid neural networks 
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Observations 2087

Mean      -0.000240

Median   0.000000

Maximum  0.108214

Minimum -0.093318

Std. Dev.   0.015088

Skewness  -0.036670

Kurtosis   9.514666

Jarque-Bera  3691.056

Probability  0.000000



Number Variable Lag 

1 Athens Composite all share return 1 

2 Athens Composite all share return 2 

3 Athens Composite all share return 4 

4 Athens Composite all share return 5 

5 Athens Composite all share return 7 

6 Athens Composite all share return 9 

7 Moving Average of the Athens Composite all share return 10 

8 Athens Composite all share return 13 

9 Athens Composite all share return 14 

10 Athens Composite all share return 15 

11 Moving Average of the Athens Composite all share return 16 

12 Athens Composite all share return 17 

Table 4: Explanatory variables for the mixed neural networks 

In order to train the neural networks and the GP algorithm we further divided 
our dataset as follows: 

Name of Period Trading Days Beginning End 
Total Dataset 2087 21 January 2001 31 December 2008 
Training Dataset 1373 29 January 2001 03 May2006 
Test Dataset 346 04 May 2006 30 August 2007 
Out-of- sample Dataset (Validation Set) 349 31 August 2007 31 December 2008 

 
Table 5: The neural networks and GP algorithm datasets 

 

4. FORECASTING MODELS 

4.1 Benchmark Models 
In this paper, we benchmark our neural network models with 3 traditional 
strategies, namely an autoregressive moving average model (ARMA), a 
moving average convergence/divergence technical model (MACD) and a 
naïve strategy.  
 
4.1.1 Naïve strategy 
 
The naïve strategy simply takes the most recent period change as the best 
prediction of the future change. The model is defined by: 

 
tt YY =+1

ˆ                  [2] 

Where            tY        is the actual rate of return at period t 

  1
ˆ

+tY  is the forecast rate of return for the next period 

The performance of the strategy is evaluated in terms of trading performance 
via a simulated trading strategy. 
 
 

4.1.2 Moving Average 
The moving average model is defined as: 



 ( )
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Where           tM  is the moving average at time t 

 n is the number of terms in the moving average 

tY  is the actual rate of return at period t 

The MACD strategy used is quite simple. Two moving average series are 
created with different moving average lengths. The decision rule for taking 
positions in the market is straightforward: If the short-term moving average 
intersects the long-term moving average from below a ‘long’ position is taken. 
Conversely, if the long-term moving average is intersected from above a 
‘short’ position is taken3. 

The forecaster must use judgement when determining the number of periods 
n on which to base the moving averages. The combination that performed 
best over the in-sample sub-period was retained for out-of-sample evaluation. 
The model selected was a combination of the ASE 20 and its 7-day moving 
average, namely n = 1 and 7 respectively or a (1, 7) combination. The 
performance of this strategy is evaluated solely in terms of trading 
performance. 
 
4.1.3 ARMA Model 
Autoregressive moving average models (ARMA) assume that the value of a 
time series depends on its previous values (the autoregressive component) 
and on previous residual values (the moving average component)4.   

The ARMA model takes the form: 

 
       qtqtttptpttt wwwYYYY −−−−−− −−−−+++++= εεεεφφφφ ...... 221122110  [4] 

where            tY                              is the dependent variable at time t 

1−tY , 2−tY , and ptY −  are the lagged dependent variable 

0φ , 1φ , 2φ , and pφ  are regression coefficients 

tε    is the residual term 

1−tε , 2−tε , and pt−ε  are previous values of the residual 

 1w , 2w , and qw  are weights. 

Using as a guide the correlogram in the training and the test sub periods we 
have chosen a restricted ARMA (7, 7) model. All of its coefficients are 
significant at the 99% confidence interval. The null hypothesis that all 
coefficients (except the constant) are not significantly different from zero is 
rejected at the 99% confidence interval (see Appendix A1).  

The selected ARMA model takes the form: 

                                                 
3
A ‘long’ ASE 20 position means buying the index at the current price, while a ‘short’ position 

means selling the index at the current price. 
4
 For a full discussion on the procedure, refer to Box et al. (1994) or Pindyck and Rubinfeld 

(1998). 



tY = 2.90 · 10-4 + 0.376 1−tY  - 0.245Yt-3  - 0.679Yt-7  +  0.374εt-1  - 0.270εt-3  -0.677εt-7                 

[6] 

The model selected was retained for out-of-sample estimation. The 
performance of the strategy is evaluated in terms of traditional forecasting 
accuracy and in terms of trading performance5. 
 
4.2 Various Neural Network Architectures 
Neural networks exist in several forms in the literature. The most popular 
architecture is the Multi-Layer Perceptron (MLP). 
A standard neural network has at least three layers. The first layer is called 
the input layer (the number of its nodes corresponds to the number of 
explanatory variables). The last layer is called the output layer (the number of 
its nodes corresponds to the number of response variables). An intermediary 
layer of nodes, the hidden layer, separates the input from the output layer. Its 
number of nodes defines the amount of complexity the model is capable of 
fitting. In addition, the input and hidden layer contain an extra node, called the 
bias node. This node has a fixed value of one and has the same function as 
the intercept in traditional regression models. Normally, each node of one 
layer has connections to all the other nodes of the next layer. 
 
