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Abstract 

 
Wang, Xiaotian. M.S.C.E., Department of Computer Science and Engineering,  
Wright State University, 2015.  
Mission-Aware Vulnerability Assessment for Cyber-Physical Systems 
 
 
 

Designing secure cyber-physical systems (CPS) is fundamentally important. An 

indispensable step towards this end is to perform vulnerability assessment. This thesis 

discusses the design and implementation of a mission-aware CPS vulnerability 

assessment framework. The framework intends to accomplish three objectives including 

i) mapping CPS mission into infrastructural components, ii) evaluating global impact of 

each vulnerability, and iii) achieving verifiable results and high flexibility. In order to 

accomplish these objectives, a model-based analysis strategy is employed. Specifically, a 

CPS simulator is used to model dynamic behaviors of CPS components under different 

missions; the framework facilitates a bottom-up approach to traverse a holistic model of a 

CPS that aims at profiling relationships among all CPS components. In order to analyze 

the derived models, we have leveraged formal methods, including program symbolic 

execution, logic programming, and linear optimization. The framework first successfully 

identifies mission-critical components, then discovers all attack paths from system access 

points to mission-critical components, and finally recommends the optimized mitigation 

plan.  
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Chapter 1 

Introduction 

1.1   PROBLEM CONTEXT  
  

A Cyber-Physical System (CPS) integrates the capabilities of computation, 

communication, and control to facilitate seamless interaction between cyber and physical 

worlds. Despite the fact that CPSs have been envisioned to revolutionize a wide range of 

areas, their practical deployment faces many challenges. Security concerns have been 

recognized as one of the most significant obstacles since attackers may tamper with the 

integrity, confidentiality, and availability of a CPS in order to cause irrecoverable, 

disastrous consequences to cyber systems as well as physical entities. Securing CPSs 

therefore becomes fundamentally important.  

Mitigating vulnerabilities is essential for CPS security since vulnerabilities have 

been considered as the targets for cyber attacks. Ideally, every vulnerability that is 

discovered can be mitigated by various means such as testing, software verification, and 

vendors’ reporting. However, this ideal solution may suffer from huge practical 

limitations. On the one hand, mitigating all vulnerabilities could incur prohibitively high 

cost, particularly considering the huge complexity for typical CPSs. On the other hand, it 

might actually be unnecessary. For instance, if a vulnerability can never be accessed by 

attackers, leaving it unpatched will not affect the security of the CPS at all. Therefore, we 

need an effective method that can first assess how each vulnerability impacts the CPS 

security and then generate mitigation plans accordingly. However, devising such a 
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 method is faced with several significant challenges. First, since CPSs are usually 

designed to accomplish certain missions, CPS missions need to be considered into the 

loop of vulnerability assessment. To be more specific, a vulnerable component may 

impact the same CPS in distinct ways for different missions. For example, if an 

unmanned aerial vehicle (UAV) is always used for reconnaissance and will never carry 

any weapons, then a vulnerability that only impacts the weapon system can be assigned 

with low mitigation priority. Second, since a CPS is usually composed of a large number 

of networked, interacting components (a.k.a. the system-of-systems nature), the impact 

introduced by a vulnerable component might be propagated across or tolerated by the 

entire CPS. Therefore, the vulnerability assessment method needs to consider interactions 

among all components rather than focusing on individual components. Third, CPSs are 

considerably dynamic as a result of redefined missions, added components, and newly-

discovered vulnerabilities. This requires the vulnerability assessment method to be able to 

incorporate new knowledge into the analysis process without modifying the analysis 

algorithm.   

1.2   THESIS STATEMENT   

1.2.1   Objectives 

This thesis is to build a framework capable of performing automated mission-

aware vulnerability assessment for CPSs by systematically addressing the 

aforementioned challenges. Specifically, this framework aims at accomplishing the 

following design objectives.   

a)   Mapping missions into infrastructural components: given a CPS and its 

corresponding mission(s), the framework can automatically identify those 
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 components whose proper operations are indispensable for the accomplishment 

the CPS mission(s). The components are named as mission-critical components in 

this paper.  

b)   Evaluating how vulnerabilities impact the entire CPS: given a CPS, its mission-

critical components, and interactions among CPS components, the framework can 

automatically evaluate how vulnerable components collectively impact the CPS’ 

mission-critical components. 

c)   High verifiability and flexibility: the framework needs to generate verifiable 

results. The framework will be sufficiently flexible so that new knowledge of the 

studied CPS (e.g., emerging vulnerabilities), which might be represented using 

richer semantics, can be incrementally integrated into the analysis process without 

modifying the analysis algorithm.  

1.2.2   Solutions 

In order to accomplish these design objectives, the design follows a model-

assisted analysis strategy. This study takes advantage of CPS simulators, which are 

typically available for CPS test and verification, to model how CPS components behave 

under different missions. A mission is also modeled using a set of values assigned to 

relevant program variables of the CPS simulator. As a consequence, mission-critical 

components can be identified as those components that will be used by a CPS simulator 

given a set of its variable values. In addition, the framework facilitates a bottom-up 

approach to traverse a holistic model of a CPS that aims at profiling relationships among 

all CPS components. Based on this model, it can iteratively evaluate how each vulnerable 

component or a set of vulnerable components affect the performance of other components 
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 and eventually mission-critical components. This study has employed formal methods 

(Clarke & Wing, 1996) to analyze the derived models. Specifically, it has leveraged 

symbolic execution (Ou, Govindavajhala, & Appel, 2005) to identify mission-critical 

components based on the CPS simulator and mission models. In addition, logic 

programming (Clocksin, Mellish, & Clocksin, 1987) is adopted to express the 

relationships among all CPS components and impact of each vulnerability. Finally, linear 

optimization (Bertsimas, Tsitsiklis , & Tsitsiklis, 1997; Bowen, 1993; Bowen, 1993) has 

been adopted to generate mitigation strategies that can protect all mission-critical 

components and meanwhile yield minimum cost. The formal method-based design plays 

a central role to accomplish the design objectives. On the one hand, the framework 

inherits mathematical rigor from the formal methods, rendering results with verifiable 

accuracy. On the other hand, the declarative nature of logic programming makes the 

framework highly extensible to incorporate new knowledge without modifying the 

analysis algorithm. This paper outlines the work-in-progress on this work, illustrates key 

techniques used in the framework, and discusses some open challenges and potential 

solutions. 

