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ABSTRACT

Like, Eric. M.S.E., Department of Electrical Engineering, Wright State University, 2007.
Non-Cooperative Modulation Recognition Via Exploitation of Cyclic Statistics.

This research proposes and evaluates a feature based modulation classification system de-

signed to discriminate between AM, BFSK, OFDM, DS-CDMA, 4-ASK, 8-ASK, BPSK,

QPSK, 8-PSK, 16- PSK, 16-QAM, and 64-QAM signals without a priori knowledge of

critical signal parameters, including carrier frequency, symbol rate, or phase offset, among

others. The classifier is based on the principles of cyclostationarity and leverages cyclic

statistics to make its classification decision. The classification process is performed in a

hierarchical process in order to exploit the lower variance of lower order cyclic statistics

before making use of the higher order cyclic statistics. The initial classification is based

on the estimated Spectral Coherence Function (SOF) of the received signal, followed by

estimates of the signal’s fourth- through eighth-order Cyclic Cumulants (CC). The perfor-

mance of the classification system is evaluated under fading flat, two-path, and 20-path

transmission channels, and multiantenna combining methods are exploited to increase the

system performance.
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1 Introduction

1.1 Research Motivation

The demand for spectrum usage has seen a considerable increase in recent years. As a

result, novel methods to maximize the use of the available spectrum have been proposed.

One critical area is through the use of cognitive radio [1][2]. Traditionally, wireless de-

vices wishing to access the spectrum were required to use the band licensed to them by

the FCC. As the number of wireless users has increased, there has been a corresponding

decrease in the amount of available spectrum. Cognitive radio seeks to relieve this burden

by determining which areas of the spectrum are in use at a particular time. If a given band

of the spectrum is not currently being used by the licensed user, that band could be used by

another system. To achieve this mere power detection would suffice. However, a more ef-

ficient method to maximize the use of the available spectrum would be to not simply avoid

frequency bands that are in use, but rather to limit the amount of in-band transmission down

to an acceptably low level so as to avoid interfering with the primary user. Since different

modulation schemes are able to tolerate different amounts of interference, the modulation

scheme of the current user will have to be determined. In this case, merely detecting the

presence of the signal will not be sufficient.

Modulation recognition has been a area of ongoing research for over two decades. As

a result, there are numerous methods that have been developed to estimate the modulation
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scheme of an unknown signal. Each method makes a set of assumptions in order to make a

classification, and generally only operates reliably under the limited scenario for which it is

designed. These assumptions range from knowledge of signal parameters, such as carrier

frequency, symbol rate, or phase offset, to knowledge of the transmission channel model.

Therefore, there is an ongoing need for a reliable modulation recognition system that can

operate without the

1.2 Problem Statement

The goal of this research is to develop a non-cooperative modulation recognition system

capable of reliably identifying the modulation scheme of a received signal. The system

should not require knowledge of critical signal parameters, such as carrier frequency, sym-

bol rate, or phase offset, among others.

1.3 Research Approach

Cyclostationary based approaches have been developed for modulation recognition, and

have demonstrated considerable ability to distinguish between different modulation schemes

without knowledge of critical signal parameters. In particular, the Spectral Coherence

Function (SOF) has been shown to produce distinct features for lower level modulation

schemes. The classifier proposed in [3] leveraged the SOF of received signals to classify

BPSK, QPSK, FSK, MSK, and AM signals in AWGN channels at low SNR. However,

the ability of the SOF to classify signals in multipath channels was not assessed, and the

classification set is desired to be expanded to higher-level modulations. Additionally, the

classifier assumed that any cyclic features would occur within the reduced subset of cycle

frequencies for which the SOF is estimated. Thus, in order to ensure that all cyclic fea-
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tures are identified, an prohibitive amount of data must be analyzed, leading to a highly

inefficient classification system.

Higher order cyclic statistics have also been exploited for modulation recognition,

where they have been shown to distinguish between higher order modulation schemes. In

[4], cyclic cumulants (CC) were used to classify M-ASK, M-PSK, and M-QAM signals, of

various orders M in the presence of flat fading channels. However, the classifier assumed

precise knowledge of the symbol rate of the received signal, as well as that the carrier

frequency of the signal had been perfectly removed and the signal centered at baseband.

The research performed in this thesis is focused on leveraging the benefits of both

of the previous classifiers to produce a classification decision on a wide range of signals

without the a priori knowledge of critical signal parameters. The system is designed to

discriminate between designed AM, BFSK, OFDM, DS-CDMA, 4-ASK, 8-ASK, BPSK,

QPSK, 8-PSK, 16- PSK, 16-QAM, and 64-QAM signals. Additionally, the performance of

the classifier in the presence of multipath channels is assessed, and methods to increase the

reliability of the classifier in these channels are investigated.

1.4 Thesis Organization

Chapter 2 introduces the basics of modulation recognition, and describes the general cate-

gories modulation classification schemes, where a feature based (FB) classification system

is chosen for implementation employing cyclic statistics. The theory and background of

cyclostationary statistics is given, where it is presented in the traditionary stochastic prob-

abilistic (SP) framework as well as a fraction of time (FOT) probabilistic framework. The

SOF and CC are presented as critical statistics to be used as features in the final classifier

design are presented, and the impact that multipath channels have on their performance is

presented.
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In Chapter 3, methods to implement the estimation of the feature sets are investigated,

and a suitable estimation process is obtained. The final modulation recognition system

design is presented as a multistage classifier based on the SOF and CC, and its operation

explained. Various methods to improve performance in multipath channels are presented,

and a process is presented to increase the classification reliability.

Chapter 4 provides simulation results and analysis of the classification system under

various channel conditions. The performance of the classifier is compared to the baseline

classifier presented in [3] based on the SOF, as well as to the classifier given in [4] based

on the CC.

Finally Chapter 5 presents a summary of the results, conclusions drawn from the re-

search, and provides recommendations for possible future research.
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2 Background

2.1 Introduction

This chapter presents an overview of the fundamental theory that will be used throughout

the remainder of this thesis. Section2.2covers the various classes of modulation recogni-

tion algorithms that have been used in the past. In Section2.3the theory of cyclostationarity

and how it applies to communication signals is presented, where it is given in the context of

both the traditional stochastic process (SP) probabilistic framework as well as the fraction

of time (FOT) probabilistic framework. In Section2.4, various methods used to estimate

the cyclic spectrum of signals are presented. The necessary generalization of cyclostation-

arity to higher order statistics is given in Section2.5 before the chapter concludes with a

discussion of the effects that multipath channels have on the estimation of cyclic statistics

in in Section2.6.

2.2 Modulation Recognition Algorithms

Modulation recognition has been a subject of considerable research for over two decades.

Classification schemes can generally be divided into one of two broad categories - likeli-

hood based (LB) approaches, which form tests based on the statistics of the received signal,

and feature based (FB) approaches, which attempt to derive reliable estimators based on

5



critical features of the received signal.

2.2.1 Likelihood Based Tests

LB approaches attempt to explicitly model the probability distribution of the received sig-

nals. Depending on the degree of information known about the signals being discriminated,

LB approaches can be further divided into three distinct techniques - average likelihood ra-

tio tests (ALRT), generalized likelihood ratio tests (GLRT), and hybrid likelihood ratio tests

(HLRT). In ALRT based methods, each of the unknown signal and channel parameters are

treated as random variables with known probability density functions (pdf). These pdfs are

used to compute the likelihood of each potential modulation scheme, and the modulation

scheme corresponding to greatest likelihood is selected . Though this method results in the

optimal classifier in the Bayesian sense, optimality can only be claimed when the pdfs are

accurately estimated [5].

In many situations, the appropriate distribution of the signal and channel statistics

are not known, resulting in a classifier that is ill-suited for the current situation. This

problem can be resolved by treating the unknown parameters as deterministic but unknown

variables. In this case, the best performance is obtained by the uniformly most powerful

(UMP) test, when it exists [6]. If a UMP test does not exist, the maximum likelihood

(ML) estimates of the unknown parameters can be computed. These ML estimates can be

used in a likelihood ratio test, which gives the GLRT. This method does not require any

assumptions about the signal or channel parameters, resulting in a classifier structure that

will be applicable to a variety of environments [5].

ALRT based methods suffer from the necessity of having an accurate estimate of the

signal and channel pdfs, and from the computationally intensive requirement of a multidi-

mensional integration. GLRT based methods on the other hand are less computationally

intensive, but maximization over the unknown data symbols can lead to the same value of

6



the likelihood function for nested signal constellations (e.g., BPSK and QPSK), which will

yield incorrect signal classifications. The HLRT attempts to exploit the benefits of each

scheme by modeling the data symbols as random variables, and the remaining signal and

channel statistics as unknown deterministic variables. ML estimates of the various signal

and channel parameters are formed as in the GLRT, while still averaging over the unknown

data symbols as in ALRT. However, as the number of unknown parameters under consider-

ation are increased, the computation required to find their ML estimates can become time

consuming, rendering the algorithm unsuitable to operate in a real-time manner [7].

2.2.2 Feature Based Tests

Rather than attempting to explicitly model the underlying signal and channel pdfs, FB ap-

proaches attempt to extract critical statistics from received signals to make a classification

based on the reduced data set. This can frequently be performed at a fraction of the com-

plexity of LB systems. While FB methods are suboptimal in the Bayesian sense, they

often provide near optimal performance close to that of the LB approaches. Furthermore,

FB algorithms are commonly less sensitive to modeling errors which would significantly

degrade the performance of LB algorithms [7].

In general, there is no well defined method specified to select appropriate features for

classification purposes, resulting in a wide array of feature sets that have been proposed

as suitable indicators of a signal’s modulation scheme. Features that have been used in-

clude statistics derived from the instantaneous amplitude, phase and frequency of received

signals, zero crossing intervals, wavelet transforms, amplitude and phase histograms, and

constellation shapes, as well as many others [7, 8, 9].

