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Abstract

Ontology languages like OWL allow for semantically rich annotation of
resources, such as products advertised at an electronic online marketplace,
while the Description Logic (DL) formalism underlying OWL provides rea-
soning techniques to perform matchmaking on such annotations. We iden-
tify peculiarities in the use of DL inferences for matchmaking which are
due to the open-world semantics of OWL, and we analyse the use of local
closed-world reasoning for its applicability to matchmaking. In particular,
we investigate two nonmonotonic extensions to DL, namely autoepistemic
DLs and DLs with circumscription, for their suitability of realising local
closed-world reasoning in the matchmaking context to overcome these
problems. We discuss their different characteristics by means of an elab-
orate example of an electronic marketplace for PC product catalogues
from the eCommerce domain and demonstrate how these formalisms can
be used to realise such scenarios.

1 Introduction

With the advent of the Semantic Web [5], resources of all kinds are being an-
notated with semantically rich meta data for their automated access through
the web. For semantic annotation, languages are used that are based on knowl-
edge representation paradigms to encode a “meaningful” characterisation of a
resource into a formal description, aiming for automation through machine-
understandability. Matchmaking of semantically annotated resources is con-
cerned with the task of verifying compatibility among resources by looking at
their semantic descriptions. At an electronic marketplace, for example, supply
and demand of advertised products are matched to find compatible offers for
requests. Other matchmaking scenarios comprise the discovery of Web Services
by semantic descriptions of their functionality or the automated support for
recruitment by semantic descriptions of job offers and applicant’s profiles.

Matchmaking relies on the availability of a knowledge representation lan-
guage which provides appropriate means for expressing the relevant information.
One of the most prominent choices is the Web Ontology Language OWL [26],
which has been recommended by the World Wide Web Consortium (W3C) in
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2004. OWL is essentially based on description logic (DL) [3], a logic-based for-
malism with well understood computational and representational properties. It
thus allows for logical reasoning, and matchmaking over OWL-DL can be oper-
ationalised by techniques of automated deduction. As a fragment of first-order
predicate logic, OWL inherits a semantics that adheres to the open-world as-
sumption (OWA), under which situations of incomplete information can be han-
dled by the distinction between negative knowledge and the absence of knowl-
edge. At the same time, it also inherits features which make it awkward for
representing certain kinds of knowledge. In particular, OWL does not allow for
any form of closed-world or default reasoning in such situations.

The quest for alterations or extensions of OWL to make it more suitable for
important modelling tasks is currently one of the prominent research issues in
ontology language research. While such investigations are frequently pursued on
the basis of formal logical argumentation, the natural way of deriving require-
ments from application needs is often neglected. In this paper, we therefore
investigate the usability of OWL for the modelling of matchmaking problems.
In particular, we will point out that a pure open-world semantics leads to unin-
tuitive behaviour in certain cases. Going one step further, we will study recent
approaches to weakening the open-world assumption in OWL by means of local
closed-world features [13], and examine them with respect to the matchmaking
requirements we have identified.

This paper thus serves different purposes. It identifies problems due to the
open-world assumption in an elaborate discussion of an example taken from the
eCommerce domain. It elaborates on the proposal of using a local closed-world
semantics to overcome these problems, based on the ideas in [18]. It presents
an application of two particular nonmonotonic extensions to DL, namely au-
toepistemic DL and DL with circumscription, to the problem of matchmaking
with respect to their suitability for realising local closed-world reasoning in this
context. The detailed example demonstrates how the constructs of these for-
malisms can be applied to realise matchmaking in a particular scenario. The
overall presentation is based on arguments at an intuitive level, however, the
interested reader will also find the necessary formal details required to map the
intuitive argumentation to the underlying details of the logics used. Readers
not primarily interested in the model-theoretic realisation of matchmaking can
skip these technicalities without missing the main messages conveyed.

The paper is structured as follows. In Section 2 we will briefly introduce
OWL and approaches to local closed-world reasoning with the DL underlying
OWL, namely autoepistemic description logics and description logics with cir-
cumscription. In Section 3 we will show how resources for matchmaking are
modelled in OWL, and in particular we will introduce a large running example
which will help us to illustrate our discussion. In Section 4 we show how DL
inferencing is used for matching resource descriptions, and we will identify de-
ficiencies of modelling based on the open world assumption. The forms of local
closed-world reasoning introduced in Section 2 will then in Section 5 be analysed
as to their ability to rectify the identified problems. Section 6 discusses related
work, and in Section 7 we will summarise and point to concrete research issues
which need to be addressed in the future.

The authors acknowledge support by the German Federal Ministry of Edu-
cation and Research (BMBF) under the SmartWeb project (01 IMD01 B), and
by the Deutsche Forschungsgemeinschaft (DFG) under the ReaSem project.
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2 Description Logics and their Nonmonotonic

Extensions

The Web Ontology Language OWL [26] is being recommended as a web stan-
dard by the World Wide Web Consortium (W3C) since 2004. Since then, OWL
has found a multitude of uses, not only on the web, but for knowledge represen-
tation in general. In essence OWL, or more precisely its most important variant
OWL-DL, is based on description logic, or DL for short. DLs have been devel-
oped out of the effort to lay strict formal foundations to semantic networks and
frame systems, and they combine a rigourous semantics based on first-order
predicate logic with an intuitive way of structuring and encoding conceptual
knowledge.

In the following we give an introduction to the description logic underlying
OWL-DL, and also to two nonmonotonic extensions dealing with local closed-
world reasoning, namely autoepistemic DL and circumscriptive DL. We will
keep this introduction on an intuitive level to make the paper accessible to
readers not familiar with the technical details of logics. On the other hand,
we additionally present those formalities which the interested reader requires to
connect the intuition in arguments to the underlying model-theoretic semantics.
Full details of OWL-DL can be found in [3, 26]. For presentation of OWL-DL
statements and ontologies we will use DL-syntax, as it is most convenient and
the easiest to read for the purposes of this paper.

2.1 Description Logics

The basic elements used to represent knowledge in the description logic formal-
ism are concepts, roles, and individuals. Intuitively, concepts denote classes of
things, such as Computer or OperatingSystem. Roles denote relationships between
things, such as hasComponent or runsOS. Individuals denote instances, such as
DeepBlue or WindowsXP. There are two types of roles, namely abstract roles
like hasComponent, which relate individuals to individuals, and concrete roles
like capacity, which assign an element of a concrete datatype D – in this case a
number – to an individual.

Starting from a set of concept names (called atomic or named concepts), a set
of role names, and a set of individual names, complex concept expressions can be
formed using concept constructors in a nested way. Let us give a few brief exam-
ples to illustrate some of the DL concept constructors. Computer ⊓ MobileDevice

stands for all mobile computers. ∃ hasComponent .DVDDrive denotes all things
which have a DVD drive as a component. Computer ⊓ ∀ runsOS .¬WindowsOS

stands for all computers that do not run a Windows operating system. Laptop ⊓
≤ 3 hasComponent ⊓∃memory . ≥512 denotes all laptops which have at least 3 com-
ponents and 512 MB main memory or more. Component⊓∃ supports− .{WindowsXP}

stands for all components that are supported by WindowsXP.
Formally, the description logic underlying OWL-DL is named SHOIN (D)

and allows for construction of complex concepts according to the following gram-
mar, where A is an atomic concept, p is a primitive abstract role, r is a possibly
inverse abstract role, s is a concrete role, d is a concrete domain predicate, ai
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are individuals, ci are elements of a datatype, and n is a non-negative integer.

C → A | ⊥ | ⊤ | ¬C | C1 ⊓ C2 | C1 ⊔ C2 | ∃r.C | ∀r.C | ≥ n r | ≤ n r

| {a1, . . . , an} | ∃s.D | ∀s.D | ≥ n s | ≤ n s

D → d | {c1, . . . , cn}
r → p | p−

An OWL-DL ontology consists of statements that represent the axioms of a
corresponding DL knowledge base KB composed of a TBox and an ABox. The
TBox describes terminological knowledge, and TBox axioms comprise concept
inclusions of the form C ⊑ D which state subsumption between two concepts
C and D. For example, the axiom WindowsPC ⊑ Computer ⊓∃ runsOS .WindowsOS

states that any Windows PC is a computer that runs some Windows operat-
ing system. Another kind of TBox axiom is a concept equivalence of the form
C ≡ D, which is a shortcut for the two inclusions C ⊑ D and D ⊑ C. For exam-
ple, the axiom Laptop ⊔PocketPC ≡ Computer ⊓MobileDevice states that laptops to-
gether with pocket PCs form just the family of mobile computers. Furthermore,
inclusion can also be stated for roles, as in the axiom hasGfx ⊑ hasComponent,
which says that having a graphics card implies having a component.

The ABox, on the other hand, describes assertional knowledge, and ABox
axioms comprise concept assertions of the form C(a), which state member-
ship of an individual a to a concept C, and role assertions of the form r(a, b),
which relate two individuals a and b via the role r. For example, the ax-
iom Laptop(MyComputer) states that my computer is a laptop, while the axiom
runsOS(MyComputer, WindowsXP) says that my computer runs WindowsXP.

Reasoning with OWL-DL ontologies rests on the model-theoretic semantics
of description logics, which is given by means of interpretations. Formally, an
interpretation I is a mapping from the concept, role and individual names into
sets ∆I , called domains of interpretation. Individuals, for example, directly map
to objects in the interpretation domain, while concepts are interpreted as subsets
and roles are interpreted as binary relations, which are called their extensions,
respectively. Table 1 specifies this semantics technically in form of conditions for
the various constructors, which an interpretation I must satisfy. (The semantics
of role axioms and concrete role constructs has been omitted due to brevity –
we refer to [3, 26] for a full definition.) Intuitively, an interpretation specifies

⊤I = ∆I , ⊥I = ∅
AI ⊆ ∆I , rI ⊆ ∆I × ∆I

(C ⊓ D)I = CI ∩ DI

(C ⊔ D)I = CI ∪ DI

(¬C)I = ∆I \ CI

(∀ r.C)I = {a ∈ ∆I | ∀b.(a, b) ∈ rI → b ∈ CI}
(∃ r.C)I = {a ∈ ∆I | ∃b.(a, b) ∈ rI ∧ b ∈ CI}
(≥ n r)I = {a ∈ ∆I | #{b ∈ ∆I | (a, b) ∈ rI ∧ b ∈ CI} ≥ n}
(≤ n r)I = {a ∈ ∆I | #{b ∈ ∆I | (a, b) ∈ rI ∧ b ∈ CI} ≤ n}

{a1, . . . , an}
I = {aI

1 , . . . , aI
n}

(r−)I = {(b, a) | (a, b) ∈ rI}

Table 1: Model-theoretic semantics for part of SHOIN (D).
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a particular arrangement of objects in the interpretation domain in terms of
membership in concept and role extensions. For example, in one interpretation
an individual as MyComputer can be in the extension of the concept Laptop, in
another interpretation it can be in the extension of the concept DesktopPC, and
in yet another one it can be in the extensions of both. If the arrangement of
objects in an interpretation I is in accordance with the axioms in a knowledge
base KB then I is called a model of KB . Formally, I is a model of KB if it
satisfies the conditions CI ⊆ DI , CI = DI , rI1 ⊆ rI2 , aI ∈ CI , (aI , bI) ∈ rI for
all concept inclusions, concept equivalences, role inclusions, concept assertions
and role assertions in KB , respectively. We will use the symbol M(KB) to
denote the set of all models of KB .

