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Statistical Measures for Workload Capacity Analysis

Joseph W. Houpta,∗, James T. Townsenda

aDepartment of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA

Abstract

A critical component of how we understand a mental process is given by measuring the effect of varying the workload.
The capacity coefficient (Townsend & Nozawa, 1995; Townsend & Wenger, 2004) is a measure on response times for
quantifying changes in performance due to workload. Despite its precise mathematical foundation, until now rigorous
statistical tests have been lacking. In this paper we demonstrate statistical properties of the components of the capacity
measure and propose a significance test for comparing the capacity coefficient to a baseline measure or two capacity
coefficients to each other.

Keywords: Mental Architecture, Human Information Processing, Capacity Coefficient, Nonparametric, Race Model

Measures of changes in processing, for instance deteri-
oration, associated with increases in workload have been
fundamental to many advances in cognitive psychology.
Due to their particular strength in distinguishing the dy-
namic properties of systems, response time based measures
such as the capacity coefficient (Townsend & Nozawa, 1995;
Townsend & Wenger, 2004) and the related Race Model
Inequality (Miller, 1982) have been gaining employment
in both basic and applied sectors of cognitive psychology.
The purview of application of these measures includes ar-
eas as diverse as memory search (Rickard & Bajic, 2004),
visual search (Weidner & Muller, 2010; Krummenacher
et al., 2010), visual perception (Scharf et al., 2011; Eidels
et al., 2010b), auditory perception (Fiedler et al., 2011),
flavor perception (Veldhuizen et al., 2010), multi-sensory
integration (Rach et al., 2011; Hugenschmidt et al., 2010)
and threat detection (Richards et al., 2011).

While there have been a number of statistical tests pro-
posed for the Race Model Inequality (Gondan et al., 2012;
Ulrich et al., 2007; Maris & Maris, 2003; Van Zandt, 2002),
there has been a lack of analytical work on tests for the ca-
pacity coefficient. At this point, the only quantitative test
available for the capacity coefficient is that proposed by
Eidels et al. (2010a). This test is limited to testing an in-
crease in workload from one to two sources of information.
Furthermore, it relies on the assumption that the under-
lying channels can be modeled with the Linear Ballistic
Accumulator (Brown & Heathcote, 2008). In this paper,
we develop a more comprehensive statistical test for the
capacity coefficient that is both nonparametric and can be
applied with any number of sources of information.

The capacity coefficient, C (t), was originally invented
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Email addresses: jhoupt@indiana.edu (Joseph W. Houpt),
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Figure 1: An illustration of the possible stimuli in Eidels et al.
(2011). The actual stimuli had much lower contrast. We refer to
the condition with both the upper and lower dot present as PP (for
present-present). PA indicates only the upper dot is present (for
present-absent). AP indicates only the lower dots is present and
AA indicates neither dots is present. In the OR task, participants
responded yes to PP, AP or PA. In the AND task, participants re-
sponded yes to PP only and no otherwise.

to provide a precise measure of workload effects for first-
terminating (i.e., minimum time; referred to as “OR” or
disjunctive processing) processing efficiency (Townsend &
Nozawa, 1995). It complements the survivor interaction
contrast (SIC), a tool which assesses mental architecture
and decisional stopping rule (Townsend & Nozawa, 1995).
The capacity coefficient has been extended to measure effi-
ciency in exhaustive (AND) processing situations (Townsend
& Wenger, 2004). In fact, it is possible to extend the ca-
pacity coefficient to any Boolean decision rule (e.g., Townsend
& Eidels, 2011; Blaha, 2010).

The logic of the capacity coefficient is relatively straight-
forward. We demonstrate this logic using a comparison
between a single source of information and two sources for
clarity; but the reasoning readily extends to more sources
and the theory section applies to the general case. Con-
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sider the experiment depicted in Figure 1, in which a par-
ticipant responds ‘yes’ if a dot appears either slightly above
the mid-line of the screen, slightly below, or both and
responds ‘no’ otherwise (a simple detection task). Opti-
mally, the participant would respond as soon as she detects
any dot, whether or not both were present. We refer to
this as ‘first-terminating’ processing, or simply ‘OR’ pro-
cessing. Alternatively, participants may wait to respond
until they have determined whether or not a dot is present
both above and below the mid-line. This is ‘exhaustive’ or
‘AND’ processing. In this design, AND processing is sub-
optimal, but in other designs, such as when the participant
must only respond ‘yes’ when both dots are present, AND
processing is necessary.

If information about the presence of either of the dots
is processed independently and in parallel, then the prob-
ability that the OR process is not complete at time t is the
product of the probabilities that each dot has not yet been
detected.1 Let F be the cumulative distribution function
of the completion time, and the subscript X|Y indicate
that the function corresponds to the completion time of
process X under stimulus condition Y . Using this no-
tation, the prediction of the independent, parallel, first-
terminating process is given by,

1− FAB|AB(t) =
(
1− FA|AB(t)

) (
1− FB|AB(t)

)
. (1)

We make the further assumption that there is no change
in the speed of detecting a particular dot due to changes
in the number of other sources of information (unlimited
capacity). Thus, we can drop the reference to the stimulus
condition,

FA|AB(t) = FA|A(t) ≡ FA(t), FB|AB(t) = FB|B(t) ≡ FB(t)

1− FAB(t) = (1− FA(t)) (1− FB(t)) .
(2)

We refer to a model with these collective assumptions –
unlimited capacity, independent and parallel – as a UCIP
model. This prediction of equality forms the basis of the
capacity coefficient and plays the role of the null hypoth-
esis in the statistical tests developed in this paper.

To derive the capacity coefficient prediction for the
UCIP model, we need to put Equation 2 in terms of cu-
mulative hazard functions (cf. Chechile, 2003; Townsend
& Ashby, 1983, pp. 248–254). We do this using the rela-

tionship H(t) = − ln(1−F (t)), where H(t) =
∫ t
0
f(s)/(1−

1Usually, response times are assumed to include some extra time
that are not stimulus dependent, such as the time involved in pressing
a response key once the participant has chosen a response. This is
often referred to as base time. We do not treat the effects of base
time in this work. Townsend & Honey (2007) show that base time
makes little difference for the capacity coefficient when the assumed
variance of the base time is within a reasonable range.

F (s)) ds is the cumulative hazard function.

1− FAB|AB(t) = (1− FA(t)) (1− FB(t))

ln
(
1− FAB|AB(t)

)
= ln ((1− FA(t)) (1− FB(t)))

= ln (1− FA(t)) + ln (1− FB(t))

HAB(t) =HA(t) +HB(t) (3)

The capacity coefficient for OR processing is defined
by the ratio of the left and right hand side of Equation 3,

COR (t) =
HAB(t)

HA(t) +HB(t)
. (4)

This definition gives an easy way to compare against the
baseline UCIP model performance. From Equations 3 and
4, we see that UCIP performance implies COR (t) = 1.

The capacity coefficient for AND processing is defined
in an analogous manner, with the cumulative reverse haz-
ard function (cf. Townsend & Wenger, 2004; Townsend &
Eidels, 2011; Chechile, 2011) in place of the cumulative
hazard function . The cumulative reverse hazard function,
denoted by K(t) is defined as,

K(t) ≡ −
∫ ∞
t

f(s)

F (s)
ds = ln (F (s)) . (5)

If the participant has detected both dots when both
are present in an AND task, then he must have already
detected each dot individually. If the dots are processed
independently and in parallel, this means,

FAB|AB(t) = FA|ABA(t)FB|AB(t). (6)

With the additional assumption of unlimited capacity, we
have,

FAB(t) = FA(t)FB(t). (7)

As above, we take the natural logarithm of both sides to
obtain the prediction in terms of cumulative reverse hazard
functions.

ln (FAB(t)) = ln (FA(t)FB(t)) = ln (FA(t)) + ln (FB(t))

KAB(t) = KA(t) +KB(t) (8)

With the cumulative reverse hazard function, relatively
larger magnitude implies relatively worse performance .
Thus, to maintain the interpretation of C (t) > 1 implying
performance is better than UCIP, the capacity coefficient
for AND processing is defined by,

CAND (t) =
KA(t) +KB(t)

KAB(t)
. (9)

With the definitions of the OR and AND capacity co-
efficients in hand, we now turn to issues of statistical test-
ing. We begin by adapting the statistical properties of es-
timates for the cumulative hazard and reverse cumulative
hazard functions to estimates of UCIP performance. Then,
based on those estimates, we derive a null-hypothesis-significance
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test for the capacity coefficients. We do not establish
the statistical properties of the capacity coefficient itself,
but rather the components. The statistical test is based
on the sampling distribution of the difference of the pre-
dicted UCIP performance and the participant’s perfor-
mance when all targets are present. The “difference” form
leads to more analytically tractable results than a test
based on the ratio form. Nonetheless, the logic of the
test is the same, if the values are statistically significant
(nonzero for the difference; not one for the ratio) then the
UCIP model may be rejected.

