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Abstract 

Jinjun Shi, Ph.D., Department of Mechanical and Materials Engineering, Wright State 
University, 2008. “Composite Membranes for Proton Exchange Membrane Fuel Cells.” 
 
 
 Proton exchange membrane fuel cells (PEMFCs), often regarded as a green 

energy source, have become a promising candidate to replace traditional power sources. 

One of the obstacles toward commercialization of PEM fuel cells is lack of high 

performance and low cost proton exchange membranes. The objective of this study was 

to develop and evaluate higher-performance, Nafion-based composite proton exchange 

membranes that are suitable for operating at higher temperatures (> 85ºC). 

 Proton exchange membranes were prepared by adding silica and heteropolyacids 

(HPAs) to a proton-conducting polymer matrix, Nafion. The added silica powder 

particles, either by direct mixing or sol-gel reaction, were found to enhance the thermal 

stability and lower thermal expansion of the composite membranes. Incorporating HPAs 

into Nafion greatly increased the proton conductivity of Nafion and the single cell 

performance was also greatly improved. In order to prevent HPA leaching, Y zeolite was 

used to encage HPA molecules inside its supercages. A templating mechanism was also 

used to trap HPAs with silica gels.  Membranes and membrane-electrode assemblies 

(MEAs) with encaged HPAs were studied in light of HPA’s effects on the proton 

conductivity, thermal stability, thermal expansion coefficient, single cell performance, 

micro-morphology (SEM), and acid leaching. A nonelinear equation from fitted 
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experimental data was proposed to model the relationship between proton conductivity 

and the acid doping level. The results showed that Y zeolite and silica gel can be used to 

prevent HPA from leaching by water. In order to increase the mechanical properties and 

water uptake properties, hydrophilic, expanded PTFE (ePTFE) was used as the scaffold 

material for PEM.   
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1. Introduction 
 
 
1.1 History of fuel cells 

Fuel cells are electrochemical devices that can convert chemical energy into electrical 

energy. The concept of fuel cell was first proposed by Swiss scientist Christian Friedrich 

Schönbein in 1839 while the first fuel cell was designed by Sir William Grove in 

1839[1]. Grove’s fuel cell is shown in Fig 1-1. Grove’s experiment was inspired by the 

idea of electrolyzing water to generate hydrogen and oxygen. By reversing the 

electrolysis setup, Grove was able to generate current flow between two platinum 

electrodes. 

 

 

Fig 1-1. Grove’s fuel cell [1] 
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The first practical fuel cell was developed by Charles Langer and Ludwig Mond in 

1989 and coal gas and air were used as the reactant gases [2]. In 1939, Francis Thomas 

Bacon modified Langer & Mond’s fuel cell design and used nickel to replace platinum as 

the electrode material.  A 5 kW-fuel cell stack was demonstrated by Bacon in 1959 which 

had an efficiency of 60%. Bacon’s fuel cell, which can be regarded as the first generation 

of alkaline fuel cell, was later on used for Apollo space vehicles of the United States. 

1960s can be regarded as the starting time of the development of modern fuel cells. 

The National Aeronautics and Space Administration (NASA) was looking for a compact 

and light weight power source for its space missions. Batteries were not suitable for that 

application because of the weight and size restrictions. In order to solve this problem, 

Willard Thomas Grubb and Leonard Niedrach, two scientists from General Electric (GE), 

developed the first generation proton exchange membrane (PEM) fuel cell and used that 

for NASA's Project Gemini. After that, GE continued working on PEM fuel cells and 

GE’s fuel cells was used by US Army and US Navy Bureau of Ships. At that time, the 

main difficulty for fuel cells was the membrane degradation problem. 

The discovery of Nafion®, which was developed in 1960s by Walther Grot of 

DuPont de Nemours, was one of the milestones of fuel cell history. Nafion has excellent 

proton conductivity, thermal and chemical stability, and also high mechanical strength. 

Even after more than forty years from the birth of Nafion, it is still the material-of-choice 

for low temperature PEM fuel cells at this time[3, 4]. 

In the past 10-20 years, a lot of research work has been done on the materials 

development and system design for fuel cells. One of the noteworthy achievements was 

Ballard’s first generation fuel cell powered vehicle in 1993. Nowadays most of the auto 
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makers are developing fuel cell powered cars and some of the prototypes have already 

been demonstrated on the road. Fuel cell systems targeted at portable applications have 

also been developed and commercialized. 

1.2 Benefit of fuel cells 

Fuel cells are called clean energy or green energy because of their low pollution, low 

emission, and quite operation. For PEM fuel cells, the reactants are hydrogen and 

oxygen, and water is the only product which is totally harmless to the environment.  

Compared to traditional power sources such as combustion engines, the efficiency of 

fuel cells are much higher, especially at low temperature range [5]. The efficiency of 

combustion engines are limited by the Carnot’s Law and a good amount of the energy is 

lost in the form of heat or friction during mechanical motion.   

As it can be seen from Table 1-1, all fuel cells do not release harmful products to the 

environment. While one of the emission gases from internal combustion is NOx, which is 

the major source of photochemical smog. Using hydrogen fuel cells can greatly reduce 

the release of natural greenhouse gas into the atmosphere, which helps to relieve the 

atmosphere temperature increase on the earth [6]. 

Table 1-1. Comparison of emission between fuel cells and internal combustion engines 
 

Type of power source Emission content Emission harmful? 

SOFC H2O No 

MCFC CO2+H2O No 

PAFC H2O No 

AFC H2O No 

PEMFC H2O No 

DMFC CO2+H2O No 

Internal combustion engine NOx+H2O+CO2 Yes 
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1.3 Types of fuel cells 

There are several ways to classify the current available fuel cells. Based on the 

electrolyte material, fuel cells can be classified into solid oxide fuel cells, molten 

carbonate fuel cells, phosphoric acid fuel cells, alkaline fuel cells, proton exchange 

membrane fuel cells, and direct methanol fuel cells. When the working temperature is 

concerned, fuel cells can be classified into low-temperature fuel cells (PEMFC & 

DMFC), medium-temperature fuel cells (AFC & PAFC), and high-temperature fuel cells 

(SOFC & MCFC). The operating condition and application field of different fuel cell 

types are summarized in Fig 1-2 and Table 1-2. 
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Fig 1-2. Major types of fuel cells 
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Table 1-2. Characteristics of different types of fuel cells [5, 7] 

 
Electrical 
Efficiency 

(%) 

Power 
Density 

(mW/cm2) 

Internal 
Reforming

Power 
Range 
(kW) 

Application Range 

SOFC 50-60 250-350 Yes 10-100000 All sizes of CHP 
systems 

MCFC 45-55 100-300 Yes 100-100000 Dedium to large-scale 
CHP systems 

PAFC 40 150-300 No 50-1000 Stationary power 
source 

AFC 50 150-400 No 1-100 Space and military 
applications 

PEMFC 40-50 300-1000 No 0.001-1000 Mobile and portable 
applications 

DMFC 15-25 30-160 No <0.25 Portable applications 
 

1.4 Proton exchange membrane fuel cells 

Proton exchange membrane fuel cell, also called polymer electrolyte fuel cell, is a 

type of low temperature fuel cell aimed at mobile and portable applications because of 

the simplicity in structure and fast start up. For this type of fuel cell, a solid ionic polymer 

membrane is used as electrolyte material and carbon-supported platinum is usually used 

as catalyst. The proton exchange membrane separates the anode and cathode and 

conducts the protons generated at the anode side. Hydrogen fuel is fed into the anode side 

and split into protons and electrons, and electrons go through the external circuit and 

protons cross the PEM to the anode side. The oxidant, usually oxygen or air, is fed into 

the cathode size and reacts with protons and generates water.  The reactions for PEM fuel 

cells are: 

Anode:                           2 2 2PtH H e+ −⎯⎯→ +  

Cathode:                        2 2
1 2 2
2

PtO H e H O+ −+ + ⎯⎯→  

Overall:                         2 2 2
1
2

PtH O H O+ ⎯⎯→  
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Fig 1-3. Schematic of proton exchange membrane (PEM) fuel cells 
 

 
Currently PEM fuel cells are the most studied fuel cells because of the simple 

structure and wide application range. Many prototype PEM fuel cell based battery 

chargers, fuel cell engines, and portable power source are available, and the major auto 

makers are planning to release fuel cell powered hybrid vehicles into the markets. But 

there are still some barriers toward the commercialization of PEM fuel cells: 

Cost. Cost is always the final factor for a product to enter the market. Currently 

the majority of the cost of PEM fuel cells comes from the platinum catalyst and proton 

exchange membrane. 

Hydrogen storage. Hydrogen is a low density and combustible gas. Many new 

materials, such as carbon nanotubes, are reported to have hydrogen storage capability [8-

10], and metal hydride can be used to storage hydrogen at low pressure [11-14]. But 
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when it comes to mobile applications, high-pressure hydrogen tank is still the only 

solution for hydrogen storage. 

Water management. Water management is a very tricky process for PEM fuel 

cells. In order to better utilize the catalyst nano-particles on the electrode, the gas 

diffusion layer is expected to be hydrophobic so that the chemically generated water and 

humidity in the reactant gas won’t block the micro-pores inside it. While on the other 

side, the proton conductivity of the PEM heavily relies on the water content inside the 

membrane. So keeping the water content in the PEM, especially near the anode side, at 

higher temperature and lower humidity level conditions is the most challenging task for 

PEM materials research. 

There are some general requirements for PEMs: 

High proton conductivity, which intends to reduce ohmic loss inside the fuel cells. 

Good water retention capability. As proton conductivity heavily relies on water 

molecules [15-17], the water content inside PEMs is essential for their proton 

conductivity. 

Good mechanical strength. Generally speaking, PEMs do not take a lot of load 

during fuel cell operation so the requirement for their mechanical strength is not critical. 

But the bottom line is the ability to withstand the hot-pressing process during MEA 

fabrication. 

Low fuel permeability in order to maximize coulombic efficiency[18]. 

Good dimensional stability. Compared to gas diffusion layers, the PEMs have 

much higher swelling ratio and the ratio changes along with the relative humidity 
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fluctuation. A high dimensional stability helps maintain the integral structure of the 

membrane electrode assembly (MEA). 

Good chemical and thermal stability. The PEM should not degrade or lose 

performance under the normal fuel cell operating conditions. 

Low cost. The cost of PEM is one of the key factors for fuel cell 

commercialization. Fuel cells won’t take the place of traditional power sources until its 

price is comparable or even lower than internal combustion engines. 

Environmental considerations. Fuel cells by themselves are called clean power 

sources, but it is important that there are no environmentally detrimental processes or 

byproducts generated during the manufacturing process of fuel cells. 

 

1.5 Scope of research 

The purpose of this study is to develop and study Nafion-based composite 

membranes for PEM fuel cell applications. The developed membranes will be studied 

and compared to recast Nafion in terms of proton conductivity, thermal stability, 

activation energy, micro-morphology, thermal expansion, and single cell performance. 

One important task of this study is to investigate the HPA trapping in Y zeolite and silica 

gel and their application to PEM. An experimental equation will be developed to study 

the relationship between acid doping level and proton conductivity. 
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2. Literature review 
 
 
2.1 Benefits of higher working temperature 

Recent research on PEM fuel cells has been more on working at higher 

temperatures (>85ºC) [19]. There are several benefits of running PEM fuel cells at higher 

temperatures: (1) higher proton conductivity at the same relative humidity level, (2) 

better water management, (3) improved catalyst tolerance to fuel impurities, (4) faster 

electrode kinetics, and (5) simpler cooling system structure.  

The proton conductivity of PEM is closely related to temperature and most proton 

conductive materials follow Arrhenius behavior [20]. Fig 2-1 is the Arrhenius plot of 

composite Nafion membrane with 3% TEOS at 95% relative humidity level. In this 

aspect, it is preferable to have the fuel cells work at higher temperatures. 

