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ABSTRACT 
 

Siembab-Neff, Valerie Cari Ann.  Ph.D., Biomedical Sciences Program, Wright State 
University, 2009.  Embryonic and Postnatal Development of the Neural Circuitry 
Involved in Motor Control. 

 

 

 The development of locomotion is believed to result from the maturation of the 

spinal circuits controlling motor output, however little is known about its mechanisms.  

To shed some light into this process we studied the development of the synaptic 

connectivity of two spinal inhibitory interneurons.  Adult motoneurons are controlled by 

inhibitory networks that include recurrent and reciprocal inhibition (Pierrot-Deseilligny 

& Burke, 2005).  Each is modulated by different ventral horn spinal interneurons that 

display synaptic connectivity adapted to their function: Renshaw cells (RCs) mediate 

recurrent inhibition, receive excitatory inputs from motor axons and inhibit homonymous 

and synergistic motoneurons; while Ia inhibitory interneurons (IaINs) mediate reciprocal 

inhibition, receive inputs from Ia proprioceptive afferents and inhibit antagonist motor 

pools.   

 RCs and IaINs both derive from a homogenous class of embryonic ventral 

interneurons denominated “V1”, leading us to question whether motor axons and Ia 

afferents target V1 interneurons during early development, followed by postnatal de-

selection of specific inputs and generation of cells with typical RC/IaIN connectivity. 
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Using immunohistochemistry, confocal microscopy, 3D neuronal reconstructions and 

transgenic animal models expressing V1-IN lineage markers, we analyzed synaptic input 

development on V1-derived RCs and IaINs.  We found that motor axons specifically 

target RCs, are established in early embryo and maintained throughout development.  In 

contrast, Ia afferents contact both IaINs and RCs in late embryo and throughout postnatal 

development.  Ia afferent synapses are de-selected from RCs coinciding with maturation 

of weight-bearing locomotion.  However, Ia afferent inputs on IaINs always occurred at a 

higher density and were more proximally located than on RCs, suggesting a stronger bias 

for IaINs.  We concluded that there are fundamental differences between IaINs and RCs 

in their competence for receiving and maintaining motor and Ia afferent inputs.  Finally, 

we investigated the possible role of “transient” Ia afferent inputs on RCs by studying RC 

connectivity in three genetic animal models that lack Ia afferents, or have 

weakened/strengthened Ia afferent inputs.  We found interactions between Ia afferent 

strength and motor axon input density on RCs, but not with other excitatory inputs, 

suggesting that early Ia afferent inputs contribute to shape the organization of motor 

synapses on RCs. 
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INTRODUCTION 
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 Humans are born with a multitude of immature reflexes.  One such example is the 

stepping reflex.  When a neonate or young infant is held upright, and the soles of its feet 

are brought in contact with a surface, the legs will extend and begin to move in an 

alternating sequence, as if walking (Peiper, 1966; Thelen and Fisher, 1982).  It is believed 

that these early stepping reflexes represent an early stage in the development of 

locomotion.  Humans are born with immature spinal circuits and appear to go through a 

period of “motor-learning”.  It is during this “motor-learning” period that spinal circuits 

and reflexes mature.  Little is known about how these spinal circuits in newborns 

develop. Understanding how these spinal circuits are formed is important because 

dysfunction of these networks or their development could lead to motor abnormalities in 

neonates.   

 Past research has focused on the development and characteristics of spinal 

motoneurons, perhaps because they are typically more accessible (Frank and Wenner, 

1993; Goda and Davis 2003; Jacob et al. 2001; Shirasaki and Pfaff 2002).  However, very 

little is known about the development of the interneuronal circuits that shape motor 

output.  One possible reason for the scarcity of knowledge is that the ventral horn 

interneuronal circuitry is extremely complex and still largely unknown.  A recent major 

advance has been the identification of four subclasses of embryonic interneurons (V1, 

V2, V3, V0) in the ventral horn characterized by the expression of different combinations 

of transcription factors and distinct genetic backgrounds (Jessell, 2000; Goulding et al., 

2002). Later studies suggested that two well-known adult interneurons, Renshaw cells 

(RCs) and Ia inhibitory interneurons (IaINs) develop specifically from one embryonic 

group, named V1, which derives from just one set of progenitors.  Renshaw cells mediate 
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recurrent inhibition, receive excitatory inputs from motor axons and inhibit homonymous 

and synergistic motoneurons; while Ia inhibitory interneurons mediate reciprocal 

inhibition, receive inputs from Ia proprioceptive afferents and inhibit antagonist motor 

pools.   

 A general conclusion for this observation is that most ventral interneuronal 

circuits are probably derived from few “canonical” groups of interneurons of common 

genetic background. The mechanisms that diversify interneuronal subclasses from each 

of the original four embryonic cell types (earlier denominated as a “metatype”; Sapir et 

al., 2004) are unknown, but clearly are important to understand the development of spinal 

synaptic circuits. 

 The purpose of this thesis is to determine what is the process of selection and 

maturation of the synaptic connectivity on V1-derived RCs and IaINs and what possible 

mechanisms or influences might be driving it.        



 4 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II 

LITERATURE REVIEW 
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I. SPINAL CORD DEVELOPMENT 

Anatomy of the embryonic spinal cord 

 The spinal cord emerges from the caudal part of the neural tube.  During early 

embryonic development, the neural tube is broader at the base and appears to be shaped 

like a pear (Figure 1A).  It can be divided into two morphological components: the alar 

plate (dorsal plate) which gives rise to the dorsal horn and the basal plate which is the 

precursor of the ventral horn.  The alar and basal plates are separated by a longitudinal 

groove called the sulcus limitans.  The ventricular zone (VZ; also known as the 

neuroepithelial layer or progenitor area) is located around the central canal and contains 

progenitor cells.  These are mitotic cells that generate postmitotic neurons through 

successive divisions.  Differentiated neurons migrate from the VZ and into the mantle 

layer, which contains the developing alar and basal plates.  The mantle layer is the 

precursor of the gray matter and contains differentiated cells that will give rise to all the 

neurons and glial cells of the spinal cord.  The axons of differentiating neurons first 

project to the marginal layer, which will develop in the white matter tracts that will 

surround the inner gray matter.  In addition there are two specialized regions of the dorsal 

and ventral midline of the neural tube.  These areas are known as the roof plate and floor 

plate.  The roof plate is dorsal to the central canal and the floor plate ventral.  They 

contain specialized cells that release signaling molecules to pattern the progenitor area in 

different dorso-ventral bands.  Each of these bands generates a different class of neuron. 
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Origination of ventral spinal cord neurons involved in locomotion 

 Distinct neuronal subtypes are generated in the spinal cord and topologically 

positioned within the spinal cord.  Location of neurons within the spinal cord is important 

because it is a clear reflection of their function in the adult.  Neurons positioned in the 

dorsal horn (alar plate) are responsible for processing sensory input and those neurons 

that coordinate motor output are found in the ventral horn (basal plate).  Each spinal 

interneuron at specific locations develops specific characteristics and synaptic inputs and 

outputs that define their role in spinal circuits.  Until recently, little was known about 

how the identity and pattern of neuronal subtypes was defined.  The diversity of neuronal 

subtypes appears to be generated by the response of neural progenitors to graded 

concentration of sonic hedgehog (Shh).  Shh is released from the notochord (vertebral 

column primordia) and the floor plate (basal cells in the neural tube).  A dorso-ventral 

gradient is then established (Briscoe and Ericson, 1999; Briscoe and Ericson, 2001; 

Briscoe et al., 2000) with high Shh ventrally and low Shh dorsally.   In addition, the roof 

plate secretes BMP-4, which alters the neural progenitor’s response to Shh, resulting in a 

dorsalizing effect on neural progenitors (Liem et al., 2000).  The concentration of Shh 

divides the ventricular zone (VZ) into different progenitor domains; seven domains in the 

dorsal portion of the spinal cord (pd0-6) give rise to eight classes of dorsal horn 

interneurons (Zhuang and Sockanathan, 2006) while five ventral progenitor domains (p0-

p3 and pMN) will give rise to four classes of ventral horn interneurons denominated “V0, 

V1, V2, and V3” and motoneurons (Briscoe et al., 2000).  Induction of ventral neurons 

involved in motor circuits requires high concentrations of Shh (Ericson et al., 1997a,b).  

Spinal cord ventral neurons are born, or become postmitotic, between embryonic day 9.5 
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(E9.5) and E13.5 (Briscoe et al., 1999; Pierani et al., 1999; Sander et al., 2000; Moran-

Rivard et al., 2001; Vallstedt et al., 2001; Smith et al., 2002; Peng et al., 2007).  

Immediately after birth, spinal cord neurons migrate laterally to occupy their final 

anatomical positions.  During migration, neurons will simultaneously begin sending out 

their axonal projections into specific trajectories (Saueressig et al., 1999).   

 How does a Shh concentration gradient cause neural progenitors to generate 

different neuronal subtypes at different dorso-ventral locations?  Moreover, how do 

progenitors read and respond to differing Shh concentrations?  Many believe that Shh 

concentration gradients control the specification of cells by establishing progenitor 

domains, which express distinct combinations of homeodomain transcription factors (see 

Figure 1B).  Transcription factors expressed by ventral progenitors can be divided into 

Class I or Class II.  Class I transcription factors such as Dbx1 and 2, Nkx6.2, and Pax6 

and 7 are repressed by Shh signaling.  In contrast, Class II transcription factors like Irx3, 

Olig2, and Nkx2.2 and 6.1, are induced by Shh.  The cross-repressive or inductive actions 

between these transcription factors create well-defined progenitor domain boundaries 

(Briscoe et al., 2000).  The distinct transcription factor combinations are required for the 

generation of specific neuronal subtypes and for generating the correct number of 

neurons.  For example, mutations of the Class II gene Nkx6.1 results in V2 and 

motoneurons switching to a V1 fate (Sander et al., 2000).  Similarly, deletion of the Class 

I gene, Pax6 results in no V1-INs being generated (Ericson et al., 1997; Burrill et al., 

1997).      



 8 

Figure 1.  Development of ventral spinal interneurons and motoneurons.  A, Schematic 
depicting the anatomy of the embryonic neural tube.  The neural tube is divided into the 
alar (dorsal) and basal (ventral) plates by the sulcus limitans.  The dotted lines indicate 
the border of the ventricular zone (VZ) which contains the progenitor cells.  
Differentiating cells migrate out of the VZ into the mantle layer, which is the future gray 
matter.  The marginal layer, which develops into the white matter, contains the axons of 
the differentiating neurons.  The VZ is patterned by cells in the roof plate and the floor 
plate that release signaling molecules.  The roof plate is found dorsal to the central canal 
and the floor plate is found ventral.  B, Sonic hedgehog (Shh) is released from the floor 
plate and patterns the VZ into five ventral progenitor domains which give rise to 4 ventral 
interneuronal subtypes denominated “V0-V3” and also give rise to motoneurons (MNs).  
Each progenitor domain expresses different transcription factors (some of the 
transcription factors are shown here) that are repressed or induced by Shh signaling.  
Class I transcription factors are repressed by Shh signaling and Class II transcription 
factors are induced by Shh.  Once a cell becomes postmitotic late transcription factors are 
expressed (ovals; again, only a few are shown here).  Each ventral interneuron class is 
characterized by their genetic programs and axonal projections.                
  



 9 

 



 10 

 Each ventral progenitor domain gives rise to early classes of ventral interneurons 

characterized by specific genetic programs and axonal projections.  Once a progenitor 

cell in a specific progenitor domain generates a postmitotic neuron it will begin 

expressing late transcription factors, which are believed to execute subtype-specific 

programs of differentiation (Figure 1B; Moran-Rivard et al., 2001).  For example, Evx1 

is specifically expressed in V0 interneurons.  Evx1 mutants will generate V0 INs, which 

extend axons along the correct trajectory for contralateral projections to the other side of 

the spinal cord, but after some time these cells will begin expressing V1 markers and 

their axonal trajectory will change, mimicking the ipsilateral projections of V1-derived 

interneuron axons (Moran-Rivard et al., 2001).  From these studies and those of Pierani 

and colleagues (2001) it was concluded that Dbx1, which is expressed by p0 progenitors, 

represses the V1 genetic program by upregulating Evx1.  Similarly, V1-derived 

interneurons express engrailed-1 (En1) and when it is knocked out, V1 interneurons 

display problems with axon pathfinding and fasciculation (Saueressig et al., 1999; 

discussed further in next section).  In summary, the four original embryonic ventral 

interneuron cell types (V0-V3) give rise to a few “canonical” groups of interneurons of 

common genetic expression profiles that share several common features.   

 As mentioned previously, V0-derived interneurons express the late transcription 

factor Evx1 (Pierani et al., 1999; Moran-Rivard et al., 2001; Pierani et al., 2001) and are 

comprised of both excitatory and inhibitory interneurons (Lanuza et al., 2004) that make 

contralateral projections that extend approximately one and a half  segments.  V1-derived 

interneurons (V1-INs) are ipsilaterally projecting interneurons which express En1 

postmitotically (discussed further in next section; Burrill et al., 1997; Sauressig et al., 
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1999; Alvarez et al., 2005) and their projections ascend two segments at most (Sauressig 

et al., 1999).  V2 interneurons (V2-INs) derive from a progenitor population which 

expresses Lhx3 (Peng et al., 2007), but are divided into excitatory and inhibitory 

populations.  Excitatory V2-INs, denominated “V2a” express Chx10 (Hargrave et al., 

2000) and inhibitory V2-INs, “V2b”, express Gata2/3 (Ericson et al., 1997b; Zhou et al., 

2000; Karunaratne et al., 2002; Poh et al., 2002; Smith et al., 2002).  Both V2a and V2b 

interneurons make ipsilateral projections that extend caudally (Lundfald et al., 2007; 

Sauressig et al., 1999; Lee and Pfaff, 2001).  Very little research has been done on V3-

derived interneurons (V3-INs), but it is known that V3-INs express the transcription 

factor Sim1 (Briscoe et al., 1999; Goulding et al., 2002) and are believed to be mainly 

excitatory interneurons that make contralateral projections (Zhang et al., 2008), although 

it is not known whether these projections are ascending or descending.   

 Recent genetic deletions of these different subclasses of ventral spinal 

interneurons have provided insights into their function.  Lanuza and colleagues (2004) 

showed that V0-INs are important for left-right coordination, but not for flexor-extensor 

alternation.  Using an in vitro spinal cord preparation they induced fictive locomotion 

with NMDA and 5-HT and recorded bursts of left L2 (lL2) and right L2 (rL2) ventral 

roots and found episodes of synchronous bursting between lL2 and rL2 ventral roots after 

genetic deletion or silencing of V0 interneurons.  Similar results were observed between 

lL5 and rL5 ventral roots.  They concluded that the loss of left-right coordination was due 

to a loss of V0 commissural interneurons which inhibit contralateral MNs.  V1-INs 

appear to regulate the speed of motor output (Gosgnach et al., 2006).  Using a similar in 

vitro spinal cord preparation as Lanuza, Gosgnach and colleagues studied the function of 
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V1-INs in Pax6(-./-) knockouts and in mice with selective ablation of V1-INs using 

En1Cre; R26-lacZflox/DTA mice.  They found that inducing fictive locomotion in both 

animals did not affect left-right coordination or flexor-extensor alternation, but the step 

cycle and burst duration was affected.  Therefore, they concluded that V1-INs were 

essential for determining the speed of the locomotor rhythm.  Genetic ablation of 

excitatory V2a-INs with Chx10-DTA mice demonstrated that V2a-INs, similar to V0-INs 

are important for left-right coordination (Crone et al., 2008).  Zhang et al. (2008) assessed 

the function of V3-INs by blocking V3-IN neurotransmission in SimCre;R26-floxstop-TeNT 

mice.  They found that blocking V3-IN neurotransmission increased the variability in 

duration of motor bursts and the length of the step cycle.  Also, these mice failed to 

generate normal locomotor-like oscillatory activity following either application of 

NMDA and 5-HT or stimulation of sensory afferents.  Therefore, they concluded that V3-

INs are important for stabilizing locomotor networks and maintaining rhythmicity.  

Although these results provide the first information on the functional roles of different 

classes of embryonic interneurons, these broad deletions do not capture the diversity of 

functional subtypes contained within each class.  For that we need to understand the 

variety of interneuron subtypes that derive from each class and their mechanisms of 

differentiation.  In this thesis I will examine the diversification of adult interneuron 

subtypes from the V1-IN class of embryonic ventral interneurons.      

   

V1-derived interneurons 

 Broad principles about the diversification of adult interneuronal subtypes from the 

five ventral interneuron classes come from studies of V1-INs.  V1-derived interneurons 
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(V1-INs) are characterized by the expression of the engrailed-1 transcription factor 

(Matise and Joyner, 1997; Ericson et al., 1997; Sauressig et al., 1999) and derive from the 

ventral progenitor domain, p1, which expresses transcription factors, Dbx2, Pax6, and 

Nkx6.2.  Deletion of Nkx6.2 leads to the ventral expansion of the Dbx1 domain (p0 

progenitor domain), which leads to a loss of V1-INs and a corresponding increase in V0-

derived interneurons (Vallstedt et al., 2001).   

 In the spinal cord, the expression of En1 is dependent on the transcription factor 

Pax6.  Deleting Pax6 (Small eye mutant) results in a loss of En1 expression in embryos 

(Burrill et al., 1997; Ericson et al., 1997) suggesting a loss of V1-INs without affecting 

V0 and motoneurons.  In an elaborate set of experiments, Sauressig and colleagues 

(1999) identified En1+ cell projections using an En1taulacZ knock-in mouse model in 

which the axons originating from En1+ cells expressed β-galactosidase (Sauressig et al., 

1999).  They found that En1+ cells make ipsilateral projections to MNs.  Furthermore, 

they showed that the ventral projection of these axons required netrin-1.  The most 

interesting observation from this study was that En1 expression does not specify cell fate, 

but that it is involved in regulating axonal pathfinding.  Thus postnatal studies in the 

spinal cord show sparse connections of V1-INs with motoneurons in En1 knockout 

animals (Sapir et al., 2004).  In mice, En1 expression is first observed at E9.5-10.5 in the 

area between the dorsal and ventral horns of the embryonic neural tube (Matise and 

Joyner, 1997).  Eventually, En1+ cells will migrate laterally and ventrally toward the area 

occupied by newly formed MNs.  Meanwhile, as they migrate, their axons will project 

into the developing ventral and lateral funiculi and send collaterals that terminate on the 

MNs (Sauressig et al., 1999).  Dextran retrograde tracings performed in E13 embryos 
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demonstrated that the V1-INs main axonal projection is ipsilateral and mainly ascending, 

but also with some descending collaterals (Sapir et al., 2004).  In early embryos and 

postnatal spinal cord these cells express markers which suggest an inhibitory phenotype 

(Sapir et al., 2004; Alvarez et al., 2005).  Therefore, En1 expression defines a class of 

ipsilaterally projecting inhibitory spinal interneurons, which project to MNs (Sauressig et 

al., 1999; Sapir et al., 2004).  They were denominated “V1” interneurons (Lee and Pfaff, 

2001).   

 The purpose of this thesis is to gain insights into the process of differentiation of 

interneuron subclasses from these canonical embryonic ventral interneuron classes.  

Adult interneuron subtypes are defined by their synaptic inputs and outputs, which 

ultimately defines their function.  We chose to focus on the V1-INs because recent 

studies in our lab suggested that two well-known adult inhibitory interneuron subtypes, 

Renshaw cells (RCs) and Ia inhibitory interneurons (IaINs) develop specifically from this 

class (Sapir et al., 2004; Alvarez et al., 2005).  The generation of transgenic mice in 

Martyn Goulding’s lab (Salk Institute) in which the lineage of embryonic V1-INs can be 

genetically labeled (using the cre-lox system) in adult demonstrated that all RCs are V1-

derived as well as IaINs (Alvarez et al., 2005) and that recurrent inhibition is absent in 

Pax6 mutant mice (Sapir et al., 2004).  Previous studies in the chick embryo by Wenner 

and colleagues (1999, 2000, 2001) showed that En1 expressing interneurons are 

heterogeneous and contains a population that receives inputs from MNs and makes 

inhibitory projections onto MNs resembling mammalian RCs.  This group of interneurons 

represents the avian equivalent of the mammalian RC and was denominated R-

interneuron (R-IN; for recurrent inhibition).  However it also displayed some 
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characteristics that resembled IaINs.  Although the R-IN has been shown to mediate 

recurrent inhibition of MNs in the developing chick spinal cord, its location is similar to 

that of adult IaINs in the area dorsomedial to the motor pools.  Similarly, R-INs receive 

monosynaptic inputs from muscle afferents.   

 En1-V1 interneurons are conserved through phylogeny.  A class of En1 

expressing inhibitory interneurons, called circumferential ascending interneurons (CiA-

INs) has recently been identified in zebrafish (Higashijima et al., 2004).  Similar to 

mammalian V1s, CiA-INs are glycinergic and their axons project ipsilaterally to MNs.  

The same cell was also identified in the Xenopus tadpole and was shown to produce 

glycinergic inhibition of sensory inputs in the spinal cord (Li et al., 2002) and limits 

firing of MNs (Li et al., 2004).  It is possible that, as chicks and mammals evolved from 

vertebrates with less complex locomotor programs, a wider array of interneurons with 

more restricted functional roles were necessary.   

 The strategies used during development of the mammalian spinal cord to diversify 

the V1 interneuron population into different functional subclasses are unknown. 

 

II. RENSHAW CELLS AND IA INHIBITORY INTERNEURONS  

Renshaw Cells 

Physiology and Function 

 The Renshaw cell is one the most studied spinal interneurons and was the first 

functionally identified interneuron in the mammalian spinal cord.  Birdsey Renshaw 

(1941) was the first to describe that antidromic volleys of motor axons in the cat 

decreased the excitability of motoneurons (MNs) that make projections to the same or 
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synergistic muscles.  He called this phenomenon recurrent inhibition.  Later Renshaw 

identified a set of spinal interneurons that fire high frequency discharges in response to a 

single antidromic volley in motor axons located on the same side of the spinal cord 

(Renshaw, 1946).  Eccles and colleagues (1954) demonstrated that these spinal 

interneurons, which he would later denominate “Renshaw cells”, generated antidromic 

inhibitory postsynaptic potentials in MNs and are activated via the motor axon recurrent 

collaterals of MNs (Figure 2).  Furthermore, they demonstrated that Renshaw cell (RC) 

activation via the motor axons was mediated by the neurotransmitter, acetylcholine 

(Eccles et al., 1954; Fyffe 1990).  The addition of the glycinergic antagonist strychnine 

suggested that the IPSPs generated in MNs were mediated by glycine.  Eccles postulated 

that RCs directly inhibited the same MNs they received synapses from, but it was not 

until almost 30 years later that van Keulen (1981) was able to record simultaneously from 

RCs and MNs, providing direct evidence of the connectivity between pairs of RCs and 

MNs.  Morphological studies followed and demonstrated that most RC axon terminals 

were located throughout lamina IX (LIX; location of the MN pools; Lagerback and 

Kellerth; 1985) of the ventral horn and they contacted MN dendrites (Fyffe, 1991).  

 RCs will inhibit homonymous and synergistic MNs, but they also inhibit other 

RCs and IaINs.  RCs respond to antidromic volleys in motor axons by firing high 

frequency discharges and this response is known as the RC early response.  Curtis and 

Ryall (1966) found that there was a pause in RC firing following the early response.  

They concluded that this pause was due to desensitization of the postsynaptic membrane, 

but a few years later Ryall (1970) concluded that the pause was in fact the inhibition of 

the RCs by other RCs that were simultaneously activated by the antidromic volleys.  
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Figure 2.  Recurrent inhibition of soleus motoneurons.  A, Transverse hemisection of an 
adult spinal cord.  The motoneurons (MNs) and interneurons we are interested in are 
located in the ventral horn of the lumbar segments of the spinal cord.  The border 
between the dorsal and ventral horns is indicated by the dotted line above the central 
canal (CC).  B, Schematic depicting the pathway of recurrent inhibition with projections 
of Renshaw cells to soleus MNs (S-MNs).  When, in the case shown here, the soleus 
muscle is stretched; Ia afferents fire and excite the S-MNs.  The S-MN axon recurrent 
collaterals project to Renshaw cells, which in turn, make glycinergic projections onto that 
same MN, ultimately inhibiting it.  Renshaw cells also provide recurrent inhibition to Ia 
inhibitory interneurons (not shown here; discussed further in Figure 4).  Ia afferents and 
motor axons use glutamate and acetylcholine, respectively, as their neurotransmitters. 
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Following administration of DHβE (dihydro-beta-erythroidine), which reduces 

significantly the early response of the RC population, they found that the pause in RC 

firing was attenuated, suggesting that RCs mutually inhibit other RCs.  Ryall (1981) later 

demonstrated that RCs excited by motor axon recurrent collaterals of flexor or extensor 

MNs were inhibited by those RCs that are activated via motor axons of antagonist MNs.  

Besides mutual inhibition of other RCs, RCs also inhibit IaINs, which mediate reciprocal 

inhibition (Hultborn et al., 1971).  Hultborn and colleagues (1971) found that the IPSPs 

evoked in MNs following stimulation of the nerves of the antagonist muscles were 

attenuated by antidromic volleys of motor axons.  They concluded that the attenuation of 

the IPSPs were due to recurrent inhibition of IaINs.  One of the characteristic features of 

classical IaIN identification is disynaptic recurrent inhibition via RCs from MNs that 

receive the same Ia excitation.  Recurrent inhibition of IaINs plays an important role 

during regulations of co-contraction of antagonistic muscles.  When co-contraction of 

pairs of antagonistic muscles is used to stabilize a joint (i.e., to maintain posture), 

recurrent inhibition will depress activation of IaIN-mediated reciprocal inhibition.  

Depression of reciprocal inhibition allows for the parallel activation of the two 

antagonistic muscles, increasing stiffness around the joint.             

 

Location, Anatomy and Morphological Identification 

 Renshaw cells (RCs) are excited by motor axon recurrent collaterals and their 

location within the ventro-medial region of lamina VII (LVII; Thomas and Wilson, 1965) 

puts them near the area where motor axons exit the spinal cord.  Intracellular labeling of 

RCs using Procion Yellow (Jankowska and Lindstrom, 1971) and horseradish peroxidase 
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(HRP; Lagerback and Kellerth, 1985a,b; Fyffe, 1991) confirmed that RCs were located in 

the ventral-most portion of LVII among the motor axons.  This area was identified as the 

“Renshaw cell area”.   

   Adult cat RCs are multipolar or fusiform interneurons (Fyffe, 1990) with 

relatively small cell bodies (mean cell body diameter, 20-25 µm; Fyffe, 1990) and small 

dendritic arbors (dendritic lengths from soma to terminal ranges between 430 to 800 µm; 

Bui et al., 2003; Alvarez et al., 1997) and do not branch extensively.  In monkeys, rat and 

humans, RCs are identified by their strong expression of the calcium binding proteins 

Calbindin (CB; Ardvisson et al., 1992; Carr et al., 1998; Fallah and Clowry, 1999; 

Alvarez et al., 1999; Geiman et al., 2000) and to a lesser extent, Parvalbumin and 

Calretinin (PV and CR; Alvarez et al., 2005).  Cat RCs do not express CB (Carr et al., 

1998), but are easily identified by their large Gephyrin-immunoreactive clusters (Alvarez 

et al., 1997).  Gephyrin is a glycine receptor clustering protein (Kneussel and Betz 2000).  

In all mammalian species, RCs have large gephyrin-IR clusters that gradually increase in 

size with age after birth (Geiman et al., 2000).              

 

Synaptic Inputs            

 Central to interneuron identification and function is the organization of their 

synaptic inputs.  RCs fire high frequency bursts of action potentials following stimulation 

of peripheral motor axons.  Eccles demonstrated that this response was mediated by 

cholinergic motor axon recurrent collaterals (Eccles et al., 1954).  As mentioned earlier, 

adult RCs are located in close proximity to emerging motor axons and this area contains a 

high density of cholinergic terminals and these terminals target RC dendrites (Alvarez et 
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al., 1999).  RCs express the α2 and α4 nicotinic receptor subunits, which correlate to the 

RCs high sensitivity to acetylcholine (reviewed in Alvarez and Fyffe, 2007).  Several 

studies have demonstrated that the EPSPs evoked in RCs following stimulation of the 

motor axons is not completely blocked by cholinergic antagonists (Eccles et al., 1954; 

Schneider and Fyffe, 1992; Dourado and Sargent, 2002).  Mentis and colleagues (2005) 

recently demonstrated that some motor axon terminals on RCs activate, postsynaptically, 

AMPA and NMDA receptors.  The physiological relevance of co-releasing excitatory 

amino acids and acetylcholine from motor axons terminals are still unknown, but they are 

actively being investigated by several different labs.  Little information about the 

development of motor axon inputs on RCs is available.  Two studies looked at the 

postnatal development of motor axons in the Renshaw cell area in newborn kittens 

(Cullheim and Ulfhake, 1982; Remahl et al., 1985).  Both studies found that motor axons 

in newborn kittens make an excess of collaterals and synapses that were pruned during 

the first two postnatal weeks. 

 RCs receive other excitatory synaptic inputs from spinal interneurons and 

descending systems, but little is known about the role or development of these inputs.  

Synaptic inputs from spinal interneurons tend to occur at high densities, they probably 

facilitate descending influences on RCs via polysynaptic pathways.  RCs receive few 

direct serotonergic, dopaminergic and noradrenergic descending inputs (reviewed in 

Alvarez and Fyffe, 2007).  These inputs generally do not directly contact RCs and 

probably modulate RC activity via paracrine actions.          

 Inhibitory synapses are important for modulating excitatory inputs and ultimately 

shaping neuronal firing.  RCs receive a large number of inhibitory inputs although the 
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source of these inputs still remains unknown.  As mentioned above, RCs can be easily 

identified by their large gephyrin-IR clusters (Alvarez et al., 1997).  RCs are unique in 

that gephyrin clusters are almost exclusively located on the soma and proximal dendrites 

(Alvarez et al., 1997; Geiman et al., 2000) and the glycinergic and GABAergic currents 

in RCs are much larger than those in other spinal interneurons (Gonzalez-Forero and 

Alvarez, 2005); suggesting inhibitory inputs in RCs can exert powerful shunting 

influences on excitatory potentials on dendrites.         

 

Ia Inhibitory Interneurons         

Physiology and Function  

 Following contraction of an agonist muscle, the antagonist muscle will relax 

because it is inhibited from contracting (Sherrington, 1897).  Inhibition of the antagonist 

muscle contracting is referred to as reciprocal inhibition (Figure 3).  Lloyd (1941) 

postulated that reciprocal inhibition was mediated by Ia afferents directly effecting MNs.  

A few years later, Eccles and colleagues demonstrated that an interneuron must be 

interpolated in the reciprocal inhibitory pathway (Eccles et al., 1956).  They found that 

when recording intracellularly from MNs, Ia afferent volleys produced an IPSP that had a 

longer latency than the EPSP, suggesting that Ia afferent volleys excite an intermediate 

interneuron, which in turn will inhibit the MNs innervating the antagonist muscle.  

Furthermore, Eccles and colleagues showed that the activity of this pathway inhibited the 

monosynaptic stretch reflex (Araki et al., 1960).  This interneuron was called Ia 

intermediate interneuron, which eventually morphed into the now current name of Ia   
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Figure 3.  Reciprocal inhibition from ankle flexors to soleus.  A, Transverse hemisection 
of an adult spinal cord.  The motoneurons and interneurons involved in reciprocal 
inhibition that we are interested in studying in this thesis are located in the ventral horn of 
the spinal cord.  Here the border between the ventral and dorsal horns is delineated by the 
dotted line above the central canal (CC).  B, Schematic depicting the pathway of 
disynaptic reciprocal inhibition from tibialis anterior to soleus muscle.  Ia inhibitory 
interneurons (IaINs) and tibialis anterior MNs (TA-MNs) receive monosynaptic inputs 
from Ia afferents that originate in muscle spindles in the tibialis anterior muscle (TA).  
When the TA is stretched, the Ia afferents will excite TA-MNs and IaINs (plus signs).  
Those IaINs will then make glycinergic projections to soleus MNs (S-MNs) inhibiting 
those MNs.  This inhibition results in the soleus muscle relaxing.  IaINs also receive 
recurrent inhibition from Renshaw cells coupled to S-MNs, depressing reciprocal 
inhibition on S-MNs.  Ia afferents use glutamate as their neurotransmitter, while IaINs 
use glycine.  Motor axon collaterals use acetylcholine.    
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inhibitory interneuron.  Currently, other spinal interneuronal targets of IaINs are not 

known, but it has been shown that IaINs do inhibit other IaINs (Hultborn et al., 1976). 

Those IaINs activated by Ia afferents from one muscle inhibit IaINs activity on motor 

pools of the same muscle and their synergists.  IaIN identification depends on three 

characteristics: 1) Monosynaptic activation via Ia afferents (Hultborn et al., 1970), 2) 

Projections to MNs innervating the antagonist muscle (Jankowska and Roberts 1971a,b) 

and 3) RC-mediated recurrent inhibition from the MNs that receive the same Ia excitation 

(Hultborn et al., 1971; Ryall 1970, 1981).   

 

Location, Anatomy and Morphological Identification 

     Eccles proposed that reciprocal inhibition of MNs evoked from Ia afferents 

innervating antagonist muscles was mediated by interneurons in the intermediate nucleus 

(Eccles et al., 1956).  Hultborn first suggested that the IaINs were not located in the 

intermediate nucleus (Hultborn et al., 1971).  After recording from a physiologically 

identified IaIN (see criteria in the preceding paragraph), Hultborn estimated the position 

of these interneurons from the position of the recording electrode.  He determined that the 

IaINs were located in the ventral horn.  It was not until Jankowska and Lindstrom (1972) 

intracellularly labeled electrophysiologically identified IaINs with Procion Yellow that 

more conclusive evidence for their location and morphology was obtained.   

Intracellularly labeled IaINs were located in lamina VII (LVII) and dorsal or 

dorsalmedial to lamina IX.   IaIN projections to MNs target the soma and proximal 

dendrites (Burke et al., 1971) and IaIN inhibition of MNs is mediated by the 

neurotransmitter glycine (Curtis, 1959; Fyffe 1990).  IaINs are located within the same 
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spinal cord segment as the Ia afferents that excite them.  IaIN axons will project to the 

lateral and ventral funiculi where they ascend or descend, sending collaterals to the motor 

pools (Jankowska and Lindstrom, 1972).    

 Adult cat IaINs are fusiform interneurons whose cell bodies and dendritic arbors 

are larger than RCs, but smaller than alpha-MNs (αMNs; Bui et al., 2003; Alvarez et al., 

1997).  The average dendritic length from IaIN soma to terminal ranges from 

approximately 660 to 1100 µm, whereas dendritic length was shorter for RCs (~430-800 

µm) and longer for αMNs (>1000 µm).  IaIN dendrites branch extensively compared to 

RCs, but not as extensively when compared to αMNs.  Histological identification of 

IaINs is more difficult than for RCs.  In the mature rat and mouse spinal cord, IaINs can 

be identified as a subgroup of Parvalbumin-immunoreactive neurons (PV-IR; Alvarez et 

al., 2005).  PV-IR cells that receive convergent inputs from VGLUT1/PV labeled primary 

afferents and Calbindin-immunoreactive (CB-IR) axons suggesting RC input, were 

previously identified as IaINs (Alvarez et al., 2005).  Developing IaINs cannot be 

identified by histological means, because before P15, PV-IR labels very few spinal 

interneurons, and is found mainly in Ia sensory afferents (Smith et al., 2005), and this has 

hampered their study in the developing spinal cord.  Aim 3 of this thesis will attempt to 

create new criteria in order for IaINs to be identified throughout postnatal development.   

 

Synaptic Inputs 

 IaIN location in LVII dorso-medial to the MNs places them in an area which is 

enriched in Ia afferent terminal arborizations (Brown and Fyffe, 1978).  Similarly, 

application of glutamate activates IaIN-mediated reciprocal inhibition of MNs 
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(Jankowska and Roberts, 1972b).  Alvarez et al. (2005) demonstrated that a group of PV-

IR V1-INs in the same location as electrophysiologically identified IaINs receives a 

dense projection from Ia sensory afferents.  Very little information is known about the 

distribution and development of Ia afferent inputs on IaINs.   

 Besides Ia afferents and IaINs (IaIN inhibition discussed in previous section), 

IaINs also receive projections from flexion reflex afferents (FRA), RCs, and descending 

inputs.  The FRA is activated by high threshold afferents and in the cat and includes joint, 

cutaneous, and group III and IV muscle afferents (Jankowska et al., 1967).  IaINs that are 

excited by flexors (via the ipsilateral FRA) mutually inhibit IaINs that are excited by 

extensors (via the contralateral side)(Hultborn et al., 1976).  IaINs receive inhibitory 

inputs from RCs (Hultborn et al., 1971).  While intracellularly recording from MNs, 

Hultborn and colleagues (1971) found that the IPSPs generated in MNs followed by Ia 

afferent volleys (mediated by IaINs) were attenuated by antidromic stimulation of motor 

axons (which excites RCs).  Therefore, they concluded that IaINs receive recurrent 

inhibition from RCs that are excited by the MNs of the antagonist muscles.  IaINs receive 

descending inputs such as corticospinal inputs.  IaIN inhibition of MNs is facilitated by 

volleys of corticospinal axons (Hultborn and Udo, 1972).  The corticospinal inputs are 

believed to provide reciprocal inhibition of antagonist muscles by facilitating agonists 

and inhibiting antagonists.   

 

III. SYNAPTOGENESIS AND MATURATION OF SYNAPTIC CONNECTIONS 

 Until this point, we have examined the development of the spinal cord, origin of 

ventral spinal interneurons and characteristics of two ventral spinal interneurons that 
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derive from the V1 group.  The main focus of this thesis is to examine the development 

of the synaptic inputs of these two distinct interneuron subtypes and gain insights into the 

diversification of adult interneurons subtypes.  It is of the utmost importance to 

understand the development of the specific synaptic connectivity.  The synaptic inputs to 

any given neuron define that neurons function.  The relationship and importance of these 

specific inputs raises the question of how does this connectivity develop?  More 

specifically: 1) How do growing axons know to extend to the regions occupied by their 

target cells, 2) How do axons know which cells are their targets, 3) Once an axon 

encounters an attractive target, what initiates synaptogenesis and 4) How are these newly 

formed synapses matured and refined resulting in synaptic strengthing or elimination of 

specific inputs?  In the next few sections I will review specific aspects of synapse 

development to best interpret the results on synaptic development over V1-INs.  

 

Synaptic Target Selection   

 Before a synapse is formed, a neuron must send out processes towards their 

appropriate targets.  The developing nervous system contains a meshwork of axons and 

neurons; so how do axons navigate their way through such a complex environment and 

establish contact with their specific targets?  An axon does not make contact with every 

cell it encounters, but once it approaches the appropriate synaptic target, some instructive 

signal tells the axon to slow its growth, make contact, and ultimately form a presynaptic 

terminal.  Selecting the appropriate synaptic targets is a crucial first step in synapse 

formation and formation of neural circuits (Dickson 2002, Tessier-Lavigne & Goodman 

1996). 
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 Axons are guided through the developing embryo to their appropriate targets, 

which may be millimeters and sometimes centimeters away.  Axon guidance is facilitated 

by a specialized structure found at the tip of extending axons termed growth cones 

(Ramon y Cajal, 1890; Harrison, 1910; Speidel, 1941).  Growth cones are motile and act 

as surveyors of the surrounding environment, which then direct axons away from 

inappropriate targets and toward their appropriate targets.  As the growth cone navigates 

its way through the embryo, it encounters repulsive and attractive signals that are used for 

guidance.  The repellant or attractant properties of guidance proteins depend on their 

context (Tessier-Lavigne and Goodman, 1996).   