1.3   RELATED WORK 

1.3.1   Identifying mission-critical components 

A few methods have been proposed (Musman, Tanner, Temin, Elsaesser, & Loren, 

2011; Jakobson, 2011) to identify mission-critical components of a complex system. 

However, these methods have two significant limitations. First, these methods mainly rely 

on manual efforts to perform analysis, which is time-consuming and error-prone. Second, 

the built system dependency description is static and thus fails to characterize the dynamic 
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 behaviors of the system. For example, the Crown Jewels Analysis method (Musman, 

Tanner, Temin, Elsaesser, & Loren, 2011) leverages the dependency maps, which are 

manually constructed, to associate mission objectives with cyber assets (e.g., the 

components). 

1.3.2   Discovering attack paths in computer networks 

A few methods (Sheyner & Wing, 2004; Ou, Boyer, & McQueen, 2006; Ou, 

Govindavajhala, & Appel, 2005) have been proposed to evaluate software vulnerabilities 

in computer networks by identifying attack paths. Similar to this framework, those 

approaches also employ formal methods. Sheyner et. al. used model checking (2004) and 

Ou et. al. adopted logic programming (2005; 2006). In spite of the similarity, the 

framework in this study differs from those methods in several ways. First, existing 

methods have not considered mission contexts in the assessment loop. Second, compared 

to existing methods that extensively concentrate on profiling the consequence of software 

vulnerabilities, this framework incorporates richer semantics such as the impacts 

introduced by data integrity and physical interference. Finally, unlike existing methods 

that require significant modification of the program interpreters, this study takes 

advantage of the built-in features of the programming language, which implies higher 

compatibility and lower maintenance cost. 
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 Chapter 2   
Technical Background of Formal Methods 

Our model-based analysis method extensively leverages formal methods. Formal 

methods are techniques and tools used to model complex software and hardware systems 

as mathematical entities. With the mathematically rigorous model of a complex system, a 

system’s properties can be verified in a more thorough fashion than empirical testing. 

Specifically, the mathematical rigor of formal methods requires all the statements in this 

methodology to be well-formed with mathematical logic. Formal verifications are 

rigorously deducted from that logic, which means each step has to follow a rule of 

inference and can be checked through a mechanical process (Kling, 1996). This 

framework involves two types of formal methods, including symbolic execution (King, 

1976) and logic programming (Sterling & Shapiro, 1994). 

2.1   SYMBOLIC EXECUTION 

Symbolic execution is a formal method-based technique that is extensively used 

for static program analysis. It can represent the input of a program as symbolic variables 

and the program will execute symbolically instead of using concrete values of the input. 

As a result, each path of the program will be associated with a constraint that has to be 

satisfied to make the path executable. The constraint can be derived from the input 

symbolic variables (Boyer, Elspas, & Levitt., 1975). 

In Figure 1, an example illustrates the functionality of symbolic execution, and 

how executable paths are discovered based on user-defined symbolic variables. When a 

variable is set up as a symbolic value, it will be calculated by a constraint solver to check 

whether it can satisfy the symbolic constraint at each branching point or not. If there is at 
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 least one feasible solution, the symbolic execution will continue to discover further 

paths along current branching point. Otherwise the execution will stop on the current path 

and recursively work on next available path until all paths are analyzed (Cadar, Dunbar, 

& Engler, 2008; King, 1975). In this example program, integer variables x, y and z are 

assigned as symbolic values. Without the assumptions of the variables, they could be any 

integers during symbolic execution. For instance, the first branching point, the “Path 1” 

can be satisfied if x is an integer that is bigger than zero. Four paths can be discovered 

without assumptions. If the user assumes x is less than or equal to zero, y is less than or 

equal to 10, and z is greater than zero, the constraints of “Path 1” and “Path 2” can not be 

satisfied. 

 

Figure 1 A symbolic execution example 

Therefore, only “Path 3” and “Path 4” are executable with the assumptions, and functions 

including ‘print (“Branch 1 – False”)’, ‘print (“Branch 2 – False”)’, ‘print (“Branch 3 – 
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 True”)’ and ‘print (“Branch 3 – False”)’ are associated with the symbolic constraint 

“x<=0 ∧ y<=10 ∧ z>0”. 

In this study, in order to identify mission-critical components and decrease the 

size of symbolic execution space, the specific mission assigns assumptions for the input 

variables of UAV simulator. Similar to the example in Figure 1, only executable paths 

and functions can be discovered and associated with its constraint, accordingly the 

corresponding components are identified as mission-critical components. 

2.2   LOGIC PROGRAMMING 

Logic programming is a declarative programming paradigm based on logical 

formulas. Prolog is a well-known implementation in the logic programming language 

family. An executable Prolog program normally consists of three parts including rules, 

facts and queries. A rule is a semantic representation written in the form of clauses, such 

as “Head: - Body”. This can be understood as “If the Body is true, then the Head is true”. 

It is a proposition which can be true or false depending on the facts. A fact is a special 

case of rules in which its Body is always true, so the facts are true.  

Figure 1 presents an example of a Prolog program. Specifically, “David is the 

father of Solomon” and “Solomon is the father of Rehoboam” refer to facts, respectively. 