2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15

7.8

8.0

8.2

8.4

8.6

8.8

9.0

In
(σ

T)

1000/T  

Fig 2-1. Arrhenius plot of Nafion with 3% TEOS at 95% relative humidity (this work) 
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The activation energy loss can be calculated by the following equation [5] 

0

ln
2act
RT iV

F iα
⎞⎛

Δ = ⎟⎜
⎝ ⎠

 

Where i0 is exchange current density, R is universal gas constant, F is Faraday constant, 

and α is the charge transfer constant. With the increase in temperature, the effect of i0 

dominates so the activation energy is greatly reduced. 

Water plays an important role in PEM fuel cells. Usually the reactant gas is 

humidified before reaching fuel cell electrodes. The water content in the reactant gas 

helps keep the moisture inside the fuel cell membrane and thus maintain good proton 

conductivity. But as proton migrate from anode to cathode, each proton will drag about 

2.5 water molecules to the cathode side [21]. The cathode reaction will also generate 

water continuously at the cathode side during fuel cell operation. Too much water will 

block the pores inside the gas diffusion layer and decrease the fuel cell performance. This 

is called electrode flooding [22, 23]. The electrode flooding is more serious in fuel cell 

stacks as the high power output will generate more water at the cathode side. In order to 

avoid the flooding phenomena, a fuel cell stack needs to be well engineered so that water 

inside the fuel cell can reach a balanced state. 

Ideally the effect of catalyst won’t decrease with time if pure hydrogen and 

oxygen is used as the reactants. But pure hydrogen will be too expensive for fuel cell 

applications. From industrial point of view, fuel reforming is the way for large-scale low 

cost hydrogen production. If steam reforming is used to generate hydrogen, the reaction 

follows the equations below [5]: 
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2 2

2 2 2

( )
2n m
mC H nH O nCO n H

CO H O CO H

+ → + +

+ → +
 

The carbon monoxide/water reaction is called water-gas shift reaction. 

Thermodynamically the water-gas shift reaction can proceed in either direction and it 

leads to the result that certain carbon monoxide will be left in the final hydrogen gas. The 

carbon monoxide can have a poisonous effect on platinum catalyst as it can strongly 

adsorb on the surface of platinum and prevent hydrogen and oxygen from reaching the 

catalyst (Fig 2-2). To relieve this poisoning effect, either extra hydrogen purification or 

CO-tolerant electrocatalyst should be applied. Some research work has been done to 

study the poising effect of CO on Pt catalyst for fuel cell applications [24]. As the 

adsorption of CO on Pt has a negative enthalpy, so by elevating the temperature can 

greatly reduce the poisoning effect [25, 26]. If reformed hydrogen can be used for PEM 

fuel cells without the need of extra purification, the potential operating cost of fuel cells 

will be greatly reduced. 

 

Pt Pt Pt

Pt Pt
Pt

C O
 

Fig 2-2. Schematic of Pt catalyst poisoning by carbon monoxide 
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2.2 Water management 

It has been reported by Zawodzinski [21] that each transported proton can drag 

about 2.5 water molecules for fully hydrated Nafion 117 at room temperature. Based on 

the fact that water molecules dragged by other ions are much more than protons, 

Zawodzinski suggested that most proton conduction in proton exchange membrane can 

be contributed by Grotthuss mechanism [15, 16]. 

 

 
 

Fig 2-3. Schematic of water manage in PEM fuel cells [5] 
 
 

The relationship of λ (ratio of the number of water molecules to the number of 

SO3H+) at 30 ºC was fitted from experimental data [27]: 

2 30.043 17.81 39.85 36.0a a aλ = + − +  for 0 1a< ≤ , where a is the water vapor activity 

(Pw/Psat) 
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Fig 2-4. Water content vs. water activity of Nafion 117 at 30ºC [27] 
 
 
2.3 Status of proton exchange membrane materials 

2.3.1 PFSA membranes 

Perfluorosulfonic acid (PFSA) is currently the most widely used membrane 

material for proton exchange membrane fuel cells. PFSA membranes have good 

mechanical strength, high proton conductivity, and chemical and thermal stability. The 

commercial PFSA membranes include DuPont’s Nafion, Asahi Glass’s Flemion, Asahi 

Chemical’s Aciplex, Dow Chemical membrane, and Golden Energy’s GEFC, etc. 

Among all those PFSA membranes, Nafion is the most studied one. Nafion was 

developed by Dupont de Nemours in late 1960s and it showed surprisingly high ionic 

conductivity and durability. As almost the only commercial proton exchange membrane 

for decades, a lot of research work has been done to study Nafion’s structure [28-34], 

proton conducting mechanism [35-41], physical and chemical properties [42-45], 

computational modeling [46-48], and composite membranes [49-55] as well. Currently 
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almost all the commercial PEM fuel cells and stacks are still using Nafion as the PEM 

material.  

 

 

Fig 2-5. Structure of Nafion 

 

To better understand the high proton conductivity of Nafion ionomer, researchers 

have done a lot of work on ion-exchange membrane models.  Gierke et al. [28, 37, 56] 

proposed a famous Cluster-network model in early 1980s based on small-angle X-ray 

study. This widely accepted model describes the structure of Nafion as dispersed ionic 

clusters in a fluorocarbon matrix. The clusters are approximately spherical with a 

diameter of ~40Å, and connected by short channels. Water absorbed by the membrane 

only stays inside the ionic clusters and contributes to the proton conductivity. Gierke and 

Hsu [37] used percolation theroy to study the proton conduction mechanism with the 

cluster-network model: 0 0( )nc cσ σ= − , where c is the volume fraction of the aqueous 

phase, c0 is the threshold volume fraction (15% for 3D, continuous and random 

structure), n is a constant (1.5 for 3-dimensional systems), and σ0 is a prefactor. Choi [57] 

proposed a cylindrical pore model which divides the ionic pores into surface diffusion 

region and bulk diffusion region. The total proton conductivity is the combination of 

surface diffusion, Grotthuss mechanism, and en mass diffusion. The porosity, volume 
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fraction of water content, tortuosity, diffusion coefficients, and proton distributions are 

considered as the main factors that affect the total proton conductivity. 

A lot of efforts have been made to improve Nafion’s performance at high 

temperature and low humidity conditions. Watanabe [58-60] developed a series of self-

humidifying PEMs by adding nanoscale Pt and metal oxide particles into Nafion. The Pt 

particles inside the membrane can promote the reaction between hydrogen and oxygen 

that diffuse into the membrane into water, which can humidify the membrane and help 

the cold start of the fuel cell. And the dispersed metal oxide nanoparticles (SiO2, TiO2) 

can absorb water molecules which also help to maintain the water content inside the 

membrane. Antonucci[51] studied  the effect of incorporating silica nanoparicles into 

Nafion membrane to improve the water retention capability at higher temperatures. A 

DMFC with the silica-based composite membrane showed a peak power density output 

of 240 mW/cm2 at 145ºC. As it is very hard to fully disperse nanoparticles into PEM, sol-

gel technique [53, 54, 61, 62] has been used to incorporate oxide nanoparticles into PEM. 

By using the sol-gel method, the reaction parameters (pH level, temperature, duration, et 

al.) need to be well designed to avoid too much oxide particles covering the surface of the 

membrane.  

One way of improving the high temperature performance of Nafion is to 

incorporate solid proton conductors. Heteropolyacids (HPAs) are the most solid proton 

conductive materials and a lot of effort has been applied on developing Nafion/HPA 

composite membranes. Tian [63] studied the effect of adding silicotungstic (STA) into 

Nafion and tested the fuel cell performance up to 110ºC. It was found that the 
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HPA/Nafion composite membrane showed better proton conductivity and thermal 

stability.  

Microporous PTFE substrate has been used to increase the mechanical properties 

of Nafion membrane [64-66]. The expanded PTFE can have porosity up to 90% and the 

interconnected micro pores can form a continuous percolating pathway for Nafion 

ionomer. The PTFE reinforced composite membranes also show better thermal stability 

and dimensional stability. Thanks to the excellent mechanical strength of the expanded 

PTFE, the composite membranes can be made much thinner than pure Nafion membrane 

and the corresponding area conductivity (mS/cm2) can be lower than that of Nafion. But 

because of the strong hydrophobicity of PTFE, it has been very difficult to fully 

impregnate Nafion resin into the micropores of ePTFE [65, 67]. The voids inside the 

composite membrane can cause lower proton conductivity and also form a continuous 

pathway for reactant crossover. To overcome this problem, the ePTFE can be surface 

treated with sodium-naphthalene [68], plasma [69-71], and molecular grafting [72]. The 

surface treated ePTFE based composite membranes showed higher Nafion resin uptake 

and lower gas permeability than hydrophobic ePTFE base membranes. Some researchers 

also tried to incorporate oxide nanoparticles and Pt nanoparticles into the ePTFE/Nafion 

structure [73-77]. 

Another group of PFSA membranes is called short-side-chain (SSC) PFSAs 

which have the same backbone structure as Nafion except relatively shorter ionic side 

chains. This group of membranes includes Dow Ionomer by Dow Chemical, GEFC by 

Golden Energy, and Hyflon Ion [78, 79] by Solvay Solexis.  If the same cluster-network 

model [37] is applied to the SSC ionomers, it is reasonable to expect different ionic 
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cluster size because the difference in side chain length. And because the side chains are 

shorter, the thermal properties, such as glass transition temperature Tg, can also be 

different from that of Nafion [80]. The Hyflon Ion membranes with low EW showed 

higher water uptake and fuel cell performance than Nafion 112.  

 

CF2 CF CF2n CF2 m

OCF2CF2SO3H  

Fig 2-6. Chemical structure of Hyflon Ion [78] 

 
Table 2-1. List of PFSA membrane materials [81, 82] 
 

Manufacturer 
Brand 

name 

Side 

chain 

EW 

(g·mol-1) 

Conductivity 

(S·cm-1) 
Life (h) 

Water 

uptake 

(%) 

Thicknes

s (µm) 

Price 

($/m2) 

DuPont Nafion Long 1000-1200 0.05-0.20 >50000 34-37 50-260 500-800

Asahi Glass Flemion Long 800-1500 0.05-0.20 >50000 35 50-120  

Asahi Chemical Aciplex Long 800-1500 0.05-0.20 >50000 43 120  

Dow Dow Short 800-850 0.12-0.20 >10000 56 100 1700 

Golden Energy GEFC Short 1000-1100 0.1(25ºC)  50 25.4-508 300-900

Gore and 

Associates 

Gore-

Select 
 900-1100 0.03-0.1 60000 32-43 12-20  

 

2.3.2 Hydrocarbon and aromatic membranes 

Due to the drawbacks of PFSA membranes, a lot of effort has been focused on 

developing hydrocarbon based membranes. Compared to PFSA membranes, the 

hydrocarbon-based membranes are much less expensive and many polymers are already 



18 
 

commercially available. Because of the polar pendant groups, hydrocarbon-based 

membranes have higher water uptake, and they are more environmental friendly. 

Hydrocarbon membranes lack thermal stability so aromatic groups are introduced 

into the backbone structure. As aromatic groups are more rigid than –(CF2)- groups 

which are found in PFSA membranes, aromatic membranes usually have much higher Tg 

than PFSA membranes [83]. The higher Tg value grants the possibility of working at 

higher temperatures, given with fair proton conductivity. The hydrocarbon polymers 

include SPEEK [84, 85], SPPESK[86, 87], Sulfonated polysulfone [88, 89], Sulfonated 

polystyrene [90, 91], Sulfonated polyimide [92-94], Sulfonated poly (arylene ether 

sulfone) [95-97],  and Sulfonated polyacryls [98]. Some polymer structures are listed 

below: 

 
 

Fig 2-7. Chemical structure of SPEEK 
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Fig 2-8. Chemical structure of SPPESK 
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Fig 2-9. Chemical structure of PBI 
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CH2 CH n

SO3H  
 

Fig 2-10. Chemical structure of Poly (styrene sulfonic acid) 
 

The proton conductivity of hydrocarbon materials can be controlled by changing 

reaction parameters such as reaction time and temperature. Typically polymers with 

higher degree of sulfonation show higher proton conductivity, but the mechanical 

properties will be sacrificed and the polymer may even dissolve in water when the degree 

of sulfonation is too high. Kreuer’s work [4] showed that hydrocarbon based membranes 

have narrower channels between polymer chains when compared to that of Nafion. The 

narrower channels can lead to lower fuel crossover, which is critical to direct methanol 

(DMFC) fuel cells. Most of the above mentioned hydrocarbon membranes heavily rely 

on water content to maintain proton conductivity. 

