Dirac Solitons in Optical Microresonators: Supplementary information

Heming Wang ${ }^{1}$, Yu-Kun Lu ${ }^{1}$, Lue Wu ${ }^{1}$, Dong Yoon Oh ${ }^{1}$, Boqiang Shen ${ }^{1}$, Seung Hoon Lee ${ }^{1}$, and Kerry Vahala ${ }^{1, \dagger}$
${ }^{1}$ T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA.

${ }^{\dagger}$ Corresponding author: vahala@caltech.edu

The conservative coupled Lugiato-Lefever equations may admit solutions with nonzero backgrounds, where the fields do not vanish when $\theta \rightarrow \pm \infty$. In the following we will show the existence of these solutions with the help of a phase space and then derive some special cases of such solutions. We note that, while these solutions are valid for the conservative hybrid-mode system, the addition of loss or other broadband effects may change the solutions in a qualitative way. The background fields also make the solutions difficult to satisfy the periodic conditions for a resonator. It is not known if soliton solutions with backgrounds can exist in a lossy resonator in the form given below.

The equations for the Dirac soliton reads

$$
\begin{align*}
\left(\delta D_{1}-v\right) \partial_{\theta} E_{1} & =-i \delta \omega E_{1}+i g_{\mathrm{c}} E_{2}+i\left(g_{11}\left|E_{1}\right|^{2} E_{1}+g_{12}\left|E_{2}\right|^{2} E_{1}\right) \tag{S1}\\
-\left(\delta D_{1}+v\right) \partial_{\theta} E_{2} & =-i \delta \omega E_{2}+i g_{\mathrm{c}} E_{1}+i\left(g_{22}\left|E_{2}\right|^{2} E_{2}+g_{12}\left|E_{1}\right|^{2} E_{2}\right) \tag{S2}
\end{align*}
$$

As in the main text, we introduce the following quantities:

$$
\begin{gather*}
\bar{H}=-\delta \omega\left(\left|E_{1}\right|^{2}+\left|E_{2}\right|^{2}\right)+g_{\mathrm{c}}\left(E_{1}^{*} E_{2}+E_{2}^{*} E_{1}\right)+\frac{1}{2}\left(g_{11}\left|E_{1}\right|^{4}+g_{22}\left|E_{2}\right|^{4}+2 g_{12}\left|E_{1}\right|^{2}\left|E_{2}\right|^{2}\right) \tag{S3}\\
\bar{N}=\left(\delta D_{1}-v\right)\left|E_{1}\right|^{2}-\left(\delta D_{1}+v\right)\left|E_{2}\right|^{2} \tag{S4}\\
G=\frac{\delta D_{1}+v}{\delta D_{1}-v} \frac{g_{11}}{2}+\frac{\delta D_{1}-v}{\delta D_{1}+v} \frac{g_{22}}{2}+g_{12} \tag{S5}
\end{gather*}
$$

We begin by obtaining the background (continuous-wave) solutions in the system. To eliminate the global phase dependence, we rewrite the equations of motion using two amplitude variables, $\left|E_{1}\right|$ and $\left|E_{2}\right|$, and a phase difference variable, $\chi \equiv \arg \left(E_{1} E_{2}^{*}\right)$:

$$
\begin{align*}
&\left(\delta D_{1}-v\right) \partial_{\theta}\left|E_{1}\right|=g_{\mathrm{c}}\left|E_{2}\right| \sin \chi \tag{S6}\\
&\left(\delta D_{1}+v\right) \partial_{\theta}\left|E_{2}\right|=g_{\mathrm{c}}\left|E_{1}\right| \sin \chi \tag{S7}\\
& \partial_{\theta} \chi=-\frac{2 \delta D_{1} \delta \omega}{\delta D_{1}^{2}-v^{2}}+\left(\frac{g_{\mathrm{c}}}{\delta D_{1}-v} \frac{\left|E_{2}\right|}{\left|E_{1}\right|}+\frac{g_{\mathrm{c}}}{\delta D_{1}+v} \frac{\left|E_{1}\right|}{\left|E_{2}\right|}\right) \cos \chi+\left(\frac{g_{11}\left|E_{1}\right|^{2}+g_{12}\left|E_{2}\right|^{2}}{\delta D_{1}-v}+\frac{g_{22}\left|E_{2}\right|^{2}+g_{12}\left|E_{1}\right|^{2}}{\delta D_{1}+v}\right) \tag{S8}
\end{align*}
$$

We denote the background solutions as $\left|E_{1}\right|_{0},\left|E_{2}\right|_{0}$ and χ_{0}, and at these points all three derivatives should vanish. This happens when $\left|E_{1}\right|_{0}$ and $\left|E_{2}\right|_{0}$ are both zero, or are both nonzero. As we have solved the first case in the previous section, we will focus on the case where $\left|E_{1}\right|_{0}>0$ and $\left|E_{2}\right|_{0}>0$. In this case $\sin \chi_{0}=0$, and $\chi_{0}=0$ or π, i.e. the two components in the background are completely in-phase or out-of-phase relative to the mode coupling.

