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The conservative coupled Lugiato-Lefever equations may admit solutions with nonzero backgrounds, where the
fields do not vanish when θ → ±∞. In the following we will show the existence of these solutions with the help of
a phase space and then derive some special cases of such solutions. We note that, while these solutions are valid
for the conservative hybrid-mode system, the addition of loss or other broadband effects may change the solutions
in a qualitative way. The background fields also make the solutions difficult to satisfy the periodic conditions for a
resonator. It is not known if soliton solutions with backgrounds can exist in a lossy resonator in the form given below.

The equations for the Dirac soliton reads

(δD1 − v)∂θE1 = −iδωE1 + igcE2 + i(g11|E1|2E1 + g12|E2|2E1) (S1)

−(δD1 + v)∂θE2 = −iδωE2 + igcE1 + i(g22|E2|2E2 + g12|E1|2E2) (S2)

As in the main text, we introduce the following quantities:

H̄ = −δω(|E1|2 + |E2|2) + gc(E
∗
1E2 + E∗2E1) +

1

2

(
g11|E1|4 + g22|E2|4 + 2g12|E1|2|E2|2

)
(S3)

N̄ = (δD1 − v)|E1|2 − (δD1 + v)|E2|2 (S4)

G =
δD1 + v

δD1 − v
g11
2

+
δD1 − v
δD1 + v

g22
2

+ g12 (S5)

We begin by obtaining the background (continuous-wave) solutions in the system. To eliminate the global phase
dependence, we rewrite the equations of motion using two amplitude variables, |E1| and |E2|, and a phase difference
variable, χ ≡ arg(E1E

∗
2 ):

(δD1 − v)∂θ|E1| = gc|E2| sinχ (S6)

(δD1 + v)∂θ|E2| = gc|E1| sinχ (S7)

∂θχ = − 2δD1δω

δD2
1 − v2

+

(
gc

δD1 − v
|E2|
|E1|

+
gc

δD1 + v

|E1|
|E2|

)
cosχ+

(
g11|E1|2 + g12|E2|2

δD1 − v
+
g22|E2|2 + g12|E1|2

δD1 + v

)
(S8)

We denote the background solutions as |E1|0, |E2|0 and χ0, and at these points all three derivatives should vanish.
This happens when |E1|0 and |E2|0 are both zero, or are both nonzero. As we have solved the first case in the previous
section, we will focus on the case where |E1|0 > 0 and |E2|0 > 0. In this case sinχ0 = 0, and χ0 = 0 or π, i.e. the
two components in the background are completely in-phase or out-of-phase relative to the mode coupling.

A two-dimensional phase space can be constructed from the real and imaginary parts of E1E
∗
2 (Fig. S1a). The

fields at each θ correspond to a point in the diagram, and follow a contour defined by constant H̄ and N̄ as θ
varies. Background solutions appear in the diagram as fixed points on the real axis. Soliton solutions converge to the
background for θ → ±∞, and therefore are homoclinic orbits connecting the background state to itself (Fig. S1b).
The shape of the orbit is a limaçon and is described by the following equation:[

zz∗ +
a

2
(z + z∗)

]2
= b2zz∗, z = E1E

∗
2 − |E1|0|E2|0 cosχ0 (S9)

a =
2gc
G

(1 +G|E1|0|E2|0 cosχ0/gc), b =
gc
|G|

∣∣(δD1 − v)|E1|20 + (δD1 + v)|E2|20
∣∣

|E1|0|E2|0

√
1 +G|E1|0|E2|0 cosχ0/gc

δD2
1 − v2

(S10)

According to the properties of a limaçon, when b < |a| the curve has a inner loop, and the background solution
becomes a saddle point (Fig. S1b). The inner loop and the outer loop each correspond to a soliton solution, where the
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FIG. S1: Phase space portraits of solitons in the hybrid-mode system. For simplicity we choose g11 = g22 = 0 (G = g12)
in these plots. The length of one grid unit in the plot represents 2gc/G. Arrows indicate the direction of state change when
θ increases. (a) The phase space portrait for bright solitons with v = 0, δω = −gc/2 (dashed line) and v = 0, δω = gc/2
(solid line). (b) The phase space portrait for dark soliton and soliton-on-background solutions, with a component-in-phase
background. Parameters are v = 0, δω = 2gc and |E1|20 = |E2|20 = gc/G. (c) The phase space portrait for dark soliton and
soliton-on-background solutions, with a component-out-of-phase background. Parameters are v = −5/3δD1, δω = 3gc and
|E1|20 = |E2|20 = 4gc/G. In both (b) and (c) the saddle point topology is present near the background state.

inner loop resembles the conventional dark soliton and the outer loop is a soliton-on-background solution. If b > |a|
the limaçon is a simple closed curve that does not pass through the background state, and the solution becomes
a Turing roll. For the critical case b = |a|, the limaçon reduces to a cardioid, and only the soliton-on-background
solution remains.

The sign of cosχ0 determines if the background components are in-phase or out-of-phase, and how the limaçon
is oriented. For |v| < δD1, the b ≤ |a| condition results in χ0 = 0. In this case the reduced detuning is restricted
to ξ̃ ≥ 1, and the resonance line of the soliton intersects the bottom branch twice. For |v| > δD1, cosχ0 has the
opposite sign to G, which may become negative. No particular restrictions have been found for the detuning δω, and
the resonance line of the soliton intersects both branches once. Typical phase spaces of these two cases are illustrated
in Figs. S1b and S1c. The case |v| = δD1 does not correspond to solitons, as one of the |E1,2| loses its dynamics, and
all solutions are continuous waves.