One rule is defined as “if A is the father of B and B is the father of C, then A is the 

grandfather of C”. The query is expressed as “Who is the grandfather of Rehoboam?” and 

it is worth noting that “Who” (starting with capital “W”) represents a variable. A Prolog 

interpreter can analyze the facts and perform automatic inference based on the given rules 

and queries automatically. In this particular example, the Prolog interpreter will identify 

the value (i.e., “david”) for the variable “Who” (Sterling  &  Shapiro,  1994).     
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Figure 2 How does the Prolog run? - An example of a Prolog program 

For the purpose of searching in a knowledge base, a bottom-up or a top-down 

approach can be utilized to achieve a goal. The top-down approach starts processing 

information from the top of a predefined data structure to the bottom, but the bottom-up 

approach searches in the opposite way. To be more specific, the following example 

illustrates the difference between the top-down and bottom-up approach.  

 

Figure 3 The bottom-up approach V.S. the top-down approach - A family tree 
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 The Figure 3 presents a family tree that can be read as “a” is the father of “b”, “b” is the 

father of “c”, “d”, and “e”, and so on. Depending on these relations, if more semantic 

information is desired, the appropriate traversal strategy has to be defined. For instance, a 

query “Who is in the list of g’s predecessor?” can be asked. A top-down approach will 

traverse from “a” to “f”, from “a” to “g”, and from “a” to “h”, then the answer can be 

found. In this way, two redundant lists are discovered. However, the bottom-up approach 

can be facilitated to only generate desired answer. In Figure 4, both approaches are coded 

into a Prolog program.  

 

Figure 4 The coded bottom-up and top-down approaches in a Program program 
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 The query guided by bottom-up approach achieves one desired list. Obviously the 

answers in Figure 5 demonstrate the bottom-up approach is more effective in this specific 

query.  

 
Figure 5 The queries and answers based on bottom-up and tom-down approaches 

 Since the CPS’s infrastructure model in this framework is transformed into a 

similar data structure, a bottom-up approach is facilitated to traverse a holistic model of a 

CPS that aims at profiling relationships among all CPS components. For instance, if the 

component a is a access point1 and the component g is the target component2 that the 

attacker wants to compromise, then the bottom-up approach discovers attack paths 

starting from the target component g up to the access point component a. Since the 

component h and f are not targets, traversing on them is wasting time. The bottom-up 

approach avoids traversing irrelevant paths in order to reduce the running time. In the 

meantime, the Prolog’s backtracking mechanism guarantees that this approach can find 

all potential attack paths for the target component.  

 

 

                                                   
1 The “Access point” in Figure 15 of Section 3.4.  
2 The “Component A” in Figure 15 of Section 3.4. 



 

12 

 Chapter 3  
The Mission-aware Vulnerability CPS Assessment Framework 

3.1   ARCHITECTURE OVERVIEW 

 
Figure 6 The framework’s architectural overview 

The architectural overview of this framework is presented in Figure 6. It takes the 

CPS simulator and the profile of each component as inputs. The input characterizes its 

internal security states and interactions with its neighbor components. The first phase of 

this framework aims at mining all mission-critical components. The second phase 

integrates the profile of each individual component and assesses how vulnerable 

components collectively disrupt mission-critical components. To be more specific, it 

discovers all potential attack paths, where each attack path represents a sequence of 

actions an attacker can take (e.g., exploiting a vulnerability) in order to affect the 

mission-critical components and ultimately disrupt the CPS’ mission. Finally, given the 

cost to mitigate each vulnerable component, this framework will identify a set of 

vulnerable components to mitigate so that it can protect all mission-critical components 

while incurring minimum cost. 

Mapping Mission 
into Infrastructure

CPS Simulator

Mission Description

Local Views of 
Components

(Vulnerability, Data 
Dependency…)

Mission-Critical 
Components

Discovering Attack 
Paths Attack Paths

Prioritize Mitigation 
Plans

Vulnerabilities to 
Mitigate
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 3.2   CONCEPTS AND DEFINITIONS 

3.2.1   Cyber-physical system (CPS) 
A Cyber-Physical System (CPS) integrates computational elements, networking 

components, and physical processes. Salient examples of CPSs, include, but are not 

limited to, cardiac pacemakers, insulin pumps, automobiles with anti-lock braking system 

(ABS), and unmanned aerial vehicles (UAV). Different from traditional computing 

systems such as personal computers, a CPS is usually characterized by its systems-of-

systems nature, (Lee, 2008), where a collection of (autonomous) components collaborate 

and interact to accomplish specific missions. This results in significant challenges for 

vulnerability assessment. Specifically, it is insufficient to assess vulnerabilities on each 

individual component. Instead, effective assessment needs to characterize the interaction 

of all components. In addition, missions have to be considered.  

For example, an automobile usually consists of an embedded central controller, a 

speed sensor, an anti-lock braking system, a GPS, as well as a pump and a valve for 

monitoring and controlling the speed of the car. The central controller monitors the speed 

sensor at all times. If an out of ordinary deceleration is detected right before a wheel 

locks up, the wheel will be stopped quickly. The speed sensor and central controller may 

also interact with the GPS. If this car is a military vehicle and carries an automatic 

weapon system controlled by the central controller, it might be employed for a particular 

mission.  

From the security perspective, vulnerabilities might exist on individual 

components, and might also exist on services between any two components. For instance, 

malicious users may have opportunities to compromise the central controller and GPS, in 
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 order to disable the ABS during an anti-lock braking process. If a malicious user can 

achieve those successfully, there might exist attack paths from one component all the way 

down to the braking system. For particular missions, the weapon systems also have to be 

considered into the vulnerability assessment. However, if the weapon system will not be 

invoked in a mission, it will not affect the security of this CPS in this mission.   

3.2.2   Mission 
A mission is a specific job or task which should be accomplished by the CPS. 

e.g., a UAV that takes 10 pictures at certain address. One challenge of this study is how 

to quantify a mission for a CPS. In the UAV case study, a mission is represented as a set 

of values which can be used as inputs for the UAV simulator. More details about 

missions can be found in Section 3.3.  