 Many families of guidance cues, including Netrins, Semaphorins, Slits and 

Ephrins, have been identified (Tessier-Lavigne and Goodman, 1996; Dickson, 2002; 

Charron and Tessier-Lavigne, 2005).  They act as tropic molecules released from the 

target cells to guide axons towards or away from them.  Netrins are chemoattractants for 

commissural axons in the spinal cord (axons that cross the midline; Kennedy et al., 1994; 

Serafini et al., 1994).  Netrins attract axons ventrally toward the midline (Culotti, 1998), 

but in some circumstances also repel other axons away from crossing the midline 

(Colamarino and Tesser-Lavigne, 1995).  Interestingly, the axons of V1-INs are 

considered pioneer axons of the ventral and lateral funiculi in the embryonic spinal cord 

and their navigation is affected by netrin expression despite being mainly ipsilateral 

projections (Sauressig et al., 1999).  The characteristics of this initial navigation of V1 

axons are still not well defined.   

 Another important signaling molecule in the spinal cord is semaphorin.  

Semaphorins are cell-surface and secreted proteins, which with their receptors, Plexins, 
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act as short-range inhibitory cues.  Semaphorin/Plexin signaling guide axons through 

repulsive regions or deflect axons away from inappropriate regions (Tamagnone et al., 

1999; Cheng et al., 2001).  In the spinal cord, Ia afferent projections to the ventral horn is 

directed by semaphorin/plexin signaling.  Ia afferent sensory neurons express the PlexA1 

receptor and the areas of the dorsal horn normally devoid of Ia afferents express the 

PlexA1 ligand Sema6C and 6D (Yoshida et al., 2006).  The binding of PlexA1 with 

Sema6C/6D directs Ia afferents away from these dorsal regions.  Axons of Ia afferents 

abnormally invade the dorsal horn in PlexA1 knockouts will, suggesting that 

PlexA1/Sema6C-6D signaling is important for segregation of proprioceptive sensory 

afferents to the ventral horn.  

  In addition to semaphorins as major guidance molecules to establish long-tracts 

and projections, similar molecules are involved in establishing topographic maps within 

broad target regions.  The interaction of cell-surface proteins Ephrins with the Eph family 

of receptors are responsible for the topographic mapping of retinal axons (Wilkinson, 

2001).  Different isoforms of Ephrins and Eph receptors are organized in a 

complementary gradient in the superior-colliculus and tectum respectively and this 

gradient is responsible for arranging retinal axons in the correct positions along the 

anterior-posterior and dorso-ventral axis (Rashid et al., 2005).  Similar to the other 

guidance cues mentioned here, Ephrins act as chemoattractants or chemorepellants in the 

spinal cord depending on the ligand/receptor isoform combinations.  When Ephrins and 

or their receptors are knocked out, wiring errors occur.  In the spinal cord, Ephrin/Eph 

signaling is important for controlling whether an axon remains ipsilateral or crosses the 

midline and makes contralateral projections.  Kullander and colleagues (2003) found that 
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in EphA4 and EphrinB3 null mice, bilateral ventral roots displayed synchronous rhythms 

instead of normal left-right alternation, ultimately leading to a rabbit-like gait.  They 

concluded that the rabbit-like gait was due to EphA4 positive neurons aberrantly crossing 

the midline, suggesting that EphrinB3/EphA4 signaling is important for restricting certain 

axonal projections to one side of the spinal cord.  Whether an axon is attracted to or 

repelled away from a target region, guidance cues are an important step in insuring that 

appropriate synaptic connections are made. 

 It is not known whether any of the guidance molecules mentioned above are 

important for the selection of synaptic targets by motor axons and Ia afferents.  However 

it is clear that target interneurons need to be located in regions that are permissive to the 

growth and arborization of these two inputs.     

  

Synapse Formation 

 Most of what is known about synapse formation comes from synapse 

development at the neuromuscular junction (NMJ; Sanes and Lichtman, 1999), but recent 

studies have begun to elucidate the players and mechanisms responsible at central 

synapses.  Once an axon is guided to the correct topographic position on its appropriate 

target a synapse forms at this contact site.  The earliest contacts between an axon and its 

synaptic target are mediated by filopodia.  Filopodia are cytoplasmic projections which 

extend from the growing axon (Jontes and Smith, 2000) and once the filopodia has 

contacted its synaptic target, it is no longer motile and becomes stabilized.  Filopodia 

scan the environment for synaptic partners to make contact with, but what encourages 

loss of motility and stabilization of the filopodia?  One possibility is stabilization through 
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adhesion.  Cadherins are a family of calcium-dependent adhesion transmembrane 

proteins involved in cell-cell adhesion.  Several cadherins exist in the nervous system 

(Benson and Tanaka, 1998; Tanaka et al., 2000; Salinas and Price, 2005) and are known 

to accumulate during early embryonic development when adhesion and synaptogenesis 

between neurons is taking place (Uchida, 1996).  The importance of cadherins in subtype 

cell specification is highlighted by motor pool organization.  The position of spinal 

motoneuron cell body in the spinal cord and the pattern of its axonal projections in the 

periphery is the basis of motoneuron subtype identity.  MNs are aligned into motor 

columns which consist of MNs with common target projections.  Within each motor 

column, MNs are further segregated into a lateral or medial division and finally, within 

each division, MNs are arranged into pools which innervate specific muscles.  

Arrangement of MNs into different motor pools is dependent on the combinatorial 

expression of different genes including the cadherin family (Fredette and Ranscht, 1994; 

Price et al., 2002; Nollet et al., 2000).  It is believed that groups of cells in neural circuits 

express different cadherin subtypes (Fannon et al., 1996; Suzuki et al., 1997) which 

provide an “adhesion code” which ultimately recruits cells into specific circuits (Yagi and 

Takeichi, 2000; Gumbiner, 2005). 

  What initiates adhesion and synaptogenesis between Ia afferents and motor axons 

with IaINs and RCs, respectively?  A first question is whether or not RCs and IaINs are 

both competent to receive inputs from motor axons or Ia afferents.  If each input 

specifically targets a different interneuron we would conclude that similar ligand/receptor 

interactions are involved in determining specificity.  One possibility is that different 

cadherins are expressed in the MN area and by Ia afferents.  Therefore, Ia afferent and 
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IaIN adhesion is mediated by the expression of similar cadherin subtypes.  Similarly, 

motor axons and RCs may express similar cadherins, mediating adhesion and 

synaptogenesis.  Unfortunately, the cadherin subtypes expressed by RCs and IaINs are 

currently unknown.  Therefore we can only speculate that synapse formation between the 

Ia afferents/IaINs and or motor axons/RCs are mediated by cadherin “adhesion codes”.  

Alternatively, both V1-derived interneurons might be able to establish synapses with both 

motor axons and primary afferents and selective inputs arise later through differential 

maturation and elimination.     

            

Formation of Pre- and Postsynaptic Complexes 

 Synapse formation is a multi-step process that requires communication between 

the presynaptic axon and postsynaptic target.  Following the initial cell-cell adhesion of 

the axon with the synaptic target, both membranes must differentiate pre- and 

postsynaptic specializations.  Presynaptic specializations include: 1) formation of active 

zones, 2) restructuring the cytoskeleton and 3) clustering of the synaptic vesicles.  

Moreover, the presynaptic specializations must be apposed to the appropriate 

postsynaptic receptor clusters.  So far, several presynaptic organizers have been identified 

in the central nervous system and include WNTs and neuroligins.  WNTs are a family of 

secreted glycoproteins that have been found in both invertebrates and vertebrates and 

they participate in synapse formation.  One particular family member, WNT-7A, induces 

axonal remodeling in vitro (Lucas and Salinas, 1997) and has been shown to induce 

increased growth cone size and synaptic vesicle clustering in pontine explants in vitro 

(Hall et al., 2000).  WNT-7A might act to rearrange microtubules, ultimately shaping 
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presynaptic morphological development, which might facilitate the recruitment of the 

appropriate presynaptic organelles.   

 WNT3 is expressed in MNs and is important for regulating the formation of 

sensory-motor connections in the mouse (Krylova et al., 2002).  Cultured DRG neurons 

from E13.5 mice were exposed to WNT3 which caused and increase in growth cone size.  

Similarly, in WNT3-treated cultures, there was a significant increase in the number of 

secondary, tertiary and higher order branches.  Krylova and colleagues (2002) concluded 

that WNT3 expressed in MNs induces axonal branching and growth cone enlargement of 

Ia afferents.  Furthermore, they concluded that WNT3 acts as a presynaptic organizer.  

When Ia afferents come in contact with their MN targets WNT3 induces the clustering of 

synapsin I, a presynaptic protein involved in regulating neurotransmitter release (Chin et 

al., 1995; Rosahl et al., 1995).  These studies suggest that WNT3 plays an important role 

in the formation of specific sensory-motor synapses.   

 Neuroligin (NL) is a target-derived presynaptic organizer that when expressed in 

nonneural cells will induce the formation of presynaptic elements in the axons that come 

in contact with these cells (Scheiffele et al., 2000).  NL expression in nonneural cells 

induces the accumulation of presynaptic vesicle proteins, such as synapsin and 

synaptophysin, in axons (Song et al., 1999; Scheiffele et al., 2000).  The synaptic 

varicosities formed at these “hemisynapses” (between an axon and a non-neural 

structure) resembled presynaptic terminals and were capable of both spontaneous and 

evoked neurotransmitter release as well as vesicle recycling (Scheiffele et al., 2000; Sara 

et al., 2005).  NLs interact with neurexins (NRXs), which are found on the presynaptic 

terminal, and this interaction between the two is required for synapse-formation.  
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Inhibiting NLs from binding NRX receptors in culture by addition of NRX fusion 

proteins prevents the formation of presynaptic specializations (Dean et al., 2003).  

Therefore, NLs, in vitro, induce the formation of functional presynaptic terminals, but 

their role in synapse formation in vivo is not as well understood.  Triple NL knockout 

mice (NL1:NL2:NL3(-/-)) die shortly after birth because of respiratory failure 

(Varoqueaux et al., 2006).  In these mice, the number and morphology of the synapses 

was normal, but synaptic transmission at GABAergic/glycinergic synapses was 

dramatically reduced.  The number of postsynaptic receptors clustered and presynaptic 

vesicles was reduced, suggesting that in vivo, NLs are important more for synaptic 

function than formation of presynaptic terminals.  Future studies are needed to confirm 

the function of NLs in vivo.            

 Neuroligin-1 (NL-1) has been shown to activate Pea3, Er81 and EGR3 (O’Hagen 

and Hassell, 1998; Bosc et al., 2001; Shepard et al., 2001; Sweeney et al., 2001) and is 

involved in muscle spindle differentiation.  In the absence of NL-1 in DRG and MNs, 

muscle spindles fail to differentiate and the levels of Pea3, Er81 and EGR3 decrease 

significantly (Hippenmeyer et al., 2002).  The lack of muscle spindle differentiation in 

the absence of NL-1 did not affect the central projections of proprioceptive afferents, but 

defects in the elaboration of the annulospiral terminals were observed.  Overall, these 

studies suggest that NL-1 is essential for muscle spindle differentiation and the signaling 

cascades initiated by NL-1 are responsible for skeletal muscle differentiation.     

 In order for synaptic transmission to occur, the correct postsynaptic 

specializations need to be apposed to the correct presynaptic specializations.  How do 

presynaptic axons ensure that the appropriate receptors are found at the postsynaptic 
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target?  It has been suggested that, similar to postsynaptic target-derived presynaptic 

organizers inducing presynaptic differentiation, presynaptic-derived postsynaptic 

organizers induce postsynaptic differentiation.  Recently, several molecules have been 

identified that induce postsynaptic differentiation at central synapses and include 

neurexins, ephrinB and NARP.   

 Graf and colleagues (2004) found that expression of β-neurexins (β-NRXs) alone 

could induce the differentiation of both glutamatergic and GABAergic postsynaptic 

specializations.  β-NRXs were capable of clustering postsynaptic scaffolding proteins, 

such as PSD-95 and gephyrin, and neurotransmitter receptors.  Most of what is known 

about NRXs role in postsynaptic differentiation is derived from studies investigating the 

formation of glutamatergic synapses.  Postsynaptic density protein PSD-95 is a 

scaffolding protein found at glutamatergic synapses and is one of the first proteins 

recruited to postsynaptic sites (Friedman et al., 2000; Okabe et al., 2001; Bresler et al., 

2004).  NLs interact with PSD-95 and shortly after NMDA receptors are recruited to the 

postsynaptic membrane (Friedman et al., 2000) and stabilized by PSD-95 (Roche et al., 

2001).  More research needs to be done to determine how NL/NRX signaling is involved 

in inhibitory postsynaptic differentiation.  Neuroligin-2 (NL-2) and α and β-neurexins (α-

NRX and β’-NRX) are found at inhibitory synapses (Varoqueaux et al., 2004; Missler et 

al., 2003), but how signaling between the two regulates recruitment of gephyrin 

(inhibitory postsynaptic scaffolding protein) and inhibitory neurotransmitter receptors 

remains elusive. 

 As mentioned previously, ephrins and their receptors EphBs are important for 

topographical mapping of retinal axons, but both are found at excitatory synapses in 
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hippocampal neurons and are believed to play a role also in synapse formation (Torres et 

al., 1998; Buchert et al., 1999).  EphB receptors are found on the postsynaptic target cell 

and in the presence of ephrins, interact with the NR1 subunits of NMDA receptors, 

ultimately clustering NMDA receptors at the postsynaptic membrane (Dalva et al., 2000).   

 Finally, another molecule that has been implicated in postsynaptic differentiation 

is neuronal activity-regulated pentraxin (NARP), which is a member of the pentraxin 

family of secreted lectins (Tsui et al., 1996).  Initially, NARP was believed to only induce 

neuronal migration and neurite outgrowth, but recently studies have described its role in 

postsynaptic differentiation.  In vitro, NARP is secreted from both the presynaptic axon 

and the postsynaptic neuron and will associate with AMPA receptors, inducing AMPA 

receptor clustering (O’Brien et al., 1999).  In cultured spinal neurons, excitatory synapse 

formation increased when NARP was overexpressed suggesting that NARP is required 

for excitatory synapse formation (O’Brien et al., 1999).  Inhibitory synapse formation 

was not affected suggesting that inhibitory synapse formation relies on another 

postsynaptic organizer.  Similar to neurexins and ephrins, NARPs role in vivo remains 

elusive. 

 Differentiation of Ia afferent and motor axons presynaptic machinery could 

involve any of the above mentioned presynaptic organizers, but the actual molecules 

involved are currently unknown.  Similarly, nothing is known about what induces 

differentiation of the RC and IaIN postsynaptic membrane.  In aim 4 I will be discussing 

the possibility that the formation of specific synaptic connections between Ia 

afferents/IaINs and or motor axons/RCs is mediated by an activity-independent 

mechanism of NL and NRX induction of pre and postsynaptic apparatus respectively.     
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Synapse Elimination        

 During synapse formation, an excess of synaptic connections are generated, which 

can be readily eliminated during circuit refinement.  The dynamic nature of these early 

synapses is essential for the initial wiring of neural circuits and the modification of these 

circuits in response to environmental changes.  Synapse elimination has been extensively 

studied in many different parts of the nervous system including Purkinje cells in the 

cerebellum (Ito, 1984), the NMJ (Sanes and Lichtman, 1999) and the visual cortex (Sur et 

al., 1984; Sretavan and Shatz, 1986; Hamos et al., 1987; Katz and Shatz, 1996), to name 

a few.   

 In the central nervous system, the innervation of Purkinje cells (PCs) by one 

climbing fiber in the cerebellum provides an excellent model for examining the 

mechanisms involved in synapse elimination in central neurons.  PCs are GABAergic 

neurons which project to the cerebellar and vestibular nuclei and in adult, they are 

contacted by excitatory parallel fibers and climbing fibers, which are both excitatory.  

Parallel fibers are the axons of the cerebellar granule cells and in the adult they make 

contact with several PCs.  In contrast, each PC is innervated by only one climbing fiber, 

whose axons originate in the inferior olivary nucleus and makes strong synaptic 

connections with the proximal dendrites of that PC (Eccles et al., 1966; Palay and Chan-

Palay, 1974).  In the developing cerebellum, each PC receives contacts from several 

climbing fibers and then only one is selected in the adult (Crepel, 1982; Crepel and 

Mariani, 1976; Lohof et al., 1996).  In mice, by the third postnatal week all but one 

climbing fiber synapse have been eliminated (Kano et al., 1995, 1997, 1998).  Several 

lines of evidence indicate that the elimination of excess climbing fibers is dependent on a 



 39 

competitive process between parallel fibers and climbing fibers during development.  

Evidence for competition between parallel and climbing fibers resulting in 

monoinnervation comes from several mouse mutants including the Weaver (Crepel and 

Mariani, 1976; Puro and Woodward, 1977) and Reeler mutants (Mariani et al., 1977).  In 

both animals, the parallel fibers are eliminated and as a result, PCs are often innervated 

by multiple climbing fibers that innervate a larger area of the PC dendritic tree. 

 How does the presence of parallel fibers mediate the elimination of excess 

climbing fibers during development?  Several studies have begun to elucidate the 

mechanisms that underlie this interaction and the glutamate receptor δ2 (GluRδ2), which 

is found exclusively in PCs (Lomeli et al., 1993; Takayama et al., 1995), has become a 

key player.  In the absence of GluRδ2 which is located specifically at parallel fiber 

synapses, the spaces normally occupied by parallel fibers are now occupied by climbing 

fibers and multiple climbing fibers innervate each PC (Hashimoto et al., 2001; Ichikawa 

et al., 2002).  Therefore, it appears that the weakening of parallel fibers results in multiple 

climbing fiber innervation on PCs.  The opposite appears to be true when weakening 

climbing fiber synapses.  In this situation more parallel fiber synapses are observed and 

those parallel fibers occupy the territory on the PC proximal dendrites that is normally 

reserved for climbing fibers (Miyazaki et al., 2004).  Encroachment of parallel fiber 

synapses in climbing fiber territory is evident in α1A mutants; α1A is a subunit of the 

P/Q-type Ca2+ channels and differentially affects the climbing fiber synapse.  In mice 

lacking α1A, the parallel fiber synapses occur in more proximal regions of the dendritic 

tree.  They concluded that in these mice, the climbing fiber cannot expel other climbing 
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fiber and parallel fibers from its territory because of altered Ca2+ influx and 

neurotransmission.     

 A similar competitive process occurs at the NMJ, a synapse that is probably the 

most studied synapse in the nervous system because of its large size and it is easily 

accessible.  Stimulation of presynaptic nerves with different intensities evokes an 

endplate potential (EPP) in mature muscle, but when the same experiments were 

performed in neonates, the EPPs increased in amplitude with increased stimulus strengths 

suggesting that, in the young animal, the NMJ is innervated by multiple motor axons that 

are gradually recruited by increased stimulation (Brown et al., 1976).  The elimination of 

excess motor axons from the NMJ is an activity-dependent process.  When activity is 

blocked by TTX during the narrow time window of synapse elimination, the NMJ will 

remain polyinnervated (Balice-Gordon and Lichtman, 1994).  Similarly, simultaneous 

stimulation of two motor axons that innervate the same muscle will preserve 

polyinnervation (Busetto et al., 2000), but when only one motor axon is stimulated, 

synapse elimination is sped up resulting in monoinnervation (O’Brien et al., 1978).  Focal 

blockade of receptor activation within a specific area of the NMJ will induce synapse 

elimination at these areas (Balice-Gordon and Lichtman, 1994).  Therefore, it has been 

hypothesized that synapse elimination at the NMJ is induced by the limiting amounts of 

muscle-derived trophic factors and susceptibility of inactive motor axons to “punishment 

signals” or “synaptotoxins” which attack the competing axons (Sanes and Lichtman, 

1999).  

 In summary, synapse elimination through synaptic competition has been amply 

demonstrated in the cerebellum and at the NMJ.  Neonatal PCs are innervated by many 



 41 

climbing fibers and in the adult only one remains.  The competition between climbing 

fibers and parallel fibers operates heterosynaptically to select just one climbing fiber per 

PC in the adult.  In contrast, the neonatal NMJ is polyinnervated by many motor axons, 

but monoinnervated in the adult.  The process of selecting one motor axon over another 

appears to be an activity-dependent homosynaptic competitive process.  In aim 4 I will 

investigate whether synaptic competition of all excitatory inputs on RCs operates 

heterosynaptically to select specific excitatory inputs.       

   

Diversification of Renshaw cells and Ia inhibitory interneurons from the V1-IN class 

and statement of the hypothesis 

The R-Interneuron and its similarities to RCs and IaINs 

 How specific patterns of synaptic connectivity arise on developing spinal 

interneurons is unknown.  The recent identification of a novel interneuron in the 

embryonic chick spinal cord provided us with some insights.  Recently, Wenner and 

O’Donovan (1999) identified an inhibitory interneuron in the embryonic chick spinal 

cord which receives synaptic inputs from Ia sensory afferents and motor axons, thus 

displaying input characteristics of both IaINs and RCs.  They recorded from these 

interneurons while stimulating the ventral root and found that a single stimulus evoked a 

burst of low frequency discharges, which was similar to the high frequency discharges 

observed in mammalian RCs following stimulation of the motor axons (see section 

entitled “Renshaw Cells” for more detailed explanation of this response).  The difference 

in the frequency was probably due to the immaturity of the chick spinal cord.  They 

denominated these cells as “R-interneurons” and dubbed them the avian equivalent to 
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mammalian RCs.  Similar to RCs, the latency of the R-interneurons (R-IN) response to 

the ventral root stimulus was short and therefore they concluded that the R-IN receives 

monosynaptic inputs from MNs.  These responses were almost completely abolished by 

application of the cholinergic antagonist mecamylamine.  Moreover, the R-INs made 

monosynaptic projections to MNs and this connectivity was blocked by addition of 

GABAergic and glycinergic antagonists bicuculline and strychnine respectively.  Finally, 

they demonstrated that R-INs mutually inhibit other R-INs, again similar to the mutual 

inhibition exhibited by RCs to other RCs and in a later study, they determined that R-INs 

express the transcription factor En1 (Wenner et al., 2000).         

 Wenner and O’Donovan provided a seemingly flawless argument that the R-IN is 

the avian equivalent of the mammalian RC, but unlike mammalian RCs, the R-IN 

receives monosynaptic inputs from Ia sensory afferents (Wenner and O’Donovan, 1999; 

Ryall and Piercey, 1971).  The connectivity of the adult R-IN is unknown, but the 

similarities between the embryonic R-IN and mammalian adult RCs raised the possibility 

that adult RCs and IaINs diversify from a generic interneuron class by selecting specific 

inputs and de-selecting others (Figure 4).  Therefore we hypothesize that the common 

origins of adult RCs and IaINs makes them competent to receive convergent inputs from 

motor axons and Ia afferents, but that each input is differentially matured by each 

interneuron type during development in a cell-type specific manner.   
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Figure 4.  Diversification of V1-derived interneurons from a single class of progenitors.  
V1-derived interneurons (V1-INs) derive from the p1 progenitor domain which express 
specific transcription factors.  Once a p1 progenitor cell becomes postmitotic they 
express the late transcription factor engrailed-1 (En1).  En1+ V1-INs further diversify 
into different adult subtypes which are characterized by their synaptic inputs, which 
ultimately define their function.        
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CHAPTER III 

HYPOTHESIS & SPECIFIC AIMS 
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Hypothesis: The common origins of adult Renshaw cells (RCs) and Ia inhibitory 

interneurons (IaINs) makes them competent to receive convergent inputs from 

motor axons and Ia afferents, but each input differentially matures in each 

interneuron type during development. 

Specific Aims 

 In order to investigate changes in the synaptic connectivity of RCs and IaINs we 

pursued 4 specific aims targeting the development of the convergence of two excitatory 

inputs (Ia afferent inputs and motor axons inputs) on both cell types (RCs and IaINs).   

 

Aim 1: Characterize the development of the primary afferent inputs and motor axon 

inputs on Renshaw cells in the embryonic and postnatal spinal cord. 

 The discovery of the R-interneuron in the chick spinal cord and its similarities to 

RCs led us to ask whether mammalian RCs receive inputs from Ia afferents and how 

these inputs compare to those from motor axons throughout development.  It is 

hypothesized that Renshaw cells receive convergent inputs from sensory and motor axons 

during early development, but then de-select primary afferent inputs.  Using 

immunohistochemical markers of primary afferents (Parvalbumin [PV] and Vesicular 

Glutamate Transporter1 [VGLUT1]) and motor axons (Vesicular Acetylcholine 

Transporter [VAChT]) along with fluorescent dextrans to trace primary sensory afferent 

axons and motor axon recurrent collaterals, we investigated the convergence of both 

inputs on RCs at different developmental stages.  The postnatal development of 

VGLUT1-IR and VAChT-IR inputs on RCs was studied using immunofluorescence, 

confocal microscopy, brightfield preparations, and Neurolucida 3D reconstructions.
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Aim 2: Characterize the embryonic development of the recurrent inhibitory circuit. 

 Evidence gathered in aim 1 suggested that RC-like interneurons are targeted by 

motoneurons (MNs) synapses during very early embryonic development.  Therefore, we 

asked when RCs are first contacted by MNs and also when are MNs first contacted by 

RCs leading to a functional recurrent circuit.  We hypothesized that the RC recurrent 

inhibitory circuit is established early during embryonic development (~E11 to E12).  

Using an Hb9::gfp mouse model in which the motoneurons and motor axons are 

fluorescently labeled, we looked at when, during embryonic development, RCs are first 

contacted by motor axon recurrent collaterals and when motoneurons are first contacted 

by RC axons.  The embryonic development of the recurrent inhibitory circuit was 

examined using immunofluorescence and confocal microscopy.    

 

Aim 3: Characterize the development of glutamatergic primary afferents on Ia 

inhibitory interneurons in the postnatal spinal cord. 

 In aim 1 we found that RCs receive convergent inputs from motor axons and Ia 

afferents, but that the Ia afferent input is weakened after P15.  We therefore investigated 

whether IaINs receive inputs from motor axons and how these inputs compare to those 

from Ia afferents throughout development.  It is hypothesized that IaINs receive during 

development convergent inputs from motor axons and primary afferents, but they de-

select the motor axon input by removal of this input.  Evidence for our hypothesis comes 

from observations made at P20, where few, if any, VAChT-IR contacts were seen on 

IaINs (Alvarez et al., 2005).  Using an En1-Cre/Thy1-YFP mouse model, which labels 

the cell bodies, dendrites, and axons of V1-derived interneurons, and markers of Ia 
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afferents (PV and VGLUT1) and motor axons (VAChT) we developed criteria to identify 

developing IaINs and investigated the convergence of these inputs on V1-derived IaINs 

(V1-IaINs) at different developmental stages.  The postnatal development of VGLUT1-

IR and VAChT-IR inputs on V1-IaINs was studied using immunofluorescence, confocal 

microscopy, and Neurolucida 3D reconstructions.   

 

Aim 4: Determine the role of muscle afferents in the specification of excitatory 

synaptic inputs on mature Renshaw cells.   

  In previous aims, we found that RCs receive convergent inputs from Ia afferents 

and motor axons, which led us to ask whether there is a competitive interaction between 

these two inputs on RCs throughout development.  We hypothesized that alterations in 

the number of sensory synapses on RCs will change synaptic densities of other inputs on 

RCs.  Three transgenic mouse models, one with no primary afferent input in the ventral 

horn (VH) (Er81), one with a progressive degeneration of primary afferent projections 

after birth (EGR3), and one with an excess of primary afferent synapses in the VH 

(mlcNT3), were used to investigate whether there is an interaction between the motor 

axon collaterals and primary afferent inputs on RCs.  Immunofluorescence, Neurolucida 

3D reconstructions, and confocal microscopy methods were used as described above. 
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Identification of V1-derived interneurons using lineage markers 

 Three animal models were used in this study to identify V1-derived interneurons 

(V1-INs) and will be briefly explained.  V1-INs were genetically labeled in En1Cre/+ 

(Sapir et al., 2004) mice crossed to a Thy1-loxP-STOP-YFP (Thy1-YFP) (Buffelli et al., 

2003) reporter mouse (Figure 5).  In our animals a Cre insertion cassette was introduced 

in exon 1 of the En1 gene, making expression of cre-recombinase dependent of En1, thus 

En1Cre/+ heterozygotes permit targeting gene expression to V1-derived neurons in the 

embryonic and postnatal spinal cord using a Cre/lox strategy.  Thy1-YFP mouse carries 

several copies of a transgene that expresses YFP upon removal by Cre recombination of a 

floxed-STOP polyA signal.  Transcription is dependent on a Thy1 promoter that has been 

shown to result in mosaicism of expression in other targeted neuronal populations (Feng 

et al., 2000).  Crossing the Thy1-YFP mice with our En1Cre/+ mice directed Cre expression 

only in V1 neurons (See General Methods: Animals, for more information on how these 

crossings were made).  In En1-Cre/Thy1-YFP mice, YFP is expressed in the cell bodies 

and distributed throughout the axons and dendrites of V1-derived interneurons.  

Similarly, En1Cre/+ heterozygotes were also crossed with R26-loxP-STOP-loxP-LacZ 

(R26-lacZ; Soriano, 1999) and Tau-loxP-STOP-loxP-mGFP-INLacZ (Tau-lacZ; 

Hippenmeyer et al., 2005) mice.  En1-Cre/R26-LacZ mice have been previously used and 

explained in full detail (Sapir et al., 2004; Alvarez et al., 2005).   En1Cre/+ mice were also 

crossed with Tau-loxP-STOP-loxP-mGFP-INLacZ mice in which reporter expression is 

regulated by the Tau locus (Figure 5).  Upon Cre-recombination a bicistronic transcript is 

expressed in these animals that encodes a modified β-galactosidase (βgal) directed to the 

nucleus through a nuclear localization signal (nls) and a modified membrane bound  
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Figure 5.  Conditional cre/loxP recombination system used to label V1-derived 
interneurons (V1-INs) in postnatal spinal cords.  A, V1-INs were genetically labeled by 
crossing En1(Cre/+) heterozygotes with Thy1-loxP-STOP-loxP-YFP (Thy1-YFP; Buffelli et 
al., 2003) reporter mice.  En1(Cre/+) heterozygotes permits targeting gene expression to 
V1-INs using a cre/lox strategy.  Upon removal of the STOP-polyA signal flanked by 
loxP sites, V1-INs expresses EYFP.  B, Similar to Thy1-loxP-STOP-loxP-YFP reporter 
mice, En1(Cre/+) heterozygotes crossed with Tau-loxP-STOP-loxP-mEGFP-INLacZ (Tau-
LacZ; Hippenmeyer et al., 2005) reporter mice.  Upon cre-recombination, β-galactosidase 
is directed to the nucleus via a nuclear localization signal (NLS).  V1-INs also express a 
modified membrane-bound enhanced green fluorescent protein (mEGFP) in their axons.    
 



 52 

 

 

 



 53 

EGPF (mEGFP) designed to best depict neurite morphology and cellular surfaces (De 

Paola et al., 2003).  

 

Histochemical identification of Renshaw cells 

Renshaw cells (RCs) were identified by several criteria, such as, location within 

the ventral horn and Calbindin (CB) expression.  RCs are located in the ventral most 

region of lamina VII of the ventral horn of the spinal cord (Thomas and Wilson, 1965; 

Fyffe 1990).  Calbindin is a calcium binding protein that was discovered in the avian 

intestine (Wasserman et al., 1966) and is found in many different cell types.  Renshaw 

cells show strong CB immunoreactivity (-IR) in rodents, monkeys, and humans 

(Ardvisson et al., 1992; Carr et al., 1998; Fallah and Clowry, 1999), with labeling in the 

soma, dendrites, and axons.  Calbindin expression is already present at birth in a group of 

ventral INs that later become adult RCs in the rodent spinal cord and is characteristically 

located in a ventral cluster (Geiman et al., 2000).  Other ventral INs express CB at birth, 

but RCs are generally more brilliantly immunostained.  Ventral INs with weaker 

expression downregulate CB postnatally, such that in the adult CB expression is largely 

restricted to RCs (Smith et al., 2005).  Therefore, RCs will be identified as those cells 

with strong CB-IR in the ventral most region of lamina VII in the spinal cord.   

 

Histochemical identification of Ia inhibitory interneurons 

In this study, Ia inhibitory interneurons (IaINs) were identified as V1-derived 

interneurons receiving strong projections from CB-IR Renshaw cell axons and 

VGLUT1/Parvalbumin-IR proprioceptive sensory fibers.  V1-derived IaINs (V1-IaINs) 
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were recognized as YFP-IR cells in En1-Cre/Thy1-YFP mice which receive a dense 

innervation from RC inputs identified as pericellular baskets of V1-derived Calbindin 

(CB)-IR axons. Although the percentage of IaINs with pericellular CB-IR baskets is 

presently unknown this criteria allows unambiguous detection of some V1 IaINs since no 

other interneurons are known to be targeted by strong RC inputs.  In some preparations, 

IaINs were identified as those neurons with strong Parvalbumin-immunoreactivity (PV-

IR) and densely covered by CB-IR contacts (Alvarez et al., 2005).  PV-IR was only used 

to identify IaINs at P15, because before P10, PV labels very few if any interneurons and 

is contained mainly in sensory afferents (Smith et al., 2005).  

 

Identification of primary afferent inputs 

 Several different anatomical methods were utilized to label primary afferents in 

the embryonic, postnatal, and adult spinal cord.  Each approach was optimal at different 

developmental periods.  We used in vitro tract tracing with fluorochrome-conjugated 

dextrans from the dorsal root to label primary afferents in the embryonic and early 

postnatal spinal cord.  A problem with dextran (dxt) tracings is that the efficiency of the 

tracings decreases sharply at P15, probably due to the larger size of the spinal cords and 

the extent of myelination.  This impedes oxygenation of the cord under in vitro 

conditions and during the necessary long transport times (>16 hours).  Also, dxt-tracings 

are difficult before E16, because of the relatively small size of the spinal cord and 

corresponding dorsal roots.  Therefore, dxt-tracings were only used in late embryonic 

(after E16) and early postnatal (P0, P5, and P10) spinal cords.  In order to identify 

primary afferents in the postnatal spinal cord several immunocytochemical markers were 
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used.  Vesicular Glutamate Transporters (VGLUTs) are proteins that package glutamate 

into synaptic vesicles for exocytosis.  There are three known isoforms and of these three, 

VGLUT1 is a specific marker of large diameter primary afferents (Todd et al., 2003; 

Alvarez et al., 2004).  Thus ventral horn synapses from proprioceptive sensory afferents 

express VGLUT1.  This can be demonstrated by the lack of VGLUT1-immunoreactivity 

(VGLUT1-IR) in the ventral horns of Er81(-/-) animals (Mentis et al., 2004; see General 

Methods: Mouse models exhibiting alterations of primary afferent inputs into the ventral 

horn, for description of Er81(-/-) animal).  VGLUT1-IR was examined in embryos and it 

was determined that their levels were too low for being a useful marker of sensory 

afferents before P0.  As an alternative marker, we used Parvalbumin (PV), which is a 

calcium buffering protein expressed by proprioceptive primary afferents (Arber et al., 

2000).  PV is upregulated in sensory neurons at E14 and therefore labels sensory axons 

from the time they start to enter into the embryonic spinal cord and before they reach the 

ventral horn (Hippenmeyer et al., 2005).  A problem with PV-immunoreactivity (PV-IR) 

as a marker of primary afferents is that by P10 spinal interneurons upregulate PV 

expression making it difficult to identify, with certainty, the origin of PV-immunolabaled 

axons.  Another problem is that PV-IR is very weak at E16 perhaps because at this time it 

is only expressed at low levels.  Therefore, PV was used as a marker only for E18 to P5.     

 

Identification of motor axon inputs 

Similar to identification of primary afferent inputs, several different anatomical 

methods were used to identify motor axon inputs on RCs and IaINs and each method was 

useful at specific developmental periods.  Vesicular Acetylcholine Transporter (VAChT), 
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which packages acetylcholine into synaptic vesicles for exocytosis, labels motor axon 

collaterals specifically on RCs in the adult spinal cord (Alvarez et al., 1999).  

Accordingly, VAChT-IR contacts disappear on RCs in adult superoxide dismutase 1-

mutant animals undergoing motor axon degeneration (FitzSimons et al., 2006) and can be 

retrogradely labeled from the ventral root in neonates (Mentis et al., 2004).  VAChT-IR is 

a good marker of inputs from motor axons in the postnatal spinal cord and is also 

detectable in embryonic spinal cords using a Tyramide Signal Amplification (TSA) 

amplification step.  TSA significantly enhances fluorescent signals (See General 

Methods: Light Microscopy Immunofluorescence, for more details about protocol used 

for detection using TSA method).  Tract-tracing with fluorochrome-conjugated dextrans 

from the ventral root were used to label motor axon collaterals in late embryonic and 

neonatal spinal cords.  As already mentioned, retrograde fills are difficult to perform in 

spinal cords after P10 and before E16.  Therefore, alternatively we used an Hb9::gfp 

mouse model to label motor axons (Wichterle et al., 2002).  Hb9 is a transcription factor 

that is expressed in motor neurons and in these particular animals EGFP is expressed 

dependent on the regulatory elements of the Hb9 gene.  Hb9::gfp animals not only have 

their motoneurons fluorescently labeled, but also the axons and dendrites, which allowed 

for visualization of motor axon collaterals in the embryo.  Therefore, the Hb9::gfp 

animal, combined with VAChT-immunohistochemistry provided a good mouse model to 

identify motor axons at certain embryonic stages.   
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Mouse models exhibiting alterations of primary afferent inputs into the ventral horn 

 We used three animal models with different genetic alterations that decrease 

(Er81(-/-) knockout and EGR3(-/-) knockout) or increase (mlcNT3(+/-) heterozygote) primary 

afferent input in the ventral horn.  These animals were used to look at the 

distribution/density/organization of synapses on RCs, and provided insights as to whether 

or not sensory afferents influence the development of RC synaptic inputs.  

Er81 is a transcription factor expressed in all proprioceptive neurons and 

regulates the growth of Ia afferents into the ventral horn.  In Er81(-/-) knockout animals, 

muscle afferents enter the spinal cord but do not establish arborizations in the ventral 

horn (Arber et al., 2000).  EGR3 is a transcription factor expressed in developing 

intrafusal muscle fibers and is essential for muscle spindle development (Tourtellotte et 

al., 2001).  In EGR3(-/-) animals, spindles initially form but postnatally degenerate and do 

not express NT3 (Chen et al., 2002).  NT3 is necessary for survival of proprioceptive 

sensory fibers (Ia, Ib, II afferents) and also for strengthening the central synapses of these 

fibers.  NT3 is however expressed at low levels and downregulated from muscle 

postnatally, Ia afferents then become dependent on NT3 from muscle spindles.  In these 

animals, the central synapses from proprioceptive sensory fibers on motoneurons are 

weakened during postnatal development most likely because of lack of NT3 (Chen et al., 

2002).  In mlcNT3(+/-) heterozygotes, NT3 is inserted in the genomic locus of the myosin 

light chain, a gene highly expressed in muscle fibers (Wright et al., 2002).  Therefore, in 

mlcNT3(+/-) heterozygotes, NT3 expression is elevated during development and retained 

postnatally and in the adult.  Excess of NT3 prevents normal programmed cell death of a 

proportion of proprioceptors and enhances the formation and development of central 
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arborizations from proprioceptive sensory axons.  Data obtained by Courtney Smith in 

our laboratory with the mlcNT3 animals demonstrates that VGLUT1-IR sensory synapses 

in the ventral horn are significantly increased.        

 

Animals 

All animal procedures were performed according to NIH guidelines and reviewed 

by the local Laboratory Animal Use Committee at Wright State University under protocol 

numbers 736 and 738 for mice and 612 for rats.   

Timed-pregnant Sprague Dawley female rats were obtained from Harlan 

Laboratories and the day of birth was postnatal day 0 (P0).  Mice, unless noted otherwise, 

were C57/Black (Jackson Laboratories) wild-types and bred at Wright State University.  

