
1 

  

 

 

 

 

CENTRE FOR EMEA BANKING, FINANCE & ECONOMICS 
 

 

 

 

 

 

 

 

Modelling and Trading the Greek Stock Market with 

Mixed Neural Network Models 

 

 

Christian L. Dunis 

Jason Laws 

Andreas Karathanasopoulos 

 

 

 

Working Paper Series 

 

No 15/11 
 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by London Met Repository

https://core.ac.uk/display/36771925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

  

Modelling and Trading 

the Greek Stock Market with Mixed Neural Network Models 
 

 

 

Christian L. Dunis* 

Jason Laws 

Andreas Karathanasopoulos 

 

Abstract 

In this paper, a mixed methodology that combines both the ARMA and NNR models is 

proposed to take advantage of the unique strength of ARMA and NNR models in linear 

and nonlinear modelling. Experimental results with real data sets indicate that the 

combined model can be an effective way to improve forecasting accuracy achieved by 

either of the models used separately. The motivation for this paper is to investigate the 

use of alternative novel neural network architectures when applied to the task of 

forecasting and trading the ASE 20 Greek Index using only autoregressive terms as 

inputs. This is done by benchmarking  the forecasting performance of six different neural 

network designs representing a Higher Order Neural Network (HONN), a Recurrent 

Network (RNN), a classic Multilayer Percepton (MLP), a Mixed Higher Order Neural 

Network, a Mixed Recurrent Neural Network and a Mixed Multilayer Percepton Neural 

Network with some traditional techniques, either statistical such as a an autoregressive 

moving average model (ARMA), or technical such as a moving average 

convergence/divergence model (MACD), plus a naïve trading strategy. More specifically, 

the trading performance of all models is investigated in a forecast and trading simulation 

on ASE 20 fixing time series over the period 2001-2008 using the last one and a half 

year for out-of-sample testing. We use the ASE 20 daily fixing as many financial 

institutions are ready to trade at this level and it is therefore possible to leave orders with 

a bank for business to be transacted on that basis. 
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1. INTRODUCTION 

The use of intelligent systems for market predictions has been widely established. This 

paper deals with the application of mixed computing techniques for forecasting the 

Greek stock market. The development of accurate techniques is critical to economists, 

investors and analysts. This task is getting more and more complex as financial markets 

are getting increasingly interconnected and interdependent. The traditional statistical 

methods, on which forecasters were reliant in recent years, seem to fail to capture the 

interrelationship between market variables. This paper investigates methods capable of 

identifying and capturing all the discontinuities, the nonlinearities and the high frequency 

multipolynomial components characterizing the financial series today. A model category 

that promises such effective results is the combination of autoregressive models such as 

ARMA model with Neural Networks named Mixed-Neural Network model. Many 

researchers have argued that combining several models for forecasting gives better 

estimates by taking advantage of each model’s capabilities when comparing them with 

single time series models. 

 

The motivation for this paper is to investigate the use of several new neural networks 

techniques combined with ARMA model in order to overcome these limitations using 

autoregressive terms as inputs. This is done by benchmarking six different neural 

network architectures representing a Multilayer Percepton (MLP), a Higher Order Neural 

Network (HONN), a Recurrent Neural Network (RNN), a Mixed Higher order Neural 

Network, a Mixed Recurrent Neural Network and a Mixed Multilayer Percepton Neural 

Network Their trading performance on the ASE 20 time series is investigated and is 

compared with some traditional statistical or technical methods such as an 

autoregressive moving average (ARMA) model or a moving average 

convergence/divergence (MACD) model, and a naïve trading strategy.  

 

As it turns out, the Mixed-HONN demonstrates a remarkable performance and 

outperforms all other models in a simple trading simulation exercise. On the other hand, 

when more sophisticated trading strategies using confirmation filters and leverage are 

applied, Mixed MLPs outperform all models in terms of annualised return. Our 

conclusion colloborates those of Lindemann et al. (2004) and Dunis et al. (2008b) where 

HONNs also demonstrate a forecasting superiority on the EUR/USD series over more 

traditional techniques such as a MACD and a naïve strategy. However, the RNN which 

performed remarkably well, show a disappointing performance in this research: this may 

be due to their inability to provide good enough results when only autoregressive terms 

are used as inputs. 

The rest of the paper is organised as follows. In section 2, we present the literature 

relevant to the Mixed Neural Networks, the Recurrent Neural Network, the Higher Order 
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Neural Networks and the Multilayer Percepton. Section 3 describes the dataset used for 

this research and its characteristics. An overview of the different neural network models 

and statistical techniques is given in section 4. Section 5 gives the empirical results of all 

the models considered and investigates the possibility of improving their performance 

with the application of more sophisticated trading strategies. Section 6 provides some 

concluding remarks. 

 

 

2. LITERATURE REVIEW 

Stock market analysis is an area of financial application. Detecting trends of stock 

market data is a difficult task as they have complex, nonlinear, dynamic and chaotic 

behaviour. Time series methods such as ARMA model and autoregressive conditional 

heteroskedasticity models are not capable of accurately forecasting the time series as 

they are based on the theory of stationary stochastic processes. Empirical studies prove 

that artificial Neural Networks models perform better than these time series models. 

Ghiassi et al. (2005) compare forecasting performance of a dynamic Neural Network 

with traditional neural networks and ARMA models. Greg and Sarah (1999) use Neural 

Networks for GDP growth and determined whether the forecasting performance of 

financial and monetary variables can be improved using Neural Networks. Fatima and 

Hussain (2008) propose a Hybrid financial system that in terms of forecasting behaves 

better compared to standard models. 