3.2.3   Vulnerability 
In a CPS, a vulnerability is a weakness or a flaw which can be used by malicious 

users to compromise the integrity, availability, or confidentiality of the CPS (Microsoft, 

2015). In this study, vulnerabilities can reside in services that are among components. In 

the automobile example, a malicious user might have an attack path from a GPS to a 

central unit, and from the central unit to a weapon system by compromising 

vulnerabilities among these components.  

3.2.4   Service 
The interaction among multiple components can be characterized as services. In 

this framework, we consider two types of services: the control service and the data 

service. Control services can direct behaviors from one component to another. In Figure 

7, a central processing unit sends a signal to turn on the camera. From the central 
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 processing unit to the camera, there exists a control service. The data service can 

transfer information from one component to another, e.g., a temperature sensor can 

transfer temperature information to the central processing unit for calculation or to the 

database for storage. From a program analysis perspective, a service can be seen as a 

function or a module in a program which will be called by other components. 

 

Figure 7 Services and components in a CPS 

3.2.5   Component 
Any constituent element of a system should be considered as a component. The 

case study of a UAV in this thesis has a rough scope to define a component, so a few 

small components might be abstracted into single one. In this way, one component might 

have multiple services. However, the semantic meaning of the abstract model of the UAV 

will not be changed. 

The UAV example in Figure 8 illustrates how the components are located on a 

UAV. Combining this with the UAV simulator, it can be abstracted into a model in 

Figure 9. 
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Figure 8 The components on a example UAV CPS (UAVOS Company, 2014) 

 

 
Figure 9 The abstracted model of the UAV’s services and components 
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  In Figure 9, only control and data services that exist among components are 

displayed. The physical impacts are also available among components in this study. Each 

component has its corresponding coordination on the UAV, from which the distance 

between two components can be calculated. When two components are physically close 

enough, one may affect another’s functionality significantly. For example, if a GPS is 

over-heating and is close enough to a camera, and the camera is sensitive to high 

temperature, then the camera’s capability may be undermined. A malicious user might 

take advantage of this interference to cause a failure of a mission. 

3.2.6   Mission-critical component 
As long as the component supports functionality to this mission and its failure 

will lead the mission failure or degradation, it will be considered as mission-critical 

component (DoD, 2013). For instance, if a camera on a UAV will be invoked in a 

mission, this camera must be one of the mission-critical components, since its damage or 

inaccuracy of its behavior may cause the failure of the mission.  

3.3   MAPPING MISSION INTO INFRASTRUCTURE 

In this thesis, a component is defined as mission-critical if it is used by the CPS to 

carry out a mission. Intuitively, if a mission-critical component malfunctions, the mission 

is highly likely to be disrupted. The objective of this phase is to discover all mission-

critical components given a CPS simulator and the description of the mission(s). To this 

end, missions will be considered from a programmer’s perspective, where a mission is 

corresponding to a set of values assigned to certain program variables of the CPS 

simulator. As a consequence, mission-critical components are identified as those 
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 components that will be invoked by the CPS simulator given a set of values assigned to 

certain program variables.  

The program variables for a CPS simulator can be generally categorized into two 

classes, namely the configuration parameters and the sensing signals. A configuration 

parameter refers to a parameter that is set by the CPS operator for a specific mission. In 

other words, the values of the configuration parameters are known before hand. In 

contrast, the value for a sensing-signal parameter can only be acquired at runtime. 

Consequently, all acceptable values are considered for sensing signal parameters.  

Given program variables and their values, a straightforward approach to identify 

mission-critical components is to exhaustively execute the CPS simulator with all 

possible assigned values for all the program variables. Despite its simplicity, this 

approach may incur prohibitively high computation cost since all potential values for a 

set of program variables are likely to result in an enormous number of testing executions.  

The program symbolic execution (King, 1976) is adopted to address this 

challenge. Specifically, this framework will first execute the CPS simulator symbolically. 

Each component in the simulator will be associated with a symbolic constraint, where a 

symbolic constraint is expressed by a collection of program variables (i.e., configuration 

parameters and sensing signals). A component will be invoked if any combination of the 

variable values make its associated constraint satisfied. To automate the satisfiability 

investigation process, a constraint solver is leveraged (e.g., a Satisfiability Modulo 

Theories solver). A pseudo-code snippet of an unmanned aerial vehicle (UAV) simulator 

presented in Figure 10 is used to demonstrate the design of this framework.  
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Figure 10 The code snippet of an unmanned aerial vehicle (UAV) CPS 

The corresponding control flow graph and symbolic constraints of paths are displayed in 

Figure 11. 

  

Figure 11 Control flow graph and constraints of execution paths 
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 The function start_camera(int x, int y) is used to start the proper camera 

for the UAV based on the current coordinate of the UAV (i.e., x and y). Specifically, if 

the optical visibility is low (i.e., the “optic_sensor()” returns “true”), then the UAV 

will use its infrared camera (i.e., “IR_camera()”). Otherwise, it will use a high 

resolution optical camera or a regular optical camera. If the UAV flies over an adversarial 

area, which is defined by “x_low”, “x_high”, “y_low”, and “y_high”, it will use 

the high resolution camera (i.e., “hi_res_camera()”); otherwise, it will use a regular 

optical camera (i.e., “regular_camera()”). This study considers the scenario in 

which the adversarial area is stable. Therefore, the programming variables of this 

framework’s concern include “x”, and “y”. For a specific mission, the UAV operator will 

assign values for “x” and “y”. Comparatively, “is_low_visiability” will be 

initialized by the optical sensor at runtime.  