The network processes information as follows: the input nodes contain the 
value of the explanatory variables. Since each node connection represents a 
weight factor, the information reaches a single hidden layer node as the 
weighted sum of its inputs. Each node of the hidden layer passes the 
information through a nonlinear activation function and passes it on to the 
output layer if the calculated value is above a threshold.  

The training of the network (which is the adjustment of its weights in the way 
that the network maps the input value of the training data to the 
corresponding output value) starts with randomly chosen weights and 
proceeds by applying a learning algorithm called backpropagation of errors6 
(Shapiro (2000)). The learning algorithm simply tries to find those weights 
which minimize an error function (normally the sum of all squared differences 
between target and actual values). Since networks with sufficient hidden 
nodes are able to learn the training data (as well as their outliers and their 
noise) by heart, it is crucial to stop the training procedure at the right time to 
prevent overfitting (this is called ‘early stopping’). This can be achieved by 
dividing the dataset into 3 subsets respectively called the training and test 
sets used for simulating the data currently available to fit and tune the model 
and the validation set used for simulating future values. The network 
parameters are then estimated by fitting the training data using the above 
mentioned iterative procedure (backpropagation of errors). The iteration 
length is optimised by maximising the forecasting accuracy for the test 
dataset. Our networks, which are specially designed for financial purposes, 
will stop training when the profit of our forecasts in the test sub-period is 

                                                 
5
 Statistical measures are given in section 4.2.5 below. 

6
Backpropagation networks are the most common multi-layer networks and are the most 

commonly used type in financial time series forecasting (Kaastra and Boyd (1996)). 



maximized. Then the predictive value of the model is evaluated applying it to 
the validation dataset (out-of-sample dataset). 

There is a range of combination techniques that can be applied to forecasting 
the attempt to overcome some deficiencies of single models. The combining 
method aims at reducing the risk of using an inappropriate model by 
combining several to reduce the risk of failure. Typically this is done because 
the underlying process cannot easily be determined (Hibon and Evgeniou 
(2005)).  

 
Combining methods involves using several redundant models designed for 
the same function, where the diversity of the components is thought important 
(Brown et al. 2005). The procedure of making a hybrid or a mixed forecasting 
time series model can be achieved by combining an ARMA process in order 
to learn the linear component of the conditional mean pattern through an 
artificial neural network process designed to learn its nonlinear elements. In 
summary, the proposed methodologies of the hybrid and mixed system will be 
explained in the next section in figures 6 and 7. 
 

4.2.1 The Multi-Layer Perceptron Model Architecture 

The network architecture of a ‘standard’ MLP looks as presented in figure 47:  
0251658240251659264 

 

 

 

 

 

 

 

Fig. 4: A single output, fully connected MLP model 

 

Where: 
][n

tx ( )1,,2,1 += kn L   are the model inputs (including the input bias node) at 

time t 
 

][m

th ( )1,...,2,1 += jm  are the hidden nodes outputs (including the hidden bias 

node) 
 

ty~
       is the MLP model output 

                                                 
7
 The bias nodes are not shown here for the sake of simplicity. 
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jku and jw       are the network weights 
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The error function to be minimised is: 
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4.2.2   The Recurrent Network Architecture 

Our next model is the recurrent neural network. While a complete explanation 
of RNN models is beyond the scope of this paper, we present below a brief 
explanation of the significant differences between RNN and MLP 
architectures. For an exact specification of the recurrent network, see Elman 
(1990). 

A simple recurrent network has activation feedback, which embodies short-
term memory. The advantages of using recurrent networks over feedforward 
networks, for modelling non-linear time series, has been well documented in 
the past. However as described in Tenti (1996) “the main disadvantage of 
RNNs is that they require substantially more connections, and more memory 
in simulation, than standard backpropagation networks”, thus resulting in a 
substantial increase in computational time. However having said this RNNs 
can yield better results in comparison to simple MLPs due to the additional 
memory inputs.  
 
A simple illustration of the architecture of an Elman RNN is presented below. 

 



 

Fig. 5: Elman recurrent neural network architecture with two nodes on the 
hidden layer 
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In short, the RNN architecture can provide more accurate outputs because 

the inputs are (potentially) taken from all previous values (see inputs 
]1[

1−jU  

and 
]2[

1−jU in the figure above). 

 
4.2.3 The Higher Order Neural Network Architecture 

Higher Order Neural Networks (HONNs) were first introduced by Giles and 
Maxwell (1987) and were called “Tensor Networks”. Although the extent of 
their use in finance has so far been limited, Knowles et al. (2009 – page 52) 
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show that, with shorter computational times and limited input variables, “the 
best HONN models show a profit increase over the MLP of around 8%” on the 
EUR/USD time series (p. 7). For Zhang et al. (2002), a significant advantage 
of HONNs is that “HONN models are able to provide some rationale for the 
simulations they produce and thus can be regarded as “open box” rather than 
“black box”. HONNs are able to simulate higher frequency, higher order non-
linear data, and consequently provide superior simulations compared to those 
produced by ANNs (Artificial Neural Networks)” (p. 188). Furthermore HONNs 
clearly outperform in terms of annualised return and this enables Dunis et al. 
(2008a) to conclude with confidence over their forecasting superiority and 
their stability and robustness through time. 
 