 

The motivation for this paper is to apply some of the most promising new Neural 

Networks architectures combining them with autoregressive models (in our case ARMA 

model) which have been developed recently with the purpose to overcome the 

numerous limitations of the more classic neural architectures and to assess whether 

they can achieve a higher performance in a trading simulation using only autoregressive 

series as inputs. 

 

Combining different models can increase the chance to capture different patterns in the 

data and improve forecasting performance. Several empirical studies have already 

suggested that by combining several different models, forecasting accuracy can often be 

improved over an individual model. Using hybrid models or combining several models 

has become a common practice to improve the forecasting accuracy since the well-

known M-competition (Makridakis et al.(1982)) in which combinations of forecasts from 

more than one model often led to improved forecasting performance. The basic idea of 

the model combination in forecasting is to use each model’s unique feature to capture 

different patterns in the data. Both theoretical and empirical findings suggest that 

combining different methods can be an effective and efficient way to improve forecasts 
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(Makridakis (1989), Newbold et al. (1974) Palm et al. (1992), Winkler (1989)). Research 

in time series forecasting argues that predictive performance improves the combined 

models. (Bishop (1994), Clemen (1989), Hansen et al. (2003), Hibbert et al. (2000), 

Terui et al. (2002), Tseng et al. (2002), Zhang, (2003), Zhang et al. (2005)). 

 

The reason for combining models comes from the assumption that either one cannot 

identify the true data generating process (Terui and Von Dyke. (2002)) or that a single 

model may not be sufficient to identify all the characteristics of the time series (Zhang 

(2003)). Moreover the use of hybrid neural network has not been used until the moment 

that scientists started to investigate not only the benefits of Hybrid Neural Networks 

against other statistical methods but also the differences between different combinations 

of Hybrid Neural Networks with other statistical models following the Hybrid GARCH-NN 

approach Wang (2007) and the Hybrid ARIMA/ ARCH-NN of Fatima and Hussain 

(2008). Abraham et al. (2002) analysed the 24-month stock data for NASDAQ-100 main 

indices. Their hybrid system is Neuro-Fuzzy, a combination of neural network and fuzzy 

logic system. Lastly Andreou et al. (2006) propose knowledge-oriented neural network 

models combining nonparametric with parametric models (Black –Scholes) for option 

price data. 

 

RNNs have an activation feedback which embodies short-term memory allowing them to 

learn extremely complex temporal patterns. Their superiority against feedfoward 

networks when performing nonlinear time series prediction is well documented in 

Connor et al. (1993) and Adam et al. (1994). In financial applications, Kamijo et al. 

(1990) applied them successfully to the recognition of stock patterns of the Tokyo stock 

exchange while Tenti (1996) achieved remarkable results using RNNs to forecast the 

exchange rate of the Deutsche Mark. Tino et al. (2001) use them to trade successfully 

the volatility of the DAX and the FTSE 100 using straddles while Dunis and Huang 

(2002), using continuous implied volatility data from the currency options market, obtain 

remarkable results for their GBP/USD and USD/JPY exchange rate volatility trading 

simulation. 

 

HONNs were first introduced by introduced by Giles and Maxwell (1987) as a fast 

learning network with increased learning capabilities. Although their function 

approximation superiority over the more traditional architectures is well documented in 

the literature (see among others Redding et al. (1993), Kosmatopoulos et al. (1995) and 

Psaltis et al. (1998)), their use in finance so far has been limited. This has changed 

when scientists started to investigate not only the benefits of Neural Networks (NNs) 

against the more traditional statistical techniques but also the differences between the 

different NNs model architectures. Practical applications have now verified the 

theoretical advantages of HONNs by demonstrating their superior forecasting ability and 
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put them in the front line of research in financial forecasting. For example Dunis et al. 

(2006b) use them to forecast successfully the gasoline crack spread while Fultcher et al. 

(2006) apply HONNs to forecast the AUD/USD exchange rate, achieving a 90% 

accuracy. However, Dunis et al. (2006a) show that, in the case of the futures spreads 

and for the period under review, the MLPs performed better compared with HONNs and 

recurrent neural networks. Moreover, Dunis et al. (2008a), who also study the EUR/USD 

series for a period of 10 years, demonstrate that when multivariate series are used as 

inputs the HONNs, RNN and MLP networks have a similar forecasting power. Finally, 

Dunis et al. (2008b) in a paper with a methodology identical to that used in this research, 

demonstrate that HONN and the MLP networks are superior in forecasting the 

EUR/USD ECB fixing until the end of 2007, compared to the RNN networks, an ARMA 

model, a MACD and a naïve strategy. 

 

3. THE ASE 20 GREEK INDEX AND RELATED FINANCIAL DATA 

For Futures on the FTSE/ASE-20 that are traded in derivatives markets the underlying 

asset is the blue chip index FTSE/ASE-20. The FTSE/ASE-20 index is based on the 20 

largest ASE stocks. It was developed in 1997 by the partnership of ASE with FTSE 

International and is already established benchmark. It represents over 50% of ASE's 

total capitalisation and currently has a heavier weight on banking, telecommunication 

and energy stocks. 

 

The futures contract on the index FTSE/ASE-20 is cash settled in the sense that the 

difference between the traded price of the contract and the closing price of the index on 

the expiration day of the contract is settled between the counterparties in cash. As a 

matter of fact, as the price of the contract changes daily, it is cash settled on a daily 

basis, up until the expiration of the contract. 