In this thesis, we used several transgenic lines of mice breeding at Wright State, including 

En1(Cre/+),  Thy1-YFP, Hb9::gfp, and Er81.  mlcNT3(+/-) heterozygotes and EGR3(-/-) 

knockouts provided to us by Dr. Neil Shneider from Columbia University, New York, 

NY.  Our collaborator Dr. George Mentis at National Institutes of Health, Bethesda, MD, 

performed all dorsal and ventral root tracings in embryonic and postnatal mice using an 

in vitro spinal cord preparation.  Maria Berrocal in our lab and Vicki Heronimous in LAR 

bred, tattooed, and tail clipped mice for genotyping.  Animals were bred in order to 

generate the required genotypes for each experiment (see below).  At P5, all mice (except 

C57/black wild-types) had their feet tattooed in different combinations (i.e., right-front 

paw tattooed or left-front paw tattooed) and they were assigned a litter number according 

to their tattoo.  The tattoos and the litter numbers were for identification purposes only.  
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Also at P5, after tattooing, all pups had the tips of their tails clipped in order to extract 

DNA for genotyping using Polymerase Chain Reaction (PCR). 

Thy1-YFP mice were crossed with En1Cre/+ heterozygotes.  We obtained two 

genotypic outcomes: En1(Cre/+):Thy1YFP and En1(+/+):Thy1YFP.  PCRs were run for the 

following primers, Cre and GFP/YFP (Table 1).  Animals that were Cre+ and YFP+ were 

used to identify V1 neurons.  Er81(+/-) heterozygotes were also crossed and three 

genotypic outcomes were obtained: Er81(+/+) (wild-types), Er81(+/-) (heterozygotes), and 

Er81(-/-) (knockout).  PCRs were run for the following primers, Er81 and Tau.  Mice that 

were Er81- and Tau+ were identified as Er81(-/-) mutants.  Hb9::gfp(+/-) heterozygote 

males were crossed with C57/blk females.  Hb9::gfp(+/+) homozygotes failed to breed as 

did Hb9::gfp(+/-) females, therefore the only breeding option was to pair Hb9::gfp(+/-) 

heterozygote males with wild-type females.  Animals that were EGFP+ were used to 

identify motoneurons, their axons, and their axon collaterals.  All resulting genotypes 

followed closely to Mendelian proportions.   

 

Genotyping  

All genotyping was carried out with help from Maria Berrocal.  DNA from tail 

clips were extracted using Qiagen’s DNeasy® kit according to manufacturer’s 

instructions. Genotypes were determined by PCR with primers reported in table 1.  The 

PCR was carried out using a MyCycler™ Bio Rad thermocycler with HotMaster™ Taq 

DNA Polymerase (Eppendorf Brinkmann Instruments, Inc) under the following 

condition: 5 min 95°C pre-melt step, followed by 35 cycles of 30 sec 95°C melt, 30 sec  
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Table 1.  Primer sequences used for polymerase chain reaction (PCR) genotyping and 
expected PCR size product.   
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60°C anneal, and 7 min 72°C extension. PCR products were analyzed using 2% agarose 

gel electrophoresis in 1X TBE buffer with ethidium bromide staining   

 

Timed Pregnancies  

  In order to be certain of the embryonic ages being analyzed, the mouse 

pregnancies were timed using a series of hormone injections, to increase the number of 

ova released during ovulation.  Briefly, on day 1, at 12:00 PM, female mice were injected 

with Pregnant Mare’s Serum Gonadotropin (PMSG) (Calbiochem, LaJolla, CA, USA) 

which induces follicular development.  Forty-eight hours later, again at 12:00 PM, on day 

3, those same female mice were injected with Human Chorionic Gonadotropin (HCG) 

(Sigma, CG-10. St Louis, MO, USA) which induces ovulation.  Ovulation occurred 12 

hours after HCG injections.  Therefore, females were mated later that same day 

(approximately 6:00 PM, which coincides with the beginning of the dark-cycle) with the 

males.  The next morning, pregnancies were confirmed by the presence of a vaginal plug.  

Females were then separated from the males until they were perfused.  The presence of a 

vaginal plug did not always signify a pregnancy just that copulation had occurred.  

Therefore, females were weighed before the start of hormone injections and weighed 

every few days until used; a steady rate of weight gain was further confirmation of 

successful pregnancy.   

 

Tissue Preparation  

Rats and mice of different postnatal ages (P0/1, P5, P10, P15, P20, and adult, i.e. 

>2 months) were deeply anesthetized with Nembutal (50mg/kg, i.p.) and perfused with 

4% paraformaldehyde in 0.1M PB, transcardially.  After perfusion, the spinal cords were 
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dissected and placed in fixative for 2-4 hours or overnight and then cryoprotected in 0.1 

M phosphate buffer (pH 7.4; PB) with 15% or 30% sucrose and 0.01% sodium azide until 

the tissue was ready to be processed.  All analyses were performed in lumbar segments 4 

and 5 (L4-L5), unless noted otherwise.  Transverse sections were acquired using a 

freezing sliding microtome (50 µm) from L4-L5 spinal cord segments of all rat tissue and 

late postnatal (P10 and P20) and adult mouse tissue and processed free-floating.  For 

neonatal (P0-P5) mouse tissue, transverse sections were obtained from L4/L5 spinal cord 

segments using a cryostat (20 µm) and processed on slides.  Although processing the 

tissue free-floating was preferred, some of the tissue was cut using the cryostat because 

of the rather small size of the neonatal mouse spinal cord, and their increased chance of 

deterioration using free-floating sections.     

Mouse and rat embryos of different ages (E11.5, E13.5, E15.5, E16, E17.5, and 

E18) were used for immunofluorescence.  Timed-pregnant females were perfused 

transcardially (see above) and the uterus with embryos removed from the abdominal 

cavity.  Embryos were then removed from the uterus and dissected free of their yolk sacs.  

Embryonic spinal cords are rather small and fragile; therefore, all embryos were placed in 

fixative in toto overnight and then cryoprotected in 30% sucrose.  The embryos were cut 

below the front limbs (Figure 6) and transverse sections were obtained from the whole 

bottom portion including the spinal cord.  Embryonic developmental stages were 

confirmed using the Atlas of Mouse Development (Kaufman 2005). Sections were 

obtained in a cryostat (20 µm) and picked up in subbed slides for further processing.  Cut 

sections on slides were stored at -20 ◦C until used.  For some studies, the vertebral 

columns of E16 and E18 embryos were dissected and the spinal cord exposed.  The spinal 
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cord was postfixed overnight at 4◦C inside the vertebral column and then placed in 

cryoprotectant until the tissue was ready to be processed.  The mother’s spinal cords were 

also dissected out, placed in postfix for 4 hours and cryoprotected.  A few of the E16 and 

E18 spinal cords were fully dissected from the remaining vertebral columns and 

transverse sections (20 µm) obtained from the whole lumbar segment using a cryostat.  

 

Dorsal root and ventral root tracing in embryonic and neonatal mouse spinal cords 

Fluorescent dextrans (Molecular Probes) were used to trace primary sensory afferent 

axons and motor axon recurrent collaterals respectively from dorsal roots (anterograde 

tracing) and ventral roots (retrograde tracing) in neonatal and embryonic mouse spinal 

cords (Figure 7). Our collaborator Dr. George Mentis performed all dorsal and ventral 

root tracings using an in vitro spinal cord preparation.  Embryos were removed from 

pregnant mice anesthetized with halothane, placed in cold ACSF (~4°C), decapitated and 

their spinal cords dissected free. Postnatal mice, ages P0, P4/5, P10, and P15 (Swiss-

Webster) were also deeply anesthetized (Nembutal 50 mg/kg, i.p.) and the spinal cords 

quickly removed after decapitation. To facilitate neuronal survival, dissections were 

performed in chilled (5-10°C), modified ACSF (95%O2, 5%CO2), containing low-Ca2+ 

(0.1 mM), high-Mg2+ (2 mM) and sucrose replacement of Na+. Isolated spinal cords were 

pinned down in a labeling chamber with a Sylgard base and superfused with cold 

oxygenated ACSF (~18°C). One dorsal and one ventral root were placed inside suction 

electrodes and backfilled with fluorescent dextrans (30-40 mM 10,000 MW) coupled to 

either fluorescein (F-Dxt), Texas Red (TR-Dxt) or Cascade Blue (CB-Dxt). Sometimes 

the traced dorsal and ventral roots were ipsilateral, this permitted analysis of convergence  
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Figure 6.  Method utilized for cutting embryonic tissue.  A, E15.5 mouse embryo that 
has been removed from mother, postfixed, and cryoprotected.  Yellow arrow indicates the 
cornea, which is still present at E15.5.  The eyelids do not begin to fuse until E16.  B, 
Same embryo shown in A.  The white line indicates where cuts were made approximately 
below the front limbs.  C, Same embryo shown in A and B.  Box indicates the area that 
was sectioned in relation to the whole embryo. 
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Figure 7.  Schematic depicting tracing of sensory afferents and motor axon recurrent 
collaterals in the spinal cord using fluorescent dextrans (fdxts).  A, Spinal cord section 
showing the dorsal and ventral roots (DR and VR, respectively).  In some spinal cord 
sections, when many markers were used to identify one input, tracings were done with a 
single-fluorescent dextran dye in both DRs and VRs but on different sides of the spinal 
cord (contralateral tracings).  In this schematic, motor axon recurrent collaterals are 
retrogradely labeled on the left with FITC-conjugated fdxt (green) and sensory afferents 
are anterogradely labeled on the right, also using FITC-conjugated fdxt (green).  
Retrograde tracers labeled motoneurons, their axons and their dendrites (motoneurons 
and motor axons are green; dendrite labeling not depicted here).  B, In other spinal cords 
used for analysis of convergence of inputs on single interneurons, DR and VR were filled 
with different fluorochromes on the same side (ipsilateral tracings).  In this schematic, on 
the left, motoneurons and their axons are retrogradely labeled with Texas red-conjugated 
fdxt (motoneurons and axons are red) and sensory afferents anterogradely labeled with 
FITC-conjugated fdxt (green).  In some cases, only the motoneurons, their axons, and 
dendrites were retrogradely labeled with Cascade Blue-conjugated fdxts (not shown 
here).          
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in single interneurons. Alternatively when many markers were used to identify one input 

or interneuron class, the tracings were done with a single fluorescent-dextran dye in both 

ventral and dorsal roots but on different sides of the spinal cord.  Labeling proceeded 

overnight (~16 hours) and then the spinal cord was immersion fixed in 4% 

paraformaldehyde (4 hours) in 0.01M phosphate buffered saline (PBS; pH 7.4) and then 

cryoprotected in sucrose (mentioned above).  Transverse sections were obtained from 

L4/L5 spinal cord segments using a cryostat (20 µm) and processed on slides as above.    

 

Light Microscopy Immunohistochemistry 

 

Multiple immunofluorescence  

 Some analysis required the use of immunofluorescence with multiple 

fluorochromes (two, three and even four) to identify the cell types and inputs of interest. 

In other situations the experiments required analysis of only two markers but with 

brightfield microscopy analytical techniques. In this case dual-color chromogen labeling 

using ABC-peroxidase methods was used. 

All tissue sections for immunohistochemistry were processed at room 

temperature.  The tissue was washed in PBS 3 times for 5 minutes to rinse off the 

cryoprotectant.  Sections were then blocked with 10% normal donkey serum diluted in 

0.01M phosphate buffered saline with 0.1% Triton X-100 (PBS-T 0.1%; pH 7.4) and 

incubated overnight with primary antibodies.  Several different combinations of primary 

antibodies were applied all diluted in 0.01M phosphate buffered saline with 0.3% Triton 

X-100 (PBS-T 0.3%; pH 7.4). Primary antibodies and their sources are listed in Table 2.   
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Table 2.  Primary antibodies and their sources, species raised against, and dilutions. 
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For dual and triple immunofluorescence several combinations of primary 

antibodies were used. These are explained in greater detail as to their purpose and 

selection in the appropriate sections that follow.  Following an overnight incubation in 

primary antibodies, the tissue was washed in PBS-T 0.3%; for 3 times for 5 minutes.    

Immunoreactive sites were then revealed with species-specific secondary antibodies.  All 

secondary antibodies were diluted in PBS-T 0.3% and incubated for 2 hours at room 

temperature. Secondary antibodies were all used at a dilution of 1:50 and were coupled to 

either Alexa-405 (Molecular Probes Inc, Carlsbad, CA), fluorescein isothyocyanate 

(FITC), cyanine3 (Cy3) or cyanine5 (Cy5) (Jackson Laboratories, West Grove, PA).  

Some sections required the use of 4 fluorochromes; in such instances immunoreactive 

sites were revealed with Streptavidin-405 (405) (Molecular Probes Inc).  Preparations 

that used 405 required a preincubation in a biotinylated secondary antibody (diluted 

1:100, Jackson Laboratories, West Grove, PA, USA) followed by Alexa-405-conjugated 

Streptavidin. 

After incubation in secondary antibodies, the tissue was washed in 0.01 M PBS 

for 3 times 5 minutes.  Free-floating tissue was mounted on gelatin-coated or Histobond 

(VWR, West Chester, PA, USA) slides and all slides were cover-slipped with 

Vectashield (Vector, Burlingame, CA). 

 

 

Dual chromogen immunohistochemistry  

 Dual-chromogen immunohistochemistry for brightfield analysis was performed as 

in Alvarez et al. (1999).  Calbindin-immunoreactivity is strongest in the cell body and 
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cytoplasm of RCs (Arvidsson et al., 1992; Sanna et al., 1993; Carr et al., 1998; Geiman et 

al., 2000; Alvarez et al., 1999), and weakens with distance from the cell body.  Therefore, 

in order to improve labeling of more distal dendrites, we used chromogen labeling and 

ABC-peroxidase methods, which are more sensitive than regular immunofluorescence 

and results in more extensive dendritic labeling.  Briefly, sections were blocked for 1 

hour with normal horse serum (mentioned above) and placed in either VGLUT1 (guinea 

pig polyclonal, 1:5000) or VAChT antibodies (goat polyclonal, 1:2000), diluted in 0.01 

M PBS with 0.3% Triton X-100, and incubated overnight at room temperature.  

Immunoreactive sites were then revealed using avidin-biotin complex (ABC)-peroxidase 

protocols (ABC kits, Vector Laboratories).  Peroxidase histochemistry was performed 

using diaminobenzidine (DAB) as a substrate (0.02% DAB and 0.01% H2O2 diluted in 

0.05M Tris buffer, pH 7.6).  VGLUT1 –immunoreactivity (VGLUT1-IR) or VAChT-

immunoreactivity (VAChT-IR) was revealed with silver intensification of the DAB 

reaction product (Sassoe-Pognetto et al., 1994).  After washing the sections in 0.01 M 

PBS with 0.3% Triton X-100 they were incubated in Calbindin antibodies (CB, rabbit 

polyclonal, and 1:2000) overnight.  The peroxidase labeling of antigenic sites from the 

second immunoreaction was developed with DAB with no silver intensification.  The 

DAB reaction product appears brown and DAB followed by silver intensification appears 

dark brown/black. 

 

Tyramide signal amplification in embryonic tissues  

 Some analyses required an extra step to enhance fluorescent signals.  In such 

cases, tyramide signal amplification (TSA) method was utilized.  The TSA method 
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enhances sensitivity and allowed for the detection of low concentrations of antigens in 

embryonic tissues.  Two different TSA methods were utilized in this study and will be 

briefly explained.  In the first method, which is referred to as indirect TSA, 

immunoreactive sites are revealed using a fluorescent streptavidin conjugate (Figure 8).  

Briefly, tissue was washed with PBS-T 0.3% as before, and then incubated in 50% 

ethanol diluted in ddH2O.  Similar to before, sections were blocked with 10% normal 

donkey serum for an hour and incubated in primary antibodies overnight.  Following 

primary antibody incubation overnight, sections were washed in PBS-T 0.3% and 

incubated in a species-specific biotinylated secondary antibody (Jackson Laboratories, 

1:100) for an hour.  The biotinylated secondary introduces biotin into the sections near 

the primary antibody location.  Sections were then incubated in ABC (avidin-biotin-

peroxidase complex) (ABC kits, Vector Laboratories) for an hour, then washed with 

PBS-T 0.3%, and incubated with biotinylated tyramide for 10 minutes.  The ABC 

contains biotin-peroxidase conjugates bound to avidin.  These complexes bind to the 

biotin in the secondary antibody thus peroxidase-labeling the antigenic sites in the tissue.  

Biotinylated tyramide binds to these places, but in addition tyramide is a substrate for 

peroxidase and will be enzymatically precipitated at immunoreactive sites amplifying the 

original signal.  Following incubation in biotinylated tyramide, immunoreactive sites 

were fluorochrome-tagged using streptavidin conjugated to Alexa 555 (1:100, diluted in 

PBS-T 0.3%).   

The second TSA method utilized a fluorescently conjugated tyramide and is often 

referred to as the direct TSA method (Figure 9).  The direct TSA method allowed for 

immediate visualization following a short incubation with a fluorophore-conjugated  
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Figure 8.  Indirect tyramide signal amplification (TSA) method.  A, Detection of target.  
After overnight incubation in primary antibodies (1B Ab), sections are incubated with a 
species-specific biotinylated secondary antibody (2B Ab-B), which introduces biotin (B) 
near primary antibody locations.  Next, sections are incubated in avidin-biotin complex 
(ABC), which contains biotin-peroxidase conjugates bound to avidin.  The schematic 
here depicts a streptavidin-horseradish peroxidase (SA-HRP) bound to the biotinylated 
secondary antibody.  Although we did not use SA-HRP here, the concept is the same.  
The peroxidase catalyzes the deposition of a labeled tyramide onto tissue sections.  B, 
Signal amplification using a biotinylated tyramide.  Following ABC incubation, sections 
were then incubated in biotinylated-tyramide (B-T).  Here the HRP produces a reactive 
tyramide, but again we used the biotin-peroxidase in the ABC kit.  C, Detection and 
visualization of the amplified signal.  After signal amplification, the deposited biotin was 
directly visualized using a streptavidin conjugated to Alexa 555 (F). 
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Figure 9.  Direct Tyramide signal amplification (TSA) method.  A, Similar to the indirect 
TSA method, following an overnight incubation in primary antibodies (1B Ab), sections 
were incubated in a species-specific biotinylated secondary antibody (2B Ab-B).  In 
contrast to the indirect TSA method, sections were then incubated in a horseradish 
peroxidase (HRP) conjugated to streptavidin (SA).  B, Signal amplification with a 
fluorophore-conjugated tyramide (F-T).  Sections were incubated with a fluorophore-
conjugated tyramide, which allowed for direct visualization of the amplified signal. 
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tyramide.  Slides were washed in Tris buffer saline with Tween (0.1M Tris, 0.15M NaCl, 

0.05% Tween-20; Fisher Scientific) (TNT buffer, pH 7.6) 3 times for 5 minutes.  

Following washes, slides were incubated in TNB buffer (0.1M Tris, 0.15M NaCl, 0.5% 

NEN-blocking reagent) for 30 minutes and incubated in primary antibodies overnight 

(primary antibodies diluted in TNT buffer).  Following an overnight incubation in 

primary antibodies, slides were washed in TNT buffer and incubated in a species-specific 

biotinylated secondary antibody for an hour (1:500, diluted in TNT buffer).  Slides were 

then washed and incubated in a horseradish peroxidase conjugated to streptavidin for 30 

minutes (SA-HRP, 1:2000, diluted in TNB buffer).  Following SA-HRP incubation, 

slides were incubated in Cy3- or FITC-conjugated Tyramide for 5 minutes (1:100, diluted 

in Amplification diluent; TSA Plus Fluorescence Systems Kit, PerkinElmer, Street 

Waltham, MA).  Slides were then washed in TNT buffer and coverslipped.  If multiple 

fluorochromes were used then after the last wash, slides were incubated in species-

fluorochrome-tagged specific secondary antibodies as mentioned before to reveal 

immunoreactivity for other primary antibodies.        

 

Imaging, Analysis, and Statistics 

Dual-immunolabeled preparations were analyzed in a Fluoview FX Olympus 

confocal microscope and triple-or quadruple-immunolabeled images were analyzed in a 

Fluoview 1000 confocal microscope.  Image analysis of confocal images was done with 

Fluoview (Olympus), ImagePro (Media Cybernetics) and Neurolucida software 

(Microbrightfield).  Brightfield preparations were analyzed in a Olympus BX51 

microscope coupled to a digital camera (Microfire A/R, Optronics) and Neurolucida, a 



 78 

neuron tracing and neuron plotting stage (Neurolucida, Microbrightfield).  Statistical 

analyses were performed with SigmaStat (version 3.1, Systat Software, Jandel) and 

graphing was done in SigmaPlot (version 9.0, Systat Software, Jandel).  

 

3D reconstructions of Calbindin-IR Renshaw cells to estimate synaptic densities of 

VGLUT1-IR or VAChT-IR contacts.   

 3D neuronal reconstructions were used to estimate surface area of somata and 

dendrites, for comparison of synaptic densities in each compartment and among cells of 

different ages.  Immunofluorescent preparations were imaged with an Olympus Fluoview 

FX system confocal microscopy at 60X2.5 (oil, N.A. 1.35) magnification and a series of 

confocal optical sections (z-step 0.5 µm) obtained throughout individual randomly 

sampled Renshaw cells with cell bodies fully contained within the thickness of the tissue 

sections. The stacks of images were loaded in Image Pro Plus (ver. 5.0.) and analyzed 

with 3Dspace software tools (Media Cybernetics, Burlington, VT). Calbindin 

immunoreactivity was threshold and segmented from the image such to isolate the 

Calbindin-IR soma and dendrites inside the 3D stack of confocal images. This procedure 

generated a 3D reconstruction of all immunolabeled processes within the field of view. 

All objects that were not connected to the neuron of interest were then hidden. Once a 

full 3D reconstruction of one Renshaw cell and its dendrites was obtained and surface 

rendered, we scrolled the different optical planes containing immunolabeling along this 

reconstruction and identified VGLUT1-IR or VAChT-IR contacts on the Calbindin-IR 

Renshaw cell surface.  Their placement in the cells somata or dendritic segments was 

noted. Then the surface of the rendered cell soma and of each dendrite was measured 
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using 3Dspace.  Surface densities for somata and dendrites were obtained by normalizing 

the number of contacts against the amount of surface sampled.  One-way ANOVAs were 

used to determine the significance of any differences between the synaptic densities at 

different postnatal ages.     

 

Analysis of synaptic densities of VGLUT1-IR and VAChT-IR contacts on distal dendrites 

of Calbindin-IR Renshaw cells in Neurolucida.   

 Analysis in Neurolucida provided a 3D reconstruction of CB-IR RCs, but unlike 

the 3DSpace reconstructions, it was not limited to the small field of view of a high 

magnification confocal image.  This system allowed the whole length of the labeled 

dendrite to be reconstructed.  Sections processed for dual chromogen 

immunohistochemistry were analyzed under brightfield illumination using a 100x oil 

(N.A 1.35) objective lens.  Only those neurons that have extensive dendritic labeling 

within the plane of a single 50 µm thick section were analyzed.  Their cell somas and 

dendritic outlines were traced using the computer-aided neuron tracing module on 

Neurolucida and the locations of VGLUT1-IR or VAChT-IR contacts plotted on the 

reconstructions.  The software generated measurements of the lengths of individual 

dendrites, total dendritic length, as well as the surface area of the dendrites.  Using a 

Sholl analysis, dendrites were divided in bin segments at 50 µm incremental distance 

from the cell soma.  Densities of contacts were obtained by plotting the number of 

contacts per 10 µm of available linear dendrite in each dendritic bin.  One-way ANOVAs 

were used to determine any significant differences between synaptic densities at different 

postnatal ages in different bins. 
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Confocal analysis of VGLUT1-IR and VAChT-IR synaptic densities on Calbindin-IR 

Renshaw cells and Ia inhibitory interneurons in Neurolucida.   

 Multiple-color immunofluorescent preparations were imaged with a confocal 

microscope at 60X1.5 magnification and a series of confocal optical sections (z-step 0.5 

µm) obtained throughout individual randomly sampled Renshaw cells or IaINs with their 

cell bodies fully contained within the thickness of the tissue sections.  The stacks of 

images were loaded in Neurolucida and analyzed using the Neurolucida neuron tracing 

confocal module, which allows for reconstruction of cells from confocal stacks.  

VGLUT1-IR and VAChT-IR contacts were then plotted on the reconstructed dendritic 

arbors.  Neurolucida provided estimates about dendritic arbors, morphology, and 

VGLUT1-IR and VAChT-IR synaptic densities.  Similar to analysis of brightfield 

preparations, a Sholl analysis was performed in 50 µm increments from the cell soma.  

Densities of contacts were obtained by plotting the number of contacts per 10 µm of 

surface membrane in each dendritic bin and compared across ages and genotypes using 

ANOVAs.  
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CHAPTER V 

Characterization of the development of the primary afferent 

inputs and motor axon inputs on Renshaw cells in the 

embryonic and postnatal spinal cord 
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Introduction 

 The development of locomotion is believed to result from the maturation of the 

spinal synaptic circuits controlling motor output.  The spinal circuits that modulate adult 

motoneuron (MN) firing emerge from a dynamic set of neurons and synapses.  

Unfortunately, little is known about how these circuits develop.  The spinal interneurons 

that make up these spinal circuits are classified by their synaptic organization and their 

ability to modulate motor output (Jankowska, 2001).  The mechanisms that select specific 

inputs and de-select others are unknown, but are important because they define that 

neurons function.  One possible reason for the scarcity of knowledge is that the ventral horn 

interneuronal circuitry is extremely complex and still largely unknown.       

 Recently, it was discovered that all spinal ventral interneurons derive from four 

embryonic subclasses denominated “V0, V1, V2, and V3”.  Each subclass is 

characterized by the expression of different combinations of transcription factors and 

distinct genetic backgrounds (Jessell, 2000; Goulding et al., 2002).  Subsequent research 

found that both RCs and IaINs derive from the V1 subclass (Sapir et al., 2004; Alvarez et 

al., 2005).  V1-derived interneurons, which are characterized by its expression of the 

postmitotic transcription factor Engrailed-1, are all ipsilaterally projecting inhibitory 

interneurons which are believed to modulate the speed of motor output (Gosgnach et al., 

2006).  Renshaw cells mediate recurrent inhibition of homonymous and synergistic 

motoneurons and their main excitation arises from cholinergic intraspinal collaterals of 

motor axons (Renshaw 1946; Eccles et al., 1954) and they lack monosynaptic input from 

primary afferents.  In contrast, IaINs receive glutamatergic inputs from Ia proprioceptive 

primary afferents and mediate reciprocal inhibition of antagonist motor pools and are 
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believed to lack direct input from motoneurons (Eccles et al., 1956).  The embryological 

origin of these interneuronal circuits that modulate MN firing is unknown.             

 Wenner and O’Donovan (1999) recently identified a novel inhibitory interneuron 

in the developing chick spinal cord that they propose is the avian equivalent of the 

mammalian RC.  The interneuron was named the R-interneuron and receives convergent 

monosynaptic inputs from motoneurons and sensory afferents and provides recurrent 

inhibition to motoneurons.  Later studies suggested that it arises from the V1 

subpopulation of chick interneurons, because they express engrailed-1 transcription factor 

(Wenner et al., 2000).  The connectivity of the adult R-IN is unknown, but the similarities 

between the R-IN and mammalian adult RC and IaIN connectivity raises the possibility 

that adult interneuron subtypes obtain their pattern of synaptic connectivity by 

losing/weakening and/or gaining/strengthening of specific inputs during development. 

 Postnatal selection of adequate inputs and numbers has been demonstrated in 

other systems and it has been shown to be an activity-dependent process.  For example, 

most adult vertebrate muscle fibers are innervated by one motor axon, but during 

development, muscle fibers are innervated by several motor axons, a condition termed 

polyneural innervation (reviewed in Sanes and Lichtman, 1999, 2001).  Polyneural 

innervation is also seen in the cerebellum with respect to the Purkinje cells.  As with 

adult muscle fibers, adult Purkinje cells are innervated by a single climbing fiber, but 

during development, all inputs except one are removed in a process called synapse 

elimination (Ito, 1984).  Synapse elimination appears to be activity-dependent.  

Decreased and increased synaptic activity respectively slow and speed synaptic 

elimination.  According to Hebb’s postulate (1949), inputs are strengthened by correlated 
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activity in the pre and postsynaptic neurons and those inputs will proliferate and mature, 

whereas inputs with uncorrelated activity will eventually arrest proliferation and not 

mature.  In addition, the process is competitive in nature, such that lack of all activity 

prevents synapse elimination.  Therefore, one possibility is that RCs and IaINs initially 

receive convergent inputs from motor axons and sensory afferents, but then selectively 

mature one or the other input throughout development via an activity dependent 

mechanism to obtain the input organization characteristic of their adult phenotype.                

  

 The discovery of the R-interneuron (R-IN) and it’s similarities to both Renshaw 

cells (RCs) and Ia inhibitory interneurons (IaINs) led us to investigate whether 

mammalian RCs receive convergent inputs from primary afferents and motor axon 

collaterals.  We investigated the timing of synaptogenesis and developmental maturation 

of sensory and motor axon inputs on Renshaw cells (RCs) by counting the number of 

Calbindin-immunoreactive (CB-IR) RCs in the late embryonic, postnatal and adult spinal 

cord that receive inputs from sensory or motor axons identified using a series of markers 

for primary afferents (anterograde tracings from dorsal roots, Parvalbumin, Vesicular 

Glutamate Transporter (VGLUT1)) and motor axon collaterals (retrograde tracings from 

ventral roots, Vesicular Acetylcholine Transporter (VAChT)).  We analyzed whether 

there are any differences in the developmental pattern of Ia afferent inputs on RCs 

compared to motor axon inputs.  We then looked at the density of each input on RCs 

throughout postnatal development.  For this purpose we used VGLUT1 as a marker for 

primary afferents and VAChT as a marker of motor axon collaterals.  We hypothesized 
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that RCs receive convergent inputs from sensory and motor axons during early 

development, but then de-select primary afferent inputs.    

 Results were published as a full-length manuscript (Mentis et al., 2006) and in 

abstract form (Mentis et al., 2004).   

 

Materials & Methods 

Immunohistochemistry 

 Sections from lumbar spinal cord segments 4 and 5 (L4/L5) of rat and mice of 

various ages (E16, E18, P0, P5, P10, P15, P20, and adult) were processed for dual-color 

and triple-color immunofluorescence using antibodies against Calbindin (CB, rabbit 

polyclonal, 1:2000), vesicular glutamate transporter 1 (VGLUT1, guinea pig polyclonal, 

1:1000, 1:2000), vesicular acetylcholine transporter (VAChT, goat polyclonal, 1:1000, 

1:2000), and Parvalbumin (PV, mouse monoclonal, 1:1000).  Several combinations of 

antibody mixtures were used; CB/VGLUT1, CB/VAChT, CB/PV, and CB/VGLUT1/PV 

(See General Methods for antibody sources and buffers).  The following day, 

immunoreactive sites were revealed using species-specific secondary antibodies, which 

differed and were dependent on the primary antibody combinations used.  In dual-color 

immunofluorescent preparations, CB-immunoreactivity was revealed using either donkey 

Cy3-conjugated (CB/VGLUT1 and CB/VAChT) or FITC-conjugated (CB/PV) anti-

rabbit antibodies.  VGLUT1-IR and VAChT-IR were revealed using donkey FITC-

conjugated anti-guinea pig and anti-goat antibodies respectively.  PV-immunoreactivity 

was revealed with donkey Cy3-conjugated anti-mouse antibodies.  In triple-color 

immunofluorescent preparations, CB-IR was revealed with donkey Cy5-conjugated anti-
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rabbit antibodies; PV with donkey Cy3-conjugated anti-mouse antibodies; and VGLUT1-

IR using donkey FITC-conjugated anti-guinea pig antibodies.  

 In some embryonic (E16 and E18) and neonatal sections (P0, P5, and P10), 

primary afferents and motor axon recurrent collaterals were traced using fluorescent 

dextrans (fdxt; Fluorescein, F-dxt; Texas Red, TR-dxt; and Cascade Blue, CB-dxt) (see 

General Methods; Dorsal root and ventral root tracing in embryonic and neonatal mouse 

spinal cords).  The fdxt used depended on whether the traced dorsal and ventral roots 

were ipsilateral or contralateral.  Sections with fdxt-fills were also processed for dual and 

triple-color immunofluorescence using a combination of primary antibody mixtures: CB 

(alone), CB/VGLUT1, CB/VAChT, and CB/PV.  Secondary antibody mixtures differed 

and depended on the fdxt used and the primary antisera mixture used.                

 

Percentage of late embryonic (after E16), postnatal and adult CB-IR Renshaw cells with 

inputs from primary afferents and/or motor axon collaterals. 

 To determine the percentage of RCs contacted by either markers of primary 

afferents (VGLUT1, Dxt, or PV) or motor axon collaterals (VAChT), high magnification 

(60x1.5) confocal images were obtained from strongly labeled CB-IR cells in the first 50-

100 microns from the ventral funiculus.  The size of the ventral region analyzed differed 

depending on the age (E16-P5, 50 µm and P10-adult, 100 µm from the border between 

the ventral funiculus and the ventral horn) because of the significant increase in the size 

of the surrounding neuropil with age.  This region contains a high density of RCs and 

therefore, these criteria assured that we did not include a significant number of CB-IR 

non-RCs in the sample.  A “contacted RC” was a CB-IR cell which received at least one 
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contact from a fluorescently labeled varicosity on the soma or dendrite.  Sample 

characteristics: we sampled 41 to 166 RCs from 1 to 3 mice were analyzed at each age.  

Similarly, 1-3 rats at each age were used and 10-71 cells analyzed (exact number of 

animals and cells analyzed for each age, species, and marker is summarized in Table 3).      

 

Confocal analysis of VGLUT1 and VAChT densities on Calbindin-IR Renshaw cell 

somata and proximal dendrites. 

 To analyze if convergent inputs from sensory afferents and motor axons on 

postnatal RCs have similar synaptic weights, as estimated by the number of contacts, we 

used dual-color immunofluorescence in sections from L4 and L5 spinal cord segments of 

both rats (Sprague-Dawley) and mice (C57/black) of each postnatal age (P0/1, P5, P10, 

P15, P20, and adult, i.e. >2 months) using antibodies against CB and VGLUT1 or CB 

and VAChT.  CB-IR RC somata and dendrites were reconstructed using 3DSpace 

software and VGLUT1-IR or VAChT-IR contacts were counted for each compartment 

(somata and dendrite) (See General Methods; Imaging, Analysis, and Statistics).  The 

number of VGLUT1-IR or VAChT-IR contacts was then normalized against the amount 

of surface sampled and a surface density of VGLUT1-IR or VAChT-IR contacts obtained 

for each cell and in each cell compartment.  Differences in synaptic densities were 

compared between P0, P5, P10, P15, P20, and adult using one-way ANOVAs for both 

VGLUT1-IR and VAChT-IR contacts.   

 Renshaw cells are believed to lack primary afferent input; this conclusion is 

derived from cat spinal cord in vivo electrophysiological recordings.  In these studies, 

RCs failed to respond to dorsal root volleys (Renshaw, 1946).  To investigate if RCs in 
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the adult cat also receive inputs from primary afferents, we used dual-color 

immunofluorescence in sections from cat lumbar spinal cord segments using antibodies 

against VGLUT1 (rabbit polyclonal, 1:1000) and Gephyrin (mouse monoclonal antibody, 

clone 7a, 1:1000).  Cat RCs do not exhibit strong CB-IR (Carr et al., 1998), but they can 

be identified by their large gephyrin-IR clusters (Alvarez et al., 1997).  No cats were 

specifically prepared for this study; all cat tissue was obtained from Drs. Timothy Cope 

and Robert Fyffe after previous electrophysiological experiments.  Adult cats were 

perfused with phosphate-buffered saline (PBS), followed by 4% paraformaldehyde in 0.1 

M phosphate buffer, postfixed for 2-6 hours, and cryoprotected in 15% sucrose.  

Transverse sections were acquired from L4/L5 spinal cord segments using a freezing 

sliding microtome (50 µm) and processed free-floating.  Although Gephyrin-IR pattern is 

a good marker of cat RCs, but it only labels the somata and very proximal dendrites.  

Therefore, estimates of synaptic densities were only obtained from the somata using 

estimates of surface area from approximate ellipsoids of similar maximum and minimum 

diameters.  The number of VGLUT1-IR contacts was then normalized against the amount 

of surface sampled and a surface density of VGLUT1-IR contacts obtained for each cell.  

Differences in synaptic densities and number of contacts were compared between cat, 

adult mouse, and adult rat using one-way ANOVAs.  Sample characteristics: analysis of 

VGLUT1-IR contact density was carried out in 1-3 rats and mice at each age.  

Approximately 10-30 RCs were sampled per age.  Analysis of VAChT-IR contact density 

was carried out in 1 animal at each age and 9-10 cells sampled (exact number of rats used 

and cells sampled for VGLUT1 and VAChT analysis shown in Table 4).  Fifteen RCs 

were sampled from 2 adult cats in this aim.        
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Neurolucida analysis of VGLUT1-IR and VAChT-IR densities on distal CB-IR RC 

dendrites.   

 Only the first ~20-40 µm (depending on age) of the dendritic tree of Renshaw 

cells is visible in the field of view using high magnification confocal microscopy.  

Moreover, decreased CB immunofluorescence with dendritic distance or in neonates also 

reduced the dendritic lengths that could be analyzed using the thresholding method (see 

General Methods; 3D reconstructions of CB-IR RCs to estimate synaptic densities of 

VGLUT1-IR or VAChT-IR contacts).  To determine the distribution of VGLUT1-IR and 

VAChT-IR inputs on the dendritic tree past 40 microns distance from the cell body, 

preparations were made to analyze the distal dendrites in Neurolucida.  Dual chromogen 

immunohistochemistry was performed on tissue sections of P15, P20 and adult rats.  

VGLUT1-IR and VAChT-IR was revealed with silver intensification of the DAB 

reaction product (See General Methods; Light Microscopy Immunohistochemistry).  The 

peroxidase labeling of antigenic sites for CB was developed with DAB with no silver 

intensification.  The DAB reaction product appeared brown and DAB followed by silver 

intensification appeared dark brown/black.  

CB-IR (DAB) RCs were reconstructed using a computer-aided neuron tracing 

system (Neurolucida) and VGLUT1-IR or VAChT-IR (DAB-silver intensification) 

contacts plotted on the reconstructions (See General Methods; Imaging, Analysis, and 

Statistics).  The density of VGLUT1-IR or VAChT-IR contacts was expressed as the 

number of contacts per 10 µm of linear dendrite sampled in each dendritic bin.  Synaptic 

density differences in various dendritic compartments were compared between P15, P20, 

and adult using one-way ANOVAs.  Sample characteristics: we estimated VGLUT1-IR 
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contact density in 1-3 rats.  Approximately 14-30 RCs were sampled.  For estimations of 

VAChT-IR contact density, approximately 13-16 RCs were sampled from 1 rat at each 

age.          

 

Results 

Primary afferent and motor axon synaptic markers in the developing spinal cord 

 Several different anatomical methods were used to identify primary afferents and 

motor axon collaterals on developing RCs.  Each approach was most advantageous 

during specific overlapping developmental periods.  Therefore, conclusions are based on 

the best methodological combinations at different postnatal times.  First we analyzed 

these markers and their changes/maturation with development.  Tract-tracing with 

fluorochrome-conjugated dextrans (Fdxts) from either dorsal or ventral roots and 

immunolabeling with PV, VGLUT1, or VAChT were used to analyze sensory afferent 

and motor axon synaptic inputs on embryonic (E16 and E18), postnatal (P0, P5, P10, 

P15, P20), and adult Renshaw cells.  Fdxts were used to label sensory afferents in late 

embryonic (after E16) and early postnatal (P0, P5, and P10) spinal cords (Figure 10).  