However, even though FB methods do not explicitly make use of the pdf of the signal

parameters, many do require a priori knowledge of critical signal parameters, such as the

carrier frequency, carrier phase, symbol rate, or timing offset, among others. Additionally,
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like many LB methods, FB methods frequently assume that the carrier frequency of the

received signal has been removed and that the signal has been sampled at the symbol rate

without timing errors prior to processing. Generally, knowledge of these statistics is not

known a priori, and their necessity may render the classification algorithm ineffective.

Cyclostationary based (CS) based approaches have been investigated as a potential

method for modulation recognition. CS based methods have been shown to be insensi-

tive to unknown signal parameters and to preserve the phase information in the signal, a

claim that cannot be made by methods based on purely stationary statistics. This allows

the signal’s parameters to be estimated from the cyclic statistics directly. In cases when

the classification algorithm has been designed to be insensitive to these parameters, the un-

known parameters can be neglected altogether. Furthermore, the effects due to multipath

channels can be shown to introduce negligible effects to certain cyclic statistics, rendering

them insensitive to non-ideal channel situations [10, 11].

Due to the inherent insensitivity of cyclic statistics to unknown signal parameters, as

well as their robustness to channel effects, CS based methods are investigated as a modu-

lation recognition scheme. The following section provides an overview of the fundamental

theory behind cyclic statistics which will be used to derive a classification system.

2.3 Fundamentals of Cyclostationarity

The theory of cyclostationarity is based on the fact that certain random signals have statis-

tics that vary periodically in time. These signals, known as cyclostationary signals (CS),

are in contrast to stationary signals whose statistics remain constant in time. This process

can be viewed in the stochastic process (SP) probabilistic framework, or in a simplified

fraction of time (FOT) probabilistic framework. The SP framework is the more traditional

method used in engineering analysis. However, for reasons which will be outlined below,
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this framework is not always the most appropriate when dealing with cyclostationary sig-

nals. Additionally, when only one realization of a random signal is available, the need to

abstract to the concept of an ensemble with an associated random process is not always

necessary or even useful. In these instances, it can be more beneficial to employ the con-

cept of the FOT framework, which is based on a single realization of the random signal

[11]. The two frameworks are described in the following two sections, where it is noted

that the two frameworks become equivalent under the assumption of cycloergodicity (CE).

2.3.1 Stochastic Process Probabilistic Framework

In the SP framework, the Nth-order probability distribution of a random signalX(t) is

defined as [12]

FX(t+τ1)···X(t+τN−1)X(t)(ξ1, . . . , ξN−1, ξN)

≡ P{X(t + τ1) ≤ ξ1, . . . ,X(t + τN) ≤ ξN−1,X(t) ≤ ξN}

(2.1)

which can be represented equivalently as [11]

FX(t+τ1)···X(t+τN−1)X(t)(ξ1, . . . , ξN−1, ξN)

≡ E

{
I [ξN −X(t)]

N−1∏
k=1

I [ξk −X(t + τk)]

}
(2.2)

whereI[ξ] is the event indicator or step function

I[ξ] ≡


1, ξ > 0

0, ξ ≤ 0

(2.3)

9



A stochastic processX(t) is said to be Nth-order cyclostationary in the strict sense if

its Nth and lower-order probability distribution is periodic int with some period,T0, such

that

FX(t+τ1+T0)···X(t+τN−1+T0)X(t+T0)(ξ1, . . . , ξN−1, ξN)

= FX(t+τ1)···X(t+τN−1)X(t)(ξ1, . . . , ξN−1, ξN)

∀tε< ∀(τ1, . . . , τN−1)ε<N−1

∀(ξ1, . . . , ξN)ε<N .

(2.4)

The random processX(t) is said to be Nth-order wide sense cyclostationary if its

nth-order/q-conjugate temporal moment functions (TMF)

RX(t, τ )n,q ≡ E{X(∗)n(t)
n−1∏
i=1

X(∗)i(t + τi)} (2.5)

are periodic with some period,T0, such that

RX(t + T0, τ )n,q = RX(t, τ )n,q

∀tε< ∀(τ1, . . . , τn−1)ε<n−1

∀n = 1, . . . , N q = 0, . . . , n

(2.6)

whereτ ≡ [τ1, . . . , τn−1] and(∗)i denotes ones of the q possible conjugations. The nth-

order/q-conjugate TMF ofX(t) will then permit a Fourier Series expansion

10



RX(t, τ )n,q =
∑
{α}

Rα
X(τ )n,qe

j2παt (2.7)

whereα = k/T0, and the Fourier coefficients are calculated from

Rα
X(τ )n,q ≡

1

T0

∫ T0/2

−T0/2

RX(t, τ )n,qe
−j2παtdt (2.8)

whereRα
x (τ )n,q is known as the Nth-order Cyclic Temporal Moment Function (CTMF). In

the case whereRx(t, τ )n,q is composed of multiple, possibly incommensurate periodicities,

the above equation can be reexpressed as

Rα
X(τ )n,q ≡ lim

T→∞

1

T

∫ T/2

−T/2

RX(t, τ )n,qe
−j2παtdt (2.9)

and the sum in (2.7) is over the set of allα for which the CTMF is not identically zero as a

function ofτ . In either case, the set{α} is termed the set of cycle frequencies.

When the TMF is evaluated forn = 2 andq = 1, it is termed the autocorrelation func-

tion (AF) and, in order to preserve symmetry with respect to the lag variables, is redefined

as

RX(t, τ) ≡ E{X(t + τ/2)X∗(t− τ/2)}

=
∑
{α}

Rα
X(τ)ej2παt (2.10)

whereRα
x (τ) is termed the cyclic autocorrelation function (CAF). The Fourier transform

of the CAF is denoted the Spectral Correlation Function (SCF), given by

S α
x (f) =

∫ ∞

−∞
Rα

X(τ)e−j2πfτdτ (2.11)
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The SCF gets its name from the equivalent representation

S α
X(f) = E{X (f + α/2)X ∗(f − α/2)} (2.12)

whereX (f) is the Fourier transform of a sample path ofX(t)

X (f) ≡
∫ ∞

−∞
x(t)e−2πftdt (2.13)

From the above two equations, it can be seen that the SCF is a true measure of the correla-

tion between the spectral components ofX(t) in the stochastic sense.

To obtained a statistic that is independent of signal strength, a normalized version of

the SCF is desired. The Spectral Coherence Function (SOF) is given as:

Cα
X(f) =

S α
X(f)[

S 0
X

(
f +

α

2

)∗
S 0

X

(
f − α

2

)]1/2
(2.14)

where the SOF is seen to be a proper coherence value with a magnitude in the range of

[0, 1].

One significant drawback to applying the SP framework to periodic signals is ob-

served by noting that purely stationary random processes may have periodic sample paths,

resulting in behavior that cannot be predicted from traditional probabilistic analysis. One

common example of this situation is a communication signal with a random phase com-

ponent. This phenomenon can be removed by the assumption that the random process is

cycloergodic (CE). However, this assumption is generally not valid for communication sig-

nals or other situations when the unknown phase of the carrier signal is treated as a random

variable.
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2.3.2 Fraction of Time Probabilistic Framework

In the FOT Probabilistic Framework, the underlying probability distribution is based on a

single time series, without the generalization to the ensemble used in the SP framework.

This is generally beneficial as it removes a level of conceptual complexity and is more

applicable to cases where only one realization of the random signal is obtainable. In this

case, the first-order FOT probability distribution of a persistent time signal is defined as

F 0
x(t)(ξ) ≡ P{x(t) ≤ ξ}

≡ E0 {I [ξ − x(t)]}

(2.15)

whereE0 {·} is the time-average operator defined by

E0 {h(t)} ≡ lim
Z→∞

1

2Z

∫ Z

−Z

h(t + t′)dt′ (2.16)

The above concept of probabilities in this framework therefore correspond to the frac-

tion of time that a signal takes on a certain value, leading to the name FOT Probabilistic

Framework. The Nth-order FOT probability distribution is defined similarly as

F 0
x(t+τ1)···x(t+τN−1)x(t)(ξ1, . . . , ξN−1, ξN)

≡ P{x(t + τ1) ≤ ξ1, . . . , x(t + τN) ≤ ξN−1, x(t) ≤ ξN}

≡ E0
{

I [ξN − x(t)]
∏N−1

k=1 I [ξk − x(t + τk)]
}

(2.17)

.

It can be shown that the Nth-order FOT probability distribution defined in (2.17) is

independent oft and is therefore said to be a stationary probabilistic model [13]. To ac-
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commodate signals whose Nth-order products exhibit periodic components, the FOT Prob-

abilistic Framework is extended into the Cyclic FOT (CFOT) Probabilistic Framework.

Here, the Nth-order CFOT probability distribution of a persistent time signal is defined as

F
{α}
x(t+τ1)···x(t+τN−1)x(t)(ξ1, . . . , ξN−1, ξN)

≡ P{x(t + τ1) ≤ ξ1, . . . , x(t + τN) ≤ ξN−1, x(t) ≤ ξN}

≡ E{α}
{

I [ξN − x(t)]
∏N−1

k=1 I [ξk − x(t + τk)]
}

(2.18)

whereE{α} {·} is referred to as the multiple sine wave extraction operator defined by

E{α} {h(t)} ≡
∑

αε{α}

Eα {h(t)} , (2.19)

Eα {·} is the single sine wave extraction operator

Eα {h(t)} ≡ lim
Z→∞

1

2Z

∫ Z

−Z

h(t + t′)e−j2παt′dt′

≡ E0
{
h(t)e−j2παt

}
ej2παt, (2.20)

and the summation in (2.19) is over the set of allα for which Eα {·} is not identically

zero. The multiple sine wave extraction operator defined in (2.19) is analogous to the tradi-

tional expectation operator in the SP Probabilistic Framework and is used to remove non-

constant/non-periodic components of the signal, which are treated as random fluctuations.