Even after filtering out those interpretations that do not satisfy all axioms,
a knowledge base KB has in general a multitude of models in which things are
interpreted differently. For example, if we did not say in our ontology whether a
particular graphics adapter is supported by a Windows operating system or not,
there are models in which it is and such in which it is not. In such a case, we
say that we have incomplete knowledge about the support of graphics adapters
by Windows operating systems, which is captured by the situation of multiple
models. Contrarily, if we explicitly list all graphics adapters with support by
Windows operating systems and also state that these are the only ones, we say
that we have complete knowledge about Windows support for graphics adapters,
which is reflected by KB having only models in which the supported graphics
adapters is exactly our explicit list. This style of semantics is also referred to as
“open-world” semantics, since we do not assume to have full knowledge about
the domain of discourse by just the axioms given – unless explicitly encoded.

Reasoning with OWL-DL ontologies is now based on the following standard
DL reasoning tasks, defined for a DL knowledge base KB .

• Knowledge base satisfiability : KB is satisfiable if it has a model.

• Concept satisfiability : a concept C is satisfiable with respect to KB if there
exists a model I ∈ M(KB) in which the extension CI of C is non-empty.

• Instance checking : an individual a is an instance of a concept C with
respect to KB , i.e. KB |= C(a), if aI ∈ CI holds for all models I ∈ M(KB).

• Subsumption: a concept C is subsumed by a concept D with respect to
KB , i.e. KB |= C ⊑ D, if CI ⊆ DI holds for all models I ∈ M(KB).

Intuitively, knowledge base satisfiability checks an ontology for consistency, con-
cept satisfiability checks whether a concept can have instances, instance check-
ing tests an individual to be an instance of a concept, and subsumption tells us
whether a concept is in general more specific than another one.

2.2 Autoepistemic Description Logics

We now introduce the first nonmonotonic extension of description logics which
we will study in this paper. It is based on the idea of autoepistemic logic [22],
which allows for introspection of knowledge bases, i.e. to express knowledge
about what the knowledge base knows. We follow [10], where the basic DL
ALC was extended by an autoepistemic knowledge operator K, yielding the
autoepistemic description logic ALCK. In [28], epistemic operators have also
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been incorporated into more expressive DLs that capture features of OWL-DL.
The K-operator can be applied as an additional constructor to both concepts
and roles, and can intuitively be paraphrased as “known to be”. These au-
toepistemic extensions allow for local closed-world reasoning [13] and a logical
reconstruction of non-monotonic features of frame-based knowledge representa-
tion systems, such as concept and role closure, defaults, integrity constraints
and procedural rules [28].

To understand the intuition behind the K-operator, consider the knowledge
base KB = {Application(XOffice), runsUnder(XOffice, RedHat)}, and the concept D =
Application ⊓ ∃ runsUnder .¬WindowsOS, which can be paraphrased as “applications
which run under an operating system other than Windows”. Since KB does
not say whether RedHat is a Windows operating system or not, XOffice is not
in the extension of D in general. On the contrary, consider the autoepistemic
concept D′ = Application ⊓ ∃KrunsUnder .¬KWindowsOS, which can be intuitively
paraphrased as “applications which are known to run under an operating system
not known to be Windows”. Based on the facts in KB , we cannot derive that
RedHat is a Windows operating system. Therefore, RedHat is not known to be
a Windows operating system, and thus, XOffice is in the extension of D′ in all
models of KB .

The formal semantics of autoepistemic DLs is defined similarly to that of
classical DL introduced before, with the difference that interpretations are re-
placed by epistemic interpretations (I,W), which are pairs of an interpretation
I and a set of interpretations W seen as “possible worlds”. Ordinary concepts
and roles are interpreted just as in the classical case shown in Table 1, while epis-
temic concepts and epistemic roles are interpreted by intersecting the extensions
of their non-epistemic counterparts over all possible worlds, as follows.

(KC)I,W =
⋂

J∈W

C
J ,W

, (Kr)I,W =
⋂

J∈W

r
J ,W

An epistemic concept KC is interpreted as the set of all individuals which
belong to the concept C in all interpretations in W. In this way, applying
K to a concept C produces the set of objects which are members of C in all
possible worlds, i.e. which are definitely known to be members of C. Similarly,
an epistemic role Kr is interpreted as the pairs of individuals that belong to the
role r in all possible worlds.

The only reasoning task we will consider in autoepistemic DLs is the satis-
fiability of an epistemic concept C with respect to a non-epistemic knowledge
base KB , i.e. one with no occurrence of epistemic operators in it. In this spe-
cial case, the set W coincides with the set M(KB) of all classical models of
KB [11]. Thus, the extension of an epistemic concept (or role) in an epistemic
interpretation contains only those (pairs of) individuals which necessarily must
be in there from the given knowledge, considering all models of KB . Hence, the
respective reasoning task of concept satisfiability is defined as follows:

C is satisfiable with respect to KB if and only if there is an inter-
pretation I ∈ M(KB) such that C(I,M(KB)) 6= ∅.
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2.3 Circumscriptive Description Logics

Besides autoepistemic logic, circumscription – due to McCarthy [21] – is another
prominent historic approach to local closed-world reasoning. In essence, it rests
on the idea of closing knowledge by enforcing certain extensional minimality
conditions on interpretations. We follow the recent work [7] which incorporates
these ideas into description logics. The actual description logic used in this case
was ALCQIO, which is basically SHOIN (D) without the use of datatypes
and role hierarchies, but extended with a slight modification of the ≥- and
≤-constructors.

In contrast to autoepistemic DL, there is no additional language construct
like the K-operator in circumscriptive DL. Instead, an external circumscrip-
tion pattern is used which gives specifics on the extensional minimisation to
be performed. As a simplification of [7], for our purposes a circumscription
pattern is a triple CP = (M,F, V ) where M , F , and V are mutually disjoint
sets of concept and role names called the minimised, the fixed and the varying
predicates, respectively. (For convenience, we denote concept and role names
as predicates.) Reasoning is then performed on a circumscribed knowledge base
circCP(KB), which is a classical knowledge base KB together with a circumscrip-
tion pattern CP.

Intuitively, minimisation of the predicates in M restricts their extensions to
contain only those (pairs of) individuals, for which there is evidence in the knowl-
edge base to be contained in the extension. During minimisation, the extensions
of predicates in F are fixed while those of predicates in V vary freely. Fixation
of predicates is a way to restrict minimisation, preventing certain predicates
from being affected, while varying predicates do not get a special treatment.
Sometimes we will omit the set V in circumscription patterns, and in this case
V is understood as containing all predicates not mentioned in either M or F .

To give an example of reasoning with circumscribed knowledge bases, con-
sider the following knowledge base and circumscription pattern.

KB = { Laptop ⊑ Computer, Computer ⊑ Hardware,

Application ⊓ ∃ runsUnder .LinuxOS(XOffice) }
CP = (M = {Hardware, Laptop, Application, LinuxOS}, F = {Computer}).

The concept Laptop is unsatisfiable with respect to the circumscribed knowledge
base circCP(KB). The reason is that there is no evidence for the existence of
any laptop in KB , and hence the extension of the minimised concept Laptop

is restricted to the empty set. On the other hand, the concept Computer is
satisfiable, as it is fixed, although it is subsumed by the minimised Hardware.
Also the concept Hardware is satisfiable, since its extension contains that of the
fixed Computer. Furthermore, the concept Application is satisfiable although it is
minimised. The reason is that there is an individual, XOffice, explicitly asserted
to this concept, which is evidence for the existence of an application in KB . Even
the concept LinuxOS is satisfiable, for which there is no such explicit assertion.
The reason is that there is evidence for the existence of an unknown object that
XOffice runs under and that is a Linux operating system.

Technically, minimisation in circumscriptive DLs is realised by introducing
a preference relation <CP which allows to compare interpretations in terms of
their extensions for minimised predicates. The preferred models of a knowledge
base KB are those minimal in the extensions of minimised predicates. Formally,
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J <CP I holds if the following conditions are satisfied: (i) ∆J = ∆I , (ii) aJ =
aI for all individuals a, (iii) pJ = pI for all p ∈ F , (iv) pJ ⊆ pI for all p ∈ M ,
(v) there is some p ∈ M such that pJ ⊂ pI . The models of a circumscribed
knowledge base circCP(KB) are those minimal with respect to <CP, such that
for reasoning with circCP(KB) only the preferred models of KB are taken into
account. Conditions (i) and (ii) say that only interpretations are compared
which share the same domain of interpretation and also the same assignment
of individuals. Condition (iii) requires comparable interpretations to also be
equal with respect to the extensions of fixed predicates, such that minimisation
is done for each such extension separately. Conditions (iv) and (v) assure that
J is actually “smaller” than I in the extension of some minimised predicate,
while it is not “bigger” in the extension of any other minimised predicate.

3 Modelling Resources in Description Logics

Semantic Web languages are designed for the annotation of resources of all
kinds, allowing to describe them in terms of the vocabulary defined in a domain
specific ontology. In the context of matchmaking, both requested and advertised
resources are checked for compatibility by matching their semantic annotation.
The notion of resource is very generic and can range from ticket offers and hotel
bookings by travel agencies over skill profiles at job markets to the functional
descriptions of Web Services. In this paper we consider product descriptions in
an eCommerce setting as an example for resources, in particular within the do-
main of PC product catalogues. However, the techniques we use for description
and matchmaking are domain independent and generally apply to any kind of
resource.

Structured descriptions of resources typically characterise a resource by spec-
ifying values for its properties or restrictions on them. For example, a description
of a PC that is offered in an electronic advertisement could specify a desktop
PC with 1024 MB of main memory having a graphics adapter that supports
dual screen, while the notions of PC, main memory, etc. are predefined in a
referred to domain ontology. The values of resource properties can themselves
be complex resources with subproperties. So, the graphics adapter, for example,
can itself be specified in terms of its components and attributes. In this sense,
a resource description specifies an arbitrarily nested data object by restricting
its parameters in a graph structure. Resource descriptions taken from other do-
mains could specify a job applicant of age 25 with a master degree in Artificial
Intelligence and with programming skills in object oriented languages, or the
booking of a hotel room in the city of Madrid that is air-conditioned and within
1 km distance to the railway station.