Fdxt tracings were not used before E16, due to technical difficulties placing suction 

electrodes on the very thin and small ventral and dorsal roots.  In addition, the efficiency 

of Fdxt tracings decreases sharply at P15, probably due to the larger size of the spinal 

cords and the extent of myelination.  This impedes oxygenation of the cord under in vitro 

conditions and during the necessary long transport times (>16 hours).  Therefore, 

Parvalbumin-immunoreactivity, which specifically labels sensory afferents (Arber et al., 

2000), was used as an alternative marker (Figure 11).  A problem with using PV as a  



 91 

Figure 10.  Sensory and motor axon inputs on embryonic and postnatal Renshaw cells.  
A, E18 mouse spinal cord showing in A1, CB-IR (Cy3, red) and in A2, superimposed 
dorsal sensory afferents filled with fdxt (green) and VAChT-IR (Cy5, blue).  The arrow 
indicates a prominent group of CB-IR cells in the ventral horn that corresponds to the exit 
region of motor axons.  Geiman et al., 2000 found that this group of cells in the rat spinal 
cord receives cholinergic inputs throughout development and matures in adult RCs.  They 
are surrounded by VAChT-IR boutons also in the embryo (A2).  By E18, some fdxt-filled 
sensory afferents extend ventrally in the RC area.  B, Contralateral side showing CB-IR 
(red) and superimposed motoneurons retrogradely labeled with fdxts from the ventral 
root (B2; green; VAChT-IR is not shown in B2 because immunoreactivity was masked 
by intense fdxt labeling).  There is a group of CB-IR cells in the ventral most portion of 
lamina VII (LVII) that is, as mentioned previously, in the area that corresponds to the exit 
region of motor axons (arrow).  C, High magnification confocal image showing clear 
fdxt-filled sensory afferent varicosities (green) on CB-IR RCs (red).  Arrow indicates cell 
in inset that receives inputs from sensory afferents.  Arrowhead indicates a CB-IR RC 
that receives VAChT-IR inputs.  Most Renshaw cells received VAChT-IR contacts, but 
only a small proportion were contacted by anterogradely labeled dorsal root axons.  D, 
High magnification image shows CB-IR RCs (red) that receive VAChT-IR (blue) 
contacts.  Retrogradely labeled motoneurons somata and processes (green) are also 
shown.  The area marked with an arrow is enlarged in the inset.  E, Low magnification 
image of a P0 mouse spinal cord immunolabeled with CB-IR (red) and superimposed 
with sensory afferents (left) and motoneurons and their processes (right) filled with fdxt 
applied to the dorsal and ventral roots respectively.  The yellow boxes indicate the areas 
shown at higher magnification in E2 and E3.  E2, High magnification image of 
retrogradely labeled motor axon recurrent collaterals and dendrites (green) and CB-IR 
RCs (red).  Motor axon collaterals are distinguished by their non-tapering and varicose-
studded fine processes branching frequently at right angles (arrows).  Asterisk indicates 
higher magnification image of a cell (shown in inset) receiving contacts from fdxt-filled 
motor axons.  Postnatal CB-IR RCs are contacted by motor axon recurrent collaterals.  
E3, Fdxt-filled sensory afferents contacting CB-IR RCs (white arrows; inset shows cell 
with asterisk at higher magnification).  Not all CB-IR RCs at P0 are contacted by sensory 
afferents (yellow arrow).  Scale bars: A1-A2, B1-B2 and E1 (in A1, B1, and E1) 200 
µm; C, D and E2-E3 (in C, D, E2, and E3) 20 µm.                
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Figure 11.  Expression of Parvalbumin in the embryonic and postnatal spinal cord.  A, 
E18 mouse spinal cord dual-immunolabeled with Parvalbumin (Cy3, red) and Calbindin 
(FITC, green).  A1, Low magnification image showing a dense plexus of PV-IR axons 
(red) located in medial lamina V (LV; arrow), from here axons extend ventrally 
(arrowheads).  A2, High magnification image of the RC area.  Some motoneurons (MNs) 
weakly express CB (green) at E18 (arrowheads), but these cells are easily distinguished 
from CB-IR RCs by their size.  Very few PV-IR axons contact RCs at this age.  In 
contrast, MNs are frequently contacted.  Arrow indicates cell shown at higher 
magnification in A3.  A3, PV-IR axon contacting a CB-IR RC.  B, Low magnification 
image showing the same dual-immunolabeling as in A, but in a P5 spinal cord.  B1, By 
P5, PV-IR axons have proliferated and significantly more axons are seen in the ventral 
horn.  B2, High magnification image of the RC area.  B3, Higher magnification image of 
the RC indicated in B2 (arrow in B2) showing several contacts from PV-IR sensory 
afferents.  Box indicates area shown at higher magnification in inset.  C, E18 spinal cord 
showing dual-immunolabeling fro PV (red) and VGLUT1 (FITC, green).  C1, Low 
magnification image of PV-IR axons in the embryonic spinal cord.  PV-IR axons are seen 
in the dorsal columns (DC), LV, and lamina IX (LIX).  C2, No VGLUT1-IR varicosities 
are seen in the spinal cord at E18.  Only some weak and diffuse labeling was seen in LV.  
D, High magnification image of a PV-IR axon with no VGLUT1-IR.  E, Low 
magnification image of a P5 spinal cord showing dual-immunlabeling of PV (red) and 
VGLUT1 (green).  High densities of VGLUT1-immunolabeled varicosities are present in 
LIII-LIV (arrowheads) and in the LV and LIX.  F, High magnification image of LIX at 
P5 showing co-localization of VGLUT1-IR clusters (green) and PV-IR varicosities (red).  
Scale bars: A1, B1, C1-C2 and E (in A1,B1,C1,C2,E) 200 µm; A2 and B2 (in A2,B2), 
50 µm;  A2-A3, B2-B3, D and F (in A2,A3,B2,B3,D,F), 20 µm. 
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marker of sensory afferents is that by P10, spinal interneurons begin to upregulate PV 

expression making it difficult to identify, with certainty, the origin of PV-immunolabeled 

axons.  Therefore, Fdxts and PV are excellent markers of sensory afferents until P10.

 Ideally we would like to combine labelings of primary afferent axons with a 

specific presynaptic marker indicating the presences of a synapse.  For this purpose we 

used vesicular glutamate transporter isoform 1 (VGLUT1).  VGLUT1-IR proved to be a 

specific marker of sensory afferents in postnatal developing and adult RCs.  In postnatal 

spinal cords, bright VGLUT1-IR clusters were found in both PV-IR sensory axons and 

dorsal root Dxt-filled varicosities.  Therefore, ventral horn synapses from sensory 

afferents express VGLUT1, which can be demonstrated by the lack of VGLUT1-IR 

inputs on RCs of Er81(-/-) animals (Figure 12).  Interestingly, no VGLUT1-IR was 

detected in Dxt-filled or PV-IR sensory afferents in embryonic spinal cords, but nearly all 

of the labeled varicosities contained clear VGLUT1-IR clusters by P0 (Figure 11C-F).  

VGLUT1-immunoreactivity displayed considerable maturation during development, 

most likely indicative of the maturation of the presynaptic vesicle pools.  VGLUT1-IR 

immunofluorescence inside Dxt-filled sensory afferents increased significantly from P0 

to P10 [P0 = 1638 ± 481 units (n = 50; average ± SD, in arbitrary units from 24 bit 

images, i.e., max of 4095) and P10 = 3399 ± 539 units (n = 50); p<0.001, t-test].  

Background levels remained the same (357 ± 199 units).  Dxt-filled varicosities also 

doubled in size from P0 to P10 (P0 = 0.71 ± 0.33 µm2 and P10 = 1.30 ± 0.52 µm2 

(average ± SD; p<0.001, t-test).  Similarly, VGLUT1 immunofluorescence in PV-IR 

varicosities increased significantly from 1464 ± 382.23 units at P0 to 3473 ± 295.63 units 

at P10 (n = 50 clusters at each age; p<0.001, t-test).  VGLUT1-IR clusters in mice 
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increased significantly in size during development (p<0.001, one-way ANOVA).  

VGLUT1-IR clusters more than tripled in size from 1.10 ± 0.43 µm2 at P0 to 3.52 ± 1.36 

µm2 at P15 and after P15, nearly doubled at P20 (Figure 13)(5.08 ± 0.96 µm2; average ± 

SD; n = 50 clusters at each age).  Post hoc tests indicate that the increase from P0 to P15 

and then to P20 were significant (p<0.005, post hoc Tukey’s test), but no differences 

were detected between P0 and P5 (p=0.062, t-test) and P20 and adult (p=0.970, t-test).  

VGLUT1-IR cluster sizes were not analyzed in neonatal rats, but no significant 

differences were detected between P15 (5.1 ± 2.25 µm2), P20 (5.3 ± 2.12 µm2), and adult 

(5.9 ± 2.22 µm2; n = 50 clusters at each age; p=0.177, on-way ANOVA).  At these ages 

VGLUT1 immunofluorescence intensity was extremely bright and the imaging system 

was saturated at the same acquisition parameters used to detect VGLUT1-IR punctae at 

P0.  In conclusion, VGLUT1-IR clusters were not detectable in embryonic sensory 

afferents and were first detected at P0, thereafter they became bigger and brighter 

suggesting a significant postnatal maturation of VGLUT1-IR sensory afferent synapses 

up to P15.  We used VGLUT1 as marker of sensory afferent synapses during postnatal 

development.   

 VAChT-IR labels motor axon collaterals specifically on RCs in the adult spinal 

cord (Alvarez et al., 1999).  Accordingly, VAChT-IR contacts disappear on RCs in adult 

superoxide dismutase 1-mutant animals undergoing motor axon degeneration 

(FitzSimons et al., 2006) and can be retrogradely labeled from the ventral root in 

neonates (Figure 14; Mentis et al., 2005).  Unlike VGLUT1, VAChT-IR clusters in the 

spinal cord are present as early as E16.  Therefore, motor axons synapses (VAChT-IR  
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Figure 12.  Changes in VGLUT1-IR contact density on RCs in Er81(-/-) knockouts.  A-B, 
Low magnification confocal images of spinal cord sections from P15 Er81(+/+) (wild-
type; A) and Er81(-/-) (mutant; B) animals immunolabeled with NeuN (Cy3, red) and 
VGLUT1 (FITC, green).  In Er81(-/-) knockouts, primary afferents fail to make 
arborizations in the ventral horn (Arber et al., 2000).  VGLUT1-IR is largely absent in the 
ventral horn of Er81(-/-) animals.  The line above the central canal (CC) represents the 
border between dorsal and ventral horns (DH and VH, respectively).  The dotted line 
delineates the border between the ventral horn and the ventral funiculus (VF).  C-D, 
Higher magnifications images of the ventral horns of Er81(+/+) and Er81(-/-) animals 
displaying VGLUT1-IR (green) and CB-IR (Cy3, red).  The dotted line indicates the 
border between the VH and the VF.  Again, VGLUT1-IR is absent in the ventral horn of 
Er81(-/-) animals at P15.  E-G, VGLUT1-IR bouton contacts (green) on P15 CB-IR RCs 
(red). These are numerous in Er81(+/+) animals (wild-types, E), just a few in Er81(+/-) 
heterozygotes (arrows) (F) and almost none in Er81(-/-) (homozygotes, G).  H-I, 
Quantitative analysis of the surface density of VGLUT1-IR contacts on RCs in Er81(+/+), 
Er81(+/-), and Er81(-/-) P15 mice.  At P15, the density of VGLUT1-IR contacts were 
significantly reduced in both dendrites (H) and somata (I) of Er81(+/-) heterozygotes and 
Er81(-/-) knockouts compared to wild type (one-way ANOVA; p<0.001). VGLUT1-IR 
contact density was significantly different between Er81(+/-) heterozygotes and Er81(-/-) 
knockouts on dendrites, where a few VGLUT1-IR contacts remain in Er81(+/-) 
heterozygotes.  Therefore, VGLUT1-IR contacts on RCs are of primary afferent origin.  
Scale bars: A and B (in A), 200 µm; C and D (in C and D), 100 µm; C, D, E, F, and G 
(in E, F, and G), 20 µm. 
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Figure 13.  VGLUT1-IR cluster sizes in mouse and rat during postnatal development.  A, 
High magnification confocal images of VGLUT1-IR clusters in Lamina IX in P0 (A1), 
P15 (A2), and adult (A3) mice.  VGLUT1-IR clusters appear larger and brighter at P15 
compared to P0 and adult clusters compared to P15.  B, VGLUT1-IR clusters at P15 
(B1), P20 (B2), and adult (B3) in rats.  C, Size of VGLUT1-IR clusters in P0, P5, P10, 
P15, P20, and adult mice.  VGLUT1-IR clusters increase significantly in size from P0 to 
P20 (p<0.05, one-way ANOVA; no significant differences were detected between P20 
and adult, p=0.970, t test), suggesting a rapid maturation of the presynaptic machinery up 
to P20.  D, VGLUT1-IR cluster size in P15, P20, and adult rats.  No significant 
differences were detected between the three ages analyzed (p=0.170, one-way ANOVA).  
Scale bars: A and B (in A1-A3 and B1-B3), 5 µm.    
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Figure 14.  Convergence of sensory and motor axons inputs on Renshaw cells in the 
postnatal spinal cord.  A1, Low magnification confocal image of a P4 spinal cord section 
with sensory afferent projections (FITC dextran, green) and motoneurons (MNs) and 
axons (Texas Red dextran, red) labeled from dorsal and ventral roots, respectively. 
Calbindin-IR is in blue (Cy5, blue).  A group of intensely immunolabeled neurons is 
apparent at the ventral border of LVII (boxed area), which corresponds to the future adult 
Renshaw cells (Geiman et al., 2000).  A2, Medium magnification image of the area 
indicated in A (box in A). MNs (red) and RCs (blue) are surrounded and contacted by 
primary afferent axons (green). In addition, RCs are also targeted by motor axons (red). 
Double arrowhead indicates the bundle of labeled motor axons exiting the spinal cord. 
A3, High magnification image of the RC indicated in B. This P4 Renshaw cell displays 
convergent inputs from motor axons (red, arrows) and primary afferents (arrowheads). 
The density of motor contacts is reduced compared to adult Renshaw cells (e.g., Alvarez 
et al., 1999), suggesting extensive postnatal proliferation of this input.  B, High 
magnification confocal images from a P15, L5 spinal cord triple-immunolabeled to show 
sensory afferents (dextran-FITC), VGLUT1-IR varicosities (Cy3, red) and CB-IR RCs 
(blue). Sensory afferent axons at this age show varicosities that make contact with P15 
RCs (B1, arrowheads in inset). The same RCs are contacted by VGLUT1-IR varicosities 
(B2, arrowheads in inset). Superimposition of both images shows that almost all sensory 
afferent varicosities in the P15 spinal cord contain VGLUT1-IR (B3, arrowheads in 
inset).  D, High magnification image of P15 CB-IR RCs (red) in the area of the motor 
axon exit zone (labeled with dextran-FITC) and superimposed with VAChT (blue).  This 
area contains a high density of motor axons with many varicosities.  Fdxt-labeled motor 
axons co-localize with VAChT-IR varicosities (green plus blue) and often contact CB-IR 
RCs.  E, Percentage of CB-IR cells receiving at least one contact from each of the 
markers used to identify dorsal and ventral root inputs.  Numerical data is summarized in 
Table 1.  In the embryo, almost all CB-IR RCs are contacted by VAChT-IR motor axons.  
In contrast, sensory afferent inputs are few in embryo, but spread to all RCs around P10-
P15 (rat and mouse, respectively).  PV = Parvalbumin.  Scale bars: A1 (in A1), 200 µm; 
A2 (in A2), 40 µm; B1-B3 and D (in B3 and D), 20 µm; A3 (in A3), 10 µm.    
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clusters) are present in the embryonic spinal cord before the establishment of primary 

afferent synapses (VGLUT1-IR clusters).                                                                    

 

Postnatal Renshaw cells receive convergent inputs from primary afferents and motor 

axon collaterals 

 Next we investigated whether RCs receive convergent inputs from sensory 

afferents and motor axons.  Almost all mouse and rat CB-IR neurons in the Renshaw cell 

area of E16, E18, P0, P5, P10, P15, P20, and adult spinal cords exhibited VAChT-IR 

contacts and/or contacts varicosities retrogradely labeled from ventral roots.  Only 

VAChT-IR varicosities were used to estimate the number of RCs contacted by motor 

axons because although the retrograde labeling was excellent, only a proportion of 

VAChT-IR contacts were retrogradely labeled from ventral roots with any of the three 

fluorochrome-conjugated dxts used.  A possible explanation is that many inputs entering 

via adjacent ventral roots are missed when labeling only one root.  Also, motor axon 

collaterals were difficult to identify in embryonic spinal cords because the dense plexus 

of immature dendrites that, at this age, are thin and varicose and can be confused with 

axons without the aid of presynaptic markers.  Therefore, reliable estimates of the 

number of RCs contacted by motor axons were obtained using estimates of contacts from 

VAChT-IR varicosities.  We concluded that motor axon inputs have already spread to the 

whole RC population by E16 (Figure 14E).  In contrast to motor axon inputs, inputs from 

primary afferents develop postnatally on RCs.  In E16 spinal cords, only 18% of RCs (n 

= 53 CB-IR RCs/1 animal) were contacted by fdxt-filled sensory axons.  By E18, ~24-

34% of RCs were contacted by PV-IR or fdxt-filled sensory axons, respectively (PV, n = 
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41/1; fdxt, n = 77/2).  Sensory axons express robust PV-IR at E18, but this is weaker at 

E16 and was not strong in all dextran filled afferent collaterals, therefore E16 estimates 

are based only on dxt-filled sensory axons.  In neonates (P0/1), more than half of all RCs 

analyzed received contacts from sensory afferents with good agreement between all 

markers (fdxt = 68.2% (n = 90/2), PV = 67.7% (n = 49/2) and VGLUT1 = 63.6% (n = 

11/1)).  All CB-IR RCs analyzed were contacted by sensory axons by P10 (n = 21/2) or 

P15 (n = 20/2) for rat and mouse respectively.  Therefore, we concluded that RCs are first 

contacted by motor axon inputs during the early embryonic period, and then convergent 

sensory axon inputs are established in late embryo and the perinatal period and spread to 

all RCs in the second postnatal week (numerical data summarized in Table 3).  

Surprisingly, sensory axon synaptic contacts were retained by adult RCs in both rat and 

mouse. 

 

Adult Renshaw cells in cat, rats, and mice receive VGLUT1-IR inputs. 

 To corroborate that the primary afferent inputs on RC are not a species specific 

phenomenon and restricted to rodents, we investigated cat RCs as described in the 

methods.  Although cat RCs are much larger than mouse or rat RCs, they received a 

significantly larger number of VGLUT1-IR contacts per cell soma (~2 contacts per cell 

soma of mouse and rat, 14 contacts per cell soma for cat, p < 0.001, one-way ANOVA).  

The different number of VGLUT1-IR contacts is reflected in two-fold to four-fold 

increase in density over cat RCs compared, respectively, with mouse and rat (Figure 15).  

In conclusion, adult RCs in all species retain a significant number of VGLUT1-IR  
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Table 3.  Percentage of Calbindin-IR Renshaw cells contacted by different markers of 
sensory afferents and motor axon recurrent collaterals in mouse versus rat.   
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Figure 15.  Density of VGLUT1-IR contacts on adult cat, rat, and mouse.   A, High 
magnification image showing, in A1, surface reconstruction (23 optical planes, z-step = 
0.5 µm) of two cat Renshaw cell somata and proximal dendrites identifiable by the high 
density of large, bright Gephyrin-IR clusters on their surface (FITC, green; Alvarez et al., 
1997) and in A2, superimposed VGLUT1-IR contacts (Cy3, red).  A single optical plane 
is shown in the inset.  B, VGLUT1-IR contacts on Gephyrin-IR RC in the cat.  C, 
Quantitative analysis of VGLUT1-IR contacts per cell soma and corresponding densities 
for rat, mouse, and cat Renshaw cells.  Cat Renshaw cell surface area was approximated 
using an ellipsoid of the same long and short diameters. Cat Renshaw cells are 
significantly larger than rat and mouse Renshaw cells and receive a 10-fold larger 
number of VGLUT1-IR contacts per cell soma. Differences in number of contacts were 
highly significant (asterisk, p<0.001, One-way ANOVA) between cat and rat/mouse, but 
not between rat and mouse. The different number of VGLUT1-IR contacts is reflected in 
2 to 4–fold increase in density over cat Renshaw cells compared respectively to mouse 
and rat. Interestingly, significant differences (p<0.05, asterisks) were also detected in 
VGLUT1-IR contact density between rat and mouse, despite similar numbers of contacts. 
This difference arises because distinct final sizes of adult rat and mouse Renshaw cell 
somata. Scale bar: A and B (in A), 20 µm; insets, 10 µm.    
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sensory synapses.  This conclusion is contrary to electrophysiological studies that failed 

to find evidence for this input.     

 

In the early postnatal period, VGLUT1-IR and VAChT-IR inputs proliferate on Renshaw 

cells, but after P15 VGLUT1-IR inputs decrease in density. 

 We found that postnatal and adult RCs receive convergent inputs from primary 

afferents and motor axons, which contrasts with the generally accepted view that motor 

axons are the main source of excitatory inputs on RCs.  One possibility is that each input 

displays different synaptic strengths in the adult.  The strength of a synaptic input relies 

on the number of synapses, their distribution throughout the dendritic tree, and the 

synaptic efficacy of the individual synapses.  Therefore, we investigated the number, 

density, and distribution of these inputs throughout development and in the adult.   

 Using 3D reconstructions of somata and proximal dendrites obtained from series 

of confocal optical sections (Figure 16), we looked at the relative densities of these inputs 

on postnatal RCs.  For this purpose we used VGLUT1-IR as a marker of primary 

afferents and VAChT-IR as a marker of motor axon collaterals in both mouse and rat of 

postnatal ages P0/1, P5, P10, P15, P20, and adult.  The number of proximal dendritic 

segments analyzed ranged from one to four per cell.  The relatively small field of view at 

the high magnification needed for “contact” identification and for CB-IR thresholding 

limited the maximum lengths of dendrite analyzed.  The maximum dendritic lengths 

analyzed were also limited by age differences in dendrite immunolabeling.  The average 

length of dendrite analyzed at P0/1 was 26.1 ± 1.5 µm (±SEM) in rat and 23.4 ± 1.0 µm  

 



 109 

Figure 16.  Development of VGLUT1-IR contacts on postnatal Renshaw cells.  A, B, 
High magnification images of VGLUT1-IR (FITC, green) contacts on P5 (A) and P20 
(B) CB-IR rat RCs (Cy3, red).  Insets show 3D reconstructions of those same cells 
reconstructed using 3DSpace software (Media Cybernetics).  The analyzed regions (soma 
and dendrites) are color-coded.  The density of VGLUT1-IR contacts in each of these 
regions was estimated as shown below in D.  C, 3DSpace 3D reconstruction of the P20 
RC shown in B.  The cell is shown in three different rotations.  With the 3DSpace 
software we scanned all optical planes containing VGLUT1-IR boutons over 3D 
reconstructions of the cells and the calculated number of contacts. The quantitative 
results are shown in D.  D, Density of VGLUT1-IR contacts on the surface of somata and 
dendrites of CB-IR RCs of different ages.  Overall densities increased from P0 to P15, 
(more rapidly after P10) and then decreased at P20. Similar results were obtained in rat 
and mouse spinal cords.  One-way ANOVA tests indicated significant increases (P<0.05) 
from P0-P15 ages both species, and then a decrease in VGLUT1-IR contact density from 
P15-P20 to adult.  Scale bars: A and B (in A and B), 20 µm. 
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in mouse.  The average dendritic length progressively increased at older ages, up to 41.0 

± 1.4 and 38.6 ± 1.3 µm in adult rat and mouse RCs, respectively.  The number of 

VGLUT1-IR and VAChT-IR contacts per reconstructed soma or dendrite was then 

normalized against the total dendritic length (linear density) or total membrane surface of 

somata and dendrites (surface density).             

 More VGLUT1-IR and VAChT-IR contacts were located on RC dendrites 

compared to somata, which correlated into higher density estimates on dendrites.  Few 

VGLUT1-IR contacts were found on RC dendrites or somata at P0/1 in both rat and 

mouse.  The density of VGLUT1-IR contacts increased significantly to P15 and then 

decreased in P20 and adult (Figure 16; p<0.001, one-way ANOVA).  Results were 

similar for both rat and mouse.  ANOVA and post hoc analysis indicated that VGLUT1 

densities at P15 were different to all other ages in both somata and dendrites (p<0.05, 

post hoc Tukey’s test).  RC dendrites displayed a fivefold to sevenfold increase in 

VGLUT1-IR density from P0 to P15.  Thereafter, VGLUT1-IR density decreased to less 

than half the P15 density in the adult.  Although the density of VGLUT1-IR contacts 

decreased significantly after P15, over all the number of contacts per cell body or 

dendrite increased significantly from P0 (Rat soma = 0.64 ± 0.28 contacts, rat dendrites = 

0.6 ± 0.18; mouse soma = 0.4 ± 0.2, mouse dendrites = 0.54 ± 0.22) to adult (Rat soma = 

1.9 ± 0.27 contacts, rat dendrites = 3.4 ± 0.27; mouse soma = 2.4 ± 0.25, mouse dendrites 

= 3.97 ± 0.28) in both rat and mouse (average ± SEM; Rat, soma p=0.009, dendrites 

p<=0.001; mouse, soma p=0.008, dendrites p<=0.001; t-tests) indicating a net gain of 

VGLUT1-IR contacts, which was reflected in generally higher synaptic densities in adult 

compared with P0. 
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 Next we investigated the density of VAChT-IR contacts on postnatal RCs in the 

rat.  Analysis was not done in mouse because no significant species differences were 

observed in the density of VGLUT1-IR contacts between rat and mouse.  The number of 

VAChT-IR contacts on RC somata and dendrites was significantly higher than VGLUT1-

IR contacts at P0/1 (VAChT-IR contacts on soma = 2.0 ± 0.44, dendrites = 1.96 ± 0.29; 

p<0.01, t-test).  This increased number of contacts resulted in VAChT-IR contacts being 

significantly denser than VGLUT1-IR contacts at P0 (p<0.01, t test).  Overall, VAChT-

IR contact density increased from P0 to P15 in parallel with VGLUT1-IR contact density, 

but by difference to VGLUT1 contacts, the density of VAChT-IR motor axon synapses 

after P15 was maintained (Figure 17; p<0.001, one-way ANOVA).  Post hoc analysis 

indicates that VAChT-IR contact density increases from P5 to P15 (p<0.05, post hoc 

Tukey’s test), but no significant differences were detected between P0/P5 and 

P15/P20/adult (p>0.05 post hoc tests).  The number and density of VAChT-IR contacts 

on adult rat Renshaw cells somata and dendrites are significantly higher than VGLUT1 

(p<=0.001, t tests).  Therefore, we concluded that the density of sensory afferent synapses 

on RCs first increases postnatally and then decreases after P15. In contrast the density of 

motor axon synapses increases in parallel during the first two postnatal weeks and it is 

thereafter maintained (Numerical data summarized in Table 4).  One question is whether 

the decreases observed in VGLUT1-IR contact density are due to a decrease in the 

number of synapses or a redistribution of the synapses to more distal locations that could 

not be analyzed with confocal microscopy and the 3DSpace software. 
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Figure 17.  Density of VGLUT1-IR contacts on Renshaw cells compared to VAChT-IR 
contacts.  A-B, High magnification images of P5 (A) and P15 (B) Calbindin-IR RCs 
(Cy3, red) with VAChT-IR (FITC, green) contacts.  Arrowheads indicate VAChT-IR 
contacts on RC dendrites.  The number of VAChT-IR contacts on RCs increases from P5 
to P15, and is maintained after P15 in the adult.  C, Density of VAChT-IR contacts on the 
surface of somata and dendrites of CB-IR RCs of different ages.  The density of VAChT-
IR contacts on RC somata and dendrites increases significantly from P0 to P15 and is 
maintained after P15 (p<0.05, one-way ANOVA).  No significant differences were 
detected between P15, P20, and adult (Soma, p=0.068; dendrites, p=0.571, one-way 
ANOVA).  D, Density of VGLUT1-IR and VAChT-IR contacts on CB-IR RCs of 
different ages.  The density of VGLUT1-IR and VAChT-IR contacts on both the somata 
and dendrites of Renshaw cells increases significantly from P0 to P15 (p<0.05, one-way 
ANOVA).  The density of VGLUT1-IR contacts decreases after P15.  In contrast, the 
density of VAChT-IR contacts increases until P15 and then stabilizes at P20 and in the 
adult.  Scale bars: A and B (in A), 20 µm.       
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Table 4.  Number and density (contacts per 100 µm2) of VGLUT1-IR and VAChT-IR 
contacts on Calbindin-IR rat Renshaw cells during postnatal development. 
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 We investigated the density of VGLUT1-IR and VAChT-IR contacts on more 

distal segments of CB-IR RC dendrites visualized using dual-color immunoperoxidase.  

VGLUT1-IR and VAChT-IR boutons were labeled with silver-intensified DAB (black) 

and CB-immunoreactivity with non-intensified DAB (brown) (Figure 18).  Using a 

neuron tracing system (Neurolucida) and Sholl analysis (Figure 18E), we studied 

VGLUT1-IR and VAChT-IR synaptic densities at different distances from the cell body.  

We determined that VGLUT1-IR linear density on dendrites decreased from P15 to adult 

by 28% overall and this decrease was significant (p < 0.05, one-way ANOVA).  This 

decrease was similarly distributed throughout the whole dendritic arbors (Figure 19).  It is 

important to note that the decrease in VGLUT1-IR density was not accompanied by a 

significant decrease in the total number of contacts per cell (P15 = 26.48 ± 1.77 contacts 

per cell compared to adult = 23.53 ± 1.25, p = 0.173, t test), therefore the decreased 

density is not explained by the removal of contacts, but by the increased size of the 

dendritic arbor (Total dendritic length sampled, P15 = 204.31 ± 14.44 µm and adult = 

253.48 ± 15.98 µm).  In contrast, VAChT-IR contact density remained constant in all 

dendritic compartments from P15 to adult (p > 0.05, one-way ANOVA). VAChT-IR 

synaptic density was maintained because of a significant increase in the total number of 

contacts with development (P15 = 27 ± 2.05 and adult = 34.63 ± 3.09, p < 0.01, t test) 

that matched the increase in dendritic length (numerical data summarized in Tables 5 and 

6). 

In conclusion, the motor axon VAChT-IR synaptic input appears to proliferate 

and match the development of the RCs dendritic arbor.  In contrast, the sensory afferent 

VGLUT1-IR synaptic input appears to arrest its proliferation and maturation around P15.   
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Figure 18.  Brightfield preparations and Neurolucida 3D reconstructions used to analyze 
VGLUT1-IR and VAChT-IR contact density on Renshaw cell distal dendritic segments.  
A-D, Calbindin-IR Renshaw cells (brown reaction product, DAB) at P15 (A,B) and in the 
adult (C,D) contacted by VGLUT1-IR boutons (black, silver-intensified DAB) in A and 
B or VAChT (also black, silver-intensified DAB) in C and D.  Boxes indicate areas of 
RC dendrite with immunoreactive contacts shown at higher magnification in insets.  Both 
VGLUT1-IR and VAChT-IR boutons preferentially target dendritic arbors.  The number 
of VGLUT1-IR and VAChT-IR contacts on RCs at P15 appears similar, but VGLUT1-IR 
contact density is reduced in the adult.  E, 3D reconstruction of a CB-IR RC at P15 with 
VGLUT1-IR contacts plotted on the reconstruction.  Dotted circles represent the Sholl 
bins, which begin from the center of the cell soma (50 µm bins).  The black dotted circles 
represent the distances analyzed in this study.  Although this cell has dendritic segments 
that extend into the 200-250 and 250-300 µm bin (indicated by blue dotted circles), most 
cells analyzed did not.  Therefore these bins were excluded from further analysis.  Scale 
bars: A-D (in B), 50 µm. 
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Figure 19.  Density and distribution of VGLUT1-IR and VAChT-IR contacts on mature 
Renshaw cells.  A, Sholl analysis of VGLUT1-IR contacts on RC dendrites (per 10 µm of 
linear dendrite).  Numbers in parentheses indicate the number of cells that showed data in 
each distance bin.  Too few dendrites/Renshaw cells provided data beyond 200 µm, and 
therefore these bins were not analyzed further.  A decrease in the number of VGLUT1-IR 
contacts per 10 µm of linear dendrite was apparent in most distance bins (except for the 
50 –100 µm bin), indicating that there are no major shifts in VGLUT1-IR bouton 
distributions at different distances from the cell soma.  B, Similar analyses for VAChT-
IR contacts.  In contrast to VGLUT1-IR boutons, VACHT-IR bouton density was either 
maintained or had a tendency to increase at P20 and adult compared with P15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 120 

 



 121 



 122 

 



 123 

At this time the animal starts to display weight-bearing locomotion.  This sudden stop in 

the formation of new synapses might reflect a process of functional de-selection of this 

input, by difference to the motor axons which continue to establish more synapses that 

likely strengthens this input.    

 

Discussion 

The main findings of this aim confirm the hypothesis that embryonic and 

postnatal Renshaw cells receive convergent inputs from sensory afferents and motor 

axons recurrent collaterals.  In addition, two other fundamental observations were made: 

1) Motor axon inputs are already established by E16, the age at which sensory synapses 

arrive in the ventral horn, 2) Sensory synapses are physically retained in adult RCs, 

although their density decreases with development.  These results suggest that there are 

differences in RC competence to receive and maintain inputs from motor axon recurrent 

collaterals, and sensory afferents compared to other ventral interneurons.   

 

Anatomical and electrophysiological evidence for presence of sensory afferent inputs on 

neonatal Renshaw cells. 

 Our findings indicate that RCs receive inputs from sensory afferents and that 

these inputs are retained in the adult.  This contrasts with previous studies that indicated 

that RCs lack monosynaptic inputs from sensory afferents.  This conclusion was mainly 

derived from electrophysiological recordings in the cat spinal cord, in which dorsal root 

volleys failed to elicit responses in RCs (Renshaw, 1946; Curtis and Ryall, 1966).  

Although, when larger stimuli were applied, a response was evoked, the nature of these 
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responses was not addressed further and was usually considered polysynaptic.  Few 

anatomical studies investigated whether RCs receive monosynaptic inputs from sensory 

afferents.  In one study using electron microscopy, Lagerback and Ronnevi (1982) 

described synapses on cat RCs that were ultrastructurally similar to Ia afferent synapses 

on motoneurons in that they received axo-axonic contacts (Conradi et al., 1983; Fyffe and 

Light, 1984; Pierce and Mendell, 1993).  However, at that time it was unknown if 

presynaptic axo-axonic synapses were specifically found only on primary afferent 

synapses.  Today we know that the synapses identified by Lagerback and Ronnevi (1982) 

are very likely Ia afferent synapses.       

 We found that RCs are first contacted by sensory afferents during late embryonic 

development (E16-E18).  Very few embryonic RCs are contacted but most (90-100%) are 

contacted by P10.  When compared to the development of the Ia-motoneuron synaptic 

connection, the development of sensory afferent inputs on RCs appears to be delayed (for 

review, see Chen and Frank, 1999).  Ia afferents enter the ventral horn around E15 (Ozaki 

and Snider, 1997; Chen and Frank, 1999) and by E16 a monosynaptic reflex is functional 

(Kudo and Yamada, 1987).  Monosynaptic Ia-EPSPs can be recorded from most MNs in 

rodent embryos and before birth (Ziskind Conheim, 1990).  The delay in establishing 

synapses with RCs could be due to the location of RCs in the ventralmost portion of 

lamina VII.  MNs are located in lamina IX and extend dendrites throughout LVII and 

therefore the Ia axons do not have to project as ventrally to establish synapses on them.  

Also, because of the very ventral location of RCs, the sensory afferents identified most 

likely belong to Ia proprioceptors.  Ia afferents are the only sensory afferents that project 

this ventral in the spinal cord (Brown and Fyffe, 1978 and 1979).       
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 The lack of VGLUT1-IR in sensory afferent varicosities contacting embryonic 

RCs (and lack of VGLUT1-IR in the spinal cord during embryonic development) 

suggests a very immature synapse.  It is not until P0 that the first detectable VGLUT1-IR 

clusters are observed and significantly mature during the first two postnatal weeks.  It is 

possible that our detection methods are not sensitive enough to detect small amounts of 

VGLUT1 antibody present.  Also, it is possible that there is a subtype switch from one 

transporter in embryo to VGLUT1 postnatally.  An in vivo study demonstrated that 

parallel fibers innervating Purkinje cells in the cerebellum switch from expressing 

VGLUT2 to VGLUT1 during development (Miyazaki et al., 2003).  Although this study 

looked at subtype switches during postnatal development, it is possible that a similar 

switch occurs in sensory afferents, but during late embryonic development.  Preliminary 

observations suggest that VGLUT2 might be present in embryonic proprioceptive 

sensory primary afferents identified with PV-immunoreactivity, but further studies are 

necessary to prove a possible switch.         

 Our collaborator Dr. George Mentis attempted to discern whether the sensory 

afferent inputs anatomically identified on neonatal RCs were indeed functional and 

evoked monosynaptic EPSPs.  Using an in vitro neonatal mouse spinal cord preparation, 

Dr. Mentis was able to record from RCs and ventral roots while simultaneously 

stimulating the dorsal roots.  Dorsal roots evoked EPSPs on RCs and at stimulus 

strengths two times threshold for EPSPs, they consistently evoked firing (Mentis et al., 

2006).  The latency of RC’s early response did not change when the stimulus intensity or 

the frequency is increased and the latency of the RC early response to dorsal root 

stimulation equaled that of the MN.  In addition, cholinergic receptor blockers 
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mecamylamine, dHβE, and atropine failed to abolish the dorsal-root evoked potential in 

RCs.  All these observations suggest that the response is not polysynaptic, but a 

monosynaptic response.  Furthermore, application of glutamatergic receptor antagonists 

(APV and CNQX) reversibly abolished the dorsal-root evoked potentials on RCs.  

Therefore, the anatomical sensory afferent inputs we analyzed on RCs, in the neonate, 

represent functional monosynaptic glutamatergic primary afferent inputs.  The question is 

then why functional inputs from dorsal roots are not observed in adult spinal cord 

preparations.           

 

Postnatal development of sensory afferent synapses on Renshaw cells  

 Synaptic strength corresponds to the amount of influence one neuron’s firing has 

on another neuron’s firing and can be altered at the presynaptic or the postsynaptic level 

(Burke, 1987).  Presynaptic factors that can affect synaptic strength include the number 

of presynaptic boutons, the distribution of those boutons along the soma-dendritic 

membrane of the postsynaptic cell, and the amount of neurotransmitter released from 

each terminal to name a few.  Postsynaptic factors include the total membrane over which 

synapses are distributed, the number of receptors and the efficacy with which ligands 

activate those receptors.  Dorsal root afferent stimulation at suprathreshold levels evoked 

robust firing in neonatal RCs, but we demonstrated, using anatomical techniques, that the 

strength of the sensory afferent input on RCs likely decreases with maturation after the 

second postnatal week.  First, the density of VGLUT1-IR inputs on RCs increases 

significantly from P0 to P15; but after P15, significantly decreases.  We found that the 

decrease from P15 to P20 and in the adult is not due to a decrease in the number of 
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contacts or a re-distribution to more distal dendritic segments, but a failure to add 

synapses during development to match the growth of the dendritic arbor.  Second, Ia 

afferent synapses on RCs could possibly be shunted by the development of strong 

inhibitory synapses after P10 (Geiman et al., 2000; Gonzalez-Forero and Alvarez, 2005).  