In recent years, acid doped polybenzimidazole (PBI) has attracted more interest 

because of the ability to work at high temperature and low relative humidity conditions 

[99, 100]. PBI also has good mechanical strength and thermal stability which are 

necessary for high temperature proton conducting materials. The proton conductivity of 

PBI is related to the doping level and relative humidity. But unlike other low temperature 

PEM, the influence of relative humidity is not that critical and proton conductivity as 

high as 59mS/cm at 150ºC and 30% relative humidity has been reported on a PBI 

membrane with 630% doping level by Ma et al [100]. Li [101] claimed that the proton 

transfer inside an acid-doped PBI is mainly attributed to proton hopping between N-H 



20 
 

site and phosphoric acid. When the doping level is high, the proton hopping between 

phosphoric acid is also significant. Now some commercial PBI membranes have been 

available in the market. The main drawback of acid doped PBI is the leaching of H3PO4 

at the presence of water, which will lead to the loss of conductivity. 

 

2.4 Techniques for achieving higher working temperatures 

Proton conductors can be roughly divided into two groups: (1) hydrous proton 

conductors, and (2) anhydrous proton conductors. Currently most proton conductors 

belong to hydrous proton conductors. Hydrous proton conductors rely on water for proton 

conduction and proton conduction can be explained by either Grotthuss mechanism [15, 

16] or vehicle mechanism[17]. As most of these proton conductors lack the capability of 

holding water content at higher temperatures so the proton conductivity will decrease. 

For these materials, the proton conductivity at higher temperatures can be enhanced by 

adding hydrophilic filler materials. The water adsorbed on the fillers can help to keep 

proton conductivity level at higher temperatures. Anhydrous proton conductors do not 

rely on water for proton conduction so the working temperature could exceed 200ºC. The 

most extensively studied anhydrous proton conductor is H3PO4-doped PBI. The proton 

conductivity of H3PO4-doped PBI can be controlled by adjusting the acid doping level. 

PBI has a glass transition temperature up to 430ºC which makes it a superior candidate 

for high temperature applications. The main problem of H3PO4-doped PBI is acid 

leaching during fuel cell operation. 
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3. Nafion/silica composite membranes 
 
 
3.1 Introduction 

Based on the widely accepted Grotthuss mechanism [15, 16] and Vehicle 

mechanism [17], an effective way of promoting proton conduction is to increase water 

uptake. As many metal oxide nanoparticles are highly hydrophilic, some research work 

has been done to study the effect of adding metal oxide particles into Nafion and use the 

resulting composite membrane for fuel cell applications [50, 58, 102-104]. It was noticed 

that by incorporating silica and other oxide particles into PEM, the composite membranes 

showed higher water uptake and the better performance was observed on high 

temperature DMFCs. It is generally believed that the improvement in DMFC 

performance is caused by higher proton conductivity and lower methanol crossover. But, 

higher water uptake does not necessarily mean higher proton conductivity as not all the 

water absorbed by Nafion can take part in proton conduction [42]. While significant 

efforts have been made on developing different PEM/metal oxide composites for fuel cell 

applications, very few proton conductivity data is available on these membranes. 

In order to achieve a comprehensive understanding of the effect of adding silica 

nanoparticles to the performance of Nafion membrane, both direct mixing method and in-

situ reaction method were used in the present study. For the direct mixing method, the 

commercial hydrophilic fumed Aerosil 380 (Degussa) silica nanoparticles are used. The 

Aerosil 380 has very low particles size (7nm) and high specific surface area (BET surface 
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area = 380 m2/g). Tetraethylorthsilicate is used in the sol-gel method to generate silica 

network in Nafion. The sol-gel reaction is: 

2 5 4 2 2 2 5( ) 2 4Si OC H H O SiO C H OH+ → +  

 

 

Fig 3-1 Structure of TEOS 

 

3.2 Membrane preparation 

3.2.1 Nafion/Aerosil 380 composite membrane 

Firstly, 10% Nafion solution (Ion Powder) was mixed with a controlled amount of 

DMAc (N,N-Dimethylformamide, BASF). The amount of Aerosil 380 was controlled 

such that the silica weight in the three dry membrane samples are 1%, 3%, and 5% 

respectively. The mixture was heated to 50ºC with continuous stirring until the water and 

alcohol content in the original Nafion solution was evaporated and the original Nafion 

solution was changed to DMAc-based solution. The DMAc-based Nafion solution was 

then mixed with a predetermined amount of Aerosil 380 powder to form a suspension. 

The suspension was stirred at room temperature with a magnetic stir bar for 2 hours, 

followed by sonication in an ultrasonic bath for at least one hour. After that, the solution 

was poured onto a glass plate which was leveled inside a vacuum oven. The samples 

were dried in vacuum at 70ºC overnight and annealed at 140ºC for one hour to increase 
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the mechanical strength. The dry membranes were peeled off from the glass plates by 

soaking in distilled water for several minutes. The membrane samples were then treated 

in boiling 3% H2O2 (Fisher) for 1 hour to remove organic impurities and then treated in 

0.5M H2SO4 solution (Fisher) for another hour to remove trace metal impurities and fully 

protonize the membrane. The treated membrane samples were then rinsed in boiling 

distilled water to remove the excess acid. After that, the membrane samples were stored 

in a plastic sample bag until use. 

 

3.2.2 Nafion/TEOS composite membrane 

To prepare Nafion/TEOS composite membranes, the 10% Nafion solution (Ion 

Power) was transferred into DMAc (BASF) based solution and the water and alcohol 

content were removed at 50ºC. The DMAc-based Nafion solution was then cooled to 

room temperature and a predetermined amount of TEOS (tetraethoxysilane, Alfa Aesar) 

was added such that the final silica contents in the dry membrane were 1%, 3%, and 5%, 

respectively. A few droplets of dilute hydrogen chloride solution were added to promote 

the hydrolysis ( 3

3
2

H O OH

OH H O
SiOH SiOH SiO

+ −

− +

+ −⎯⎯⎯→ ⎯⎯⎯→←⎯⎯⎯ ←⎯⎯⎯ [104]).  The solution was stirred at 

room temperature for 1 hour and casted on a glass plate which was leveled inside a 

vacuum oven. The casted membranes were dried in vacuum at 70ºC overnight and then 

annealed at 140ºC for one hour. The dry membranes were peeled off from the glass plates 

by soaking in distilled water for a few minutes. Again, the membranes were boiled in 3% 

H2O2 and 0.5M H2SO4 for one hour respectively and rinsed with distilled water. The 

treated membranes were stored in plastic sample bags until testing. 
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3.3 Materials characterization 

3.3.1 Proton conductivity and water uptake 

A four-probe conductivity cell was used to measure the proton conductivity. The 

proton conductivity cell has four platinum electrode supported on a PTFE frame. During 

testing, the conductivity cell was placed in a humidity chamber (ESPEC, SH-241). A 

Keithley 2400 source meter was used to supply current and measure voltage. At each 

temperature/humidity level, the membrane was conditioned for at least 30 minutes or 

until equilibrium before measurement. Each conductivity data comes from a linear 

regression of several current/voltage data pairs. The dimension of the membrane samples 

used for conductivity calculation was measured at dry state. 

 

 

Fig 3-2. Four-point proton conductivity cell 

 

The proton conductivity was calculated by 

 1 d R
RS R w t

σ
ρ

= = =
⋅ ⋅
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Where t is the average thickness of the membrane, R is the resistance which can be got by 

a linear fit of the U-I curve, w is the sample width, and d is the distance between two 

inter electrodes. 

 

3.3.2 Single cell performance 

The single cell performance was performed on a fuel cell test station (PD50, Asia 

Pacific Fuel Cell Technology) which is equipped with Chroma 63103 DC electronic load. 

The membrane sample was first boiled in 3% H2O2 for one hour to remove 

organic impurities, followed by rinsing in DI water. After that, the membrane was boiled 

in 1M H2SO4 for another half an hour to remove metallic impurities and fully exchange 

the membranes into proton form. 

A commercial gas diffusion electrode material (GDE, E-TEK Inc) with a Pt 

catalyst loading of 0.5mg/cm2 was used to prepare the membrane electrode assembly 

(MEA). The electrode was impregnated with about 0.6mg/cm2 Nafion (dry weight, 5% 

Nafion solution, Ion Power) and dried at 100ºC. The GDE and membrane were 

sandwiched between two PTFE sheets and hot pressed into a MEA at 130ºC under a 

pressure of 70kg/cm2 for three minutes. The MEA was installed into a single cell (Fuel 

Cell Technologies) and the whole fixture was setup on the fuel cell test station. The MEA 

was conditioned by humidified H2/O2 at an open circuit state for 2 hours before testing. 

 

3.3.3 Membrane surface morphology 
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The surface morphology of the prepared samples was examined by scanning 

electron microscopy (SEM, JEOL Field Emission Scanning Electron Microscopy, JSM-

7401F). 

 

3.3.4 Thermal properties 

In order to study the thermal stability of the prepared composite membranes, 

thermalgravimetric analysis (TGA) was carried on a TA Instruments Q500 instrument. 

The dry membrane samples were heated from room temperature to 600ºC at a ramping 

rate of 10ºC/min under nitrogen atmosphere. 

The glass transition temperature (Tg) and thermal expansion properties of the 

membranes were studied by a thermomechanical analyzer (TMA Q400, TA Instruments). 

The samples were cut into 1cm ×2cm pieces and tested using film/fiber probe with 

0.075N force load. The samples were tested with a 10º/min heating rate and a nitrogen 

flow rate of 50ml/min. 

 

3.4 Results and discussion 

3.4.1 Proton conductivity and water uptake 

It can be seen from the proton conductivity plot that by embedding Aerosil 380 

silica nano-particles in a Nafion membrane, the proton conductivity of the membrane 

decreased. And, along with the increase in silica loading, the proton conductivity 

decreased accordingly. As water adsorbed on the surface of metal oxides can be 

hydrozylated [105], many metal oxides have an ion-exchange capability. It has been 

studied by Tamura et al that [106] the surface density of hydroxyl sites are similar for 
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different metal oxides, and the measured hydroxyl site density of SiO2 was 0.954-

1.80×10-5 mol·m-2. The hydrozylation will somewhat contribute to the conductivity of the 

Nafion/silica composite membrane and the total contribution will depend on the total 

surface area of the silica particles or clusters. But, as metal oxides are themselves not 

proton conducive, so the total contribution of silica to conductivity could be negative. It 

can be seen from Fig 3-3 that, adding Aerosil 380 into Nafion leads to decreased proton 

conductivity. The proton conductivity decreases when the silica loading increases.  
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Fig 3-3. Proton conductivity of Nafion/Aerosil membranes at 85ºC 
 

 
In order to solve the problem of silica agglomeration, recast membranes made 

from Nafion solution and TEOS were prepared. By using the sol-gel reaction, silica 

network was uniformly distributed throughout Nafion and no large clusters were 

observed on the surface under SEM. As for the proton conductivity, membranes with 1%, 

3%, and 5% silica loadings showed about exactly the same proton conductivity at 60ºC. 
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However, when temperature was raised to 85ºC, membranes with higher silica loading 

showed better performance. The improved proton conductivity could be explained by the 

hydrophilic nature of well-dispersed silica nanoparticles generated by sol-gel reaction. 