Resource Classes as DL Concepts

Ontology languages used for semantic annotation typically distinguish between
instances, which represent concrete objects in the domain, and concepts, which
represent classes of objects grouping together instances that have certain prop-
erties in common. A particular PC “Compaq Presario V6133EU” with an 80GB
hard drive and “NVIDIA GeForce Go 6150” graphics adapter is typically mod-
elled as an instance, while the class of all Laptops with integrated wireless
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network abilities is typically modelled as a concept.
When supply and demand for PC products meet at an electronic market

place, both requesters and providers of PCs describe their resources in terms of
concepts rather than instances, abstracting from the concrete objects in the PC
domain. On the provider side, a description in terms of instances would overload
the supplier’s product catalogue with listing all the various combinations of
advertised PC variants explicitly. For example, a supplier that offers PCs with
different kinds of hard disks varying in capacity and multiple options for an
onboard graphics adapter that run either Windows or Linux operating systems
and come with any application pre-installed, would have to include an entry
for any combination of parameters that they support. Instead, they want their
product catalogue to have a manageable amount of entries, each representing
a class of PCs with restrictions on certain properties that leave some options.
On the requester side, a description in terms of instances would require the
demander to explicitly specify all the properties of the desired product, even if
they are indifferent about some of them. Instead they express their demand in
form of a concept, requesting, for example, a Laptop with integrated wireless
network adapter and with at least 512 MB main memory, no matter which
particular network adapter or which kind of graphics card or other unspecified
feature is finally delivered.

Description Logic is particularly suited to represent resources by restricting
their properties using complex concept expressions that denote abstract classes
of objects. In a way similar to [17, 18], we show how we map the structured
description of abstract resource classes to the DL modelling constructs intro-
duced in Section 2 by an example within the eCommerce PC product catalogue
scenario.

Figure 1 shows a resource description in form of a DL concept expression,
either issued by a provider who supplies a PC, or by a requester who demands a
PC from an electronically available product catalogue. The concept expression
R represents the class of PCs with at least 512 MB of main memory whose
graphics adapter have a DVI output.

R I

DesktopPC1

DVI

output

GfxCardX
hasGfx

Laptop2
hasGfx

R = Computer memory. 512 hasGfx.( output.{DVI})

GfxCardY

memory

“1024 MB” TVDVI

output outputmemory

“512 MB”

Figure 1: Resource description as DL concept expression
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The concepts, individuals and roles that occur in the complex expression
of R, such as Computer, DVI or hasGfx, originate from a domain ontology about
PCs, which both requesters and providers refer to in their descriptions. Given
a model-theoretic interpretation I, the extension RI of the resource concept
represents all the concrete resources that are captured by the description on
the instance level. Figure 1 exemplifies two such concrete resource instances: a
desktop PC with 1024 MB main memory and DVI enabled graphics adapter,
and a laptop with 512 MB main memory and a DVI graphics adapter that also
supports TV output. The set RI can contain many other such instances that
fit in the requirements of the concept expression in R.

To ensure that a particular resource instance is captured by a description,
the concept expression in R has to be chosen such that there exists an interpre-
tation I which is a model of the concept expressed through R with respect to
the background domain ontology and in which the particular instance is con-
tained in the extension RI . More strictly, the concept expression in R can even
require certain resource instances to be included in all its models. To exclude a
particular resource instance from being captured by the description, the expres-
sion in R has to be chosen such that there is no model of the concept expressed
through R in which this resource instance is contained in RI .

The variance in the properties of a resource description maps to the existence
of multiple interpretations that are models of the resource concept and is con-
nected to the open-world assumption made in the DL formalism, as described in
[17]. On the one hand, the open-world semantics allows us to describe resources
in form of compact descriptions expressing constraints on possible instances,
which avoids listing all intended resources explicitly and allows for incomplete
descriptions. On the other hand, it requires us to carefully include additional
restrictions whenever some particular instances are to be ruled out. For exam-
ple, if we don’t specify in a description of a PC whether the graphics adapter
should support TV output or not, both the alternatives are captured, since in
some models it does while in others it does not. If we prefer one alternative
over the other, we have to adjust our resource description such that it either
explicitly requires or explicitly disclaims the support of TV output.

Example Scenario

Here, we introduce a scenario within the domain of PC product catalogues in
eCommerce, which we use as a running example to demonstrate matchmaking
throughout the paper.

Consider an electronic marketplace where demand and supply for PCs meet
in form of electronically advertised resource descriptions. Providers advertise
their product catalogues with offers for PC configurations, each represented by
a supply resource description S in form of a DL concept. Requesters issue a
demand D, also represented by a resource description in form of a DL concept,
which specifies their desired PC configuration. All the configurations advertised
or requested may have various options in their parameters. In their descriptions,
all parties refer to an agreed upon domain ontology OPC for computers that de-
fines basic notions such as “Hardware”, “Operating System” or “Application”
and their interrelation. They also refer to vendor specific information about
concrete components or software, such as “WindowsXP” or particular graphics
adapters, defined in an ontology Oven. Furthermore, each party adds its own
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customary ontology, e.g. OA for provider A, which is based on the formerly de-
scribed, more general ontologies. Altogether, these ontologies form a knowledge
base KB that is the basis to perform matchmaking of the supplies and demands
within the electronic marketplace.

Example 1 (Example on PC Product Catalogue)

OPC = { Computer ⊑ Hardware, Component ⊑ Hardware, Computer ⊑ ¬Component,

Computer ⊑ ∀ hasComponent .Component ⊓ ≤ 1hasGfx ⊓ =1 runsOS,

Laptop ⊑ Computer, DesktopPC ⊑ Computer, Laptop ⊑ ¬DesktopPC,

GfxCard ⊑ Component ⊓ ¬StorageDevice ⊓ ∀ hasOutput .{Analog,DVI,TV},

StorageDevice ⊑ Component, hasGfx ⊑ hasComponent, PocketPC ⊑ Computer,

DualScreenGfxCard ⊑ GfxCard ⊓ ≥ 2 hasOutput, hasStorage ⊑ hasComponent,

RAIDStorage ⊑ StorageDevice ⊓ ∀ capacity . ≥40,

Application ⊑ Software, OpSys ⊑ Software, Application ⊑ ¬OpSys,

WindowsOS ⊑ OpSys, LinuxOS ⊑ OpSys, WindowsOS ⊑ ¬LinuxOS,

OpSys ⊑ ∀ supports .Component, Computer ⊑ ∀ runsOS .OpSys,

EmbeddedOS ⊑ OpSys ⊓ ¬∃ supports .RAIDStorage }

Oven = { DualScreenGfxCard(2ScreenCard), hasOutput(2ScreenCard, DVI),
GfxCard(ViewTV), hasOutput(ViewTV, TV), GfxCard(LuxCard),
≤ 1 hasOutput(LuxCard), hasOutput(LuxCard, Analog),
supports(WindowsXP, 2ScreenCard), supports(WindowsCE, 2ScreenCard),
supports(WindowsXP, ViewTV), supports(RedHat, LuxCard), LinuxOS(RedHat)
WindowsOS(WindowsXP), WindowsOS ⊓ EmbeddedOS(WindowsCE) }

OA = { DVIDualScreenGfxCard ≡ DualScreenGfxCard ⊓ ∃ hasOutput .{DVI},

MiniTower ⊑ DesktopPC ⊓ ∀ hasStorage .(∀ capacity . ≤20),
GfxCard(NoNameGfxCard) }

OB = { WorkStation ≡ ∃ hasComponent .(StorageDevice ⊓ ∀ capacity . ≥40) }

D1 = Computer ⊓ ∃ hasGfx .DualScreenGfxCard

⊓ ∀ hasComponent .(∃ supports− .WindowsOS)

D2 = DesktopPC ⊓ ∃ hasStorage .RAIDStorage

⊓ ∃ runsOS .(∃ supports .DualScreenGfxCard

⊓ ∃ supports .RAIDStorage)

SA1
= MiniTower ⊓ ∃ hasGfx .DVIDualScreenGfxCard

SA2
= PocketPC ⊓ ∃ hasGfx .{NoNameGfxCard} ⊓ ∀ runsOS .{WindowsCE}

SA3
= DesktopPC ⊓ ∃ hasGfx .(∃ hasOutput .{TV}) ⊓ ∀ runsOS .{WindowsXP}

SB1
= Laptop ⊓ ∀ hasComponent .(∃ supports− .LinuxOS)

SB2
= Workstation ⊓ ∃ hasGfx .(≤ 1 hasOutput) ⊓ ∀ runsOS .LinuxOS

Domain Knowledge. The ontology OPC distinguishes computers and their
components on the hardware side. Computers are split into laptops and desktop
PCs, while representatives for hardware components in the example are graphics
adapters and storage devices with properties such as output or capacity. On
the software side, OPC speaks about operating systems that support hardware
components and distinguishes Linux from Windows systems. By means of more
complex axioms, OPC imposes restrictions on the introduced taxonomy, stating,
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Figure 2: Example Ontology

for example, that embedded operating systems do not support RAID storage
devices or that only cases are considered in which a computer runs exactly one
operating system. While OPC describes general knowledge about PCs, Oven

contains the vendor specific information about concrete hardware and software.
For example, it provides information about a concrete graphics adapter named
“2ScreenCard” which supports dual screen and which has a digital DVI output.
It also reflects the explicit support of operating systems that vendors claim
for their hardware components. For example, “2ScreenCard” is stated to have
support by WindowsXP and WindowsCE. Furthermore, the providers A and
B bring in their own ontologies for the definition of new concepts which they
use in their resource descriptions. The ontology OA, for example, introduces a
concept for dual screen graphics adapters that support DVI output, which is
then used in the supply SA1

. Figure 2 visualises some of the domain knowledge
captured in these ontologies.

Supply and Demand. In the example, there are two providers, named A
and B, who advertise supply descriptions at the electronic marketplace as part
of their product catalogues.

Provider A offers three different configurations for PCs. In supply SA1
they

describe a mini tower PC which has a dual screen enabled graphics adapter
with DVI output. In their ontology OA they introduce mini towers as desktop
PCs with storage devices of a capacity smaller than 20 GB. With supply SA2

they describe a pocket PC with some no name graphics adapter that runs Win-
dowsCE. Notice that the no name graphics adapter is not one specified by any
vendor in Oven but is introduced by the provider in OA. Finally, in SA3

they
describe a desktop PC that has a graphics adapter with TV output and that
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runs Windows XP.
Provider B offers two different configurations for PCs, specialising on Linux

machines. In supply SB1
they describe a laptop all of whose components are

supported by a Linux operating system. In supply SB2
they describe a work-

station with a single output graphics adapter that runs Linux.