RCs receive an unusually high density of inhibitory synapses on their soma and proximal 

dendrites that have large gephyrin-IR clusters with a high density of postsynaptic 

receptors and display large postsynaptic currents.  All of which suggest a greater 

inhibitory synaptic strength.             

 Moreover, studies from our lab using electron microscopy suggest that the 

synaptic machinery of VGLUT1-IR primary afferents on Renshaw cells partially 

regresses from P15 to adult.  This conclusion is based on comparison of the size of 

boutons (cross-sectional area, perimeter and length of apposition with postsynaptic 

membrane), the number of Postsynaptic Densities (PSDs) and their lengths.  Pierce and 

Mendell (1993) proposed that Ia synapse release properties and synaptic strength 

correlates with the size of the presynaptic Ia afferent bouton and postsynaptic density 

(PSD) apposing the Ia afferent.  At P15 there were no differences in bouton size or PSD 

average length between VGLUT1-IR synapses contacting MNs and RCs.  However, 

PSDs opposite to VGLUT1-IR boutons were significantly smaller and fewer over adult 

RCs compared to either P15 VGLUT1 synapses on RCs or adult VGLUT1 synapses on 

MNs (Mentis et al., 2006; Figure 20).  Therefore, it appears that although the primary 

afferent input on RCs is not removed, part of the mechanism for “functionally” silencing 

might be based on partial removal of the synaptic machinery.  It is possible then that the 

same mechanisms involved in synapse elimination also work during synaptic maturation 
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of these synapses and result in synaptic weakening.  Synaptic weakening is manifested by 

decreases in presynaptic bouton size and is believed to be associated with the removal of 

postsynaptic receptors at sites of vacated or weakened synapses during synapse 

elimination (Lichtman and Colman, 2000; Walsh and Lichtman, 2003).  If the size of Ia 

afferent terminals correlates with synaptic strength, then the results suggest arrested 

maturation and decreased synaptic efficacy of VGLUT1-IR synapses on RCs after P15 

and in the adult.  As mentioned previously, RCs were believed to lack sensory afferent 

inputs and these conclusions were based on in vivo electrophysiological recordings in the 

cat (Renshaw, 1946; Curtis and Ryall, 1966) where dorsal root volleys failed to elicit 

responses.  An alternative explanation could be that there are species differences in the 

projection of sensory afferents onto RCs.  However, we demonstrated that, similar to 

rodents, VGLUT1-IR boutons contact RCs in the adult cat.  In fact, in the somato-

dendritic regions accessible to analysis in our histological preparations, VGLUT1-IR 

inputs were denser in cat RCs than in rodent RCs.  Therefore, it is possible that the 

sensory afferent inputs on cat RCs, similar to those seen on adult mouse and rat RCs, are 

functionally silent or weakened and subthreshold.   

 Based on the above information, Ricardo Zerda in our lab investigated whether 

primary afferent inputs on RCs become silenced by postsynaptic removal of AMPA 

receptors (Isaac, 2003; Voronin & Cherubini, 2004).  Synapses without AMPA receptors 

(AMPAR) are inactive, or “silent” under normal conditions.  Preliminary studies in our 

lab demonstrated that RCs express GluR4 and GluR2 AMPA subunits postsynaptically.  

Using electron microscopy employing postembedding quantitative colloidal gold 

techniques, it was found that the number of AMPA receptors on RCs postsynaptic to  
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Figure 20.  Summary of electron microscopy data of VGLUT1-IR bouton sizes and the 
postsynaptic densities apposing those boutons on Calbindin-IR and non-CB-IR dendrites 
at P15 and in the adult.  A, The development of VGLUT1-IR boutons apposing CB-IR 
dendrites.  No differences were detected in the average bouton size, length of the 
apposition and number of active zones at P15 and in the adult.  In contrast, the length of 
the PSD decreased significantly in the adult compared to P15.  B, Development of 
VGLUT1-IR boutons apposing non CB-IR dendrites.  Unlike those boutons apposing 
CB-IR dendrites, VGLUT1-IR boutons contacting non CB-IR dendrites increased 
significantly in size.  Also, the number of active zones and the length of the apposition 
increased significantly from P15 to adult.  Therefore, the synaptic machinery of 
VGLUT1-IR Ia afferents on RCs partially regresses from P15 to adult, which may be the 
mechanism responsible for “functionally” silencing these inputs on RCs.   
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VGLUT1-IR terminals decreased by more than half from P15 to adult.  Therefore, it 

appears that the decrease in the number of AMPA receptors and the partial removal of      

synaptic machinery are part of a mechanism that renders sensory afferent inputs 

contacting RCs “functionally silent” synapses.   

 

Motor axon synapse development on Renshaw cells 

 In contrast to sensory afferent inputs, all RCs analyzed during late embryonic 

development (E16-E18) received inputs from motor axon recurrent collaterals.  Motor 

axon inputs developed in parallel to sensory afferents, but unlike those from sensory 

afferents, after P15, their synaptic density was maintained at P20 and in the adult.  

Maintenance of high synaptic density explains why motor axon inputs on RCs remain 

functional in the adult.  Inputs from motor axons were shown to modulate the 

development of inhibitory synapses on RCs (Gonzalez-Forero et al., 2005).  In an 

elaborate set of experiments, either tetanus (TeNT) or botulinum neurotoxins (BoNT-A) 

were injected into the gastrocnemius muscle of P5 rats in order to increase (TeNT) or 

decrease (BoNT-A) motor firing.  They found that increasing motor firing with TeNT 

resulted in larger gephyrin clustering and larger inhibitory synaptic currents in RCs, 

whereas BoNT injections resulted in decreased motor firing and decreased gephyrin 

clustering in RCs.  From these experiments, it was concluded that the strength of 

inhibitory synapses on RCs was modulated by motor axon firing as a possible mechanism 

to match excitatory and inhibitory input strengths during development.  Therefore, it is 

possible that the motor axon input development strengthens inhibitory synapses, and this 

in turn suppresses sensory afferent inputs on RCs.  A possible outcome of this process is 
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that the weaker inputs from sensory synapses now become unmatched to the strength of 

inhibitory synapses and thus functionally silenced.  This would accelerate the weakening 

of sensory synapses if they behave in a typical Hebbian fashion.  This means that 

synaptic inputs whose activity does not correlate with postsynaptic firing becomes further 

weakened and eventually partially disassembled and/or eliminated (Hebb, 1949).     

 By late embryonic development (later than E15), all RCs analyzed were contacted 

by motor axon inputs suggesting that this input is established on RCs during early 

embryogenesis.   

 

Diversification of V1-derived interneurons 

 The present evidence suggests that final synaptic organization in RCs occurs 

because suppression or enhancement of certain inputs during postnatal development.  The 

data presented in this aim raises the possibility of a “generic” V1-derived interneuron 

(V1-IN) with projections from both sensory and motor inputs (Figure 21).  The idea of a 

“generic” V1-IN seems plausible because most V1-INs are located in regions of the 

spinal cord that are enriched in proprioceptive sensory afferents (Alvarez et al., 2005).  

According to this view, RCs could therefore diversify themselves from the “generic” V1-

IN subclass by weakening sensory afferent inputs and strengthening those from motor 

axons.  However we will see in aim 3 that the proposal of a “generic” V1-IN is not 

entirely correct.     

 In conclusion, we present evidence that RCs receive sensory afferent inputs 

during late embryonic development, which proliferates and matures until P15; after 

which it becomes “functionally de-selected”.  We also present evidence that by E16, all 
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RCs receive inputs from motor axons.  Motor axons inputs proliferate during postnatal 

development and are maintained in the adult by matching the development of the 

dendritic arbor.   
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Figure 21.   Schematic depicting developmental changes in the strength of sensory 
afferent (Ia afferents) and motor axon inputs on Renshaw cells.  Changes can be divided 
into two stages; an embryonic (A) and a postnatal (B) developmental stage.  A, 
Embryonic development of Ia afferents and motor axons on RCs.  The embryonic 
developmental stage can be further divided into an early embryonic stage (before E16) 
and a late embryonic stage (E16-birth).  During the early embryonic stage, RCs do not 
receive inputs from Ia afferents, but inputs from motor axons have already spread to all 
RCs by this stage.  The first Ia afferent inputs on RCs are not observed until later 
embryonic stages, but even during this stage, very few RCs are contacted.  B, Similar to 
the embryonic developmental stage, the postnatal development stage can be divided into 
an early (P0-P15) and late (P20-adult) stage.  During early postnatal development, the 
density of Ia afferent and motor axons inputs develops in parallel.  Significant differences 
are not detected until late postnatal development, when Ia afferent input density decreases 
significantly and the density of motor axons is maintained.  We concluded that the 
decrease seen in late postnatal development is not due to a re-distribution of Ia afferent 
inputs to more distal locations, but a lack of adding new synapses to match the 
development of the RC dendritic arbor.        
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CHAPTER VI 

Characterization of the embryonic development of the 

recurrent inhibitory circuit 

    

                                                                                                                     

 

 

 

 

 

 



 137 

Introduction 

 Understanding when and how spinal synaptic circuits develop is important, but 

unfortunately little is known about their formation.  In the previous aim, we determined 

that approximately all Renshaw cells at E16 are contacted by motor axon collaterals, 

suggesting that this synaptic interaction is established very early in embryogenesis.  

Recent studies of E11-E12 mouse spinal cord suggest that early motoneurons’ synapses 

target RC-like interneurons and these, through recurrent synaptic circuits, amplify 

motoneurons synchronous firing episodes such that waves of excitatory activity travel 

through the early spinal cord (Hanson & Landmesser, 2003).  At this age inhibitory 

neurotransmitters depolarize neurons.  Therefore, we investigated when RCs are first 

contacted by motor axon collaterals and the time course of synapse formation from RCs 

to motoneurons, since only when both synapses are formed the recurrent inhibitory 

circuit becomes closed and functional. 

 An exceptional study by Hanson and Landmesser (2003) characterized the circuits 

that they believe are responsible for the generation of episodes of spontaneous activity in 

the early embryonic spinal cord.  Using an in vitro mouse spinal cord-hindlimb 

preparation, they recorded motor output from motor nerves, and demonstrated that by 

E12, “circuits” that utilize acetylcholine and GABA are important for the propagation of 

local waves of synchronous motoneuron firing episodes.  Block of chemical transmission 

with high Mg2+ and low Ca2+ abolished the ability of MNs to elicit a local episode of 

activity, whereas blocking electrical transmission by the addition of carbenoxolone was 

not required to elicit local bursts. 
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 Although glutamate is the main excitatory neurotransmitter in adult motor 

circuits, Hanson and Landmesser showed that it is not important for the generation or 

propagation of rhythmic episodes in the embryonic spinal cord.  They found that blocking 

NMDA and AMPA/kainate receptors with APV and CNQX respectively had no effect on 

rhythmic spontaneous episodes.  Since glutamatergic transmission is not important for 

rhythmic activity during early embryonic development, they looked at whether 

cholinergic transmission was important.  Application of the nicotinic receptor antagonist 

DHβE blocked propagating episodes, but did not affect local episodes, suggesting that 

DHβE-insensitive nicotinic receptors are important for the generation of local episodes.  

They also investigated whether GABA and glycine could be involved in the generation of 

propagating rhythmic episodes.  Both GABA and glycine can be excitatory during early 

development (Wu et al., 1992; Reichling et al., 1994; Chen et al., 1996; Owens et al., 

1996).  Addition of the GABAA receptor antagonists bicuculline and picrotoxin increased 

interepisode intervals, while GABAB receptor antagonists phacolfen and hydrosaclofen 

did not affect rhythmic activity; suggesting that although GABA acting via the GABAA 

receptor is important for excitatory drive of the local circuit, it is not required for the 

generation of spontaneous activity.  However, application of the glycine receptor 

antagonist strychnine completely abolished spontaneous episodes of activity, but local 

episodes still occurred. 

 To explain this observation, Hanson and Landmesser provided a model circuit in 

which antidromic activation of MNs elicit local bursts of activity by activating 

GABAergic interneurons.  It is possible that these GABAergic interneurons represent 

RCs because V1s are known to have axons which project rostrally short distances and 
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terminate on MNs (Sauressig et al., 1999).  Therefore, activation of MNs will activate 

local GABAergic RCs which then recurrently activate MNs, ultimately amplifying and 

propagating episodes of spontaneous activity.  Therefore, at first the recurrent circuitry 

between MNs and RCs is excitatory and acts to propagate episodes of spontaneous 

rhythmic activity.  The early enhancement of MN firing and subsequent spreading of 

episodes of spontaneous activity are important for the development of the correct wiring 

of spinal motor circuits (see review Hanson et al., 2007).           

 Despite the impressive set of electrophysiological and pharmalogical evidence in 

Hanson and Landmessers study, no anatomical or physiological evidence was presented 

for the putative synaptic circuits proposed.  To determine when both synapses (i.e., those 

from MNs to RCs and from RCs to MNs) are formed, we used an Hb9::gfp mouse model 

and analyzed early (E11.5-E13.5) and late (E15.5-E17.5) embryonic ages.  Hb9 is a 

transcription factor expressed in MNs (Arber et al., 1999) and in Hb9::gfp mice 

(Wichterle et al. 2002), the MNs, their dendrites, axons and axon recurrent collaterals are 

fluorescently labeled.  We used immunohistochemistry against Calbindin to identify a 

group of presumed primordial RCs.  Co-localization of naked EGFP with the Vesicular 

acetylcholine transporter-IR (VAChT-IR) was used to identify motor axon inputs on 

primordial RCs.  Similarly, CB and Synaptophysin co-expression was used to identify 

RC inputs on EGFP labeled MNs.  We analyzed when RCs are first contacted by motor 

axon recurrent collaterals and when MNs are first contacted by RC axons.   
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Materials & Methods 

Harvesting and timing embryos 

 All embryos used in this aim were obtained from timed pregnant females (see 

General Methods; Timed Pregnancies).  Timing pregnancies was crucial in order to be 

able to collect embryos at the specific developmental ages analyzed in this study.  The 

average time of gestation of mice is relatively short (~19-21 days) and therefore 

significant developmental changes occur over narrow time periods.  Gestational age was 

further confirmed by the external appearances of the embryos.  All external features were 

confirmed using the Atlas of Mouse Development (Kaufman 2005).  Embryos at the ages 

analyzed differed dramatically in external appearance, we outline the key features in here.  

By E11.5, all four limb buds (2 forelimb and 2 hindlimb) are present, but no discernable 

digits are seen.  Before E11.5, only the forelimb buds are observed.  Therefore, E11.5 

embryonic ages were confirmed by the presence of all four limb buds.  The gestational 

age of mid-to-late stage embryos (E13.5-E17.5) were easier to confirm.  E13.5 limb buds 

are webbed, and by E15.5, clear digits are seen.  Another distinguishing feature that 

allowed us to correctly age E13.5 embryos was the disappearance of the hump associated 

with the caudal hindbrain.  Older embryos (E15.5 to E17.5) showed more noticeable 

differences.  At E15.5 the developing cornea is visible because eyelids do not begin to 

fuse until approximately E16.0.  By E17.5, no cornea is present and the eyelids are 

formed and closed.  Probably the most distinguishing external feature of E17.5 embryos 

is the wrinkles and creases in the skin.  Before E17.5, the skin is smoother and follows 

the contours of the body.    



 141 

 Once the embryos were sectioned, gestational age was confirmed further by the 

overall morphology of the spinal cord (refer to Figure 1 for schematic of general 

morphology of the embryonic spinal cord).  At E11.5, most of the spinal cord consists of 

the mantle layer (future gray matter) and ventricular zone (VZ), which contains 

postmitotic and mitotic cells respectively.  Very little mantle layer is seen in the alar 

(dorsal) half of the spinal cord compared to the basal (ventral) half.  By E13.5, the size of 

the VZ has decreased dramatically whereas the overall size of the mantle layer has 

increased significantly, especially in the alar plate.  The marginal layer (future white 

matter) at E13.5 is still relatively thin, but by E15.5, it has increased in size.  By E15.5, 

very little of the VZ remains and the size of the mantle layer has increased even more, 

again, particularly in the alar plate.  At E17.5, the morphology of the spinal cord closely 

resembles that at birth.   

 

Tissue Preparation 

 Sections from lumbar spinal cord segments of Hb9::gfp mouse of embryonic ages 

E11.5, E13.5, E15.5, and E17.5 were processed for dual and triple-immunofluorescence 

using antibodies against Calbindin D28k (CB, rabbit polyclonal, 1:2000), VAChT (goat 

polyclonal, 1:500), and Synaptophysin (guinea pig polyclonal, 1:1000).  Similar as 

before, sections were incubated overnight in one of the following primary antisera 

mixtures: CB/EGFP, CB/VAChT/EGFP, and CB/Synaptophysin/EGFP.  No antibody 

was used to reveal EGFP-IR because endogenous “naked” EGFP labeling was strong in 

all ages analyzed.  Immunoreactive sites were revealed using the following secondary 

antibodies: CB-IR, depending on the primary antisera mixture used, was revealed with 
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either donkey Cy3-conjugated or Cy5-conjugated anti-rabbit antibodies.  Synaptophysin-

IR was revealed using donkey Cy3-conjugated anti-guinea pig antibodies.  VAChT-IR 

was revealed using the indirect tyramide signal amplification method (See General 

Methods; Tyramide signal amplification in embryonic tissues).  Briefly, following an 

overnight incubation in primary antibodies, sections were incubated in a species-specific 

biotinylated secondary antibody, then incubated in an ABC (avidin-biotin complex), and 

incubated in biotinylated-tyramide, which binds to the biotin in the secondary antibody.  

Finally, antigenic sites were visualized using a streptavidin-conjugated to Alexa 555.  No 

amplification was necessary to reveal CB-IR or Synaptophysin-IR.  Preparations were 

then imaged at high magnification (60X1.5 oil, N.A. 1.35) using the FV1000 confocal 

microscope.  

  

Results               

Calbindin-immunoreactivity labels a population of ventrally located cells throughout 

embryonic development. 

 The motoneurons and their collaterals are fluorescently labeled in Hb9::gfp mice, 

but in order to study the establishment of the recurrent inhibitory circuit (RIC) in the 

embryonic spinal cord, we needed a way to label RCs.  Calbindin-IR is an excellent 

marker of RCs during late embryonic development (E16-E18), throughout postnatal 

development, and in the adult, but whether it labels RCs in early embryonic development 

was unknown.  We investigated when RCs begin expressing Calbindin during embryonic 

development.  At the earliest age studied (E11.5) a group of interneurons in the presumed 

ventral horn were intensely labeled with Calbindin (Figure 22).  Similar to E11.5, CB-IR  
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Figure 22.  Calbindin-immunoreactive cells in relation to EGFP+ motoneurons in the 
embryonic spinal cord.  A1-D1, Low magnification confocal image of an Hb9::gfp 
embryonic mouse spinal cord at E11.5 (A1), E13.5 (B1), E15.5 (C1), and E17.5 (D1) 
showing Calbindin-IR (Cy3, red) and naked EGFP (green).  Hb9 is a transcription factor 
expressed in motoneurons (MNs) and in Hb9::gfp mice the somata, axons, and dendrites 
of motoneurons are fluorescently labeled.  The dotted line indicates the limits of the 
spinal cord.  Blue arrow indicates EGFP+ ventral root.  CB-IR cells are present as early 
as E11.5 and in earlier embryonic ages (i.e., E11.5 to E15.5) CB-IR cells are seen only in 
the ventral horn.  CB-IR is also seen in the remnants of the floorplate (FP).  A2-D2, Same 
spinal cord sections shown in A1-D1, showing only CB-IR.  A3-D3, Medium 
magnification image of the presumptive ventral horn at E11.5 (A3), E13.5 (B3), E15.5 
(C3), and E17.5 (D3), again showing CB-IR (red) and naked EGFP (green).  The box 
indicates the area shown at higher magnification in A4-D4.  Blue arrow indicates EGFP+ 
ventral root.  CB-IR cells are present throughout the ventral horn, but as early as E11.5, 
there is a prominent group of CB-IR cells that occupies the exit region of motor axons, 
which corresponds to the “Renshaw cell area”.  This group is present throughout 
embryonic development.  A4-D4, Higher magnification image of the area indicated in 
A3-D3, showing a prominent group of CB-IR cells near the where motor axons exit.  The 
remainder of the analyses in this aim focused only on these intensely labeled CB-IR cells.  
Scale bars: B1-D1 (B1); A1, A2-D2 and A3-D3 (in A1, A2 and A3), 100 µm; A2-D2 (in 
A2), 100 µm; A4-D4 (in A4), 20 µm 
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cells were seen in the ventral horn at E13.5 and none were seen in the dorsal horn.  In 

embryonic spinal cord sections from Hb9::gfp mice, at all ages examined (E11.5, E13.5, 

E15.5, and E17.5), there was a definitive group of CB-IR cells that occupied the area near 

where a bundle of EGFP labeled motor axons exit the spinal cord.  This is the area that is 

usually deemed the “Renshaw cell area” in the adult spinal cord.  Therefore, we 

determined that as early as E11.5 there is a group of CB-IR cells with a similar location 

to that of RCs.  Several other groups of CB-IR cells were seen in the ventral horn, but this 

study only focuses on those cells intensely immunolabeled at the apparent ventral border 

of lamina VII (LVII).  We are currently investigating the V1-origin of these cells but 

these studies were hampered by the developmental regulation of the Thy1 promoter used 

to label V1-derived interneurons with YFP.  We noted that Thy1 and therefore YFP 

expression upregulates postnatally and is very weak embryonically.  Interestingly, RCs 

seem to be one of the last groups to upregulate YFP expression in this line of mice during 

embryonic development.  Therefore, the V1 origin of this group of CB-IR cells located 

among exiting motor axons is now being investigated in other mouse lines encoding 

reporter genes regulated by alternative promoters.     

 

Motor axon inputs are established on CB-IR putative Renshaw cells during early 

embryonic development. 

 By E11.5, CB-IR RCs are surrounded by EGFP+ processes, but no clear varicose 

contacts could be seen (Figure 23). In contrast, at E13.5, CB-IR RCs are surrounded by 

EGFP+ axons, but clear contacts from EGFP- labeled motor axons were observed.  By  
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Figure 23.  Distribution of EGFP+ motor axon recurrent collaterals in the spinal cord at 
different embryonic ages.  A1-D1, Low magnification images of naked EGFP (white) 
labeling in the spinal cord of Hb9::gfp mice at E11.5 (A1), E13.5 (B1), E15.5 (C1), and 
E17.7 (D1).  Motoneurons (MNs) are fluorescently labeled as early as E11.5 and labeling 
is present throughout embryonic development.  Box indicates area shown at higher 
magnification in A3-D3.  A2-D2, Same spinal cord section shown in A1-D1, but showing 
Calbindin-IR (Cy3, white).  At all ages, some MNs are CB-IR.  A3-D3, Medium 
magnification images of the areas indicated in A1-D1 showing MNs, their axons, and 
dendrites (naked EGFP, green).  At E11.5 (A3), it is hard to distinguish any EGFP+ 
motor axons; only MN somata are clearly labeled.  In contrast, by E13.5 (B3), EGFP+ 
motor axons are seen and the density of labeled axons in this area increases at E15.5 (C3) 
and again at E17.5 (D3).  E1-H1, EGFP labeling (green) in Hb9::gfp mice at E11.5 (E1), 
E13.5 (F1), E15.5 (G1), and E17.5 (H1).  Again, no clear motor axons are seen at E11.5, 
but at E13.5, E15.5, and E17.5, EGFP+ motor axons are clearly labeled.  E2-H2, CB-IR 
(white) cells from the area that is enriched in motor axons.  E3-H3, EGFP+ contacts from 
motor axons on CB-IR Renshaw cells at E11.5 (E3), E13.5 (F3), E15.5 (G3), and E17.5 
(H3).  No clear EGFP+ contacts are seen on CB-IR RCs at E11.5.  In contrast, clear 
contacts are seen at E13.5 and the number of contacts on CB-IR RCs increases at E15.5 
and again at E17.5.  Scale bars: A1-D1 and A2-D2 (in A1, B1, A2, and B2), 200 µm; 
A3-D3 (in A3 and B3), 50 µm; E1-H1, E2-H2, and E3-H3 (in E1), 10 µm.      
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E15.5 all CB-IR RCs examined had clear contacts from EGFP+ motor axons.  RCs at 

E17.5 displayed multiple EGFP+ contacts.   

 Next we investigated whether the contacts from EGFP+ motor axons represented 

synapses using VAChT as a presynaptic marker.  Analysis was carried out at E13.5 

because at E11.5 no VAChT-IR varicosities were seen in the ventral horn.  At E11.5, 

VAChT-IR was only seen diffusely distributed in the ventral root motor axons (Figure 

24).  Diffuse distribution of synaptic vesicle markers is the basal condition that precedes 

their accumulation at presynaptic sites during synapse formation (Araki et al., 2004).  

Therefore, these images constitute also indirect evidence for the lack of synapses.  

VAChT-IR was not extensive at E13.5; most of the labeling was concentrated in the area 

occupied by CB-IR RCs (Figure 24).  E13.5 RCs received EGFP+ contacts that were also 

VAChT-IR.  Interestingly, not all EGFP+ contacts on RCs co-localized with VAChT at 

this point.  In conclusion, it appears that RCs are contacted by motor axons very early in 

embryogenesis.    

 

Motoneurons receive inputs from Calbindin-IR Renshaw cells during late embryonic 

development. 

 The recurrent inhibitory circuit consists of RCs receiving excitatory cholinergic 

inputs from motor axons and those same motoneurons receiving inhibitory inputs from 

RCs.  To have a fully functional circuit both synapses need to be established.  We 

therefore investigated when EGFP+ motoneurons are first contacted by CB-IR axons.  At 

E11.5 and E13.5 many CB-IR axons were visible in the ventral funiculus, but the area in 

the developing ventral horn occupied by EGFP+ motoneurons was void of CB-IR  
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Figure 24.  VAChT-immunoreactivity in the ventral horn during embryonic 
development.  A1-B1, Hb9::gfp mouse spinal cord at E13.5 (A1 and B1) showing 
VAChT-IR (Cy3, red) and Calbindin-IR (Cy5, blue) in the ventral horn.  Box indicates 
area showing VAChT-IR only in the insets and also represents the area shown at higher 
magnification in A2-B2.  VAChT-IR at E13.5 is not extensive and is concentrated mainly 
in the Renshaw cell area.  A2-B2, Medium magnification images showing VAChT-IR 
(red), CB-IR (blue), and naked EGFP (green).  Box indicates cells shown at higher 
magnification in C1-C5 and D1-D5.  CB-IR RCs are contacted by EGFP+ motor axons 
and VAChT-IR contacts.  C1-C5, High magnification confocal images of CB-IR RCs 
(blue; C1, C2, and C4) that receives EGFP+ motor axon inputs (green; C2) and VAChT-
IR (red; C3 and C4) inputs.  White arrowheads represent contacts that are EGFP+ and 
VAChT-IR.  Superimposition in C5.  D1-D5, Similar to C1-C5, more CB-IR RCs that 
receive inputs from motor axons that are EGFP+ and VAChT-IR.  Scale bars: A1-B1 (in 
A1), 100 µm; A2-B2 (in A2), 50 µm; C1-C5 and D1-D5 (in C1, C3, C5, D1, and D3), 10 
µm.          
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processes (Figure 25).  In contrast, by E15.5 CB-IR processes are frequent in this same 

area.  By E17.5, this area is enriched with CB-IR processes containing clear varicosities.  

No CB-IR contacts were detected on EGFP+ motoneurons at E11.5 and E13.5.  It was 

not until E15.5 that the first CB-IR contacts on motoneurons were observed.  It is 

important to note that at E15.5 not all EGFP+ motoneurons received CB-IR inputs.  By 

E17.5, more motoneurons were seen with CB-IR contacts (again not all were contacted) 

each receiving a large number of contacts, possibly suggesting a proliferation of CB-IR 

inputs on motoneurons.    

 Similar to the motor axon input on RCs, we looked at the synaptic nature of the 

CB-IR inputs on motoneurons during late embryonic development using synaptophysin 

as a synaptic marker.  No Synaptophysin-IR processes were seen in the ventral horn at 

E11.5 and E13.5, labeling was only seen in the ventral funiculus (Figure 26).  By E15.5, 

many Synaptophysin-IR processes and a high density of punctae are present.  By E17.5, 

the ventral horn is enriched with Synaptophysin-IR punctae.  We then looked at whether 

any CB-IR contacts on motoneurons co-localized with Synaptophysin.  As mentioned 

before, motoneurons at E15.5 receive few CB-IR contacts and of those contacts, very few 

co-localized with Synaptophysin.  In contrast, motoneurons at E17.5 received many CB-

IR contacts and a portion of those contacts co-localized with Synaptophysin (Figure 27).  

In conclusion, motoneurons are first contacted by CB-IR RCs around E15.5 and by E17.5 

the synapses have matured, containing clear accumulations of presynaptic vesicles and 

this input has spread to many motoneurons.   
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Figure 25.  Calbindin-immunoreactivity in Lamina IX of the spinal cord at different 
embryonic ages.  A1-D1, Low magnification images of Hb9::gfp mice showing CB-IR in 
the ventral horn at E11.5 (A1), E13.5 (B1), E15.5 (C1), and E17.5 (D1).  Boxes indicate 
areas shown at higher magnification in A3-D3.  The yellow dotted line indicates the 
border between the ventral horn and white matter.  A2-D2, Same sections shown in 
A10D1, but showing naked EGFP labeling (white).  As mentioned before, in Hb9::gfp 
mice, MNs, their axons and dendrites are fluorescently labeled.  Boxes indicate areas 
showing BC-IR at higher magnification in A3-D3.  A3-D3, Medium magnification 
images showing CB-IR (white) in the lamina IX (LIX) during embryonic development.  
At E11.5 and E13.5, the area that was largely occupied by EGFP+ motoneurons was void 
of CB-IR processes.  In contrast, by E15.5 CB-IR processes are frequent in this same 
area.  By E17.5, this same area is enriched with CB-IR processes containing clear 
varicosities.  E1-H1, High magnification images of EGFP+ MNs (green).  Note that the 
size of MN somata appears to increase from E11.5 to E17.5.  E2-H2, Same area shown in 
E1-H1, but showing CB-IR (Cy3, red).  Very little CB-IR processes are seen in the LIX 
at E11.5 and E13.5, but many are seen at E15.5 and E17.5.  E3-H3, CB-IR contacts on 
EGFP+ MNs are seen at E15.5 and E17.5, but not at E11.5 and E13.5; suggesting that 
these inputs are formed in late embryo.  Scale bars: A1-D2 and A2-D2 (in A1, B1, A2, 
and B2), 100 µm; A3-D3 (in A3 and B3), 50 µm; E1-H1, E2-H2, and E3-H3 (in E1), 10 
µm.      
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Figure 26.  Synaptophysin-immunoreactivity in the embryonic spinal cord.  A1-D1, Low 
magnification images of embryonic spinal cords at E11.5 (A1), E13.5 (B1), E15.5 (C1), 
and E17.5 (D1) immunolabeled with synaptophysin (white).  Synaptophysin is a synaptic 
vesicle integral membrane protein and is present at glycinergic synaptic boutons 
(Dumoulin et al., 1999).  Synaptophysin-IR is not seen in the gray matter (GM) of the 
spinal cord at E11.5, but is seen in the white matter (WM), dorsal root ganglion (DRG), 
ventral and dorsal roots (VR and DR, respectively).  A2-D2, Higher magnification image 
showing Synaptophysin-IR (white) in the ventral horn.  No Synaptophysin-IR processes 
are seen in the ventral horn at E11.5 and E13.5, but by E15.5 plenty of processes are 
seen.  By E17.5, the ventral horn is enriched with Synaptophysin-IR.  Therefore, further 
analysis was only carried out at E15.5 and E17.5.  Scale bars: A1-D1 (in A1), 100 µm; 
A2-D2 (in A2), 50 µm. 
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Figure 27.  Synaptophysin-IR inputs on motoneurons during late embryonic 
development.  A1-B1, Low magnification image showing an E15.5 (A1) and E17.5 (B1) 
ventral horn immunolabeled with Synaptophysin (Cy3, red).  The dotted line indicates the 
border between the ventral horn and white matter.  As mentioned previously, by E13.5 
Synaptophysin-IR processes are present in the ventral horn and by E17.5; the ventral horn 
is enriched with Synaptophysin-IR.  A2-B2, Same sections shown in A1-B1, but with 
Calbindin-IR (Cy5, blue) and naked EGFP (green) superimposed.  The box indicates the 
EGFP+ motoneurons (MNs) shown at higher magnification in A3-A5 and B3-B5.  A3-
A5 and B3-B5, High magnification image of EGFP+ MNs (green; A3, A4, B3, and B4) 
receiving Synaptophysin-IR contacts (red; A3 and B3; white arrows) and CB-IR contacts 
(blue; A4 and B4).  Superimposition in A5 and B5.  At E17.5, more Synaptophysin-IR 
contacts are seen on EGFP+ MNs compared to at E15.5.  There are some CB-IR contacts 
that are not Synaptophysin-IR (yellow arrows).  Scale bars: A1-B1 and A2-B2 (in A1 
and A2), 100 µm; A3-A5 and B3-B5 (in A3 and A5), 20 µm. 
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Discussion 

 The morphological results obtained in this aim allow us to reject the hypothesis 

that a recurrent inhibitory synaptic circuit is established in the early embryonic spinal 

cord by E12.   This conclusion was based fundamentally on physiological and 

pharmacological data from Hanson and Landmesser.  However, in the mouse spinal cord 

recognizable synapses between motoneurons and RC are first present at E13 and the 

formation of synapses from RCs onto motoneurons is delayed for another 24-48 hours.  

Thus the previous physiological data might represent non-synaptic interactions between 

developing motoneurons and interneurons. 

 

Calbindin-IR as a marker of early primordial Renshaw cells  

 Renshaw cells are easily identified by their CB-IR throughout postnatal 

development and in the adult (see aim 1; Mentis et al., 2006), but until this study it was 

not known whether CB-IR would be an efficient marker of embryonic RCs.  We 

demonstrated that throughout embryonic development, there is a group of CB-IR cells 

that occupy the area where motor axons exit the spinal cord, suggesting that these cells 

represent primordial RCs.  In order to determine if these CB-IR cells were V1-derived, 

we attempted to use two different transgenic mouse models to label V1-INs.  The En1-

Cre/Thy1-YFP mice were not useful because the Thy1 promoter used is upregulated 

postnatally (Morris, 1985; Kollias et al., 1987; Caroni, 1997).  Moreover, YFP expression 

was upregulated later in CB-IR cells in the “Renshaw cell area” compared to other V1-

INs.  Initial attempts to identify V1-INs using En1-Cre/Tau-lacZ mice, in which V1-INs 

are labeled with lacZ were unsuccessful.  No lacZ expression was seen in the embryos 



 159 

collected at two different ages (E15.5 and E17.5).  Several possibilities exist for the lack 

of lacZ labeling: 1) Similar to the Thy1 promoter, the Tau promoter is upregulated 

postnatally or 2) No embryos at either age were the correct genotype, although this seems 

unlikely because normal Mendelian ratios are usually obtained for these animals.  It is 

important to note that in one of the pregnant females, three of the embryos died in utero 

and were being reabsorbed.  The female was initially pregnant with nine embryos and if 

three died then it is possible that those three were the genotype needed, although this 

seems unlikely.  Therefore, whether these CB-IR cells are V1-derived needs to be studied 

further, possibly using a different reporter line.              

 

Timing of synapse formation between Renshaw cells and motoneurons 

 In this study we demonstrated that RCs are contacted by motor axons early during 

embryogenesis.  No contacts were seen at E11.5, but by E13.5 clear motor axon contacts 

that co-localized with VAChT were seen and thus spread to many RCs by E15.5.  

Interestingly, this timing coincides with or shortly precedes synaptogenesis in hindlimb 

muscles (E14.5; Pun et al., 2002).  To establish a fully functional recurrent circuit, both 

synapses, MN on RCs and RCs on MNs, need to be present.  We determined that MNs 

are not contacted by CB-IR processes from RCs until E15.5 and this input spreads to 

most MNs by E17.5.  In conclusions, both synapses are not simultaneously established.  

Interestingly, CB-IR axons are clearly visible in the ventral funiculus as early as E11 

suggesting a waiting period before they invade the ventral horn.   

 Our results are inconsistent with the conclusions from Hanson and Landmesser 

(2003).  They concluded that, by E11-E12, synaptic interactions between MNs and a RC-
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like GABAergic interneurons are present and responsible for the generation and 

propagation of early embryonic episodes of spontaneous activity.   

 Xu and colleagues (2005) demonstrated also using electrophysiological 

recordings of motor output that a recurrent excitatory circuit is present by E8 in chick.  

Similar to Hanson and Landmesser, the pathway was activated by stimulating a ventral 

root and the response evoked recorded in the adjacent ventral root.  The GABAA receptor 

antagonist bicuculline and nicotinic receptor antagonist mecamylamine abolished the 

ventral root response suggesting a circuit between a MN and a GABAergic interneuron 

that at this age recurrently excites motoneurons.  However, the developmental stage 

analyzed in chicks might correspond to a later age then when it is first observed in mice. 

 Comparisons between embryonic ages in chick and mouse are complicated by 

some important differences in the timing of reaching developmental milestones.  

Probably the best way to establish equivalence is to compare the timing of major 

developmental events.  For example, motoneurons are born between E2.5-E5 in chick, 

but not until E9-E10 in the mouse (Hollyday and Hamburger, 1977; Nornes and Carry, 

1978; Briscoe et al., 1999; Pierani et al., 1999; Sander et al., 2000).  Chick MNs connect 

to muscle between E2-E4 while in the mouse this occurs around E13-E14, moreover 

primary afferents connect with MNs around E5.5-E7.5 in chick (Lee et al., 1988) and 

E15-E16 in the mouse (Ozaki and Snider, 1997; Chen and Frank, 1999).  Therefore, the 

period studied by Xu and colleagues likely correspond with a relatively older embryonic 

age in rodents.  Chicks are then born by E20-E21, one day later than mice (born E19-

E20), but by difference to mice their locomotor system is fully matured at this stage.   
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 Intracellular recordings of EPSPs demonstrating connectivity between chick R-

interneurons and motoneurons were obtained between E9-E11 (Wenner and O’Donovan, 

1999) and this stage likely corresponds with recurrent EPSPs recorded in E18 mouse 

motoneurons (Sapir et al., 2004).  Sapir and colleagues (2004) provided direct evidence 

for the presence of a functional recurrent synaptic circuit in late mouse embryos.  They 

recorded intracellularly from MNs in E18.5 embryos after stimulating ventral roots to 

antidromically fire motor axon synapses on RCs.  They demonstrated that stimulation of 

the ventral roots elicited synaptic potentials in MNs that were blocked by both curare and 

mecamylamine, which blocked cholinergic input to RCs.  Similarly, the synaptic 

potentials were also blocked by glycinergic and GABAergic receptor antagonists 

strychnine and bicuculline, which blocked the input from RCs to MNs.  Therefore, the 

embryonic ages at which functional synapses have been demonstrated agree well with our 

anatomical data; unfortunately intracellular recordings have not been performed earlier in 

this circuit.    

 Only one study characterized the onset of synaptic currents in embryonic 

motoneurons (Pascal de Legendre, Universite Pierre et Marie Curie, France; personal 

communication).  In this study no glycinergic/GABAergic synaptic currents in mice 

motoneurons were found at E12.5 and first appeared at E13.  Interestingly, synapses 

recognizable ultrastructurally were first described at E11 in mouse motoneurons (Vaughn 

et al., 1976) but the nature of these synapses could not be demonstrated.     
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Open question on the generation of functional connectivity between Renshaw cells and 

motoneurons 

 In this study we provided evidence that RCs are first contacted by MNs during 

early embryonic development and do not contact MNs until after a 48 hour waiting 

period.  Why is there such a long period of time between the formation of these two 

connections?  Furthermore, why does the anatomical data not correspond with the 

electrophysiological and pharmacological data?  One possibility is that the early 

spontaneous episodes of activity are mediated via paracrine actions and these early non-

synaptic interactions between MNs and RCs guide the motor axons to specific RCs.  