While they have already experienced some success in the field of pattern 
recognition and associative recall8, HONNs have only started recently to be 
used in finance. The architecture of a three input second order HONN is 
shown below: 

 
Fig. 6: Left, MLP with three inputs and two hidden nodes; right, second order   

HONN with three inputs 
 

Where: 
][n

tx ( )1,,2,1 += kn L are the model inputs (including the input bias node) at 

time t 

ty~
            is the HONNs model output 

jku             are the network weights 

   are the model inputs. 

                                                 
8
 Associative recall is the act of associating two seemingly unrelated entities, such as smell 

and colour. For more information see Karayiannis et al.  (1994).  
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HONNs use joint activation functions; this technique reduces the need to 
establish the relationships between input
reduces the number of free weights and means that HONNS are faster to train 
than even MLPs. However because the number of inputs can be very large for 
higher order architectures, orders of 4 and over are rarely used.

Another advantage of the reduction of free weights means that the problems 
of overfitting and local optima affecting the results of neural networks can be 
largely avoided. For a complete description of HONNs see Knowles 
(2005- page 52). 
 

4.2.4 THE HYBRID HONN, MLP AND RNN ARCHITECTURES

 

 

Fig. 7: The architecture of a Hybrid ARMA 
 
The methodology we follow to construct the Hybrid Neural Network is divided 
into 3 steps. In the first step we take the residual from an ARMA model.
second step we forecast the ARMA residual with our neural network. In a third 
step we create the hybrid model by adding the forecasted returns from the 
ARMA model with the forecasted residuals from the second step.
 
4.2.5 THE MIXED HONN, MLP AND RNN 
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HONNs use joint activation functions; this technique reduces the need to 
establish the relationships between inputs when training. Furthermore this 
reduces the number of free weights and means that HONNS are faster to train 
than even MLPs. However because the number of inputs can be very large for 
higher order architectures, orders of 4 and over are rarely used. 

er advantage of the reduction of free weights means that the problems 
of overfitting and local optima affecting the results of neural networks can be 
largely avoided. For a complete description of HONNs see Knowles 

HONN, MLP AND RNN ARCHITECTURES 

 
The architecture of a Hybrid ARMA - Neural Network Model

The methodology we follow to construct the Hybrid Neural Network is divided 
into 3 steps. In the first step we take the residual from an ARMA model.
second step we forecast the ARMA residual with our neural network. In a third 
step we create the hybrid model by adding the forecasted returns from the 
ARMA model with the forecasted residuals from the second step.

4.2.5 THE MIXED HONN, MLP AND RNN ARCHITECTURES 

ARMA model to 
extract linear 
elements in DGP* 
 

ARMA Forecasted 
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than even MLPs. However because the number of inputs can be very large for 

 

er advantage of the reduction of free weights means that the problems 
of overfitting and local optima affecting the results of neural networks can be 
largely avoided. For a complete description of HONNs see Knowles et al. 

 

 

Neural Network Model 

The methodology we follow to construct the Hybrid Neural Network is divided 
into 3 steps. In the first step we take the residual from an ARMA model. In a 
second step we forecast the ARMA residual with our neural network. In a third 
step we create the hybrid model by adding the forecasted returns from the 
ARMA model with the forecasted residuals from the second step. 
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*DGP= Data Generating Process 

 

Fig. 8: The architecture of a Mixed Neural Network Model 

 

The methodology we follow to construct the mixed ARMA-NNR model is 

divided into 2 steps. In the first step the ASE 20 index is modelled with a 

traditional ARMA model. In the second step the forecasted returns of the 

ARMA model are used as an input to the neural network for forecasting the 

selected time series. 

 

4.3   The Genetic Programming Algorithm 

 
For the purpose of our research, the GP application is coded and 
implemented to evolve tree based structures that present models (sub trees) 
of input – output. In the design phase of our GP application we focused 
primarily on execution time optimization as well as limiting the ‘bloat effect’. 
The bloat effect is similar to the issue of overfitting experienced in Neural 
Networks however in our case we run a risk of continuously increasing and 
expanding the tree size. This algorithm is run in a steady state in that a single 
member of the population is replaced at a time. Furthermore, our GP 
application reproduces newer models replacing the weaker ones in the 
population according to their fitness. Reasoning behind the decision to use a 
steady state algorithm is justified as they hold a greater selection strength and 
genetic drift over other algorithms such as a typical generational GAs.  
Additionally, steady state algorithms also offer exceptional multiprocessing 
capabilities.  
 