1. Theory

The capacity coefficients are based on cumulative haz-
ard functions and reverse cumulative hazard functions. Al-
though it would be theoretically possible to use the ma-
chinery developed for the empirical cumulative distribu-
tion function to study the empirical cumulative hazard
functions, using the identities mentioned above, H(t) =
− log(1−F (t)),K(t) = log(F (t)) (cf. Townsend & Wenger,
2004), we instead use a direct estimate of the cumulative
hazard function, the Nelson-Aalen (NA) estimator (e.g.,
Aalen et al., 2008). This approach greatly simplifies the
mathematics because many of the properties of the esti-
mates follow from the basic theory of martingales. There
is no particular advantage of one approach over the other
in terms of their statistical qualities (Aalen et al., 2008).

1.1. The Cumulative Hazard Function

Let Y (t) be the number of responses that have not
occurred as of immediately before t and let Tj be the jth
element of the ordered set of response times RT and let n
be the number of response times. Then the NA estimator
of the cumulative hazard function is given by,

Ĥ(t) ≡
∑
Tj≤t

1

Y (Tj)
. (10)

Intuitively, this estimator results from estimating f(t) by
1/n whenever there is a response and zero otherwise; and
estimating 1−F (t) by the number of response times larger
than t divided by n. This gives an estimate of h(t) =
f(t)/(1 − F (ts)) ≈ (1/n)/(Y (t)/n) = 1/Y (t) whenever
there is a response and zero otherwise. Integrating across
s ∈ [0, t] leads to the sum in Equation 10 to estimate∫ t
0
h(s) ds.
Aalen et al. (2008) demonstrate that this is an unbi-

ased estimator of the true cumulative hazard function and
derive the variance of the estimator based on a multiplica-
tive intensity model. We outline the argument here, then
extend the results to an estimator for redundant target
UCIP model performance using data from single target
trials.

We begin by representing the response times by a count-
ing process.2 At time t, we define the counting process

2See Appendix A.1 for details.

N(t) as the number of responses that have occurred by
time t. The intensity process of N(t) is the instantaneous
probability that a response occurs conditioned on the re-
sponses before t. For notational convenience, we also in-
troduce the function J(t),

J(t) =

{
1 if Y (t) > 0
0 if Y (t) = 0

. (11)

If we introduce the martingale, M(t) = N(t)−
∫ t
0
λ(s) ds,

then we can write the increments of the counting process
as,

dN(t) = λ(t)dt+ dM(t). (12)

Under the multiplicative intensity model, the inten-
sity process of N(t) can be rewritten by λ(t) = h(t)Y (t),
where Y (t) is a process representing the total number of
responses that have not occurred by time t and h(t) is
the hazard function. This model arises from treating the
response to each trial as an individual process. Each re-
sponse has its own hazard rate hi(t) and an indicator pro-
cess Yi(t) which is 1 if the response has not occurred by
time t and 0 otherwise. If the hazard rate is the same
for each response that will be included in the estimate,
then the counting process N(t) follows the multiplicative
intensity model with h(t) = hi(t) and Y (t) =

∑n
i Yi(t).

Rewriting Equation 12 using the multiplicative inten-
sity model gives,

dN(t) = h(t)Y (t)dt+ dM(t).

If we multiply by J(t)/Y (t), and let J(t)
Y (t) = 0 when

Y (t) = 0, then,

J(t)

Y (t)
dN(t) = J(t)h(t)dt+

J(t)

Y (t)
dM(t).

By integrating, we have,∫ t

0

J(s)

Y (s)
dN(s) =

∫ t

0

J(s)h(s)ds+

∫ t

0

J(s)

Y (s)
dM(s).

The integral on the left is the NA estimator given in Equa-
tion 10, using integral notation. The first term on the right
is our function of interest, the cumulative hazard function
(up until tmax, when all responses have occurred) which
we denote H∗(t). The last term is an integral with respect
to a zero mean martingale, which is in turn a zero mean
martingale. Hence,

E
(
Ĥ(t)−H∗(t)

)
= 0.

Thus, the NA estimator is an unbiased estimate of the true
cumulative hazard function, until tmax.

For statistical tests involving Ĥ(t), we will also need
to estimate its variance. To do so, we use the fact that
the variance of a zero mean martingale is equal to the
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expected value of its optional variation process.3 Because

the integral
∫ t
0
J(s)
Y (s)dM(s) is with respect to a zero mean

martingale, the optional variation process is given by,[
Ĥ(t)−H∗(t)

]
=

∫ t

0

J(s)

Y 2(s)
dN(s).

Thus,

Var
(
Ĥ(t)−H∗(t)

)
= E

(∫ t

0

J(s)

Y 2(s)
dN(s)

)
.

Therefore, an estimator of the variance of Ĥ(t)−H∗(t) is
given by,

σ̂2
H(t) ≡

∫ t

0

J(s)

Y 2(s)
dN(s) =

∑
t≤Tj

1

Y 2(Tj)
.

The asymptotic behavior of the NA estimator is also
well known. Ĥ(t) is a uniformly consistent estimator of

H(t) and
√
n
(
Ĥ(t)−H(t)

)
converges in distribution to

a zero mean Gaussian martingale (Andersen et al., 1993;
Aalen et al., 2008).

1.2. The Cumulative Reverse Hazard Function

To estimate the capacity coefficient for AND process-
ing, we must also adapt the NA estimator to the cumula-
tive reverse hazard function. Based on the NA estimator
of the cumulative hazard function, we define the following
estimator,

K̂(t) ≡ −
∑
Tj≥t

1

G(Tj)
. (13)

Here G(s) is an estimate of the cumulative distribution
function given by the number of responses that have oc-
curred up to and including s. Intuitively, this corresponds
to estimating −

∫∞
t
f(t)/F (t) dt by setting f(t) = 1/n

whenever there is an observed response and using G(t) to
estimate F (t), dovetailing nicely with the NA estimator
of the cumulative hazard function. Each of the properties
mentioned above for the NA estimator of the cumulative
hazard (unbiasedness, consistency and a Gaussian limit
distribution) also hold for the estimator of the cumulative
reverse hazard.

Similar to J(t) for the cumulative hazard estimate, we
need to track whether or not the estimate of the denomi-
nator of Equation 13 is zero,

Q(t) =

{
1 if G(t) > 0
0 if G(t) = 0

(14)

K∗(t) ≡ −
∫ tmax

t

Q(s)k(s)ds. (15)

3The optional variation process is also known as the “quadratic
variation process.” We use the notation [M ] to indicate the optional
variation process of a martingale M .

Theorem 1. K̂(t) is an unbiased estimator of K∗(t).

Theorem 2. An unbiased estimate of the variance of K̂(t)
is given by,

σ̂2
K(t) ≡

∑
Tj≥t

1

G2(Tj)
. (16)

Theorem 3. K̂(t) is a uniformly consistent estimator of
K(t).

Theorem 4.
√
n
(
K̂(t)−K(t)

)
converges in distribution

to a zero mean Gaussian process as the number of response
times used in the estimate increases.

1.3. Estimating UCIP Performance

Having established estimators for the cumulative haz-
ard function and cumulative reverse hazard function, we
now need an estimate of the performance of the UCIP
model based on the single target response times. On an
OR task, the UCIP model cumulative hazard function is
simply the sum of the cumulative hazard functions of each
of the single target conditions (cf. Equation 3). In this
model, the probability that a response has not occurred
by time t, 1−FUCIP(t), is the probability that none of the
sub-processes have finished by time t, 1− Fi(t). Hence,

1− FUCIP(t) =

k∏
i=1

(1− Fi(t))

log (1− FUCIP(t)) = log

(
k∏
i=1

(1− Fi(t))

)

HUCIP(t) =

k∑
i=1

log (1− Fi(t)) =

k∑
i=1

Hi(t). (17)

Based on this, a reasonable estimator for the cumula-
tive hazard function of the race model is the sum of NA
estimators of the cumulative hazard function for each sin-
gle target condition,

ĤUCIP(t) ≡
k∑
i=1

Ĥi(t). (18)

To find the mean and variance of this estimator, we
return to the multiplicative intensity model representation
of the sub-processes stated above. We use the ∗ notation
as above,

H∗UCIP(t) =

k∑
i=1

∫ t

0

hi(s)Ji(s) ds. (19)

We will also need to distinguish among the ordered re-
sponse times for each single target condition. We use Tij
to indicate the jth element in the ordered set of response
times from condition i.

Theorem 5. ĤUCIP(t) is an unbiased estimator of H∗UCIP(t).
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Theorem 6. An unbiased estimate of the variance of ĤUCIP(t)
is given by,

σ̂2(t) =

k∑
i=1

∑
Tij≤t

1

Y 2
i (Tij)

. (20)

Theorem 7. ĤUCIP(t) is a uniformly consistent estimator
of HUCIP(t).