Furthermore, from the conductivity data, the performance of water retention by silica 

nanoparticles is more effective at higher temperatures. Based on small angle X-ray 

scattering (SAXS), membranes with silica nanoparticles can support larger water clusters 

and lead to better proton conductivity at higher temperatures [107]. But Miyake [53] 

suggested that the water molecules in the membrane are likely to be attracted by silica 

and not taking part in the proton conduction. Due to instrument limitation, proton 

conductivity was not tested at temperatures higher than 85ºC. But better proton 

conductivity is expected for Nafion/TEOS membranes at elevated temperatures. It was 

reported elsewhere [49, 108] that the incorporated silica nanoparticles by sol-gel reaction 

can reduce methanol crossover, which is important for direct methanol fuel cells.  
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Fig 3-4. Proton conductivity of Nafion/TEOS membranes at 60ºC 
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Fig 3-5. Proton conductivity of Nafion/TEOS membranes at 85ºC 

 

3.4.2 Thermal properties 

The TGA thermographs of recast Nafion and Nafion with Aerosil 380 are plotted 

in Fig 3-6. All the four membranes were thermally stable before 300ºC, and the slight 

weight loss was due to the loss of the absorbed water and solvent. The recast Nafion 

began to decompose from 300ºC and the degradation process possibly included 

desulfoanation, side-chain decomposition, and backbone decomposition [44, 109]. The 

decomposition was complete at about 600ºC. The other three membranes with different 

Aerosil 380 loading levels showed better thermal stability: the onset temperature of 

decomposition was raised to about 360ºC. Deng reported similar result on silica/Nafion 

membranes prepared from sol-gel reaction [49]. The shift of degradation onset 

temperature indicates incorporation of Aerosil 380 into Nafion makes the composite 

membrane work better under harsh working conditions. The TGA thermographs of 
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Nafion with TEOS are shown in Fig 3-7. The thermal stability of Nafion/TEOS 

membranes was also better than pure recast Nafion, though the improvement was not as 

significant as that of Nafion/Aerosil membranes. 
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Fig 3-6 TGA plot of Nafion/Aerosil membranes 
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Fig 3-7. TGA plot of Nafion/TEOS membranes 
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The difference in thermal expansion coefficient between a proton exchange 

membrane and a carbon-based electrode could be an important factor for MEA 

degradation. The thermal expansion of polymers is orders of magnitude larger than that 

of carbon (~10-6). Hence, it is reasonable to assume PEMs with lower thermal expansion 

coefficients have better thermal compatibility with carbon electrode. The thermo-

mechanical analysis (TMA) result of Nafion/Aerosil 380 membranes was shown on Fig 

3-8 and compared with that of recast Nafion. It can be seen that all three Nafion/Aerosil 

380 membranes showed a lower thermal expansion at temperatures over 80ºC. The 

thermal expansion of Nafion/Aerosil 380 membranes was below 5% at a temperature as 

high as 125ºC. This implies that adding a small amount of silica into Nafion can improve 

MEA durability. The TMA result of Nafion/TEOS membranes is shown in Fig 3-9. 

Membranes with 1% and 3% TEOS showed similar thermal expansion behavior at all 

temperatures and the thermal expansion ratio was lower than recast Nafion below 150ºC. 

The thermal expansion ratio of Nafion with 5% TEOS loading was higher than that of the 

other two Nafion/TEOS membranes, but it was still lower than that of recast Nafion at 

temperatures below 140ºC. As 140ºC is close to the glass transition temperature of recast 

Nafion, it can be concluded that by adding silica into Nafion, the thermal expansion 

behavior of the composite membranes is better than recast Nafion in the “workable” 

temperature range. 
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Fig 3-8. TMA plot of Nafion/Aerosil membranes 
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Fig 3-9. TMA plot of Nafion/TEOS membranes 
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Fig 3-10. Glass transition temperature of Nafion/Silica composite membranes 

 

3.4.3 Single cell performance 

The polarization curves of three Nafion/TEOS MEAs with humidified H2/O2 are 

plotted in Fig 3-11 and Fig 3-12. The average thickness of the membranes was about 2.2-

2.5 mils. The MEA with 5% TEOS showed slightly better performance than all the other 

three samples. Based on the conductivity data in this work, the proton conductivity of 

Nafion with 5% TEOS loading was close to that of recast Nafion. The better single cell 

performance of Nafion with 5% TEOS could be the result of reduced gas crossover. A 

similar conclusion was seen elsewhere [110] [111].  

To explain the effect of reduced gas crossover on the fuel cell performance, the 

operational fuel cell voltage can be expressed by 

0
0

log exp( )ni iE E b Ri m ni
i

⎞⎛ +
= − − −⎟⎜

⎝ ⎠
 [5] 
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Where E is the operating voltage (actual cell voltage output), i is cell current, E0 is the 

reversible open circuit voltage (OCV), in is the fuel crossover current, i0 is the exchange 

current density, b is the Tafel slope, R is the Ohmic cell resistance, m and n are mass 

transport constants. 

The OCV can be calculated by 0 2
fg

E
F

−Δ
= − , where fgΔ  is the Gibbs free energy change 

of the chemical reaction and F is Faraday constant (96485C). The OCV of the four MEAs 

are listed below: 

Table 3-1 Open circuit voltage of Nafion/TEOS MEAs 
 

Sample OCV (V)

1% TEOS 0.98

3% TEOS 1.07

5% TEOS 1.13

Recast Nafion 0.94  
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Fig 3-11. U-I curves of Nafion/TEOS MEAs at 85ºC and 1 atm 
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Fig 3-12. P-I curves of Nafion/TEOS MEAs at 85ºC and 1 atm 
 

 

3.4.4 SEM 

As nanoscale particles tend to agglomerate, it can be seen from the SEM 

micrograph that Aerosil 380 particles were not dispersed well in Nafion even after 

continuous agitation and unltrasonication. The silica particles form many clusters with 

about 0.1µm diameter. The formation of clusters will have an adverse effect on water 

retention of the composite membrane. At low silica loadings (1wt% & 3wt %), the 

clusters are isolated and dispersed in the polymer structure. While at the loading level of 

5 wt%, the clusters are interconnected into a continuous network.  In contrast, the silica 

generated by sol-gel reaction is uniformly distributed inside Nafion and no clusters were 

observed at ×30000 SEM micrograph. 
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Fig 3-13. SEM micrograph of Nafion with 1wt% Aerosil 380 
 
 

 
 

Fig 3-14.SEM micrograph of Nafion with 3wt% Aerosil 380 
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Fig 3-15. SEM micrograph of Nafion with 5wt% Aerosil 380 
 
 

 
 

Fig 3-16. SEM micrograph of Nafion with 1wt% TEOS 
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Fig 3-17. SEM micrograph of Nafion with 3wt% TEOS 
 

 
 

Fig 3-18. SEM micrograph of Nafion with 5% TEOS 
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3.5 Summary 

Several Nafion/silica composite membranes with different silica loadings have 

been prepared by both direct mixing and sol-gel reaction. Based on SEM micrograph, it 

was observed that Aerosil 380 did not mix well in Nafion and formed many clusters with 

0.1µm diameter. The agglomeration may prevent the formation of more hydroxyl groups 

on the surface of silica and reduce ionic conductive performance. Better dispersion of 

silica in Nafion can be realized by using sol-gel reaction. Incorporating silica in Nafion 

will reduce proton conductivity at temperature equal or below 85ºC. But the single cell 

performance of the Nafion/silica composite membranes is close or better than that of 

recast Nafion and the open circuit voltage (OCV) is also higher. This result indirectly 

indicates that the silica network inside Nafion can reduce reactant crossover and improve 

single cell performance. Two other benefits of incorporating silica are improved thermal 

stability and lowered thermal expansion, which are all beneficial for a longer life of the 

MEA. 
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4. Nafion/HPA composite membranes 
 
 
4.1 Introduction 

4.1.1 Heteropolyacid (HPA) 

Heteropolyacids (HPAs) have been widely used for various catalysis applications 

due to their unique structural and chemical properties [112-120]. Three most common 

HPAs are silicotungstic acid (STA, H4SiW12O40.nH2O), phosphomolybdic acid hydrate 

(PMA, H3PMo12O40.nH2O), and phosphotungstic acid (PWA, H3PW12O40.nH2O).  

HPAs are usually hydrophilic and they have several stable forms depending on 

temperature and relative humidity [121, 122]. The basic structural unit is called Keggin 

structure, which is shown in Fig 4-1. Keggin anions usually follow the formula of 

(XM12O40)n- where X is the center atom (P, Si, or Ge), M is the addenda atom (Mo or W), 

which is surrounded by a group of oxygen ions [123]. 

 
 

Fig 4-1. 3-D Keggin unit [124] 
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HPAs are the most proton conductive inorganic solid at ambient temperature 

[125]. Some HPA species can have a proton conductivity at up to 170 mS/cm at room 

temperature [121]. The extremely high proton conductivity and solid-type morphology 

make HPAs an ideal additive for proton exchange membranes (PEMs). The earliest study 

of HPAs as fuel cell electrolyte material can be traced back to 1979 by Nakamura [126] 

and many others have prepared composite proton exchange membranes for fuel cell 

applications [127-130]. By incorporating HPA into Nafion, the new composite 

membranes were observed to have better proton conductivity and a lower methanol 

crossover rate. 

The surface morphology of Nafion membrane with 20 wt.% PMA loading is 

shown in Fig 4-2. It can be seen from the surface of NMA20 that PMA exhibited good 

retention in Nafion. Most PMA was well embedded inside the Nafion polymer matrix and 

only acid particles with diameter around 0.15 microns were observed on the surface of 

the membrane. 

 

Fig 4-2. Surface of NMA20 
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However, as HPAs can easily dissolve in polar solvents, they are able to leach out 

of the composite membrane with the existence of water [131, 132]. The acid leeching can 

lead to a decrease in proton conductivity, and the tiny pores left behind can cause reactant 

crossover and even short circuit during the fuel cell operation.  

To study the acid leaching with the existence of liquid water, a small piece was 

cut from the above NMA20 sample and soaked in distilled water at room temperature for 

3 days. It was observed during the soaking period that the color of the membrane sample 

gradually changed from the original greenish to transparent, which looks alike pristine 

recast Nafion membrane. The fading in color indicates the acid loss during the soaking 

period.  

 

 

Fig 4-3. Surface of NMA20 (after soaking in water for 3 days) 

 

It can be seen from the SEM micrograph that the surface morphology changed 

dramatically after soaking in water, which indirectly indicates the acid leaching in liquid 
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water. Some part of the surface exhibits a sponge-like structure which is left behind by 

the loss of acid. This porous structure can be a potential pathway for fuel crossover which 

will decrease fuel cell lifespan, not to mention the loss of proton conductivity. 

In order for HPAs to be used in fuel cell membranes, several techniques were 

applied to prevent or reduce HPA leaching with the presence of water. 

 

4.1.2 HPA trapping in silica 

It was reported that some HPAs could be immobilized on the surface of 

mesoporous silica due to the chemical interaction between HPA and the Si-OH group, but 

the amount was very limited [133-135]. One good alternative choice of immobilizing 

HPA is to use silica from the sol-gel reaction. The silica prepared from sol-gel reaction 

has a large number of nano-scale pores inside the bulk structure, which makes its density 

much lower than natural silica. If HPA is trapped inside silica gel, the overall proton 

conductivity can also benefit from the large amount of silanol (Si-OH) groups [136, 137]. 

Silica gel network can be formed by hydrolyzing tetraethylorthosilicate (TEOS) in acidic 

environment. Shi [138] and He [135] have studied the effect of trapping TPA and PWA 

in silica, respectively. In Shi’s and He’s work, it was claimed that no apparent HPA 

leaching was observed and the majority of the catalysis capability of bulk HPA was kept 

in the Silica/HPA composite. It is reasonable to assume that by incorporating Silica/HPA 

particles, the proton conductivity will be at the same level of Nafion/HPA membranes. 