In the first demand issued to the electronic marketplace, D1, a requester
describes a computer with dual screen graphics adapter all of whose components
are supported by a Windows operating system. Suppose this demand has been
issued by a company that installs variants of the Windows operating system
on any PC they buy in a customary way. They want to make sure that the
installed dual screen graphics adapter is supported by some Windows variant.

Suppose the requester of the second demand, D2, already has a dual screen
graphics adapter which they want to install into the requested PC themselves
after delivery. They additionally plan to upgrade the system with a RAID
storage device to use it as a server. To make sure that matching offers are
compatible with the dual screen graphics adapter and with RAID storage, they
ask for a desktop PC that runs an operating system which has support for both
dual screen and RAID storage.

4 Matching Resource Descriptions with DL In-

ferencing

Matchmaking of semantically annotated resources in general aims towards check-
ing for compatibility among resources. The compatibility between two an-
notated resources is verified by matching their semantic descriptions. In our
setting of abstract descriptions that represent resource classes, two resource de-
scriptions match if the sets of concrete resources they capture do overlap. In
particular, if the two sets intersect then there are some concrete resources which
are captured by both of the descriptions, which justifies their compatibility.

4.1 DL Inferences for Matching

Based on the resource descriptions expressed as DL concepts, matching can be
performed by using DL inference services, such as satisfiability or entailment.
Different reasoning services can be used to check for different forms of overlap
between two sets of intended resources, by looking at the concept expressions
and their models with respect to a domain ontology. In our presentation of
matching under local closed-world reasoning in Section 5, we focus on inter-
section as the most basic form of overlap, based on the ideas in [14, 30] and
[29]. However, for a better understanding of the intuition behind intersection
matching, and for sake of completeness, we also present other forms of match-
ing here. We review various inferences that have been used for matching in the
literature, each one having its characteristic intuition by answering a specific
question about the resources involved. We denote by KB a DL knowledge base
that contains the axioms of a domain ontology with respect to which matching
is evaluated.
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Intersection Matching. As first proposed in [14, 29], the idea behind in-
tersection matching is to check whether two resource descriptions, R1 and R2,
share some intended concrete resource which is captured by both of them. Tech-
nically, this is the case if, in an interpretation I ∈ M(KB), the extensions of R1

and R2 have a non-empty intersection, i.e. RI
1 ∩RI

2 6= ∅. Under the open-world
semantics of DL there can be many interpretations I that are models of KB ,
and therefore, intersection matching can be carried out in two ways, as depicted
in Table 2.

Table 2: DL Inferences for Intersection Matching
Inference: Satisfiability of Concept Conjunction
Input: domain knowledge KB , resource descriptions R1, R2

Formula: R1 ⊓ R2 is satisfiable w.r.t. KB

Situation: (R2)
I
1

(R1)
I
1

.  .  .

(R2)
I
2

(R1)
I
2

(R2)
I
1

(R1)
I
1

(R2)
I
1

(R1)
I
1

.  .  .

(R2)
I
2

(R1)
I
2

(R2)
I
2

(R1)
I
2

Intuition: Is there a way to resolve unspecified issues such that R1 and
R2 capture some common concrete resource?

Inference: Entailment of Concept Non-Disjointness
Input: domain knowledge KB , resource descriptions R1, R2

Formula: KB ∪ {R1 ⊓ R2 ⊑ ⊥} is unsatisfiable

Situation:

(R2)
I
1

(R1)
I
1

.  .  .

(R2)
I
2

(R1)
I
2

(R2)
I
1

(R1)
I
1

.  .  .

(R2)
I
2

(R1)
I
2

(R2)
I
2

(R1)
I
2

Intuition: Do R1 and R2 specify some common concrete resource, re-
gardless of how unspecified issues are resolved?

The inference satisfiability of concept conjunction, illustrated in the upper
part of Table 2, can be realised by the standard DL reasoning task of checking
whether a concept is satisfiable with respect to a knowledge base. The concept
here forms the conjunction of the concept expressions used in the two resource
descriptions. The intuition behind this inference is to check whether there is
some way in which the given, possibly incomplete knowledge can be interpreted
such that the two descriptions share an intended resource, while in other ways
of interpretation they might not. Technically, this intuition exactly maps to
satisfiability of the conjunction R1 ⊓ R2, which checks for the existence of an
interpretation I ∈ M(KB) in which RI

1 ∩ RI
2 is non-empty.

The inference entailment of non-disjointness as introduced in [17], illus-
trated in the lower part of Table 2, does not directly map to a standard DL
reasoning task but can be realised by adding a disjointness axiom to KB and
checking the resulting knowledge base for satisfiability. The additional axiom
states the disjointness between the concept expressions used in the two resource
descriptions. The intuition behind this inference is to check whether the two
descriptions share an intended resource no matter in which way the given, pos-
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sibly incomplete knowledge is interpreted. Technically, this is the case if in all
interpretations I ∈ M(KB) the intersection RI

1 ∩ RI
2 is non-empty.

While satisfiability of concept conjunction is a rather weak check, entailment
of non-disjointness is quite strict in that it requires the modelers of resource
descriptions to exclude any interpretation in which an intended resource is not
captured, which is usually achieved by including additional restrictions into the
resource description. It is an attempt to cope with some problems in matching
due to the open-world semantics, which we discuss in the following, and for which
we propose a better solution through support of local-closed world reasoning,
based on earlier work in [18]. For this reason, we focus on satisfiability of concept
conjunction and mean this inference when we speak of intersection matching in
the sequel.

Subsumption Matching. Another form of overlap between sets of intended
resources is full containment of one set in the other, which maps to subsumption
reasoning in DL. The idea behind subsumption matching is to check whether a
description R1 is a specialisation (or generalisation) of another description R2.
In the literature about matchmaking, the two directions of subsumption have
been denoted by “Plugin” and “Subsumes” [25, 20], as illustrated in Table 3.

Table 3: DL Inferences for Subsumption Matching
Inference: Entailment of Concept Subsumption (Plugin)
Input: domain knowledge KB , resource descriptions R1, R2

Formula: KB |= R1 ⊑ R2

Situation:
(R1)

I
1

(R2)
I
1

.  .  .

(R1)
I
2

(R2)
I
2

(R1)
I
1

(R2)
I
1

(R1)
I
1

(R2)
I
1

.  .  .

(R1)
I
2

(R2)
I
2

(R1)
I
2

(R2)
I
2

Intuition: Do the concrete resources captured by R2 encompass the con-
crete resources captured by R1, regardless of how unspecified
issues are resolved?

Inference: Entailment of Concept Subsumption (Subsumes)
Input: domain knowledge KB , resource descriptions R1, R2

Formula: KB |= R2 ⊑ R1

Situation:
(R2)

I
1

(R1)
I
1

.  .  .

(R2)
I
2

(R1)
I
2

(R2)
I
1

(R1)
I
1

(R2)
I
1

(R1)
I
1

.  .  .

(R2)
I
2

(R1)
I
2

(R2)
I
2

(R1)
I
2

Intuition: Do the concrete resources captured by R1 encompass the con-
crete resources captured by R2, regardless of how unspecified
issues are resolved?

Subsumption matching is realised by the standard DL reasoning task of
checking for the entailment of an inclusion axiom R1 ⊑ R2 in case of a Plugin
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match, or R2 ⊑ R1 in case of a Subsumes match. The intuition behind sub-
sumption matching is to check whether any intended concrete resource captured
by the description R1 is also captured by the description R2, or the other way
round, no matter in which way the given, possibly incomplete knowledge is in-
terpreted. Technically, if the inclusion axiom is entailed this means that for all
interpretations I ∈ M(KB) the containment RI

1 ⊆ RI
2 respectively RI

2 ⊆ RI
1

holds.
A special form of subsumption matching occurs if subsumption holds in

both directions, i.e. KB |= R1 ≡ R2, which has been called exact match in the
literature [29, 14]. In this particular case, the sets of intended resources of two
descriptions is identical.

Discussion of Matching Inferences. In the matchmaking literature [25,
24, 20], the different matching inferences have been used to establish a rank-
ing among matched resource descriptions according to the following order of
strictness.

fail ≺ intersect � subsume − plugin � exact

Such an order is justified by the observation that some matches are implied by
others. For example, an exact match always implies the subsumption matches,
while each of the subsumption matches implies an intersection match.

Based on non-standard DL reasoning services, there have also been pro-
posed other inferences for matching, which aim for a more fine-grained ranking
of resource descriptions by approximating the logical notions of concept satis-
fiability and subsumption. Namely in [9], the use of concept contraction and
concept abduction has been introduced to rank both intersection matches and
non-matches in different ways. Concept contraction is used to identify those
parts of the two concepts in resource descriptions that prevent their conjunc-
tion from being satisfiable. Concept abduction is used to identify those parts of
a concept in a resource description that prevent it from being subsumed by the
concept in another resource description.

In our setting, however, we are not concerned with the ranking of resource
descriptions but set the focus on achieving the desired matching behaviour with
the standard inferences. Based on the intuition behind the abstract resource
descriptions introduced in Section 3, we add a different aspect to the discussion
of the interrelation between the various matching inferences. Namely, we give
an intuitive reading to various of the inferences, identifying particular questions
they give answers to in terms of sets of intended resources and incompleteness
in resource descriptions. We claim that the relation between the different types
of match depends on the actual setting in which matchmaking is applied and
that our intuitive reading of the inferences helps to better decide which type of
matching to use, giving a more fine-grained account of their interrelation than
a general ordering does.

For example, if a requester is indifferent about the options left open in their
demanded PC configuration, they will not rate a subsumption based match
with an entry in a provider’s product catalogue higher than a mere intersection
match, since they are already satisfied by the common concrete resources that
determine the choices for the options in a particular way, although some other
choices they agree on might be not supported on the provider side. On the
other hand, if the requester has preferences about the options in their demanded
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configuration then they might prefer a plugin match over an intersection match,
since the plugin match ensures that any choice of options on the requester side
is supported by the advertised supply, which allows for selecting their preferred
choice.

In our presentation of matchmaking we focus on eliminating undesired pos-
itive matches due to open-world semantics, which inherently occur in the most
basic form of matching by intersection. On the other hand, forms of matching
that are based on entailment can easily be too strict, missing desired positive
matches in various cases, as argued in [18, 17]. Therefore, we only consider sat-
isfiability of concept conjunction as an inference for matching in the following,
and we interpret options left open in resource descriptions as equal alternatives
without taking into account preferences of requesters or providers. We define
a boolean function match(KB , R1, R2), that takes as input two resource de-
scriptions and a knowledge base containing all the relevant domain knowledge
referred in the descriptions, as follows.

match(KB , R1, R2) =

{

true ; R1 ⊓ R2 satisfiable w.r.t. KB

false ; otherwise

4.2 Counterintuitive Matching Behaviour due to OWA

On the one hand, open-world semantics allows for a proper handling of in-
complete resource descriptions with variance in their parameters on both the
requester and the provider side. On the other hand, it requires modelers to state
“negative” information, such as disjointness or class non-membership, explicitly,
as they do not hold by default. Based on the example scenario introduced in
Section 3, we illustrate some cases in which the open-world semantics leads to
an undesired behaviour of the intersection matching inference.