After MNs establish connections with specific RCs, these RCs will then make 

connections with those same MNs.  Therefore, it is possible that the early episodes of 

spontaneous activity are non-synaptic, but they are important for establishing the correct 

wiring of ventral motor circuits.  It is suggestive that RC contact MNs only after they 

have projected to periphery and segregated into pools.  It is thus possible that retrograde 

signals from the periphery are important for the establishment of synapses from premotor 

interneurons.  These and other important issues will need to be investigated in the future.     
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Introduction 

 Renshaw cells (RCs) and Ia inhibitory interneurons (IaINs) derive from a 

common pool of embryonic interneurons (V1) and yet develop a distinct synaptic 

organization in the adult. Briefly, adult RCs main excitatory drive arises from motor 

axons, while adult IaINs receive inputs from sensory afferents and lack inputs from 

motoneurons.  In aim 1 we found that motor axon and sensory afferent inputs converge 

on neonatal RCs, but sensory afferent bouton density is reduced on RCs after P15 and the 

input is “functionally deselected” (see Discussion of Aim 1 for more on “functional de-

selection”).  In this study we analyzed whether postnatal V1-derived IaINs receive 

convergent inputs from motor axons and sensory afferents and studied their development.     

 IaINs mediate reciprocal inhibition of antagonist motor pools (Eccles, 1956), are 

located in LVII dorsalmedial to LIX (Jankowska and Lindstrom, 1972; Rastad et al., 

1990), and receive a dense projection from Ia sensory afferents (Alvarez et al., 2005).  

Unfortunately, due to the lack of histological means of identification in the neonate, the 

development of Ia afferents on IaINs is not known.  In this aim we will address new 

criteria in order for IaINs to be identified throughout postnatal development.     

 IaINs and RCs derive from the V1 group which derives from a single set of 

progenitors all expressing the late transcription factor engrailed-1 (Sapir et al., 2004; 

Alvarez et al., 2005).  In aim 1 we discussed the possibility that Ia afferent and motor 

axon inputs converge on a “generic” V1-IN, which then selects or de-selects certain 

inputs.  Fitting with this theory we proposed the possibility that RCs diversify themselves 

from this “generic” V1-IN subtype by strengthening inputs from motor axons and 

weakening those from Ia sensory afferents.  Therefore, we now explored the possibility 



 165 

that diversification of IaINs from the “generic” V1-IN is done by strengthening inputs 

from sensory afferents and complete removal of inputs from motor axons, because very 

few VAChT-IR contacts are seen on IaINs at P20 (Alvarez et al., 2005).   

 More evidence for our proposed theory of convergent inputs in immature V1-INs 

comes from studies in the embryonic chick spinal cord.  As mentioned previously, the R-

interneuron (R-IN) is an En1 expressing interneuron which receives monosynaptic inputs 

from sensory afferents and motor axon recurrent collaterals (Wenner and O’Donovan, 

1999; Wenner et al., 2000).  The adult synaptic connectivity of the R-IN is presently not 

known, but it could represent the avian equivalent of a putative mammalian V1-IN with 

“generic” connections.   

 Alternatively, it is possible that IaINs never receive convergent inputs.  In this case, 

fundamental differences between IaINs and RCs might exist in their competence for 

receiving synapses from motor axons and this could be determined at very early stages, 

perhaps genetically specified.     

 V1-derived IaINs were previously identified by their Parvalbumin (PV) 

expression and Calbindin-IR (CB-IR) contacts from Renshaw cells. However, PV 

expression was only useful in identifying IaINs after P10 because at earlier ages, PV 

labels very few if any interneurons and only labels sensory afferents. Also PV only labels 

very proximal dendrites in contrast to CB immunoreactivity in RCs. Therefore, using PV 

as marker, it would be difficult to analyze synaptic densities in distal dendrites and 

throughout postnatal development. In this study, IaINs were identified in En1Cre/+ mice 

crossed to a Thy1-loxP-STOP-YFP reporter mouse. In these mice, YFP is expressed in 

V1-derived interneurons and distributed throughout their axons and dendrites.  IaINs 

were identified using immunohistochemistry against yellow fluorescent protein (YFP) to 
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identify V1-INs, IaINs were identified from the general V1-IN population as YFP-IR 

cells that received dense innervation from CB-IR axons.  Similar to aim 1, VGLUT1-IR 

and VAChT-IR were used to identify sensory afferents and motor axon recurrent 

collaterals respectively at P5, P10, P15, P20, and in the adult.  RCs were identified as 

YFP-IR cells that also express CB.  We analyzed whether IaINs receive convergent 

inputs and how the density of these inputs compares to RCs in the same animals and 

sections.  We hypothesized that during development, IaINs receive convergent inputs 

from motor axons and primary afferents, but they de-select the motor axon input by 

removal of this input.  Comparisons with the information gathered on RC development will 

hopefully permit drawing some general principles on the diversification of subclasses of 

interneurons from canonical embryonic subgroups.     

 The results were presented in abstract form (Siembab et al., 2008). 

 

Materials & Methods 

Tissue Preparation 

 Sections from L4-L5 spinal cord segments of En1-Cre/Thy1-YFP mice of 

postnatal ages P5, P10, P15, P20, and adult were processed for triple-

immunofluorescence using antibodies against Calbindin D28k (CB, rabbit polyclonal, 

1:2000), Enhanced Green Fluorescent Protein (EGFP, sheep polyclonal, 1:1000), 

VGLUT1 (guinea pig polyclonal, 1:1000, 1:2000), and VAChT (guinea pig polyclonal, 

1:1000).  Yellow Fluorescent Protein-immunoreactivity (YFP-IR) was enhanced using 

EGFP antibodies.  Sections were incubated overnight in one of the following primary 

antisera mixtures: CB/EGFP/VGLUT1 or CB/EGFP/VAChT (See General Methods for 
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antibody sources and buffers).  Immunoreactive sites were revealed using the following 

species-specific secondary antibodies: CB-IR and EGFP-IR were revealed respectively 

with donkey Cy5-conjugated anti-rabbit antibodies and donkey FITC-conjugated anti-

sheep antibodies (both diluted 1:50).  VGLUT1-IR or VAChT-IR, depending on the 

primary antisera mixture used, was revealed with donkey Cy3-conjugated anti-guinea pig 

antibodies (diluted 1:50).  In some P10 sections, we combined YFP, CB and VGLUT1 

antibodies with a mouse monoclonal antibody against Parvalbumin (PV; diluted 1:1000) 

to immunolabel proprioceptive sensory afferents.  In these sections, CB-IR sites were 

revealed using a secondary antibody coupled to Streptavidin 405 (405) (Molecular 

Probes, Temecula, CA).  Preparations that used 405 required a preincubation in a species-

specific biotinylated secondary antibody (diluted 1:100, Jackson Laboratories, West 

Grove, PA) followed by 405-conjugated Streptavidin. 

 

Neurolucida analysis of the number and distribution of V1-derived interneurons  

 The percentages and distributions of V1-derived interneurons in adult (i.e., >2 

months) En1-Cre/R26-LacZ, En1-Cre/Tau-LacZ, and En1-Cre/Thy1-YFP mice were 

obtained.  Free-floating sections (50 µm) were incubated in Neuronal Nuclear Protein 

(NeuN, mouse monoclonal, 1:1000), β-galactosidase (β-gal, chicken polyclonal, 1:1000), 

or YFP.  The following primary antisera mixtures were used, β-gal/NeuN or YFP/NeuN.  

NeuN-IR was revealed with donkey Cy3-conjugated anti-mouse antibodies.  β-gal-IR and 

YFP-IR was revealed with donkey FITC-conjugated anti-chicken or anti-sheep 

antibodies, respectively.  Sections were then analyzed in Neurolucida (MicroBrightField, 
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Colchester, VT) under fluorescent conditions using an x 40 objective lens.  The central 

canal was outlined and a line was drawn from the dorsal tip of the central canal straight 

across to the lateral border between the ventral horn and the white matter.  This line is 

somewhat arbitrarily set, but allowed us to consistently point to a similar boundary 

between the dorsal and ventral horns in all the sections and animals.  The ventral horn 

was then outlined along the border between the white matter and grey matter and the cells 

with the appropriate label were plotted.  Only those neurons that had their nuclei fully 

within the section were counted.  The software analysis tools allowed visualization of the 

distribution of counted neurons and also provided us with a tally of how many neurons 

were counted within each spinal cord section.  Percentages of cells in the ventral horn 

with V1-labels were then calculated and compared across animal models using a One-

way ANOVA.  When comparisons were made among two animal models we used a t-

test.  Statistical significance was always set at p<0.05.  Sample characteristics: analysis of 

V1-IN numbers and distribution was carried out in 1-2 P40 animals of each transgenic 

mouse model (1 En1-Cre/R26-lacZ; 1 En1-Cre/Tau-lacZ; 2 En1-Cre/Thy1-YFP).  Five to 

thirteen ventral horns per animal were sampled.                     

 

Co-localization of PV  immunofluorescence in VGLUT1-IR  varicosities on YFP-IR IaINs 

and CB-IR RCs 

 For quantification of PV immunofluorescence in VGLUT1-IR varicosities on 

YFP-IR IaINs and CB-IR RCs, VGLUT1-IR varicosities were traced in the confocal 

optical plane of the maximum VGLUT1 brightness and the average PV-IR intensity 

inside the varicosity outline measured.  The outline was then left in the same x-y 
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coordinates and the z-axis was moved up and down 3 µms.  In this manner, the outline 

was now on a region of neuropil to measure background fluorescence from surrounding 

neuropil.  Co-localization was determined when PV immunofluorescence average 

intensity in the outlined VGLUT1-IR varicosity was 2 standard deviations above the 

average background estimate.  Comparisons of the percentage of VGLUT1-IR synaptic 

contacts containing PV among IaINs and RCs were made using t-tests.  Sample 

characteristics: analysis of PV and VGLUT1 co-localization was carried out in 1 P10 

En1-Cre/Thy1-YFP mouse.  215 clusters from 5 V1-IaINs and 177 clusters from 5 RCs 

were measured.   

 

Confocal analysis of VGLUT1 and VAChT contact densities of YFP-IR IaINs and CB-IR 

RCs 

 In order to obtain synaptic densities on V1-IaINs and Renshaw cells throughout 

development we used the Neurolucida neuron tracing software on stacks of confocal 

optical sections containing the cell bodies and dendrites of the neurons of interest.  We 

analyzed approximately 10 RCs and 10 IaINs per animal (N=1 animal at P5; N=2 

animals per age: P10, P15, P20, and adult).  Triple-color immunofluorescent preparations 

were imaged with a confocal microscope at 60X1.5 magnification (oil, N.A. 1.35) and a 

series of confocal optical sections (z-step 0.5 µm) obtained throughout individual 

randomly sampled V1-IaINs and  RCs with their cell bodies and most of their 

immunolabeled dendritic arbors fully contained within the field of view and thickness of 

the tissue sections.  The stacks of images were then loaded in Neurolucida, traced and 

reconstructed in 3D using the Neurolucida neuron tracing confocal module.  Synaptic 
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contacts were plotted on the reconstructed dendritic arbors.  From these reconstructions 

we estimated dendritic arbor morphology, synaptic densities, and the distribution of 

synaptic contacts.  Sholl analysis was performed in 50 µm increments from the cell soma.  

Densities of contacts were obtained by plotting the number of contacts per 10 µm of 

linear dendrite and compared across cell type at each age using a one-way ANOVA.  

Comparisons between IaINs and RCs were made using t-tests.  Significance was set at p 

< 0.05.      

 Estimates of VGLUT1 and VAChT synaptic densities on IaINs and RC somata 

were obtained by estimating surface area from approximate ellipsoids of similar 

maximum and minimum diameters.  The number of VGLUT1 and VAChT contacts was 

then normalized against the amount of surface to obtain a density of contacts for each 

cell.  Differences between surface densities and the number of contacts were then 

compared between IaINs and RCs using t-tests.  Sample characteristics: analysis of 

VGLUT1-IR and VAChT-IR contact density was carried out in 1-2 En1-Cre/Thy1-YFP 

mice at each age (N=1 animal, P5; N=2 animals per age: P10, P15, P20, and adult).  8-12 

IaINs and RCs were sampled per animal.      

 

Results 

Animal models used to label V1-derived interneurons in the postnatal spinal cord 

 To identify the best genetic marker for the study, we first compared labeling in 

three animal models designed to genetically label V1-INs in the postnatal spinal cord.  

Dual immunolabeling with the neuronal marker NeuN was used for laminar identification 
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and to estimate the proportion of ventral horn interneurons labeled in each animal (Figure 

28). In En1-Cre/R26-lacZ and En1-Cre/Tau-mEGFP-nlslacZ mice, β-galactosidase-

immunoreactivity (βgal-IR) was mainly restricted to the nucleus with additional labeling 

of small intracytoplasmic inclusions in En1-Cre/R26-lacZ mice (Figure 28A1,A2,B1,B2). 

Nuclear βgal-IR was more intense in En1-Cre/Tau-mEGFP-nlslacZ animals compared to 

En1-Cre/R26-lacZ. Additionally in En1-Cre/Tau-mEGFP-nlslacZ mice mEGFP was 

preferentially targeted to axons. The overall distribution of V1 mEGFP-IR axons (not 

shown) was similar to that previously described using a En1-Cre/R26-GAP43-EGFP 

reporter mouse (Alvarez et al., 2005) and to axonal labeling in En1-Cre/Thy1-YFP mice. 

YFP (revealed naked or amplified using an anti-EGFP antibody, see Methods) filled the 

cell bodies, dendrites, and axons of V1-derived interneurons in En1-Cre/Thy1-YFP mice 

(Figure 28C1,C2,E).  In all three animal models, labeled V1-INs in the lumbar 4 and 5 

segments were mostly located laterally in lamina VII (LVII) forming a dorso ventral arc 

surrounding lamina IX (LIX) motoneurons.  In En1-Cre/Thy1-YFP mice V1 axons 

occupy the lateral and ventral funiculi and project throughout the ventral horn with lower 

density in lamina VIII and highest in LIX (Figure 28C1). In the En1-Cre/Tau-mEGFP-

nlslacZ and En1-Cre/Thy1-YFP mice we observed some labeled interneurons in dorsal 

horn lamina (LI-LV, not depicted in the figure).  Neurolucida plots were used to 

determine the percent and locations of labeled and unlabeled ventral horn NeuN-IR 

interneurons with and without V1-lineage markers (Figure 28A3,B3,C3). The ventral 

horn dorsal boundary was arbitrarily set from the dorsal tip of the central canal. The 

percentage of NeuN-IR neurons with V1-lineage markers was not significantly different 

between En1-Cre/R26-lacZ (24.5% ± 1.49) (± S.E.M.) and En1-Cre/Tau-mEGFP-nlslacZ 
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Figure 28.  Distribution and labeling pattern of V1-derived neurons in En1-Cre/R26-
lacZ, En1-Cre/Tau-lacZ, and En1-Cre/Thy1-YFP P40 mice.  A1,B1,C1, Low 
magnification images of lumbar spinal cords immunolabeled with NeuN (Cy3) and either 
β-gal (FITC; A1,  B1) or YFP (FITC; C1) in En1-Cre/R26-lacZ (A1), En1-Cre/Tau-lacZ 
(B1), and En1-Cre/Thy1-YFP (C1) P40 mice.  In all three models, V1-INs are largely 
restricted to the ventral horn and located in lamina VII (LVII) forming an arc around the 
motoneurons (large NeuN-IR cells) in LIX.  VI-INs and their projections are virtually 
excluded from LVIII and the dorsal horn.  The dotted line above the central canal (CC) 
indicates the border between the dorsal and ventral horns.  The blue line delineates the 
border between LIX and LVII.  A2, B2, C2, Distribution of V1-INs in the ventral horn at 
higher magnification.  Insets represent labeling pattern of V1-derived interneurons seen 
in each animal model.  A2, In En1-Cre/R26-lacZ mice, β-gal-IR (green) is concentrated 
in the nucleus and in intracytoplasmic inclusions (arrowheads).  B2, In En1-Cre/Tau-lacZ 
mice, β-gal-IR is concentrated in the nucleus, but intracytoplasmic inclusions are not 
seen.  C2, YFP-IR (green) in En1-Cre/Thy1-YFP mice is seen in the somata, dendrites, 
and axons (labeling in lateral and ventral funiculi) of V1-derived interneurons.  A3, B3, 
C3, Neurolucida plots on the distribution and number of V1-INs in the ventral horn of 
En1-Cre/R26-lacZ (A3), En1-Cre/Tau-lacZ (B3), and En1-Cre/Thy1-YFP (C3) mice.  
Neurolucida plots were used to determine the percentage of NeuN-IR cells with V1 
lineage markers (β-gal or YFP).  NeuN plots are not shown for clarity.  D, Percentage of 
V1-derived interneurons in the ventral horn of all three mouse models.  Error bars 
indicate S.E.M.  V1-INs make up approximately 23-25% of all NeuN-IR cells in the 
ventral horn of En1-Cre/R26-lacZ and Tau-lacZ mice.  However, in En1-Cre/Thy1-YFP 
mice, V1-derived interneurons make up only 16% of all NeuN-IR cells in the ventral 
horn.  Differences between the percentage of NeuN-IR cells that contained V1 lineage 
markers was significant between En1-Cre/R26-lacZ and Tau-lacZ mice when compared 
to En1-Cre/Thy1-YFP mice (asterisk; p<0.05, one-way ANOVA), but not between En1-
Cre/R26-lacZ and Tau-lacZ mice (p=0.203 t-test).  E, Inset in C2 at higher magnification 
to show extent of labeling in En1-Cre/Thy1-YFP mice.  Arrows indicate EGFP-IR axons 
contacting a large NeuN-IR cell (presumably a motoneuron).  Scale bars; A, B, C series, 
(in A1, A2, and A3) 100 µm; Inset in C2 and E, 20 µm; Insets in A2 and B2, 10 µm.     
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 (23.3% ± 1.45) (p=0.203, t-test) (Figure 28D).  In En1-Cre/Thy1-YFP mice, only 18% ± 

1.23 of NeuN-IR cells expressed YFP  and this was significantly different compared to 

the other two lines (p<0.001, One-way ANOVA, p<0.05, post-hoc Dunn’s tests). 

Therefore, only 73.6% of all V1-derived interneurons were labeled in En1-Cre/Thy1-YFP 

mice.    

 In summary, the cell bodies, dendrites and axons of most V1-INs are best labeled 

in En1-Cre/Thy1-YFP mice. Because of its optimal visualization of somatic and dendritic 

surfaces we used this model to analyze postnatal development of synaptic connectivity. 

However, some expression mosaicism was noted and this prevents us from claiming that 

the whole population of V1-derived Ia inhibitory interneurons (IaINs) and Renshaw cells 

(RCs) were labeled in En1-Cre/Thy1-YFP mice. 

 

Criteria for Renshaw cell and V1-derived Ia inhibitory interneuron identification in En1-

Cre/Thy1-YFP mice. 

 Renshaw cells were identified in En1-Cre/Thy1-YFP mice by their ventral 

location in the “Renshaw cell area”, their relatively intense CB-IR throughout 

development and V1-derivation (see Alvarez and Fyffe, 2007 for a critical review of 

these criteria; also see aim 1).   

 Regarding IaINs, unfortunately PV is not expressed in V1-INs until late in 

postnatal development and PV labeling of V1-IN dendrites is less efficient than YFP. 

Therefore, in this study, V1-derived IaINs (V1-IaINs) were recognized as YFP 

interneurons receiving a dense pericellular basket innervation from RC axons identified 
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by their V1-origin (YFP-IR) and CB-immunoreactivity (Figure 29). Although it is likely 

that not all IaINs are densely innervated with pericellular CB-IR baskets, these criteria 

allow unambiguous detection of a population of V1-IaINs to compare synaptic input 

development with V1-RCs. These cells can be identified from P1 and by P15 many 

(25%) YFP V1-INs with pericellular baskets had upregulated PV-immunoreactivity. 

 However we found that not all PV-IR IaINs identified using these criteria are V1-

derived. In P15 En1-Cre/Thy1-YFP lower lumbar segments (L4-L5) only 59% of 187 

PV-IR cells with CB-IR contacts expressed YFP. As mentioned earlier we expect ¾ of 

V1-INs labeled in En1-Cre/Thy1-YFP mice. Therefore we repeated this analysis in En1-

Cre/Tau- mEGFP-nlslacZ mice and also compared upper lumbar levels (L2-L3), with 

lower lumbar levels (L4-L5) (Figure 30). While 68% of PV-IR cells receiving RC inputs 

(n=667) were V1-derived (βgal-IR) in L4-L5, significantly fewer (49%, n=671 p<0.01 t-

test) were V1-derived in L2-L3 segments. PV-IR cells in lower lumbar levels (L4-L5) are 

largely V1-derived, whereas 50% of those occupying upper lumbar levels (L2-L3) are 

non-V1-derived.   

 In summary, IaINs consist of various populations with differing embryonic 

origins. The groups of IaINs we focus on here are lower lumbar V1-derived IaINs that 

can be recognized by pericellular baskets of V1 CB-IR axons and that when mature 

express parvalbumin. Other populations of IaINs, either non-V1-derived or V1-derived 

but with a lesser RC input are undetected by our criteria. 
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Figure 29.  Histochemical identification of V1-IaINs in En1-Cre/Thy1-YFP mice.  A1, 
Low magnification image of the ventral horn of an En1-Cre/Thy1-YFP P15 mouse spinal 
cord showing, CB-IR (Cy5, blue) and YFP-IR (FITC, green).  The dotted white line 
indicates the border between the ventral horn and white matter.  Box indicates the YFP-
IR cell shown at higher magnification in A2 and A3.  A2, A3, High magnification of an 
YFP-IR V1-IN (green) which receives a dense innervation from CB-IR axons (blue).  
These criteria were used to identify V1-IaINs throughout this study.  B, Low 
magnification confocal images of an En1-Cre/Thy1-YFP P15 ventral horn labeled with 
Parvalbumin (PV-IR; Cy3, red) and CB (Cy5, blue).  Previously, IaINs were identified as 
PV-IR cells with a dense innervation from CB-IR Renshaw cells. Since PV-IR is limited 
in the extent of staining (labeling largely seen in the soma and proximal dendrites) and in 
the ages in which it can be used as a reliable marker of IaINs; V1-derived IaINs in this 
study were identified as YFP-IR cells with a dense innervation from CB-IR axons from 
V1-derived Renshaw cells.  Box indicates PV-IR cell shown at higher magnification in 
B2 and B3.  B2, High magnification image of a PV-IR (red; B1) cell with CB-IR (blue; 
B1-B2) contacts.  Box indicates area shown in inset.  Inset, Higher magnification images 
showing CB-IR contacts.  B3, Superimposed CB-IR and YFP-IR (FITC, green) on a PV-
IR cell.   Inset, higher magnification image showing co-localization between YFP and 
CB-IR contacts on a V1-IaIN verifying that the CB-IR contacts on V1-IaINs are from 
V1-INs.  Scale bars; A1 and B1 (in A1 and B1), 100 µm; A2, A3, B2, and B3, (in A2 
and B2) 20 µm. 
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Figure 30.  Lineage of Parvalbumin-IR IaINs.  A, Low magnification confocal images of 
a P15 ventral horn section from an En1-Cre/Thy1-YFP mouse spinal cord immunolabeled 
for YFP (FITC, green) (A1 and A2), Calbindin (Cy5, blue) (A2 and A4), and 
Parvalbumin (Cy3, red) (A3 and A4).  Superimposition in A5.  The dotted line indicates 
the border between the ventral horn and the white matter.  Boxes indicate areas shown at 
higher magnification in B and C.  B, C, Higher magnification images of the areas 
indicated in A showing YFP-IR (green; B1, B2, C1, and C2), CB-IR (blue; B2, B4, C2, 
and C4), and PV-IR (red; B3, B4, C3, and C4).  Superimposition in B5 and C5.  The cell 
in the B series represents a PV-IR cell, receiving a dense innvervation from CB-IR axons, 
which is also YFP-IR.  The PV-IR cell shown in the C series also receives a dense 
innervation from CB-IR V1-derived axons, but it is not YFP-IR.  Therefore, not all PV-
IR cells in En1-Cre/Thy1-YFP P15 mice are YFP-IR.  The reporter label indicates V1-
derived.  D, Low magnification images of a ventral horn section from lumbar segments 
L4 and L5 of an En1-Cre/Tau-lacZ P15 mouse showing β-gal-IR (FITC, green) (D1 and 
D2), Calbindin-IR (Cy5, blue) (D2 and D4), and Parvalbumin-IR (Cy3, red) (D3 and D4).  
Superimposition in D5.  Boxes indicate cells shown at higher magnification in E and F 
series.  E, F, High magnification confocal images of β-gal-IR (green; E1, E2, F1, and 
F2), CB-IR (blue; E2, E4, F2, and F4), and PV-IR (red; E3, E4, F3, and F4).  
Superimposition in E5 and F5.  The cell in the E series is a PV-IR cell with a dense 
innervation from CB-IR Renshaw cell axons, which is LacZ+.  The F series shows a PV-
IR, which also receives inputs from CB-IR axons, but it is not LacZ+.  In lumbar 
segments L4 and L5, there are twice as many PV-IR cells that are LacZ+ compared to 
those PV-IR cells that are not LacZ+ (p<0.001, t-test).  G, Low magnification confocal 
images of a ventral horn section from lumbar segments L2 and L3 of a P15 En1-Cre/Tau-
lacZ mouse spinal cord immunolabeled for β-gal (FITC, green) (G1 and G2), CB (Cy5, 
blue) (G2 and G4), and PV (Cy3, red) (G3 and G4).  Superimposition in G5.  H, I, High 
magnification confocal images of PV-IR (H3, H4, I3, and I4) cells receiving a dense 
innervation from CB-IR RC axons (H4 and I4), which are (H5) or are not (I5) LacZ+.  
There were no significant differences in the percentage of PV-IR cells in L2 and L3 that 
are LacZ and those that are not LacZ+ (p=0.397, t-test).  When compared to L4 and L5, 
there are significantly more PV-IR cells in L2 and L3 that are not LacZ+ (p<0.001, t-
test).  Scale bars; A, D, and G series (in A1, D1, and G1), 100 µm; B, C, E, F, H, and I 
series (in B1, C1, E1, F1, H1, and I1), 20 µm.      
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Validation of VGLUT1-IR synaptic contacts to analyze proprioceptive sensory inputs on 

V1-derived Ia inhibitory interneurons and Renshaw cells. 

 Of the three known isoforms of VGLUTs, VGLUT1 is a synaptic marker for large 

primary sensory afferents (Todd et al., 2003; Oliveira et al., 2003; Alvarez et al., 2004). 

VGLUT1-IR was therefore used to identify proprioceptive sensory afferent synapses on 

developing V1-derived IaINs and RCs in En1-Cre/Thy1-YFP mice. Most ventral horn 

VGLUT1-IR boutons are likely originated from proprioceptors since they are 

anterogradely labeled from dorsal roots, contain parvalbumin immunoreactivity, most 

disappear after dorsal rhizotomies and they are largely deleted in the ventral horns of 

Er81(-/-) animals which lack ventral horn proprioceptive axons (Alvarez et al., 2004; 

Mentis et al., 2006).  Some ventral horn VGLUT1-IR synapses might however originate 

from the corticospinal tract (CST) (Alvarez et al., 2004; Persson et al., 2006). Moreover, 

Er81 is also expressed by CST neurons (Yoneshima et al., 2006), and it is possible that 

anomalies in CST VGLUT1-IR boutons are also present in Er81(-/-) animals. Alternative 

unknown descending projections could also contribute VGLUT1-IR synapses in the 

ventral horn. To confirm that VGLUT1-IR contacts on V1-IaINs and RCs originate from 

sensory afferents we analyzed their co-localization with parvalbumin, which specifically 

labels sensory afferents in neonatal spinal cords (Arber et al., 2000). To diminish 

confounding effects from interneuron parvalbumin axons we performed the analysis at 

P10 (Figure 31).  Co-localization of PV inside VGLUT1-IR clusters was determined as 

PV-immunofluorescence intensity 2 standard deviations above background.  At P10, 82% 

and 85% of VGLUT1-IR contacts respectively on RCs (n = 177 contacts) and V1-IaINs 

(n = 215) contained PV. This small difference was not significant (p=0.586, t-test). 
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Similarly no differences were detected on average PV immunofluorescence intensity 

inside P10 VGLUT1-IR contacts on each cell type (1701.69 ± 591.61 on V1-IaINs and 

1600.73 ± 707.27 on RCs; average ± SD, arbitrary units from 24 bit images).  Several 

alternative explanations can be raised to explain the remaining 15-18% of boutons that 

were PV negative. They might originate from alternative sources or they might suggest 

PV underdetection because our stringent criteria for PV-IR (92% were labeled at 1 SD 

above background) or might represent primary afferents boutons that started to 

downregulate their PV-content (primary afferents synaptic boutons in the ventral horn 

downregulate PV with development). These alternative possibilities were not pursued 

further. We can conclude however that the large majority of VGLUT1-IR synaptic inputs 

on V1-IaINs and RCs originate from proprioceptive sensory afferents.   

 

VGLUT1-IR input strength on V1-derived IaINs is higher than on V1-derived RCs during 

postnatal development. 

 Because most VGLUT1-IR contacts target dendrites, VGLUT1 synaptic densities 

were analyzed using Neurolucida-based reconstructions of YFP-labeled dendritic trees 

from approximately 20 V1-IaINs and 20 V1-RCs sampled in two En1-Cre/Thy1-YFP 

mice at each different age (P10, P15, P20 and adult or P40; at P5 only 10 cells of each 

type were analyzed in one animal, examples in Figure 32). No differences were found 

between cells sampled from different animals. Therefore cells of the same type and age 

from the two different animals were pooled together (cells from each animal represent 

approximately 50% of the total sample). Synaptic densities were calculated as VGLUT1-  
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Figure 31.  Origin of proprioceptive sensory afferents on V1-derived Ia inhibitory 
interneurons and V1-derived Renshaw cells in En1-cre/Thy1-YFP mice.  A, Low 
magnification images of a ventral horn section from En1-Cre/Thy1-YFP P10 mouse 
immunolabeled for YFP (FITC, Green) (A1), VGLUT1 (Cy3, Red) (A2), Parvalbumin 
(PV; Cy5, Blue) (A3), and Calbindin (CB; 405, White) (A4).  At P10, PV-IR is strong in 
proprioceptive sensory afferents and labels few interneuron cell bodies (arrowheads; A2). 
Inset in A4 shows that the V1-cell shown at high magnification in B is PV-IR. Boxes 
indicate areas of high magnification shown in B and C. The dotted line indicates the 
border between the ventral horn and the white matter.  B1, B2, B3, B4, High 
magnification confocal images of an YFP-IR (green) V1-IaIN that receives inputs from 
V1-derived CB-IR axons (white; B1).  Yellow arrows represent contacts that are 
VGLUT1-IR (B2) and PV-IR (B3). Superimposition in B4. Asterisks in B3, B4, and B5 
indicate insets showing, at higher magnification, VGLUT1-IR contacts co-localized with 
PV.  C1, C2, C3, C4, High magnification images of an YFP-IR and CB-IR V1-derived 
Renshaw cell.  Yellow arrows represent contacts on RCs that are VGLUT1 (C2) and PV-
IR (C3).  Superimposition in C4.  82-85% of all VGLUT1-IR contacts on RCs and IaINs, 
respectively, co-localized with PV-IR.  Scale bars; A series (in A1), 100 µm; B and C 
series and inset in A4 (in B1, C1, and A4), 20 µm; Insets in B and C series (in B1 and 
C1), 10 µm.     
 

 

 

 

 

 

 

 



 183 



 184 

IR contacts per 10 µm of linear dendrite. At P5 V1-IaINs already displayed a larger 

number of VGLUT1- IR contacts compared to RCs. Moreover, VGLUT1-IR contacts on 

V1-IaINs significantly increased during development (p<0.001, one-way ANOVA, 

Figure 33C, Table 7). Post hoc tests indicated that the increases in density from P10 to 

P15 were significant (p<0.05, post hoc Dunn’s test).  No differences were detected 

between P15, P20 and adult (p=0.488, one-way ANOVA).  Estimation of VGLUT1-IR 

contact density on developing YFP and CB-labeled RC dendrites sampled in parallel to 

V1-IaINs replicated our previous findings on CB-IR RCs (Aim 1 and Mentis et al., 

2006). VGLUT1-IR contact density significantly increased from P5 to P15 and then 

significantly decreased in P20 and adult (p<0.001, one-way ANOVA; VGLUT1-IR 

density at P15 was significantly higher than in all other ages p<0.05, post hoc Dunn’s 

test). When compared to V1-IaINs, VGLUT1-IR density in RC dendrites was always 

significantly lower (P5 p=0.005; P10 p=<0.001; P15 p=0.024; P20 p=<0.001; P40 

p=<0.001, t-tests) (Figure 33C, Table 7). A significant number of VGLUT1-IR contacts 

target the somata of IaINs (20% of all contacts sampled), but not RCs (5% or less of all 

contacts sampled), therefore differences in contact density and number were even more 

exaggerated when comparing the cell bodies of adult (P40) V1-IaINs and RCs (Figure 

33D, Table 8).   

 The possibility that differences exist in the proximo-distal distributions of 

VGLUT1-IR boutons on IaIN dendrites was investigated using Sholl analyses. The 

dendritic arbor was divided in three compartments (0-50 µm, 50-100 µm and 100-150 

µm) that were well visualized with YFP labeling in the majority of cells. With distance 

there was a tendency towards decreasing densities in V1-IaINs and increasing densities in 
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RCs, however differences in contact density at different dendritic distances were not 

significant in any of the two cell types (p>0.05, one-way ANOVA, Figure 33E). At each 

distance bin VGLUT1-IR contact density on V1-IaINs is always significantly higher 

when compared to RCs (p<0.001, t-tests).  The percentage of VGLUT1-IR boutons 

sampled in each cell was consistently higher in the proximal regions of the dendrite 

compared to the soma and distal dendrite compartment. However a higher percentage of 

VGLUT1-IR boutons were located in the first 50 µm of dendrite and cell body (70 %) on 

V1-IaINs compared to RCs (52 %). Also interestingly, mature VGLUT1-IR contacts on 

V1-IaIN dendrites and somata were significantly larger than those contacting RCs 

(4.5±1.7 and 4.0±1.3 µm2, respectively; average ± SD; p=0.003, t-test). This analysis was 

conducted at P15, a postnatal time at which VGLUT1-IR cluster growth and 

immunofluorescence intensity plateaus (Aim 1 and Mentis et al., 2006).    

 In summary, VGLUT1-IR input density increases in V1-IaINs and RCs from P5 

to P15, however V1-IaINs receive a higher density of contacts than RCs at any postnatal 

age. In addition, VGLUT1-IR contact density is maintained on developing V1-IaINs after 

P15, by contrast, VGLUT1-IR contact density decreases on RCs after P15. Finally in the 

mature spinal cord the larger size and more proximal locations of VGLUT1-IR contacts 

on IaINs suggest a higher input strength on these cells compared to RCs. 

 

VAChT-IR bouton density on V1-derived IaINs is lower than on Renshaw cells of all ages 

and preferentially target the cell soma and initial segment of primary dendrites. 

 Vesicular Acetylcholine Transporter (VAChT), which packages acetylcholine into 

synaptic vesicles for exocytosis, is an effective synaptic marker of motor axons in the  
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Figure 32.  Development of VGLUT1-immunoreactive contacts on V1-derived Ia 
inhibitory interneurons and V1-derived Renshaw cells in postnatal En1-Cre/Thy1-YFP 
mice.  A1, B1, C1, Low magnification images of VGLUT1-IR (CY3, Red), YFP-IR 
(FITC, Green), and Calbindin-immunoreactivity (CB-IR; CY5, Blue) in the ventral horn 
at P5 (A1), P15 (B1), and P40 (C1) in En1-Cre/Thy1-YFP mice.  Yellow dotted line 
indicates border between the ventral horn and the white matter.  Boxes indicate areas 
shown at higher magnification in A2-A3, B2-B3, and C2-C3.  A2,B2,C2, High 
magnification confocal images showing that at P5 (A2), P15 (B2), and P40 (C2), YFP-IR 
V1-derived Ia inhibitory interneurons (green) with a dense innervation from V1-derived 
CB-IR Renshaw cell axons (blue) receive VGLUT1-IR contacts (red).  Arrowheads 
indicate VGLUT1-IR contacts on V1-IaIN dendrites and cell bodies.  The number of 
VGLUT1-IR contacts on V1-IaINs increases from P5 to P15.  Insets indicate, at higher 
magnification, VGLUT1-IR contacts on V1-IaIN somata and dendrites.  A3, B3, C3, 
VGLUT1-IR contacts on V1-derived Renshaw cells that are both CB-IR and YFP-IR at 
P5 (A3), P15 (B3), and P40 (C3).  Arrowheads indicate VGLUT1-IR contacts on RC 
dendrites.  There are fewer contacts on RCs at P5 and P40 compared to P15.  Insets show 
VGLUT1-IR contacts on RC dendrites.  Scale bars; A1, B1, and C1, (in A1) 100 µm; 
A2-A3, B2-B3, and C2-C3, (in A2) 20 µm; Insets, 10 µm.           
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Figure 33.  Density and distribution of VGLUT1-IR contacts on V1-derived IaINs 
compared to Renshaw cells.  A,B, 3D reconstruction of a V1-derived Ia inhibitory 
interneuron (A) and Renshaw cell (B) from a P40 En1-Cre/Thy1-YFP mouse 
reconstructed in Neurolucida using the confocal module.  VGLUT1-IR contacts are 
plotted on the dendrites (black dots) and soma (red dots).  Densities of contacts are 
calculated as plotting the number of contacts per 10 µm of linear dendrite.  C, 
Quantitative analysis of the linear density of VGLUT1-IR contacts on V1-IaINs and CB-
IR RCs in En1-Cre/Thy1-YFP mice of P5, P10, P15, P20, and adult (P40) ages.  V1-
IaINs display statistically significant increases in VGLUT1-IR contact density from P10 
to P15 (blue asterisk, p=0.05, one-way ANOVA).  VGLUT1-IR contact density on V1-
IaINs are maintained after P15 and no significant differences were found between P15, 
P20, and adult (p=0.488, one-way ANOVA).  VGLUT1-IR input density on CB-IR 
Renshaw cells increases significantly from P5 to P15 (green asterisk; p<0.05, one-way 
ANOVA) and the decrease at P20 is also significant (purple asterisk; p<0.05, one-way 
ANOVA).  No significant differences are seen between P20 and adult (p=0.715, t-test).  
At all ages, VGLUT1-IR contact density on V1-IaINs is always significantly higher when 
compared to RCs (red asterisks, P5 p=0.005; P10 p<0.001; P15 p=0.024; P20 p=<0.001; 
P40 p=<0.001, t-tests).  D, VGLUT1-IR contacts per 100 µm² of cell membrane and total 
number of VGLUT1-IR contacts per cell soma on V1-IaINs and RCs at P40.  The density 
of VGLUT1-IR contacts on the cell soma of V1-IaINs was always significantly greater 
than that on RCs (one asterisk; p<0.001, t-test).  This difference was due to there being 
significantly more VGLUT1-IR contacts on V1-IaIN cell somas compared to RCs (two 
asterisks; p=<0.001, t-test).  E, Sholl analysis of VGLUT1-IR contacts (per 10 µm of 
linear dendrite).  Numbers in parentheses indicate the number of cells that showed data in 
each distance bin.  There were no significant differences in the distribution of VGLUT1-
IR contacts among V1-IaINs (p=0.318, one-way ANOVA).  RCs also showed no 
significant differences in the distribution of VGLUT1-IR contacts (p=0.336, one-way 
ANOVA).  At all distance bins, the density of VGLUT1-IR contacts on IaINs is always 
significantly higher when compared to RCs (p<0.05, one-way ANOVA).  F, Percentage 
of VGLUT1-IR contacts on the soma and in each 50 µm bin in V1-IaINs and RCs.  Most 
VGLUT1-IR contacts on V1-IaINs are distributed between the soma and in the first 100 
µm of linear dendrite.  Significantly more VGLUT1-IR contacts were seen in the first 50 
µm of dendrite compared to the soma and the other dendritic bins of V1-IaINs (one 
asterisk; p<0.05, one-way ANOVA).  Similar to V1-IaINs, most VGLUT1-IR contacts on 
RCs are in the first 100 µm of linear dendrite, but unlike V1-IaINs, RC somas do not 
receive a large percentage of VGLUT1-IR contacts.  There are significantly more 
VGLUT1-IR contacts in the first 100 µm of RC dendrite compared to the soma and the 
last 100-150 µm of RC dendrite (two asterisks; p<0.05, one-way ANOVA).  No 
significant differences were seen between the 0-50 and 50-100 µm dendritic bins 
(p=0.590, one-way ANOVA).  P-values in parentheses below graph indicate any 
significant differences in the percentage of contacts on the soma and in each bin between 
V1-IaINs and RCs.           
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ventral horn (Alvarez et al., 1997). Indeed, VAChT-IR contacts on RCs can be 

retrogradely labeled from ventral roots and disappear in adult superoxide dismutase 1-

mutant animals undergoing motor axon degeneration (FitzSimons et al., 2006). Few 

VAChT-IR contacts were seen on V1-IaIN dendrites at P20 (Alvarez et al. 2005), 

therefore we analyzed the possibility that this input was removed from V1-IaINs 

postnatally (Figure 34). However VAChT-IR contacts were sparse on the dendrites of 

V1-IaINs of any age and their density was always much lower than on RCs (P5-P40, 

p<0.001, t-tests paired comparison at each age) (Figure 35, Table 7). In addition, 

VAChT-IR contact density on V1-IaIN dendrites significantly decreased by a third from 

P5 to P15 (p<0.05, one-way ANOVA; Table 7). After P15 VAChT-IR contact density on 

V1-IaIN dendrites was relatively stable and no significant differences were found 

between P15, P20, and adult (p=0.316, one-way ANOVA).  In contrast, VAChT-IR 

contact density on RC dendrites increased significantly from P5 to P20 (p<0.05, one-way 

ANOVA) and then it was maintained after P20.  