And the numerous tiny pores left behind by burning off the surfactant will increase the 

interface between Nafion and Silica/HPA particles. He’s experimental method was 

followed in this work with slight modifications  
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4.1.3 HPA trapping in zeolite 

Zeolites are microporous crystalline aluminosilicates which are composed of SiO4 

or AlO4 tetrahedra with oxygen atoms connecting neighboring tetrahedral [139].  The 

first zeolite was discovered in 1756 by Axel Fredrik Cronstedt [140], a Swedish 

mineralogist. Up to now about 48 natural zeoites have been discovered and more than 

150 zeolites have been synthesized. If there is no Al content, the whole structure is 

electrically charge neutral. When Al is introduced, the Al3+ makes the frame negatively 

charged, and thus requires the presence of extra-framework cations to keep the overall 

framework neutral. Zeolite composition can be described by the formula of 

/ 1 2 2[ ]m
n m n nM Si Al O nH O+

−⋅ ⋅ , where M is extraframework cation. Zeolites are thermally 

stable material and depends on the silica/aluminum ratio, some high silica content 

zeolites are thermally stable up to 1300ºC [139]. 

Many interesting properties and applications of zeolites, such as adsorption 

capability, ion-exchange properties, catalytic activity, molecular separation, and serving 

as a host for nano-composite materials, come from their unique porous structure. 

International Zeolite Association classified zeolite structures based on three-letter codes, 

which are derived from the name of zeolites or “typical structure” [140]. Among all the 

zeolite structures, FAU (faujasite) structure possesses relatively large pore size because 

of the 12-ring pore openings. Two typical FAU-type zeolite are X and Y zeolites where Y 

zeolites have a higher Si/Al ratio. 

Zeolites are widely known as “molecular sieves” which refers to pores of the size 

at molecular dimension scales. The pore size distribution of zeolites depends on their 

structural characteristics and ranges from about 0.35-1.25nm [141]. It has also been 
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reported that zeolite itself is a proton conductive material [121]. Kreuer [142] studied 

proton conduction mechanisms by AC-impedance at room temperature and a proton 

conductivity up to 2 mS/cm was observed on NH4
+-zeolite  Ahmad [143] studied several 

HPA/zeolite-based composite membranes for fuel cell applications. It was observed that 

ultrasonication of HPA and zeolite can prevent acid leaching. But theoretically HPA may 

not be able to enter the supercages of Y zeolite because of the geometry mismatch. 

Zeolite has a unique supercage structure which is slightly larger than the anion of 

HPAs, and the windows of the supercages are smaller than the HPA anions. So zeolite 

could be an ideal host for HPAs even with the existence of water. Mukai [144] studied 

encaging 12-molybdophosphoric acid in Y zeolite and discussed several factors that 

might affect the encapsulation [145]. As HPA anions are larger than the windows of the 

zeolite supercages, practically the only way to embed HPA in zeolite is by in-situ 

generating HPAs inside the zeolite supercages. As Al2O3 shows basicity, which 

suppresses the generation of HPA, only zeolites with a high SiO2/Al2O3 ratio can be used.  

 

24
.2

8Å

 

Fig 4-4. Process of PMA trapping in Y Zeolite 
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Mukai’s method [144] was followed in this work to prepare encaged PMA and 

PWA in Y zeolite. The HPA/zeolite was processed into fine powders and used for proton 

exchange membrane filler materials. As the encaged HPA still shows high acidity, the 

new composite membranes are expected to have better proton conductivity and single cell 

performance than recast Nafion.  

 

4.2 Experimental 

4.2.1 Nafion/HPA composite membrane 

The commercial 10% Nafion solution (Ion Powder) was first transferred to DMAc 

based solution at 50ºC under stirring. A certain amount of PMA (Sigma Aldrich) was 

mixed with DMAc-based Nafion solution so that the acid content in the dry membranes 

was controlled to be 10 wt% and 20 wt% respectively. The solution was stirred for half 

an hour and poured onto a leveled glass plate. The membrane samples were then dried at 

70ºC overnight under vacuum. The dried membrane samples were peeled off from the 

glass plates by soaking in distilled water for a few minutes. 

 

4.2.2 Nafion/Silica/HPA composite membrane 

HPA-trapped mesoporous silica was prepared following the method proposed by 

He, etc [135]: 2g Pluronic 123 (BASF) was dissolved in 20g ethanol (Fisher). 0.6g PWA 

and 4.16g TEOS (Alfa Aesar) were added into the Pluronic/ethanol solution. The mixture 

was vigorously stirred at 45ºC for 30 minutes. The final solution was aged in open air for 

3 days to finalize the hydrolysis reaction. After that, the sample was removed from the 

Petri dish and transferred into a crucible and calcinated at 300ºC for 3 hours. As P123 can 
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decompose at about 200ºC [146] while PWA is thermally stable up to over 400ºC [122], 

the calcination step removes P123 template while the ordered mesoporous silica/PWA 

structure is left. In a separate calcination experiment, it was observed that 98.8% of P123 

decomposed by calcinating under 300ºC for 3 hours. After calcinations, the color of the 

samples changed from milky to black and the black color was supposed to come from the 

small amount of residue of P123 decomposition. The sample was then crushed in a 

mortar and then soaked in water for acid extraction. The water-extracted powder was 

used for composite membranes. 

  

 

Fig 4-5. Templating mechanism for mesoporous structure growth [147] 

 

As TEOS does not mix with water so ethanol was used to make TEOS/ethanol 

solution. The TEOS/ethanol solution was stirred for half an hour and premixed 

water/ethanol solution was added. The molar ratio of the three components is TEOS: 

ethanol: H2O=1:3:4. The final solution was stirred at room temperature for another half 

an hour. After that, the PWA powder is added into the solution and the amount of PWA 

used was from the calculation that the weight between PWA and SiO2 is 2:5. The sample 

was dried at 100ºC and then crushed into fine powders. The fine powder was screened 

using a 100-mesh sieve. The final powder was stored in a glass sample bottle until use. 
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4.2.3 Nafion/Zeolite/HPA composite membrane 

The experiment followed Mukai’s work [144, 145, 148] with slight modifications.  

Zeolite Y with a SiO2/Al2O3 mole ratio of 30 was purchased from Zeolyst 

International. According to Mukai’s work [145], the SiO2/Al2O3 ratio needs to be 

between 200-100 in order for HPA to be formed within the supercages of zeolite. The 

unit cell size of zeolite Y is 24.28Å and the surface area is 780 m2/g.  

Y zeolite was firstly exchanged to NH4
+ form by soaking in 10% NH4Cl solution 

for 30 min with continuous stirring. The PH value of the solution was changed to 3-4 

after ion exchange. The purpose of the counter cation exchange was to promote the 

formation of polyanions from MoO4
2- [145]. The zeolite powder was filtrated and dried at 

105ºC. Two grams of cation-exchanged Y-zeolite, 7.2g MoO3 (Sigma Aldrich) and 70g 

distilled water were mixed together and stirred at room temperature for 24 hours. After 

that, 0.48g H3PO4 (85%, Fisher) was added and the solution was stirred at 85ºC for 4 

hours. The final product was dried at about 100ºC and crushed into fine powders in a 

mortar.  

As the density of zeolite is higher than Nafion solution, it is important to make 

zeolite particles small in order to guarantee zeolite particles do not accumulate during 

membrane casting and lead to a homogeneous composite membrane. Before making the 

composite membrane, a 100-mesh sieve was used to remove large particles.  

Reaction: 3 4 3 3 12 4012H PO MoO H PMo O+ →  

To prepare AZW10, 10 g 10% Nafion solution was firstly changed to DMAc 

based solution at 40ºC with continuous agitation. Then 0.11g PWA powder (NH4+ 
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zeolite-trapped PWA, no washing) was added into the Nafion solution. The suspension 

was further stirred overnight. 

To prepare AZM10, 10 g 10% Nafion solution was firstly changed to DMAc 

based solution at 40ºC with continuous agitation. Then, 0.11g PWA powder (NH4
+ 

zeolite-trapped PWA, no washing) was added into the Nafion solution. The suspension 

was further stirred overnight. 

The same steps were applied to make composite membranes which are 

zeolite/PWA encaged in Nafion. 

 

Table 4-1. Abbreviations of membrane samples used in this work 
 

Sample name Description 

NMA10 Nafion with 10 wt% PMA (dry weight) 

NMA20 Nafion with 20 wt% PMA (dry weight) 

NWA10 Nafion with 10 wt% PWA (dry weight) 

NWA20 Nafion with 20 wt% PWA (dry weight) 

AZW10 Nafion with 10 wt% PWA/Y zeolite (ammonia form) 

AZM10 Nafion with 10 wt% PMA/Y zeolite (ammonia form) 

PNWA10 Nafion with 10 wt% P123/PWA 

TNWA10 Nafion with 10 wt% TEOS/PWA 
 
 

4.3 Materials characterization 

4.3.1 Proton conductivity and water uptake 

The proton conductivity was measured by a 4-proble direct current (DC) method 

using a Keithley 2400 source meter and a Teflon-based conductivity cell. The membrane 

samples were cut into 3 mm by 30mm pieces and installed onto the four platinum 
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electrodes of the conductivity cell. Then, the thickness of the membranes sample was 

measured while dry at different points, and the average thickness value was used for 

conductivity calculation. The membrane sample with the conductivity cell was settled in 

an environmental chamber (ESPEC) which can accurately control temperature and 

relative humidity.  

After the membrane sample was fully saturated at the set temperature and relative 

humidity level, current was scanned between 1-100 µA and the corresponding voltage 

output was measured. When current scan was complete, the U-I data pairs were 

processed by linear regression and the slope of the curve was used for conductivity 

calculation. In order to get reproducible results, it is important to fully “condition” the 

membrane at the preset temperature and relative humidity level. The duration of the 

conditioning depends on the intrinsic properties of the membrane. In this work, in was 

observed that HPA-incorporated composite membranes takes a much shorter time to get 

fully conditioned when compared with pristine Nafion. The shortened conditioning time 

of HPA/Nafion composite membranes could be caused by the hydrophilicity of the HPA 

particles. For practical consideration, it is desirable to have a proton exchange membrane 

getting fully hydrated in order to shorten the fuel cell cold starting time. 

 

4.3.2 Acid leaching 

The acid leaching experiments were performed to study how well the 

incorporated HPAs were secured inside the composite PEM with the existence of liquid 

water. The ability to keep HPAs from being lost is one of the basic requirements for the 

HPA-based composite membranes.  
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To test if the PMA is trapped inside the zeolite supercages, some dried 

PMA/Zeolite powders were soaked in DI water overnight. After that, the sample was 

filtrated and dried at 110ºC. It was observed that the color of the zeolite was still bright 

yellow, which means the PMA content was kept inside the zeolite supercage. The acid 

content was studied by a SEM (JEOL Field Emission Scanning Electron Microscopy, 

JSM-7401F) with an EDS detector. As PMA can easily dissolve in polar solvents such as 

water, any PMA not trapped inside the supercages of Y zeolite would be removed by 

washing in water. So the molybdenum element detected by EDS should be corresponding 

to the PMA trapped by Y zeolite.  

The same testing procedure was also adapted to study PWA trapping in Y zeolite 

and silica.  

 

4.3.3 Surface morphology 

The morphology of the prepared samples was examined by scanning electron 

microscopy (SEM, JEOL Field Emission Scanning Electron Microscopy, JSM-7401F). 

As mentioned earlier, the acid-doped composite membranes had acid leaching problem so 

SEM was used to study the surface morphology change. SEM was also used to study the 

particle size of zeolite powder (both before and after HPA trapping) and the morphology 

change. 

 

4.3.4 Single cell performance 

Single cell performance was performed on a fuel cell test station (PD50, Asia 

Pacific Fuel Cell Technology Co.) with a Chroma 63103 DC electronic load. Voltage 
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scanning was used to measure the polarization curve and voltage scan range was between 

OCV and 0.1 volt. In order to parallel compare the performance of different composite 

membranes, the dry thickness of all the membranes before hot pressing was abut 100 

microns. 