Theorem 8. Let n =
∑k
i=1 ni where ni is the number

of response times used to estimate the cumulative hazard
function of the completion time of the ith channel. Then,
√
n
(
ĤUCIP −HUCIP

)
converges in distribution to a zero

mean Gaussian process as the number of response times
used in the estimate increases.

Assuming a UCIP process on an AND task, the proba-
bility that a response has occurred by time t, FUCIP(t), is
the probability that all of the sub-processes have finished
by time t, Fi(t). Hence,

FUCIP(t) =

k∏
i=1

Fi(t)

log (FUCIP(t)) = log

(
k∏
i=1

Fi(t)

)

KUCIP(t) =

k∑
i=1

log (Fi(t)) =

k∑
i=1

Ki(t). (21)

Thus, to estimate the cumulative reverse hazard func-
tion of the UCIP model on an AND task, we use the sum of
NA estimators of the cumulative reverse hazard function
for each single target condition,

K̂UCIP(t) ≡
k∑
i=1

K̂i(t). (22)

The estimators of the UCIP cumulative reverse hazard
functions retain the statistical properties of the NA estima-
tor of the individual cumulative reverse hazard function:
Because we are using a sum of estimators, the consistency,
unbiasedness and Gaussian limit properties all hold for the
UCIP AND estimator just as they do for the UCIP OR es-
timator.

Theorem 9. K̂UCIP(t) is an unbiased estimator of K∗UCIP(t).

Theorem 10. An unbiased estimate of the variance of
K̂UCIP(t) is given by,

σ̂2(t) ≡
k∑
i=1

∑
Tij≥t

1

G2
i (Tij)

. (23)

Theorem 11. K̂UCIP is a uniformly consistent estimator
of KUCIP.

Theorem 12. Let n =
∑k
i=1 ni where ni is the number

of response times used to estimate the cumulative hazard
function of the completion time of the ith channel. Then,
√
n
(
K̂UCIP −KUCIP

)
converges in distribution to a zero

mean Gaussian process as the number of response times
used in the estimate increases.

1.3.1. Handling Ties

In theory the underlying response time distributions
are continuous and thus there is no chance of two exactly
equal response times. In practice, measurement devices
and truncation limit the possible observed response times
to a discrete set. This means repeated values are possi-
ble. Aalen et al. (2008) suggest two ways of dealing with
these repeated values. One method is to add a zero mean,
small-variance random-value to the tied response times.
Alternatively, one could use the number of responses at
a particular time in the numerator of Equations 10 and
13. If we let d(t) be the number of responses that occur
exactly at time t, this leads to the estimators,

Ĥ(t) ≡
∑
Tj≤t

d(Tj)

Y (Tj)
(24)

K̂(t) ≡
∑
Tj≤t

d(Tj)

G(Tj)
. (25)

1.4. Hypothesis Testing

Having established an estimator of UCIP performance,
we now turn to hypothesis testing. Here, we focus on a test
with UCIP performance as the null hypothesis. In the fol-
lowing, we will use the subscript r to refer to the condition
when all sources indicate a target (i.e., the redundant tar-
get condition in an OR task or the target condition on an
AND task). We begin with the difference between the par-
ticipant’s performance when all sources indicate a target
and the estimated UCIP performance,

Ĥr(t)− ĤUCIP(t) =
∑
T

(r)
j ≤t

1

Yr (T
(r)
j )
−

k∑
i=1

∑
Tij≤t

1

Yi(Tij)

(26)

K̂r(t)− K̂UCIP(t) =
∑
T

(r)
j ≥t

1

Gr (T
(r)
j )
−

k∑
i=1

∑
Tij≥t

1

Gi(Tij)
.

(27)

Following the same line of reasoning given for the unbi-
asedness of the cumulative hazard function estimators, the
expected difference is zero under the null hypothesis that
Hr(t) = HUCIP(t). Furthermore, the point-wise variance
of the function is the sum of the point-wise variances of
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each individual function,

∑
T

(r)
j ≤t

1

Yr 2(T
(r)
j )

+

k∑
i=1

∑
Tij≤t

1

Y 2
i (Tij)

(28)

∑
T

(r)
j ≥t

1

Gr
2(T

(r)
j )

+

k∑
i=1

∑
Tij≥t

1

G2
i (Tij)

. (29)

The difference functions converge in distribution to a Gaus-
sian process. Hence, at any t, under the null hypothesis,
the difference will be normally distributed. We can then
divide by the estimated variance at that time so the limit
distribution is a standard normal.

In general, we may want to weight the difference be-
tween the two functions, e.g., use smaller weights for times
where the estimates are less reliable. Let L(t) be is pre-
dictable weight process that is zero whenever any of Yi or
Yr is zero (Gi or Gr is zero for AND), then we define our
general test statistics as,

ZOR =
∑
T

(r)
j ≤t

L(Tj)

Yr (T
(r)
j )
−

k∑
i=1

∑
Tij≤t

L(Tj)

Yi(Tij)
(30)

ZAND =
∑
T

(r)
j ≥t

L(s)

Gr (T
(r)
j )
−

k∑
i=1

∑
Tij≥t

L(s)

Gi(Tij)
. (31)

Theorem 13. Under the null hypothesis of UCIP perfor-
mance, E (ZOR ) = 0.

Theorem 14. An unbiased estimate of the variance of
ZOR is given by,

Var (ZOR ) (t) =
∑
Tij≤t

L2(Tij)

Y 2
i (Tij)

+

k∑
i=1

∑
Tij≤t

L2(Tij)

Y 2
i (Tij)

.

Theorem 15. Assume that there exists sequences of con-
stants {an} and {cn} such that,

lim
n→∞

an = lim
n→∞

cn =∞ and

L(n)(s)

cn

P→ l(s) <∞,

Y
(n)
r (s)

a2n

P→ yr(s) <∞,

Y
(n)
i (s)

a2n

P→ yi(s) <∞.

Further, assume that there exists some function d(s) such
that for all δ,

lim inf
n→∞

Pr

{
(an/cn)2

(
L(n)(s)

)2( 1

Yr
+

k∑
i=1

1

Yi

)

≤ d(s) for all s ∈ T
}
≥ 1− δ.

Then (an/cn)ZOR
(n) converges in distribution to a zero

mean Gaussian process as the number of response times
used in the estimate increases.

The Harrington-Fleming weight process (Harrington &
Fleming, 1982) is one possible weight function,

L(t) = S(t−)ρ
Yr(t)

∑
Yi(t)

Yr(t) +
∑
Yi(t)

. (32)

Here, S(t−) is an empirical survivor function estimated
from the pooled response times from all conditions,

S(t) =
∏
s≤t

(
1− ∆Nr(s) +

∑
∆Ni(s)

Yr(s) +
∑
Yi(s) + 1

)
. (33)

Figure 2 depicts the Harrington-Fleming weights func-
tion across a range of response times and different values
of ρ. Response times were sampled from a shifted Wald
distribution and the estimators were based on 50 samples
from each of the single channel and double target models.
When ρ = 0, the test corresponds to a log-rank test (Man-
tel, 1966) between the estimated UCIP performance and
the actual performance with redundant targets (see An-
dersen et al., 1993, Example V.2.1, for a discussion of this
correspondence). As ρ increases, relatively more weight is
given to earlier response times and less to later response
times.

Various other weight processes that satisfy the require-
ments for L(t) have also been proposed (see Aalen et al.,
2008, Table 3.2, for a list). Because the null hypothesis
distribution is unaffected by the choice of the weight pro-
cess, it is up to the researcher to choose the most appro-
priate for a given application. In the simulation section,
we use ρ = 0, essentially a log-rank (or Mann-Whitney if
there are no censored response times) test of the difference
between the estimated UCIP performance and the perfor-
mance when all targets are present (Aalen et al., 2008;
Mantel, 1966). We have chosen to present the Harrington-
Fleming estimator here because of its flexibility and specif-
ically with ρ = 0 for the simulation section because it re-
duces to tests that are more likely to be familiar to the
reader. Any weight function that satisfies the conditions
on L(t) could be used. A more thorough investigation of
the appropriate functions for response time data will be
an important next step, but is beyond the scope of this
paper.

For a statistical test of CAND (t), we simply switch Y (t)
with G(t) and the bounds of integration.

Theorem 16. Under the null hypothesis of UCIP perfor-
mance, E (ZAND ) = 0.

Theorem 17. An unbiased estimate of the variance of
ZAND is given by,

Var (ZAND ) (t) =
∑
Tij≥t

L2(Tij)

G2
i (Tij)

+

k∑
i=1

∑
Tij≥t

L2(Tij)

G2
i (Tij)

.
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Figure 2: On the left, empirical survivor function based on response times sampled from Wald distributions are shown. The right shows the
relative weights from the Harrington-Fleming (Harrington & Fleming, 1982) weighting function for the capacity test at various values of ρ.