In our application of the genetic programming we utilize formulas to evolve 
algebraic expressions that enable the analysis / optimization of results in a 
‘tree like structure’. This genetic tree structure consists of nodes (depicted as 
circles in the diagram below) which are essentially functions that perform 
actions within this structure. Furthermore, these functions are in place to 
generate output signals. On the other hand, the squares in the tree signify 
terminal functions representing the end of a function once the most superior 
sub tree (model) is achieved. For example, the below tree structure (model) is 
characterized by the algebraic expression 4.0/x1 (t-1) + ln(x2(t-2)). In this case 
there is one output and the terminal nodes are constant at 4. Additionally, the 

Saved ARMA 
forecasted returns as 
NNR model input 

Output 

       
Mixed ARMA-NNR 
forecast 
 

Neural Network 
Regression Model 
 
Other inputs 



outputs are expressed by x1(t-1) and x2(t-2). In the execution of the genetic 
algorithm it has to be understood that each individual in the population 
correspond to a single sub tree structure. Each of these sub trees are limited 
by the predefined maximum tree size set to 6 in our application.   
 

 
Fig. 9, Example of a tree structure 

 
Koza (1998) summarises the functionality aspect of the GP algorithm in the 
following steps:  
 
(1) The generation of an initial population of randomly constructed models is 

developed with each model being represented in a tree like structure as 
discussed previously. Additionally, the evolutionary algorithm represents 
each chromosome of the population as a tree of variable length (i.e. total 
number of functions and terminals) or a maximum depth of the model tree. 
The process of randomly reproducing each variable of the population is 
completed once all of these functions of the tree are terminal symbols. 
However, until the process is halted by these ‘terminal symbols’ then the 
tree like structure of chromosomes continues to multiply (grow) with each 
generation as the population expands to not only include the parents but 
also their offspring. This is achieved by  crossover and mutation 
operators. On the whole, it also has to be understood that the majority of 
these models produced in the initial population are, in most cases, 
unsatisfactory when tested for their performance with some individual 
models ‘fitting’ better than others. However, one of the virtues offered by 
Genetic Programming is that they exploit and manipulate these 
differences until the best fitting models, in terms of least error, are 
produced.  

 
(2) Following this initial generation of randomly selected models a random 

subset (sub tree) of the population is then selected for a tournament. 
Hence this process is known as a tournament selection phase. This 
process (tournament procedure) is essentially a selection mechanism to 
decipher which individuals from the population are to be selected for 
reproduction to develop the next generation.     

 



(3) An evaluation of the members of this subset is then carried out and 
assigned a fitness value. As stated by Koza (1998) the fitness cases are 
either selected at random or in some structured manner (e.g. at regular 
intervals). In our application, as mentioned briefly in the first step, the 
fitness value is defined as the mean squared error (MSE) with the lowest 
MSE being targeted as the best.  Furthermore, the fitness may be 
measured in terms of the sum of the absolute value of the differences 
between the output produced by the model and/or the desired output (i.e. 
the Minkowski distance) or, alternatively, the square root of the sum of the 
squared errors (i.e. the Euclidean distance).  

 
(4) Following the establishment of fitness values the tournament winners are 

then determined. To reiterate, the winners of this scenario are the models 
with the lower MSE. 

 
(5) Having identified the tournament winners in the previous step we then 

proceed by exposing the models to two genetic operators known as 
mutations and crossovers. Both operators are discussed in more detail 
below: 

 
Mutation: This is the creation of a new model that is mutated randomly from 
an existing one as circled in the diagram below (1*). This one mutation point is 
indiscriminately chosen as an independent point and the resulting sub-tree is 
to be omitted. From this resulting sub-tree, another new sub-tree (2*) is then 
reproduced using the same procedure that was initially implemented to create 
the original random population. Although this was the procedure we 
implemented for mutation there are also a number of alternative methods that 
are explored in other research.  
 

 
 

Fig 10, Mutation tree structure example 
 

 
Crossover: This operator creates two new models from existing models by 
genetically recombining randomly chosen parts of them. This is achieved by 
using the crossover operation applied at a randomly chosen crossover point 
within each model. Due to the fact that entire sub-trees are swapped (from 
point 1* to point 2* and from points 3* to 4*), the crossover operation 
produces models as offsprings.  Furthermore, the models are selected based 
on their fitness and the crossover allocates future trials to regions of the 



search space whose models contain parts from superior models. As a full 
explanation of crossovers is beyond the scope of this paper please refer to 
Koza (1992) for more details.  
 
  

 
 

Fig. 11 , Crossover family tree like structure example 
 
 
(6) The population is then altered with the tournament losers being replaced 

by the winners (superior) offspring. 
(7) Provided the termination criterion (depicted as the symbol ‘?’ in the 

following flow of stages) is not reached, the algorithm returns to step 2 
and these steps are repeated until the predefined termination criterion for 
genetic programming is satisfied. In our study we have set the termination 
criterion to 100,000 at which point the cycles are stopped and forecasted 
results can be obtained. 

(8) Ultimately, this protocol produces the best individual (model) of the 
population as a result. 

 



 
 

*note: the symbol ‘?’ is the termination criterion which iterates or terminates 
the procedure of GP. 
 