The futures contract is traded in index points, while the monetary value of the contract is 

calculated by multiplying the futures price by the multiplier 5 EUR per point. For 

example, a contract trading at 1,400 points has a value of 7,000 EUR. 

 

The ASE 20 Futures is therefore a tradable level which makes our application more 

realistic and this is the series that we investigate in this paper1.  

Name of Period Trading Days Beginning End 

Total Dataset 2087 21 January 2001 31 December 2008 

Training Dataset 1719 29 January 2001 30 August 2007 

Out- of- sample Dataset(Validation Set) 349 31 August /2007 31 December 2008 

 

                                                 
1
 We examine the ASE 20 since its first trading day on 21 January 2001, and until 31 December 2008, 

using the continuous data available from datastream. 



  

Fig. 1

 

The observed ASE 20 time series is non

the 99% confidence interval) containing slight skewness and high kurtosis. It is also 

non-stationary and we decided to transform the ASE 20 series into stationary series of 

rates of return2. 

Given the price level P1, P2,…,

 

 
 

                                                 
2
 Confirmation of its stationary property is obtained at the 1% significance level by both the Augmented

Dickey Fuller (ADF) and Phillips-

7 

Table 1:  The ASE 20 dataset

Fig. 1: ASE 20 fixing prices (total dataset). 

The observed ASE 20 time series is non-normal (Jarque-Bera statistics confirms

the 99% confidence interval) containing slight skewness and high kurtosis. It is also 

stationary and we decided to transform the ASE 20 series into stationary series of 
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Confirmation of its stationary property is obtained at the 1% significance level by both the Augmented

-Perron (PP) test statistics. 

 

statistics confirms this at 

the 99% confidence interval) containing slight skewness and high kurtosis. It is also 

stationary and we decided to transform the ASE 20 series into stationary series of 

is formed by: 

                                 [1] 

Confirmation of its stationary property is obtained at the 1% significance level by both the Augmented 
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Fig. 2: ASE 20 returns summary statistics (total dataset). 

 

 

As inputs to our networks and based on the autocorrelation function and some ARMA 

experiments we selected 2 sets of autoregressive and moving average terms of the 

ASE 20  returns. 

 

 

 

 

 

Number Variable  Lag 

1 Athens Composite all share return 1 

2 Athens Composite all share return 3 

3 Athens Composite all share return 6 

4 Athens Composite all share return 8 

5 Athens Composite all share return 10 

6 Athens Composite all share return 13 

7 Athens Composite all share return 14 

8 Moving Average of the Athens Composite all share return 15 

9 Athens Composite all share return 16 
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Std. Dev.   0.015088

Skewness  -0.036670

Kurtosis   9.514666

Jarque-Bera  3691.056

Probability  0.000000
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10 Athens Composite all share return 18 

11 Moving Average of the Athens Composite all share return 19 

 

Table 2: Explanatory variables for traditional Neural Networks 

 

Number Variable Lag 

1 Athens Composite all share return 1 

2 Athens Composite all share return 2 

3 Athens Composite all share return 4 

4 Athens Composite all share return 5 

5 Athens Composite all share return 7 

6 Athens Composite all share return 9 

7 Moving Average of the Athens Composite all share return 10 

8 Athens Composite all share return 13 

9 Athens Composite all share return 14 

10 Athens Composite all share return 15 

11 Moving Average of the Athens Composite all share return 16 

12 Athens Composite all share return 17 

   

 

Table 3: Explanatory variables for Mixed Neural Networks 

 

In order to train the neural networks we further divided our dataset as follows: 

 

Name of Period Trading Days Beginning End 

Total Dataset 2087 21 January 2001 31 December 2008 

Training Dataset 1373 29 January 2001 03 May2006 

Test Dataset 346 04 May 2006 30 August 2007 

Out-of- sample Dataset (Validation Set) 349 31 August 2007 31 December 2008 

 

Table 4: The Neural Networks datasets 

 

4. FORECASTING MODELS 

4.1 Benchmark Models 
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In this paper, we benchmark our neural network models with 3 traditional strategies, 

namely an autoregressive moving average model (ARMA), a moving average 

convergence/divergence technical model (MACD) and a naïve strategy.  

 

4.1.1 Naïve strategy 

 

The naïve strategy simply takes the most recent period change as the best prediction of 

the future change. The model is defined by: 

 
tt YY =+1

ˆ                  [2] 

Where            tY        is the actual rate of return at period t 

  1
ˆ

+tY  is the forecast rate of return for the next period 

The performance of the strategy is evaluated in terms of trading performance via a 

simulated trading strategy. 
 

4.1.2 Moving Average 

The moving average model is defined as: 

 ( )
n

YYYY
M ntttt

t

121 ... +−−− ++++
=         [3] 

Where           
tM  is the moving average at time t 

 n is the number of terms in the moving average 

tY  is the actual rate of return at period t 

The MACD strategy used is quite simple. Two moving average series are created with 

different moving average lengths. The decision rule for taking positions in the market is 

straightforward. Positions are taken if the moving averages intersect. If the short-term 

moving average intersects the long-term moving average from below a ‘long’ position is 

taken. Conversely, if the long-term moving average is intersected from above a ‘short’ 

position is taken3. 

The forecaster must use judgement when determining the number of periods n on which 

to base the moving averages. The combination that performed best over the in-sample 

sub-period was retained for out-of-sample evaluation. The model selected was a 

combination of the ASE 20 and its 7-day moving average, namely n = 1 and 7 

respectively or a (1, 7) combination. The performance of this strategy is evaluated solely 

in terms of trading performance. 