 Surprisingly, the somata of V1-IaINs receive a four-fold larger number of 

VAChT-IR contacts compared to RCs (p<0.001, t-test). Approximately 44% of all 

VAChT-IR contacts targeted the cell body of IaINs.  V1-IaIN somata are larger than RC 

somata, nevertheless these larger number of boutons represent a significant two-fold 

increase in VAChT-IR contact density on V1-IaINs compared to RCs (p<0.0.01, t-

test)(Figure 35D). No significant differences were found in the density of VAChT-IR 

contacts on different dendritic compartments of V1-IaINs or RCs, although at each 

compartment density was much lower on IaINs (Figure 35E). Similar to VGLUT1, most 

VAChT-IR contacts on RCs (~89%) were located within the first 100 µm of dendrite 
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analyzed and very few on RC somata (~4.6%). VAChT-IR contacts on V1-IaINs were 

distributed differently and also different to VGLUT1 contact distributions in these same 

cells (Figure 35). Most VAChT-IR contacts were located on the soma and together with 

the first dendritic compartment (first 50 µm) they account for the vast majority of 

contacts (~82%). Other than one V1-IaIN with one VAChT-IR contact, no contacts were 

found beyond 100 µm on the dendrite.  Therefore, when compared to RCs, VAChT-IR 

contacts on V1-IaINs are preferentially located on the soma and the initial stem of the 

primary dendrites. 

 The average size of VAChT-IR contacts on V1-IaINs was less than half compared 

to those contacting RCs (1.5±0.4 and 3.4±1.9 µm2, respectively; p=<0.001, t-test) (Figure 

34). Previously spinal cord VAChT-IR labeled synapses of different size were predicted 

to have different sources (Alvarez et al., 1999). To investigate if VAChT-IR terminals on 

V1-IaINs were of motor axon origin Cascade Blue fluorescent dextran was applied to the 

L5 ventral root of one P7 En1-Cre/Thy1-YFP mouse and the percentages of retrogradely 

labeled VAChT-IR boutons on V1-IaINs and CB-IR RCs was estimated (Figure 36). The 

large majority of VAChT-IR boutons on CB-IR RCs (80.2%, n = 190 boutons) contained 

retrograde labeling, however only 6.9% of VAChT-IR boutons (n = 162) on V1-IaINs 

were labeled.  

 In summary, V1-IaINs do not receive a significant VAChT-IR input on their 

distal dendrites at any time during development. However, surprisingly their somata and 

most proximal dendrites are the specific targets of a VAChT-IR input (numerical data 

summarized in Tables 7 & 8). These synapses are at relatively high density but are small 

in size and are not originated from cholinergic motor axons. In conclusion, the origins  
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Figure 34.  Development of VAChT-immunoreactive contacts on V1-derived Ia 
inhibitory interneurons and Renshaw cells in postnatal En1-Cre/Thy1-YFP mice.  
A1,B1,C1, En1-Cre/Thy1-YFP mouse spinal cords at P5 (A1), P15 (B1), and P40 (C1) 
showing Calbindin-immunoreactivity (CB-IR; Cy5, blue),  YFP-IR (FITC, green) and 
VAChT-IR (CY3, Red) in the ventral horn.  Yellow dotted line indicates border between 
the ventral horn and the white matter.  Boxes indicate areas shown at higher 
magnification in A2-A3, B2-B3, and C2-C3.  A2,B2,C2, Higher magnification confocal 
images showing CB-IR axons (blue) contacting YFP-IR V1-derived Ia inhibitory 
interneurons (V1-IaINs) (green) at P5 (A2), P15 (B2), and P40 (C2) that receive VAChT-
IR inputs (red).  Arrows indicate VAChT-IR contacts on V1-IaIN dendrites and cell 
bodies.  The number of VAChT-IR contacts on V1-IaINs decreases from P5 to P15.  
Insets show, at higher magnification, VAChT-IR contacts on V1-IaIN somata and 
dendrites.  A3, B3, C3, Calbindin and YFP-IR Renshaw cells at P5 (A3), P15 (B3), and 
P40 (C3) that receive VAChT-IR contacts.  Arrows indicate VAChT-IR contacts on RC 
dendrites.  Most VAChT-IR contacts on RCs are on the dendrites. There are more 
VAChT-IR contacts on RCs at P40 than at P5.  Insets indicate, at higher magnification, 
VAChT-IR contacts on RC dendrites.  D1, Low magnification image of VAChT-IR 
(Cy3, red), YFP-IR (FITC, green), and Calbindin-IR (CB-IR; Cy5, blue) in the ventral 
horn of a P15 En1-Cre/Thy1-YFP mouse spinal cord.  Boxes indicate areas of high 
magnification shown in D2 and D3. D2, High magnification image of VAChT-IR 
contacts (red) on an YFP-IR V1-IaIN (green) that also receives a dense innervation from 
CB-IR RC dendrites (blue). Arrowheads indicate VAChT-IR contacts on V1-IaINs. 
VAChT-IR inputs on V1-IaINs are located proximally and often on the cell body.  D3, 
High magnification image of VAChT-IR contacts on a CB-IR RC that is also YFP-IR, 
indicating that it is V1-derived. Arrowheads point to VAChT-IR contacts on RC 
dendrites.  E, Size of VAChT-IR contacts on soma and dendrites of V1-IaINs compared 
to RCs.  VAChT-IR contacts on V1-IaINs are significantly smaller than those on RCs 
(p<0.001, t-test).  Therefore it appears that the VAChT-IR contacts on V1-IaINs are 
possibly from a different source than those on RCs.  Scale bars; A1, B1, C1, and D1, (in 
A1 and D1) 100 µm; A2-A3, B2-B3, C2-C3, and D2-D3, (in A2 and D2) 20 µm; Insets, 
10 µm.         
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Figure 35.  Density and distribution of VAChT-IR contacts on V1-derived IaINs 
compared to Renshaw cells.  A, B, Neurolucida 3D reconstruction of a V1-IaIN (A) and 
Renshaw cell (B) from a P40 En1-Cre/Thy1-YFP with VAChT-IR contacts plotted on the 
dendrites (black dots) and soma (red dots) of the reconstruction. C, VAChT-IR contacts 
per 10 µm of linear dendrite of V1-IaINs and CB-IR RCs in En1-Cre/Thy1-YFP mice of 
P5, P10, P15, P20, and adult ages.  V1-IaINs display statistically significant decreases in 
VAChT-IR contact density from P5 to P15 (blue asterisk, p<0.05, one-way ANOVA). No 
significant differences were seen between P5 and P10 (p=0.283, one-way ANOVA). 
VAChT-IR contact density on V1-IaINs decreases slightly after P15 but no significant 
differences were found between P15, P20, and adult (p=0.316, one-way ANOVA).  
VAChT-IR input density on CB-IR Renshaw cells increases significantly from P5 to P20 
(green asterisk, p<0.05, one-way ANOVA) and is maintained after P20 with no 
significant differences between P20 and adult (p=0.052, one-way ANOVA).  At all ages, 
VAChT-IR contact density on V1-IaINs is significantly less when compared to RCs (red 
asterisks, P5-P40 p<0.001, t-tests).  D, Quantitative data of VAChT-IR contacts per cell 
soma and their corresponding densities over V1-IaINs and RCs at P40.  V1-IaIN somas 
are larger than RCs and they receive three-fold more VAChT-IR contacts compared to 
RCs (two asterisks; p<0.001, t-test).  This difference in the number of VAChT-IR 
contacts correlates into a significant two-fold increase in surface density between V1-
IaINs and RCs (one asterisk; p<0.001, t-test).  E, Sholl analysis of VAChT-IR contacts 
on the dendrites of V1-derived IaINs compared to CB-IR RCs in En1-Cre/Thy1-YFP 
mice at P40.  Sholl analysis is estimated in 50 µm bins of increasing distance from the 
center of the cell body.  V1-IaINs displayed significant differences in the distribution of 
VAChT-IR contacts (p<0.05, one-way ANOVA).  There were no significant differences 
detected in the distribution of VAChT-IR contacts on RC dendrites at P40 (p=0.113, one-
way ANOVA).  VAChT-IR contact density on RC dendrites was always significantly 
higher when compared to V1-IaINs (p<0.05, one-way ANOVA).  F, Percentage of 
VAChT-IR contacts in each Sholl bin (50 µm increments from center of cell soma) in 
V1-IaINs and RCs at P40.  In contrast to VGLUT1-IR contacts, VAChT-IR contacts on 
V1-IaINs are largely restricted to the soma and the first 50 µm bin.  No significant 
differences were seen in the percentage of VAChT-IR contacts on the soma and the first 
50 µm (p=0.134, t-test), but there were significantly less VAChT-IR contacts in the 50-
100 and 100-150 µm dendritic bins (one asterisk; p<0.05, one-way ANOVA).  Similar to 
VGLUT1-IR contacts, most VAChT-IR contacts were in the first 100 µm of RC dendrite.  
There are significantly more VAChT-IR contacts in the first 100 µm of RC dendrite 
compared to the soma and the last 100-150 µm of RC dendrite (two asterisks; p<0.05, 
one-way ANOVA).    
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Figure 36. Origin of VAChT-IR boutons on V1-derived Ia inhibitory interneurons 
compared to Renshaw cells.  A, P7 En1-Cre/Thy1-YFP spinal cord showing retrogradely 
labeled motoneurons and motor axon recurrent collaterals (Cascade blue dextran, 
blue)(A1-A4) superimposed with VAChT (Cy3, red)(A2 and A4), naked YFP (Naked 
YFP, green)(A3-A4), and Calbindin (405, white)(A3 and A4).  A5, Superimposition of 
all.  Box with one asterisk indicates area shown in the insets in A3 and A4 demonstrating 
that the CB-IR cells shown in B are YFP-IR and that same area contains VAChT-IR.  
Box with one asterisk is shown at higher magnification in the B and D series and 
represents the area which is populated with Renshaw cells.  Box with two asterisks is 
shown at higher magnification in the C series and represents the area enriched with V1-
IaINs.  Yellow dotted line indicates the border between the ventral horn and white matter.  
B, Cells labeled with YFP (green) (B3-B4) that are CB-IR (white) (B3-B4) and contacted 
by retrogradely labeled motor axon recurrent collaterals (blue) (B1-B3) and VAChT-IR 
boutons (red) (B2 and B4).  Superimposition in B5.  Insets represent VAChT-IR boutons 
that contain retrograde labeling (yellow arrowheads).  Most VAChT-IR boutons on CB-
IR RCs contain retrograde labeling.  White arrows demonstrate that not all retrogradely 
labeled recurrent collaterals contain VAChT.  C, V1-IaIN labeled with YFP with CB-IR 
axons (C3-C4) showing retrogradely labeled motor axon collaterals (C3) and VAChT-IR 
boutons (C4).  C5, Superimposition of all.  In contrast to CB-IR RCs, few VAChT-IR 
boutons on V1-IaINs contained retrograde labeling from ventral roots.  D, Non-CB-IR 
cell that is labeled with YFP in the area populated with CB-IR RCs which receives a 
dense innervation from CB-IR axons.  E, Percentage of VAChT-IR boutons on V1-IaINs 
and CB-IR RCs with retrograde labeling from ventral roots in En1-Cre/Thy1-YFP mice.  
There was a significant difference in the percentage of VAChT-IR boutons with 
retrograde labeling on V1-IaINs (6.2%) compared to RCs (93.8%) (p<0.05, one-way 
ANOVA).  The main source of VAChT-IR contacts on RCs, and not V1-IaINs, appears 
to originate from motor axon recurrent collaterals.  Scale bars; A series, (in A1) 100 µm; 
B, C, and D series, (in B1) 20 µm; Insets, (in B1) 10 µm..
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Table 7.  Density of VGLUT1-IR and VAChT-IR contacts per 10 µm of linear dendrite 
of Ia inhibitory interneurons and Renshaw cells during postnatal development. 
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Table 8.  Density and number of VGLUT1-IR and VAChT-IR contacts on the somata of 
Ia inhibitory interneurons compared to Renshaw cells at P15 and in the adult. 
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and organization of cholinergic synapses on V1-IaINs and RCs is dramatically different.  

The differences are already apparent in neonates and are maintained in the adult. 

 

Discussion 

 The results allow us to reject our hypothesis that IaINs receive convergent inputs 

from motor axons and sensory afferents during postnatal development.  Neonatal IaINs 

did not receive motor axon inputs and VAChT-IR synapses on this cell type have a 

different origin.  Sensory inputs develop in parallel in IaIN and RCs during early 

postnatal development.  However there are also clear differences in density, location, and 

more importantly maintenance of high densities in the adult.  These results suggest 

fundamental differences between IaINs and RCs in their competence for receiving and 

maintaining motor and Ia afferent inputs and argue against a the existence of convergent 

inputs in all V1 cell during development. 

  

Postnatal V1-derived Ia inhibitory interneurons 

 Ia inhibitory interneurons (IaINs) were previously identified by their Parvalbumin 

(PV) expression, CB-IR contacts from Renshaw cells (Alvarez et al., 2005), and their 

location in the mid and ventral LVII of the ventral horn (Jankowska and Lindstrom, 

1972; Rastad et al., 1990).  However, these criteria restricted IaIN identification only 

until after P10, because before P10 PV labels very few if any interneurons and only labels 

sensory afferents (Smith et al., 2005).  Therefore, no studies to date have addressed the 

development of the synaptic connectivity of IaINs, probably due to a lack of reliable 

markers for their identification before P10.  Here we characterized a transgenic animal 
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model that allowed the identification of IaINs (and other V1-derived interneurons) 

throughout postnatal development and in the adult.  En1-Cre/Thy1-YFP mice provided us 

with a useful tool to identify IaINs because not only were we able to label the cells, but 

extensive dendritic and axonal labeling allowed us to analyze synaptic densities on distal 

dendritic segments.  Although not all V1-derived interneurons were labeled in En1-

Cre/Thy1-YFP mice, because a certain mosaicism of expression of YFP, these mice 

allowed for the visualization of definitive groups of cells that could be consistently 

followed through the different postnatal ages analyzed.  

 As mentioned above, IaINs were previously identified as cells that are densely 

innervated by strong Renshaw cell inputs manifested anatomically as baskets of CB-IR 

axons that were also V1-derived (YFP-labeled).  No other interneurons, with the 

exception of other RCs, are known to be targeted by strong CB-IR RCs inputs, but 

whether neonatal IaINs can be identified by presence of these inputs had not been 

analyzed until now.  Here we demonstrated that a population of YFP-IR cells receiving 

dense baskets of CB-IR axons can be identified from P1 and that a large proportion of 

these cells had up-regulated PV-IR by P15.  These anatomical data agree with 

physiological evidence for the presence of recurrent inhibition of IaINs as early as one 

week after birth (P7; Wang et al., 2008).  Stimulation of the L3-4 ventral roots reduced 

the amplitude of the inhibitory postsynaptic potentials (IPSPs) elicited by activation of 

IaINs at P7.  The reduction in IPSP amplitude in P7 mice was similar to those recorded 

from mature IaINs in adult cats after stimulation of L5-6 ventral roots (Hultborn et al., 

1971).  From these experiments, it was concluded that recurrent inhibition of IaINs was 

present in mice and well-developed as early as one week after birth.    
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 In the Wang et al. study, deleting the transcription factor Pax6, which is required 

for V1-IN development, did not disturb the development of reciprocal inhibition (Wang 

et al., 2008).  In Pax6(-/-) knockouts, stimulating the quadriceps nerve at E18 and P0 

results in a hyperpolarizing synaptic potential in posterior biceps-semitendinosis (PBSt) 

motoneurons.  These results are similar to wild-type animals.  Wang and colleagues 

postulated that this result could be due to IaINs being selectively spared in Pax6 

knockouts or that there are different subsets of IaINs, being that not all IaINs are V1-

derived.  Similarly, Gosgnach et al (2006) failed to abolish flexor-extensor alternation in 

fictive locomotor rhythms by genetically silencing V1-INs postnatally.  Here we provided 

anatomical evidence supporting the theory that not all IaINs are V1-derived and that 

lumbar IaINs are a heterogeneous population and originate from more than one type of 

embryonic precursor.  We can only speculate as to the origins of non-V1-derived IaINs, 

but one class in particular stands out.  V2 interneurons (V2-INs) express the transcription 

factor Lhx3 and in the adult give rise to an excitatory and an inhibitory population of 

interneurons that have ipsilateral projections and contact motoneurons similar to V1-INs 

(Al-Mosawie et al., 2007; Lundfald et al., 2007).  Excitatory V2-INs express Chx10 

(V2a) and inhibitory V2s express Gata2/3 (V2b).  V2-derived interneurons are located in 

ventral lamina VII and receive primary afferent inputs.  V2b-INs establish glycinergic 

boutons apposing motoneurons (Al-Mosawie et al., 2007).  The similarities between V2b-

INs and V1-INs raise the possibility that the heterogeneous population of IaINs originate 

from these two precursors.  Moreover, flexor-extensor alternations in locomotor rhythms 

evoked pharmacologically in the in vitro mouse spinal cord are fully abolished when V1-

INs and V2b-INs are silenced (Martyn Goulding, personal communication).                              

Postnatal development of sensory afferent inputs on IaINs 

 We found that similar to RCs, the density of sensory afferent inputs on V1-

derived IaINs, increases significantly during neonatal and early postnatal development.  
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In contrast to RCs, sensory afferent synaptic density on IaINs is maintained after P15 and 

in the adult.  Moreover, at all ages analyzed, there were significantly more sensory 

afferent inputs on IaINs compared to RCs and these inputs were more proximally located.  

Increased synaptic density should, in essence, result in increased synaptic efficacy (or 

strength).  Therefore, the sensory afferent input that IaINs receives seems stronger than 

those contacting RCs at all developmental stages.  In addition, IaINs, compared to RCs, 

receive significantly more sensory afferent inputs on their somata.  Location of synapses 

is important.  For example, if synapses are located on the soma of one cell and farther 

away on another, then assuming equal densities, the EPSPs evoked would be larger and 

faster in the cell with the synapses on the soma.  If our prediction that those Ia-EPSPs on 

IaINs are of larger amplitude and faster rise time than on RCs, it would suggest that the 

proximal regions of somato-dendritic membrane on IaINs have specializations that favor 

the establishment of stronger sensory inputs compared to RCs.  In this sense, the 

specialization of V1-INs into distinct subclasses with distinct inputs is not only dependent 

on competence to establish synapses, but also on their bias to form them in different 

numbers and with different distributions on dendrites and somata.   

  

Postnatal IaINs lack motor axon inputs 

 Our findings indicate that V1-derived IaINs do not receive inputs from motor 

axons during development.  Although IaINs do receive VAChT-IR inputs, the size of 

these inputs suggest that these inputs derive from another cholinergic source.  VAChT-IR 

labels not only inputs from motor axon collaterals, but also those from spinal cholinergic 

interneurons and the C-terminals on motoneurons (Alvarez et al., 1999).  These inputs are 
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generally distinguished by size categories.  Large VAChT-IR boutons located in lamina 

IX and contacting motoneurons cell bodies are C-terminals whose origin are most likely 

from a group of interneurons located near the central canal (McLaughlin, 1972; Crone et 

al., 2008; Zagoraiou et al., 2008).  VAChT-IR boutons densely populating ventral lamina 

VII are smaller than C-terminals and originate from motor axon recurrent collaterals and 

contact Renshaw cells.  Many of these VAChT-IR boutons on RCs are retrogradely 

labeled with fluorescent dextrans from the ventral root (see also Mentis et al., 2005).  

Finally, other VAChT-IR contacts found throughout ventral LVII contacting non-RC 

interneurons are smaller than C-terminals and motor axons collaterals and believed to 

originate from spinal cholinergic interneurons.  The VAChT-IR boutons contacting IaINs 

were significantly smaller than those contacting RCs and were not retrogradely labeled 

from the ventral root.  Wang et al. (2008) found that stimulation of L3 and L4 ventral 

roots at P3 evoked a synaptic potential in PBSt MNs but with latencies longer than 

expected from a disynaptic reciprocal inhibitory pathway.  Wang and colleagues 

concluded that these latencies represented a trisynaptic linkage (ie, L3/4 MNs → RCs → 

IaINs → PBSt MNs) and that IaINs do not receive inputs from motor axons.  Therefore, 

the present anatomical study and a recent electrophysiological analysis strongly suggest 

that neonatal IaINs do not receive inputs from motor axons.  Given that cholinergic 

systems in the spinal cord do not originate in descending pathways from higher brain 

centers (Sherriff et al., 1991; Vanderhorst and Ulfhake, 2006), VAChT-IR contacts on 

IaINs must originate from spinal interneurons.  The exact spinal interneurons that 

establish VAChT-IR synapses on IaINs needs to be further investigated.      
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 Our findings in this aim focused on the postnatal development of the synaptic 

connectivity of postnatally identified IaINs and we did not address the synaptic 

connectivity of embryonic IaINs.  Whether IaINs receive motor axon inputs during 

embryonic development remains to be explored.  Initial attempts to identify IaINs in 

embryonic En1-Cre/Thy1-YFP mice were unsuccessful.  Labeling of V1-INs was weak 

and only a few somata were labeled.  Moreover, labeling appeared to be restricted to 

axons and dendrites (unpublished observations).  Weak embryonic labeling of V1-INs is 

likely due to developmental regulation of the Thy1 promoter.  It is known that, in 

neurons, the Thy1 promoter becomes most active postnatally (Morris, 1985; Kollias et 

al., 1987; Caroni, 1997).  Labeling of IaINs in embryo therefore necessitates a different 

reporter line to cross with En1Cre/+ mice.  Unfortunately, other lines available in lab do 

not label dendrites.  Although, as of present, we cannot reliable identify IaINs in 

embryonic spinal cords, we can speculate what their synaptic connectivity may be.  In 

mice, the specific Ia-MN and Ia-IaIN connections mediating reciprocal inhibition are 

already present at birth (Wang et al., 2008).  Therefore, it appears that the Ia-MN and Ia-

IaIN connections are established simultaneously before birth.  As explained in aim 1, Ia 

afferent projections invade the ventral horn in late embryo (older than E15).  However, in 

aim 2 we showed that motor axons establish synapses in the spinal cord in very early 

embryos.  Motoneurons are born (become postmitotic) between E9 and E10 and have 

motor axon collaterals by E11 which is around the same time that V1-INs are born.  

Interestingly, at embryonic stages E11-E16, several interneuron populations are contacted 

by motor axons, contributing to the spontaneous rhythmic activity of early motor circuits 

(Hanson and Landmesser, 2003).  Therefore, it is possible that motor axons innervate 
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more than RCs in early embryo.  It is also possible that IaINs never receive inputs from 

motor axons and only receive excitatory inputs from interneurons in early and late 

embryo and from sensory afferents only in late embryo.  One problem is what criteria 

should be used to recognize “primordial IaINs” before they receive the synaptic inputs 

we use to characterize them.  In the future, alternative markers will need to be developed 

to conduct these analyses.       

  

Evidence against a “generic” V1-derived interneuron 

 In aim1 we presented the idea that all V1-INs derive from a “generic” V1-IN that 

gives rises to different classes of V1-INs by differential development of synaptic inputs.  

The data presented in aim 1 demonstrated that RCs receive convergent inputs from 

sensory afferents and motor axons, but only the input from motor axons is strengthened 

while the sensory afferent input is likely weakened.  In this aim we presented data 

arguing against a “generic” connectivity from motor axons and sensory afferents on V1-

INs.  Postnatal IaINs never receive motor axon inputs.  Studies from our lab using BrdU 

pulse-labeling demonstrated that different classes of V1-INs are born at different times 

(Benito-Gonzalez et al., 2008).  RCs are the first born V1-INs (born between E9.5-E10.5, 

with most born at E9.5), whereas IaINs are born between E10.5 and E12.5 with most 

being born around E10.5.  Since RCs are born around the same time when MNs extend 

motor axons, it seems likely that motor axons are biased toward RCs.  The lack of motor 

axon input on IaINs and their later birthdate suggest that there are fundamental 

differences between IaINs and RCs in their mechanisms of differentiation and these 

might include differential competence for receiving synapses from motor axons.             
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 In conclusion, we present evidence that IaINs do not receive inputs from motor 

axons during postnatal development.  We also present evidence that sensory afferent 

inputs on IaINs proliferate during postnatal development and are maintained in the adult.  

Although IaINs and RCs share this primary afferent input, the anatomical analysis 

presented suggests that there are fundamental differences in the organization of this input 

between both cells.   
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CHAPTER VIII 

Role of primary afferents in the specification of excitatory 

synaptic inputs on mature Renshaw cells 
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Introduction 

 The mechanisms that underlie synaptic selection on ventral interneurons are 

completely unknown.  Input selection through synaptic competition has been amply 

demonstrated when the postsynaptic targets are unique and singly innervated, for 

example in climbing fibers on Purkinje cells (Ito, 1984) and at the neuromuscular 

junction (reviewed in Sanes and Lichtman, 1999, 2001).  Less is known how diverse 

inputs are selected or de-selected on most central neurons that are multi-innervated by a 

variety of inputs from different sources.  In this aim we tested the novel hypothesis that a 

similar competition process might operate heterosynaptically to select specific excitatory 

inputs and adjust their densities on RCs.  In other words, we examined whether 

alterations in the number of sensory synapses on RCs could change synaptic densities of 

other inputs on RCs.  If this was the case we could argue that the transient sensory inputs 

on RCs might have a role in shaping the synaptic organization of RCs (see aim 1 

Discussion).  Therefore we looked at whether there is an interaction between the motor 

axon collaterals and the primary afferent inputs on Renshaw cells (RCs) using three 

transgenic mice models, one without primary afferent projection onto the ventral horn 

and Renshaw cell area (Er81), one with a progressive weakening of primary afferent 

projections after birth (EGR3), and one with an excess of primary afferent synapses in 

these regions (mlcNT3) (Figure 37). 

 Past research using these transgenic animal models has focused on the 

monosynaptic stretch reflex.  Simply put, the monosynaptic stretch reflex is elicited when 

a muscle is stretched, and the Ia spindle afferents fire.  The Ia spindle afferents make 

monosynaptic, excitatory synapses on the alpha motoneurons (αMNs) that innervate the 
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same muscle (homonymous muscle).  Monosynaptic connections between homonymous 

αMNs and Ia spindle afferents are stronger than those monosynaptic connections with 

synergistic heteronymous muscles (Eccles et al., 1957; Frank & Westerfield, 1983; 

Lichtman et al., 1984).  No research has addressed whether alterations in primary afferent 

input in the ventral horn affects the synaptic connectivity between Ia afferents and ventral 

horn interneurons.  Similarly, no studies investigated whether the strength of the Ia 

afferent input influences the development of other excitatory inputs (i.e., inputs from 

motor axons or spinal interneurons).   

 Er81 is a member of the ETS (E twenty-six Transformation specific) domain 

family of transcription factors and is expressed in all proprioceptive neurons and 

regulates the growth of Ia afferents into the ventral horn.  Er81(-/-) knockout animals 

display severe deficits in motor coordination and these deficits are due to a failure of 

muscle afferents to establish arborizations in the ventral horn (Arber et al., 2000).  As a 

result, Er81(-/-) knockout animals die in the third or fourth postnatal week.  Afferents fail 

to project to and make monosynaptic connections with motoneurons in the absence of 

Er81 (Arber et al., 2000).  Connectivity between motoneurons and sensory afferents was 

tested by stimulating the dorsal root while examining the synaptic response of MNs 

extracellularly recorded from the ventral roots.  Dorsal root stimulation failed to elicit 

action potentials in Er81(-/-) MNs and the amplitude of the monosynaptic response was 

significantly reduced.  Therefore, it was concluded that the monosynaptic connections 

between MNs and sensory afferents were severely altered in Er81(-/-) mice.  Confocal 

analysis of primary afferent bouton density on MNs, using VGLUT1-IR as a marker of 

primary afferents, demonstrated that MNs from Er81(-/-) mutants had virtually no  



 211 

Figure 37.  Mouse models exhibiting alterations in primary afferent inputs into the 
ventral horn.  A, Synaptic connectivity in the ventral horn of Er81(-/-) knockouts.  In 
Er81(-/-) animals Ia afferents do not enter the ventral horn (indicated by the red “X”).  
Motoneurons (MNs) in Er81(-/-) knockouts do not receive inputs from Ia afferents (Smith 
et al., 2007).  In this aim we investigated whether the density of motor axon recurrent 
collaterals, immunolabaled with VAChT, are affected by deletion of primary afferents.  
B, Effects of altering primary afferent inputs on RC synaptic connectivity in EGR3(-/-) 
knockouts.  In EGR3(-/-) mice, Ia afferents project to the ventral horn but the number of 
synapses is reduced (Smith et al., 2007) and functionally weaker (Chen et al., 2002).  
Previous studies indicate that the density of primary afferent input, labeled with 
VGLUT1, on MNs is reduced in EGR3(-/-) mice, but it is not known whether VGLUT1-IR 
or other excitatory input densities on RCs is altered in these animals.  C,  In mlcNT3(+/-) 
mice, an excess of NT3 prevents normal cell death of Ia afferents and enhances the 
formation of central synapses from proprioceptive sensory axons (Smith et al., 2007) 
these also being functionally stronger (Wang et al., 2007).  Here we investigated whether 
RCs also receive an excess of VGLUT1-IR inputs and whether the density of other 
excitatory inputs are also affected.  
 

 

 

 

 

 

 

 

 

 



 212 

 



 213 

VGLUT1-IR inputs (95-99% depletion) (Smith et al., 2007), essentially corroborating 

electrophysiological data.  Therefore, the monosynaptic connections between MNs and 

sensory afferents are altered in the absence of Er81, but no studies have focused on 

whether deletion of sensory afferents in the ventral horn affects the 

development/maturation of other excitatory synaptic connections on MNs or 

interneurons. 

EGR3, or early growth response gene 3, is a member of the zinc finger family of 

transcription factors and is expressed in developing intrafusal muscle fibers being 

essential for development of muscle spindles (Tourtellotte et al., 2001).  Adult mice 

deficient in EGR3 (EGR3(-/-)) lack muscle spindles and have a profound gait ataxia 

(Tourtellotte & Milbrandt, 1998).  No differences in the number of sensory DRG neurons 

were seen, but significant reductions in the number of large diameter (>5 µm) 

myelineated fibers in the dorsal root were observed.  Large diameter axons correspond to 

those Ia afferents that innervate muscle spindles (Duchen & Scaravilli, 1977).  Recent 

evidence suggests that EGR3 is also important for the development and maintenance of 

the monosynaptic connections between MNs and primary afferents (Chen et al., 2002).  

In EGR3(-/-) knockouts, primary afferents form and make arborizations in the ventral 

horn, but postnatally, as muscle spindles begin to degenerate, the central synapse between 

MNs and primary afferents weakens (Chen et al., 2002), possibly due to the failure of 

mutant spindles to produce NT3 (neurotrophin -3).  Injection of NT3 into the hindlimbs 

of EGR3(-/-) mice restored the synaptic connectivity between sensory neuron and MNs, 

emphasizing the importance of muscle spindle-derived NT3 in the maintenance of 

functional synaptic connections.  Smith and colleagues (2007) found that VGLUT1-IR 
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contact density decreased by 48% in EGR3(-/-) knockouts when compared to wild-type 

controls.   

Neuroptrophin-3 (NT3) is part of the nerve growth factor-related family of 

molecules (Thoenen, 1991) and play an important role during development, including 

differentiation and survival of sensory and motoneurons as well as proliferation of 

proprioceptive axons (Hory-Lee et al., 1993; Lindsay, 1996; Coppola et al., 2001; Zhou 

et al., 2003).  NT3 is expressed in muscle spindles (Copray et al., 1994), dorsal root 

ganglion (DRG) (Schecterson & Bothwell, 1992), and motoneurons (Ernfors et al., 1992).  

NT3 has been shown to be important for Ia afferent arborization in the ventral horn.   

NT3 is believed to play a role not only in the formation of Ia afferent-MN 

connections but also their long-term maintenance and maturation (Taylor et al., 2001).  

To study long-term effects of high NT3 expression, transgenic mice over expressing NT3 

in perinatal, postnatal, and adult skeletal muscle were developed using the myosin light 

chain promoter (mlcNT3(+/-)) to constitutively express NT3 in muscle from embryo to 

adult.  These mice exhibited a loss of synaptic specificity between MNs and sensory 

neurons in mlcNT3(+/-) mice (Wang et al., 2007).  Stimulation of the quadriceps and 

adductor muscle nerves led to an increased response in L5 MNs in mlcNT3(+/-) mice.  

Normally, L5 MNs receive very little input from afferents deriving from the quadriceps 

and adductor muscles.  It is important to note that the “correct” muscle afferents provided 

stronger inputs to MNs also.  Wang and colleagues suggested that there was no increase 

in anatomical projections in mlcNT3(+/-) mice compared to wild-types.  However, these 

results are in contrast to Smith et al. (2007), who found that the density of VGLUT1-IR 

boutons on MNs, in mlcNT3(+/-) mice compared to age-matched wild-type controls, 
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increased by 84% at P5 and nearly a 205% increase was seen at P21.  Differences could 

be due to the segmental level analyzed, and/or differences in the anatomical and 

analytical techniques used in each study.  Wang and colleagues labeled primary afferents 

in lumbar segment 3 (L3) using anterograde tracings with fluorescent dextrans and the 

density of projections was assessed by comparing the percentage of pixels above 

threshold in the ventral horn.  Smith and colleagues used VGLUT1-IR as a marker of 

primary afferents in L4-L5 and the number of VGLUT1-IR contacts per cell soma was 

counted on MNs as well as within 100 µm2 areas in the surrounding neuropil.  In 

conclusion, mlcNT3(+/-) animals show an increase in the Ia projections and synapses on 

MNs with some loss of specificity.  Similar to the other two transgenic mouse models, no 

research has assessed whether any other excitatory inputs on MNs or interneurons are 

affected by changes in primary afferent strength.   

In order to determine whether altering primary afferent strength in the ventral 

horn affects the strength of other excitatory inputs on RCs, we used 

immunohistochemistry against Calbindin to identify Renshaw cells, Vesicular glutamate 

transporter-immunoreactivity (VGLUT1-IR) to identify primary afferents, Vesicular 

acetylcholine transporter-IR (VAChT-IR) to identify motor axon recurrent collaterals, 

and Vesicular glutamate transporter isoform 2-IR (VGLUT2-IR) to label inputs from 

excitatory spinal interneurons in Er81(-/-), EGR3(-/-), and mlcNT3(+/-) animals at P15, P20, 

and adult (>P40) postnatal ages.  We analyzed whether these differences in input strength 

modified the de-selection or maturation of Ia afferent inputs on RCs during late postnatal 

development (after P15) and whether they influence the organization of other excitatory 

inputs converging in the same cells, i.e., those from motoneurons or excitatory 
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interneurons.  We hypothesized that alterations in the number of sensory synapses on 

RCs will change the synaptic densities of other excitatory inputs on RCs.      

The results were presented in abstract form (Siembab et al., 2007). 

 

Materials and Methods 

Tissue preparation 

 Sections from L4 and L5 spinal cord segments of Er81(-/-), EGR3(-/-), mlcNT3(+/-) , 

and wild-type littermates of P15, P20, and adult postnatal ages were processed for dual or 

triple-color immunofluorescence using antibodies against CB (rabbit polyclonal, 1:2000; 

1:5000), VGLUT1 (guinea pig polyclonal, 1:1000, 1:2000), and VAChT (goat 

polyclonal, 1:1000, 1:2000).  Data from Courtney Smith in our laboratory indicated that 

the number of CB-IR RCs per ventral horn in all three animal models at P20 was 

unchanged (WT = 6.4 ± 0.5 and mlcNT3 = 7.5 ± 0.7, not significant, p = 0.230, t test; WT 

= 9.9 ± 0.5 and Er81(-/-) = 9.0 ± 0.4 (average number of CB-IR cells per ventral horn ± 

SEM.), not significant, p = 0.190, t test; WT = 6.9 ± 0.7 and EGR3(-/-) = 8.4 ± 0.5, not 

significant p = 0.070, t test). Therefore the animal genotype does not affect the criteria for 

recognition of RCs for these analyses.  

Spinal cord sections were incubated overnight in one of the following primary 

antisera mixtures: CB/VAChT, CB/VGLUT1, or CB/VAChT/VGLUT1 (See General 

Methods for antibody sources and buffers).  The following day, immunoreactive sites 

were revealed using species-specific secondary antibodies.  Secondary antibody 

combinations differed and depended on the primary antisera mixture used.  CB and 

VGLUT1-immunoreactivity were revealed respectively with donkey Cy3-conjugated 
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anti-rabbit antibodies and donkey FITC-conjugated anti-guinea pig antibodies (both 

diluted 1:50).  Similarly, CB and VAChT-IR were revealed with donkey Cy3-conjugated 

anti-rabbit antibodies and donkey FITC-conjugated anti-goat antibodies.  In triple-

fluorescent preparations; CB, VGLUT1, and VAChT-IR were revealed respectively with 

donkey Cy3-conjugated anti-rabbit antibodies, donkey FITC-conjugated anti-guinea pig 

antibodies, and donkey Cy5-conjugated anti-goat antibodies.  Renshaw cells were 

identified as neurons with strong CB-IR in the ventral most portion of LVII.  