Commercial carbon cloth supported gas diffusion electrode (GDE, E-TEK Inc) 

with Pt catalyst loading of 0.5 mg/cm2 was used to guarantee the most reproducible 

results. In order to better utilize the Pt catalyst, the GDE was impregnated with 5% 

Nafion solution (Ion Power) and the dry Nafion loading was 0.6 mg/cm2. The Nafion-

impregnated GDE was then dried in air at 110ºC for 15 minutes. Two pieces of GDE and 

one piece of membrane were sandwiched between two PTFE sheets and hot pressed at 

130ºC under 70 kg/cm2 pressure for three minutes. After hot pressing, the two pieces of 

GDE were firmly attached onto the surface of the membrane and the MEA was ready for 

testing. After that, the MEA was installed into a single testing fuel cell (Fuel Cell 

Technologies) and conditioned by humidified H2/O2 at open circuit voltage for at least 

two hours before testing to fully activate the catalyst. This catalyst activation process is 

very important for low-temperature fuel cells to get the most power output [149, 150]. 

 

4.3.5 Thermal properties 

In order to study the thermal stability of the prepared composite membranes, 

thermalgravimetric analysis (TGA) was carried out on a TA Instruments Q500 

instrument. The dry membrane samples were heated from room temperature to 600ºC at a 

ramping rate of 10ºC/min under nitrogen atmosphere. 
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The glass transition temperature (Tg) and thermal expansion properties of the 

membranes were studied by a thermomechanical analyzer (TMA Q400, TA Instruments). 

The samples were cut into 1cm ×2cm pieces and tested using a film/fiber probe with 

0.075N force load. The samples were tested with a 10º/min heating rate and a nitrogen 

flow rate of 50ml/min. 

 

4.4 Results and discussion 

4.4.1 Proton conductivity and water uptake 

Ramani investigated the mechanism of using HPA to increase proton conductivity 

[151]. Based on Ramani’s experiments, the water uptake (in water vapor) of HPA/Nafion 

composite membranes was at the same level as that of pure Nafion membranes. It was 

assumed that the improvement in conductivity was caused by a lowered activation energy 

for proton hopping (Grotthuss mechanism). Ramani’s conclusion was very import in 

explaining the effect of HPA filler. Although HPA could absorb water molecules, it did 

not necessarily mean the absorbed water could exist like “vehicles” for proton 

conduction. 

Bardin [123] suggested that heteropolyacid was essentially Bronsted acid in 

hydrated form, which led to high proton conductivity. Further, PWA was more acidic 

than PMA, which was also verified by the proton conductivity measurement in this work. 

The higher water uptake of the composite membranes can be attributed to incorporation 

of HPA because of its hydrophilic property. With a higher water content in the composite 

membranes, the proton conductivity is also higher than that of recast Nafion. It was also 
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reported by Zawodzinski that proton conductivity of Nafion had a linear relationship with 

the water content at 30ºC [21]. 

Ostrovskii [152] and Gruger [153] studied the state of water in the Nafion 

membrane and found that all the water molecules were involved in the OH-H bonding, 

rather than associated with –CF2- group. These study also supported Hsu’s [37] cluster 

network model for Nafion structure.  Falk [154] did an infrared study on Nafion 

membrane and concluded that, for high-EW Nafion, about 25% of the absorbed water did 

no involve hydrogen bonding and thus did not contribute to the proton conductivity. 

These research efforts led to the conclusion that in addition to providing more protonic 

sites and higher water uptake [155], lowing EW also led to better water “usage” in the 

proton conducting process. 
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Fig 4-6. Proton conductivity of PWA/Nafion membranes at 85ºC 
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Fig 4-7. Proton conductivity of PMA/Nafion membranes at 85ºC 
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Fig 4-8. Water uptake of HPA/Nafion composite membranes and recast Nafion 
 

It can be seen from Fig. 4-8 that the HPA-incorporated Nafion composite 

membranes have much higher water uptake than pure recast Nafion. Higher water uptake 
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is more desirable for proton exchange membranes as proton conductivity is linearly 

related to the proton conductivity of Nafion membranes [21]. The two most generally 

accepted mechanisms used to explain proton conductivity are the Grotthuss Mechanism 

[15, 16] and the Vehicle Mechanism [17]. The Grotthuss mechanism explains proton 

transport as a proton hopping between adjacent water molecules along with the rotational 

movement of the water molecules. While the vehicles mechanism explains the transport 

process as the moving of water molecules together with the proton. Based on both 

theories, water is an essential part in proton transportation. The exceptional water 

retention capability of the HPA-incorporated membranes comes from the hydrophilic 

properties of HPA. The stable form of PWA can take 29 water molecules per acid anion 

while PMA can take up to 30 molecules per acid anion [156]. By using TGA analysis, it 

was found that PWA could hold 6 water molecules at a temperature as high as 175ºC 

[122]. The water retention property makes HPAs very suitable for high temperature PEM 

fuel cell applications. 

Staiti, et al. studied HPA/Silica/Nafion composite membranes for direct methanol 

fuel cells operating at up to 145ºC [55]. It was reported that the composite membranes 

exhibited a better V-I performance than Nafion membranes, and they concluded that the 

increase in cell performance was not caused by the increase in proton conductivity, but 

by the so-called “promoting behavior”. As the polarization curves of the fuel cell MEA is 

greatly affected by the manufacturing process [157-160], it is more accurate to measure 

the membrane proton conductivity directly. 

The proton conductivity of NWA10 and NWA20 at 85ºC and different relative 

humidity levels was shown in Fig. 4-6. It can be see that by incorporating PWA into 
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Nafion resin, the proton conductivity increased at all relative humidity levels and that a 

higher PEA loading led to better conductivity performance. At relative humidity higher 

than 50 percent, the proton conductivity of NWA20 was about twice or even higher than 

that of pure recast Nafion. The huge proton conductivity increase can greatly reduce the 

internal energy loss due to ohmic loss in the membranes, and more power output is 

expected. Compared to other electrical conductive components of a fuel cell, such as 

bipolar plates and gas diffusion layers, the ionic proton conductive membrane has much 

higher resistivity and energy loss. So increasing membrane conductivity can effectively 

improve the whole fuel cell performance. 

HPAs are very good proton conductors and they are classified as “super ionic 

conductors” [121]. HPAs are by far the most proton conductive inorganic materials in 

solid form. By incorporating HPA into Nafion membrane, the crystals of HPAs are 

expected to be evenly distributed between polymer chains. Hsu et al. [36, 37] studied the 

structure of Nafion by small-angle X-Ray diffraction and proposed a cluster-network 

model. Based on the cluster-network model, the ionic side chains of hydrated Nafion 

form clusters with 4 nm diameter and the clusters are connected by short channels which 

are about 1 nm in diameter. Water molecules are only trapped within the ionic clusters. 

The cluster size changes along with the humidity level and certain cluster size is needed 

for the percolation conductivity threshold. The proton conductivity near or above the 

percolation threshold can be calculated by ( )0 0
nc cσ σ= −  [37], where c is the volume of 

the aqueous phase, c0 is 15%, n equals to 1.5, and σ0 is related to polymer intrinsic 

properties. Based on this power law, it is evident that the higher water uptake of HPA-

incorporated membranes leads to higher proton conductivity.  
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Because HPAs are themselves excellent proton conductors, the crystals of HPAs 

inside Nafion matrix form a separate proton exchange network, which can also conduct 

protons. Hopefully the HPA crystals can also enlarge the short channels that connect 

Nafion’s ionic clusters. When the relative humidity level is low, the ionic clusters will 

shrink and some of them will be disconnected from the percolation network. With the 

help of doped HPA, the shrunk clusters can still be connected and contribute to proton 

conduction.   

The activation energy of the HPA/Nafion composite membranes at 95% and 60% 

relative humidity was obtained from the Arrhenius plot. At 95% relative humidity level, 

the activation energy of NMA10, NMA20, NWA10, and NWA20 were 23.58 kJ·mol-1, 

18.73 kJ·mol-1, 23.45 kJ·mol-1, and 19.09 kJ·mol-1, respectively. It can be seen that HPA-

incorporated composite membranes have a lower activation energy than recast Nafion 

(30.74 kJ·mol-1) at 95% relative humidity. It was reported elsewhere that if Grotthuss 

mechanism dominates in the proton conduction, the activation should be within the range 

of 14-40kJ/mol-1 [121, 130]. So it can be concluded that the Grotthuss mechanism can be 

used to explain proton conduction of HPA/Nafion composite membranes at 95% relative 

humidity. 

While at 60% relative humidity level, the activation energy of NMA10, NMA20, 

NWA10, and NWA20 was 62.77 kJ·mol-1, 18.73 kJ·mol-1, 23.45 kJ·mol-1, and 19.09 

kJ·mol-1 respectively. They are also lower than the activation of energy of recast Nafion 

(67.66 kJ·mol-1) at 60% relative humidity. It can be concluded that doping HPA in 



59 
 

Nafion leads to a lowered proton conduction activation energy, and thus a better proton 

conductivity. 
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Fig 4-9. Schematic illustration of proton conduction in Nafion/HPA composite 
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Fig 4-10. Arrhenius plot of NMA at different humidity levels 
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Fig 4-11. Arrhenius plot of NWA at different humidity levels 
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Fig 4-12. Curve fitting on conductivity data of Nafion/PWA membranes at 85ºC and 95% 
RH 

 
To study the relationship between acid doping level and proton conductivity, the 

proton conductivity of several PWA/Nafion composite membranes with different doping 

levels was measured at 85ºC and 95% relative humidity. At acid-doping level higher than 

70%, the composite membranes became mechanically very weak and it was difficult to 

perform the measurement. The power law of percolation theory is used to fit the 

experimental data:  

0( )t
m cσ σ ϕ ϕ= −  

Where σm is the conductivity of the composite membrane, σ0 is a prefactor, φ is the acid 

loading, φc is the threshold volume fraction of acid percolation, and t is a constant. Based 

on curve fitting on the conductivity data, σ0 equals to 179.648 mS/cm and t equals to 

0.227.  The threshold volume fraction φc is ideally 0.15 for three dimensional random 

structure [37]. 
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The proton conductivity of PNWA10 and TNW10 is shown in Fig 4-12. It can be 

seen that the proton conductivity is lower than that of HPA/Nafion membranes, but still 

much higher than that of recast Nafion. Because of the presence of silica, the actual acid 

doping level of PNWA10 and TNWA10 was lower than 10%. The exceptionally good 

proton conductivity could come from the hydrophilic nature of the nanoscale silica 

structure. Further, from the conductivity data, it can be seen that the mesoporous silica 

structure generated by the templating mechanism can lead to a much higher proton 

conductivity than that obtained by the direct sol-gel method. The mesopores in the silica 

structure may host water clusters and greatly increase the surface area of the silica/HPA 

structure. 
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Fig 4-13. Proton conductivity of PNWAand TNWA at 85ºC 
 

The proton conductivity data of AZW10 and AZM10 at 85ºC is plotted in (Fig 4-

13). It can be seen that Y zeolite-trapped HPA still shows a good proton conductivity, 
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though somewhat lower than pure HPA. But, the Y zeolite-trapped HPA was secured 

inside the supercages of zeolite and did not leach out even with the presence of water. 

Due to the existence of Al2O3 in the zeolite structure, the reaction to generate HPA was 

not complete and a good portion of the supercages was actually not occupied by HPA 

anions. This can be used to explain the lower proton conductivity of AZW10 and AZM10 

than that of PNWA10 and NWA10/NMA10. Kreuer [121] reported that zeolites were 

proton conductors but the proton conductivity was orders of magnitude lower than those 

of Nafion and HPA. Hence, the proton conductivity of AZW10 and AZM10 were mainly 

contributed by the HPA trapped in zeolite, but not from zeolite. Compared to the Nafion 

composite membranes doped with pure HPA, the zeolite/HPA-based membranes are 

expected to have a much longer service life as the acid leaching is no longer a problem.  
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Fig 4-14. Proton conductivity of AZW10 and AZM10 at 85ºC 
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Table 4-2. Electrochemical parameters of Nfion/HPA membranes 
 

60% RH 95RH

Recast Nafion 0.932 67.7 30.70 142.37 0.195

NMA10 0.873 62.80 23.60 129.06 0.254

NMA20 0.877 28.60 18.70 132.02 0.284

NWA10 0.955 27.50 23.40 123.85 0.249

NWA20 0.988 26.40 19.10 128.13 0.298

Max power 
density 

(mW/cm2)

Activation energy   
(KJ·mol-1)

Sample OCV (V) Tg (ºC)

 
 

4.4.2 Acid leaching 

The EDS result of Y zeolite-encaged PMA is shown in (Fig 4-14). As the 

zeolite/PMA powders were washed with distilled water before EDS scan, it is reasonable 

to assume that all the PWA not trapped in Y zeolite was washed away and any PWA 

detected should be within the supercages of Y zeolite. In a separate study, by directly 

mixing PWA with Y zeolite, all the PMA was lost after washing with water. The EDS 

spectrum indicates that a good amount of PMA was left behind after washing with water. 

