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A B S T R A C T   

Background: Hospitals lack intuitive methods to monitor their accuracy of clinical cancer staging, which is critical 
to treatment planning, prognosis, refinements, and registering quality data. 
Methods: We introduce a tabulation framework to compare clinical staging with the reference-standard patho
logical staging, and quantify systematic errors. As an example, we analyzed 9,644 2016 U.S. National Cancer 
Institute SEER surgically-treated non-small cell lung cancer (NSCLC) cases, and computed concordance with 
different denominators to compare with incompatible past results. 
Results: The concordance for clinical versus pathological lymph node N-stage is very good, 83.4 ± 1.0%, but the 
tumor length-location T-stage is only 58.1 ± 0.9%. There are intuitive insights to the causes of discordance. 
Approximately 29% of the cases are pathological T-stage greater than clinical T-stage, and 12% lower than the 
clinical T-stage, which is due partly to the fact that surgically-treated NSCLC are typically lower-stage cancer 
cases, which results in a bounded higher probability for pathological upstaging. Individual T-stage categories Tis, 
T1a, T1b, T2a, T2b, T3, T4 invariant percent-concordances are 85.2 ± 9.7 + 10.3%; 72.7 ± 1.6 + 11.3%; 46.6 ±
1.8 + 10.9%; 54.6 ± 1.6 – 20.5%; 41.6 ± 3.3 – 0.1%; 54.7 ± 2.8 – 24.1%; 55.2 ± 4.7 + 2.6%, respectively. Each 
percent-concordance is referenced to an averaged number of pathological and clinical cases. The first error 
number quantifies statistical fluctuations; the second quantifies clinical and pathological staging biases. Lastly, 
comparison of over and under staging versus clinical characteristics provides further insights. 
Conclusions: Clinical NSCLC staging accuracy and concordance with pathological values can improve. As a first 
step, the framework enables standardizing comparing staging results and detecting possible problem areas. 
Cancer hospitals and registries can implement the efficient framework to monitor staging accuracy.    
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Introduction 

Cancer stage describes the spread and severity of a patient’s primary 
tumor; staging accuracy is clearly necessary. Treating physicians 
perform the clinical cancer staging that guides initial treatment plan
ning, prognosis, monitoring and future treatment refinement. Among 
cancers, lung cancer is the leading cause of cancer deaths. For non-small 
cell lung cancer (NSCLC), pathological staging and tumor size mea
surements have historically been considered more accurate and are the 
reference standard by which the clinical values are compared [1-6]. 
However, 80% of NSCLC are not treated surgically and do not have 
pathological staging so that accurate clinical assessment, alone, is crit
ical. Yet, hospital staff lack intuitive, simple analysis tools they can use 
on hospital data to assess the quality, and to quantify and detect any 
inaccuracies of clinical staging at their facility. 

Previously, we published a tabulation framework to quantify 
concordance [7]. Our current objectives are to explain and expand the 
techniques, and present a more-universal way to report numerical re
sults for “accuracy” (i.e. clinical and pathological staging concordance) 
to avoid an ambiguity that traditionally existed. Additionally, we 
introduce definitions to quantify systematic errors that cause discor
dance so that hospitals can track their progress if they adjust their 
staging techniques. We provide “how-to” details, examples, and explain 
the arithmetic motivation for the framework. Further, if cancer hospitals 
report cancer staging results using such methods, it will be easier to 
compare study results or, alternatively, aggregate results among hospi
tals or studies to decrease statistical errors to better understand cancer 
or clinical practice trends. Cancer registrars may also use the techniques 
to expeditiously monitor staging data quality. 

The framework applies to any component of TNM-stage and also to 
other types of cancers, but we focused on NSCLC T-stage, which mea
sures the greatest dimension (“length”) of the primary tumor and its 
location-invasion properties, partly because N-staging accuracy issues 
have been studied already [1, 2]. In addition, T-stage categories have 
been redefined in the staging manuals, whereas the N-stage categories 
have remained the same. Clinical T-stage is usually determined from 
computed tomography images (CT). T-stage affects treatment options, 
surgical methods, and validates imaging algorithms for tumor delinea
tion, detection and measurements. T-stage category cutoffs have been 
continuously refined by AJCC and UICC over the decades, to continually 
refine future prognosis and treatment. 

The U.S. National Cancer Institute Surveillance, Epidemiology, and 
End Results (SEER) recently made available a 2016 TNM7 dataset that 
includes more data fields. The methods presented herein based on the 
seventh-edition TNM7-staging are also applicable to the present eighth- 
edition TNM8-staging [8-11]. More importantly, individual hospitals 
wishing to benchmark their own results against SEER’s are more likely 
to have sufficient surgically-treated NSCLC number of cases for TNM7 
than TNM8. Our updated numerical TNM7 results reflect our new def
initions and also additional data-selection criteria. 

Materials and methods 

In 1990 in Reference [38], staging concordance was assessed by 
tabulating the number of cases for each stage category in a matrix 
format, pathological versus clinical cancer stage. Their matrix also 
presented percent-agreement for each stage category, but their study 
had only 103 total cases such that the results would have had very large 
statistical fluctuation errors had the errors been reported. After 1990, 
some studies turned to or included Kappa index to quantify agreement, 
which required statisticians to help calculate or interpret the signifi
cance of the results. We instead build on the 1990 approach because the 
arithmetic is simple and efficient, and accessible to hospital staff who 
are not statisticians. 

We also expand the original approach and quantify statistical and 
systematic errors. For example, statistically, 103 cases are small and 

subsequent study-participant results may fluctuate. As for systematic 
errors, they are also critical in assessing the significance of study results. 
They represent persistent, repeatable errors associated with some bias, 
such as measuring tumor size with an overstretched ruler. With respect 
to cancer results, the magnitude of the statistical and systematic errors 
indicates whether the results are measurably significant, and thus clin
ically meaningful. In addition, quoting the errors provides a common 
terminology to compare results from different studies to determine 
whether they are significantly different or actually the same within the 
margin of errors. 