Additionally, the similarity between the final line of (2.18) and (2.2) is apparent.

Similar to the SP Probabilistic Framework, a time signalx(t) in the CFOT Proba-

bilistic Framework is said to be Nth-order cyclostationary in the strict sense if its Nth and

14



lower-order CFOT probability distribution is periodic int with some period,T0, such that

F
{α}
x(t+τ1+T0)···x(t+τN−1+T0)x(t+T0)(ξ1, . . . , ξN−1, ξN)

= F
{α}
x(t+τ1)···x(t+τN−1)x(t)(ξ1, . . . , ξN−1, ξN)

∀tε< ∀(τ1, . . . , τN−1)ε<N−1

∀(ξ1, . . . , ξN)ε<N .

(2.21)

and the time signalx(t) is said to be Nth-order wide sense cyclostationary if its nth-order/q-

conjugate temporal moment functions (TMF)

RX(t, τ )n,q ≡ E{α}{x(∗)n(t)
n−1∏
i=1

x(∗)i(t + τi)} (2.22)

are periodic with some period,T0, such that

RX(t + T0, τ )n,q = RX(t, τ )n,q

∀tε< ∀(τ1, . . . , τn−1)ε<n−1

∀n = 1, . . . , N q = 0, . . . , n.

(2.23)

The nth-order/q-conjugate TMF ofx(t) will then permit a Fourier Series expansion

RX(t, τ )n,q =
∑
{α}

Rα
X(τ )n,qe

j2παt (2.24)

whereα = k/T0 and the Fourier coefficients are calculated from
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Rα
X(τ )n,q ≡

1

T0

∫ T0/2

−T0/2

RX(t, τ )n,qe
−j2παtdt (2.25)

and Rα
x(τ )n,q is known as the Nth-order Cyclic Temporal Moment Function (CTMF).

Those frequencies{α} for which the CTMF is not identically zero are termed the set of

cycle frequencies. For signals whereRx(t, τ )n,q is composed of multiple, possibly incom-

mensurate periodicities, the equation above can be reexpressed as

Rα
X(τ )n,q ≡ lim

T→∞

1

T

∫ T/2

−T/2

RX(t, τ )n,qe
−j2παtdt (2.26)

.

For the special case ofn = 2 andq = 1, the TMF is again termed the autocorrelation

function (AF) and is redefined similarly as in the SP case as

RX(t, τ) ≡ E{α}{x(t + τ/2)x∗(t− τ/2)}

=
∑
{α}

Rα
X(τ)ej2παt (2.27)

whereRα
x(τ) is termed the cyclic autocorrelation function (CAF). The Fourier transform

of the CAF is denoted the Spectral Correlation Function (SCF), given by

Sα
X(f) =

∫ ∞

−∞
Rα

X(τ)e−j2πfτdτ. (2.28)

The interpretation of (2.28) as a spectral correlation arises from the fact that it can be

shown that it is obtainable from [14, 11]
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Sα
X(f) = lim

T→∞
lim

∆t→∞

1

∆t

∫ ∆t/2

−∆t/2

XT

(
t, f +

α

2

)
X∗

T

(
t, f − α

2

)
dt (2.29)

whereXT is the windowed Fourier of x(t):

XT (t, f) =
1√
T

∫ t+T/2

t−T/2

x(u)ej2πfudu (2.30)

Thus, the SCF can be seen to be a measure of the temporal correlation of different

spectral components ofx(t). The SOF is then defined similarly as

Cα
X(f) =

Sα
X(f)[

S0
X

(
f +

α

2

)∗
S0

X

(
f − α

2

)]1/2
(2.31)

where the SOF is again a proper coherence value with a magnitude in the range of[0, 1].

The definitions of the necessary cyclic statistics given in this section are analogous

to those given in Section2.3.1. The primary difference being that statistics in the CFOT

Probabilistic Framework are based on a single sample path and therefore relieve the un-

necessary abstraction to an ensemble with an associated random process. However, when

the assumption of a CE is valid in the SP Probabilistic Framework, the two frameworks

will be equivalent. In this case, the statistics presented in this section can be interpreted as

methods to produce reliable estimates of the SP statistics when only a single sample path

is available. For the two reasons stated above, and due to the fact that in practice only a

single realization of the signal is generally available for analysis, the notation associated

with the CFOT Probabilistic Framework will be followed for the remainder of this thesis

with the underlying assumption that the notation and corresponding concepts from either

framework could be applied.
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2.3.3 Benefits of Cyclic Statistics

Cyclic statistics have several benefits for signal analysis over traditional stationary statis-

tics. One benefit of cyclic statistics is that they contain information about critical signal

parameters for communications signals, such as the carrier frequency and symbol rate.

Communications signals produce cyclic features caused by underlying periodicities in the

signal such as sampling, modulating, scanning, multiplexing, and coding. These features

can be used to identify the modulation scheme of the signal.

Another benefit of cyclic statistics can be observed by evaluating the CTMF at{α} =

{0}. The resulting equation for the CTMF is given by

R0
X(τ) ≡ E{0}{x(t + τ/2)x∗(t− τ/2)} ≡ RX(τ) (2.32)

whereRX(τ) is the traditional autocorrelation of a stationary signal. Additionally, the SCF

of a signal evaluated at{α} = {0} is given by

S0
X(f) =

∫ ∞

−∞
R0

X(τ)e−j2πfτdτ ≡ SX(f) (2.33)

whereSX(f) is the traditional Power Spectral Density (PSD) of a stationary signals. The

traditional AF and PSD then can be considered special cases of the CAF and SCF provided

by cyclostationary analysis, where each is evaluated atα = 0. Cyclostationary statistics

therefore provide a generalization of traditional stationary statistics, while still incorporat-

ing the original content.

When cyclic statistics are computed for purely stationary signals, i.e. those signals

that do not exhibit cyclostationarity, the set of cycle frequencies will be limited solely to

{α} = {0}. In this case, the CAF and SCF are given by
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Rα
X(τ ) =

 RX(τ ) α = 0

0 α 6= 0
(2.34)

Sα
X(f)α(τ ) =

 SX(f) α = 0

0 α 6= 0
. (2.35)

Thus, for stationary signals, the cyclic statistics are identically zero for all{α} 6= {0}.

A primary benefit of cyclic statistics is their ability to separate signals with distinct cy-

cle frequencies. When analyzing a signal composed of the sum of two or more signals with

distinct cycle frequencies, the CAF and the SCF of each signal can be evaluated indepen-

dently without interference due to the other signals at each of the distinct cycle frequencies

[13]. In the case of the SCF, this means that even if the PSD of the signals overlap, the

cyclic spectrum will still be non-overlapping and the distinct features of each signal will be

preserved.

Therefore, in the common case of a signal in the presence of additive stationary noise,

since the noise is stationary it will have no cyclic features other than atα = 0. Therefore,

with an extremely low SNR when the signal is buried in noise, the signal’s PSD will be

completely masked. However each of the signal’s non-zero cyclic features can still be

determined without any interference from the noise, and the signal’s SCF will be unaffected

for α 6= 0.

The ability of the SCF to separate the spectrum of overlapping signals, coupled with

the fact that it more readily provides information about the signal than the PSD, make it an

ideal foundation for modulation recognition.
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2.4 Estimation of Cyclic Statistics

The cyclic statistics presented in Section2.3.2are defined in terms of signals with an in-

finite time duration. In practice, only a finite time length of the signal is available for

analysis. For this reason, estimates of the above statistics must be computed based on the

available data.

There are generally two methods used for cyclic spectral analysis: temporal smooth-

ing methods and frequency smoothing methods. Each method is based on the cyclic peri-

odogram estimate of the SCF [14]

Sα
XT

(t, f) = XT

(
t, f +

α

2

)
X∗

T

(
t, f − α

2

)
(2.36)

whereXT (t, f) is defined as

XT (t, f) =

∫ ∞

−∞
aT (t− u)x(u)e−j2πfudu (2.37)

andaT (t) is a data tapering window of widthT . The temporal resolution of the cyclic

periodogram is equal to the duration over whichXT (t, f) is computed,∆t = T . Similarly,

the frequency resolution is given by the corresponding frequency resolution ofXT (t, f),

∆f ≈ 1/T , resulting in a time frequency resolution product of∆t∆f ≈ 1. In order

to achieve statistical reliability, a substantial amount of temporal or frequency smoothing

must be used, increasing the time resolution product,∆t∆f � 1.

Temporal smoothing methods are based on smoothing (2.36) in time, resulting in the

time smoothed cyclic periodogram estimate of the SCF

Sα
XT

(t, f)∆t =

∫ ∞

−∞
XT

(
u, f +

α

2

)
X∗

T

(
u, f − α

2

)
g∆t(t− u)du (2.38)
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whereg∆t(t) is a data tapering window of width∆t � 1/∆f ≈ T , which becomes the

new time resolution of2.38.

Frequency smoothing methods on the other hand are based on smoothing (2.36) in

frequency, resulting in the frequency smoothed cyclic periodogram estimate of the SCF

Sα
XT

(t, f)∆f =

∫ ∞

−∞
XT

(
t, v +

α

2

)
X∗

T

(
t, v − α

2

)
g∆f (f − v)dv (2.39)

whereg∆f (f) is a data tapering window of width∆f � 1/∆t = 1/T , with ∆f the

resulting frequency resolution of2.39.

In each case, it can be shown that the cycle frequency resolution∆α ≈ 1/∆t, re-

sulting in the equivalent requirement for statistical reliability,∆f � ∆α. Thus, the SCF

estimate must be resolved much finer in cycle frequency than in spectral frequency in order

to achieve a reliable estimate.