Intersection Matching and the Open-World Assumption

Satisfiability of concept conjunction is the weakest check for the compatibility of
two resource descriptions in that it only fails if the descriptions impose contra-
dictory constraints on resources that cannot be jointly fulfilled [17]. Technically,
the existence of a single model of the involved knowledge base in which the two
descriptions share a captured resource is sufficient. If neither the descriptions
nor the background domain knowledge impose sufficient restrictions on the re-
sources involved then such a model is likely to exist, leading to a false positive
match in cases where incompatibility was assumed to hold by default.

To give an example, consider the PC product catalogue scenario from Sec-
tion 3 with the domain ontology OPC that describes basic notions about com-
puters. For a demand D = Laptop, requiring a laptop computer, and for a supply
S = DesktopPC, offering a desktop PC, match(OPC,D, S) would yield a negative
result, as expected, since the two concepts Laptop and DesktopPC are declared to
be disjoint in OPC. However, for the supply S′ = Refrigerator, match(OPC,D, S′)
would yield an undesired positive result, since in OPC there is no evidence that
refrigerators and laptops are incompatible. There is some model I in which
the sets LaptopI and RefrigeratorI have a common element. This shows that the
use of intersection matching in such a setting heavily relies on the agreement of
the involved parties on carefully modelled domain ontologies. It is not robust
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against deviations from the underlying conceptual model, for which it is likely
to produce false positive matches. (In [15, 27] an industrial logistics scenario in
the context of Semantic Web Service discovery has been realised based on this
form of intersection matching with careful modelling of domain ontologies.)

In some cases, such false positive matches could be ruled out by including
additional information in form of closure axioms to the domain knowledge or
the resource descriptions. However, this is often a tedious task and overloads
resource descriptions and domain models. To rule out S′, disjointness between
refrigerators and computers could be added, but there can be many more such
concepts and in a less controlled environment where ontologies from various
independent sources are combined disjointness statements can easily be missed.

On the other hand, one could think of using a formalism with pure closed-
world semantics, such as a deductive database or logic programming system.
However, this would, in turn, hamper the use of abstract descriptions of re-
sources by restricting their properties. For some of the concepts and roles in
the domain model, such as Computer or hasComponent, modelers would not like to
list their instances explicitly, but make use of incomplete descriptions instead.
There is, for example, no single known computer in the domain model, but still
the extension of the concept Computer is not necessarily empty, as it would be
under closed-world semantics.

Based on earlier work in [18], we propose to use a local closed-world semantics
as a better solution to the problem, which allows to assume closure for particular
parts of the domain model. In the following, we investigate the problematic cases
in which some form of closure is desired in our PC product catalogue example
before we elaborate on local closure in Section 5. While in a similar setting in
[9] deficiencies of matchmaking with classical DL inferencing have already been
investigated, our work differs in that we focus on situations where matches due
to standard inferencing are not detected as desired. Contrarily, the work in [9]
uses forms of approximation to achieve a more fine-grained ranking of matches
that can already be “correctly” detected by means of standard inferences.

Cases of Undesired Matching Behaviour

Consider the example ontologies, supplies and demands from Section 3. For
each of the demands DX , we check to which of the supplies SY it matches,
applying the previously defined matching function match(KB ,DX , SY ). The
knowledge base KB , with respect to which matching is evaluated, is built up of
general domain knowledge about computers and vendor information as well as
the knowledge which the two parties bring in.1

KB := OPC ∪ Oven ∪ OY

Notice that the various parties know about the domain ontologies used within
the electronic marketplace but that they typically don’t know about the mod-
elling of their competitors or potential business partners.

We subsequently investigate the matching of the two demands D1 and D2

against all available supplies, identifying cases in which the open-world seman-
tics of the DL formalism shows to be problematic.

1In our example, the requesters do not bring in their own ontologies, although in the general

case they could.
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Matching Results for Demand D1. The demand D1 asks for computers
with a dual screen graphics adapter and with components all supported by
a Windows operating system. Since hasGfx is a subrole of hasComponent, the
demanded graphics adapter needs to be supported by Windows in particular.

The first supply of provider A matches this demand, i.e. match(KB ,D1, SA1
) =

true. This meets our intuition, since the desktop PCs offered in SA1
are spe-

cial kinds of computers and the offered type of dual screen graphics card with
additional DVI output also specialises the one requested. Moreover, among
the concrete graphics adapters known to the electronic marketplace through
Oven there is actually one which is supported by a Windows operating sys-
tem, as requested. Technically, the positive match holds because there is an
interpretation I ∈ M(KB) in which there exists an element c in both the ex-
tensions ComputerI and DesktopPCI that is attached via hasGfx to an element g

that is in both DualScreenGfxCardI and (∃ hasOutput .{DVI})I , and that is in turn
attached to an element o ∈ WindowsOSI via supports. The elements c, g, o ∈ ∆I

reflect the concrete resources for a computer, graphics adapter and operating
system within the interpretation I, while g and o could map to 2ScreenCardI and
WindowsXPI , respectively. An issue of incomplete knowledge within KB is, for
example, whether 2ScreenCard is the only dual screen adapter or whether there
are others. There are models of KB in which ViewTV is dual screen as well,
since this has not been explicitly excluded. This means that there are several
ways to interpret this incompleteness all of which result in a graphics adapter
captured by both demand and supply. However, even if we would add a clo-
sure axiom DualScreenGfxCard ≡ {2ScreenCard} to KB , ensuring that the only dual
screen graphics adapter is the one known to be, SA1

would still yield a posi-
tive match, since with the concrete situation in the ABox for the closed part
DualScreenGfxCard the conjunction D1 ⊓ SA1

can be satisfied.
The second supply of provider A, which offers desktop PCs with a particular

no name graphics adapter, also matches the demand, i.e. match(KB ,D1, SA2
) =

true. Since the knowledge in KB does not determine whether NoNameGfxCard

is dual screen or not, it can be interpreted in such a way that it is and in
such a way that it is not. This is a typical situation of incomplete informa-
tion in which provider A has simply not specified all details for this partic-
ular graphics adapter. As a requester, we would be rather sceptical about
NoNameGfxCard meeting the requirement specified in D1, even if there is some
way to resolve incomplete knowledge in which it does. Intuitively we would
therefore like to eliminate this positive match by imposing some form of clo-
sure to the part about dual screen graphics adapters in the demand. A clo-
sure axiom that would eliminate the positive match with SA2

is, for example,
¬DualScreenGfxCard(NoNameGfxCard), however, this seems to be quite cumber-
some since there can be many more graphics adapters for which we would like
to state such non-membership. Moreover, this closure axiom could not even
be included by the demander, since the individual NoNameGfxCard is an element
that provider A has introduced in their ontology. If the demander would use the
closure axiom DualScreenGfxCard ≡ {2ScreenCard} instead, then this would prevent
any suppliers from introducing new graphics adapters that support dual screen.

Also for the third supply advertised by provider A, offering desktop PCs
that have a graphics adapter with TV output, we get a positive match, i.e.
match(KB ,D1, SA3

) = true. Since dual screen graphics adapters are in general
not excluded from having a TV output, the knowledge in KB can be interpreted
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in such a way that there is a graphics adapter with both the two features,
and thus, the conjunction D1 ⊓ SA3

is satisfiable. Looking at the particular
situation of concrete graphics adapters in the ABox of KB , however, we would
intuitively rather like SA3

to not match the demand because there is actually
no known dual screen graphics adapter which is stated to have TV output.
If we would ask the knowledge base for such a graphics adapter by means of
the query (DualScreenGfxCard⊓ ∃ hasOutput .{TV})(?x) in a closed-world data base
sense, we would get an empty result. This undesired positive match could be
eliminated by adding the closure axiom ∃ hasOutput .{TV} ⊑ ¬DualScreenGfxCard

but this would lead to a contradictory knowledge base whenever some provider
introduces their own dual screen graphics adapter with TV output.

Another supply that yields a positive match with D1 is SB1
, which offers lap-

tops with components all supported by Linux. Again, there is a way to interpret
the knowledge in KB such that some graphics adapter has support from both
Linux and Windows, and thus, the conjunction D1 ⊓ SB1

is satisfiable, yielding
match(KB ,D1, SB1

) = true. However, there is no graphics adapter known in
KB which has support of both Linux and Windows. Also here, we would intu-
itively prefer a closed-world interpretation of the role supports, expecting that a
hardware component is not supported by a particular operating system if this
is not explicitly stated by a vendor in Oven. The introduction of explicit closure
information in form of additional axioms would result in a similar situation as
in the former case.

Finally, the supply SB2
offering workstations with single output graphics

adapters yields a negative match, i.e. match(KB ,D1, SB2
) = false, which meets

our intuition. Indeed, the requested dual screen graphics adapter needs to have
at least two outputs by the knowledge in KB , which contradicts its restriction
to a single output in the supply.

Matching Results for Demand D2. The demand D2 asks for RAID-enabled
desktop PCs that run an operating system which supports dual screen graphics
adapters and RAID storage devices.

The first supply of provider A does not match this demand, since the ad-
vertised mini towers are restricted to storage devices with a maximum capacity
of 20 GB in OA while the capacity of the requested RAID storage system is
stated to be at least 40 GB in OPC. Therefore, the conjunction D2 ⊓ SA1

is
unsatisfiable and match(KB ,D2, SA1

) = false, as desired.
Also the second supply of provider A does not match the demand D2, since

the embedded operating system WindowsCE, which it requires the advertised
pocket PC to run, does not support the requested RAID storage, according to
OPC. As intuitively expected, we get match(KB ,D2, SA2

) = false.
The third supply of provider A, offering desktop PCs with TV out graphics

adapters that run WindowsXP, does yield a positive match for demand D2. Even
if we would interpret the support of graphics adapters in a closed-world sense,
we would intuitively expect this match to hold, since there is actually a known
graphics adapter, namely “ViewTV”, that has TV output and is supported by
WindowsXP according to the knowledge in Oven. Notice that we would not like
to interpret the support of storage devices, required in the demand, in a closed-
world sense because the domain knowledge is such that no concrete storage
devices occur in form of explicit instances.
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The first supply advertised by provider B does not match the demand, i.e.
match(KB ,D2, SB1

) = false, simply because the offered laptops are incompatible
with the requested desktop PCs by the disjointness stated in OPC.