Our “tabulation” framework comprises tabulating the number of 
cancer cases in different categories (stage or tumor characteristics), 
quantifying percentage of stage agreement, and statistical and system
atic errors, and looking for patterns or spikes in the tables. The arith
metic consists only of basic functions (i.e. addition, division, square- 
roots) and the simple equations may be coded as entries in certain 
cells of an Excel spreadsheet template, equations which may be 
repeatedly re-used by entering new case numbers in the data fields of the 
template. Fig. 1 and Table 3 are the two example Excel templates used in 
this article, the former to determine stage concordance, and the latter to 
correlate staging concordance with different patient/tumor 
characteristics. 

We applied the framework to SEER’s NSCLC cases as an example. We 
retrospectively analyzed TNM7 data for benchmarking purposes 
because large, curated TNM8 datasets are not yet available, but the 
tumor length and N-staging results are applicable to either staging sys
tem. We required resection as the initial treatment, without neoadjuvant 
therapy [7]. For the present analysis, we added a delay-to-surgery 
requirement of less than four months, a choice that is based on the 
staging guidelines diagnosis requirements [8, 9]. Four months also 
minimizes tumor growth biases [12]. The selection criteria yielded 9, 
644 cases. Less than 2% were metastatic. Appendix Fig. S1 shows the 
distributions for histology, grade, laterality, primary site, age, and stage 
for the selected cases. 

To compare clinical with pathological staging, we used percent- 
concordance (percent-agreement) to quantify clinical accuracy for 
each stage category, by tabulating the “n” number of cases in each 
clinical versus pathological stage category “i” in matrices, Fig. 1. The 
diagonal elements of the matrices are the number of cases where the 
pathology and clinical stage values agree. One issue is the choice of 
denominator to compute agreement, whether the percent-concordance 
is referenced to the total number of clinical cases in the category 
(“cTotal-i”), or to the total number of pathological cases instead 
(“pTotal-i”). The choice is different or unstated in publications, which 
causes ambiguity, and potentially large discrepancy among different studies 
[1, 3, 6, 13, 38]. For example, the percent-concordance for T1a in 
Fig. 1A is either pathological 78.8 ± 1.7% or clinical 67.5 ± 1.5%, which 
disagree by >3 standard deviations due to different denominators. 
Initially, the choice used by lung cancer staging advisory members (e.g. 
Goldstraw) was with respect to the pathological cases, pTotal-i [3, 38], 
but subsequent studies sometimes used the other choice (clinical stag
ing) so that studies are not comparable, “apples-to-apples”. Neverthe
less, calculating percent-concordance values for both choices allows 
comparison with either type of past study results. 

To avoid the ambiguity of one choice of denominator or another, we 
introduce an universal value and define an “invariant concordance” 
percentage by using the average of the pathological and clinical cases 
(avg(pTotal-i, cTotal-i)) as the denominator in the percent-concordance 
for each stage category i. For example for T1a, the invariant percent- 
concordance is 2083/ (3088+2645)/2 = 72.7 ± 1.6% (see the 
numbers in Fig. 1A). However, we summarize the results for all three 
choices (Table 2). 

The statistical error in these percent-concordances is approximated 
by a binomial distribution for large n-number discrete cases (Poisson 
distribution) so that for calculation simplicity, the quoted standard de
viation is taken as square-root(n) [14]. The concordance and 
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corresponding errors are all expressed as percentages in this article. For 
instance, the 1.6% statistical error associated with the 72.7% results 
from square-root(2083) / (3088+2645)/2 × 100 (see the numbers in 
Fig. 1A). 

Results are more meaningful if they also include an estimated sys
tematic error along with the statistical error. For example, rigorous re
sults in physics report a combined, or separately, statistical and 
systematic errors because both types of errors constitute a measure of 
whether the results are significant [15]. We summarized sources of 
potential clinical biases and staging categorization biases in Reference 
[7], but there also exist pathological biases (Table 1) that may system
atically increase or decrease the final T-stage category assigned to the 
cancer. For instance, formalin fixation tends to shrink some types of 
tumor tissue so that the pathologically-measured tumor length would be 
systematically smaller on average and the corresponding T-stage may be 
lower [16, 17]. To capture the collective effect of all systematic biases in 
causing clinical-pathological staging discordance, we define an aggre
gated systematic error as the difference between the clinical and path
ological percent-concordances (Agree-i%) for each category i that 
otherwise theoretically or ideally would have agreed. As an example 
from the values in Fig. 1A, the aggregated agreement difference, pT1a – 
cT1a is 78.8 – 67.5% = 11.3%, where we arbitrarily used the patho
logical value first in the difference. The invariant concordance may now 
be expressed with both a statistical and systematic error as 72.7 ± 1.6 +

11.3%. The plus sign in front of 11.3 compactly indicates the patho
logical Agree-i% value is larger than the clinical Agree-i% value for 
category i, whereas a minus sign means the pathological Agree-i% is 
smaller. A large systematic error means a large discrepancy between cT-i 
and pT-i. This quantifies discrepancies for each stage category. Previ
ously, we evaluated clinical-pathological staging concordance using the 
linear-weighted Cohen-kappa index [7,18-22], and we continue to 
report the k results herein. However, there is not an easy way to express 
statistical and systematic errors separately for Kappa index so that it is 
unclear as to meaning of the Kappa index results. 

To correlate staging discordance with cancer characteristics, we 
performed ordinal-output multivariate logistic regression and likelihood 
ratio tests for categorical and linear characteristics in Reference [7]. 
Now, we instead use the three ordinal-outputs to detect trends versus 
staging concordance, when pathology T-stage is higher than, equal to or 
lower than the corresponding clinical T-stage. Hospitals can tabulate the 
percentage of occurrence for each of the cancer characteristics versus 
each ordinal-output in a spreadsheet-template (e.g. Table 3). This is a 
simple way to detect correlations with concordance by tabulating a 
number or percentage of occurrences in spreadsheet templates. 