Three missions are placed for the UAV, each mission representing a rectangular 

reconnaissance area. Each area is defined by the possible values for both “x” and “y”, 

which are illustrated in Table 1 and further visualized in Figure 12. Since 

“is_low_visiability” is a sensing-signal variable, all possible values (i.e., “true” 

and “false”) are provided. The advantage of using symbolic execution to identify 

mission-critical components becomes evident in this example. If the exhaustive execution 

strategy is followed, a large number of 9001×9001×2 execution paths are needed to 

explore all possible values for three variables. Comparatively, the symbolic execution 

technique adopted by this framework executes this program, and the build-in solver 

exams the three constraints (e.g., C1, C2, and C3 in Table 2) for three camera 

components, respectively, whether they can be satisfied by using the given symbolic 
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 values “x” and “y” or not. Table 3 presents the decisions from a constraint solver 

which depends on the predefined symbolic values and possible values for 

“is_low_visiability” generated by the build-in solver as shown in Table 2. 

 
Figure 12 Missions example 

Mission   x's  range   y's  range  

Mission  1   x  ∈  [0,  9000]   y  ∈  [0,  9000]  

Mission  2   x  ∈  [12500,  15000]   y  ∈  [12500,  15000]  

Mission  3   x  ∈  [19000,  25000]   y  ∈  [19000,  25000]  

Table 1 Configuration for three missions 

Component   Constraint   Notation  
IR_camera()   is_low_visiability   C1  

hi_res_camera()   x  ∈  [10000,  20000]  ∧  y  ∈  [10000,  20000]  ∧  ¬  is_low_visibility   C2  
regular_camera()   ¬(x  ∈  [10000,  20000]  ∧  y  ∈  [10000,  20000])  ∧  ¬  is_low_visibility   C3  

Table 2 The constraint for each function 

 C1   C2   C3   Critical  Components  

Mission  1   Y   N   Y   IR_camera()  and  regular_camera()  

Mission  2   Y   Y   N   IR_camera()  and  hi_res_camera()  

Mission  3   Y   Y   Y   IR_camera(),  regular_camera(),  and  hi_res_camera()  
Table 3 Constraints satisfied for each mission 

Adversarial Area

Mission 1

Mission 2

Mission 3

x

y
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 If a constraint of an execution path can be satisfied, its corresponding component will 

be invoked by the CPS system and therefore becomes the critical component. For 

example, since only C1 and C3 can be satisfied for Mission 1, “IR_camera()” and 

“regular_camera()” will be labeled as mission-critical functions, and its 

corresponding components are mission-critical components.  

 

Figure 13 The overview and call graph of the instrumented KLEE 
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 The KLEE (Cadar, Dunbar, & Engler, 2008; Baral & Gelfond, 1994), a symbolic 

virtual machine, is currently instrumented to implement this phase of this framework. 

Specifically, this framework augments KLEE so that it can label functions that represent 

CPS components. The instrumented KLEE can automatically collect constraints for each 

labeled function and subsequently perform verification using its built-in constraint solver. 

Figure 13 illustrates how the labeled functions which represent CPS components can be 

traversed and collected during symbolic execution.   

 

Figure 14 Code snippet of instrumented functions of KLEE 
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The inter-procedure call graph of instrumented KLEE illustrates how exactly the labelled 

function names are printed out from the entry point of the KLEE symbolic execution 

engine. In the instrumented KLEE, a list “function_names” that stores labelled 

function names is created and updated during symbolic execution process. In the call 

graph, some functions of KLEE are modified to fulfill the purpose of this framework. 

Two major instrumented functions are listed in Figure 14. The first modified function of 

KLEE is in charge of collecting each labelled functions name of CPS when each of them 

is invoked in an instruction. The second one is responsible of outputting the names of 

labelled functions in order to identify the corresponding mission-critical components. 

Accordingly, the mission is mapped into the infrastructure of the abstracted model of a 

CPS.    

3.4   MINING ATTACK PATHS 

After the mission-critical components have been identified, this framework 

evaluates how vulnerable components can collectively impact the mission-critical 

components. This thesis aims at discovering all attack paths that can lead an attacker 

from exploiting one or multiple access points to disrupting a mission-critical component 

via a sequence of malicious actions (e.g., exploiting security vulnerabilities). This 

framework aims at facilitating users toward following a bottom-up strategy to discovery 

attack paths.3 Components are first individually characterized and then aggregated for 

                                                   
3 The general idea of bottom-up strategy is demonstrated in Section 2.2. 
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 holistic analysis. The current model profiles a CPS from the following two 

perspectives: internal security states and their relationships.  

An attacker’s privilege has been widely used by existing network-based 

vulnerability assessment methods (Sheyner & Wing, 2004; Ou, Govindavajhala, & 

Appel, 2005; Ou, Boyer, & McQueen, 2006) to represent security states of a computing 

node. Such representation reflects the consequence of successfully exploiting a software 

vulnerability (e.g., a buffer overflow vulnerability). However, it becomes insufficient for 

CPS vulnerability assessment since actions an attacker can take to disrupt a CPS mission 

are no longer limited by exploiting software vulnerabilities. For example, a mission-

critical component, which is sensitive to high temperature, could be physically interfered 

with by another component, which is instructed by an attacker to generate an extensive 

amount of heat. In response, three types of security states are considered which include 

adversarial privilege, data integrity, and physical safety.  

Similar to existing methods, the adversarial privilege state indicates the attacker’s 

privilege, such as the typical “USER” or “ROOT” privilege. Comparatively, the new 

states, data integrity and physical safety, demonstrate the trustworthiness of the generated 

data and the physical condition, respectively. Since the internal states might not be 

independent, how an internal state affects another within a component is also 

characterized. For example, an attacker who obtains “ROOT” privilege on a component 

can contaminate its data integrity. Interactions with Other Components. The internal 

states of a component could be affected by other components. For example, if a 

component A takes output from another component B as its input and B’s data is 
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 contaminated by the attacker, then A’s data integrity will be effected and its missions 

are highly likely to be subsequently disrupted.  