It can be shown that as the width of the data tapering windows increase, the estimates

produced by the temporal and the spectral smoothing methods approach the ideal SCF

Sα
X(f) = lim

∆t→∞
lim

T→∞
Sα

X(t, f)∆t

= lim
∆t→∞

lim
T→∞

Sα
X(t, f)∆f (2.40)

While both methods give similar approximations to the ideal SCF, each is better suited

for different situations. Temporal smoothing methods are generally more computationally

efficient for general cyclic spectral analysis. Frequency smoothing methods on the other

hand are more efficient for producing high-accuracy estimates of the SCF for a relatively

small set of known cycle frequencies [15, 16, 14]. This result will be explored further in

Section3.2.

21



2.5 Higher Order Cyclic Statistics

The methods outlined in the previous section can be used to efficiently estimate the SCF of

received signals. However, these methods quickly become computationally infeasible when

applied to estimating higher order cyclic polyspectrum. For this reason, the computation

and analysis of higher order cyclic features is generally limited to the time domain. The

resulting feature of choice for HOCS signals is based on the temporal cumulant (TC) of the

received signalx(t), given as

Cx(t, τ )n,q = Cum{x(∗)1(t + τ1) . . . x(∗)n−1(t + τn−1)x
(∗)n(t)}

=
∑

PZ={Pn}

(−1)Z−1(Z − 1)!
Z∏

z=1

Rx(t, τ z)nz ,qz (2.41)

= Rx(t, τ )n,q −
∑

PZ={Pn}

[
Z∏

z=1

Cx(t, τ z)nz ,qz

]

where(∗)i denotes ones of q possible conjugations,PZ is a set ofZ distinct parti-

tions{p1, . . . , pZ} of {1, 2, . . . , n}, {Pn} is the set of all possible setsPZ , andnz andqz

correspond to the number of elements and the number of conjugated terms in the subset

pz, respectively. As shown in (2.41), when computing the TC the effect of lower order

moments are removed, leaving the only remaining impact due to the current order. This

process isolates the cyclic features present at an order n from those features that are merely

composed of products of lower order features. As a result the signal’s HOCS features can

be investigated independently at each order.

Like the TMF, the TC is also a periodic function for cyclostationary signals with

Fourier components given by

Cα
x (τ )n,q = lim

T→∞
1/T

∫ T/2

−T/2

Cx(t, τ )n,qe
−j2παtdt (2.42)
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Cx(t, τ )n,q =
∑
{α}

Cα
x (τ )n,qe

j2παt (2.43)

whereCα
x (τ ) is termed the cyclic cumulant (CC) ofx(t), and the sum in (2.43) is over the

set of allα for which the CC is not identically zero as a function ofτ , and{α} is again

termed the set of cycle frequencies.

As in the case of the CTMF and the SCF, when the CC is evaluated atα = 0, it

reduces to the traditional stationary cumulant. Thus the stationary cumulant can be viewed

as a special case of the CC evaluated atα = 0. As a result, when a purely stationary signal

is considered, its CC is given by

Cα
x (τ )n,q =

 C0
x(τ )n,q, α = 0

0, α 6= 0
(2.44)

One benefit of using cumulants for the analysis HOCS signals rather than moments is

that cumulants can be shown to obey the following semi-linearity property:

Cy(t, τ )n,q =
∑

i

Cxi
(t, τ )n,q (2.45)

where

y(t) ≡
∑

i

xi(t) (2.46)

Thus the TC of a sum of signals is equal to the sum of the individual TCs of each

signal. As a result, unlike higher order CTMFs, the CC preserves the separability of sig-

nals similarly to that observed in the SCF and CAF. When analyzing the CC of a signal

composed of two or more signals that overlap in time and frequency, but which have higher

order features at distinct cycle frequencies, the CC of each signal can be evaluated without

interference due to the other signals.
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Another benefit of using cumulants over higher order moments is that the higher order

CC of gaussian random process is identically zero for all orders greater than two. The

higher order CC of a signal received in the presence of noise is therefore identical to the

CC of the signal without the noise at all cycle frequencies, regardless of the SNR.

2.6 Multipath Channel Affects

In practice wireless communication signals will be subject to multipath propagation, it is

therefore useful to asses the impact these channels will have on the above statistics. Taking

this into consideration, the CTMF of a signalx(t) subject to multipath effects is given as

[11]

Rα
Y (τ )n,q =

∫ ∞

−∞
· · ·

∫ ∞

−∞

[
n∏

j=1

h(∗)j(λj)

]
Rα

X(τ − λ)n,qdλ, λ ≡ [λ1, · · · , λn] (2.47)

.

y(t) = x(t)⊗ h(t) (2.48)

whereh(t) is the unknown channel response, andH(f) is the Fourier Transform ofh(t).

In the above equations, the CAF of the original signal is smoothed by the channel response

in ann-fold convolution. This effect will in general severely distort the original CAF.

For the case ofn = 2 andq = 1, the received CAF then becomes

Rα
Y (τ ) =

∫ ∞

−∞

∫ ∞

−∞
h(λ1)h

∗(λ2)R
α
X(τ − λ1 + λ2)dλ1dλ2 (2.49)

resulting in a received SCF of
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Sα
Y (f) = H

(
f +

α

2

)
H∗

(
f − α

2

)
Sα

x (f) (2.50)

The resulting SCF of the received signal may also be significantly distorted. However,

when forming the SOF, by substituting (2.50) into (2.14) it is evident that the channel

effects are removed, and the resulting SOF is equal to that of the original undistorted signal

[11]. As a result, the SOF of the original signal is completely preserved in the presence of

multipath channels, so long as no frequency of the signal of interest is completely nullified

by the channel.

The CC of a signal undergoing multipath distortion is given as [11]

Cα
Y (τ )n,q =

∫ ∞

−∞

[
n∏

j=1

h(∗)j(λj)

]
Cα

X(τ − λ)n,qdλ (2.51)

.

Without a normalized statistic for HOCS as the SOF, the CC is expected to experience

severe distortion. It can be shown that when a signal is subject to multipath, its higher order

cumulants have the effect of appearing more Gaussian like [17]. As a result, as the multi-

path becomes more severe, the magnitude of higher order CCs of the signal will decrease,

and the estimation of the signal’s higher order features will be negatively impacted.
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2.7 Summary

This chapter presented Likelihood Based (LB) classifiers and Feature Based (FB) classi-

fiers as the two general approaches to modulation recognition in Section2.2, where each

was introduced and key aspects was discussed. The underlying theory of cyclostationarity

was introduced in Section2.3 in both a stochastic process (SP) probabilistic framework

as well as a fraction of time (FOT) probabilistic framework, where the benefits of using

cyclic statistics were presented. The two basic methods for estimating second order cyclic

statistics were introduced in Section2.4, and the essential features for higher order cyclic

statistics were given in Section2.5. The chapter concluded with a discussion of the effects

multipath channels have on the estimation of the above cyclic statistics.
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3 Classifier Design

3.1 Introduction

This chapter presents the outline for a multistage modulation recognition system designed

to discriminate between AM, BFSK, OFDM, DS-CDMA, 4-ASK, 8-ASK, BPSK, QPSK,

8-PSK, 16-PSK, 16-QAM, and 64-QAM modulation types. The system described is a

feature based (FB) modulation recognition system utilizing the cyclic statistics defined in

the previous chapter. It is implemented in a hierarchical approach to classify the signals

using the smallest amount of required data possible, while simultaneously maximizing the

reliability of the system. The proposed modulation classification system is a combination

and extension of two current algorithms, modified to for efficiency and reliability.

In Section3.2, various methods for estimating the spectral correlation function (SCF)

of a signal are outlined, and a combination of estimation methods is chosen for implemen-

tation. Section3.3outlines the method for estimating higher order cyclic cumulants (CC),

and a process designed to determine the carrier frequency and symbol rate for digital sig-

nals is presented. In Section3.4 the final classifier structure is presented, and its sequence

of operations defined. The chapter concludes by addressing methods to compensate for

adverse affects due to multipath channels in Section3.5.
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3.2 Cyclic Spectral Estimation

As outlined in Section2.4, the two main methods used for cyclic spectral analysis are based

on temporal smoothing or frequency smoothing. While each method will produce similar

estimates of the SCF, each is better suited for different applications. Temporal smoothing

methods can be more computationally efficient for cyclic spectral analysis over the entire

bi-frequency plane. Frequency smoothing methods on the other hand are more efficient

for producing high-accuracy estimates of the SCF for a relatively small set of known cycle

frequencies [18, 19, 20]. The methods required to produce each estimate are given in the

following sections.

3.2.1 Temporal Smoothing Methods

As stated in Section2.4, temporal smoothing methods for estimating the SCF are based on

the time smoothed cyclic periodogram, given by (2.38). When computed digitally, the time

smoothed cyclic periodogram can be expressed as

Sα0
XT

(n, f0)∆t =

N/2−1∑
r=−N/2

XT (r, f1)X
∗
T (r, f2)g∆t(n− r) (3.52)

XT (n, fk) =

N ′/2−1∑
r=−N ′/2

aT (r)x(n− r)e−j2πfk(n−r)Ts (3.53)

whereTs is the sampling rate,fk ∈ 1/T · {−N ′/2, . . . , N ′/2 − 1}, α0 ≡ f1 − f2, f0 ≡

(f1 + f2)/2, andN ′ andN are assumed to be even withN > N ′. The time and frequency

resolutions of the above estimate are given by∆t = NTs and∆f = 1/T = 1/(N ′Ts),

respectively, resulting in a time frequency resolution product of∆t∆f = N/N ′.

The above two equations can be computed efficiently on a digital device using a fast
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Fourier transform (FFT) followed by a digital correlator. A schematic of the process used

to estimate the SCF is shown in Figure3.1.