Another useful comparison is the concordance between the patho
logical and clinical tumor dimension measurements to help crosscheck 
the T-staging results. In Reference [7], we computed a few ways to check 
the concordance of tumor dimension as measured pathologically after 

Fig. 1. A) Comparison of the clinical vs pathological T-stage, under TNM7. Excluding “Blank” (no data) and TX categories, there remain 8,010 cases. The highlighted 
diagonal cases are when the clinical and pathological T-stage category classification agree, cT-i = pT-i, where “i” is a generic index referring to each stage category. 
The pTotal-i and cTotal-i sum number of cases in each row or column, respectively, do not include the “Blank” cases. The Agree-i% is the percent-concordance for 
each category i. The “Std dev” is the statistical error. B) The T1 subcategory cases are aggregated and T2 subcategory cases are aggregated, and each aggregate is 
treated as one category, as highlighted. See text. 
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resection versus radiologically prior to resection. For example, for each 
T-stage size range (“bin”), we compared the pathological value with the 
clinical value, and tabulated the frequency that the clinical value is 
above or below the range assuming that the pathological value is the 
“correct” value. This is another way to assess whether cT-stage agrees 
with pT-stage, with respect to the tumor size component of T-stage. 

Results 

Fig. 1A shows a T-stage cT vs pT concordance of 58.1 ± 0.9% (k =
0.57, 95% confidence interval CI: 0.54–0.60) over categories T0–T4. 
Approximately 29% of the cases are pT > cT, and 12% pT < cT. One 
possible source of ambiguity in T-staging is due to not subcategorizing 
cases within the T1 and T2 categories. Since the introduction of TNM7, 
lung cancer staging guidelines instruct that the subcategories be used in 
order to refine prognosis and treatment so that ideally, there would be 
no cases categorized as merely “T1” or “T2”. To estimate the effect of not 
subcategorizing, we aggregated all T1 subcategories and aggregated all 
T2 sub subcategories (Fig. 1B) which yields a concordance of 72.2 ±
0.9%, which is much better than the 58.1%. The 72.2% can also be used 
to compare with results before 2010, before TNM7, when there were no 
subcategories. 

Table 2B summarizes the percent-concordances for each T-stage 
category i, cT-i vs pT-i, with respect to the total number of clinical cases, 
pathological cases, and their average. The invariant concordance is very 
good for low T-stages, starting at ~85% but drops to ~40–55% for 
higher T-stages. For completeness, we summarize the updated SEER 
numerical results for TNM group stage and N-stage in Table 2 and the 
Appendix. The group staging, cTNM vs pTNM, concordance over all 

categories 0–IV, is only 62.4 ± 0.9% (k = 0.58, CI: 0.55–0.61). 
Approximately 30% of the cases are pTNM-stage higher than cTNM- 
stage, and 10% are lower. The cN vs pN concordance is very good 
83.4 ± 1.0% over categories N0–N3 (k = 0.37, CI: 0.32–0.42). 
Approximately 13% of the cases are pN > cN, and 4% pN < cN. 

Fig. 1A contains outlier cases occurring away from the diagonal el
ements and appearing as “spotty” unexpected increases instead of 
gradual decreases from the peak numbers in the diagonal elements. For 
instance, the cT1a, cTX, cBlank, cT3 columns in Fig. 1A contain spotty 
increases that may motivate a hospital to investigate the outliers using 
their patient records (EMR). 

Tables 3-4 tabulate the percentage of cases of certain cancer char
acteristics for each T-stage concordance category (pT > cT, pT = cT, pT 
< cT). There is more discordance for larger resections (lobectomy, 
pneumonectomy), higher pN and cN except N3, higher tumor grade, and 
certain SEER registry regions (see Appendix). For different SEER 
regional registries, T-stage concordance ranges from 51.0 ± 7.1% to 

Table 1 
Potential pathological issues that may cause the measured and “true” greatest 
tumor dimension to disagree [12, 16, 17, 25-32]. Clinical measurement biases 
are summarized in [7].  

Measuring 
tumor length 

Tumor may appear 
shorter than actual 

Tumor may appear 
longer than actual 

Size may appear 
shorter or 
longer than 
actual 

Pathological Not including 
spiculation or 
invasion 

Gross tumor 
examination slicing 
interval, 2–3 or 5 
mm 

Physician or 
assistant 
variability, or 
rotation of 
residents  

Biopsy removed 
some of the tissue; 
more lymph nodes 
examined 

Lobectomy, 
pneumonectomy or 
large amount of 
resected material 

Problem 
delineating 
boundary of 
tumor: multi- 
nodules, multi- 
foci cases, 
positive 
resection 
margins  

Formalin fixation Large tumors Rounding or 
estimating  

Extracorporeal 
tumor specimen 

Irregularly-shaped 
tumor 

Vision bias: 
focusing on bold 
reticles on the 
ruler  

Solid portion only Inflammation, 
edema 

Positive 
resection margin 
or sub-solids  

Not finding true 
longest axis of the 
tumor, breadloaf 
slicing orientation 
not perpendicular to 
longest axis 

Measuring tumor 
with a flexible 
ordinary ruler 

Stiff ordinary 
ruler to measure 
tumor size   

Higher N-stage Epithelial tumors   
Higher tumor grade Periodic length 

spikes at every 5 
mm.  

Table 2 
Summary of concordance from Figs. 1, S2, S3. The first column is the percentage 
of clinical cases that agree with pathological staging. The second column is the 
percentage of pathological cases that agree with clinical staging. The last column 
is the invariant concordance expressed as a percentage.  