Finally, for the second supply of provider B, requiring PCs to run Linux,
we also get a positive match match(KB ,D2, SB1

) = true, since there is a way to
interpret the knowledge in KB such that some Linux operating system supports
both dual screen graphics adapters and RAID storage. Again, by the concrete
situation of the known operating systems mentioned in the ABox of KB , we
could be sceptical about this way of interpretation because there is no concrete
Linux operating system stated to have these two features. Intuitively, we would
rather like to interpret at least the support of graphics adapters in a closed-
world sense, since vendors state the support of their graphics adapters in Oven

explicitly. In this sense, we would prefer supply SB2
to not match demand D2.

Observations. In summary, we have seen that in the resource descriptions for
supply and demand at the electronic market place in the example, requesters and
providers of PC products make use of incomplete descriptions when specifying
their intended PC configuration. Things like computers or storage devices, for
which the domain model does not list explicit instances, are described in an
abstract way by restricting their properties, such as components or capacity.
On the other hand, for some knowledge in the domain model explicitly listed
instances are present in form of ABox assertions. For example, information
about concrete graphics adapters and their support by operating systems is
explicitly stated by vendors. For this part of the domain knowledge, we would
sometimes prefer a closed-world view, allowing to conclude that, for example,
a graphics adapter is not supported by a particular operating system if this is
not explicitly stated.

In many of the cases of matching supply and demand in the example, the
open-world semantics under which intersection matching is performed results in
positive matches where we would intuitively expect matching to fail. We have
seen that the modification of the domain knowledge by means of additional
closure axioms does not provide a satisfying solution to the problem, since it is
tedious and likely to introduce inconsistencies in the knowledge base. Rather,
we would like to have a means to identify certain parts of the domain model
to be interpreted in the closed-world sense dynamically, while the open-world
semantics is maintained for the rest of the domain model. In the following
section, we show how this can be achieved by using nonmonotonic extensions
to the description logic formalism.

5 Improved Matching with Local Closed-World

Reasoning

As a fragment of first-order predicate logic, description logics inherit a semantics
based on the open-world assumption, under which no conclusion is drawn unless
there is sufficient evidence. On the contrary, there are formalisms, such as logic
programming or deductive database systems, which adhere to the closed-world
assumption, under which some conclusions are drawn if there is no counter-
evidence. A generalisation of both is the so called local closed-world assump-

21



tion [13], which starts from the open-world assumption but allows for the closure
of explicitly selected parts of the domain model.

We show how local closed-world reasoning, realised by either autoepistemic
or circumscriptive DLs, improves the behaviour of matchmaking in our running
example on an electronic marketplace for PC products.

5.1 Forms of Local Closure for Matchmaking

In the discussion of matching supply and demand in Example 1, we have seen
a static attempt to realise closure based on explicit closure axioms which per-
manently affect the domain knowledge in an undesired way. When we speak
of local closure in the following, however, we mean a way to tag parts of the
domain model such that they are treated in the closed-world sense dynamically
at reasoning time, without the need for adding any axioms to a knowledge base.

We identify some general forms of local closure which occur in the context
of matchmaking, based on cases of matching supply and demand in our running
example. In particular, we focus on cases in which the open-world semantics
produces undesired positive matches that can be filtered out by a form of local
closure, yielding a more intuitive matching behaviour.

Local Concept Closure If a concept C is locally closed, only such objects
should occur in the extension of C for which there is evidence to be in there.

Closing Atomic Concepts
The simplest form of local concept closure occurs when an atomic concept is
to be interpreted under closed-world semantics. In our running example this
is desired in the case of matching demand D1 with supply SA2

, in order to
filter out the no name graphics adapter for which the provider didn’t state
whether it supports the requested dual screen feature or not. Here we would
like to interpret the atomic concept DualScreenGfxCard in the closed-world sense,
concluding that a graphics adapter does not support dual screen if this has not
been explicitly stated. This local closure would then filter out SA2

as a false
positive match.

Closing Complex Concepts
Similarly, a concept that is identified by a complex concept expression might
be the target for local closure. In our example, this is the case when matching
demand D1 with supply SA3

, requiring graphics adapters to be explicitly stated
to have both the requested dual screen feature and the provided TV output at
the same time. Here the closure involves the complex concept ∃ hasOutput .{TV},
which is to be interpreted under closed-world semantics to also filter out SA3

as a false positive match, since there is no concrete graphics adapter which is
known to have both the features.

Local Role Closure If a role r is locally closed, only such pairs of objects
should occur in the extension of r for which there is evidence to be in there.
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Closing Roles as a Whole
A role can be locally closed “as a whole”, in which case it is entirely interpreted
under closed-world semantics, no matter in which context it is used. In our
example, this applies to the case of matching demand D1 with supply SB1

,
where the graphics adapter used has to support both Linux and Windows. Since
vendors state the support of graphics adapters in Oven but there is no concrete
graphics adapter known to be supported by both operating systems, the local
closure of the entire role supports filters out the false positive match. Any graphics
adapter for which there is no evidence to be supported by a particular operating
system is by default concluded to not have this support.

Closing Roles Partially
Sometimes it is desired to close a role partially, affecting only those pairs of
individuals that share a common domain or range concept. In the example, the
role supports that connects operating systems with hardware components has a
rather broad range. For some parts of its range, such as graphics adapters,
closure can be desirable, as shown in the previous case, since vendors state the
support of graphics adapters explicitly in the domain model. For other parts
of the range, however, closure of the role should be avoided, such as for storage
devices, which becomes apparent in the matching results for demand D2. When
matching this demand with the supply SB2

, a closed-world interpretation of
the part of the role supports that concerns graphics adapters correctly filters out
the positive match because no dual screen graphics adapter is stated to have
support from a Linux system. Also when matching D2 with the supply SA3

,
this partial closure correctly keeps the positive match, since WindowsXP does
support a dual screen graphics adapter. A closure of the role supports as a whole,
however, would also eliminate the positive match with SA3

because vendors do
not state support for concrete storage devices, and thus, WindowsXP is not
known to support RAID storage, as requested.

5.2 Matching with Local Closure by Epistemic Operators

Autoepistemic DLs introduce epistemic operators, in particular the K-operator,
which can be used to refer to objects that are known to have certain properties.
We show how the K-operator can be applied to modify resource descriptions for
realising forms of local closure in the context of the supply and demand situation
in our running example for matchmaking in an electronic marketplace.

Local Closure with Epistemic Operators

To achieve local closure with autoepistemic DLs, epistemic operators can di-
rectly be applied to the part of the domain model to be closed. Since for
intersection matching we are concerned with concept satisfiability as a standard
DL reasoning task, we show how the application of the K-operator affects the
satisfiability of concepts.

Consider, for example, the two concepts DualScreenGfxCard and RAIDStorage

taken from Example 1. In the knowledge base defined as KB := OPC ∪ Oven,
these two concepts are satisfiable. When imposing a local closure by applying
the K-operator, the concept KDualScreenGfxCard is still satisfiable with respect
to KB , while the concept KRAIDStorage is not. The reason is that in KB there
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is an individual known to be a dual screen graphics adapter, while there is
no individual known to be a RAID storage device, which reflects the desired
closed-world view on this part of the domain model. To see this, recall from
the definition of the formal semantics of autoepistemic DLs that epistemic con-
cepts are interpreted as an intersection of concept extensions over all models
of a knowledge base. The interpretation of the concept KDualScreenGfxCard in-
tersects all extensions DualScreenGfxCardI for models I ∈ M(KB), filtering out
those individuals that are outside of the extension of DualScreenGfxCard for some
models. The only remaining individual is 2ScreenCard, that is explicitly asserted
to the concept DualScreenGfxCard, which makes KDualScreenGfxCard satisfiable.
For the concept RAIDStorage, however, there is no explicitly asserted instance,
and thus, no individual remains in the intersection of extensions RAIDStorageI

over the models I ∈ M(KB), which makes KRAIDStorage unsatisfiable.
As the K-operator can also be directly applied to roles, the local closure of

roles can be realised due to a similar argumentation.

Autoepistemic Closure in the Example

Local closure by means of epistemic operators can be used to filter out undesired
positive matches in our running example.

Concept Closure

Closing Atomic Concepts
The undesired positive match between D1 and SA2

can be eliminated using
an epistemic operator to close the concept DualScreenGfxCard, as shown in the
following modified demand.

D′
1 = Computer ⊓ ∃ hasGfx .KDualScreenGfxCard

⊓ ∀ hasComponent .(∃ supports− .WindowsOS)

By asking for computers with graphics adapters known to be dual screen, D′
1

filters out supply SA2
that specifies NoNameGfxCard to be the graphics adapter

used. Indeed, for NoNameGfxCard there is no evidence to support dual screen, i.e.
KB 6|= DualScreenGfxCard(NoNameGfxCard), and thus, it cannot be in the extension
of the concept KDualScreenGfxCard. Since the role hasGfx is declared functional,
there can also not be used another graphics adapter besides NoNameGfxCard that
would fulfil the demanded requirement. Therefore the conjunction D′

1 ⊓ SA2
is

unsatisfiable with respect to KB , and match(KB ,D′
1, SA2

) = false as desired.
In this case, the closure can easily be done on the requester’s side by aug-

menting a concept with an epistemic operator, while leaving the domain knowl-
edge as well as the provider’s resource descriptions and ontologies untouched.

Closing Complex Concepts
The modified demand D′

1 is not sufficient to also filter out SA3
as a positive

match, which specifies the graphics adapter to be anyone with TV output.
Namely, the concrete graphics adapter 2ScreenCard can well be used in a config-
uration captured by both D′

1 and SA3
, since it is known to support dual screen

and there is also the possibility that it has TV output. To make sure that all
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the intended graphics adapters have both features, the supply SA3
has to be

also modified, as follows.

S′
A3

= DesktopPC ⊓ ∃ hasGfx .K(∃ hasOutput .{TV})
⊓ ∀ runsOS .WindowsOS

In this modified supply, the complex concept ∃ hasOutput .{TV} is closed by using
an epistemic operator. It asks for desktop PCs with graphics adapters that
are known to have a TV output. Together with the modified demand D′

1, it
can be used to filter out the third offer from provider A as a positive match.
There is no graphics adapter that is both known to support dual screen and
known to have TV output. Thus, the conjunction D′

1⊓S′
A3

is unsatisfiable, and
match(KB ,D′

1, S
′
A3

) = false as desired.
The closure of a complex concept can immediately be achieved by using epis-

temic operators, since an epistemic operator can be directly applied to it. The
mutual closure on both the requester’s and the provider’s side in this case, how-
ever, shifts some of the control over closure from the requester to the provider,
since the provider’s resource description has to be modified.