Theorem 18. Assume that there exists sequences of con-
stants {an} and {cn} such that,

lim
n→∞

an = lim
n→∞

cn =∞ and

L(n)(s)

cn

P→ l(s) <∞,

G
(n)
r (s)

a2n

P→ gr(s) <∞,

G
(n)
i (s)

a2n

P→ gi(s) <∞.

Further, assume that there exists some function d(s) such
that for all δ,

lim inf
n→∞

Pr

{
(an/cn)2

(
L(n)(s)

)2( 1

Gr
+

k∑
i=1

1

Gi

)

≤ d(s) for all s ∈ T
}
≥ 1− δ.

Then (an/cn)ZAND
(n) converges in distribution to a zero

mean Gaussian process as the number of response times
used in the estimate increases.

This leads to a reverse hazard version of the Harrington-
Fleming estimator,

L(t) = F (t)ρ
Gr(t)

∑
Gi(t)

Gr(t) +
∑
Gi(t)

(34)

F (t) =
∏
s≥t

(
1− ∆Nr(s) +

∑
∆Ni(s)

Gr(s) +
∑
Gi(s) + 1

)
. (35)

Therefore, one can use the standard normal distribu-
tion for null-hypothesis-significance tests for UCIP-OR and
UCIP-AND performance. Under the null hypothesis,

UOR (t) =
ZOR (t)

Var (ZOR (t))

d→N (0, 1) (36)

UAND (t) =
ZAND (t)

Var (ZAND (t))

d→N (0, 1). (37)

2. Simulation

In this section, we examine the properties of the NA
estimator of UCIP performance as well as the new test
statistic using simulated data. To estimate type I error
rates for different sample sizes, we use three different dis-
tributions for the single target completion times, exponen-
tial, shifted Wald and exGaussian.

First, we simulated results for the test statistics with
10 through 200 samples per distribution. For each sample
size, the type I error rate was estimated from 1000 simu-
lations. In each simulation, the parameters for the distri-
bution were randomly sampled. For the exponential rate
parameter, we sampled from a gamma distribution with
shape 1 and rate 500. For the shifted Wald model, we
sampled the shift from a gamma distribution with shape
10 and rate 0.2. Parametrizing the Wald distribution as
the first passage time of a diffusion process, we sampled
the drift rate from a gamma distribution with shape 1 and
rate 10 and the threshold from a gamma distribution with
shape 30 and rate 0.6. The rate of the exponential in
the exGaussian distribution was sampled from a gamma
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random variable with shape 1 and rate 250. The mean
of the Gaussian component was sampled from a Gaussian
distribution with mean 250 and standard deviation 100
and the standard deviation was sampled from a gamma
distribution with shape 10 and rate 0.2. In each simula-
tion, response times were sampled from the corresponding
distribution with the sampled parameters. Double target
response times were simulated by taking two independent
samples from the single channel distribution, then taking
either the minimum (for OR processing) or the maximum
(for AND processing) of those samples.

As shown in Figure 3, the type I error rate is quite close
to the chosen α, 0.05 across all three model types and for
the simulated sample sizes. This indicates that, even with
small sample sizes, using the standard normal distribution
for the test statistic works quite well.

Next, we examine the power as a function of the num-
ber of samples per distribution and the amount of in-
crease/decrease in performance in the redundant target
condition. To do so, we focus on models that have a sim-
ple relationship between the parameter and the capacity.
For OR processes, we use use an exponential distribution
for each individual channel, FA(t) = FB = 1 − e−λt and
HA(t) = HA(t) = λt. The prediction for a UCIP or model
in this case would be HAB(t) = 2λt. Thus, changes in ca-
pacity will directly correspond to changes in the rate pa-
rameter. To explore a range of capacity, we used a range
of multipliers for the rate parameters of each channel for
simulating the double target response times, FA,ρ(t) =
FB,ρ(t) = 1 − e−ρλt so that HAB,ρ(t) = 2ρλt. This leads
to the formula HAB,ρ/HAB = ρ for the true capacity. For
AND processes, we use FA(t) = FB(t) = (1 − e−λt)2/ρ as
the distribution for simulating response times when both
targets are present. Although ρλ no longer corresponds
directly with the rate parameter, this approach maintains
the correspondence α = CAND .

In general, the power of these tests may depend on the
distribution of the underlying channel processes. We limit
our exploration to these models because of the analytic
correspondence between the rate parameter and the value
of the capacity coefficient. With other distributions, the
relationship between the capacity coefficient and the dif-
ferences in the parameters across workload can be quite
complicated. These particular results are also dependent
on the weighting function used. Here, we focus on the
log-rank type weight function, but many other options are
possible (e.g., Aalen et al., 2008, p. 107). These estimates
apply to cases when the magnitude of the weighted differ-
ence in hazard functions between single and double target
conditions match those predicted by the exponential mod-
els.

Both the UOR and UAND test statistics, applied to the
corresponding OR or AND model, had the same power.
Figures 4 and 5 show the power of these tests as the ca-
pacity increases and as the number of trials used to esti-
mate each cumulative hazard function increases. For much
of the space tested, the power is quite high, with ceiling

performance for nearly half of the points tested.
With a true capacity of 1.1, the power remains quite

low, even with up to 200 trials per distribution. However,
with a higher number of trials, the increase in power is
quite steep as a function of the true capacity. With 200
trials per distribution, the power jumps from roughly .5
to .9 as the true capacity changes from 1.1 to 1.2. On
the low end of trials per distribution, i.e., 10 to 20, rea-
sonable power is not achieved even up to a capacity of
3.0. With 30 trials per distribution, the power increases
roughly linearly with the capacity, achieving reasonable
power around C (t) = 2.5. The test was not as powerful
with limited capacity. The power still increases with more
trials and larger changes in capacity, however the increase
is much more gradual than that in the super capacity plot.

Differences in the power as a function of capacity for
super and limited are to be expected given that the capac-
ity coefficient is a ratio, while the test statistics are based
on differences. However, this does not explain the differ-
ences in power seen here. Part of the difference is due to a
difference in scale. The super capacity plot has step sizes
of 0.1 while the limited capacity plot has step sizes of .04.
We chose different step sizes so that we could demonstrate
a wider range of capacity values. Furthermore, the weight-
ing function here may be more sensitive to super capacity.
The effect of the weighting function on these tests, and
determining the appropriate weights if one is interested
in only one of super or limited capacity, is an important
future direction of this work.

3. Application

In this section we turn to data from a recent exper-
iment using a simple dot detection task. In this study,
participants were shown one of four types of stimuli. In
the single dot condition, a white 0.2◦ dot was presented
directly above or below a central fixation on an otherwise
black background. In the double dot condition, the dots
were presented both above and below fixation. Each trial
began with a fixation cross, presented for 500 ms, followed
by either a single dot stimulus, a double dot stimulus or
an entirely black screen presented for 100ms or until a re-
sponse was made. Participants were given up to 4 seconds
to respond. Each trial was followed by a 1 second inter-
trial interval. On each day, participants were shown each
of the four stimuli 400 times in random order.

Participants completed two days worth of trials with
each of two different instruction sets. In one version, the
OR task, participants were asked to respond “Yes” to the
single dot and double dot stimuli and only respond no
when the entirely black screen was presented. In the other
version, the AND task, participants were to respond “Yes”
only to the double dot stimulus and “No” otherwise. See
Figure 1 for example stimuli. For further details of the
study, see Eidels et al. (2011).

The capacity functions for each individual are shown in
Figure 6. Upon visual inspection, all participants seem to
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Figure 3: Type I error rates with α = 0.05 for three different channel completion times. For each model double target response times were
simulated by taking the min or max of independently sampled channel completion times for OR or AND models respectively. The error rates
are based on 1000 simulations for each model with 10 through 200 trials per distribution.

OR Task AND Task
1 -10.12 *** 14.50 ***
2 -4.41 *** 13.81 ***
3 -8.22 *** 3.88 ***
4 -6.85 *** 18.62 ***
5 -9.21 *** 6.05 ***
6 -2.72 ** 22.27 ***
7 -5.14 *** 10.49 ***
8 -5.91 *** 11.59 ***
9 -5.53 *** 15.75 ***

Table 1: Results of the test statistic applied to the results of the two
dot experiment of Eidels et al. (2011). ** p < 0.01, *** p < 0.001

be limited capacity in the OR task. On the AND task, all
of the participants had super capacity for some portion of
time, with only three participants showing C (t) less than
one, and those only for later times.