A. SEER 2016 cTNM vs pTNM agreement, with respect to different 
denominators, under TNM7 

Group 
TNM- 
stage i 

With respect to the 
number of clinical 
cases in category i 
(columns of Fig. S2) 

With respect to the 
number of 
pathology cases in 
category i (rows of 
Fig. S2) 

Invariant agreement 
with respect to the 
average of the number 
of clinical and 
pathology cases for 
category i 

0 82.3 ± 9.3 – 8.5% 90.8 ± 10.2 + 8.5% 86.3 ± 9.7 + 8.5% 
IA 67.6 ± 1.2 – 21.9% 89.5 ± 1.7 + 21.9% 77.0 ± 1.4 + 21.9% 
IB 55.3 ± 2.0 + 12.3% 43.0 ± 1.6 – 12.3% 48.4 ± 1.8 – 12.3% 
IIA 41.1 ± 2.6 + 11.3% 30.1 ± 1.9 – 11.3% 34.8 ± 2.2 – 11.3% 
IIB 57.2 ± 3.7 + 18.4% 38.8 ± 2.5 – 18.4% 46.3 ± 3.0 – 18.4% 
IIIA 49.4 ± 3.1 + 17.0% 32.4 ± 2.0 – 17.0% 39.2 ± 2.5 – 17.0% 
IIIB 24.1 ± 6.7 + 11.0% 35.1 ± 9.7 – 11.0% 28.6 ± 7.9 – 11.0% 
IV 91.8 ± 5.4 + 4.4% 87.4 ± 5.1 – 4.4% 89.6 ± 5.2 – 4.4% 

B. SEER 2016 cT vs pT agreement, with respect to different denominators, under 
TNM7 

T-stage i With respect to 
clinical cases 
(columns of  
Fig. 1A) 

With respect to 
pathology cases 
(rows of Fig. 1A) 

Invariant agreement 
with respect to the 
average of clinical and 
pathology cases 

TX 2.3 ± 0.6% 
(exclude data blank 
cases) 

14.6 ± 4.0% 
(exclude blanks)  

T0 100 ± 100 + 90% 10 ± 10 – 90% 18.2 ± 18.2 – 90% 
Tis 80.4 ± 9.1 – 10.3% 90.7 ± 10.3 +

10.3% 
85.2 ± 9.7 + 10.3% 

T1 6.6 ± 1.5 46.3 ± 10.6 n/a 
T1a 67.5 ± 1.5 – 11.3% 78.8 ± 1.7 + 11.3% 72.7 ± 1.6 + 11.3% 
T1b 41.8 ± 1.6 – 10.9% 52.7 ± 2.0 + 10.9% 46.6 ± 1.8 + 10.9% 
T2 17.8 ± 4.9 14.6 ± 4.1 n/a 
T2a 66.7 ± 2.0 + 20.5% 46.2 ± 1.4 – 20.5% 54.6 ± 1.6 – 20.5% 
T2b 41.7 ± 3.3 + 0.1% 41.6 ± 3.3 – 0.1% 41.6 ± 3.3 – 0.1% 
T3 69.3 ± 3.5 + 24.1% 45.2 ± 2.3 – 24.1% 54.7 ± 2.8 – 24.1% 
T4 53.5 ± 4.6 – 2.6% 57.1 ± 4.9 + 2.6% 55.2 ± 4.7 + 2.6% 

C. SEER 2016 cN vs pN agreement, with respect to different denominators, 
under TNM7 or TNM8 

N-stage i With respect to 
clinical cases 
(columns of Fig. S3) 

With respect to 
pathology cases 
(rows of Fig. S3) 

Invariant agreement 
with respect to the 
average of clinical and 
pathology cases 

NX 4.6 ± 2.7% 
(exclude blanks) 

7.2 ± 1.2% (exclude 
blanks)  

N0 86.8 ± 1.1 – 8.9% 95.7 ± 1.2 + 8.9% 91.0 ± 1.2 + 8.9% 
N1 54.3 ± 3.5 + 28.3% 26.0 ± 1.7 – 28.3% 35.1 ± 2.3 – 28.3% 
N2 46.3 ± 3.6 + 16.5% 29.5 ± 2.3 – 16.5% 36.0 ± 2.8 – 16.5% 
N3 12.5 ± 6.3 – 37.5% 50 ± 25 + 37.5% 20 ± 10 + 37.5%  
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71.8 ± 7.1% (Table S5). The concordance is better away from the major 
T-stage tumor size thresholds for the averaged clinical-pathology tumor 
length values; pT is more-often upstage of cT right near the T-stage size 
thresholds. The two largest types of NSCLC, adenocarcinoma and 
squamous cell carcinoma, exhibit the statistically-same staging concor
dance (Table 4). 

Regarding tumor size, Reference [7] showed, for example, that for 
pathology tumor length under TNM8, ≤ 1 cm, 51.8 ± 2.8% of the cor
responding clinically measured length is over 1 cm, meaning that 51.8% 
of the clinical cases would be in a higher T-stage category than the 
pathological T-stage. Between 1 cm – 2 cm, 9.6 ± 0.6% of the clinical 
size measurements are lower, and 18.1 ± 0.8% are higher. Between 2 cm 
– 3 cm, 28.4 ± 1.2% of the clinical size measurements are lower, and 
15.2 ± 0.9% are higher. These interval ranges coincide with the TNM8 
size cutoff values for stage T1. Under TNM7 cutoff values, for pathology 
tumor length ≤ 2 cm, 15.9 ± 0.7% of the corresponding clinically 
measured size is over 2 cm, meaning that 15.9% of the clinical cases 
would be in a higher T-stage category than the pathological T-stage. 
Between 2 cm – 3 cm, the results are the same as for TNM8. Between 3 
cm – 5 cm, 29.8 ± 1.4% of the clinical measurements are lower, and 8.2 
± 0.7% are higher. Between 5 cm – 7 cm, 50.4 ± 3.2% of the clinical 
measurements are lower, and 6.0 ± 1.1% are higher. 