If the requester is very sceptical about supplies to support dual screen graph-
ics adapters, then they could want to close the complex concept expressed
through ∃ hasGfx .DualScreenCard, ensuring their intended configurations to be
known to have dual screen graphics adapters. Using epistemic operators, this
would yield the following modified demand.

D∗
1 = Computer ⊓ K(∃ hasGfx .DualScreenGfxCard)

⊓ ∀ hasComponent .(∃ supports− .WindowsOS)

One could think that the demand D∗
1 would properly rule out those supplies

that do not explicitly state that they offer dual screen graphics adapters, in-
cluding the non-modified supply SA3

. However, realised with epistemic oper-
ators, this closure is too strict because there are simply no known individuals
in the knowledge base for which this property could actually hold. Together
with SA3

, the modified demand D∗
1 would rule out any of the supplies, i.e.

match(KB ,D∗
1 , S) = false for all of the supplies from the example. In this par-

ticular scenario, the concept Computer is modelled such that it does not have
explicit instances assigned. On the other hand, epistemic operators rule out
those individuals that are not known to the knowledge base. By asking for com-
puters that are known to have certain properties using epistemic operators, there
is no individual left in the intersection of extensions over models I ∈ M(KB).
Thus, a drawback of epistemic operators in the context of matchmaking is that
they cannot be used for the closure of concepts for which there are no explicitly
asserted instances present in the ABox.

Role Closure

Closing Roles as a Whole
The undesired positive match between D1 and SB1

can be eliminated by further
modifying the demand D′

1, closing the role supports. The following resulting
demand D′′

1 shows how this is done using epistemic operators.

D′′
1 = Computer ⊓ ∃ hasGfx .KDualScreenGfxCard

⊓ ∀ hasComponent .(∃Ksupports− .WindowsOS)
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The demand D′′
1 asks for computers with graphics adapters known to be dual

screen all of whose components are known to be supported by a Windows oper-
ating system. Moreover, also the supply SB1

needs to be adjusted in the same
style, to require components to be known to have Linux support, which results
in the following modified supply.

S′
B1

= Laptop ⊓ ∀ hasComponent .(∃Ksupports
− .LinuxOS)

Now, the supply S′
B1

is filtered out when matched against D′′
1 , since among the

known dual screen graphics adapters there is none that is known to be supported
by Windows and Linux at the same time. Therefore, there is no individual left
that could fill the hasGfx role such that the conjunction D′′

1 ⊓ S′
B1

would be
satisfied, and hence, match(KB ,D′′

1 , S′
B1

) = false.
Again, the closure here affects both the demand and supply descriptions but

leaves domain ontologies as they are. Closing a role “as a whole” by means of
epistemic operators means to apply an epistemic operator to any occurrence of
the role in a resource description.

Closing Roles Partially
In the case of matching demand D2 against the available supplies, a partial
closure of the role supports is desired, as for graphics adapters support is stated
explicitly, whereas for storage devices it is not. By means of epistemic operators,
such a partial closure is achieved through the following modified demand.

D′
2 = DesktopPC ⊓ ∃ hasStorage .RAIDStorage

⊓ ∃ runsOS .(∃Ksupports .DualScreenGfxCard ⊓ ∃ supports .RAIDStorage)

An epistemic operator has only been applied to the restriction of the role supports

that concerns dual screen graphics adapters and not to the one that concerns
RAID storage. Thus, demand D′

2 asks for RAID-enabled desktop PCs that run
an operating system which (potentially) supports RAID storage and which is
known to support dual screen graphics. By this closure, the undesired positive
match with supply SB2

can be eliminated, in which workstations with single
output graphics adapters are offered that run a Linux operating system. Indeed,
there is no Linux operating system in the domain model that is known to support
a dual screen graphics adapter, as requested, and therefore the conjunction
D′

2 ⊓ SB2
is unsatisfiable.

If we applied an epistemic operator also to the part of the role restriction
that concerns RAID storage, closing the role supports as a whole, we would run
into a similar problem as with the epistemic closure of a concept for which there
are no explicit instances present. In fact, the domain model does not speak of
concrete storage devices in form of explicit instances, and asking for desktop PCs
with operating systems that are both known to support dual screen graphics
and known to support RAID storage would yield undesired negative matches,
as in the former case. In particular, the positive match with supply SA3

would
be ruled out because WindowsXP is not known to support RAID storage nor any
other form of storage. Thus, closing the role supports only partially as within D′

2

keeps the supply SA3
as a positive match, i.e. match(KB ,D2, S

′
A3

) = true, but
eliminates the supply SB2

, i.e. match(KB ,D′
2, SB2

) = false, as desired.
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5.3 Matching with Local Closure by Circumscription

Circumscriptive DLs introduce the concept of minimisation of predicates, iden-
tified in circumscription patterns, which can be used to reduce a predicate’s
extension to those elements for which there is evidence to be contained in the
extension. We show how the application of circumscription patterns to knowl-
edge bases can be used for realising forms of local closure in the context of the
supply and demand situation in our running example for matchmaking in an
electronic marketplace.

Local Closure with Circumscription

To achieve local closure with circumscriptive DLs, the parts of the domain model
to be closed can be identified for minimisation in a circumscription pattern.
Again, in the light of intersection matching, we are concerned with concept
satisfiability as a standard DL reasoning task and show how the minimisation
of predicates affects the satisfiability of concepts.

Consider again the two concepts DualScreenGfxCard and RAIDStorage taken
from Example 1, which are satisfiable with respect to the knowledge base KB .
When imposing a local closure by applying the circumscription pattern CP =
(M = {DualScreenGfxCard, RAIDStorage}, F = ∅) to KB , DualScreenGfxCard is still
satisfiable with respect to circCP(KB), while RAIDStorage is not. The reason is
that in KB there is evidence for an individual, namely 2ScreenCard, to be a dual
screen graphics adapter, while there is no evidence for the existence of any RAID
storage device. To see this, recall from the definition of the formal semantics of
circumscriptive DLs that the extensions of minimised predicates are reduced by
eliminating models that are “smaller” in the extension of minimised predicates
than others, leaving only those with the smallest extension possible. For the
concept DualScreenGfxCard, the smallest possible extension must at least contain
the individual 2ScreenCard, and thus, it is satisfied in the remaining models. For
the concept RAIDStorage, however, the smallest possible extension is the empty
set because there is no evidence for the existence of an instance. Any model
I ∈ M(KB) with #(RAIDStorageI) > 0 is eliminated by some model J ∈ M(KB)
with RAIDStorageJ = ∅ due to the condition J <CP I, and no model remains in
which RAIDStorage is satisfied.

As circumscription patterns can identify both concepts and roles for min-
imisation, the local closure of roles can be realised in a similar way.

Circumscriptive Closure in the Example

Local closure by means of circumscription can be used to filter out undesired
positive matches in our running example.

Concept Closure

Closing Atomic Concepts
When circumscription is used as a technique for realising local closure, the false
positive match between D1 and SA2

can be eliminated by applying a circum-
scription pattern to the knowledge base KB := OPC∪Oven∪OA with respect to
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which matching is evaluated. The following circumscription pattern closes the
concept DualScreenGfxCard by minimisation.

CP1 = (M = {DualScreenGfxCard}, F = ∅)

By minimising the concept DualScreenGfxCard, only those graphics adapters sup-
port dual screen for which there is evidence in KB that they do. For the no
name graphics adapter introduced by provider A there is no evidence of dual
screen support, i.e. KB 6|= DualScreenGfxCard(NoNameGfxCard), and therefore it is
taken out of the extension of DualScreenGfxCard during minimisation. As a re-
sult, the conjunction D1⊓SA2

is unsatisfiable with respect to the circumscribed
knowledge base circCP1

(KB), and thus, the supply SA2
no longer yields a positive

match, i.e. match(KB ,D1, SA2
) = false.

Also here, the local closure can be initiated on the requester side, since all
the predicates that occur in the circumscription pattern CP1 are known to the
requester at the time of formulating the demand description.

Closing Complex Concepts
As we have seen before, the single closure of the concept DualScreenGfxCard on
the requester’s side is not sufficient to also rule out supply SA3

as a positive
match for D1. To achieve this, the property of having TV output for graphics
adapters expressed through the complex concept ∃ hasOutput .{TV}, as advertised
on the provider’s side, also needs to be closed. A complex concept can be
minimised with circumscription by setting it equivalent to a newly introduced
atomic concept, which is then minimised. The following circumscription pattern
minimises the two concepts DualScreenGfxCard and ∃ hasOutput .{TV} in parallel,
while a new concept name A is introduced together with the axiom αA = A ≡
∃ hasOutput .{TV}.

CP2 = (M = {DualScreenGfxCard, A}, F = ∅)

In addition to graphics adapters with dual screen support, this pattern also
minimises all objects that have a TV output, leaving only those for which there
is evidence to have one. As there is no graphics adapter in KB which necessarily
has TV output and which also necessarily supports dual screen, there is no
individual left that meets the requirements of both the supply and demand. As a
result, the conjunction D1⊓SA3

is unsatisfiable with respect to the circumscribed
knowledge base circCP2

(KB ∪ αA), and thus, the supply SA3
is filtered out, i.e.

match(KB ,D1, SA3
) = false as desired.

Here, the closure cannot easily be initiated on the requester’s side because
the use of the complex concept occurs in the provider’s description of the supply.

In the case where a requester is very sceptical about supplies to support
dual screen graphics adapters, circumscription can be used to realise the clo-
sure of the complex concept ∃ hasGfx .DualScreenCard, by minimising those things
which have dual screen graphics adapters. In opposite to the use of epistemic
operators, circumscription does not strongly rely on the presence of explicitly
asserted instances in an ABox of a knowledge base, and thus, it can cope with
the lack of known computers in KB . As before, the complex concept is given
a name through the axiom αA = A ≡ ∃ hasGfx .DualScreenCard and the newly
introduced concept name A is minimised. To deal with the lack of explicit
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instances of the concept Computer and its subconcepts, we use the technique
of fixing predicates during minimisation. Namely, we fix the concept in the
resource description of the supply SA3

, giving it a name through the axiom
αB = B ≡ DesktopPC ⊓ ∃ hasGfx .(∃ hasOutput .{TV}) ⊓ ∀ runsOS .{WindowsXP}.
Overall the following circumscription pattern minimises A and fixes B.