 

Fig. 12: The architecture of Genetic Programming Algorithm 

 

4.4 Settings for Genetic Programming Parameters (See Appendix A.4) 

 

 

The parameters used for the optimization of our individual models are defined 

in order to yield better results and are specified as follows: 

  

1. Population size 200. The population size is the total number of 

randomly chosen models in our experiment. This number can be 

altered however in our specific case we found that it was more 

beneficial (in terms of annualised returns) to set the population to 200 

individuals. Each individual model has a tree structure composed of a 

set of functions and terminals. In summary, every model is a 

mathematical equation which participates in the program until the GP 

produces the best individual program. 
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2. Maximum tree depth 6. The maximum tree depth is the maximum 

length of each model (of each tree structure). In neural networks this is 

commonly known as hidden nodes. The depth depends on the 

functions and terminals of each individual model. 

3. Tournament size 4. Tournament size is the size of models in the 

subset. Through trial and error we found this to be the most appropriate 

size. 

4. Crossover trial 1. Crossover trial means the number of generations that 

we let the genetic programming algorithm to run. Crossover is achieved 

by creating two new offspring models for the new population by 

randomly recombining parts from two selected parents. In this 

experiment we have one crossover trial per generation.  

5. Mutation probability 0.75. The mutation probability is the probability that 

can mutate parts of individual models from an existing one. Specifically 

mutation is performed by randomly selecting a parent with a probability 

related to its fitness, after that mutation randomly changes one or more 

genes representing part of the solution it encodes. Due to the fact that 

the population is 200 models, we use a relatively large probability. The 

mutation probability extends from an initial 0.1 and finishes at 0.9. 

 

 

 

5 EMPIRICAL TRADING SIMULATION RESULTS 
 
The trading performance of all the models considered in the validation subset 
is presented in the table below. We choose the network with the higher profit 
in the test sub-period. Our trading strategy applied is simple and identical for 
all the models: go or stay long when the forecast return is above zero and go 
or stay short when the forecast return is below zero. Appendix A.3 provides 
the performance of all the NNs and the GP Algorithm in the training and the 
test sub-periods while Appendix A.5, A.4 and A.2 provide the characteristics 
of our models and the performance measures. The Hybrid-RNNs, Mixed-
RNNs are trained with gradient descent as for the Hybrid-MLPs and Mixed-
MLPs. However, the increase in the number of weights, as mentioned before, 
makes the training process extremely slow: to derive our results, we needed 
about ten times the time needed with the Hybrid-MLPs and Mixed-MLPs. As 
shown in table 6 below, the Mixed-RNN, Hybrid-RNN have a slightly lower 
performance compared to the Hybrid-MLP, Hybrid-HONN, Mixed-MLP, Mixed-
HONN and GP algorithm. 
 
 NAIVE MACD ARMA MLP RNN HONN 

Information Ratio  
 (excluding costs) 

0.32 0.46 0.20 0.60 0.59 0.70 

Annualised Volatility
 (excluding costs) 

36.70% 38.12% 38.13% 38.11% 38.11% 38.10% 

Annualised Return
 (excluding costs) 

11.42% 17.63% 7.68% 22.99% 22.51% 26.75% 

Maximum Drawdown     -49.41% -50.63% -36.50% -36.26% -36.22% -38.71% 



(excluding costs) 

Positions Taken 
 (annualised) 

119 38 72 105 147      98 

 

 
 

 
 

 
 
 
 
 
 
 
 

Table 6: Trading performance results 
 
We can see that the GP algorithm performs significantly better than the 
Hybrid-HONNs, Hybrid-MLPs, Mixed HONNs, Mixed MLPs Hybrid-RNNs, and 
the Mixed-RNNs with similar sorts of drawdowns, and significantly better than 
the standard neural network architectures.  
 
Up to now, we have presented the trading results of all our models without 

considering transaction costs. Since some of our models trade quite often, 

taking transaction costs into account might change the whole picture. 

Following Dunis et al. (2008a), we check for potential improvements to our 

models through the application of confirmation filters. Confirmation filters are 

trading strategies devised to filter out those trades with expected returns 

below a threshold d around zero. They suggest to go long when the forecast 

is above d and to go short when the forecast is below d. It just so happens 

that the Mixed ARMA-Neural Network models perform best without any filter. 

This is also the case of the MLP and HONN models. Still, the application of 

confirmation filters to the benchmark models and the RNN model could have 

led to these models outperforming the Mixed, MLP HONN models. This is not 

 Hybrid MLP Hybrid RNN HybridHONN 

Information Ratio  (excluding costs) 0.86 0.81 0.94 

Annualised Volatility (excluding costs) 38.08% 38.09% 38.07% 

Annualised Return (excluding costs) 32.80% 30.72% 35.67% 

Maximum Drawdown     (excluding costs) -59.05% -59.05% -59.05% 

Positions Taken (annualised) 94 93 94 

 Mixed MLP Mixed RNN Mixed HONN 

Information Ratio       (excluding costs) 0.83 0.78 0.91 

Annualised Volatility (excluding costs) 38.08% 38.09% 38.07% 

Annualised Return     (excluding costs) 31.79% 29.63% 34.75% 

Maximum Drawdown (excluding costs) -26.29% -27.94% -28.20% 

Positions Taken         (annualised) 41 57 65 

 GP Algorithm 

Information Ratio       (excluding costs) 1.03 

Annualised Volatility (excluding costs) 38.04% 

Annualised Return     (excluding costs) 39.33% 

Maximum Drawdown (excluding costs) -28.20% 

Positions Taken         (annualised) 67 



the case however but, in order to conserve space, these results are not 

shown here but they are available from the authors. 