Discussion 

Clinical and pathological T-staging agrees only moderately, and has 
not improved over pre-TNM7 results, despite improved imaging reso
lution [1-4, 23, 24]. Table 2B shows large discordances between the 
clinical and pathological individual T-stage categories, T1a through 
T2b, which determine the type of resection. At the T1–T2 threshold, 
Fig. 1B shows >20% discordance, and resection decisions may require 
additional patient exams. Over all categories, the ~29% pT > cT pa
tients may not have received adequate pre-operative care and moni
toring. T-staging discordance also contributes to approximately 78% of 
the clinical versus pathological discordance in the group TNM-stage 
results. 

Stage I, NSCLC studies point out that clinical staging is understaged 
due to possible medical or practice issues [1, 13, 25]. Mathematically, 
there is an additional non-clinical explanation. This phenomenon tends 
to occur for finitely-categorized measurements due to a bounded prob
ability distribution. For low TNM and T stages, clinical staging will be 
“understaged” on average; for high stages, clinical staging will be 
“overstaged” on average when subsequently-performed stage classifi
cation disagrees with the initial classification. For low stages, subse
quent differing classification can only increase because the categories 
are bounded below (i.e. no more categories). Likewise, for high stages, 
subsequent differing classification can only decrease because it is 
bounded above. Examining the row and column directions of the 
matrices reflects the phenomenon. Surgical resection is a treatment 
modality mainly for lower-stage, non-metastatic NSCLC cases so that 
resection datasets would probabilistically have more clinical 
understaging. 

The discordance between the number of pathological versus clinical 
cases for different ranges of tumor length also generally suffers from the 
bounded probability effect. At first glance, it is seemingly not true for the 
lowest bin, <1 cm tumor size; however, this is due to the fact that we 
binned the cases based on the pathology size rather than the clinical size. 
Had we selected cases binned by clinical size <1 cm, instead, approxi
mately 57.7% of the tumors were subsequently measured longer path
ologically, a result which exhibits the bounding effect. Nevertheless, the 
pathological tumor size is considered the reference standard, and for 
such small tumors the measurement is believed reasonably accurate 
because the specimens are within the ~2 cm field of view of the mi
croscope, and the methods of pathological measurements were more 
standardized than radiological measurements during the 2016 time 
period when the SEER data was collected. So if we take such tumors as 
having a “true” size of <1 cm, then ~58.1% are over measured clini
cally. The large 58.1% discrepancy for clinically-measured tumor sizes 
for the <1 cm bin has consequences when categorizing tumors under the 
TNM8 staging system. Patient monitoring is affected when tumors 
clinically “measure” over 8 mm and patients receive additional tests and 
scans, which increase costs. There are also treatment consequences. For 

Table 3 
Percentage of cases for different types of surgical resection versus concordance between pathological and clinical T-stage, (pT stage < cT stage), (pT stage = cT stage), 
(pT stage > cT stage). Other tabulated cancer characteristics are in Appendix Tables S1-S5. The “Std dev” is the statistical error, one standard deviation.  

Surgery Primary Site 8553 cases pT < cT% Std dev pT ¼ cT% Std dev pT > cT% Std dev No. cases 

21 - wedge resection 10.9 0.9 63.0 2.0 26.1 1.3 1498 
22 - segmentectomy 8.6 1.4 62.9 3.8 28.5 2.6 428 
30 - lobectomy 12.4 1.4 55.5 2.9 32.0 2.2 668 
33 - lobectomy mediastinal lymph node dissection 12.0 0.5 56.6 1.0 31.4 0.8 5519 
45 - lobectomy NOS 12.8 2.8 55.5 5.8 31.7 4.4 164 
46 - lobectomy chest wall 8.5 4.3 44.7 9.8 46.8 10.0 47 
55 - pneumonectomy 10.7 6.2 39.3 11.8 50.0 13.4 28 
56 radical pneumonectomy 16.4 2.9 51.7 5.1 31.8 4.0 201 
Total       8553  

Table 4 
Percentage of cases for different histologies. The percentage is with respect to the total number of cases of a particular histology, which is based on the SEER lung 
histology groups, https://seer.cancer.gov/tools/mphrules/2007/lung/terms_defs.pdf and NAACCR ICD-O-3 codes. The two largest cancer histologies, adenocarci
noma and squamous cell carcinoma have statistically same results.  

Histology ICD-O-3 SEER 8614 cases pT < cT% Std dev pT ¼ cT% Std dev pT > cT% Std dev No. cases 

Malignant neoplasm NOS, 0.4% of 8614 5.6 3.9 58.3 12.7 36.1 10.0 36 
Adenocarcinoma, 65.6% of 8614 11.9 0.5 57.4 1.0 30.8 0.7 5647 
Squamous cell, 21.2% 10.4 0.8 57.7 1.8 31.9 1.3 1829 
Adenosquamous, 2% 12.2 2.6 49.5 5.1 38.3 4.5 188 
Large cell carc., 2% 9.7 2.5 52.3 5.8 38.1 5.0 155 
Sarcomatoid, 0.7% 12.3 4.6 43.9 8.8 43.9 8.8 57 
Neuroendocrine Carcinoid tumors NOS, 6.4% of 8614 14.4 1.6 66.5 3.5 19.1 1.9 550 
General NSCLC, 0.9% 9.5 3.6 63.5 9.3 27.0 6.0 74 
Neuroendocrine NOS, 0.7% of 8614 19.6 5.9 62.5 10.6 17.9 5.6 56 
Salivary gland-type tumors, 0.3% of 8614 31.8 12.0 45.5 14.4 22.7 10.2 22 
Total number of cases       8614  
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peripheral tumors measured clinically, below ~1 cm, a non-anatomic 
lung resection (wedge resection) by video-assisted thoracoscopic sur
gery may be performed. However, above ~1 cm, more invasive 
anatomic segmentectomies are performed for deep tumors smaller than 
~2 cm, and lobectomies for deep tumors larger than ~2 cm. Alterna
tively, for early stage T1 or T2 NSCLC, patients may instead be treated by 
radiotherapy instead of resection with dose-fractions based on tumor 
size and location. Studies are also underway to investigate new radio
therapies such as stereotactic ablative radiotherapy with immuno
therapy. Patients with progressively higher cT-stage NSCLC generally 
need treatment intensification, including neoadjuvant and adjuvant 
therapy. For example, for patients not undergoing surgical resection and 
have no pathological stage assigned to them, those with tumors greater 
than clinically measured 4 cm will generally receive adjuvant 
chemotherapy. 