CP3 = (M = {A}, F = {B})

By minimising all things that have a dual screen graphics adapter, instances
of the concept specified in supply SA3

are excluded from having this property,
since they are not explicitly required to. Hence, the conjunction D1 ⊓ SA3

is unsatisfiable with respect to circCP3
(KB ∪ αA ∪ αB), and the supply SA3

is
filtered out as desired. If we would not fix the concept B then any other supply,
in particular SA1

, would be filtered out as well, which is not desired. In case B

were a varying concept when D1 is matched with SA1
, all possible instances of

B would be taken out of B’s extension because B implies the property of having
a dual screen graphics adapter, captured by the concept A, which is minimised.
Since there is no evidence for the existence of any instance in A, B would be
empty as well, and thus unsatisfiable.

Role Closure

Closing Roles as a Whole
Using circumscription, roles can be closed as a whole by minimising them as
predicates. The role supports, used in the supply SB1

to denote components that
are supported by Linux, can be closed by means of the following circumscription
pattern in order to rule out SB1

as a positive match for D1.

CP4 = (M = {supports}, F = ∅)

By minimisation of the role supports, which connects operating systems and
hardware components, we achieve that only those components are supported
by operating systems for which their support has been explicitly stated in the
domain knowledge, e.g. in Oven. Since there is no graphics adapter that is stated
to be both supported by Windows and by Linux, the conjunction D1 ⊓ SB1

is
unsatisfiable with respect to the circumscribed knowledge base circCP4

(KB).

Closing Roles Partially
Using circumscription, roles cannot directly be closed partially because roles
cannot be constructed in the same way as concepts can. In a circumscription
pattern only atomic predicates are allowed to occur. In the case of concepts,
complex concepts can be minimised by introducing new atomic concepts and
defining them to be equivalent to the complex concept to be closed by means
of additional axioms. This is not possible for a role, and thus, roles can only be
closed as a whole within the framework of circumscriptive DLs. In this sense,
circumscriptive closure can only be applied in the granularity of the domain
model, and a partial closure of a role requires a more fine-grained modelling of
the domain by introducing subroles, which could then be minimised.
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5.4 Discussion

In summary, we have investigated two different nonmonotonic extensions to the
DL formalism that can be used to realise local closed-world reasoning, namely
autoepistemic DLs and circumscriptive DLs. Both approaches allow to elimi-
nate models of a knowledge base in which extensions of predicates to be closed
encompass (pairs of) individuals for which there is no evidence to be in the
extension. In the context of intersection matching, this technique can be used
to achieve that a conjunction R1 ⊓ R2 of concepts for resources is unsatisfiable
by default, eliminating undesired positive matches.

As a result of this investigation, we observe that the two nonmonotonic
formalisms have complementary properties with regard to the different cases of
local closure we have identified in matching. Namely, in situations in which a
domain model lacks explicit instances of a predicate to be closed, a closure by
epistemic operators leads to unsatisfiability of the predicate even if some objects
are existentially inferred to be in the predicate’s extension. The semantics
of autoepistemic DLs is defined such that only known individuals remain in
the intersection of predicate extensions over the models of a knowledge base.
Circumscription, on the other hand, allows to keep existentially inferred objects
in a predicate’s extension by fixing predicates. Therefore, circumscriptive DLs
provide more flexible ways for imposing local closure in such situations.

Moreover, if a predicate is to be closed only partially or in a certain context,
epistemic operators can be applied to some occurrences of the predicate, while
other occurrences are left as they are. Since epistemic operators directly apply
to concepts and roles within arbitrarily complex expressions, autoepistemic DLs
allow for a fine-grained selection of the parts of the domain model to be locally
closed. In circumscription patterns, on the other hand, predicates can only be
minimised as a whole, and once a predicate is selected for local closure the open-
world semantics does not apply anymore for this part of the domain model, no
matter in which context it is used. In this sense, autoepistemic DLs provide
more flexible ways for imposing local closure in terms of a more fine-grained
access to the parts of the domain model.

As a result from this discussion, the classification of various cases of clo-
sure together with the identification of the specifics of the two investigated
approaches to local closed-world reasoning can be seen as a first step towards
developing methodological guidelines for describing resources in a locally closed
domain model. It remains future research to devise a complete methodology on
when to apply the K-operator and how to formulate appropriate circumscription
patterns such that the details of the logics are hidden from the modeller.

Abstracting from the specific setting of matchmaking, we also note that the
state of the art with respect to the two formalisms is also quite different. For
autoepistemic DLs, there exists a reasonable body of work including further
extensions and reasonable algorithms, as reported e.g. in [23]. It is to be noted,
however, that efficient implementations are to date still missing. For circum-
scriptive DLs, only basic results have been achieved so far. Furthermore, only
naive algorithms exist, and the development of reasonably efficient algorithms
and implementations has not even been started yet.

Either of the approaches can be used for extending any given DL, in principle,
i.e. in terms of the semantics of the extensions. This is the reason why, in
this paper, we have been very liberal with the use of DL constructors in our
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examples. However, decidability and computational complexity properties are
directly dependent on the DL which is extended.

In terms of decidability, which was a major design criteria for OWL-DL,
both approaches have been researched to a considerable extent. For autoepis-
temic DLs, the K-operator can be used for concept and for role closure, with
some restrictions, while retaining decidability [11, 28]. For circumscriptive DLs,
concept closure retains decidability while role closure, i.e. minimising roles, in
general leads to undecidability [7], which is undesirable as role closure is impor-
tant for matchmaking, as we have observed in our investigations.

In terms of worst-case computational complexities, local closed world exten-
sions generally make matters worse. For circumscriptive DLs results have been
reported in [7]; a typical result would be that concept satisfiability is NExp

NP-
complete for circumscriptive ALCIO. For autoepistemic DLs, many complexity
results are reported in [28, 11, 23]. To be noted is that certain interesting frag-
ments remain of reasonable complexity, e.g. when epistemic operators are not
allowed to occur in the knowledge base, as in our examples.

6 Related Work

In this paper, we have investigated the use of nonmonotonic extensions to de-
scription logics, that facilitate forms of local closed-world reasoning, for the
matchmaking of semantically annotated resources. While most essential ref-
erences have been provided in the text, we here summarise related work on
both nonmonotonic extensions to description logics and description logic based
matchmaking.

Closed-World Reasoning in Description Logics

In essence, there exist two different approaches to adding closed-world reasoning
aspects to description logics: hybrid languages and extensions of description
logics.

Hybrid approaches are based on the interplay between two knowledge rep-
resentation paradigms, the one of which uses open-world reasoning, while the
other one uses closed-world reasoning. The single most prominent hybrid ap-
proach to date is reported in [12], which interfaces answer set programming and
description logics in an intricate way. The resulting paradigm, however, is of
an entirely different flavour, and not as closely tied to OWL as the paradigms
we have studied in this paper. Its usability for ontology-based applications in
general and for matchmaking in particular remains largely to be investigated.

Concerning extensions of description logics, the currently most developed ap-
proach are autoepistemic description logics. While in this paper we have treated
the simple case with the K-operator not occurring within the knowledge base, as
introduced in [10], more sophisticated forms of autoepistemic DLs are reported
in [11, 28], including an additional epistemic operator A related to negation
-as-failure, which allows for default rules and integrity constraints. The latter
have been applied in a Semantic Web context in [16]. The most recent advances
on combining autoepistemic DLs with logic programming rules are reported in
[23]. We have also covered circumscriptive description logics as another recent
approach reported in [7]. On the historic side, work on incorporating default
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rules into description logics reported in [1] shall also be mentioned. It remains
to be analysed how such explicit default rules can be utilised for modelling re-
source semantics to feature local closed-world reasoning in the matchmaking
context.

Description Logic Based Matchmaking

In the context of the description logic framework, the problem of matchmaking
for the purpose of resource retrieval was first investigated in [14, 30] and [29],
where resources represented as DL concepts have been matched using DL in-
ferencing tasks. Following this line, in [25] and [20] various DL inferences were
assigned different degrees of match in the context of service discovery in the
Semantic Web.

A similar classification of different matches has been proposed in [24], where
the notion of “partial match” was proposed together with a strategy for ranking
non-intersecting resource descriptions in an approximate way. Further work on
approximate matching techniques was carried out in [4] with an operator for
concept difference, and in [8] based on a structural matching algorithm with
penalty functions. As the most elaborate work in this line of research, the
approach reported in [9] makes use of the non-standard DL inferences of con-
cept contraction and abduction, approximating the notions of intersection and
subsumption to provide fine-grained rankings for partial and potential matches.

In [17], the standard DL inferences for intersection matching and subsump-
tion matching were investigated with respect to the variance imposed by incom-
plete descriptions due to the open-world assumption, and some problems with
classical inferences were identified. As a follow-up, the use of local closed-world
reasoning based on autoepistemic DLs was proposed in [18] to cope with these
problems, which laid the basis for our current work, while in [15] patterns for
modelling semantic descriptions by means of classical DL were recommended.

Furthermore, in the context of Semantic Web Services there are works such
as [6, 2, 19] that tailor the use of DLs for semantic descriptions of services with
special constructs to capture service-specific notions like input/output parame-
ters or actions.

7 Summary and Outlook

We have presented an approach to matchmaking of semantically annotated re-
sources based on description logics by means of an elaborate example on elec-
tronic market places taken from the domain of eCommerce. We have identified
problematic cases due to the open-world assumption in which classical DL in-
ferencing yields an unintuitive matching behaviour, and where forms of local
closure are desired. Hence, we have analysed the state of the art in local closed-
world reasoning in description logics with respect to its applicability to match-
making. Summarising, we can say that both autoepistemic and circumscriptive
DLs allow to solve some of the problems which occur in matchmaking due to the
open-world assumption of OWL, however, they differ in expressive features for
modelling resources. Namely, autoepistemic DLs allow for a fine-grained closure
of parts of a domain model, whereas circumscriptive DLs can handle unknown
objects not known to any involved ontology.

32



As future research, we see the need for developing a methodology which
can help the practitioner in using local closed-world modelling for practical
matchmaking. This is particularly important for making the formulation of
resource descriptions accessible to non-specialists by introducing an additional
layer of abstraction. Here, the identification of various cases of closure and the
specifics of the two presented nonmonotonic approaches with regard to unknown
objects could be used as a starting point.

Moreover, OWL corresponds to a quite expressive DL and the nonmonotonic
features for the autoepistemic and circumscriptive case have only been spelled
out for restricted variants. Corresponding investigations concerning decidability
and complexity issues remain to be done, in particular with respect to reasonable
fragments of autoepistemic or circumscriptive OWL-DL, as this will provide
guidance for achieving scalable system behaviour.

Furthermore, we have seen that the algorithmisation of local closed-world
reasoning for matchmaking with description logics needs to be advanced in order
to allow for implementation and feasibility testing on larger examples. While
for the autoepistemic case there exist reasoning algorithms on paper, for the
circumscriptive case no practical algorithm has been proposed so far. For both
approaches it would be desirable to see them integrated into optimised state-of-
the-art DL reasoning tools, once the remaining fundamental issues have been
addressed and resolved.
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