Table 1 shows the values of the statistic for each indi-
vidual. The test shows significant violations of the UCIP
model for every participant on both tasks. These data
are based on 800 trials per distribution, so based on the
power analysis in the last section, it is no surprise that
the test was significant for every participant. These data
indicate that participants are doing worse than the pre-
dicted baseline UCIP processing on the OR task, and bet-
ter than the UCIP baseline on the AND task. On the
OR task, COR < 1 indicates either inhibition between
the dot detection channels, limited processing resources,
or processing worse than parallel (e.g., serial). On the

AND task, CAND > 1 indicates either facilitation between
the dot detection channels, increased processing resources
with increased load, or processing better than parallel (e.g.
coactive). Given the nature of the stimuli and previous
analyses (Houpt & Townsend, 2010), it is unlikely that
the failure of the assumption of parallel processing is the
explanation for these results. Likewise, there is no rea-
son to believe that a change in the available processing
resources would be different between the tasks, although
resources may be limited for both versions (cf. Townsend
& Nozawa, 1995). We believe the most likely explanation
of these data is an increase in facilitation between the dot
detection processes in the AND task.

4. Discussion

In this paper, we developed a statistical test for use
with the capacity coefficient for both minimum-time (OR)
decision rules and maximum-time (AND) decision rules.
We did so by extending the properties of the Nelson-Aalen
estimator of the cumulative hazard function (e.g., Aalen
et al., 2008) to estimates of unlimited capacity, indepen-
dent parallel performance. This approach yields a test
statistic that, under the null hypothesis and in the limit
as the number of trials increases, has a standard normal
distribution. This allows investigators to use the statis-
tic in a variety of tests beyond just a comparison against
the UCIP performance, such as comparing two estimated
capacity coefficients.
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Power as a Function of Trials and C(t)
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Figure 4: Power of the UOR and UAND statistics with α = .05 as a function of capacity and number of trials per distribution for capacity
above 1. These results are based on two exponential channels, with either an OR or AND stopping rule, depending on the statistic. Using
these models, the power of UOR and UAND is the same.

As part of developing the statistic, we demonstrated
two other important results. First, we established the
properties of the estimate of UCIP performance on an OR
(AND) task given by the sum of cumulative (reverse) haz-
ard functions estimated from single target trials. This in-
cluded demonstrating that the estimator is unbiased, con-
sistent and converges in distribution to a Gaussian process.

Furthermore, in developing the estimator for UCIP
AND processing, we extended the Nelson-Aalen estima-
tor of cumulative hazard functions to cumulative reverse
hazard functions. Despite being less common than the cu-
mulative hazard function, the cumulative reverse hazard
function is used in a variety of contexts, recently including
cognitive psychology (see Townsend & Wenger, 2004; Ei-
dels et al., 2010b; Chechile, 2011). Nonetheless, we were
unable to find existing work developing an NA estimator
of the cumulative reverse hazard function. This estimator
can also be used to estimate the reverse hazard function
in the same way the hazard function is estimated by the
muhaz package (Hess & Gentleman, 2010) for the statis-
tical software R (R Development Core Team, 2011). In
this method, the cumulative hazard function is estimated
with the Nelson-Aalen estimator, then smoothed using (by
default) an Epanechnikov kernel. The hazard function is
then given by the first order difference of that smoothed
function.

Although the statistical test is based on the differ-
ence between predicted UCIP performance and true per-
formance when all targets are present, the test is valid for
the capacity ratio. If one rejects the null-hypothesis that

the difference is zero, this is equivalent so rejecting the
hypothesis that the ratio is one. Nonetheless, we have not
developed the statistical properties of the capacity coeffi-
cients. Instead, we have demonstrated the small-sample
and asymptotic properties of the components of the ca-
pacity coefficients.

In future work, we hope to develop Bayesian counter-
parts to the present statistical tests. One advantage of
this approach would be the ability to consider posterior
distributions over the capacity coefficient in its ratio form,
rather than being restricted to the difference. There are
additional reasons to explore Bayesian alternatives as well.
We will not repeat the various arguments in depth, but
there are both practical and philosophical reasons why one
might prefer such an alternative (cf. Kruschke, 2010).

We are also interested in a more thorough investigation
of the weighting functions used in these tests. It could be
that some weighting functions are more likely to detect
super-capacity, while others are more likely to detect lim-
ited capacity. Furthermore, the effects of the weighting
function are likely to vary depending on whether they are
used with the cumulative hazard function or the cumula-
tive reverse hazard function.

While the capacity coefficient has been applied in a
variety of areas within cognitive psychology, the lack of a
statistical test has been a barrier to its use. This work re-
moves that barrier by establishing a general test for UCIP
performance.
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Power as a Function of Trials and C(t)
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Figure 5: Power of the UOR and UAND statistics with α = .05 as a function of capacity and number of trials per distribution for capacity
less than 1. These results are based on two exponential channels, with either an OR or AND stopping rule, depending on the statistic. Using
these models, the power of UOR and UAND is the same.
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Appendix A. Proofs and Supporting Theory

Appendix A.1. The Multiplicative Intensity Model

The theory of the NA estimator for cumulative hazard
functions is based on the multiplicative intensity model for
counting processes. Here, we give a brief overview of the
model and the corresponding model for counting processes
with reverse time.

Suppose we have a stochastic process N(t) that tracks
the number of events that have occurred up to and includ-
ing time t, e.g., the number of response times less than or
equal to t. The intensity of the counting process λ(t) de-
scribes the probability that an event occurs conditioned on
the information about events that have already occurred.
The process given by the difference of the counting pro-
cess and the cumulative intensity, M(t) = N(t)−

∫ t
0
λ(s) ds

turns out to be a martingale (Aalen et al., 2008, p. 27). Un-
der the multiplicative intensity process model, we rewrite
the intensity process of N(t) by λ(t) = h(t)Y (t), where
Y (t) is a process for which the value at time t is deter-
mined given the information available up to immediately
before t. Of particular interest in this work is estimating
the cumulative hazard function H(t) =

∫ t
0
h(t) dt.

We will also use the concept of the counting process in
reverse time N̄ . Hence, we will start at some tmax, possibly

infinity, and work backward through time counting all of
the events that happen at or after time t. The multiplica-
tive model takes a similar form, with a process G(t) that is
determined by all the information available after t, in place
of Y (t), λ̄(t) = k(t)G(t). We will use this model when we
are interested in estimating the cumulative reverse hazard
function K(t) = −

∫ tmax

t
k(t) dt.

One important consequence of the multiplicative inten-
sity model is that the associated martingales are locally
square integrable (cf. Andersen et al., 1993, p. 78), a re-
quirement for much of the theory below.

Appendix A.2. Martingale Theory

Before giving the full proofs of the theorems in this pa-
per, we will first summarize the theoretical content that
will be necessary, particularly some of the basic properties
of martingales. Intuitively, martingales can be thought of
as describing the fortune of a gambler through a series
of fair gambles. Because each game is fair, the expected
amount of money the gambler has after each game is the
amount he had before the game. At any point in the se-
quence, the entire sequence of of wins and losses before
that game is known, but the outcome of the next game, or
any future games is unknown. More formally, a discrete
time martingale is defined as follows:

Definition 1. Suppose X1, X2, . . . are a sequence of ran-
dom variables on a probability space (Ω,F , P ) and F1,F2, . . .
is a sequence of σ-fields in F . Then {(Xn,Fn) : n =
1, 2, . . . } is a martingale if:
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Figure 6: Capacity coefficient functions of the nine participants from Eidels et al. (2011). The left graph depicts performance on the OR
task, evaluated with the OR capacity coefficient. The right graph depicts performance on the AND task, evaluated with the AND capacity
coefficient.

(i) Fn ⊂ Fn+1,

(ii) Xn is measurable Fn,

(iii) E(|Xn|) is finite and

(iv) E(Xn+1|Fn) = Xn almost surely.

Assuming Xn corresponds to the gambler’s fortune af-
ter the nth game and Fn corresponds to the information
available after the nth game, the first two conditions cor-
respond to the notion that after a particular game, the
result of that game and all previous games is known. The
third condition corresponds a condition that the expected
amount of money a gambler has after any game is finite.
The final condition corresponds to the fairness of the gam-
bles; the expected amount of money the gambler has after
one more game is the money he has already.

Martingales can also be defined for continuous time.
In this case, the index set can be, for example, the set
of all times t > 0, t ∈ R. Then we require that for all
s < t,Fs ⊂ Ft instead of (i). The second two conditions
are the same after replacing the discretely valued index n
with the continuously valued t. The final requirement for
continuous time becomes E(Xt|Fs) = Xs for all s ≤ t.