The clinical size measurements and corresponding cT-stage category 
are not only critical in the choice of treatment, but also in patient 
prognosis. The lung cancer staging committee for TNM8 proposed finer 
T-stage cutoffs because they found that there can be tumors less than 2 
cm with significantly different prognosis [36]. They also pointed out 
that the smaller tumors could constitute a particular group worthy of 
further studies regarding growth rate, tumor density, PET scan results, 
type of resection, alternative non-surgical therapies, molecular charac
terization, and genetic signatures. However, if the assigned tumor size 
range and corresponding cT-stage are incorrect, then comparison of 
patient cohorts is incorrect, which hinders fine-tuning of the best 
possible management of and treatments for different stratifications of 
NSCLC and their prognosis. 

When the SEER TNM8 data becomes available, the T-stage concor
dance is expected to worsen under the TNM8 staging system as indicated 
by the worsening tumor length concordance in the SEER data when the 
size interval range is reduced (e.g. 2cm-wide interval versus the 1cm- 
wide intervals). In addition, the concordance is worse right at some of 
the T-stage tumor size thresholds, which has been attributed to mea
surement issues such as rounding [26], which is also likely to worsen 
T-stage concordance under TNM8 because there are now more T-stage 
categories and thresholds. The accuracy of patient prognosis is worsened 
by measurements that artificially congregate right around the thresh
olds. Prognosis is further worsened if the patient monitoring and treat
ment plans are suboptimal and based on the clinical cancer stage 
assigned to a patient when borderline-threshold measurements can 
more easily cause a patient to fall into one stage subcategory as opposed 
to another one when the bin size range is reduced. TNM7 divided the T1 
stage into T1a (≤ 2 cm) and T1b (> 2 cm and ≤ 3 cm), whereas TNM8 
divides the T1 stage into three one-centimeter intervals, T1a, T1b and 
T1c. T2 stage under TNM8 has a size cutoff of 5 cm rather than 7 cm, 
involvement of the mainstem bronchus is now T2 rather than T3, and all 
of atelectasis/pneumonitis is now T2. TNM8 T3 stage now includes tu
mors between 5 cm and 7 cm, whereas these tumors were stage T2 under 
TNM7. Tumors longer than 7 cm are now category T4a under TNM8 
instead of T3 under TNM7, and diaphragm invasion is now T4 instead of 
T3. In summary, TNM8 primarily has more T-stage lung cancer cate
gories that have finer size bin ranges than TNM8. 

As a concrete example effect under TNM8, we consider Rami-Porta 
et al. plots of the 5-year NSCLC survival rate of the patients for clin
ical staging and pathological staging, separately [36]. Under the TNM8, 
pT1a stage has a predicted survival rate of 91%. But in the SEER data, 
58.1% of such patients would instead have been assigned the cT1b stage, 
with a lower predicted survival rate of 83%. There is a continuous trend 
of survival discrepancy between pathological and clinical stage, 
although both predict a reduction in the survival rate for 
increasing-sized tumors [36]. Aside from receiving different patient 
management and care that may affect survival and/or finances, there 
may also be a psychological negative effect on some patients if they 
think they have less chance of survival based on their initial diagnosis of 
clinical staging. 

How to implement the tabulation framework 

This section covers the steps to implement the framework. We 
address how to standardize quantifying the concordance, and magnitude 
of systematic and statistical errors so that hospitals can periodically 
benchmark whether they have really progressed. Hospitals can use these 
methods for quality control, to track down the outlier cases that may 
occur in their own matrices (e.g. Fig. 1) or trends in Tables 3, S1, etc., to 
identify situations where staging may potentially be improved. In 
addition, biases in the tumor-size measurements such as those listed in 
Table 1 [12, 16, 17, 25-32] suggest it may be possible to standardize the 
measurements of pathological tumor size, which could help improve 
T-staging. Likewise, some potential clinical measurement and staging 
improvements were discussed in [7]. 

Steps:  

1 For each patient, save cancer data in discrete fields format in a 
database or in a spreadsheet. Many cancer hospitals have a cancer 
registry or departmental database that already performs this func
tion. The data fields needed are: the tumor size measured clinically 
and pathologically, the pathological and clinical assigned cancer 
stages, and laterality. Also save information related to treatment in 
discrete fields (e.g. neoadjuvant therapy), dates of diagnosis and 
treatment. This is to eliminate cases where the measured tumor size 
may have changed much due to growth or shrinkage. Also save as 
discrete fields variables that may affect tumor size or stage discrep
ancies, e.g., histology, measurement modality (e.g. rounding, 2-D vs 
3-D images). Narrative patient reports containing varying terminol
ogy are not as efficient as databases with standardized discrete data 
for analysis purposes.  

2 Create a spreadsheet matrix as in Fig. 1 and a table similar to Table 3. 
We used Excel because it is widely available and provides arithmetic 
functions: only summation, subtraction, division, multiplication, and 
square roots are needed. The Excel spreadsheets can be saved as 
templates with the needed equations to compute agreement and 
statistical errors. Templates can also include a list of definitions to 
avoid ambiguity.  