In the following, we derive the analytical solutions for these solitons. We restrict ourselves to the case |v| < δD1 to
avoid the discussions on parameters that may change sign, but the technique can be readily generalized. We introduce
additional reduced variables to simplify the expressions:

Ẽ1 ≡
√
δD1 − vE1, Ẽ2 ≡

√
δD1 + vE2, G̃ ≡ G

gc
|E1|0|E2|0 (S11)

Similarly, |Ẽ1|0 and |Ẽ2|0 are the values of the corresponding variable at the background.
We extend the definition of ψ2 as

ψ2 ≡ 1

2
(|Ẽ1|2 + |Ẽ2|2) =

1

2

[
(δD1 − v)|E1|2 + (δD1 + v)|E2|2

]
(S12)

which has the same meaning as the ψ2 in the main text when N̄ = 0. The value of ψ2 at the background reads
ψ2
0 ≡

[
(δD1 − v)|E1|20 + (δD1 + v)|E2|20

]
/2. The differential equation for ψ2 reads

∂θψ
2 = 2|E1||E2| sinχ (S13)

=
δD1√
δD2

1 − v2
(ψ2 − ψ2

0)

√
4(1 + G̃)− [G̃(ψ2 − ψ2

0)− 2ψ2
0 ]2

|Ẽ1|20|Ẽ2|20
(S14)

where we have used the conservation of H̄ and N̄ and substituted their values at the background. Integration gives

ψ2 = ψ2
0 +

2
[
ψ4
0 − (1 + G̃)|Ẽ1|20|Ẽ2|20

]
G̃
[
ψ2
0 + σ

√
1 + G̃|Ẽ1|0|Ẽ2|0 cosh(βθ̃)

] , β ≡

√
4G̃− N̄2

|Ẽ1|20|Ẽ2|20
, θ̃ =

gc√
δD2

1 − v2
θ (S15)
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The saddle point criterion from the limaçon ensures that β is a real number. The σ before the cosh function is
determined by how the square root is taken. For dark-soliton-like solutions (inner loop of the limaçon) we take σ = 1,
and for soliton-on-background solutions (outer loop of the limaçon) we take σ = −1.

The rest of the solution process is identical to the bright soliton case, which proceeds by finding the equation for
argE1,2 followed by integration. Combining all results above, the field solution can be written as

E1 =

|E1|20 −
|Ẽ1|0|Ẽ2|0β2 cosh(βθ̃) + i(N̄ + 2G̃|Ẽ1|20)β sinh(βθ̃)

(δD1 − v)G̃
[
2σ
√

1 + G̃+ 2ψ2
0/(|Ẽ1|0|Ẽ2|0) cosh(βθ̃) + iβ sinh(βθ̃)

]
1/2

×

[
2σ
√

1 + G̃+ 2ψ2
0/(|Ẽ1|0|Ẽ2|0) cosh(βθ̃)− iβ sinh(βθ̃)

2σ
√

1 + G̃ cosh(βθ̃) + 2ψ2
0/(|Ẽ1|0|Ẽ2|0)

]γ/2
exp(ik0θ) (S16)

E2 =±

|E2|20 −
|Ẽ1|0|Ẽ2|0β2 cosh(βθ̃) + i(N̄ + 2G̃|Ẽ2|20)β sinh(βθ̃)

(δD1 + v)G̃
[
2σ
√

1 + G̃+ 2ψ2
0/(|Ẽ1|0|Ẽ2|0) cosh(βθ̃) + iβ sinh(βθ̃)

]
1/2

×

[
2σ
√

1 + G̃+ 2ψ2
0/(|Ẽ1|0|Ẽ2|0) cosh(βθ̃)− iβ sinh(βθ̃)

2σ
√

1 + G̃ cosh(βθ̃) + 2ψ2
0/(|Ẽ1|0|Ẽ2|0)

]γ/2
exp(ik0θ) (S17)

k0 ≡
1

2δD1

(
gc
|E2|20 − |E1|20
|E1|0|E2|0

+ (g11 − g12)|E1|20 − (g22 − g12)|E2|20
)

(S18)

where the sign of E2 is negative if the limaçon loop encloses the origin, or positive if the origin is not enclosed. |E1|0
and |E2|0 are the background field amplitudes, i.e. the positive solutions to the following equation:

2δD1δω = gc(δD1+v)
|E2|0
|E1|0

+gc(δD1−v)
|E1|0
|E2|0

+(g11|E1|20+g12|E2|20)(δD1+v)+(g22|E2|20+g12|E1|20)(δD1−v) (S19)

A special case can be obtained by setting g11 = g22, v = 0, and |E1|0 = |E2|0 =
√

(δω − gc)/(g11 + g12). In this
case

E1 = −E∗2 =

√
δω − gc
g11 + g12

√
δω − gc − iσ

√
δω sinh(2

√
(δω − gc)gcθ/δD1)√

δω cosh(2
√

(δω − gc)gcθ/δD1) + σ
(S20)