To achieve statistical reliability,∆t∆f � 1 or equivalentlyN � N ′, implying that

XT (n, f) must be computed and correlated over many data segments each of lengthN ′ to

produce the SCF image. However, since∆α ≈ 1/∆t = 1/T , the resulting cycle frequency

resolution decreases below that provided by the FFTs used to compute (3.53). As a result,

cyclic features of interest may occur at cycle frequencies other than those estimated in Fig

3.1, and will thus not be detected by the algorithm. To demonstrated this, the coverage

diagram of the estimates produced by temporal smoothing methods is shown in Figure

3.2 with the resulting time and frequency resolution of each estimate given in Figure3.3

[15, 18].

One solution to the above problem is to zero pad the signal processed by the FFT in

(3.53) from a length ofN ′ out to a length equal to the total number of samplesN . While

this will ensure all possible cycle frequencies are detected, it will require an excessive

amount of additional computational burden for the classification system.

Figure 3.1: Time Smoothed Cyclic Periodogram Implementation

Another solution to the above problem is achieved by employing a variation of (3.52)

known as the Strip Spectrum Correlation Algorithm (SSCA). The SSCA estimate of the
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Figure 3.2: Coverage Diagram for the Time Smoothed Cyclic Periodogram in the Bi-
frequency Plane. Estimates are only produced for features contained in a narrow band
in the center of each diamond
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Figure 3.3: Time Smoothed Cyclic Periodogram SCF Resolution
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SCF is given by [16]

Sα0
XT

(n, f0)∆t =

N/2−1∑
r=−N/2

XT (r, fk)x
∗(r)g∆t(n− r)e−j2πrq/N (3.54)

whereα0 = fk + q∆α andf0 = fk/2− q∆α/2. Equation (3.54) is the same form as (3.52)

with the second FFT estimateX∗
T (r, f) there replaced withx∗(r)e−j2πrq/N .

The implementation of the SSCA is shown in Figure3.4below [18].

Figure 3.4: Strip Spectrum Correlation Algorithm Implementation

It can be shown that the SSCA produces strips of point estimates which lie along the

line α = 2fk − 2f0 in the bi-frequency plane with temporal resolution∆t = N/fs, cycle

frequency resolution∆α ≈ 1/∆t = fs/N , and frequency resolution∆f = 1/T = fs/N
′.

For statistical reliability,∆t∆f � 1 again impliesN � N ′. A representative coverage

diagram produced by each strip of the SSCA is shown in Figure3.5and the resulting time

and frequency resolution of an estimate produced by a strip is shown in Figure3.6[15, 18].

The SSCA implementation has been shown to produce highly efficient estimates of

the SCF over the entire bi-frequency plane. However, the channelization of the signal per-

formed by the initial FFT provides poor frequency resolution for the estimates. As a result,

the SSCA is highly efficient at estimating the SCF over the entire region of support, but

does not produce estimates with sufficiently fine precision in the frequency domain for
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Figure 3.5: Coverage Diagram of the Strip Spectrum Correlation Algorithm in the Bi-
frequency Plane withN ′ = 16

33



Figure 3.6: SCF Estimate Resolution of the Strip Spectrum Correlation Algorithm. Esti-
mates are produced along diagonal strips in the bi-frequency plane
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most applications. The SSCA can be used to estimate the cycle frequencies of interest,

but another method is needed to obtain high accuracy estimates of the SCF. As will be dis-

cussed in the following section, frequency smoothing methods have been shown to produce

estimates of the SCF with much finer frequency resolution than that provided by the SSCA,

while still remaining computationally efficient when computed over a limited set of cycle

frequencies [18].

3.2.2 Frequency Smoothing Methods

Frequency smoothing methods for estimating the SCF are based on the frequency smoothed

cyclic periodogram, given by (2.39). When computed digitally, the frequency smoothed

cyclic periodogram can be expressed as

Sα0
XT

(n, f0)∆f =

N ′/2−1∑
r=−N ′/2

XT (n, f1 + r/T )X∗
T (n, f2 + r/T )a∆f (r) (3.55)

XT (n, fk) =

N/2−1∑
r=−N/2

gT (r)x(n− r)e−j2πfk(n−r)Ts (3.56)

whereTs is the sampling rate,fk ∈ 1/T · {−N/2, . . . , N/2 − 1}, α0 ≡ f1 − f2, f0 ≡

(f1 + f2)/2, andN ′ andN are assumed to be even withN > N ′. The time and frequency

resolutions of the above estimate are given by∆t = T = NTs and ∆f = N ′/T =

N ′/(NTs), respectively, resulting in a time frequency resolution product of∆t∆f = N ′.

The above two equations can be computed efficiently by performing an FFT over

the entire input signal, followed by a cross spectral correlation of the resulting estimated

frequency components. A schematic of the process used to estimate the SCF is shown in

Figure3.7.
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To achieve statistical reliability,∆t∆f � 1 impliesN ′ � 1. The amount of spectral

smoothing used becomes a design parameter that is subject to a trade-off between statistical

reliability and spectral resolution. To achieve a statistically reliable estimate of the SCF, a

large amount of spectral smoothing is desired. However, in order to resolve fine spectral

features in the observed signal, the amount of spectral smoothing should be minimized.

Therefore, the amount of spectral smoothing implemented should be chosen to achieve

the largest amount of smoothing possible while still maintaining the ability to resolve the

critical features of the signal being processed.

For∆t∆f � 1 the coverage of the frequency smoothed cyclic periodogram has char-

acteristics identical to that of the time smoothed cyclic periodogram given by Figure3.3.

However, now the SCF can be estimated at any value ofα0 = {0,±fs/N,±2fs/N, . . . ,±fs(1−

1/N)}, which covers the entire bi-frequency plane, as can be seen when considering that

the cycle frequency resolution of each estimate is∆α ≈ 1/∆t = 1/(NTs) = fs/N . To

estimate the SCF over the entire region of support, the spectral correlation must be com-

pleted over all2N − 1 of these values ofα0. This leads to a computationally intensive

estimation procedure. However, if the cycle frequencies of interest have been identified,

a reliable estimate of the SCF can be obtained via frequency smoothing at a significantly

reduced level of complexity.

Figure 3.7: Freq Smoothed Cyclic Periodogram Implementation
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3.2.3 Spectral Estimation Process

In [3], the SOF of received signals was shown to produce a highly reliable feature for

modulation classification of received signals. However, the method described is based on

the temporal smoothing method of Fig3.1. As mentioned above, this method is highly

inefficient, and is only able to locate features present at a limited set of cycle frequencies.

If a signal has a feature located at a cycle frequency other than the limited set estimated,

the feature will pass unnoticed.

In view of the results of the previous two sections, the spectral estimation procedure

is implemented in a two stage process. In the first stage, the SSCA is implemented in order

to estimate the cycle frequencies that contain features for the signal being analyzed. This is

done by forming an estimate of the SOF from the SCF estimate, and choosing the N cycle

frequencies with the largest features, where N is a user selectable value. After this set of

cycle frequencies has been identified, the Frequency Smoothing SCF estimation method

is used to produce a high accuracy estimate of the reduced set of cycle frequencies. This

estimate of the SCF is then used to compute a high accuracy estimate of the SOF. For each

stage, the estimate of the SOF is given by

Cα0
X (f0) =

Sα0
XT

(n, f0)∆[(
S0

XT
(n, f1)∆

)∗ (
S0

XT
(n, f2)∆

)]1/2
(3.57)

whereSα0
XT

(n, f0)∆ is the SCF estimate produced in each stage,f0 = (f1 + f2)/2, and

α0 = f1 − f2 is the set of cycle frequencies for which the SCF is estimated. To account

for the unknown phase of the SOF, the magnitude ofCα0
X (f0) is computed and used for

classification. Example SOF estimates for several common modulation schemes are shown

in Figures3.8through3.12.

Once the SOF images are obtained, the image must be processed by the classifier and

a classification decision made. However, the SOF feature produced is a three-dimensional
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Figure 3.8: SOF of a BPSK signal in an AWGN Channel at 5 dB SNR, with1/Ts = Fs/10,
Fc = .25Fs, #samples = 4092

Figure 3.9: SOF of a QPSK signal in an AWGN Channel at 5 dB SNR, with1/Ts =
Fs/10, Fc = .25Fs, #samples = 4092
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Figure 3.10: SOF of a BFSK signal in an AWGN Channel at 5 dB SNR, with1/Ts =
Fs/10, Fc = .25Fs, #samples = 4092

Figure 3.11: SOF of a 4-ASK signal in an AWGN Channel at 5 dB SNR, with1/Ts =
Fs/10, Fc = .25Fs, #samples = 4092

39



Figure 3.12: SOF of a 8-PSK signal in an AWGN Channel at 5 dB SNR, with1/Ts =
Fs/10, Fc = .25Fs, #samples = 4092

image, and still presents an unreasonable amount of data for a classifier to operate on in

real-time. Therefore, the data set must be further reduced to provide a more computation-

ally manageable feature for processing. In [3] the authors proposed using merely the cycle

frequency profile of the SOF as a feature. This reduced feature was able to classify mod-

ulation schemes with a moderately high degree of reliability. However, with a minimal

increase in computational complexity, both the frequency profile as well as the cycle fre-

quency profile can be used, creating a pseudo three dimensional image of the SOF which

performs at a significantly higher degree of reliability for classification. The resulting fea-

tures used for classification are then defined as the cycle frequency profile:

−→α = maxf [C
α
X ] (3.58)

and the spectral frequency profile

−→
f = maxα[Cα

X ] (3.59)

These two feature vectors can then be processed to classify the modulation scheme of
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an unknown signal.

The resulting SOF estimation processes is shown in Figure3.13.

Figure 3.13: Multistage SOF Estimation Process

3.3 Higher Order Cyclic Features

The SOF produces highly distinct images for different classes modulation schemes. How-

ever, there are some modulation schemes that produce identical SOF images. Therefore,

while the SOF is able to reliably classify many of the more fundamental classes of signals,

it will not be able to distinguish between certain sets of digital schemes, or between dif-

ferent orders of a single modulation scheme. In particular, BPSK signals and ASK signals

produce identical SOF images. Similarly, the SOF images of QAM signals are identical to

those of higher order PSK signals [10]. As an example, compare the estimated SOF of the

BPSK signal in Figure3.8with that of the 4-ASK signal shown in Figure3.11, and of the

QPSK signal in Figure3.9with that of the 8-PSK signal shown in Figure3.12.