 

                                                 
3
A ‘long’ ASE 20 position means buying the index at the current price, while a ‘short’ position means 

selling the index at the current price. 
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4.1.3 ARMA Model 

Autoregressive moving average models (ARMA) assume that the value of a time series 

depends on its previous values (the autoregressive component) and on previous 

residual values (the moving average component)4.   

The ARMA model takes the form: 

 
       qtqtttptpttt wwwYYYY −−−−−− −−−−+++++= εεεεφφφφ ...... 221122110  [4] 

where            tY                              is the dependent variable at time t 

1−tY , 2−tY , and 
ptY −  are the lagged dependent variable 

0φ , 1φ , 2φ , and 
pφ  are regression coefficients 

tε    is the residual term 

1−tε , 
2−tε , and 

pt−ε  are previous values of the residual 

 1w , 2w , and 
qw  are weights. 

Using as a guide the correlogram in the training and the test sub periods we have 

chosen a restricted ARMA (7, 7) model. All of its coefficients are significant at the 99% 

confidence interval. The null hypothesis that all coefficients (except the constant) are not 

significantly different from zero is rejected at the 99% confidence interval (see Appendix 

A1).  

The selected ARMA model takes the form: 

tY = 2.90 · 10-4 + 0.376
1−tY  - 0.245Yt-3  - 0.679Yt-7  +  0.374εt-1  - 0.270εt-3  -0.677εt-7                 

[6] 

 

The model selected was retained for out-of-sample estimation. The performance of the 

strategy is evaluated in terms of traditional forecasting accuracy and in terms of trading 

performance5. 

 

 

4.2 Neural Networks and Mixed Neural Networks 

 

Neural networks exist in several forms in the literature. The most popular architecture is 

the Multi-Layer Percepton (MLP). 

                                                 
4
 For a full discussion on the procedure, refer to Box et al. (1994) or Pindyck and Rubinfeld (1998). 

5
 Statistical measures are given in section 4.2.5 below. 
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A standard neural network has at least three layers. The first layer is called the input 

layer (the number of its nodes corresponds to the number of explanatory variables). The 

last layer is called the output layer (the number of its nodes corresponds to the number 

of response variables). An intermediary layer of nodes, the hidden layer, separates the 

input from the output layer. Its number of nodes defines the amount of complexity the 

model is capable of fitting. In addition, the input and hidden layer contain an extra node, 

called the bias node. This node has a fixed value of one and has the same function as 

the intercept in traditional regression models. Normally, each node of one layer has 

connections to all the other nodes of the next layer. 

 

The network processes information as follows: the input nodes contain the value of the 

explanatory variables. Since each node connection represents a weight factor, the 

information reaches a single hidden layer node as the weighted sum of its inputs. Each 

node of the hidden layer passes the information through a nonlinear activation function 

and passes it on to the output layer if the calculated value is above a threshold.  

 

The training of the network (which is the adjustment of its weights in the way that the 

network maps the input value of the training data to the corresponding output value) 

starts with randomly chosen weights and proceeds by applying a learning algorithm 

called backpropagation of errors6 (Shapiro (2000)). The learning algorithm simply tries 

to find those weights which minimize an error function (normally the sum of all squared 

differences between target and actual values). Since networks with sufficient hidden 

nodes are able to learn the training data (as well as their outliers and their noise) by 

heart, it is crucial to stop the training procedure at the right time to prevent overfitting 

(this is called ‘early stopping’). This can be achieved by dividing the dataset into 3 

subsets respectively called the training and test sets used for simulating the data 

currently available to fit and tune the model and the validation set used for simulating 

future values. The network parameters are then estimated by fitting the training data 

using the above mentioned iterative procedure (backpropagation of errors). The iteration 

length is optimised by maximising the forecasting accuracy for the test dataset. Our 

networks, which are specially designed for financial purposes, will stop training when 

the profit of our forecasts in the test sub-period is maximized. Then the predictive value 

of the model is evaluated applying it to the validation dataset (out-of-sample dataset). 

There is a range of combination techniques that can be applied to forecasting the 

attempt to overcome some deficiencies of single models. The combining method aims at 

reducing the risk of using an inappropriate model by combining several to reduce the 

                                                 
6
Backpropagation networks are the most common multi-layer networks and are the most commonly used 

type in financial time series forecasting (Kaastra and Boyd (1996)). 
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risk of failure. Typically this is done because the underlying process cannot easily be 

determined (Hibon et al. (2005)).  

 

Combining methods involves using several redundant models designed for the same 

function, where the diversity of the components is to be thought important (Brown et al. 

2005). The procedure of making a mixed forecasting time series model can be achieved 

by combining an ARMA process in order to learn the linear component of the conditional 

mean pattern with an Artificial Neural Network process designed to learn its nonlinear 

elements. The construction of the Mixed ARMA-Neural Network model is  detailed is in 

figure 6 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.1 THE MULTI-LAYER PERCEPTON MODEL ARCHITECTURE 

The network architecture of a ‘standard’ MLP looks as presented in figure 47:  

 

 

 

 

 

 

 

 

 

                                                 
7
 The bias nodes are not shown here for the sake of simplicity. 

MLP 

][k

tx  ][ j

th  

jku  

jw  

ty~  
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Fig. 3: A single output, fully connected MLP model 

 

Where: 
][n

tx ( )1,,2,1 += kn L   are the model inputs (including the input bias node) at time t 

 
][m

th ( )1,...,2,1 += jm  are the hidden nodes outputs (including the hidden bias node) 

 

ty~
       is the MLP model output 

jku
 
and jw       are the network weights 

 

   is the transfer sigmoid function: ( )
xe

xS
−+

=
1

1
,          [6] 

 

 

   is a linear function:  ( ) ∑=
i

ixxF         [7] 

 

The error function to be minimised is: 

( ) ( )( )∑
=

−=
T

t

jjkttjjk wuyy
T

wuE
1

2
,~1

, ,  with ty  being the target value                  [8]  

 

 

 

4.2.2   THE RECURRENT NETWORK ARCHITECTURE 

Our next model is the recurrent neural network. While a complete explanation of RNN 

models is beyond the scope of this paper, we present below a brief explanation of the 

significant differences between RNN and MLP architectures. For an exact specification 

of the recurrent network, see Elman (1990). 