The expectation function of a martingale is fixed by
definition, but the change in the variability of the process
could differ among martingales and is often quite impor-
tant. In addition to the variance function, there are two
useful ways to track the variation, the predictable and op-
tional variation processes. For discrete martingales the
predictable variation process is based on the second mo-
ment of the process at each step conditioned on the σ-field

from the previous step. Formally,

〈X〉n ≡
n∑
i=1

E
(

(Xi −Xi−1)
2 |Fi−1

)
. (A.1)

The optional (quadratic) variation process is similar, but
the second moment at each step is taken without condi-
tioning,

[X]n ≡
n∑
i=1

(Xi −Xi−1)
2
. (A.2)

These processes are generalized to continuous time mar-
tingales is to evenly split up the interval [0, t] into n sub-
intervals, and use the discrete definitions, then take the
limit as the number of sub-intervals goes to infinity,

〈X〉t ≡ lim
n→∞

n∑
i=1

E
((
Xit/n −X(i−1)t/n

)2 |F(i−1)t/n

)
(A.3)

[X]n ≡ lim
n→∞

n∑
i=1

(
Xit/n −X(i−1)t/n

)2
. (A.4)

For reverse hazard functions, the concept of a reverse
martingale will also be useful. These processes are martin-
gales, but with time reversed so that the martingale prop-
erty is based on conditioning on the future, not the past. A
sequence of random variables . . . , Xn, Xn+1, Xn+2, . . . is a
reverse martingale if . . . , Xn+2, Xn+1, Xn, . . . is a martin-
gale. The definition of a reverse martingale can be gen-
eralized to continuous time by the same procedure as a
martingale.
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Zero mean martingales will particularly useful in the
proofs that follow. Similar to the equality of the variance
and the second moment for zero mean univariate random
variables, the variance of a zero mean martingale is equal
to the optional variation process and the predictable vari-
ation process. Also, the stochastic integral of a predictable
process with respect to a zero mean martingale is again a
zero mean martingale. Informally, we can see this property
by examining a discrete approximation to the martingale
with [0, t] divided into n sub-intervals,

I(t) =

n∑
k=1

Hk

(
M

(
kt

n

)
−M

(
(k − 1)t

n

))
. (A.5)

Then,

E(I(t)− (n− 1)t/n|Fn−1) (A.6)

=

n∑
k=1

E

(
Hk

(
M

(
kt

n

)
−M

(
(k − 1)t

n

))
|Fn−1

)

−
n−1∑
k=1

E

(
Hk

(
M

(
kt

n

)
−M

(
(k − 1)t

n

))
|Fn−1

)
=E

(
Hk

(
M(t)−M

(
(n− 1)t

n

))
|Fn−1

)
=Hk

(
E ((M(t)) |Fn−1)−M

(
(n− 1)t

n

))
= 0

Aalen et al. (2008) also give the predictable and op-
tional variation processes of the integral of a of predictable
process, H(t), with respect to a counting process martin-
gale, M : 〈∫

H dM

〉
(t) =

∫ t

0

H2(s)λ(s) ds (A.7)(∫
H dM

)
(t) =

∫ t

0

H2(s) dN(s). (A.8)

Furthermore, if M1, . . . ,Mk are orthogonal martingales
(i.e., for all i 6= j, 〈Mi,Mj〉 = 0) then,〈∑

j=1k

∫
Hj dMj

〉
(t) =

∑
j=1k

∫ t

0

H2
j (s)λj(s) ds (A.9)

∑
j=1k

∫
Hj dMj

 (t) =

∫ t

0

H2
j (s) dNj(s). (A.10)

From the reverse-time relationship, the same proper-
ties hold for reverse martingales, with the lower bound of
integration set to t > 0 and the upper bound set to ∞ or
tmax.

We will make use of the martingale central limit theo-
rem for the proofs involving limit distributions of the esti-
mators. This theorem states that, under certain assump-
tions, a sequence of martingales converges in distribution
to a Gaussian martingale. There are various versions of

the theorem that require various conditions. For our pur-
poses, we will use the condition that there exist some non-
negative function y(s) such that sups∈[0,t]

∣∣Y (n)(s)/n− y(s)
∣∣

converges in probability to 0, where Y (n)(s) is as defined
above (the number of responses that have not occurred by
time s). With the additional assumption that the cumula-
tive hazard function is finite on [0, t], this is sufficient for
the martingale central limit theorem to hold. If the mar-
tingales are zero-mean and, assuming s1 is the smaller of
s1 and s2, cov(s1, s2) =

∫ s1
0
h(u)/y(u) du (Andersen et al.,

1993, pp. 83–84). In our applications, y(s) is the survivor
function of the response time random variable.

We will also need an analogous theorem for reverse
martingales for the theory of cumulative reverse hazard
functions. With cumulative reverse hazard functions, we
can no longer assume K(0) < ∞, but we can assume
limt→∞K(t) = 0. Thus, we will need a function g(t) such

that sups∈[t,∞]

∣∣G(n)(s)/n− g(s)
∣∣ P→ 0 in place of the con-

ditions on y(t). Furthermore, the covariance function of
the limit distribution, cov(s1, s2), will depend on the larger
of s1 and s2. In this case, g(s) is the cumulative distribu-
tion function of the response time random variable. Thus,
if we additionally assume that when t > 0,K(t) <∞, the
distribution of the processes in the limit as the number of
samples increases is again a Gaussian martingale (Loynes,
1969).

Appendix A.3. Proofs of Theorems in the Text

Appendix A.3.1. The Cumulative Reverse Hazard Func-
tion

As a reminder,

Q(t) ≡ I {G(t) > 0} (A.11)

K̂(t) ≡
∑
Tj≥t

1

G(Tj)

K∗(t) ≡
∫ tmax

t

Q(s)k(s)ds

Theorem 1. K̂(t) is an unbiased estimator of K∗(t).

Proof. This can be derived in the same manner that the Ĥ
is shown to be unbiased in (Aalen et al., 2008, pp. 87–88),
but with time reversed. Instead of using the definition of
the counting process N(t) in Equation 12, we use reversed
counting processes N̄(t) which is 0 at some tmax, and in-
creases as t decreases. We represent the intensity of this
process as λ̄(t) = k(t)G(t), where k(t) is the reverse hazard
function at time t and let M̄(t) be the reverse martingale

M̄(t) = N̄(t)−
∫ tmax

t
λ̄(s) ds. Then, the transitions of this

process can be written informally as,

dN̄(t) = k(t)G(t)dt+ dM̄(t).

Let Q(t)/G(t) = 0, then,

Q(t)

G(t)
dN̄(t) = Q(t)k(t)dt+

Q(t)

G(t)
dM̄(t).

13



Integrating from t to tmax and multiplying through by −1,
we have,

−
∫ tmax

t

Q(s)

G(s)
dN̄(s) =

−
∫ tmax

t

Q(s)k(s)ds−
∫ tmax

t

Q(s)

G(s)
dM̄(s).

The left-hand side is K̂, the first term on the right is
K∗(t), and the final term is a zero mean reverse martin-
gale. Hence, K̂(t) is an unbiased estimator of K∗(t).

Theorem 2. An unbiased estimate of the variance of K̂(t)
is given by,

σ̂2
K(t) ≡

∑
Tj≥t

1

G2(Tj)
. (A.12)

Proof. From Theorem 1, K̂(t) −K∗(t) is a zero mean re-
verse martingale. Thus,

Var
(
K̂(t)−K∗(t)

)
= E

([
K̂(t)−K∗(t)

])
= E

([∫ tmax

t

Q(s)

G(s)
dM̄(s)

])
.

The integral
∫ tmax

t
Q(s)
G(s)dM̄(s) is with respect to a zero

mean martingale with time reversed, so the optional vari-
ation process is,[∫ tmax

t

Q(s)

G(s)
dM̄(s)

]
=

∫ tmax

t

Q(s)

G2(s)
dN̄(s).

Hence,

σ̂2(t) =

∫ tmax

t

Q(s)

G2(s)
dN̄(s) =

∑
Tj≥t

1

G2(Tj)
.

Lemma 1. 〈K̂(t)−K∗(t)〉 =
∫ tmax

t
Q(s)
G(s)k(s)ds.

Proof. From the proof of Theorem 1,

K̂(t)−K∗(t) =

∫ tmax

t

Q(s)

G(s)
dM̄(s). (A.13)

Thus, the predictable variation process is (cf. Andersen
et al., 1993, p. 71),∫ tmax

t

(
Q(s)

G(s)

)2

d〈M〉(s) =

∫ tmax

t

(
Q(s)

G(s)

)2

G(s)k(s) ds

(A.14)

=

∫ tmax

t

Q(s)

G(s)
k(s) ds.

Theorem 3. K̂(t) is a uniformly consistent estimator of
K(t).

Proof. By Lenglart’s Inequality (e.g., Andersen et al., 1993,
p. 86) and Lemma 1,

Pr

{
sup

s∈[t,tmax]

|K̂(n) −K∗(n)| > η

}

≤ δ

η2
+ Pr

{∫ tmax

t

Q(n)(s)

G(n)(s)
k(s)ds > δ

}
For each s ∈ [t, tmax], there is some positive probability
of observing a response at or before s. Hence, as n →
∞, there will be infinitely many responses observed at or
before s, so,

inf
s∈[t,tmax]

G(n)(s)
P→∞.