3 For patients who have both a pathological and a clinical stage and no 
neoadjuvant therapy, populate the matrix with the number of cases 
for each stage category such as pT-stage vs cT-stage in Fig. 1 or pN- 
stage vs cN-stage in Fig. S3. If the equations are stored in the 
spreadsheet cells, the matrix should self calculate all the other 
derived numbers: the Total number of cases in each row or column; 
the percent-agreement (number of cases with the same assigned 
pathology and clinical stage (the diagonal elements), divided by the 
Total number of cases in that row or column, respectively); then 
multiply by 100 to express the ratio as a percentage. The standard 
deviation statistical error should self calculate as well (square-root of 
the number of cases with same assigned pathology and clinical stage, 
divided by the Total number of cases in that row or column); then 
multiply by 100 to express the standard deviation as a percentage.  

4 To calculate the invariant agreement for each stage category, 
compute the average of the Total number of cases in each row and 
respective column, and use that averaged number as the denomi
nator and then follow step 3 to compute percent-agreement. 

5 The total “systematic error” for each stage category is the patho
logical agreement minus the clinical agreement. Users can also treat 
this value as a linear measure of the biases and measurement issues 
that systematically cause the pathological and clinical measurements 
to differ. Issues may include those listed in Table 1 and Reference [7].  

6 To glean correlations between the concordance of pathological and 
clinical stage values with different cancer and treatment parameters, 
populate tables like Table 3 and 4 with the number of cases in each of 
the categories. The percentage of cases and standard deviation 
should self calculate if the Excel table was set up with equations in 
the cells to compute the ratio and standard deviation (see step 3). 
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7 For each patient having both clinical and pathological tumor size 
data, also plot histograms of the number of cases of clinical and 
pathological tumor size like in Reference [7]. Check whether the 
distribution is monotonically decreasing or if there are sudden spikes 
or dips in the data. Also plot the difference between the pathological 
size and clinical size. Excel can also compute the Pearson correlation 
if desired.  

8 If there are unexpected spikes or scarcity of cases in the data, look at 
the patient EMR to glean potential causes. For example, if there are 
too many cTx cases, perhaps check whether these are due to transfer 
patients. As another example, if there is too much discordance in the 
T1 stage as opposed to T2 stage, perhaps check the CT images or 
pathology specimens (or images of specimens) for systematic prob
lems in the clinical measurement of smaller tumors. And so on. 

Cancer hospitals, and also registries, can use these simplified tech
niques to monitor staging and tumor length measurement quality. They 
can compare their results with SEER’s, first to eliminate sources of the 
more-obvious biases or practice problems discerned from their matrices 
and tables and EMR, then iteratively repeat the Steps to uncover more 
subtle problems or correlations with other variables. These same tech
niques can also be applied to other cancers by revising the names of the 
stage categories, histology, etc., in the templates and entering the rele
vant numerical case data. Because some SEER regions have better results 
than others, this indicates there is room for improvement. With these 
tools, the possibility of making improvements to cancer staging is 
beneficial to patients. 

Advantages of the tabulation framework 

Firstly, the framework is easily implemented to quantify staging 
quality, using spreadsheets and basic arithmetic. Matrix patterns readily 
reveal off-diagonal outlier cases that worsen clinical-pathological 
concordance: clinical T1 cases that have not been properly sub
categorized as T1a or T1b (Fig. 1A), six-fold more cTX than pTX cases, 
which categories are more error-prone, etc. Individual hospitals can 
access their patient EMR to investigate the outliers. By contrast, present 
publications often use Kappa indices, multivariate logistic regressions, 
etc., that are essentially black-box calculations requiring statisticians, 
who are either scarce or non-existent at some hospitals. 

Compared to percent-concordances, the Cohen-kappa concordance 
index is difficult to interpret, obscures patterns of problems, and is 
intended for comparing two raters or single-rater repeatability of a 
single object [22]. However, for cancer staging, different objects are 
instead being rated by two varying groups of unknown number of raters 
among the clinicians and pathologists. Additionally, there is a known 
mathematical problem that Cohen-kappa can be lacking even when the 
percent-concordance is fine, which is what occurred with our N-stage 
overall concordance results in Fig. S3 [33, 34]. One way to verify this 
problem is noting that the order of the N-stage categories is arbitrary. If 
we re-order the categories in the N-stage matrix, the Cohen-kappa value 
changes, but the percent-concordance does not. The magnitude of the 
index also depends on setup parameters such as the weighting scheme 
on the entries in the matrix. Another drawback of the Kappa index is that 
the error on the index, is also hard to interpret, whether it is purely 
statistical in nature or not. 

Secondly, the matrices yield clinical-pathological concordances for 
individual stage categories (T1a, T2b, etc.) using two different de
nominators. Using the pathological values as the denominator is actually 
the accepted mathematical method when they are a gold standard or 
reference value [3, 14, 38]. However, other studies instead referenced 
the concordance by the total clinical cases (cTotal-i). One problem with 
this is that the number of clinical T-stage cases is itself a varying value, 
having wide variance over the years [1, 35], resulting in large discrep
ancies among studies. Nevertheless, both values are useful, and the 
difference between the pathological and clinical results provides an easy 

way to quantify an estimated overall systematic error. 
One advantage of the third choice of denominator, averaging (pTo

tal-i, cTotal-i), is that the concordance is invariant because it is unique, 
allowing comparison with future studies unambiguously and compat
ibly. This choice is consistent with the calculation of overall T-stage 
concordance, where the denominator is the total number of cases in the 
entire matrix, effectively averaging over both pathological and clinical 
cases. This averaged denominator is akin to Bland-Altman plots that 
average values when the true value is unknown. Averaging is consistent 
with TNM8 treating pathological and clinical measurements equally 
valid [9, 36]. Staging guidelines point out that the pathological tumor 
length is not so “golden” a reference standard because it too displays 
biases like in Table 1. For NSCLC that is diagnosed by ever-improving 
radiologic images, the accuracy of clinical staging is improving, 
perhaps warranting being treated equally with pathological staging, 
especially now that prognosis has also been calibrated with respect to 
clinical tumor length [36]. 