A simple recurrent network has activation feedback, which embodies short-term 

memory. The advantages of using recurrent networks over feedforward networks, for 

modelling non-linear time series, has been well documented in the past. However as 

described in Tenti (1996) “the main disadvantage of RNNs is that they require 

substantially more connections, and more memory in simulation, than standard 

backpropagation networks”, thus resulting in a substantial increase in computational 
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time. However having said this RNNs can yield better results in comparison to simple 

MLPs due to the additional memory inputs.  

 

 

A simple illustration of the architecture of an Elman RNN is presented below. 

 

 

Fig. 4: Elman Recurrent neural network architecture with two nodes on the hidden layer 

 

Where: 

][n

tx ( )1,,2,1 += kn L , 
]2[]1[

, tt uu  are the model inputs (including the input bias node) at 

time t 

ty~
   is the recurrent model output 

][ f

td )2,1( =f   and
][n

tw ( )1,,2,1 += kn L    are the network weights 

 

][ f

tU )2,1( =f is the output of the hidden nodes at time  t 

   is the transfer sigmoid function: ( )
xe

xS
−+

=
1

1
,          [9] 

 

 

   is the linear output function:    ( ) ∑=
i

ixxF                          [10] 

 

 

ty~
 

]2[

jU

 

]1[

jU

]1[

jx

]2[

jx

]3[

jx

]1[

1−jU

 
]2[

1−jU  
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The error function to be minimised is: 

( ) ( )( )∑
=

−=
T

t

tttttt wdyy
T

wdE
1

2
,~1

,                                           [11] 

In short, the RNN architecture can provide more accurate outputs because the inputs 

are (potentially) taken from all previous values (see inputs 
]1[

1−jU  and 
]2[

1−jU in the figure 

above). 

 

4.2.3 THE HIGHER ORDER NEURAL NETWORK ARCHITECTURE 

Higher Order Neural Networks (HONNs) were first introduced by Giles and Maxwell 

(1987) and were called “Tensor Networks”. Although the extent of their use in finance 

has so far been limited, Knowles et al. (2009) show that, with shorter computational 

times and limited input variables, “the best HONN models show a profit increase over 

the MLP of around 8%” on the EUR/USD time series (p. 7). For Zhang et al. (2002), a 

significant advantage of HONNs is that “HONN models are able to provide some 

rationale for the simulations they produce and thus can be regarded as “open box” 

rather then “black box”. HONNs are able to simulate higher frequency, higher order non-

linear data, and consequently provide superior simulations compared to those produced 

by ANNs (Artificial Neural Networks)” (p. 188). Furthermore HONNs clearly outperform 

in terms of annualised return and this enables Dunis et al. (2008) to conclude with 

confidence over their forecasting superiority and their stability and robustness through 

time. 

 

While they have already experienced some success in the field of pattern recognition 

and associative recall8, HONNs have only started recently to be used in finance. The 

architecture of a three input second order HONN is shown below: 

                                                 
8
 Associative recall is the act of associating two seemingly unrelated entities, such as smell and colour. 

For more information see Karayiannis et al.  (1994).  
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Fig. 5: Left, MLP with three inputs and two hidden nodes; right, second order   HONN 

with three inputs 

 

Where: 
][n

tx ( )1,,2,1 += kn L are the model inputs (including the input bias node) at time t 

ty~
            is the HONNs model output 

   jku                       are the network weights 

   are the model inputs. 

    is the transfer sigmoid function: ( )
x

e
xS

−
+

=
1

1
,       [12] 

 

    is a linear function:  ( ) ∑=
i

ixxF        [13] 

The error function to be minimised is: 

( ) ( )( )∑
=

−=
T

t

jkttjjk uyy
T

wuE
1

2
,~1

, ,  with ty  being the target value       [14] 

HONNs use joint activation functions; this technique reduces the need to establish the 

relationships between inputs when training. Furthermore this reduces the number of free 

weights and means that HONNS are faster to train than even MLPs. However because 

the number of inputs can be very large for higher order architectures, orders of 4 and 

over are rarely used. 
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Another advantage of the reduction of free weights means that the problems of 

overfitting and local optima affecting the results of neural networks can be largely 

avoided. For a complete description of HONNs see Knowles et al. (2005). 