We also investigated whether the density of excitatory inputs from spinal 

interneurons was affected by alterations in primary afferent inputs.  Dual-color 

immunofluorescence was performed in sections from Er81(-/-), EGR3(-/-), and mlcNT3(+/-) 

mice at P20, with antibodies against CB and Vesicular Glutamate Transporter isoform 2 

(VGLUT2, guinea pig polyclonal, 1:1000).  VGLUT2-IR is a good marker of synaptic 

inputs from spinal interneurons (Todd et al., 2003).  CB and VGLUT2-IR were revealed 

with donkey Cy3-conjugated anti-rabbit antibodies and donkey FITC-conjugated anti-

guinea pig antibodies respectively.    

 

Confocal analysis of VGLUT1-IR and VAChT-IR synaptic densities on CB-IR RCs   

 VGLUT1-IR and VAChT-IR densities were obtained by reconstructing CB-IR 

RCs using the Neurolucida neuron tracing confocal module.  Briefly, low magnification 

(20x1) confocal images of dual or triple-immunofluorescent preparations were obtained 

and RCs were randomly sampled for higher magnification (60x) scans.  Only those RCs 

with extensive CB-IR dendritic labeling were chosen for further analysis.  The selected 

RCs were then imaged at high magnification (60x oil immersion digitally zoomed 1.5x, 
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N.A., 1.35) and series of confocal optical sections (z-step 0.5 µm) were obtained 

throughout individual randomly sampled RCs with their cell bodies and most of their 

immunolabeled dendritic arbors fully contained within the field of view and thickness of 

the tissue sections. The stacks of images were loaded in Neurolucida and the cells were 

reconstructed in 3D from the confocal stacks using the neuron tracing confocal module as 

explained below. VGLUT1-IR and VAChT-IR contacts were then plotted on the 

reconstructed dendritic arbors.  From these reconstructions we estimated dendritic arbor 

morphology and VGLUT1-IR and VAChT-IR synaptic densities and their distribution. 

Densities of contacts were obtained by plotting the number of contacts per 10 µm of 

linear dendrite.  We did not detect significant differences among estimates obtained from 

Renshaw cells sampled from wild type spinal cords from the different lines.  Therefore 

one single pooled value was used as a control wild type Renshaw cell average at each 

age.  

  Similar to analysis mentioned above, the density of VGLUT2-IR contacts on 

P20 Er81(-/-), EGR3(-/-), mlcNT3(+/-), and wild-type CB-IR RCs were obtained by 

reconstructing the RCs in Neurolucida.  VGLUT2-IR contacts were plotted on the 

reconstruction and linear densities obtained and compared.   

Sample characteristics: we sampled 21-66 RCs at each age analyzed from 2-5 

wild-type, Er81(-/-), EGR3(-/-), or mlcNT3(+/-) animals (exact number of animals and cells 

analyzed for each age, animal, and marker are summarized in Tables 9 and 10)    
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Statistical Analysis 

 Values are reported as the average number of contacts per 10 µm of linear 

dendrite ± S.E.M.  Linear densities across genotypes were compared using a one-way 

ANOVA.  Significance was set at p<0.05.  If significant differences existed, then 

multiple comparisons were done using post hoc tests with a level of significance of 

p<0.05.  Densities estimated for the different genotypes were compared to the age-

matched control wild type pooled average using t-tests.    

 

Results 

VGLUT1-IR density on Renshaw cells decreases in EGR3(-/-) mice and increases in 

mlcNT3(+/-) mice.  There were no VGLUT1-IR contacts on Renshaw cells in Er81(-/-) mice. 

As mentioned in Aims 1 and 3, the density of VGLUT1-IR and VAChT-IR 

contacts on RCs increases until P15 and, thereafter, VGLUT1-IR synaptic density 

decreases, whereas VAChT-IR synaptic density is maintained.  We investigated whether 

there were any differences in VGLUT1-IR contact density on P15, P20, and adult RCs in 

Er81(-/-), EGR3(-/-), and mlcNT3(+/-)  mice.  First we investigated whether the absence or 

weakening of primary afferent inputs into the ventral horn affected the density of 

VGLUT1-IR contacts on RCs.  RCs from P15 and P20 Er81(-/-) knockouts had no 

VGLUT1-IR contacts (Figure 38).  Similar to previous reports, VGLUT1-IR in the 

ventral horn was noticeably reduced in EGR3(-/-) mice at all ages analyzed (Figure 38) 

(Smith et al., 2007). RCs from P15 EGR3(-/-) knockouts showed a significant 29% 

decrease in the density of VGLUT1-IR contacts compared to age-matched wild-type 

controls (Figure 39, 40) (WT = 1.35 ± 0.05 VGLUT1-IR contacts per 10 µm of dendrites 
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(n = 5 animals, 57 RCs) and EGR3(-/-) = 0.95 ± 0.03 (n = 3 animals, 37 RCs), p = < 0.001, 

t test).  P20 RCs in EGR3(-/-) mutants showed a significant 14% decrease in VGLUT1-IR 

contact density compared to controls (Figure 39, 40)(WT = 0.98 ± 0.03 (n = 5, 66 RCs) 

and EGR3(-/-) = 0.83 ± 0.04 (n = 3, 32 RCs), p = 0.009, t test), while P40 RCs displayed a 

29% decrease (WT = 0.98 ± 0.03 (n = 4, 35 RCs) and EGR3(-/-) = 0.7 ± 0.04 (n = 3, 31 

RCs), p = < 0.001, t test).  VGLUT1-IR contact density decreased significantly overall 

from P15 to adult in EGR3(-/-) animals (p<0.001, one-way ANOVA).  Post hoc tests 

indicated that the decrease from P15 to P20 and from P20 to adult were significant 

(p<0.05, post hoc Tukey’s test).  Therefore, the density of VGLUT1-IR contacts on P15 

and mature (P20 and adult) RCs decreases with development as in WT after P15, but at 

all ages, EGR3(-/-) animals display significantly less VGLUT1-IR contacts than WTs 

(summarized in Table 9).  

 Next we investigated whether the density of VGLUT1-IR contacts on RCs was 

affected in animals that display an excess of primary afferent input in the ventral horn.  

Previous reports have been in disagreement as to whether there are any changes in the 

density of primary afferent projections in mlcNT3(+/-) mice.  Chen et al., 2007 reported 

that there were no significant changes in the density of filled afferents, whereas Smith et 

al., 2007 reported that there was an increase in VGLUT1-IR primary afferents in 

mlcNT3(+/-) mice.  Our findings indicate that there is an increase in VGLUT1-IR in the 

ventral horn (Figure 38).  Although we did not quantify the density of VGLUT1-IR in the 

ventral horn of mlcNT3(+/-) and wild-type controls in this study, differences were 

noticeable.  In mlcNT3 animals the number of VGLUT1-IR primary afferent inputs on  
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Figure 38.  VGLUT1-immunoreactivity in the ventral horn of wild-type (A), EGR3(-/-) 
(B), mlcNT3(+/-) (C), and Er81(-/-) (D) mice at P15, P20 and in the adult.  A-D, Low 
magnification images of VGLUT1-IR in the ventral horn at P15, P20, and adult in 
control, EGR3(-/-), mlcNT3(+/-), and Er81(-/-) animals.  The dotted line indicates the border 
between the ventral horn and white matter.  The blue line delineates the border between 
lamina IX (LIX) and lamina VII (LVII).  VGLUT1-IR density in the ventral horn 
decreased in EGR3(-/-) mice (B) at all ages analyzed and in contrast, increased in 
mlcNT3(+/-) animals (C).  VGLUT1-IR in the ventral horn of Er81(-/-) mice at P15 (D1) or 
P20 (D2) was largely depleted.  These results are similar to previous reports (Smith et al., 
2007; Mentis et al., 2006).  Changes in VGLUT1-IR were most noticeable in LIX.  Scale 
bars: A1-A3, B1-B3, C1-C3, and D1-D2 (in A1), 100 µm.   
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Figure 39.  Density of VGLUT1-immunoreactive contacts on Renshaw cells in the 
ventral horn of control, EGR3(-/-), and mlcNT3(+/-) P20 mice.  A1, B1, C1, Low 
magnification images of VGLUT1-IR (FITC, green) in the ventral horn at P20 in control, 
EGR3(-/-) and mlcNT3(+/-) animals. VGLUT1-IR density in the ventral horn decreased in 
EGR3(-/-) and increased in mlcNT3(+/-).  The dotted line indicates the border between the 
ventral horn and the white matter.  A2, B2, C2, Superimposed VGLUT1-IR (green) and 
CB-IR (Cy3, red) in the same field shown in A1, B1, and C1.  Box indicates area of high 
magnification shown in A3, B3, and C3.  A3, B3, C3, High magnification images of 
VGLUT1-IR on P20 CB-IR RCs.  Arrowheads indicate VGLUT1-IR contacts on RC 
dendrites. There are fewer contacts on RCs in EGR3(-/-) mice compared to control. In 
contrast, mlcNT3(+/-) mice have more contacts from Ia afferents when compared to the 
control.  Scale bars: A1-A2, B1-B2, and C1-C2 (in A1), 100 µm; A3, B3, and C3 (in 
A3), 20 µm.   
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Figure 40.  Density of VGLUT1-IR contacts on mature Renshaw cells in EGR3(-/-) and 
mlcNT3(+/-) mice compared to wild-type controls.  A, 3D reconstruction of RCs from P20 
wild-type (A1), EGR3(-/-) (A2), and mlcNT3(+/-) (A3) mice reconstructed in Neurolucida 
using the confocal module with VGLUT1-IR contacts plotted on the reconstruction.  B, 
VGLUT1-IR contacts per 10 µm of linear dendrite of CB-IR RCs in control, EGR3(-/-), 
and mlcNT3(+/-) mice of P15, P20, and adult postnatal ages.  Control animals show 
densities and changes with maturation similar to those reported in Mentis et al., 2006 and 
Aim 1 and 3.  In both control and EGR3(-/-) animals, RCs display statistically significant 
decreases in VGLUT1-IR contact density from P15 to adult (p<=0.001, one-way 
ANOVA).  RCs in EGR3(-/-) animals display statistically significant decreases (asterisks; 
t-tests) in VGLUT1-IR contact density (~30% decrease in adult) compared to age-
matched controls.  In contrast, VGLUT1-IR contact density increased significantly from 
P15 to adult in mlcNT3(+/-) mice (p=0.041, one-way ANOVA).  In mature mlcNT3(+/-) 
mice (P20 and adult), VGLUT1-IR contact density on RCs more than doubled compared 
to WTs (asterisks; 114% increase).  VGLUT1-IR synaptic density on RCs is influenced 
by changes in primary afferent strength.  There are fewer contacts from primary afferents 
on RCs in EGR3(-/-) mice compared to control animals.  In contrast, mlcNT3(+/-) mice have 
more contacts from primary afferents compared to control animals. 
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RCs was increased and maintained from P15 to adult (Figure 39,40).  P15 RCs from 

mlcNT3 animals showed a significant 28% increase in the density of VGLUT1-IR 

contacts compared to age-matched wild-types (WT = 1.35 ± 0.05 (n = 5, 57 RCs) and 

mlcNT3(+/-) = 1.76 ± 0.07 (n = 3, 40 RCs), p = < 0.001, t test) (Figure 40).  At P20, RCs 

display more than double (114% increase) the density of VGLUT1-IR contacts compared 

to age-matched wild-type controls  (WT = 0.98 ± 0.03 (n = 5, 66) and mlcNT3(+/-) = 1.99 

± 0.09 (n = 3, 26 RCs), significant, p < 0.001, t test).   Adult RCs also displayed a 

significant increase (99%) in VGLUT1-IR contact density compared to wild-types (WT = 

0.98 ± 0.03 (n = 4, 35 RCs) and mlcNT3(+/-) = 1.97 ± 0.1 (n =3, 24 RCs), p = < 0.001, t 

test) .  These estimates result from maintenance (or even perhaps small increase) of 

VGLUT1-IR densities from P15 to adult animals while in wild-types the VGLUT1 input 

decreased in density (Figure 40).  VGLUT1-IR contact densities significantly increased 

(13% increase) from P15 to adult (p<0.001, one-way ANOVA).  Post hoc tests indicated 

that the increase in density from P15 to P20 was significant (p<0.05, post hoc Dunn’s 

test), but no differences were detected between P20 and adult (P20 = 1.99 ± 0.09 and 

adult = 1.97 ± 0.1, p = 0.908, t test).  In contrast, densities were reduced by 33% from 

P15 to P20 in wild-type controls (summarized in Table 9) (P15 = 1.35 ± 0.045 and P20 = 

0.98 ± 0.03, significant, p = 0.001, t test), which is in agreement with the normal age- 

dependent reduction in VGLUT1-IR densities already described in aims 1 and 3 in two 

independent samples of RCs 
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Table 9.  VGLUT1-IR contact densities of Renshaw cells from P15, P20, and adult wild-
type, Er81(-/-), EGR3(-/-), and mlcNT3(+/-) mice. 
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VAChT-IR density on Renshaw cells increases in Er81(-/-) and EGR3(-/-) mice and 

decreases in mlcNT3(+/-) mice. 

Next we studied whether VAChT-IR contact density on RCs is altered in animals 

with altered strength of the VGLUT1 input.  The ventral horn of Er81(-/-) knockouts 

showed marked increases in VAChT-IR (Figure 41).  As mentioned above, RCs from 

Er81(-/-) knockouts had no VGLUT1-IR contacts, but RCs at P15 showed a 70% increase 

in the density of VAChT-IR contacts (Figure 42,43) that was statistically significant 

compared to age-matched wild-type controls (WT = 1.45 ± 0.043 contacts per 10 µm of 

dendrites (n = 5, 57 RCs) and Er81(-/-) = 2.44 ± 0.09 (n = 3, 31 RCs), p = < 0.001, t test).  

There was only a 23% increase in VAChT-IR contact density at P20 compared to WT, 

although this increase was still significant (WT = 1.67 ± 0.05 (n = 5, 66 RCs) and Er81(-/-) 

= 2.06 ± 0.08 (n = 3, 37 RCs), p = < 0.001, t-test).  VAChT-IR contact density on RCs 

significantly decreased from P15 to P20 (p = 0.002, t test).  Analyses were not carried out 

in adult Er81(-/-) animals because of the high mortality rate after the first three postnatal 

weeks.    

 Similar to Er81(-/-) animals, VAChT-IR staining was increased in LIX and the RC 

area of EGR3(-/-) animals compared to wild-types (Figure 41).  RCs from EGR3(-/-) 

animals displayed significant increases in VAChT-IR contact density at P15 (Figure 

42,43) (21% increase; WT = 1.45 ± 0.04 (n = 5, 57 RCs) and EGR3(-/-) = 1.76 ± 0.06 (n = 

3, 37 RCs), p = < 0.001, t test) and P20 (18% increase; WT = 1.67 ± 0.05 (n = 5, 66 RCs) 

and EGR3(-/-) = 1.97 ± 0.1 (n = 3, 24 RCs), p = < 0.001, t test).  RCs at P40 showed a 40% 

increase compared to wild-type (WT = 1.54 ± 0.09 (n = 2, 24 RCs) and EGR3(-/-) = 2.14 ± 

0.06 (n = 3, 31 RCs), p = < 0.001, t test).   
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Figure 41.  VAChT-IR in the ventral horn of wild-type, EGR3(-/-), mlcNT3(+/-), and Er81(-

/-) mice at P15, P20, and in the adult.  A-D, Low magnification confocal images of 
VAChT-IR in the ventral horn at P15, P20, and adult in control, EGR3(-/-), mlcNT3(+/-), 
and Er81(-/-) animals.  The dotted line indicates the border between the ventral horn and 
white matter.  The blue line delineates the border between lamina IX (LIX) and lamina 
VII (LVII).  VAChT-IR in the ventral horn is largely reduced in LIX in mlcNT3(+/-) mice 
(A) at all ages analyzed.  In contrast, VAChT-IR is increased in LIX and the RC area of 
mature EGR3(-/-) (B) and Er81(-/-) (C) mice.  Scale bars: A1-A3, B1-B3, C1-C3 and D1-
D2 (in A1), 100 µm. 
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Figure 42.  Density of VAChT-immunoreactive contacts on Renshaw cells in the ventral 
horn of control, Er81(-/-) EGR3(-/-), and mlcNT3(+/-) P20 mice.  A1, B1, C1, D1, Low 
magnification images of VAChT-immunoreactivity (VAChT-IR) in the ventral horn at 
P20 in control, Er81(-/-), EGR3(-/-), and mlcNT3(+/-) animals. VAChT-IR staining is 
increased in LIX and in the RC area of EGR3(-/-) and Er81(-/-) mice compared to controls. 
The dotted line indicates the border between the ventral horn and white matter.  A2, B2, 
C2, D2, Superimposed VAChT-IR (green) and CB-IR (CY3, red) in the same field 
shown in A1, B1, C1, and D1.  Box indicates area of high magnification shown in A3, 
B3, C3, and D3.  A3, B3, C3, D3, High magnification images of VAChT-IR contacts on 
P20 CB-IR RCs.  Arrowheads indicate VAChT-IR contacts on RC dendrites. There is a 
greater density of VAChT-IR contacts on RCs in Er81(-/-) and EGR3(-/-) mice compared to 
control animals.  In contrast, RCs in mlcNT3(+/-) mice have less VAChT-IR contacts 
compared to the control.  Scale bars: A1-A2, B1-B2, C1-C2 and D1-D2 (in A1), 100 
µm; A3, B3, C3 and D3 (in A3), 20 µm.   
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Figure 43.  VAChT-IR contacts per 10 µm of linear dendrite of CB-IR RCs in 
control, Er81(-/-), EGR3(-/-), and mlcNT3(+/-) mice of P15, P20, and adult postnatal 
ages.  A, 3D reconstruction of RCs from P20 wild-type (A1), Er81(-/-) (A2), EGR3(-/-) 
(A3), and mlcNT3(+/-) (A4) mice reconstructed in Neurolucida with VAChT-IR 
contacts plotted on the reconstruction.  B, Density of VAChT-IR contacts per 10 µm 
of linear RC dendrite in Er81(-/-), EGR3(-/-), and mlcNT3(+/-) compared to age-matched 
wild-type controls.  Wild-type controls animals showed changes in VAChT-IR 
contact density similar to those reported in Mentis et al., 2006 and Aims 1 and 3.  
VAChT-IR contact density increased significantly from P15 to adult (p=0.020, one-
way ANOVA), there were no significant differences between P20 and adult (p=0.724, 
t-test).  RCs from Er81(-/-) animals showed a significant decrease in VAChT-IR 
contact density from P15 to P20 (p=0.002, t-test).  Compared to wild-type controls, 
the density of VAChT-IR contacts increased significantly for both P15 and P20 (P15 
and P20, p<=0.001, t-test).  VAChT-IR contact density on RCs from EGR3(-/-) mice 
increased from P15 to adult (p=0.001, one-way ANOVA).  At all ages analyzed, 
VAChT-IR contact density in EGR3(-/-) animals increased significantly compared to 
age-matched wild-type controls (p<=0.001, t-tests).  In contrast, VAChT-IR contact 
densities in mlcNT3(+/-) displayed significant decreases compared to control animals 
(P15 and P20, p<=0.001, t-tests; adult, p=0.009, t-test).  There is a greater density of 
VAChT-IR contacts on RCs in Er81(-/-) and EGR3(-/-) mice compared to control 
animals.  In contrast, RCs in mlcNT3(+/-) mice have less VAChT-IR contacts than 
control.  Therefore primary afferent strength affects the density of VAChT-IR 
contacts on RCs.   
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Overall, VAChT-IR contact density increased significantly from P15 to adult (p<0.001, 

one-way ANOVA).  In conclusion, there is a greater density of VAChT-IR contacts on 

RCs in Er81(-/-) and EGR3(-/-) mice compared to control animals (Figure 43; summarized 

in Table 10); suggesting that decreasing primary afferent inputs results in a significant 

increase in VAChT-IR inputs on RCs.   

 Next we investigated whether increasing primary afferent inputs in the ventral 

horn affects the density of VAChT-IR contacts on RCs using the mlcNT3(+/-) mice.  In 

contrast to VAChT-IR staining seen in Er81(-/-) and EGR3(-/-) mice,  VAChT-IR staining 

in mlcNT3(+/-) mice appeared to be decreased, particularly in LIX (Figure 41).  In 

mlcNT3(+/-) animals displaying an increased VGLUT1-IR input showed an overall 

significant decrease in the density of VAChT-IR contacts compared to age-matched wild-

type controls (Figure 42,43).  RCs at P15 exhibited a 30% decrease in VAChT-IR contact 

density (WT = 1.45 ± 0.04 (n = 5, 57 RCs) and mlcNT3(+/-) = 1.04 ± 0.05 (n = 3, 40 RCs), 

p = < 0.001, t test).  There was a slight increase in VAChT-IR contact density in P20 and 

adult mlcNT3(+/-) animals compared to P15, but this increase was not significant (P20 = 

1.24 ± 0.09 (n = 3, 21 RCs) and adult = 1.16 ± 0.1 (n = 3, 24 RCs), p = 0.169, one-way 

ANOVA) and densities at each of these ages was always significantly less than with age-

matched WTs.  Therefore it appears that alterations in primary afferent input strength 

affects the density of VAChT-IR contacts on RCs (summarized in Table 10). 
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Excitatory glutamatergic inputs from spinal interneurons on Renshaw cells are not 

influenced by the strength of primary afferents.  

Since the density of excitatory inputs from motor axons is influenced by the 

strength of primary afferents, we looked at whether there was a change in the density of 

other excitatory inputs also converging on RCs.  We analyzed inputs for spinal cord 

interneurons using VGLUT2-IR as a marker (Figure 44).  The density of VGLUT2-IR 

contacts on WT RCs at P20 was greater than that of VGLUT1-IR or VAChT-IR contacts 

from primary afferents and motor axon collaterals, respectively.  Interestingly, there was 

no significant difference in the density of VGLUT2-IR contacts on RCs in Er81(-/-), 

EGR3(-/-), and mlcNT3(+/-) compared to WT animals (Figure 44) (WT = 3.11 ± 0.53 (n = 1 

animal, 11 RCs), Er81(-/-) = 3.09 ± 0.59 (n=1, 9 RCs), EGR3(-/-) = 3.07 ± 0.53 (n=1, 11 

RCs), mlcNT3(+/-) = 3.08 ± 0.47 (n=1, 14 RCs); p = 0.997, one-way ANOVA).  Therefore 

it appears that only inputs from motor axons are affected by alterations in primary 

afferents.  

 

Discussion 

 The main findings in this aim include: 1) Altering primary afferent input in the 

ventral horn affects the density of VGLUT1-IR contacts on RCs; 2) The density of 

VAChT-IR inputs are altered opposite to VGLUT1.  Decreasing primary afferent input in 

the ventral horn results in an increase in VAChT-IR contact strength, while increasing 

primary afferent strength results in a decrease in VAChT-IR strength; 3) Excitatory 

inputs from spinal interneurons on RCs are not affected by changes in primary afferent  
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Table 10.  VAChT-IR contact densities of Renshaw cells from P15, P20, and adult wild-
type, Er81(-/-), EGR3(-/-), and mlcNT3(+/-) mice. 
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Figure 44.  Density of VGLUT2-IR contacts in wild-type, Er81(-/-), EGR3(-/-) and 
mlcNT3(+/-) mice at P20.  A, VGLUT2-IR (FITC, green) in the ventral horn of wild-type 
(A1), Er81(-/-) (A2), EGR3(-/-) (A3), and mlcNT3(+/-) (A4) mice at P20.  Dotted line 
represents the border between the ventral horn and the white matter.  There does not 
appear to be any differences in VGLUT2-IR in the ventral horn of all three transgenic 
animals compared to wild-type controls.  B, Low magnification confocal image of the 
ventral horn of a P20 Er81(-/-) spinal cord immunolabeled for CB (Cy3, red) and 
VGLUT2 (green).  The box indicates the cell shown at higher magnification in C.  C, 
High magnification image of the CB-IR RC selected in B.  Boxes indicate the areas 
shown at higher magnification in D1-D3.  D, High magnification images of VGLUT2-IR 
contacts (green) on the soma (D1) and dendrites (D2-D3) of a P20 CB-IR RC (red). 
Arrowheads indicate VGLUT2-IR contacts.  VGLUT2-IR contacts were located on the 
soma and whole dendritic arbor analyzed.  E, Neurolucida 3D reconstruction of a RC 
from a P20 Er81(-/-) knockout with VGLUT2-IR contacts plotted on the reconstruction.  
F, Density of VGLUT2-IR contacts per 10 µm of linear CB-IR RC dendrites in P20 
animals.  There were no significant differences in the density of VGLUT2-IR contacts in 
Er81(-/-), EGR3(-/-), and mlcNT3(+/-) compared to control animals (p=0.997, one-way 
ANOVA).  The blue line represents the density of VAChT-IR contacts on P20 RCs from 
wild-type controls and the green line represents the density VGLUT1-IR contacts.  The 
density of VGLUT2-IR contacts on RCs at P20 was greater than that of VGLUT1-IR or 
VAChT-IR.   Scale bars: A1-A4 and B (in A1 and B), 100 µm; C, 20 µm; D1-D3 (in 
D1), 10 µm.  
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input.  These results suggest that there is a specific interaction between motor axons and 

primary afferents throughout development.  

 During development and in mature neurons, excitatory synaptic input strength is 

controlled by two different activity-dependent mechanisms, homeostatic and Hebbian 

synaptic plasticity.  Both are discussed below to best interpret our findings.  In addition, it 

is also possible that competition between Ia afferents and motor axons is activity-

independent and a molecular model is proposed that could explain this observation.  All 

these mechanistic explanations are highly speculative at this point and will need further 

work to be validated.       

 

Homeostatic Plasticity 

 Neural activity is modulated so that neurons do no become hyperactive or 

hypoactive.  Homeostatic plasticity (HSP) is the ability of a neuron to maintain a steady 

state of activity relative to the activity of the network.  It is believed that a neuron 

maintains a steady state of activity, in part by altering the synaptic strength of its inputs.  

HSP works as a negative feedback mechanism.  In other words, excitatory synapses are 

weakened by overactivation of the neuron, while inhibitory synapses are strengthened 

(Turrigiano & Nelson, 2004; Burrone & Murthy, 2003; Davis, 2006).  HSP is believed to 

work as a global mechanism where all synapses on a neuron are equally affected, so that 

the synaptic strengths are proportionally scaled up or down.  A global signal will affect 

all synapses in a neuron and synapses will change in unison.  If one major excitatory 

input, like primary afferents, is strengthened that could then decrease the strength of all 

other excitatory inputs.  HSP mechanisms fail to explain the changes in density of motor 
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axon synapses seen in this aim because not all excitatory inputs were equally affected.  In 

this aim only those inputs from motor axons, and not those from excitatory spinal 

interneurons, were affected by changes in primary afferent input in the ventral horn 

(Figure 45).  Therefore, we rule out the possibility that the changes in synaptic strength 

described here arise via some form of homeostatic synaptic plasticity.   

 

Hebbian Synaptic Plasticity 

 Hebbian theory of synaptic plasticity differs greatly from homeostatic plasticity 

and was postulated in 1949 by Donald Hebb.  In Hebbian synapses, increased synaptic 

strength results from the association of the presynaptic terminal activity with postsynaptic 

cell firing within a narrow time-window (Hebb, 1949).  Hebbian theory is a positive 

feedback mechanism that strengthens synapses capable of modulating postsynaptic 

actions while ineffective synapses are weakened or eliminated.  It is often summarized as 

“cells that fire together, wire together.”  Hebbian synaptic plasticity is competitive 

because only the synaptic inputs best correlated with postsynaptic firing are maintained.  

It is possible that motor axons and primary afferents compete during development to 

modulate MN firing in a Hebbian-like mode.  During normal development, motor axons 

are generally strengthened because the tight coupling between MNs and RCs firing.  In 

contrast, primary afferent inputs are functionally weakened.  In the case of the Er81(-/-) 

and EGR3(-/-) mice, where primary afferent input in the ventral horn is further weakened, 

motor axon synapses could proliferate because of weaker competition from primary 

afferents.  In contrast, in mlcNT3(+/-) mice, the increase in primary afferent input results in 

significantly less inputs from motor axons.  A Hebbian theory of plasticity seems  
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Figure 45.   Model of homeostatic plasticity (HSP) mechanisms in a mature cell.  The 
cell depicted here, under normal conditions, receives three excitatory inputs (#1, 2, and 
3).  Upon complete removal of input #1(indicated by ‘X’), since HSP mechanisms refer 
to uniform changes in synaptic strength, we would expect to see changes in the synaptic 
densities of both input #2 and 3 to maintain a homeostatic number of excitatory synapses.  
In this aim, we found that removing one input (here input #1) does not affect both inputs 
#2 and 3.  Only one of these inputs (input #3) is affected and alters its synaptic strength 
upon complete removal of input #1.  Input #2 remains unchanged. 
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plausible but it also raises several questions: 1) is the increased strength of motor axon 

inputs on RCs observed in Er81(-/-) and EGR3(-/-) mice a result of specific preexisting 

motor axon connections sprouting new terminals, or 2) is increased motor axon input 

density the result of RCs receiving inputs from a larger number of MNs, perhaps 

resulting in a loss of specificity?  Loss of specificity means that RCs receive correct 

inputs from homonymous and synergist MNs, but also receive inputs from MNs 

innervating antagonistic muscles (Figure 46).  

Activity-independent mechanisms: molecular hypothesis 

 Formation of neural circuits requires that appropriate synaptic connections be 

made and that the appropriate presynaptic and postsynaptic plasma membranes be 

brought together.  Thereafter, specific signaling results in the induction of a pre- and 

postsynaptic apparatus.  A wealth of studies indicates that these interactions are mainly 

mediated by neurexins (NRXs) and their binding partner neuroligins (NLs; reviewed in 

Literature Review).  There are four NL genes and three NRX genes in mouse, but 

numerous isoforms exist generated by alternative splicing.  Two transcripts per NRX 

genes are generated (α and β NRXs).  The specific interactions adjust the number of  

synapses formed independently for different inputs.  For example, NL-1 interactions are 

responsible for excitatory synapses and NL-2 for inhibitory synapses (Varoqueaux et al., 

2004).  NL-1 specifically binds β-neurexins (β-NRX) and NL-2 binds both α-neurexins 

(α-NRX) and β-NRXs, but β-NRX that bind NL-2 are different isoforms than the one 

that binds NL-1 (Figure 47; Missler et al., 2003).   
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Figure 46.  Schematic depicting a Hebbian plasticity mechanism upon complete removal 
of one excitatory input.  Upon removal of primary afferent inputs on RCs, the density of 
motor axon inputs increases, but the inputs from spinal interneurons remain unchanged.  
Therefore, it appears that there is an interaction between primary afferents and motor 
axons throughout development.  A, Increased motor axon input density on RCs could be 
explained by changes in the synaptic strength of the motor axons inputs.  In other words, 
there is an increase in the number of synapses from MN a.  B, In contrast, RCs may now 
receive inappropriate connections from MN b, which do not usually contact that RC.  If 
this were the case, then there would be a loss of specificity of the connections from motor 
axons on RCs.         
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 However, there are also examples of competition for NLs that heterosynaptically 

affect synaptic densities.  As mentioned above, NL-1 interacts with postsynaptic 

scaffolding protein PSD-95 at glutamatergic synapses.  Several studies have 

demonstrated that overexpression of PSD-95 in cultured hippocampal neurons leads to 

redirecting of all available NLs (including NL-2) to excitatory synapses such that, for 

example, GABAergic synapses are found at lower densities (Levinson et al., 2005).  

From these studies, we can hypothesize that the specific interaction between motor axons 

and sensory afferents synapse number could occur via a similar mechanism of 

redirecting NLs from one synapse type to another.  For this hypothesis to be correct, it is 

necessary that: cholinergic synapse formation, similar to glutamatergic synapses, are 

dependent on the same isoforms of NL-1 and β-NRX.  The specific NL and NRX 

isoforms of cholinergic synapses are not yet known.  By difference to glutamatergic 

synapses, central cholinergic synapses express PSD-93 (Parker et al., 2004).  Therefore, 

we can hypothesize that during normal development PSD-93 expression at cholinergic 

synapses increases, leading to a recruitment of NL-1 away from glutamatergic synapses 

ultimately reducing sensory afferent input and strengthening inputs from motor axons.  

In Er81(-/-) and EGR3(-/-) mice, the further weakening of primary afferents synapses could  

redirect the now available NL-1 in RCs, resulting in more motor axon synapses formed.  

In contrast, in mlcNT3(+/-) mice, an excess of sensory synapses and accumulation of 

postsynaptic PSD-95 could result in a redirection of NL-1 away from cholinergic 

synapses, decreasing the density of motor axon synapses. 
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Figure 47.  Molecular hypothesis of activity-independent input selection on mature 
Renshaw cells in Er81(-/-), EGR3(-/-) and mlcNT3(+/-) mice.  Neuroligin-1 (NL-1) and its 
binding partner β-neurexin (β-NRX) are found at glutamatergic synapses (VGLUT1 
synapses; the NL/NRX combination at VGLUT1-IR synapses is presently unknown).  
Inhibitory synapses (VGAT synapses) have neuroligin-2 (NL-2) and a combination of α- 
and β-neurexins (note that the β-NRX found at inhibitory synapses is a different isoform 
and is represented as β’-NRX).  The NL/NRX combination at cholinergic synapses is 
unknown, but here we are assuming that the same complement of NL/NRXs found at 
VGLUT1 synapses are also found at VAChT synapses.  There are different scaffolding 
proteins associated with glutamatergic and cholinergic synapses.  Postsynaptic density 
protein-95 and -93 (PSD-95 and PSD-93) are associated with glutamatergic and 
cholinergic synapses respectively.  In Er81(-/-) and EGR3(-/-) animals, weakening of 
sensory afferents and accumulation of PSD-93 at cholinergic synapses, results in more 
NL-1 being redirected away from VGLUT1 synapses to VAChT synapses.  Therefore, a 
further decrease in the density of sensory afferent inputs and an exacerbated increase in 
motor axon input density are observed.  In mlcNT3(+/-) animals, the excess of sensory 
afferent inputs and the accumulation of PSD-95, could result in NL-1 being redirected 
from VAChT synapses to VGLUT1 synapses, decreasing the density of motor axon 
synapses.         

 

 

 

 

 

 

 

 

 



 250 

 



 251 

Activity-dependent molecular mechanism for synaptic strengthening 

 A further alternative mechanism can be proposed.  It has been suggested that 

excitatory synapse maturation is dependent on neuregulin (NRGs) and its receptors, 

ErbBs (Falls, 2003; Yarden and Sliwkowski, 2001).  More specifically, neuregulin-1 

(NRG-1) and its receptor ErbB4 have been implicated in excitatory synapse 

development.  Intracellular signaling pathways are activated by NRG binding to ErbB 

receptors, which are receptor tyrosine kinases.  Activation of ErbB receptors via NRGs 

mediates several cellular responses including: apoptosis, migration, differentiation, 

adhesion, and stimulation or inhibition of proliferation.  Several studies have found that 

one ErbB receptor in particular, ErbB4, is found in the postsynaptic density (PSD) of 

excitatory synapses and interacts with PSD-95, a scaffolding protein of glutamatergic 

synapses (Garcia et al., 2000; Huang et al., 2000).  Li and colleagues (2007) 

demonstrated that the NRG/ErbB4 signaling pathway is required for activity dependent 

AMPA receptor incorporation and stabilization at glutamatergic synapses in cultured 

hippocampal neurons.  They also found that if activity at these synapses is inhibited, 

there is a corresponding decrease in ErbB4 in the PSDs.  They concluded that the 

NRG/ErbB4 signaling pathway is activated by synaptic activity, which leads to a 

recruitment and stabilization of ErbB4 receptors in synapses.  Moreover, stabilization of 

ErbB4 at PSDs stabilizes AMPA receptors permitting synaptic plasticity and maturation.  

From these conclusions we can hypothesize that, under normal wild-type conditions, 

motor axon synapses on RCs could be strengthened and mature by activity-dependent 

activation of NRG/ErbB signaling pathways, ultimately leading to stabilization of motor 

axon postsynaptic receptors.  In contrast, decreased activity of sensory afferent synapses 
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results in decreased signaling.  Competition of motor axon synapses and primary 

afferents for ErbB might provide a molecular substrate for a possible interaction between 

these two inputs during development.  ErbBs accumulate at motor axon synapses, but are 

removed from sensory synapses leading to fewer AMPA receptors being incorporated 

during late postnatal development, this mechanism is exacerbated in Er81(-/-) and EGR3(-

/-) mice.  Moreover, the activity of sensory afferent inputs on RCs might increase in 

mlcNT3(+/-) mice, thus leading to incorporation of ErbB4 at PSDs and ultimately 

incorporation of more AMPA receptors and stabilization of these receptors at the 

expense of motor axon synapse stabilization.   

 Above we proposed separate activity-independent and activity-dependent 

mechanisms to explain the interaction between motor axon and sensory afferent inputs 

on RCs, but more likely, several of these mechanisms could work in concert.  During 

normal development, it is possible that motor axon inputs are stabilized and proliferate 

because of increased activity.  Increased activity leads to aggregation of ErbB receptors 

at PSDs, which then may increase PSD-93 expression, ultimately leading to recruitment 

of NL-1 from sensory afferent synapses.  Motor axon inputs are strengthened by 

increased aggregation of ErbB receptors at PSDs, which activate signaling cascades that 

not only lead to increased incorporation of motor axon postsynaptic receptors, but also 

proliferation of this input.  In contrast, in mlcNT3(+/-) mice, sensory afferent activity may 

increase and, similar to wild-type mice, ErbB receptors aggregate and increase PSD-95 

expression.  Increased PSD-95 expression may then recruit NL-1 from cholinergic 

synapses, strengthening sensory afferent inputs on RCs.    
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 In conclusion, we present evidence that interactions exist between sensory 

afferent strength and motor axon input density on RCs, but not with other excitatory 

inputs, suggesting that early sensory afferent inputs contribute to shape the organization 

of motor synapses on RCs.  We propose a number of mechanistic models that could 

explain this interaction.       
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CHAPTER IX 

Conclusions 
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 In this thesis, we hypothesized that the common genetic background of adult 

Renshaw cells (RCs) and Ia inhibitory interneurons (IaINs) makes them competent to 

receive convergent inputs from motor axons and Ia proprioceptive primary afferents, but 

that each input is differentially matured by each interneuron type during development in a 

cell-type specific manner.  Here we determined that: 

1. Renshaw cells receive convergent inputs from motor axons and Ia afferents, 
both inputs develop in parallel until after the second postnatal week; after 
which the motor input is maintained and the input from Ia afferents is 
“functionally de-selected”, 

 
  

2. Synapses between RCs and motoneurons (MNs) are first present at E13, but 
there is a 24-48 hour delay before the formation of synapses from RCs onto 
MNs, 

 

3. Neonatal Ia inhibitory interneurons do not receive motor axon inputs.  Ia 
afferent inputs develop in parallel in IaINs and RCs during early postnatal 
development, but Ia afferent synaptic density on IaINs is always higher than 
on RCs and is maintained after P15 and in the adult, and 

 

4. Altering Ia afferent strength in the ventral horn affects the strength of sensory 
afferent and motor axon inputs on RCs, but not other excitatory inputs, 
suggesting that there is an interaction between motor axons and Ia afferents 
throughout development. 

 

 From these findings, some general conclusions may be drawn.  First, RCs and 

IaINs do not diversify from a “generic” V1-IN by the loss/weakening or 

gain/strengthening of specific inputs.  RCs are a unique subtype of the V1 class because 

they are the only known V1-INs that are competent to receive convergent inputs from 

both Ia afferents and motor axons.  Moreover, we demonstrate that the overall synaptic 

organization of motor axons inputs on RCs appears to be shaped by the presence of early 

sensory afferent inputs.  IaINs were unique in the density, location, and maintenance of 
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sensory afferent inputs in the adult.  Finally, we find little evidence for the convergence 

of motor axons and sensory synapses on neonatal IaINs, suggesting that there are 

fundamental differences between IaINs and RCs in their competence for receiving 

synapses from motor axons and that this is determined at very early stages, and is perhaps 

genetically specified.             

 .       
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