Similar scenarios are applicable to those components that interfere with each 

other physically. Vulnerable services can also serve as stepping stones for an attacker to 

gain privilege on a component from its victimized neighbor.  

The BProlog (Zhou, 2014) language is adopted, a popular logic programming 

(Clocksin, Mellish, & Clocksin, 1987) language, to express the model and implement the 

analysis algorithm. The Prolog-based implementation builds two important features into 

this framework. First, the declarative nature of Prolog facilitates us to incorporate new 

semantics (e.g., semantics to describe physical safety with finer granularity) into the 

model. Second, the method in this framework generates verifiable, accurate results due to 

BProlog’s optimized design for exhaustive search (i.e., it can reveal all attack paths). 

 

Figure 15 Modeling an example CPS 

 It is worth noting that this implementation takes advantage of language-level 

features of Prolog rather than manipulating its internal implementation to produce attack 

Component A
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 paths (Sheyner & Wing, 2004; Ou, Boyer, & McQueen, 2006; Ou, Govindavajhala, & 

Appel, 2005). As a result, this implementation can naturally benefit from the evolution of 

Prolog interpreters such as the integration of distributed or parallel computing 

infrastructures (Côrte-Real, Dutra, & Rocha, 2013), implying low engineering and 

maintenance cost in the practical deployment.  

Similar to Figure 7, Figure 15 represents a fraction of a CPS to illustrate the 

design of this framework, where the relationships among components are annotated in it. 

For example, the component A relies on the output from both B and C for operation; B 

offers a vulnerable service to D; C’s operation can be interfered with by high temperature 

from E. In Figure 16, the Prolog code presents the Prolog-based model of this UAV CPS 

example. “PART 1 – Facts” of the code refers to the structure of the CPS and the 

vulnerabilities of the system, which are presented as Prolog “facts;” “PART 2 – Rules” 

describes the impact of vulnerabilities, data dependency and physical interferences, 

which are presented as Prolog “rules.” Rules can either be applicable for a specific 

component (e.g., line 12 - 14) or all components (e.g., line 15 - 36). A Prolog rule is a 

Horn clause represented as “H ∶- B1, B2, ..., Bn”, which means that “if B1, B2, ...and Bn are 

all true, then H is true”. In the context of vulnerability assessment, B1, B2, ...and Bn 

indicate the conditions necessary for an attacker manipulate internal security states of a 

component; H indicates the consequence of the manipulation. For instance, line 23 - 26 

means that the data integrity of a component (denoted by the variable Target) is 

compromised if this component has data dependency on another component (denoted by 

the variable Source) which means Source’s data integrity has been contaminated. It is 

worth noting that Prolog’s backtracking mechanism is leveraged to discover attack paths. 
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 The backtracking mechanism is for finding all answers for a query. In this example, 

“Path” in line 25 indicates the attack path that lead to the data damage on the Source 

component and “[(Target, ‘data-dependency’) | Path]” recursively attach the current 

vulnerability to the head of the attack path.  

 
Figure 16 An illustrative model - Prolog Code 
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Figure 17 Query and answer 

 

In order to discover all attack paths, a user can first define the disruption state for 

a mission-critical component and execute a query. For example, if define the disruption 

of the component A as the violation of its data integrity, then a user can execute the query 

“data_damage(a, Path)”, where Path is a variable that contains all attack paths. In this 

specific example, Path contains the attack paths which are shown in Figure 17. The 

second path is  

“Access Point -v2→ Com. D -v1→ Com. B -root-data→ Com. B -data-depen.→ Com. A” 

3.5   OPTIMIZING MITIGATION PLANS 

In this phase, the objective of this framework is to identify a set of vulnerable 

components so that mitigating them can i) protect all mission-critical components from 

being disrupted and ii) minimize the mitigation cost. The discovered attack paths with 

100% coverage in the previous phase greatly facilitate the mitigation process. If 

mitigating a set of vulnerable components can block all attack paths, then all mission-

critical components will be protected. Hence, this framework formulates this problem 

based on the derived attack paths. The variable 𝑣# is used to denote a vulnerable 

component and variable 𝑐%& represents the cost to mitigate this vulnerability. Each attack 
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 path (e.g., pk) is represented by a set of its composing vulnerable components (i.e., 

𝑝( = {𝑣+( , 𝑣-(, … , 𝑣/(}). The P is used to represent all attack paths, where P = {p1, p2, ..., 

pm}. The V is used to denote a set of vulnerable components selected for mitigation. A 

function, namely count(p), is introduced to count the number of vulnerable components 

to be mitigated in an attack path p, where count(𝑝() = |	
  {	
  𝑝( ∩ V } ∣. Then, the objective 

of this phase can be formulated as an optimization problem described as follows: 	
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This is a typical linear optimization problem and the BProlog’s build-in solver is 

leveraged to seek a feasible optimum solution for the mitigation plans. 

3.6   GRAPHIC USER INTERFACE 

In order to improve the usability and flexibility, a graphic user interface (GUI) is 

designed to integrate the functionalities of this framework. This interface facilitates that a 

user can easily extend the knowledge base of the infrastructure and the vulnerabilities of 

CPS without modifying the reasoning strategy. Five sections including configuration 

editor, component editor, trust relation editor, access point editor and service editor are 

employed to read infrastructure information from the user. The vulnerability editor 

section reads the details of each vulnerability from the user. The configuration editor is 
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 used to describe the services and relationships among components.

 

Figure 18 Configuration editor screenshot 

In Figure 18, the first row on the table can be read as there exists a service s1 from 

component b4 to component b2, and the service s1 has a vulnerability v1. The service 

editor can read service description from the user. (e.g., s1 is SMTP service which has an 

opening port 25). Similar to the service editor, the component editor records the 

component’s description, the services running on it, and its trusting components.  