Thirdly, when analyzing characteristics that cause cT vs pT discor
dance, the multivariate logistic regressions are hard to interpret and 
implement, requiring a statistics package, aid of a biostatistician, iter
ative processing, and manipulating or omnibussing input predictor- 
variables that have many species (e.g. histology). The results may vary 
depending on which input variables or tool settings are included. Uni
variate logistic regressions are easier to perform and understand but 
may yield biased results due to under-specification errors [37]. Even the 
multivariate analysis may be under-specified due to missing 
predictor-variables (i.e. not including all relevant pieces of a whole pie). 
By contrast, simple concordance vs cancer characteristics tabulations 
are easily set up in a spreadsheet to obtain insights like with Tables 3 and 
4. 

Table 3 tabulates the percentage of SEER cases cancer characteristics 
versus three ordinal-output T-stage concordance categories. Instead of 
merely numerically associating a characteristic with clinical- 
pathological concordance by a p-value, which is what multivariate re
gressions determine, tabulations instead make it easier to detect trends. 
One could also readily plot a histogram from the tabulations and visually 
see the trends. For example, Table 3 shows that as resected specimen size 
increases, the T-stage concordance declines, and pT becomes upstage of 
cT. To detect trends with lower data statistics such as <1000 cases, the 
three ordinal-outputs categories may need to be reduced to two values: 
agree and disagree, depending on the number of species of a charac
teristic (e.g. number of types of surgery) [13]. 

Limitations and recommendations 

In this article we address how to quantify clinical and pathological 
stage discordance and look for patterns of issues (e.g. which stage sub
categories or tumor size ranges exhibit the largest discordance, whether 
the upstaging jumps by one or more than one subcategory, which var
iables affect stage discordance, etc.). We also address how to standardize 
the reporting of the arithmetic magnitude of discordance and its sys
tematic and statistical errors so that different studies can be compared 
apples-to-apples. However, we do not address methods to correct or 
reduce the discordance such as by standardizing certain practices, or 
methods to reduce the biases that contribute to and increase the 
magnitude of systematic errors. Rather, in Reference [7], we addressed 
how to reduce some of the clinical staging biases and standardize some 
of the methods of measuring clinical tumor length and reporting a 
clinical NSCLC stage. In an upcoming publication on breast cancer in the 
American Journal of Clinical Pathology, we address how to overcome 
some challenges in gross tumor measurements that determine the 
pathological cancer stage. Lung cancer gross tumor measurements are 
performed in a manner similar to breast tumors measurements, and thus 
there may be benefits in considering the breast cancer article. Never
theless, more research and guidance are needed in standardizing NSCLC 
staging to make clinical NSCLC staging more accurate. 

D.Y. Wu et al.                                                                                                                                                                                                                                   



Cancer Treatment and Research Communications 25 (2020) 100253

8

Registrars can preserve only a finite amount of data. However, to 
better assess and quantify staging discordance, it would be useful to 
have additional data fields such as the source of the stage values 
assigned to a patient (e.g. CT with or without contrast, EBUS/EUS pro
cedures). Nevertheless, at least the SEER patient survival data will 
become available in a few years to perform correlations with cancer 
stage and the magnitude of pathological-clinical discordance. 

Our tabulation framework methods require sufficient data. A typical 
cancer hospital has much fewer cases than SEER. Consequently, we 
applied the methods to only 450 in-house NSCLC cases to check how 
well they work with fewer cases. We obtained 61.1 ± 3.7% concordance 
for TNM-stage, 79.6 ± 4.2% for N-stage, and 58.8 ± 3.5% for T-stage, 
which are statistically identical to the SEER results. Tis, T1a, T1b, T2a, 
T2b, T3, T4 invariant concordances are 90 ± 30%; 74.4 ± 7.5 + 5.6%; 
53.6 ± 8.8 + 19.2%; 53.6 ± 6.5 – 31.5%; 59.3 ± 14.8 – 18.0%; 61.7 ±
11.5 – 18.8%; 75 ± 19 + 7.6%, respectively. Except for T2b, these values 
are statistically identical to the SEER results. It is not necessary to have 
even 450 cases to ascertain patterns in the data from the matrices (e.g. 
Fig. 1). Too many outliers off-diagonal would be readily apparent and 
indicate problems may exist. 

Our definition of an aggregated systematic error for each category 
helps to further quantify the magnitude of discordance, but it is not the 
traditional root sum square (RSS) systematic error that is difficult to 
calculate due to the existence of many biases (e.g. Table 1). We state an 
overall concordance of 58.1 ± 0.9%, which includes a statistical error 
but lacks information about the systematic error. The total RSS error on 
the overall concordance would include the error contribution from each 
bias. To quantify the contribution from any particular individual bias 
entails tabulating a new matrix of results after including the bias, and 
then calculate the difference between corresponding percent- 
concordances between the original and new matrices. For example, 
the T-stage concordance for delay-to-resection of <120 days versus 
longer periods, is 58.1% versus 57.7%, respectively. The difference of 
0.4% is an estimate of the individual systematic error due to delay, 
during which time the tumor may have progressed. The cT vs pT 
concordance accounting for systematic error due only to delay can be 
reported as 58.1 ± 0.9–0.4%, where the minus sign signifies delays 
reduce concordance. 

Conclusion 

Clinical NSCLC staging accuracy can be improved, and a first step in 
the overall process towards improvement is to standardize and unify the 
method of quantifying accuracy and discordance and identifying where 
issues may exist. This tabulation-template framework simplifies 
comparing staging results compatibly and detecting problems. Cancer 
hospitals and registries can implement the intuitive framework to 
quantify, monitor and improve staging accuracy at their sites with an 
overall goal of improving cancer patient management, treatment and 
prognosis. 
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