The EDS result is a direct indication that PMA can be trapped in Y zeolite. 
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Fig 4-15. EDS element analysis of PMA trapping in Y zeolite 
 

 
 

Fig 4-16. EDS element analysis region of PMA/Y zeolite 
 

 
PWA trapping in Y zeolite was also studied by EDS and the result was shown in 

(Fig 4-16). It can be seen that the amount of PWA trapped in Y zeolite was less than that 

of PMA, which could be caused by the lower solubility of WO3 in water than MO3.  
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Fig 4-17. EDS element analysis of PWA trapping in Y zeolite 
 

 
 

Fig 4-18. EDS element analysis region of PWA/Y zeolite 
 

4.4.3 Morphology 

The SEM morphology of Y zeolite and HPA-encaged Y zeoltie powders is shown 

in (figure 4-18 to figure 4-23). It can be seen that the average particle size of zeolites is 

about 0.5 microns which is somewhat large for preparing composite membranes. During 
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casting of the composite membranes, the concentration of the polymer solution and 

heating rate are important for making uniform zeolite/HPA/Nafion membranes. If the 

Nafion solution is too dilute or the heating rate is not high enough, the gravity of the 

zeolite powders will cause them to accumulate toward the glass plate and cause a layered 

structure. It can also be seen that zeolite particles tend to agglomerate and form larger 

clusters. The size of the larger clusters could be a few microns or even larger. Those 

larger clusters make uniformly dispersing zeolite particles in the final composite 

membranes very difficult. 

After encapsulating the HPA molecules, the morphology of Y zeolite didn’t 

change, which indicates that the supercages of Y zeolite did not collapse during HPA 

formation inside them. 

 

 
 

Fig 4-19. SEM micrograph of Y zeolite 
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Fig 4-20. SEM micrograph of Y zeolite encaged with PWA 
 

 
 

Fig 4-21. SEM micrograph of Y zeolite encaged with PWA (Low resolution) 
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Fig 4-22. SEM micrograph of Y zeolite encaged with PWA (after wash) 
 

 
 

Fig 4-23. SEM micrograph of Y zeolite encaged with PMA (low magnification) 
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Fig 4-24. SEM micrograph of Y zeolite encaged with PMA (high magnification) 

 

4.4.4 Thermal properties 

Nafion has the same –(CF2)n–  backbone structure as PTFE which is thermally 

very stable. By incorporating ionic side groups, the thermal stability of Nafion decreases; 

but Nafion is till thermally stable up to 300ºC. When heated in air over 125ºC, the color 

of Nafion membranes will become dark brown which can be removed by boiling in dilute 

H2SO4 solution and the proton conductivity can be recovered.  

The TGA curves of recast Nafion and HPA/Nafion composite membranes are 

shown in Fig 4-24. All five samples had no more than 5% weight loss before 320ºC, and 

the weight loss in this region was caused by evaporating the trapped moisture and 

solvent. After 320-350ºC, thermal decomposition of Nafion began. By studying the 

released gas at different temperature ranges, the process of Nafion degradation can be 

divided into desulfoanation, side-chain decomposition, and backbone decomposition [44, 

109]. At temperatures over 600ºC, the decomposition of all the membranes was about 
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complete. By incorporating HPA into Nafion structure, the thermal stability of the 

composite membranes was still close to that of pure recast Nafion. 
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Fig 4-25. TGA plot of HPA/Nafion composite membranes 
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Fig 4-26. TGA plot of HPA/Zeolite/Nafion composite membranes 
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As no obvious transitions were observed from DSC curves, TMA was used to 

study the glass transition temperature (Tg) of the composite membranes. On a TMA plot, 

Tg is defined as the temperature of the change of thermal expansion coefficient. Although 

DSC is usually regarded as the official way to measure Tg, TMA is also widely used and 

the result from TMA is only about 5-10ºC different from the result of DSC. By 

incorporating PWA and PMA into Nafion, the glass transition temperature of the 

composite membranes decreased by about 10-18ºC compared to pure recast Nafion. The 

decrease in Tg indicates that HPA molecules do not have a strong interaction with Nafion 

polymer chains, and these acid molecules make the movement of polymer chains easier 

[80]. 

One reason for the degradation of a membrane electrode assembly (MEA) is the 

difference in thermal expansion coefficient between the carbon electrode and the polymer 

membrane. Usually the thermal expansion of polymers is much higher than that of carbon 

(10-6). It can be seen from the TMA plot that at temperatures lower than 125˚C, Nafion 

with HPA additives shows almost the same thermal expansion coefficient as pure recast 

Nafion. When the temperature was over 125˚C, all four Nafion/HPA composite 

membranes showed much higher thermal expansion coefficients and the value quickly 

reached 43%. Considering the adverse effect of thermal expansion on the MEA, HPA-

incorporated membranes are not suitable for operation at a temperature over 125˚C. By 

incorporating zeolite into Nafion, the thermal expansion coefficient of the composite 

membranes at temperatures between room temperature to 100ºC was almost the same as 

recast Nafion. At temperatures between 100ºC and 140ºC, AZM10 and AZW10 showed 

much less thermal expansion than recast Nafion. PNWA10 and TNW10 showed similar 
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thermal expansion behavior to that of AZM10 and AZW10. As zeolite is essentially a 

combination of Al2O3 and SiO2, so it can be concluded that the thermal expansion of 

Nafion membranes can be reduced by incorporating oxide particles. This conclusion was 

further verified by TMA plot of PNWA10 and TNWA10. 
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Fig 4-27. TMA plot of HPA/Nafion composite membranes 
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Fig 4-28. TMA result of zeolite/HPA/Nafion composite membranes 
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Fig 4-29. TMA result of SiO2/HPA/Nafion composite membranes 
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Fig 4-30. Glass transition temperature obtained by TMA 
 

 
4.4.5 Single cell performance 
 

The single cell performance of all the MEAs prepared from the composite 

membranes is shown on (Fig 4-30—Fig 4-35). The polarization curves were measured at 

85˚C with no back pressure of humidified H2/O2 reactant. As the membranes used for 
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making MEAs were controlled to have the same thickness, the single cell performance is 

also an indication of  the proton conductivity of the membranes.  These data indicate that 

MEAs with HPA additives exhibit better performance than MEA made from recast 

Nafion. If reactant gas crossover is not considered, MEAs with lower resistance will have 

better single cell performance because of lower ohmic loss. In a previous conductivity 

study, proton conductivity of Nafion was increased by adding HPA additives. This effect 

can also be seen in the single cell performance: NWA20 showed better performance than 

NWA10, and recast Nafion has the lowers power output. The peak power output of 

NWA20 MEA had about 0.1W/cm2 more power density output than recast Nafion MEA, 

which means a 50% performance increase. Similar single cell performance was observed 

on NMA20 and NMA10 MEAs. 
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Fig 4-31. U-I curves of NWA20, NWA10, and recast Nafion MEAs at 85˚C and 1 atm 
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Fig 4-32. P-I curves of NWA20, NWA10, and recast Nafion MEAs at 85˚C and 1 atm 
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Fig 4-33. U-I curves of NMA20, NMA10, and recast Nafion MEAs at 85˚C and 1 atm 
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Fig 4-34. P-I curves of NMA20, NMA10, and recast Nafion MEAs at 85˚C and 1 atm 
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Fig 4-35. U-I curves of PNWA10 and recast Nafion MEAs at 85˚C and 1 atm 
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Fig 4-36. P-I curves of PNWA10 and recast Nafion MEAs at 85˚C and 1 atm 
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5. Hydrophilic ePTFE-based PEM 
 
 
5.1 Introduction 

Proton exchange membrane fuel cells (PEMFCs) have attracted ever increasing 

attention from the renewable energy research community in recent years because of their 

potential applications for vehicular transportation and portable electronics. Compared to 

other energy generating devices, fuel cells have the advantage of high power density, 

high efficiency, zero emission, and quite operation. One of the critical components of 

PEM fuel cells is the proton exchange membrane (PEM), which is used to separate the 

anode and cathode. The requirements for PEMs are high proton conductivity, high 

mechanical strength, good thermal stability, good dimension stability, and low fuel 

permeability. For several decades, Nafion® (DuPont de Nemours) has been the material 

of choice for proton exchange membranes. Although a tremendous amount of of research 

work has been performed to develop new proton exchange materials as a replacement for 

Nafion®, almost all of the current commercially available PEM fuel cells are still using 

Nafion® as the PEM material. 

One of the limiting factors for the commercialization of fuel cells is the high cost. 

In order to reduce the loading of high-cost Nafion®, expanded PTFE (ePTFE) has been 

used for the supporting material for composite proton membranes [1-3]. ePTFE has very 

high mechanical strength, excellent chemical and thermal stability, and a much lower cost 

compared to Nafion®, which make it a very good candidate for the supporting matrix 
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materials of composite membranes. Further, because of the high mechanical strength of 

ePTFE, very thin membranes are practically possible. When the thickness of proton 

exchange membranes is greatly reduced, their resistance is also reduced accordingly. 

However, one great drawback of ePTFE is its high hydrophobicity, which can make the 

preparation of a very dense membrane very difficult [65, 67]. Additionally, the pinholes 

and voids left in the composite membrane can cause fuel crossover and electrical short 

circuit. Further, according to the Grotthuss Mechanism [15, 16] and the Vehicle 

Mechanism [17], lack of water can lead to a dramatic reduction in proton conductivity. 

Earlier studies indicate that the surface characteristics of the original hydrophobic ePTFE 

can be modified by exposure to plasma and ion beam, etching with sodium naphthalene, 

and molecular grafting [69, 70, 161-164]. These modifications only change the surface 

properties of ePTFE in a depth of nanometer scale, which means the majority of the 

mechanical strength is unchanged. The modified ePTFE (hydrophilic ePTFE) shows 

much a lower contact angle, improved wettability, and easier adhesion to other materials. 

Currently, the commercial hydrophilic ePTFE is generally used for liquid filtration. 

In this work, we fabricated a composite membrane consisting of hydrophilic 

ePTFE- supported Nafion compared its performance with that of hydrophobic ePTFE-

supported Nafion membrane and pristine recast Nafion membrane. These two composite 

membranes were compared in terms of their wettability, water uptake, proton 

conductivity, and single cell performance.   Scanning electron microscopy (SEM) was 

conducted to study the morphology of the composite membranes. Thermogravimetry 

analysis and thermo-mechanical analysis were used to study thermal properties of the 

membrane samples. 
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5.2 Membrane preparation 

The hydrophilic ePTFE membrane (0.2µm pore size, 71% porosity) was donated 

by Donaldson Company, Inc. The hydrophobic ePTFE (0.1 µm pore size, 71% porosity) 

was donated by Advantec MFS, Inc. The 5% Nafion® solution (equivalent weight=1000) 

was purchased from Ion Power. The as received Nafion solution was transferred into 5% 

DMAc (BASF) based solution before casting. 