 

Figure 19 Component editor screenshot 

In Figure 19, component b2 is a MODEM that has three services including s4, s1, and s6. 

The trusting relation can be defined by the trust relation editor in Figure 20.  

 

Figure 20 Trust relation editor screenshot 
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 The first row of the trust relation table represents that if a user achieves USER privilege 

on component b2, then he or she can immediately get USER privilege on b5 by this host 

trust relation.  

 

Figure 21 Access point editor screenshot 

Users can also assume the access points of a system in the access point editor. In Figure 

21, the user assumes that a malicious employee could achieve USER privilege on 

component b4, if and only if when this employee has USER privilege in this system. All 

above editors are designed to build up and extend the infrastructure of a system. The 

vulnerability editor allows the vulnerability to be integrated into the analysis process. In 

Figure 20, the user inserted a vulnerability v1 that can be compromised by the malicious 

users to achieve a USER privilege if he or she already had GUEST privilege. In the 

configuration editor, a vulnerability can be attached to its corresponding services.  

 

Figure 22 Vulnerability editor screenshot 
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 The cost of mitigating each vulnerability can be defined by the user. It is used to 

determine the minimum cost mitigation plan. For example, in Figure 22, to mitigate a 

vulnerability v1 requires 4 units cost.  

 

Figure 23 Control panel screenshot 

 

Figure 24 Visualized system configuration and attack paths 



 

34 

 Once all infrastructure and vulnerability information is inserted into this framework, the 

user can choose the mission and run analyzer to achieve the results. In this demo, two 

missions are pre-defined to illustrate the design idea4. After clicking the “Run Analyzer” 

button in Figure 23, the visualized system configuration is displayed on the output panel. 

In Figure 24, the system configuration illustrates the same abstracted model as the UAV 

model in Figure 27. The attack paths are displayed at bottom of Figure 24. This interface 

also output the optimized mitigation plan(s) if there exists at least one feasible solution. 

Based on the cost assumption (e.g., random integers between 0 and 10) in this study, one 

feasible optimum solution is achieved by the build-in solver of BProlog in Figure 25. 

Patching vulnerabilities v2 and v5 is the minimum cost mitigation plan that needs 8 units 

cost. This mitigation plan can destroy all existing attack paths.  

 
Figure 25 Optimized mitigation plan screenshot 

                                                   
4 These two missions can be found in Section 3.7.1. 
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 The panoramic screenshot of this interface is displayed in Figure 26. Cooperating with 

this GUI benefits the user to build up and enrich the infrastructure information and 

achieve desired results without worries about the underlying technologies. 

 
Figure 26 Panoramic screenshot of GUI 

 

3.7   FRAMEWORK EVALUATION 

3.7.1   Effectiveness  

A UAV simulator has been build to evaluate the vulnerability assessment 

framework. The simulator, written in C++, represents the integration of the interacting 

components. It can be abstracted into a model which is illustrated in Figure 27. Its proper 

operation relies on both the configuration parameters and sensing signals. The 

configuration parameters describe the cruise routes of the UAV and adversarial areas; the 

sensing signals capture the weather conditions, which are randomly generated during the 

simulation. Different components will be used when the combination of the current 
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 position of the UAV, its associated adversarial status, and the weather condition. The 

route map and mission list can be found in Figure 28.  

 
Figure 27 Model of the UAV simulator 

 
Figure 28 Missions and route map for the UAV simulator 
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 A mission is associated with a set of possible values for both the cruise route and the 

coordinates of adversarial areas; all possible values are assigned to each sensing signal 

variable. In Table 4 and 5, the input values of missions can be found for both Route 1 and 

2. The assume ranges of coordinates for Position 2, 3, 4, and 5 are also listed in Table 4 

and 5.  

Position No. Latitude Longitude Altitude 

1 397589478 -841916069 225 

2 396894936 < v0_0 < 396895136  -841688374 < v0_1 < -841688174  296 < v0_2 < 316  

3 396283828 < v1_0 < 396284028  -841593918 < v1_1 < -841593718  301 < v1_2 < 321  

4 394508837 < v2_0 < 394509037  -840960552 < v2_1 < -840960352  202 < v2_2 < 222  

5 394353273 < v3_0 < 394353473  -842030022 < v3_1 < -842029822  224 < v3_2 < 244  

6 393120031 -842829935 247 

7 391908926 -843635507 233 

8 391644798 -844542798 186 

9 391031182 -845120196 167 
Table 4 Coordinates of route 1 

Position No. Latitude Longitude Altitude 

1 397589478 -841916069 225 

2 396722712 < v0_0 < 396722912 -842521732 < v0_1 < -842521532 208 < v0_2 < 228 

3 395786685 < v1_0 < 395786885 -842979273 < v1_1 < -842979073 196 < v1_2 < 216 

4 394928267 < v2_0 < 394928467 -842896714 < v2_1 < -842896514 258 < v2_2 < 278 

5 393600486 < v3_0 < 393600686 -843099490 < v3_1 < -843099290 236 < v3_2 < 256 

6 393120031 -842829935 247 

7 391908926 -843635507 233 

8 391644798 -844542798 186 

9 391031182 -845120196 167 
Table 5 Coordinates of route 2 

The instrumented KLEE is used to identify all mission-critical components given a 

mission description and the the Prolog-based analysis engine subsequently enumerate all 

attack paths. While this framework by design inherits the mathematical rigor of SAT and 

Prolog, the manual analysis further verified that all mission-critical components and 

attack paths were correctly identified. All critical functions and critical components have 

been identified successfully which are listed in Table 6. After critical components are 
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 identified, attack paths can be found by the Prolog program of this framework. The 

attack paths and corresponding vulnerability set are listed in Figure 29.   