5.1 Transaction Costs 

According to the Athens Stock Exchange, transaction costs for financial 

institutions and fund managers dealing a minimum of 143 contracts or 1 

million Euros is 10 Euros per contract (round trip). Dividing this transaction 

cost of the 143 contracts by average size deal (1 million Euros) gives us an 

average transaction cost for large players of 14 basis points (1 basis 

point=1/100 of 1%) or  0.14%  per position. 

 

 

 

 NAIVE MACD ARMA MLP RNN HONN 

Information Ratio   
 (excluding costs) 

0.32 0.46 0.20 0.60 0.59 0.70 

Annualised Volatility
 (excluding costs) 

36.70% 38.12% 38.13% 38.11% 38.11% 38.10% 

Annualised Return
 (excluding costs) 

11.42% 17.63% 7.68% 22.99% 22.51% 26.75% 

Maximum Drawdown
 (excluding costs) 

-49.41% -50.63% -36.50% -36.26% -36.22% -38.71% 

Positions Taken 
 (annualised) 

119 38 72 105 147 98 

Transaction costs 15.47% 4.94%      9.36% 13.65% 19.11% 12.74% 

Annualised Return
 (including costs) 

-4.05% 12.69% -1.68% 9.35% 3.40% 14.01% 

 

 Hybrid MLP Hybrid RNN Hybrid HONN 

Information Ratio   (excluding costs) 0.86 0.81 0.94 

Annualised Volatility (excluding costs) 38.08% 38.09% 38.07% 

Annualised Return (excluding costs) 32.80% 30.72% 35.67% 

Maximum Drawdown (excluding costs) -59.05% -59.05% -59.05% 

Positions Taken (annualised) 94 93 94 

Transaction costs 12.22% 12.09% 12.22% 

Annualised Return (including costs) 20.58% 18.63% 23.45% 

 
 

 Mixed MLP Mixed RNN Mixed HONN 

Information Ratio (excluding costs) 0.83 0.78 0.91 

Annualised Volatility (excluding costs) 38.08% 38.09% 38.07% 

Annualised Return (excluding costs) 31.79% 29.63% 34.75% 

Maximum Drawdown (excluding costs) -26.29% -27.94% -28.20% 

Positions Taken  (annualised) 41 57 65 

Transaction costs 5.74% 7.98% 9.10% 



Annualised Return (including costs) 26.05% 21.65% 25.65% 

 
 
 GP  Algorithm 

Information Ratio (excluding costs) 1.03 

Annualised Volatility (excluding costs) 38.04% 

Annualised Return (excluding costs) 39.33% 

Maximum Drawdown (excluding costs) -28.20% 

Positions Taken  (annualised) 67 

Transaction costs 9.40% 

Annualised Return (including costs) 29.93% 

 
Table 7: Out-of-sample results with transaction costs 

We can see that, after transaction costs, the GP algorithm model outperforms 

all the other strategies based on the annualized net return closely followed by 

the Mixed-MLP, the Mixed HONN and the Hybrid HONNs strategy. On the 

other hand, the naïve strategy and the ARMA model produce negative results 

after transaction costs are taken into account. The HONN and MACD achieve 

decent returns, yet well below those produced by our best models. 

5.2 Leverage to Exploit High Sharpe Ratios 

In order to further improve the trading performance of our models we 

introduce a “level of confidence” to our forecasts, i.e. a leverage based on the 

test sub-period. For the naïve model, which presents a negative return we do 

not apply leverage. The leverage factors applied are calculated in such a way 

that each model has a common volatility of 20%9 on the test data set. 

The transaction costs are calculated by taking 0.14% per position into 
account, while the cost of leverage (interest payments for the additional 
capital) is calculated at 4% p.a. (that is 0.016% per trading day10). Our final 
results are presented in table 8 below. 
 
 NAIVE MACD ARMA MLP RNN HONN 

Information Ratio
            
(excluding costs) 

0.32 0.70 0.20 0.60 0.59 0.70 

Annualised Volatility     
(excluding costs) 

36.70% 40.03% 38.13% 40.28% 40.21% 40.31% 

                                                 
9
 Since most of the models have a volatility of about 20%, we have chosen this level as our 

basis. The leverage factors retained are given in table 8. 
10

 The interest costs are calculated by considering a 4% interest rate p.a. divided by 252 
trading days. In reality, leverage costs also apply during non-trading days so that we should 
calculate the interest costs using 360 days per year. But for the sake of simplicity, we use the 
approximation of 252 trading days to spread the leverage costs of non-trading days equally 
over the trading days. This approximation prevents us from keeping track of how many non-
trading days we hold a position. 