3.3.1 Cyclic Cumulant Feature Development

To discriminate between signals for which the SOF is unable higher order cyclic statistics

(HOCS) may be employed. As outlined in Section2.5, the cyclic cumulant (CC) is a

higher order statistic capable of discerning cyclic features independently for various orders.

Assuming that any analog or FSK signals have been properly identified by their SOF, the
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remaining digital signals received by the classifier can be modeled as

x(t) = <{x̃(t)} (3.60)

x̃(t) = ej2πfctejφ

∞∑
−∞

skp(t− kTD − t0) + ñ(t) (3.61)

wherex(t) is the received signal,̃x(t) is the analytic signal ofx(t), fc is the carrier fre-

quency,φ is the carrier phase offset,p(t) is the pulse shape,TD is the symbol period,t0

is the signal time offset,̃n(t) is additive Gaussian noise, andsk is thekth digital symbol

transmitted at timet ∈ (kTD − TD/2, kTD + TD/2). Here, the symbolssk are assumed to

be zero-mean, identically distributed random variables.

By substituting (3.61) into (2.41) and (2.42), it can be shown that the resulting value

of the CC is given by [4]:

Cα
x (τ )n,q = Cs ,n,qT

−1
D e−j2πβt0ej(n−2q)φe

j2πfc
∑n−1

u=1
(−)uτu

×
∫ ∞

−∞
p(∗)n(t)

∏u=n−1

u=1
p(∗)u(t + τu)e

−j2πβtdt

α = β + (n− 2q)fc, β = k/TD

(3.62)

whereα is the cycle frequency being estimated,β is the cycle frequency of the equivalent

baseband signal contributing to the estimate, the possible minus sign(−)u comes from one

of the q conjugations, andCs ,n,q is the nth-order/q-conjugate cumulant of the stationary

discrete data sequence.

When computed digitally, (3.62) above can be expressed as
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Cα0
x (τm)n,q = Cs ,n,q ρe−j2πβt0ej(n−2q)φe

j2πfc
∑n−1

u=1
(−)uτm,u

×
∑∞

r=−∞
p(∗)n(r)

∏u=n−1

u=1
p(∗)u(r + τm,u)e

−j2πβrTs

α0 = β + (n− 2q)fc, β = k/TD, ρ ≡ Ts/TD

(3.63)

whereτm is now discrete valued.

Thus, the resulting value of the CC of the received signal is directly proportional

to Cs ,n,q. The value ofCs ,n,q is well-known for common modulation schemes, and is

given in Table3.1 below [4]. By leveraging knowledge of the distinct values ofCs ,n,q for

different modulation schemes, the correct scheme of an unknown signal can be accurately

determined from the CC of the signal.

Since the carrier frequency, phase, and signal time offset are all unknown a priori,

their effect much be removed from the above statistic before it can be processed for clas-

sification. Since these terms only affect the phase of the above statistic, the magnitude of

(3.62) can be taken to remove their effect. The resulting feature is given as

Γx(α0, τm)n,q =
∣∣∣Cs ,n,q ρ×

∑∞

r=−∞
p(∗)n(r)

∏u=n−1

u=1
p(∗)u(r + τm,u)e

−j2πβrTs

∣∣∣
α0 = β + (n− 2q)fc, β = k/TD, ρ ≡ Ts/TD

(3.64)

3.3.2 Cyclic Cumulant Estimation Process

Assuming a raised cosine pulse shape, the maximum of the resulting functionΓx(α0, τm)n,q

has been shown to occur atτm = ~0n, where~0n is an n-dimensional zero vector. Further-
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Cs ,n,q 4-ASK 8-ASK BPSK Q-PSK
Cs ,2,0 1 1 1 0
Cs ,2,1 1 1 1 1
Cs ,4,0 -1.36 -1.24 -2 1
Cs ,4,1 -1.36 -1.24 -2 0
Cs ,4,2 -1.36 -1.24 -2 -1
Cs ,6,0 8.32 7.19 16 0
Cs ,6,1 8.32 7.19 16 -4
Cs ,6,2 8.32 7.19 16 0
Cs ,6,3 8.32 7.19 16 4
Cs ,8,0 -111.85 -92.02 -272 -34
Cs ,8,1 -111.85 -92.02 -272 0
Cs ,8,2 -111.85 -92.02 -272 34
Cs ,8,3 -111.85 -92.02 -272 0
Cs ,8,4 -111.85 -92.02 -272 -34

Cs ,n,q 8-PSK 16-PSK 16-QAM 64-QAM
Cs ,2,0 0 0 0 0
Cs ,2,1 1 1 1 1
Cs ,4,0 0 0 -0.68 -0.62
Cs ,4,1 0 0 0 0
Cs ,4,2 -1 -1 -0.68 -0.62
Cs ,6,0 0 0 0 0
Cs ,6,1 0 0 2.08 1.80
Cs ,6,2 0 0 0 0
Cs ,6,3 4 4 2.08 1.80
Cs ,8,0 1 0 -13.98 -11.50
Cs ,8,1 0 0 0 0
Cs ,8,2 0 0 -13.98 -11.50
Cs ,8,3 0 0 0 0
Cs ,8,4 -33 -33 -13.98 -11.50

Table 3.1: Theoretical Stationary Cumulants[4]
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more, atτm = ~0n, the function decreases with increasingk, indicating an optimal value of

k to be 1 [19]. Γx(α, τ )n,q should then be evaluated atα0 = 1/TD + (n− 2q)fc.

The CC of unknown signals have been used to reliably classify the modulation scheme

of several signals in [4]. However, both the carrier frequencyfc and symbol rate1/TD were

assumed to be precisely known a priori. Additionally the carrier frequency is assumed to

have been perfectly removed prior to processing. In general, these values are not known a

priori by a classifier, and a robust classification system should be able to perform without

prior knowledge of these values. However, the desired value ofα0 used to evaluate the CC

depends on bothfc and1/TD. Therefore, the estimation of these two values will need to

be performed during the classification process.

The value ofα0 can be derived by noting that cyclic features will only occur at inter-

vals of1/TD. For a raised cosine pulse, the magnitude ofΓx(α0, τm)n,q obtains its largest

value atk = 0, corresponding to a cycle frequency ofα0 = (n − 2q)fc. The next largest

peak occurs atk = 1, which is the desired cycle frequency. To estimate the desired value

of α0, all that is needed is to search for the cycle frequency corresponding to the largest

cyclic feature, and evaluate the CC at an offset of1/TD from this location.

It has been shown that for a given number of signal samples available for classification,

CCs produce less variances in their lower order estimates than for higher order estimates

[19]. Therefore the lowest order CC capable of estimating1/TD should be used to achieve

a more reliable estimate. The second-order/one-conjugate CC is therefore selected to es-

timate1/TD, as all of the modulation schemes being considered will contain a feature at

this cycle frequency. Using the value ofα0 = 1/TD computed from the second-order CC,

paired with the estimate ofα0 = (n− 2q)fc obtained for each CC, the computation of the

value ofα0 = 1/TD + (n− 2q)fc is straightforward.

The resulting values of the different order/conjugate pairs of the CCs can now be used

to classify the signal further to discriminate between modulation schemes for which the
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SOF was unable to differentiate. By referring to Table3.1, the specific modulation type as

well as its order can be determined from the expected values ofCs ,n,q.

The classifier presented in [4] produced classification decision based on eighth-order

CCs of the received signal. Given that the variance of the CC estimates increase with

increasing order [19], a more reliable classification can be made by using the lower order

CCs in the classification process. By implementing a hierarchical scheme, lower order CCs

can perform an initial classification, followed by progressively higher order CCs to further

refine the classification decision. In this way a more reliable estimate can be obtained than

by using eighth-order CCs alone. Furthermore, in poor channel conditions, a hierarchical

scheme is expected to be better able to distinguish between modulation families than a

scheme based purely on a single higher order CC, due to the lower variance in the CCs.

3.3.3 Identification of OFDM Signals

As discussed above, the SOF cannot be leveraged to distinguish between signals with iden-

tical second order cyclostationary statistics (SOCS). The subcarriers in an OFDM system

can be modeled as independent (though still phase coherent) modulated signals. As a re-

sult, the SCF of an OFDM signal will be the sum of the SCF of the individual subcarrier

signals. However, because the spectrum of the individual subcarriers overlap, the value

of the SOF will be reduced compared to if the signals did not overlap in frequency. In

the presence of low SNR and a limited number of available samples for classification, the

difference between the estimated SOF of OFDM signals and that of single carrier QAM

and MPSK signals (M > 2) becomes negligible. Therefore, assuming independent data is

transmitted on each subcarrier, OFDM signals cannot be reliably classified based on their

estimated SOF.

One method to distinguish OFDM signals from the single carrier signals in question

can be obtained by considering the fact that OFDM signals are composed of multiple time
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varying signals. Assuming that the OFDM signal is composed of a large number of subcar-

riers modulated with independent data, the Central Limit Theorem states that the OFDM

signal can be approximated as a Gaussian random signal [20]. Through the use of a simple

normality test, the OFDM signals can therefore be reliably identified. Since Gaussian sig-

nals do not exhibit features for cumulants other than for their 2nd-order/1-conjugate CC,

the CC features derived above to distinguish between the HOCS signals can also be used

to classify an OFDM signal.