 

4.2.4 THE Mixed HONN, MLP, RNN, ARCHITECTURE 

 

 

 

 

                             

 

 

 

 

                                 

                                                                                                        

 

 

 

                                   

 

 

 

*DGP= Data Generating Process 

 

 

 

 

Fig. 6: The architecture of Mixed Neural Network Model 

 

 

The methodology we follow to construct the Mixed ARMA-NNR model is divided into 2 

steps. In the first step the ASE 20 index is modelled with a traditional ARMA model. In 

the second step the forecasted returns of the ARMA model are used as an input to the 

neural networks for forecasting the selected time series. 
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4.3 FORECASTING ACCURACY MEASURES 

As it is standard in the literature, in order to evaluate statistically our forecasts, the 

RMSE, the MAE, the MAPE and the Theil-U statistics are computed. The RMSE and 

MAE statistics are scale-dependent measures but give a basis to compare volatility 

forecasts with the realised volatility while the MAPE and the Theil-U statistics are 

independent of the scale of the variables. In particular, the Theil-U statistic is 

constructed in such a way that it necessarily lies between zero and one, with zero 

indicating a perfect fit. A more detailed description of these measures can be found on 

Pindyck and Rubinfeld (1998), Theil (1966) and Dunis and Chen (2005) while their 

mathematical formulae are in Appendix A.2. For all four error statistics retained (RMSE, 

MAE, MAPE and Theil-U) the lower the output, the better the forecasting accuracy of the 

model concerned. In the table below we present our results for the out-of-sample period.   

 

 

 

 NAIVE MACD ARMA MLP RNN HONN 

RMSE 0.0329 0.0254 0.0239 0.0470 0.0241 0.0240 

MAE 0.0234 0.0174 0.0161 0.0163 0.0170 0.0299 

MAPE 811.13% 393.44% 115.00% 106.97% 275.23% 679.96% 

THEIL-U 0.6863 0.7534 0.9446 0.9661 0.8287 0.7289 

 

 Mixed MLP Mixed RNN Mixed HONN 

RMSE 0.0240 0.0512 0.0240 

MAE 0.0162 0.0189 0.0163 

MAPE 107.06% 135.13% 103.56% 

THEIL-U 0.9762 0.7318 0.9826 

 

Table 5: Out-of-sample statistical performance 

 

 

As can be seen from tables 5 and A.3 in the Appendix for the in-sample period,   Mixed-

HONNs seems to outperform all other models and present the most accurate forecasts 

in statistical terms in both in and out-of-sample periods. It seems that their ability to 

capture higher order correlations gives them an considerable advantage compared to 

the other models. Mixed-MLPs come second and Mixed-RNNs come third in our 

statistical evaluation in both periods. Furthermore, it is worth noting that the time that we 

need to train our HONNs was less than the time needed for the RNNs and the MLPs. 

 

 

4.4 EMPIRICAL TRADING SIMULATION RESULTS 
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The trading performance of all the models considered in the validation subset is 

presented in the table below. We select the ARMA model with the higher profit in the in-

sample period and choose the network with the higher profit in the test sub-period. Our 

trading strategy applied is simple and identical for all the models: go or stay long when 

the forecast return is above zero and go or stay short when the forecast return is below 

zero. Appendix A.4 provides the performance of all the NNs in the training and the test 

sub-periods while Appendix A.5 and A.2 provides the characteristics of our networks 

and the performance measures. The Mixed-RNNs are trained with gradient descent as 

for the Mixed-MLPs. However, the increase in the number of weights, as mentioned 

before, makes the training process extremely slow: to derive our results, we needed for 

the mixed-RNNs about ten times the time needed with the Mixed-MLPs. As shown in 

table 6 below, the Mixed-RNN has a lower performance compared to the Mixed-MLP 

model and Mixed-HONN. 

 

 

 

 

 NAIVE MACD ARMA MLP RNN HONN 

 Information Ratio   

(excluding costs) 
0.32 0.46 0.20 0.60 0.59 0.70 

 Annualised Volatility 

(excluding costs) 
36.70% 38.12% 38.13% 38.11% 38.11% 38.10% 

 Annualised Return 

(excluding costs) 
11.42% 17.63% 7.68% 22.99% 22.51% 26.75% 

 Maximum Drawdown          

(excluding costs) 
-49.41% -50.63% -36.50% -36.26% -36.22% -38.71% 

 Positions Taken       

(annualised)  
119 38 72 105 147      98 

 

 

Table 6: Trading performance results 

 

We can see that Mixed-HONNs perform significantly better than the Mixed-MLPs and 

the Mixed-RNNs and significantly better than the standard neural network architectures. 

Learning first the linear component of the data generating process before applying a 

neural network to learn its nonlinear elements definitely appears to add value in this 

 Mixed MLP Mixed RNN Mixed HONN 

Information Ratio       (excluding costs) 0.83 0.78 0.91 

Annualised Volatility (excluding costs) 38.08% 38.09% 38.07% 

Annualised Return     (excluding costs) 31.79% 29.63% 34.75% 

Maximum Drawdown (excluding costs) -26.29% -27.94% -28.20% 

Positions Taken         (annualised) 41 57 65 
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application. Comparing the recent paper of Dunis et al. (2010a) we notice that Hybrid-

NNR models outperform in terms of information ratio Mixed-NNR models. However 

much higher drawdowns, possibly linked to the higher trading frequency of the Hybrid 

models compared with the mixed models presented here. 

 

 

5. TRADING COSTS AND LEVERAGE 

Up to now, we have presented the trading results of all our models without considering 

transaction costs. Since some of our models trade quite often, taking transaction costs 

into account might change the whole picture. Following Dunis et al. (2008a), we check 

for potentional improvements to our models through the application of confirmation 

filters. Confirmation filters are trading strategies devised to filter out those trades with 

expected returns below a threshold d around zero. They suggest to go long when the 

forecast is above d and to go short when the forecast is below d. It just so happens that 

the Mixed ARMA-Neural Network models perform best without any filter. This is also the 

case of the MLP and HONN models. Still, the application of confirmation filters to the 

benchmark models and the RNN model could have led to these models outperforming 

the Mixed, MLP HONN models. This is not the case in order to conserve space, these 

results are not shown here but they are available from the authors. 