Annualised Return       
(excluding costs) 

11.42% 18.51% 7.68% 24.30% 23.75% 28.30% 

Maximum Drawdown    
(excluding costs) 

-49.41% -53.16% -36.50% -38.32% -38.21% -40.96% 

Leverage Factor        - 1.050 - 1.057    1.055    1.058 

Positions Taken          
(annualised) 

119 38 72 105 147 98 

Transaction and 
leverage costs 

15.47% 4.94%      9.36% 13.65% 19.11% 12.74% 

Annualised Return     
(including costs) 

-4.05% 13.57% -1.68% 10.65% 4.64% 15.56% 

 

 Hybrid-MLP Hybrid-RNN Hybrid-HONN 

Information Ratio  (excluding costs) 0.86 0.81 0.94 

Annualised Volatility  (excluding costs) 40.14% 40.30% 40.24% 

Annualised Return       (excluding costs) 34.57% 32.50% 37.71% 

Maximum Drawdown    (excluding costs) -62.24% -62.48% -62.46% 

Leverage Factor 1.054 1.058 1.057 

Positions Taken (annualised) 94 93 94 

Transaction and leverage costs 12.22% 12.1% 12.22% 

Annualised Return     (including costs) 12.35% 20.4% 24.89 

 

 

 Mixed-MLP Mixed-RNN Mixed-HONN 

Information Ratio  (excluding costs) 0.83 0.78 0.91 

Annualised Volatility   (excluding costs) 40.22% 40.22% 40.17% 

Annualised Return      (excluding costs) 33.57% 31.29% 36.67% 

Maximum Drawdown  (excluding costs) -27.76% -29.50% -29.75% 

Leverage Factor 1.056 1.056 1.055 

Positions Taken         (annualised) 41 57 65 

Transaction and leverage costs 6.052% 8.30% 9.40% 

Annualised Return     (including costs) 27.51% 23.00% 27.27% 

 

 GP Algorithm 

Information Ratio        (excluding costs) 1.03 

Annualised Volatility   (excluding costs) 41.84% 

Annualised Return      (excluding costs) 43.26% 

Maximum Drawdown  (excluding costs) -31.02% 

Leverage Factor 1.10 



Positions Taken           (annualised) 67 

Transaction and leverage costs 9.95% 

Annualised Return     (including costs) 33.34% 

Table 8: Trading performance - final results 

As can be seen from table 8, the GP algorithm continues to demonstrate a 
superior trading performance despite significant drawdowns. The Mixed 
HONN, the Mixed MLP and the Hybrid HONN strategies also perform well and 
presents high annualised returns. In general, we observe that all models are 
able to gain extra profits from the leverage as the increased transaction costs 
countered by increased performance Again it is worth mentioning, that the 
time needed to train the HONN, the Hybrid-HONN and the Mixed-HONN 
network was considerably shorter compared with that needed for the MLP, 
Hybrid-MLP, Mixed-MLP, RNN, Mixed-RNN and the Hybrid-RNN networks.  
 

6. CONCLUDING REMARKS 

In this paper, we apply a Genetic Programming algorithm, Multi-layer 

Perceptron, Recurrent, Higher Order, Mixed-Multilayer Perceptron, Mixed-

Recurrent, Mixed-Higher Order neural networks, Hybrid-Multilayer Perceptron, 

Hybrid-Recurrent, Hybrid-Higher Order neural networks to a one-day-ahead 

forecasting and trading task of the ASE 20 fixing series with only 

autoregressive terms as inputs. We use a naïve strategy, a MACD and an 

ARMA model as benchmarks. We develop these different prediction models 

over the period January 2001 - August 2007 and validate their out-of-sample 

trading efficiency over the following period from September 2007 through 

December 2008.  

The GP algorithm demonstrates a higher trading performance in terms of 

annualised return and information ratio before transaction costs. When more 

elaborate trading strategies are applied and transaction costs are considered 

the GP algorithm again continues to outperform all other models achieving the 

highest annualised return. The Mixed-HONNs, the Mixed-RNNs and the 

Hybrid-HONNs models perform remarkably as well and seem to have ability in 

providing good forecasts when autoregressive series are only used as inputs. 

It is also important to note that the Mixed-MLP network which presents a very 

close second best performance needs less training time than the GP 

algorithm, a much desirable feature in a real-life quantitative investment and 

trading environment. In the circumstances, our results should go some way 

towards convincing a growing number of quantitative fund managers to 

experiment beyond the bounds of traditional statistical and neural network 

models. In particular, the strategies consisting of modelling in a first stage the 

linear component of a financial time series and then applying a neural network 

to learn its nonlinear elements and the use of Genetic Programming appear 

quite promising. 



APPENDIX 

 

A.1 ARMA Model 

The output of the ARMA model used in this paper is presented below. 

 

Dependent Variable: RETURNS   

Method: Least Squares   

Date: 03/17/09   Time: 22:18   

Sample (adjusted): 8 1738   

Included observations: 1731 after adjustments 

Convergence achieved after 37 iterations  

Backcast: 1 7   

     
     

Variable Coefficient Std. Error t-Statistic Prob.   