A two-dimensional phase space can be constructed from the real and imaginary parts of $E_{1} E_{2}^{*}$ (Fig. S1a). The fields at each θ correspond to a point in the diagram, and follow a contour defined by constant \bar{H} and \bar{N} as θ varies. Background solutions appear in the diagram as fixed points on the real axis. Soliton solutions converge to the background for $\theta \rightarrow \pm \infty$, and therefore are homoclinic orbits connecting the background state to itself (Fig. S1b). The shape of the orbit is a limaçon and is described by the following equation:

$$
\begin{gather*}
{\left[z z^{*}+\frac{a}{2}\left(z+z^{*}\right)\right]^{2}=b^{2} z z^{*}, \quad z=E_{1} E_{2}^{*}-\left|E_{1}\right|_{0}\left|E_{2}\right|_{0} \cos \chi_{0}} \tag{S9}\\
a=\frac{2 g_{\mathrm{c}}}{G}\left(1+G\left|E_{1}\right|_{0}\left|E_{2}\right|_{0} \cos \chi_{0} / g_{\mathrm{c}}\right), \quad b=\frac{g_{\mathrm{c}}}{|G|} \frac{\left.\left|\left(\delta D_{1}-v\right)\right| E_{1}\right|_{0} ^{2}+\left(\delta D_{1}+v\right)\left|E_{2}\right|_{0}^{2} \mid}{\left|E_{1}\right|_{0}\left|E_{2}\right|_{0}} \sqrt{\frac{1+G\left|E_{1}\right|_{0}\left|E_{2}\right|_{0} \cos \chi_{0} / g_{\mathrm{c}}}{\delta D_{1}^{2}-v^{2}}} \tag{S10}
\end{gather*}
$$

According to the properties of a limaçon, when $b<|a|$ the curve has a inner loop, and the background solution becomes a saddle point (Fig. S1b). The inner loop and the outer loop each correspond to a soliton solution, where the

FIG. S1: Phase space portraits of solitons in the hybrid-mode system. For simplicity we choose $g_{11}=g_{22}=0\left(G=g_{12}\right)$ in these plots. The length of one grid unit in the plot represents $2 g_{c} / G$. Arrows indicate the direction of state change when θ increases. (a) The phase space portrait for bright solitons with $v=0, \delta \omega=-g_{\mathrm{c}} / 2$ (dashed line) and $v=0, \delta \omega=g_{\mathrm{c}} / 2$ (solid line). (b) The phase space portrait for dark soliton and soliton-on-background solutions, with a component-in-phase background. Parameters are $v=0, \delta \omega=2 g_{\mathrm{c}}$ and $\left|E_{1}\right|_{0}^{2}=\left|E_{2}\right|_{0}^{2}=g_{\mathrm{c}} / G$. (c) The phase space portrait for dark soliton and soliton-on-background solutions, with a component-out-of-phase background. Parameters are $v=-5 / 3 \delta D_{1}, \delta \omega=3 g_{\mathrm{c}}$ and $\left|E_{1}\right|_{0}^{2}=\left|E_{2}\right|_{0}^{2}=4 g_{\mathrm{c}} / G$. In both (b) and (c) the saddle point topology is present near the background state.
inner loop resembles the conventional dark soliton and the outer loop is a soliton-on-background solution. If $b>|a|$ the limaçon is a simple closed curve that does not pass through the background state, and the solution becomes a Turing roll. For the critical case $b=|a|$, the limaçon reduces to a cardioid, and only the soliton-on-background solution remains.

The sign of $\cos \chi_{0}$ determines if the background components are in-phase or out-of-phase, and how the limaçon is oriented. For $|v|<\delta D_{1}$, the $b \leq|a|$ condition results in $\chi_{0}=0$. In this case the reduced detuning is restricted to $\tilde{\xi} \geq 1$, and the resonance line of the soliton intersects the bottom branch twice. For $|v|>\delta D_{1}, \cos \chi_{0}$ has the opposite sign to G, which may become negative. No particular restrictions have been found for the detuning $\delta \omega$, and the resonance line of the soliton intersects both branches once. Typical phase spaces of these two cases are illustrated in Figs. S1b and S1c. The case $|v|=\delta D_{1}$ does not correspond to solitons, as one of the $\left|E_{1,2}\right|$ loses its dynamics, and all solutions are continuous waves.