Route 2 Mission-Critical Functions  Route 1 Mission-Critical Functions 

(passive_antenna). (engine_mode_normal).  (passive_antenna). (engine_mode_normal). 

(radio_modem). (engine_voltage_sensor).  (bluetooth_signal). (engine_voltage_sensor) 

(bluetooth_signal). (magnetometer).  (klee_assume). (magnetometer). 

(klee_assume). (klee_div_zero_check).  (accZ). (gps). 

(accZ). (gps).  (accY). (gps_magnetometer). 

(accY). (gps_magnetometer)  (solar_energy_off). (speed_detector). 

(solar_energy_off). (speed_detector).  (roll). (system_voltage_sensor). 

(roll). (claw_engine).  (accX). (yaw). 

(accX). (system_voltage_sensor).  (klee_make_symbolic). (turn_off_Camera). 

(radio_decoder). (radar_dish_engine).  (solar_energy_on). (camera_remote_off). 

(klee_make_symbolic). (yaw).  (weather_detector). (accelerometer). 

(radar_processor). (puts).  (gyroscope_sensor). (engine_mode_APBOX). 

(ground_defense_signal) (radar).  (normal_shutter). (camera_remote_on). 

(solar_energy_on). (gyroscope_sensor).  (memcpy). (pitch). 

(accelerometer). (memcpy).  (turn_off_night_mode). (turn_on_Camera). 

(engine_mode_APBOX). (radio_battery_control).  (static_press._sensor). 
(gps_STM32_microcontroll
er). 

(pitch). (backup_battery).  (circling). (radio_signal). 

(unloading). (radio_wave_generator).  (moveTo). (gps_1). 
(gps_STM32_microcontroll
er) (time).  (puts). (is_night_mode). 

(gps_1). (static_pressure_sensor).    

(circling). (radio_analog_sensor).    

(moveTo). (rand).    

(weather_detector). (srand).    

(pick_up).     

Route 2 Mission-Critical Components  Route 1 Mission-Critical Components 

[apbox, cas, claw, gps, modem]  [apbox, camera, cas, gps, modem] 

[b1, b2, b3, b4]  [b1, b2, b4, b5] 
Table 6 Critical functions and components generated by instrumented KLEE 
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Figure 29 Critical components and attack paths 

3.7.2   Performance 

The performance of finding attack paths by BProlog in this study has not 

encountered scalability issues. However, experiments that are more complicated are 

tested for evaluating the framework’s scalability.  

 

Figure 30 The example topology of testing cases 
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 Test experiments are generated for testing the scalability of finding attack paths 

using the same bottom-up traversal algorithm. The sample topology is displayed in 

Figure 30. In this figure, an employee has the capability to compromise the target through 

an attack path, “Employee”, “b0_0”, “b1_0”, “b1_1” and “Target.” 

 

Figure 31 Number of attack paths for the scalability experiments 

 

Figure 32 Running time of finding attack paths for the scalability experiments 
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 As the number of nodes increases, the number of paths increases exponentially, which 

is shown in Figure 31. In order to demonstrate the number of vulnerabilities on 

components may also affect the scalability. The comparable experiments are created, so 

the number of vulnerable service is decreased in each topology by 10%, 20%, and so on. 

For example, there are 100 components in a topology. This topology with 10% 

vulnerability services represents that 10 of the 100 components contain vulnerable 

services. This decreasing strategy is also applied in the running time experiments. For 

instance, the left-most curve in Figure 31 represents that the number of attack paths 

increases significantly with the size of graph increases. Its topology contains 90% 

vulnerable services. The left-most curve in Figure 32 is the corresponding running time. 
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 Chapter 4  
Discussion and Further Work 

This framework has systematically integrated program symbolic execution, logic 

programming, and linear optimization in order to perform mission-aware CPS 

vulnerability assessment. Despite the fact that this framework has demonstrated high 

accuracy and automaticity, a few open challenges have been observed. The discovery of 

mission-critical components will face great challenges if a CPS simulator yields complex 

constraints (e.g., sophisticated arithmetic constraints) that stay beyond the capabilities of 

constraint solvers. In response, a few solutions can be considered. First, if complex 

constraints involve a small number of variables that have small value spaces, this 

framework can still adopt execution-based approach. Second, domain knowledge (e.g., 

the relationships among variables) might be used to simply the model (e.g., reducing the 

value space for sensing signal sensors). For example, if an UAV takes a certain route for 

a mission, the wind speed might fall into a small range. In addition, the evolving 

techniques can be adopted for constraint solvers. Despite the fact that this framework 

offers high flexibility to incorporate richer semantics, exploiting such potential highly 

desires an interactive model development environment that can facilitate i) the 

communications among users responsible for different CPS components and ii) the 

sharing of rules applicable for multiple components. For example, if more fine grained 

security states are desired for a component, other relevant components need to be notified 

to redefine their relationships based on new states.  

Model-driven design is gaining increasing popularity in building safety critical 

systems including CPS. Several languages have been defined to model various systems 

such as Unified Modeling Language (UML) (Warmer & Kleppe, 1999) and Architecture 
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 Analysis & Design Language (AADL) (Feiler, Gluch, & Hudak, 2006) . How to extend 

this framework so that it can perform automated analysis using models in described in 

these languages is an area for the future work.  

The solution to mitigation optimization focuses on reducing the cost of 

mitigations. However, more factors may influence the mitigation decisions. The 

likelihood for a vulnerable component to be taken advantage of by attackers is among the 

most important factors. For example, if a vulnerable component is associated with high 

mitigation cost but it is highly likely to be victimized, then it deserves high priority to be 

protected. Performing effective mission-aware vulnerability assessment plays a 

fundamentally important role for the massive deployment of CPSs. This framework 

outlines the work-in-progress towards this direction, where various formal method-based 

approaches have been systematically integrated to develop an effective solution. Future 

work will develop solutions to the aforementioned open challenges. 
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