     
     

C 0.000290 0.000303 0.956602 0.3389 

AR(1) 0.375505 0.052705 7.124626 0.0000 

AR(3) -0.244662 0.024991 -9.789999 0.0000 

AR(7) -0.678906 0.044902 -15.11958 0.0000 

MA(1) -0.374290 0.053055 -7.054702 0.0000 

MA(3) 0.269470 0.026409 10.20353 0.0000 

MA(7) 0.677169 0.044295 15.28785 0.0000 

     
     

R-squared 0.026582     Mean dependent var 0.000288 

Adjusted R-squared 0.023194     S.D. dependent var 0.012549 

S.E. of regression 0.012403     Akaike info criterion -5.937710 

Sum squared resid 0.265213     Schwarz criterion -5.915645 

Log likelihood 5146.088     F-statistic 7.846483 

Durbin-Watson stat 1.856760     Prob(F-statistic) 0.000000 

     
     

Inverted AR Roots  .89-.44i      .89+.44i    .31-.92i  .31+.92i 

 -.54+.70i     -.54-.70i        -.93 

Inverted MA Roots  .88-.45i      .88+.45i    .31-.92i  .31+.92i 

 -.54+.70i     -.54-.70i        -.94 

     
     

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A.2 Performance Measures 

The performance measures are calculated as follows:  

 

 Performance 

Measure 
Description 
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Table 9: Trading simulation performance measures 

 

 

A.3 Empirical Results in the Training and Test Sub-Periods 

 

 NAIVE MACD ARMA MLP RNN 

 

HONN 

Information Ratio         (excluding costs) 1.55 1.24 1.24 1.57 1.53 1.61 

Annualised Volatility (excluding costs) 19.32% 19.49% 19.83% 19.60% 19.60% 19.59% 

Annualised Return (excluding costs) 29.86% 24.29% 24.66% 30.72% 30.02% 31.56% 

Maximum Drawdown   (excluding costs) -23.39% -25.42% -26.70% -27.52% -34.66% -39.70% 

Positions Taken (annualised) 114 34 50 86 81 108 

 

 

 Hybrid-MLP Hybrid-RNN Hybrid-HONN 

Information Ratio         (excluding costs) 2.13 2.01 2.26 
Annualised Volatility (excluding costs) 19.42% 19.44% 19.40% 

Annualised Return (excluding costs) 41.35% 39.01% 43.77% 

Maximum Drawdown   (excluding costs) -37.20% -26.86% -37.20% 

Positions Taken (annualised) 102 79 77 

 

 

 



 Mixed-MLP Mixed-RNN Mixed-HONN 

Information Ratio         (excluding costs) 2.07 1.93 2.11 

Annualised Volatility (excluding costs) 19.45% 19.47% 19.44% 

Annualised Return (excluding costs) 40.17% 37.57% 41.12% 

Maximum Drawdown   (excluding costs) -37.89% -41.47% -37.52 

Positions Taken (annualised) 46 68 47 

 

 GP 

Information Ratio         (excluding costs) 2.19 

Annualised Volatility (excluding costs) 19.33% 

Annualised Return (excluding costs) 42.24% 

Maximum Drawdown   (excluding costs) -31.23% 

Positions Taken (annualised) 50 

Table 10: In-sample trading performance 

A.4 Genetic Programming Characteristics 

We present below the characteristics of the Genetic Programming Algorithm 

with the best trading performance on the test sub-period. 

 

Population Size: 200 
Max tree depth: 6 
Function Set: +, -, *, /, ^, ^2, ^3, ^1/2, ^1/3, Exp, 

If,sin, cos, tan 
Fitness evaluation 
function: 

Mean Squared Error 

Tournament Size: 4 
Crossover trials: 1 
Mutation Probability: 0,75 

Table 11: Genetic Programming characteristics 

A.5 Networks Characteristics 

We present below the characteristics of the networks with the best trading 

performance on the test sub-period for the different architectures. 

Table 12: Network Characteristics for Traditional Neural Networks 

 

 

            Parameters MLP RNN HONN 

 Learning algorithm Gradient descent Gradient descent Gradient descent 

 Learning rate 0.001 0.001 0.001 

 Momentum 0.003 0.003 0.003 

 Iteration steps 1500 1500 1000 

 Initialisation of weights N(0,1) N(0,1) N(0,1) 

 Input nodes 11 11 11 

 Hidden nodes (1layer) 7 6 0 

 Output node 1 1 1 

            Parameters Hybrid-MLP Hybrid-RNN Hybrid-HONNs 



Table 13: Network characteristics for Hybrid Neural Networks 

Table 14: Network characteristics for Mixed Neural Networks 

 

 

  

 Learning algorithm Gradient descent Gradient descent Gradient descent 

 Learning rate 0.001 0.001 0.001 

 Momentum 0.003 0.003 0.003 

 Iteration steps 1500 1500 1000 

 Initialisation of weights N(0,1) N(0,1) N(0,1) 

 Input nodes 13 13 13 

 Hidden nodes (1layer) 6 7 0 

 Output node 1 1 1 

            Parameters   Mixed-MLP    Mixed-RNN   Mixed-HONN 

 Learning algorithm Gradient descent Gradient descent Gradient descent 

 Learning rate 0.001 0.001 0.001 

 Momentum 0.003 0.003 0.003 

 Iteration steps 1500 1500 1000 

 Initialisation of weights N(0,1) N(0,1) N(0,1) 

 Input nodes 12 12 12 

 Hidden nodes (1layer) 6 7 0 

 Output node 1 1 1 
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