In the following, we derive the analytical solutions for these solitons. We restrict ourselves to the case $|v|<\delta D_{1}$ to avoid the discussions on parameters that may change sign, but the technique can be readily generalized. We introduce additional reduced variables to simplify the expressions:

$$
\begin{equation*}
\tilde{E}_{1} \equiv \sqrt{\delta D_{1}-v} E_{1}, \quad \tilde{E}_{2} \equiv \sqrt{\delta D_{1}+v} E_{2}, \quad \tilde{G} \equiv \frac{G}{g_{\mathrm{c}}}\left|E_{1}\right|_{0}\left|E_{2}\right|_{0} \tag{S11}
\end{equation*}
$$

Similarly, $\left|\tilde{E}_{1}\right|_{0}$ and $\left|\tilde{E}_{2}\right|_{0}$ are the values of the corresponding variable at the background.
We extend the definition of ψ^{2} as

$$
\begin{equation*}
\psi^{2} \equiv \frac{1}{2}\left(\left|\tilde{E}_{1}\right|^{2}+\left|\tilde{E}_{2}\right|^{2}\right)=\frac{1}{2}\left[\left(\delta D_{1}-v\right)\left|E_{1}\right|^{2}+\left(\delta D_{1}+v\right)\left|E_{2}\right|^{2}\right] \tag{S12}
\end{equation*}
$$

which has the same meaning as the ψ^{2} in the main text when $\bar{N}=0$. The value of ψ^{2} at the background reads $\psi_{0}^{2} \equiv\left[\left(\delta D_{1}-v\right)\left|E_{1}\right|_{0}^{2}+\left(\delta D_{1}+v\right)\left|E_{2}\right|_{0}^{2}\right] / 2$. The differential equation for ψ^{2} reads

$$
\begin{align*}
\partial_{\theta} \psi^{2} & =2\left|E_{1}\right|\left|E_{2}\right| \sin \chi \tag{S13}\\
& =\frac{\delta D_{1}}{\sqrt{\delta D_{1}^{2}-v^{2}}}\left(\psi^{2}-\psi_{0}^{2}\right) \sqrt{4(1+\tilde{G})-\frac{\left[\tilde{G}\left(\psi^{2}-\psi_{0}^{2}\right)-2 \psi_{0}^{2}\right]^{2}}{\left|\tilde{E}_{1}\right|_{0}^{2}\left|\tilde{E}_{2}\right|_{0}^{2}}} \tag{S14}
\end{align*}
$$

where we have used the conservation of \bar{H} and \bar{N} and substituted their values at the background. Integration gives

$$
\begin{equation*}
\psi^{2}=\psi_{0}^{2}+\frac{2\left[\psi_{0}^{4}-(1+\tilde{G})\left|\tilde{E}_{1}\right|_{0}^{2}\left|\tilde{E}_{2}\right|_{0}^{2}\right]}{\tilde{G}\left[\psi_{0}^{2}+\sigma \sqrt{1+\tilde{G}}\left|\tilde{E}_{1}\right|_{0}\left|\tilde{E}_{2}\right|_{0} \cosh (\beta \tilde{\theta})\right]}, \quad \beta \equiv \sqrt{4 \tilde{G}-\frac{\bar{N}^{2}}{\left|\tilde{E}_{1}\right|_{0}^{2}\left|\tilde{E}_{2}\right|_{0}^{2}}}, \quad \tilde{\theta}=\frac{g_{\mathrm{c}}}{\sqrt{\delta D_{1}^{2}-v^{2}}} \theta \tag{S15}
\end{equation*}
$$

The saddle point criterion from the limaçon ensures that β is a real number. The σ before the cosh function is determined by how the square root is taken. For dark-soliton-like solutions (inner loop of the limaçon) we take $\sigma=1$, and for soliton-on-background solutions (outer loop of the limaçon) we take $\sigma=-1$.

The rest of the solution process is identical to the bright soliton case, which proceeds by finding the equation for $\arg E_{1,2}$ followed by integration. Combining all results above, the field solution can be written as