 

5.1 TRANSACTION COSTS 

According to the Athens Stock Exchange, transaction costs for financial institutions and 

fund managers dealing a minimum of 143 contracts or 1 million Euros is 10 Euros per 

contract (round trip). Dividing this transaction cost of the 143 contracts by average size 

deal (1 million Euros) gives us an average transaction cost for large players of 14 basis 

points (1 base point=1/100 of 1%) or  0.14%  per position. 

 

 

 NAIVE MACD ARMA MLP RNN HONN 

Information Ratio  

(excluding costs) 

0.32 0.46 0.20 0.60 0.59 0.70 

Annualised Volatility 

(excluding costs) 

36.70% 38.12% 38.13% 38.11% 38.11% 38.10% 

Annualised Return 

(excluding costs) 

11.42% 17.63% 7.68% 22.99% 22.51% 26.75% 

Maximum Drawdown 

(excluding costs) 

-49.41% -50.63% -36.50% -36.26% -36.22% -38.71% 

Positions Taken  

(annualised) 

119 38 72 105 147 98 

Transaction costs 16.66% 5.32%    10.08% 14.7% 20.58% 13.72% 
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Annualised Return 

(including costs) 

-5.24% 12.31%     -2.4% 8.29% 1.93% 13.03% 

 

 Mixed MLP Mixed RNN Mixed HONN 

Information Ratio (excluding costs) 0.83 0.78 0.91 

Annualised Volatility (excluding costs) 38.08% 38.09% 38.07% 

Annualised Return (excluding costs) 31.79% 29.63% 34.75% 

Maximum Drawdown (excluding costs) -26.29% -27.94% -28.20% 

Positions Taken  (annualised) 41 57 65 

Transaction costs 5.74% 7.98% 9.1% 

Annualised Return (including costs) 26.05% 21.65% 25.65% 

 

Table 7: Out-of-sample results with transaction costs 

 

We can see that, after transaction costs, the Mixed-MLP network outperforms all the 

other strategies based on the annualised return closely followed by the Mixed-HONN 

strategy. On the other hand, the naïve strategy and the ARMA model produce negative 

results after transaction costs are taken into account. The HONN and MACD achieve 

decent returns, yet well below those produced by our mixed ARMA- NNR models. 

5.3 LEVERAGE TO EXPLOIT HIGH INFORMATION RATIOS 

In order to further improve the trading performance of our models we introduce a “level 

of confidence” to our forecasts, i.e. a leverage based on the test sub-period. For the 

naïve model, which presents a negative return we do not apply leverage. The leverage 

factors applied are calculated in such a way that each model has a common volatility of 

20%9 on the test data set. 

The transaction costs are calculated by taking 0.14% per position into account, while the 

cost of leverage (interest payments for the additional capital) is calculated at 4% p.a. 

(that is 0.016% per trading day10). Our final results are presented in table 8 below. 

 NAIVE MACD ARMA MLP RNN HONN 

Information Ratio 

(excluding costs) 

   0.32 0.70 0.20 0.60 0.59 0.70 

Annualised Volatility     36.70% 40.03% 38.13% 40.28% 40.21% 40.31% 

                                                 
9
 Since most of the models have a volatility of about 20%, we have chosen this level as our basis. The 

leverage factors retained are given in table 8 below. 
10

 The interest costs are calculated by considering a 4% interest rate p.a. divided by 252 trading days. In 
reality, leverage costs also apply during non-trading days so that we should calculate the interest costs 
using 360 days per year. But for the sake of simplicity, we use the approximation of 252 trading days to 
spread the leverage costs of non-trading days equally over the trading days. This approximation prevents 
us from keeping track of how many non-trading days we hold a position. 



23 

  

(excluding costs) 

Annualised Return       

(excluding costs) 

11.42% 18.51% 7.68% 24.30% 23.75% 28.30% 

Maximum Drawdown    

(excluding costs) 

-49.41% -53.16% -36.50% -38.32% -38.21% -40.96% 

Leverage Factor        - 1.050 - 1.057    1.055    1.058 

Positions Taken 

(annualised) 

119 38 72 105 147 98 

Transaction and 

leverage costs 

16.66% 5.60%    10.08% 15.02% 20.88% 14.04% 

Annualised Return     

(including costs) 

-5.24% 12.90%     -2.40% 9.28% 2.87% 14.26% 

 

 

 

 

 

 

 Mixed-MLP Mixed-RNN Mixed-HONN 

Information Ratio        (excluding 

costs) 

0.83 0.78 0.91 

Annualised Volatility   (excluding 

costs) 

40.22% 40.22% 40.17% 

Annualised Return      (excluding 

costs) 

33.57% 31.29% 36.67% 

Maximum Drawdown  (excluding 

costs) 

-27.76% -29.50% -29.75% 

Leverage Factor 1.056 1.056 1.055 

Positions Taken          (annualised) 41 57 65 

Transaction and leverage costs 6.052% 8.30% 9.40% 

Annualised Return      (including 

costs) 

27.51% 23.00% 27.27% 

Table 8: Trading performance - final results 

As can be seen from table 8, Mixed-MLPs continue to demonstrate a superior trading 

performance despite significant drawdowns. The Mixed-HONN strategy also performs 

well and presents the second highest annualised return. In general, we observe that all 

models are able to gain extra profits from the leverage as the increased costs are 

outweighed by the benefits of trading somewhat higher volumes. Again it is worth 

mentioning, that the time needed to train the HONN and the Mixed-HONN network was 
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considerably shorter compared with that needed for the MLP, Mixed-MLP, RNN and the 

Mixed-RNN networks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. CONCLUDING REMARKS 

In this paper, we apply Multi-layer Percepton, Recurrent, Higher Order, Mixed-Multilayer 

Percepton, Mixed-Recurrent and Mixed-Higher Order neural networks to a one-day-

ahead forecasting and trading task of the ASE 20 fixing series with only autoregressive 

terms as inputs. We use a naïve strategy, a MACD and an ARMA model as 

benchmarks. We develop these different prediction models over the period January 

2001 - August 2007 and validate their out-of-sample trading efficiency over the following 

period from September 2007 through December 2008.  