To make the comparison between hydrophilic- and hydrophobic- supported 

composite membranes more reasonable, the two composite membranes were prepared in 

the same manner: The ePTFE membranes were first soaked in anhydrous ethanol for half 

an hour, followed by rinsing in distilled water. The pretreated membranes were stretched 

in a leveled Petri dish, and 5% Nafion was applied onto the membrane. After that, the 

Petri dish containing the membrane samples was dried in an oven at 70ºC for half an 

hour. The same procedure was repeated for several times until the surface of ePTFE 

membrane was all covered by dry Nafion. After that, the membranes were dried in a 

vacuum oven overnight at 70ºC. The dried membranes were peeled off from the Petri 

dish and cut into several pieces for subsequent testing. The membranes for proton 

conductivity testing were boiled in 3% H2O2 for 30 min to remove organic impurities, 

followed by rinsing with distilled water and boiling in 1M H2SO4 for half an hour to 

remove trace metal impurities. Finally, the membranes were rinsed with distilled water 

continuously until the pH value was about 7. After that, the membranes were stored in 

distilled water until measurement. 
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5.3 Membrane characterization 

The wettability test was performed by dropping distilled water on top of 

hydrophobic and hydrophilic ePTFE membrane and observing the interaction between 

water droplets and the membranes. 

For the water uptake, the membrane samples were dried in a vacuum oven at 70ºC 

overnight and the initial weight (W1) was recorded. After that, the membranes were 

soaked in distilled water at room temperature for two days. The water on the surface of 

the fully soaked membrane samples was quickly removed by Kimwipe™ and the wet 

weight was recorded (W2). The water uptake was calculated by the following equation 

 ( ) 2 1

1

% 100%W WW
W
−

Δ = ×   

The cross-section of the composite membranes were examined by scanning 

electron microscopy (SEM, JEOL Field Emission Scanning Electron Microscopy, JSM-

7401F) 

A four-probe conductivity cell was used to measure the proton conductivity. The 

proton conductivity cell has four platinum electrode supported on a PTFE frame. During 

testing, the conductivity cell was placed in a humidity chamber (ESPEC, SH-241). A 

Keithley 2400 source meter was used to supplysource current and measure voltage. At 

each temperature/humidity level, the membrane was conditioned for at least 30 minutes 

or until equilibrium before measurement. Each conductivity data comes from a linear 

regression of several current/voltage data pairs. The dimension of the membrane samples 

used for conductivity calculation was measured at a dry state. 

The proton conductivity was calculated by 
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 1 d R
RS R w t

σ
ρ

= = =
⋅ ⋅

 (1) 

where t is the average thickness of the membrane, R is the resistance which can be got by 

a linear fit of the VU-I curve, w is the sample width, and d is the distance between two 

inter electrodes. 

A commercial gas diffusion electrode material (GDE, E-TEK Inc) with Pt catalyst 

loading of 0.5mg/cm2 was used to make the membrane electrode assembly (MEA). The 

electrode was impregnated with about 0.6mg/cm2 Nafion (dry weight, 5% Nafion 

solution, Ion Power). The GDE and membrane were sandwiched between two PTFE 

sheets and hot pressed into a MEA at 130ºC with a pressure of 70 kg/cm2 for three 

minutes. The MEA was installed into a single cell and tested with a fuel cell test station 

(Asia Pacific Fuel Cell Technologies, Ltd., FCED-PD50). The MEA was conditioned by 

humidified H2/O2 at open circuit voltage for 2 hours before testing. The testing condition 

was 60ºC and 60% relative humidity. 

Thermogravimetry analysis (TGA, TA Instruments, TGA Q500) was performed 

to study the thermal stability of the membranes. The TGA experiment was performed in a 

nitrogen atmosphere and a heating rate of 10ºC/min. The glass transition temperature 

(Tg) and thermal expansion coefficient of the samples was studied by Thermo-

Mechanical Analysis (TMA, TA Instruments, TMA Q400). 

 

5.4 Results and discussion 

In the wettability test, it was observed that water droplets couldcan quickly 

entered the pores of hydrophilic ePTFE, which makes it much easier to avoid the 

formation of pinholes in the composite membrane. Further,And  the hydrophilicity helps 
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to maintain water content inside the composite membrane, leading to a and thus better 

proton conductivity. In contrast,While for hydrophobic ePTFE, water droplets always 

stayed on top of the membrane because of the hydrophobic nature of pristine PTFE.     

 

 
 

Fig 5-1. Wettability test of (a) hydrophobic ePTFE, and (b) hydrophilic ePTFE 
 

 
The SEM micrographs (Figures 5-2 & 5-3) showed the micrograph of the cross 

sections of the composite membranes. In Fig.5-2, we can see the micro-pores of 

hydrophilic ePTFE were well impregnated with Nafion resin. A number of pinholes were 

observed at some locations in the hydrophobic ePTFE based composite membrane. These 

pinholes could be the pathway for gas crossover during the fuel cell operation, which can 

cause wastagee of fuels and lower the fuel cell operational voltage. The effect of a 

decrease in fuel cell operational voltage can be seen in the following equation [5]: 

0

ln exp( )ni iV E ir A m ni
i

⎞⎛ +
= − − +⎟⎜

⎝ ⎠
 

where E is the reversible OCV, in is the internal and fuel crossover equivalent current 

density, A is the slope of the Tafel line, i0 is the exchange current density, m and n are the 

constants, and r is the area-specific resistance. It can been easily seen that hydrophilic 

ePTFE based membrane will have better polarization performance than hydrophobic 

ePTFE based membrane because of lower gas crossover. 
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Fig 5-2. Cross section of hydrophilic ePTFE based composite membrane 

 

 
 

Fig 5-3 Cross section of hydrophobic ePTFE based composite membrane 

 
Not surprisingly, the hydrophilic ePTFE based composite membrane has higher 

water uptake than the hydrophobic ePTFE based membrane, and that of recast Nafion 

membrane is somewhere in between. As water content in proton exchange membranes is 

directly related to proton conductivity [41], the subsequent proton conductivity study 
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verified that hydrophilic ePTFE based membrane has better proton conductivity than that 

of hydrophobic base membrane. Also,And both types of composite membranes have 

lower proton conductivity than pristine recast Nafion. This can be explained by the power 

law of percolation theory [37]: 

0 0( )nc cσ σ= −  

where c is the volume fraction of the proton conductive phase, n is a universal constant 

(n=1.5 for a three-dimensional system), c0 is the threshold volume fraction (15% for a 3D 

continuous random mixture), and 0σ is a pre-factor. As the PTFE itself is not protonic 

conductive, the volume fraction of the proton conductive phase in both composite 

membranes is lower than that of recast Nafion, and, hence, thus thelower proton 

conductivity is lower as well. In fuel cell applications, ePTFE supported membranes 

could be made much thinner compared to pure Nafion membrane because of the high 

mechanical strength, and the actual area conductivity (S/cm2) will be much higherlower 

than that of Nafion membrane. 
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Fig 5-4 Water uptake of ePTFE membranes in liquid water 
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Fig 5-5. Proton conductivity of ePTFE membranes at 85ºC 

 
The TGA thermograms are shown in Fig 6. All the three samples showed some 

weight loss below 300ºC, which could be ascribed to the vaporization of trapped solvent 

(DMAc) and water. The recast Nafion membrane began to decompose beyond 300ºC 

while the two ePTFE based composite membranes are thermally stable until 380ºC. 

Beginning from about 580ºC, all three membrane samples were completely decomposed 

and only very small amount of residue was left. 
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Fig 5-6 TGA curves of hydrophilic ePTFE based membrane, hydrophobic ePTFE 

supported membrane, and recast Nafion membrane 

 
Both the hydrophilic & hydrophobic ePTFE supported membranes showed much 

higher glass transition temperature and low thermal expansion coefficient than did recast 

Nafion membrane. Generally speaking, PEMs have a much higher swelling ratio and 

thermal expansion rate than do carbon-based gas diffusion layers, which is detrimental to 

disadvantageous for longthe MEA life when frequently operating fuel cells are operated 

at frequently varying different humidity and temperature conditions. In this aspect, both 

ePTFE supported membranes are much superior than recast Nafion which make them 

very suitable for high temperature applications. 
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Fig 5-7. TMA curves of hydrophilic ePTFE based membrane, hydrophobic ePTFE 

supported membrane, and recast Nafion membrane 

 
As mentioned earlier, ePTFE supported membranes are mechanically stronger than 

recast Nafion, which implies thinner composite membranes can be used without losing 

mechanical strength. The two ePTFE supported composite membranes (1.75 mils) used 

for single cell performance study are less than half the thickness of recast Nafion 

membranes (4.4 mils). Although hydrophilic ePTFE based membrane has lower proton 

conductivity than recast Naifon membrane as shown in Fig 5-5, the single cell 

performance of hydrophilic ePTFE based MEA showed the best performance. The low 

performance of hydrophobic supported membrane is likely due to be the fuel crossover 

caused by the pinholes left inside.  
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Fig 5-8 Single cell performance at 60ºC and 60% relative humidity 
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6. Conclusions 
 
 

This work focused on developing and studying silica and heteropolyacid (HPA) 

based composite membranes for proton exchange membrane fuel cell applications. 

Proton conductivity was studied on the composite membranes at 85ºC and different 

humidity levels. The single cell performance, thermal properties, and other properties that 

may affect fuel cell performance were studied and compared to recast Nafion membrane. 

Mesoporous silica and Y zeolite were used to trap HPA from leaching out with the 

existence of liquid water. Hydrophilic ePTFE supported Nafion was developed and 

compared to hydrophobic ePTFE supported Nafion and recast Nafion. 

Both direct mixing and sol-gel reaction were used to prepare Nafion/silica 

composite membranes. It was noticed that sol-gel reaction can lead to more uniform 

distribution of silica particles. Proton conductivity data showed adding silica into Nafion 

can decrease proton conductivity. But the higher open circuit voltage implied the 

embedded silica can decrease gas crossover and thus compensate the lowered 

conductivity. Nafion/silica composite membranes showed improved thermal stability and 

lower thermal expansion ratio.  

Phosphomolybdic acid (PMA) and phosphotungstic acid (PWA) were used as 

filler materials to increase the proton conductivity of Nafion. It was observed that the 
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conductivity of PMA and PWA-based composite showed much higher proton 

conductivity than Nafion and the single cell performance was also better. In order to 

solve the acid leaching problem, mesoporous silica and Y zeolite was used to trap HPA 

molecules. EDX result showed HPA was successfully trapped even after washed with 

water. 

In order to improve the mechanical properties and thermal stability, porous hydrophilic 

ePTFE was used as the supporting material for PEM. Compared to pristine ePTFE, the 

surface modified hydrophilic ePTFE leads to higher water uptake and better quality 

membranes. Hydrophilic ePTFE-based composite membranes showed much higher glass 

transition temperature and lower thermal expansion ratio, which makes them ideal for 

high temperature applications. Due to the exceptional strength, hydrophilic ePTFE is 

believed to be an ideal supporting structure for high proton conductive materials. 
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7. Recommendations for future work 
 
 

Based on the results showed in this study, adding silica does not significantly 

improve the performance of Nafion, though lowered fuel crossover was observed. The 

results showed that the extra water adsorbed by the hydrophilic silica may not take part in 

proton conduction under the testing conditions. Extra work may be focused on studying 

the interaction between embedded silica and Nafion polymer chains, and how the silica 

affect the “pore structure” of hydrated Nafion. It is suggested to study the proton 

conductivity and single cell performance at temperatures higher than 100ºC. Composite 

membranes with higher silica loading should be developed and used to verify the fitted 

percolation equation obtained by fitting Nafion/PWA conductivity data. 

 Y zeolite and mesoporous were shown to be able to trap HPA, but no quantitative 

data is available at this point. It is suggested to study the total percentage of the zeolite 

supercages that could be filled with HPA. The factors that could affect generating HPA 

inside zolite should be studied and optimized. Many other types of zeolite can also be 

studied for HPA trapping. The particles size of the Y zeolite was in micron scale which 

was too big to cast uniform composite membranes. Future study should focus on using 

zeolite with smaller particle size. It is also suggested to test the composite membranes 

and MEAs at temperatures above 100 ºC. 

 More work can be focused on studying the optimum MEA preparation conditions, 

such as hot pressing temperature, pressure, duration, and Nafion loading. Each membrane 
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may have its own optimum preparation conditions which are related to it mechanical and 

thermal conditions. Accelerated testing can be used to test the life time of the composite 

membranes. 
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