$$
\begin{align*}
E_{1}= & {\left[\left|E_{1}\right|_{0}^{2}-\frac{\left|\tilde{E}_{1}\right|_{0}\left|\tilde{E}_{2}\right|_{0} \beta^{2} \cosh (\beta \tilde{\theta})+i\left(\bar{N}+2 \tilde{G}\left|\tilde{E}_{1}\right|_{0}^{2}\right) \beta \sinh (\beta \tilde{\theta})}{\left(\delta D_{1}-v\right) \tilde{G}\left[2 \sigma \sqrt{1+\tilde{G}}+2 \psi_{0}^{2} /\left(\left|\tilde{E}_{1}\right|_{0}\left|\tilde{E}_{2}\right|_{0}\right) \cosh (\beta \tilde{\theta})+i \beta \sinh (\beta \tilde{\theta})\right]}\right]^{1 / 2} } \\
& \times\left[\frac{2 \sigma \sqrt{1+\tilde{G}}+2 \psi_{0}^{2} /\left(\left|\tilde{E}_{1}\right|_{0}\left|\tilde{E}_{2}\right|_{0}\right) \cosh (\beta \tilde{\theta})-i \beta \sinh (\beta \tilde{\theta})}{2 \sigma \sqrt{1+\tilde{G}} \cosh (\beta \tilde{\theta})+2 \psi_{0}^{2} /\left(\left|\tilde{E}_{1}\right|_{0}\left|\tilde{E}_{2}\right|_{0}\right)}\right]^{\gamma / 2} \exp \left(i k_{0} \theta\right) \tag{S16}\\
E_{2}= & \pm\left[\left|E_{2}\right|_{0}^{2}-\frac{\left|\tilde{E}_{1}\right|_{0}\left|\tilde{E}_{2}\right|_{0} \beta^{2} \cosh (\beta \tilde{\theta})+i\left(\bar{N}+2 \tilde{G}\left|\tilde{E}_{2}\right|_{0}^{2}\right) \beta \sinh (\beta \tilde{\theta})}{\left(\delta D_{1}+v\right) \tilde{G}\left[2 \sigma \sqrt{1+\tilde{G}}+2 \psi_{0}^{2} /\left(\left|\tilde{E}_{1}\right|_{0}\left|\tilde{E}_{2}\right|_{0}\right) \cosh (\beta \tilde{\theta})+i \beta \sinh (\beta \tilde{\theta})\right]}\right]^{1 / 2} \\
& \times\left[\frac{2 \sigma \sqrt{1+\tilde{G}}+2 \psi_{0}^{2} /\left(\left|\tilde{E}_{1}\right|_{0}\left|\tilde{E}_{2}\right|_{0}\right) \cosh (\beta \tilde{\theta})-i \beta \sinh (\beta \tilde{\theta})}{2 \sigma \sqrt{1+\tilde{G}} \cosh (\beta \tilde{\theta})+2 \psi_{0}^{2} /\left(\left|\tilde{E}_{1}\right|_{0}\left|\tilde{E}_{2}\right|_{0}\right)}\right]^{\gamma / 2} \exp \left(i k_{0} \theta\right) \tag{S17}\\
& k_{0} \equiv \frac{1}{2 \delta D_{1}}\left(g_{\mathrm{c}} \frac{\left|E_{2}\right|_{0}^{2}-\left|E_{1}\right|_{0}^{2}}{\left|E_{1}\right|_{0}\left|E_{2}\right|_{0}}+\left(g_{11}-g_{12}\right)\left|E_{1}\right|_{0}^{2}-\left(g_{22}-g_{12}\right)\left|E_{2}\right|_{0}^{2}\right) \tag{S18}
\end{align*}
$$

where the sign of E_{2} is negative if the limaçon loop encloses the origin, or positive if the origin is not enclosed. $\left|E_{1}\right|_{0}$ and $\left|E_{2}\right|_{0}$ are the background field amplitudes, i.e. the positive solutions to the following equation:

$$
\begin{equation*}
2 \delta D_{1} \delta \omega=g_{\mathrm{c}}\left(\delta D_{1}+v\right) \frac{\left|E_{2}\right|_{0}}{\left|E_{1}\right|_{0}}+g_{\mathrm{c}}\left(\delta D_{1}-v\right) \frac{\left|E_{1}\right|_{0}}{\left|E_{2}\right|_{0}}+\left(g_{11}\left|E_{1}\right|_{0}^{2}+g_{12}\left|E_{2}\right|_{0}^{2}\right)\left(\delta D_{1}+v\right)+\left(g_{22}\left|E_{2}\right|_{0}^{2}+g_{12}\left|E_{1}\right|_{0}^{2}\right)\left(\delta D_{1}-v\right) \tag{S19}
\end{equation*}
$$

A special case can be obtained by setting $g_{11}=g_{22}, v=0$, and $\left|E_{1}\right|_{0}=\left|E_{2}\right|_{0}=\sqrt{\left(\delta \omega-g_{\mathrm{c}}\right) /\left(g_{11}+g_{12}\right)}$. In this case

$$
\begin{equation*}
E_{1}=-E_{2}^{*}=\sqrt{\frac{\delta \omega-g_{\mathrm{c}}}{g_{11}+g_{12}}} \frac{\sqrt{\delta \omega-g_{\mathrm{c}}}-i \sigma \sqrt{\delta \omega} \sinh \left(2 \sqrt{\left(\delta \omega-g_{\mathrm{c}}\right) g_{\mathrm{c}}} \theta / \delta D_{1}\right)}{\sqrt{\delta \omega} \cosh \left(2 \sqrt{\left(\delta \omega-g_{\mathrm{c}}\right) g_{\mathrm{c}}} \theta / \delta D_{1}\right)+\sigma} \tag{S20}
\end{equation*}
$$