3.4 Classifier Design

The proposed classifier is designed to classify AM, BFSK, OFDM, DS-CDMA, 4-ASK,

8-ASK, BPSK, QPSK, 8-PSK, 16-PSK, 16-QAM, and 64-QAM modulation types. It is

designed in a hierarchical approach to classify the signals using the smallest amount of

required data possible, while simultaneously maximizing the reliability of the system. At

each stage in the system, the signal’s modulation scheme is either classified or grouped

with similar schemes narrowed down into a smaller subset. The system is designed to

require no knowledge of the received signal’s carrier frequency, phase shift, or symbol rate,

and only assumes the signal’s presence has been identified, and that it is located within the

bandwidth of interest.

The first stage of the classifier computes the SOF of the signal, and compresses the

data into the feature vector composed of the concatenation of−→α and
−→
f . A neural net-

work is designed to classify the SOF feature vector. Neural networks were chosen due to

their relative ease of setup and use, as well as their ability to generalize to any carrier fre-

quency or symbol rate. The system consists of five independent linear feed forward neural

networks, each trained to classify a signal as either AM, BFSK, DS-CDMA, a linear mod-

ulation scheme with a real-valued constellation (BPSK, 4-ASK, 8-ASK), or a linear mod-

ulation scheme with a complex-valued constellation (OFDM, 8-PSK, 16-PSK, 16-QAM,
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64-QAM). Each network has four neurons in its hidden layer and one neuron in its output

layer, each layer with a hyperbolic tangent sigmoid transfer function. The inputs to each

network are the concatenated profile vectors. A system diagram for this first stage is given

in Figure3.14.

Figure 3.14: SOF-Based Classification System Diagram

The BPSK and ASK signals demonstrate identical SOF images, and are not distin-

guishable based on that metric alone. Similarly, the PSK and QAM signals have identical

spectral components. As mentioned in the previous section, the OFDM signal is com-

posed of potentially independently varying signals on each subchannel, which may or may

not demonstrate SOCS. However, due to the overlapping nature of the subchannels in an

OFDM system, the resulting SOF is decreased, resulting in a SOF image that resembles

those of QAM and PSK signals. Additionally, the DS-CDMA scheme can be thought to

look like a BPSK signal. However, due to the underlying periodicities incurred by both

its symbol rate as well as its spreading code, it produces features not found in BPSK or

QPSK signals. Thus it can be reliably classified by its SOF image without knowledge of

48



its spreading code.

After the initial classification stage described above, the HOCS based processing is

also implemented in a hierarchical approach to maximize the ability to accurately determine

the subclass of a signal before further narrowing the list of candidate modulations. This is

a critical step since the variance of the CC estimates increase with increasing order [19].

Therefore, an attempt is made to classify a signal using the lowest order CC possible before

proceeding to higher order CCs.

In each stage of the HOCS based classification, the feature vector used for classifica-

tion is composed of the appropriate CCs estimated from the received signal:

Ψ̂ = [Γx(1/T,~0n)n,q1 , . . . , Γx(1/T,~0n)n,qn ] (3.65)

wheren refers to the appropriate order for the current stage. This vector is then compared

to the expected vector obtained for each modulation type, defined similarly as:

Ψ(i) = [Γ(i)(1/T,~0n)n,q1 , . . . , Γ
(i)(1/T,~0n)n,qn ] (3.66)

wherei corresponds to one of theM possible modulation schemes being considered by the

current stage. The class corresponding to the feature vector with the minimum Euclidean

distance from the estimated vector is selected. The processing is then handed off to the

next stage until the final modulation scheme as been determined.

The network diagram of the system is shown in Figure3.15. If the SOF network

determined the signal to have a real-valued modulation scheme (BPSK, 4-ASK, 8-ASK),

then it is handed off to the final classification stage using eighth order CCs. Otherwise,

the fourth order CCs are used to classify the signal as being an OFDM signal or as having

either a circular constellation (8-PSK, 16-PSK) or a square constellation (QPSK, 16-QAM,
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62-QAM). For each signal class, the final stage of the classifier forms the feature vector

Ψ̂ from the five eighth-order CCs of the received signal, except for OFDM signals which

were already identified using fourth-order CCs.

Figure 3.15: Modulation Classification System Diagram

3.5 Multipath Channel Compensation

In the presence of multipath fading channels, the received signal can be severely distorted.

Several methods exist to exploit spacial diversity through the use of multiple receiver anten-

nas. By assuming that the channel fades independently on each antenna, the signal received
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on each can be combined in various ways to improve performance. The general equation

for the received analytic signal undergoing multipath propagation is given by:

ỹ(t) =
P∑

p=1

κpe
jθp x̃(t− tp) + ñ(t) (3.67)

whereκpe
θp is the channel response on pathp, tp is the delay of the pth path, andP is the

total number of paths received by the classifier.

This can be separated into two general situations. In the first situation, the channel is

varying sufficiently slowly so that it can be assumed to be static over the block of data be

analyzed

If the signal is assumed to only be experiencing flat fading, the simplest combining

method is to employ a selection combiner (SC). In [4], the effectiveness of an SC-based

system was evaluated to combat the effects of flat fading for modulation recognition. By

estimating the received power on each antenna, the signal on the antenna with the highest

observed power can be selected for classification, while the others are discarded. When

assuming that the noise on each antenna have identical powers, this choice will correspond

to the signal with the largest SNR, which leads to an extremely simple implementation.

However, in the case of flat fading, a maximum ratio combiner (MRC) can also be

implemented. In this case, the signal received from each antenna is weighted by its SNR

before being summed with the signals from the other antennas. In practice, the value of the

SNR can be estimated simply by using one of several methods [21] [22] [23]. However, for

the signals to combine coherently, the unknown phase on each channel must be compen-

sated for before adding them together. This can be performed by computing the correlation

between signals from two channels, given by:

51



E{ỹ1(t)ỹ
∗
2(t)}

= E{(κ1e
jθ1 x̃(t) + ñ1(t))(κ

∗
2e
−jθ2x̃∗(t) + ñ∗2(t))}

= σ2
x̃κ1κ2e

j(θ1−θ2)

(3.68)

whereσ2
x̃ is the power of the signal to be classified. From here, the relative phase difference

is given as the phase of the resulting statistic:

∆θ̂ = 6 (σ2
x̃κ1κ2e

j(θ1−θ2)) (3.69)

The signalỹ2(t) can then be multiplied byej∆θ̂ to align its phase with the phase of

the first channel. This procedure can be repeated as necessary depending on the number of

antennas employed.

An additional method proposed to compensate for channel corruption in the SOF com-

putation is through a variant of the MRC. While the SOF was derived to be highly insensi-

tive to channel distortion in Section2.6, the SOF image obtained when in a deep fade can

be significantly distorted by the additive noise components present, which will be amplified

when forming the SOF from the SCF. The MRC variant described here then, attempts to

compensate for this effect by combining weighted estimates of the SOF from each receiver.

For this method, the SOF is computed independently for the signal received on each an-

tenna. After the feature vectors−→α and
−→
f are formed, they are each weighted by the SNR

estimated on their respective antennas. Then each is summed, and the procedure follows

as before. It is worth noting that this method can be utilized in any fading channel, without

the necessity for the assumption of a flat fading channel.

The second general situation exists when the channel is not varying slow enough to

be approximated static throughout the signal’s evaluation. Since each of the classification
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methods above attempts to estimate expected values of joint moments, they are quickly

corrupted by a rapidly fading channel. The HOCS features are particularly sensitive since

they require a greater amount of samples to converge, during which time the channel can

vary drastically. The first stage SOF-based classifier is less sensitive to channel variations,

thus providing greater incentive for its use as the first stage in the system.
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3.6 Summary

This chapter described the design of a multistage modulation recognition system intended

to discriminate between AM, BFSK, OFDM, DS-CDMA, 4-ASK, 8-ASK, BPSK, QPSK,

8-PSK, 16-PSK, 16-QAM, and 64-QAM modulation schemes. In Section3.2, various

methods to implement the estimators of the spectral correlation function (SCF) were pre-

sented, and a combination of two methods were chosen for implementation. The process

used to estimate higher order cyclic cumulants (CC) was described in Section3.3. The fi-

nal classifier design is presented in Section3.4, where its implementation in a hierarchical

approach was described. The chapter concluded by addressing methods to compensate for

adverse affects due to multipath channels in Section3.5.
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4 Analysis and Results

4.1 Introduction

This chapter describes the simulation and results obtained for the performance of the de-

signed modulation classification system. The system is evaluated in a variety of channel

conditions, without a priori knowledge of critical signal parameters. The performance of

the classifier is compared to that of the baseline classifiers given in [3] and [4].

In Section4.2the simulation setup is described and the channel models through which

the simluated signals are transmitted as given. Simulation results are given in Section4.3.

4.2 Simulation Setup

Simulations were run with AM, BFSK, OFDM, DS-CDMA, 4-ASK, 8-ASK, BPSK, QPSK,

8-PSK, 16-PSK, 16-QAM, and 64-QAM modulated signals. Each of the digital signals

were simulated with a IF carrier frequency uniformly distributed between .23 and .27 times

the sampling rate, a symbol rate uniformly distributed between .16 and .24 times the sam-

pling rate, and a raised cosine pulse shape with a50% excess bandwidth, with the exception

of the BFSK which was not modeled with a shaping filter. The analog signals were ban-

dlimited using the same raised cosine filter. Additionally, the classifier’s receive filter is

assumed to be an ideal low-pass filter. Since the symbol rate is assumed to be unknown,
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the digital signals were not sampled at an integer multiple of the symbol rates, but were

sampled at a constant rate independent of the symbol rate and the IF carrier frequency.

The SOF neural-network based system was train and tested using 4096 samples, corre-

sponding to an average of approximately 410 symbols for the digitally modulated signals.