Because Q(n)(s) ≤ 1 and k(s) <∞,∫ tmax

t

Q(n)(s)

G(n)(s)
k(s) ds

P→ 0.

This implies that for any positive δ,

lim
n→∞

Pr

{∫ tmax

t

Q(n)(s)

G(n)(s)
k(s) ds > δ

}
= 0.

And thus for any positive ε,

lim
n→∞

Pr

{
sup

s∈[t,tmax]

∣∣∣K̂(n)(s)−K∗(n)(s)
∣∣∣ ≥ ε} = 0.

Additionally,

lim
n→∞

|K∗(s)−K(s)| =
∫ tmax

s

(
1−Q(n)(s)

)
ds

P→ 0.

Therefore, sups∈[t,tmax]

∣∣∣K̂(n)(s)−K(s)
∣∣∣ P→ 0.

Theorem 4.
√
n
(
K̂(t)−K(t)

)
converges in distribution

to a zero mean Gaussian process as the number of response
times used in the estimate increases.

Proof. In the limit as the number of samples n increases,
for any t > 0, Q(t) = 0 only when k(t) = 0 so it is sufficient
to demonstrate the convergence of K̂(t) − K∗(t). First,
we must satisfy the condition that there must exist some

g(t) such that G(t)/n
P→ g(t) for all t ∈ [τ, tmax]. This

follows directly from the Glivenko-Cantelli Theorem (e.g.,
Billingsley, 1995, pg. 269) by noting that G(t)/n is the
empirical cumulative distribution function. Then we may
apply the reverse martingale central limit theorem and the
conclusion follows.

Appendix A.3.2. Estimating UCIP Performance

As a reminder,

J(t) ≡ I {Y (t) > 0} (A.15)

Ĥ(t) ≡
∑
Tj≥t

1

Y (Tj)
(A.16)

H∗(t) ≡
∫ t

0

J(s)h(s) ds. (A.17)
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Theorem 5. ĤUCIP(t) is an unbiased estimator of H∗UCIP(t).

Proof.

E
(
ĤUCIP(t)

)
=E

(
k∑
i=1

Ĥi(t)

)

=

k∑
i=1

E
(
Ĥi(t)

)
=

k∑
i=1

H∗i (t)

=H∗UCIP(t)

Theorem 6. An unbiased estimate of the variance of ĤUCIP(t)
is given by,

σ̂2(t) =

k∑
i=1

∑
Tij≤t

1

Y 2
i (Tij)

. (A.18)

Proof. To determine the variance, we use the optional vari-
ation of the martingale. Assuming that the counting pro-
cesses for each process are independent, we have the fol-
lowing relation (e.g., Aalen et al., 2008, p. 56),[

k∑
i=1

∫ t0

0

1

Yi(t)
dMi(t)

]
=

k∑
i=1

∫ t0

0

1

Y 2
i (t)

dNi(t).

Because, under the null hypothesis, ĤUCIP(t)−
∑k
i=1Hi(t)

is a zero mean martingale,

Var

(
ĤUCIP(t)−

k∑
i=1

Hi(t)

)
=E

[
ĤUCIP(t)−

k∑
i=1

Hi(t)

]

=

k∑
i=1

∫ t

0

1

Y 2
i (s)

dNi(s)

=

k∑
i=1

∑
Tij≤t

1

Y 2
i (Tij)

.

Theorem 7. ĤUCIP(t) is a uniformly consistent estimator
of HUCIP(t).

Proof. Suppose ni is the number of response times used to
estimate Ĥi(t). For each i, Ĥi(t) is a consistent estimator
of Hi(t), so

sup
s∈[0,t]

∣∣∣Ĥ(ni)
i (s)−Hi(s)

∣∣∣ P→ 0.

Then,

sup
s∈[0,t]

∣∣∣Ĥ(n)
UCIP(t)−HUCIP(t)

∣∣∣
= sup
s∈[0,t]

∣∣∣∣∣
k∑
i=1

Ĥ
(ni)
i (s)−

k∑
i=1

Hi(s)

∣∣∣∣∣
= sup
s∈[0,t]

∣∣∣∣∣
k∑
i=1

(
Ĥ

(ni)
i (s)−Hi(s)

)∣∣∣∣∣
≤ sup
s∈[0,t]

(
k∑
i=1

∣∣∣Ĥ(ni)
i (s)−Hi(s)

∣∣∣) P→ 0.

Theorem 8. Let n =
∑k
i=1 ni where ni is the number

of response times used to estimate the cumulative hazard
function of the completion time of the ith channel. Then,
√
n
(
ĤUCIP −HUCIP

)
converges in distribution to a zero

mean Gaussian process as the number of response times
used in the estimate increases.

Proof. For the distribution to converge, Yi/n must con-
verge in probability to some positive function y(t) for all
i. This happens as long as the proportions of ni/n con-
verge to some fixed proportion pi, and yi(t) = pi(1−Fi(t)).
Then, we have as the limit distribution a Gaussian process
with mean 0 and covariance,

Cov(s, t) =

k∑
i=1

σ2
i (min(s, t)) for s, t > 0.

Theorem 9. K̂UCIP(t) is an unbiased estimator of K∗UCIP(t).

Proof.

E
(
K̂UCIP(t)

)
=E

(
k∑
i=1

K̂i(t)

)

=

k∑
i=1

E
(
K̂i(t)

)
=

k∑
i=1

K∗i (t)

=UCIP∗(t)

Theorem 10. An unbiased estimate of the variance of
K̂UCIP(t) is given by,

σ̂2(t) ≡
k∑
i=1

∑
Tij≥t

1

G2
i (Tij)

. (A.19)
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Proof. By Theorem 9, K̂UCIP(t) −
∑k
i=1Ki(t) is a zero

mean martingale so,

Var

(
K̂UCIP(t)−

k∑
i=1

Ki(t)

)
=E

[
K̂UCIP(t)−

k∑
i=1

Ki(t)

]

=

k∑
i=1

∫ tmax

t

1

G2
i (t)

dN̄i(t)

=

k∑
i=1

∑
Tij≥t

1

G2
i (Tij)

.

Theorem 11. K̂UCIP is a uniformly consistent estimator
of KUCIP.

Proof. Suppose ni is the number of response times used
to estimate K̂i. For each i, K̂i is a consistent estimator of
Ki, so

sup
s∈[t,tmax]

∣∣∣K̂(ni)
i (s)−Ki(s)

∣∣∣ P→ 0.

Then,

sup
s∈[t,tmax]

∣∣∣K̂(n)
UCIP(s)−KUCIP(s)

∣∣∣
= sup
s∈[t,tmax]

∣∣∣∣∣
k∑
i=1

K̂
(ni)
i (s)−

k∑
i=1

Ki(s)

∣∣∣∣∣
= sup
s∈[t,tmax]

∣∣∣∣∣
k∑
i=1

(
K̂

(ni)
i (s)−Ki(s)

)∣∣∣∣∣
≤ sup
s∈[t,tmax]

(
k∑
i=1

∣∣∣K̂(ni)
i (s)−Ki(s)

∣∣∣) P→ 0.

Theorem 12.
√
n
(
K̂UCIP −KUCIP

)
converges in distri-

bution to a zero mean Gaussian process as the number of
response times used in the estimate increases.

Proof. Let n =
∑k
i=1 ni where ni is the number of response

times used to estimate the cumulative hazard function of
the completion time of the ith channel. For the distri-
bution to converge, Yi/n must converge in probability to
some positive function y(t) for all i. This happens as long
as the proportions of ni/n converge to some fixed pro-
portion pi, and yi(t) = pi(1 − Fi(t)). Then, we have as
the limit distribution a Gaussian process with mean 0 and
covariance,

Cov(s, t) =

k∑
i=1

σ2
i (min(s, t)) for s, t > 0. (A.20)

Appendix A.3.3. Hypothesis Testing

Lemma 2. Under the null hypothesis of UCIP perfor-
mance,

ZOR (t) =

∫ t

0

L(s)

Yr(s)
dMr(s)−

k∑
i=1

∫ t

0

L(s)

Yi(s)
dMi(s).

Proof.