The Mixed-HONNs demonstrates a higher trading performance in terms of annualised 

return and information ratio before transaction costs and more elaborate trading 

strategies are applied. When refined trading strategies are applied and transaction costs 

are considered the Mixed-MLPs manage to outperform all other models achieving the 

highest annualised return. The Mixed-HONNs and the Mixed-RNNs models perform 

remarkably as well and seem to have an ability in providing good forecasts when 

autoregressive series are only used as inputs. 

It is also important to note that the Mixed-HONN network which presents a very close 

second best performance needs less training time than Mixed-RNN and Mixed-MLP 

network architectures, a much desirable feature in a real-life quantitative investment and 

trading environment: in the circumstances, our results should go some way towards 

convincing a growing number of quantitative fund managers to experiment beyond the 

bounds of traditional statistical and neural network models. In particular, the strategy 

consisting of modelling in a first stage the linear component of a financial time series 
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and then applying a neural network to learn its nonlinear elements appears quite 

promising. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 

 

A.1 ARMA Model 

The output of the ARMA model used in this paper is presented below. 

 

Dependent Variable: RETURNS   

Method: Least Squares   

Date: 03/17/09   Time: 22:18   

Sample (adjusted): 8 1738   

Included observations: 1731 after adjustments 

Convergence achieved after 37 iterations  

Backcast: 1 7   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
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C 0.000290 0.000303 0.956602 0.3389 

AR(1) 0.375505 0.052705 7.124626 0.0000 

AR(3) -0.244662 0.024991 -9.789999 0.0000 

AR(7) -0.678906 0.044902 -15.11958 0.0000 

MA(1) -0.374290 0.053055 -7.054702 0.0000 

MA(3) 0.269470 0.026409 10.20353 0.0000 

MA(7) 0.677169 0.044295 15.28785 0.0000 

     
     R-squared 0.026582     Mean dependent var 0.000288 

Adjusted R-squared 0.023194     S.D. dependent var 0.012549 

S.E. of regression 0.012403     Akaike info criterion -5.937710 

Sum squared resid 0.265213     Schwarz criterion -5.915645 

Log likelihood 5146.088     F-statistic 7.846483 

Durbin-Watson stat 1.856760     Prob(F-statistic) 0.000000 

     
     Inverted AR Roots  .89-.44i      .89+.44i    .31-.92i  .31+.92i 

 -.54+.70i     -.54-.70i        -.93 

Inverted MA Roots  .88-.45i      .88+.45i    .31-.92i  .31+.92i 

 -.54+.70i     -.54-.70i        -.94 

     
     

 

 

 

 

 

 

 

 

A.2 Performance Measures 

The performance measures are calculated as follows:  

 

 Performance 

Measure 
Description 
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Table 9: Trading simulation performance measures 

 

 

A.3 Statistical Results in the Training and Test Sub-Periods 

 

 NAIVE MACD ARMA MLP RNN 

 

HONN 

RMSE 0.0125 0.0131 0.0124 0.0153 0.0237 0.0141 

MAE 0.0125 0.0097 0.0090 0.0111 0.0119 0.0103 

MAPE 456.56% 235.17% 117.82% 371.57% 329.88% 234.72% 

THEIL-U 0.6781       0.7459        0.8643 0.6842    0.7174     0.6938 

 

 Mixed MLP Mixed RNN Mixed HONN 

RMSE 0.0127 0.0205 0.0189 

MAE 0.0091 0.0116 0.0126 

MAPE 111.34% 285.99% 355.95% 

THEIL-U 0.7881 0.7105 0.6989 

Table 10: in sample statistical performance 

A.4 Empirical Results in the Training and Test Sub-Periods 

 

 NAIVE MACD ARMA MLP RNN 

 

HONN 

Information Ratio         (excluding costs) 1.55 1.24 1.24 1.57 1.53 1.61 

Annualised Volatility (excluding costs) 19.32% 19.49% 19.83% 19.60% 19.60% 19.59% 

Annualised Return (excluding costs) 29.86% 24.29% 24.66% 30.72% 30.02% 31.56% 

Maximum Drawdown   (excluding costs) -23.39% -25.42% -26.70% -27.52% -34.66% -39.70% 

Positions Taken (annualised) 114 34 50 86 81 108 

 

 Mixed-MLP Mixed-RNN Mixed-HONN 

Information Ratio         (excluding costs) 2.07 1.93 2.11 

Annualised Volatility (excluding costs) 19.45% 19.47% 19.44% 

Annualised Return (excluding costs) 40.17% 37.57% 41.12% 

Maximum Drawdown   (excluding costs) -37.89% -41.47% -37.52 
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Positions Taken (annualised) 46 68 47 

Table 11: In-sample trading performance 

 

A.5 Networks Characteristics 

We present below the characteristics of the networks with the best trading performance 

on the test sub-period for the different architectures. 

Table 12: Network Characteristics for Traditional Neural Networks 

Table 13: Network characteristics for Mixed Neural Networks 
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