The HOCS based system was tested with 65536 samples for its classification decision,

corresponding to an average of approximately 6500 symbols for the digitally modulated

signals. The system was tested in a variety of channel conditions, with an SNR range of 0

dB to 15 dB. The channel models simulated include a flat fading channel, two-path fading

channel, and a harsh 20-path fading channel. Each of the fading channels are simulated as:

1. Block fading: where the channel is assumed to be fading slowly enough

so as to be approximately static over a single block of observed data

2. Fast fading: where the channel is assumed to be fading with each path

maintaining a coherence value of 0.9 over 500 samples, approximately

equal to 50 symbols for the digitally modulated signals.

Additionally, it is assumed that the SNR of the signal on each antenna can be accu-

rately estimated, and that the channel phase offset between antennas is accurately deter-

mined for the block flat fading channel.

The system performance is measured by its probability of correct classification (Pcc),

defined as the percentage of the total number of modulation classifications made that were

accurate. The SOF based classifier from [3] using only the cycle frequency profile is sim-

ulated as a benchmark for comparison to the first stage of the proposed classifier. This

demonstrates the advantage of using both the cycle frequency as well as the spectral fre-

quency profile for the initial classification stage. The purely eighth-order CC feature vector

from [4] is used as a benchmark for comparison to the proposed classifier from end to end.

However, to achieve a fair comparison, the AM, DS-CDMA, and BFSK signals were ex-
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cluded from consideration for this case since the purely eighth-order CC does not have the

ability to classify signals of this type.

4.3 Results

The systems were first tested in the block flat fading channel. Here, the systems were sim-

ulated using a multi antenna approach. The initial SOF-based stage used the MRC-variant

method outlined in Section3.5, while the HOCS-based stage utilized traditional MRC. Fig-

ure4.16compares the performance of the first stage of the proposed classifier with that of

its benchmark. Here the proposed classifier obtains a significant performance increase over

the baseline. The initial stage of the proposed classifier achieves a classification rate of

nearly100% Pcc for all SNR levels of interest when using four antennas with the MRC-

variant. Figure4.17compares the proposed classifier to its eighth-order CC counterpart.

In this case, the proposed classifier achieves a gain of 3 dB SNR over the benchmark. It is

also noteworthy that with the addition on only a single antenna, a considerable performance

gain is achieved.

Next, the systems were tested in a two-path as well as a 20-path block fading channel.

Here, the initial SOF based stage was again implemented with the MRC-variant, while the

HOCS based systems used SC. The performance of the initial classification stage subject to

the two-path channel is shown in Figure4.18and the results under the 20-path channel are

shown in Figure4.19. These figures demonstrate the robustness of the SOF against multi-

path channel effects, as it is subject to only a slight performance degradation as compared

to the flat fading channel. The performance of the final classification decision is shown in

Figure4.20 for the two-path case and in Figure4.21 for the multipath case. The perfor-

mance of each system is significantly degraded from the performance under the flat fading

channel. The performance is insufficient to classify a signal with a reasonable degree of re-

liability. However, a benefit to the multistage approach is that it utilizes lower-order CCs in
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Figure 4.16: Classification Performance of proposed initial SOF-based classification stage
and benchmark in a block flat fading channel using the MRC-variant combining scheme

Figure 4.17: Classification Performance of proposed classifier and benchmark in a block
flat fading channel using MRC
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each decision stage, thus lowering the variance of the estimated statistic. While this doesn’t

achieve a significant benefit in the final classification stage, it does allow for a more reliable

estimate of the family of the signal. This is demonstrated in Figures4.22and4.23where

the ability of the two systems to classify the received signal as having a real-valued con-

stellation (BPSK, 4ASK, or 8ASK), a square-constellation(QPSK, 16QAM, or 64 QAM),

a circular constellation (8PSK or 16PSK), or as being an OFDM signal, where the other

three signal types are not considered as the purely eighth-order CC feature vector is not

capable of classifying them. Here, while it is noted that the number of antennas used does

not affect the overall modulation-family classification performance, using the multistage

approach does increase the observed classification performance by approximately two to

three times.

Finally, the classifier performance was evaluated under the fast fading channels. The

performance of the SOF based classifier under each of the fast fading channels is given

in Figures4.24 through4.26. The initial stage of the classifier is again only moderately

degraded, and the proposed classifier maintains a significant improvement over the baseline

SOF based classifier. The final stage of the classifiers are unable to reliably determine the

exact modulation scheme of the received signal under these harsh channel conditions, the

multistage approach is still able to reliably determine the modulation family of the signal of

interest. The system performance under the fast fading flat, two-path, and 20-path channels

are shown in Figures4.27through4.29.

The ability of the system to maintain a high degree of reliability in determining the

modulation family is in part due to the insensitivity of the SOF to the multipath affect, as

well as to the fewer number of required symbols that must be observed before a classifi-

cation can be made. As this stage of the classifier requires significantly fewer observed

symbols to make a classification, it is only moderately affected. While the purely eighth-

order CC based classifier is drastically degraded, the proposed classifier is still able to

produce a moderate gain in modulation class recognition, demonstrating the ability of the

59



Figure 4.18: Classification Performance of proposed initial SOF-based classification stage
and benchmark in a block two-path fading channel using the MRC-variant combining
scheme

Figure 4.19: Classification Performance of proposed initial SOF-based classification stage
and benchmark in a block 20-path fading channel using the MRC-variant combining
scheme
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Figure 4.20: Classification Performance of proposed classifier and benchmark in a block
two-path fading channel using SC

Figure 4.21: Classification Performance of proposed classifier and benchmark in a block
20-path fading channel using SC
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Figure 4.22: Ability of proposed classifier and benchmark to determine a signal’s modula-
tion family in a block two-path fading channel using SC

Figure 4.23: Ability of proposed classifier and benchmark to determine a signal’s modula-
tion family in a block 20-path fading channel using SC
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lower order cumulants to reliably distinguish between lower order modulations even in the

presence of multipath fading.
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Figure 4.24: Classification Performance of proposed initial SOF-based classification stage
and benchmark in a fast varying flat fading channel with using the MRC-variant combining
scheme

Figure 4.25: Classification Performance of proposed initial SOF-based classification stage
and benchmark in a fast varying two-path fading channel using the MRC-variant combining
scheme
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Figure 4.26: Classification Performance of proposed initial SOF-based classification stage
and benchmark in a fast varying 20-path fading channel using the MRC-variant combining
scheme

Figure 4.27: Ability of proposed classifier and benchmark to determine a signal’s modula-
tion family in a fast varying flat fading channel using SC
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Figure 4.28: Ability of proposed classifier and benchmark to determine a signal’s modula-
tion family in a fast varying two-path fading channel using SC

Figure 4.29: Ability of proposed classifier and benchmark to determine a signal’s modula-
tion family in a fast varying 20-path fading channel using SC
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4.4 Summary

This chapter described the simulation setup under which the designed modulation classifi-

cation system is evaluated. The system was evaluated in a variety of channel conditions,

without a priori knowledge of critical signal parameters, and is compared to the baseline

classifiers given in [3] and [4].

The proposed modulation classification system is capable of reliably distinguishing

between classification systems in flat fading. The classification rate is further enhanced by

the use of multiple receive antennas. As the number of antennas in increased, the perfor-

mance of the baseline classifier approaches that of the multistage classifier designed here.

In this situation, the multistage classifier can be used to trade hardware complexity for a

modest gain in computational complexity. In the presence of multipath and fast fading

channels, the system performance is significantly degrade as compared to the flat fading

channel performance, even with the use of additional receive antennas. However, even

though the final modulation scheme of the signal cannot be determined reliably, the classi-

fier is still able to reliably determine the modulation family of the received signal, due to its

hierarchical scheme. In contrast, the baseline classifier given in [4] produces significantly

less reliable estimates of the modulation family under the same channel conditions.

67



5 Conclusion

5.1 Restatement of Research Goal

The goal of this research was to develop a non-cooperative modulation recognition system

capable of reliably identifying the modulation scheme of a received signal. The system was

desired to not require knowledge of critical signal parameters, such as carrier frequency,

symbol rate, or phase offset, among others.

5.2 Conclusions

A modulation recognition system based cyclostationary statistics is presented, and its per-

formance evaluated in a variety of channel conditions. The classifier is implemented in a

multistage approach in order to leverage the reliability and lower variance of lower order

cyclic statistics. Methods to increase the performance in the presence of fading channels

are developed based on leveraging multiple receive antennas.

The resulting modulation classification system is capable of reliably determining the

modulation scheme of received signals in moderate channel conditions. With the addition

of multiple receive antennas, the performance of the classifier is shown to be increased even

further. In multipath and fast fading channels, the final modulation discrimination capabil-

ity of the classifier becomes unreliable, even when exploiting additional receive antennas.
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However, even though the final modulation scheme of the signal cannot be determined

reliably, the classifier is still able to reliably determined the modulation family of the re-

ceived signal due to its hierarchical scheme, in contrast to the performance of the baseline

classifier.

5.3 Recommendations for Future Research

Several areas remain open for further research and improvements to the proposed classifier

design.

The primary area of necessary research is to increase the final classification perfor-

mance in the presence of multipath and fast fading channels. These methods could include

blind equalization of the received signal, or modification of the CC estimates to compen-

sate for channel corruption. Additionally, methods aimed at reducing the required number

of samples needed to obtain CC estimates would prove extremely useful, and would also

improve classifier performance under moderately paced fading channels.

Extension of the classifier to additional signal types would be of added benefit so

as to operate on a larger set of signals. Moreover, identification of the pulse shape of

received signals would increase the precision of the classification, and would allow more

reliable demodulation of the received signals once after their modulation scheme has been

determined. Furthermore mitigating effects due to transmitter timing errors and phase jitter

would increase the reliability of estimates made of lower fidelity systems.

Another area of necessary research includes extending the classification system to con-

sider signals that are undergoing jamming, and the joint classification of multiple, possibly

overlapping signals.

Finally, evaluation of the classifier with actual transmitted waveforms would be of

benefit to prove a realized hardware solution is able to match the simulated performance.
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