ZOR (t) =

∫ t

0

L(s)

Yr(s)
dNr(s)−

k∑
i=1

∫ t

0

L(s)

Yi(s)
dNi(s)

=

∫ t

0

L(s)

Yr(s)
dMr(s) +

∫ t

0

L(s)

Yr(s)
Yr(s)hr(s) ds

−
k∑
i=1

∫ t

0

L(s)

Yi(s)
dMi(s)−

k∑
i=1

∫ t

0

L(s)

Yi(s)
Yi(s)hi(s) ds

=

∫ t

0

L(s)

Yr(s)
dMr(s)−

k∑
i=1

∫ t

0

L(s)

Yi(s)
dMi(s)

+

∫ t

0

L(s)hr(s)−
k∑
i=1

L(s)hi(s) ds

=

∫ t

0

L(s)

Yr(s)
dMr(s)−

k∑
i=1

∫ t

0

L(s)

Yi(s)
dMi(s)

+

∫ t

0

L(s)

(
hr(s)−

k∑
i=1

hi(s)

)
ds

=

∫ t

0

L(s)

Yr(s)
dMr(s)−

k∑
i=1

∫ t

0

L(s)

Yi(s)
dMi(s)

Theorem 13. Under the null hypothesis of UCIP perfor-
mance, E (ZOR ) = 0.

Proof. According to Lemma 2, ZOR is the difference of
two integrals with respect to zero mean martingales. The
expectation of an integral with respect to a zero mean
martingale is zero. Hence, the conclusion follows from the
linearity of the expectation operator.

Theorem 14. An unbiased estimate of the variance of
ZOR is given by,

Var (ZOR ) (t) =
∑
Tij≤t

L2(Tij)

Y 2
i (Tij)

+

k∑
i=1

∑
Tij≤t

L2(Tij)

Y 2
i (Tij)

.
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Proof.

Var (ZOR (t)) =E [ZOR (t)]

=E

[∫ t

0

L(s)

Yi(s)
dMr(s) +

k∑
i=1

∫ t

0

L(s)

Yi(s)
dMi(s)

]

=

∫ t

0

L2(s)

Y 2
i (s)

dNr(s) +

k∑
i=1

∫ t

0

L2(s)

Y 2
i (s)

dNi(s)

=
∑
Tij≤t

L2(Tij)

Y 2
i (Tij)

+

k∑
i=1

∑
Tij≤t

L2(Tij)

Y 2
i (Tij)

.

Theorem 15. Assume that there exists sequences of con-
stants {an} and {cn} such that,

lim
n→∞

an = lim
n→∞

cn =∞ and

L(n)(s)

cn

P→ l(s) <∞,Y
(n)
r (s)

a2n

P→ yr(s) <∞,

Y
(n)
i (s)

a2n

P→ yi(s) <∞.

Further, assume that there exists some function d(s) such
that for all δ,

lim inf
n→∞

Pr

{
(an/cn)2

(
L(n)(s)

)2( 1

Yr
+

k∑
i=1

1

Yi

)

≤ d(s) for all s ∈ T
}
≥ 1− δ.

Then (an/cn)ZOR
(n) converges in distribution to a zero

mean Gaussian process as the number of response times
used in the estimate increases.

Proof. Here we use the version of the martingale central
limit theorem as stated in (Aalen et al., 2008, section 2.23).
First, we must show that the variance process converges
to a deterministic process.〈

an
cn

ZOR
(n)

〉
=

〈∫ t

0

an
cn

L(n)(s)

Y
(n)
r (s)

dM (n)
r (s)

+

k∑
i=1

∫ t

0

an
cn

−L(n)(s)

Y
(n)
i (s)

dM
(n)
i (s)

〉

=

∫ t

0

a2n
c2n

(
L(n)(s)

)2(
Y

(n)
r (s)

)2Y (n)
r (s)αr(s) ds

+

k∑
i=1

∫ t

0

a2n
c2n

(
L(n)(s)

)2(
Y

(n)
i (s)

)2Y (n)
i (s)αi(s) ds

=

∫ t

0

(
L(n)(s)

cn

)2
(
anαr(s)

Y
(n)
r (s)

+

k∑
i=1

anαi(s)

Y
(n)
i (s)

)
ds.

Hence, from the assumptions and by the dominated con-
vergence theorem,〈

an
cn

ZOR
(n)

〉
P→∫ t

0

l2(s)

(
yr(s)αr(s) +

k∑
i=1

yi(s)αi(s)

)
ds <∞.

The second condition holds because for all s ∈ [0, t],

anL(s)

cnYr(s)

P→ 0 and
anL(s)

cnYi(s)

P→ 0 for all i.

Therefore, the conclusion follows from the martingale cen-
tral limit theorem.

Lemma 3. Under the null hypothesis of UCIP perfor-
mance,

ZAND (t) =

∫ tmax

t

L(s)

Gr(s)
dM̄r(s)−

k∑
i=1

∫ tmax

t

L(s)

Yi(s)
dM̄i(s).

Proof.

ZAND (t) =

∫ tmax

t

L(s)

Gr(s)
dN̄r(s)−

k∑
i=1

∫ tmax

t

L(s)

Gi(s)
dN̄i(s)

=

∫ tmax

t

L(s)

Gr(s)
dM̄r(s) +

∫ tmax

t

L(s)

Gr(s)
Gr(s)hr(s) ds

−
k∑
i=1

∫ tmax

t

L(s)

Gi(s)
dM̄i(s)

−
k∑
i=1

∫ tmax

t

L(s)

Gi(s)
Gi(s)hi(s) ds

=

∫ tmax

t

L(s)

Gr(s)
dM̄r(s)−

k∑
i=1

∫ tmax

t

L(s)

Gi(s)
dM̄i(s)

+

∫ tmax

t

L(s)hr(s)−
k∑
i=1

L(s)hi(s) ds

=

∫ tmax

t

L(s)

Gr(s)
dM̄r(s)−

k∑
i=1

∫ tmax

t

L(s)

Gi(s)
dM̄i(s)

+

∫ tmax

t

L(s)

(
hr(s)−

k∑
i=1

hi(s)

)
ds

=

∫ tmax

t

L(s)

Gr(s)
dM̄r(s)−

k∑
i=1

∫ tmax

t

L(s)

Gi(s)
dM̄i(s)

Theorem 16. Under the null hypothesis of UCIP perfor-
mance, E (ZAND ) = 0.

Proof. According to Lemma 3, ZAND is the difference of
two integrals with respect to zero mean martingales. The
expectation of an integral with respect to a zero mean
reverse martingale is zero. Hence, the conclusion follows
from the linearity of the expectation operator.
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Theorem 17. An unbiased estimate of the variance of
ZAND is given by,

Var (ZAND ) (t) =
∑
Tij≥t

L2(Tij)

G2
i (Tij)

+

k∑
i=1

∑
Tij≥t

L2(Tij)

G2
i (Tij)

.

Proof.

Var (ZAND (t)) = E [ZAND (t)]

=E

[∫ tmax

t

L(s)

Gi(s)
dM̄r(s) +

k∑
i=1

∫ tmax

t

L(s)

Gi(s)
dM̄i(s)

]

=

∫ tmax

t

L2(s)

G2
i (s)

dN̄r(s) +

k∑
i=1

∫ tmax

t

L2(s)

G2
i (s)

dN̄i(s)

=
∑
Tij≥t

L2(Tij)

G2
i (Tij)

+

k∑
i=1

∑
Tij≥t

L2(Tij)

G2
i (Tij)

.

Theorem 18. Assume that there exists sequences of con-
stants {an} and {cn} such that,

lim
n→∞

an = lim
n→∞

cn =∞ and

L(n)(s)

cn

P→ l(s) <∞,G
(n)
r (s)

a2n

P→ gr(s) <∞,

G
(n)
i (s)

a2n

P→ gi(s) <∞.

Further, assume that there exists some function d(s) such
that for all δ,

lim inf
n→∞

Pr

{
(an/cn)2

(
L(n)(s)

)2( 1

Gr
+

k∑
i=1

1

Gi

)

≤ d(s) for all s ∈ T
}
≥ 1− δ.

Then (an/cn)ZAND
(n) converges in distribution to a zero

mean Gaussian process as the number of response times
used in the estimate increases.

Proof.〈
an
cn

ZAND
(n)

〉
=

〈∫ tmax

t

an
cn

L(n)(s)

G
(n)
r (s)

dM̄ (n)
r (s)

+

k∑
i=1

∫ tmax

t

an
cn

−L(n)(s)

G
(n)
i (s)

dM̄
(n)
i (s)

〉

=

∫ tmax

t

a2n
c2n

(
L(n)(s)

)2(
G

(n)
r (s)

)2G(n)
r (s)αr(s) ds

+

k∑
i=1

∫ tmax

t

a2n
c2n

(
L(n)(s)

)2(
G

(n)
i (s)

)2G(n)
i (s)αi(s) ds

=

∫ tmax

t

(
L(n)(s)

cn

)2
(
anαr(s)

G
(n)
r (s)

+

k∑
i=1

anαi(s)

G
(n)
i (s)

)
ds.

Hence, from the assumptions and by the dominated con-
vergence theorem,〈
an
cn

ZAND
(n)

〉
P→∫ tmax

t

l2(s)

(
gr(s)αr(s) +

k∑
i=1

gi(s)αi(s)

)
ds <∞.

The second condition holds because for all s ∈ [t, tmax],
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