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Structural investigations and magnetic properties of sol-gel Ni0.5Zn0.5Fe2O4
thin films for microwave heating

Pengzhao Gao,1,a� Evgeny V. Rebrov,1,b�,c� Tiny M. W. G. M. Verhoeven,1

Jaap C. Schouten,1 Richard Kleismit,2 Gregory Kozlowski,2 John Cetnar,2 Zafer Turgut,3

and Guru Subramanyam4

1Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2Department of Physics, Wright State University, Dayton, Ohio 45435, USA
3Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA
4Department of Electrical and Computer Engineering, University of Dayton, Dayton, Ohio 45469, USA

�Received 2 September 2009; accepted 12 January 2010; published online 26 February 2010�

Nanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by a
sol-gel method on polycrystalline silicon substrates. The morphology, magnetic, and microwave
absorption properties of the films calcined in the 673–1073 K range were studied with x-ray
diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force
microscopy, vibrating sample magnetometry, and evanescent microwave microscopy. All films were
uniform without microcracks. Increasing the calcination temperature from 873 to 1073 K and time
from 1 to 3 h resulted in an increase of the grain size from 12 to 27 nm. The saturation and remnant
magnetization increased with increasing the grain size, while the coercivity demonstrated a
maximum near a critical grain size of 21 nm due to the transition from monodomain to multidomain
behavior. The complex permittivity of the Ni–Zn ferrite films was measured in the frequency range
of 2–15 GHz. The heating behavior was studied in a multimode microwave cavity at 2.4 GHz. The
highest microwave heating rate in the temperature range of 315–355 K was observed in the film
close to the critical grain size. © 2010 American Institute of Physics. �doi:10.1063/1.3309767�

I. INTRODUCTION

A. Concept of microwave heating with ferrite thin
films

Microwave heating has become an important method for
chemical reactor heating and materials processing. The con-
cept of microwave heating enables optimal control of the rate
of heat transfer in a microstructured reactor by eliminating
conductive and/or convective heat transport resistances. In
this way the controlled heating of a microreactor can be
achieved using selective microwave absorption into a func-
tional thin film �i.e., with thickness �1.0 �m� deposited on
the microchannel walls. Ni–Zn ultrafine spinel type ferrites
are possible candidates for microwave heating due to their
moderate dielectric losses in the range between 2 and 15
GHz as well as large magnetic losses.1–3

Spinel ferrites have the general molecular formula
M2+Fe2

3+O4
2−, where divalent metal cations M2+ and Fe3+ oc-

cupy tetrahedral �A� and octahedral �B� interstitial positions
of the fcc lattice formed by O2

2− ions. Both dielectric and
magnetic properties of these oxides depend on the type of
cations and their distribution among the two interstitial posi-
tions, which in turn depends on the method of synthesis and
calcination conditions4,5 and the film density.6 The grain size

increases with increasing calcination temperature of NiZn
ferrites7,8 and the dielectric constant increases when the grain
grows.9

The cation distribution and the resulting magnetic prop-
erties are found to be different in some nanocrystalline spinel
ferrites when compared to those of their bulk counterparts. In
the bulk form ZnFe2O4 is a normal spinel with Zn2+ ions at
the A sites and Fe3+ ions at the B sites, and it exhibits anti-
ferromagnetic ordering below 10 K. Nanocrystalline
ZnFe2O4 with a grain size of about 10–20 nm is magnetically
ordered with a large magnetic moment even at high
temperatures.10,11 The observed high temperature magnetic
ordering is attributed to the change in the cation distribution
from the normal to the mixed spinel type where Fe3+ and
Zn2+ ions occupy both sites.12 NiFe2O4 has the mixed spinel
structure when the grain size is reduced to a few
nanometers.4 It exhibits noncollinear spin structure and the
magnetic moment is appreciably lower than the value for the
bulk material.13 A model wherein the particle consists of a
core with the collinear spin arrangement and a surface layer
with the magnetic moment inclined to the direction of mag-
netization has been proposed.13

Ferrite films are usually prepared by sputtering,14 pulsed
laser deposition,15 and spray coating16 processes. On the
other hand, sol-gel17–19 and hydrothermal20 routes of ferrite
synthesis have shown increasing importance. The advantages
of the sol-gel process are high purity, chemical homogeneity,
small and uniform particle size, and controlled grain shape.
However, the Ni–Zn ferrite single phase can only be formed
after calcination at temperatures above 1100 K. The forma-
tion of microcracks in ferrite films during calcination is con-
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sidered to be a disadvantage which limits application of the
sol-gel method.21 To obtain crack-free films, vacuum extrac-
tion was applied during heat treatment.22 Preparation of
ferrite /SiO2 composite films with 5–30 wt % ferrite
content23 is another method to eliminate microcracks. How-
ever, the morphology of the resulting composite films is dif-
ficult to control. An addition of 1–3 wt % 5PbO·SiO2 or
5PbO·B2O3 powders was found to be effective to obstruct
the movement of grain boundaries and to minimize the fer-
rite grain size.24 The addition of Zn in the ferrite composition
has also been known to play a crucial role in lowering the
firing temperature. However, there are no comprehensive
studies on a structure—microwave heating relationship for
the Ni–Zn ferrite films in the literature. For ferrite thin films
having a thickness on a nanoscale, the grain size is also in
the nanometer range scale, which is much smaller than the
skin depth. Due to this unique feature, the heating behavior
of ferrite thin films is different from the bulk ferrite materi-
als.

B. Measurements of dielectric properties of thin films

Measurements of the dielectric properties of Ni–Zn fer-
rite films at microwave frequencies 2–15 GHz are performed
by using a scanning evanescent microwave microscope as
reported elsewhere.25,26 In performing quantitative measure-
ments of the electromagnetic properties, the detailed electro-
static field configuration outside the tip is required. The
probe tip and film must be considered as a whole and the
solution of the electrostatic field equations at appropriate
boundary conditions has to be obtained. This relates the tip-
film distance to the relative resonant frequency shift of the
resonator �f / f, the change in the reciprocal quality factor
��1 /Q� and physical ferrite film properties for a given probe
geometry. To calculate a local surface permittivity of films
we are using our theoretical two-point model27 which re-
quires to measure only two extreme values of the frequency
and quality factor: one pair, f0 and Q0, when the tip is well
separated from the film �not interacting with the film� and
another pair, f and Q, when the tip touches the film surface.
Our model relates the changes �f / f and ��1 /Q� between
these two positions to the real and imaginary parts �1 and �2

of the dielectric constant ��=��−i��=�0��1−i�2��.
In this paper, a novel and economical method for pro-

duction of ferrite films was developed based on the sol-gel
technique. The effects of annealing conditions of stoichio-
metric Ni–Zn ferrite sol-gel thin films on the physical and
magnetic properties as well as on the dielectric losses in the
frequency range 2–15 GHz have been investigated. The heat-
ing behavior of the Ni–Zn ferrite has been studied at 2.4
GHz, and the role of the grain size on microwave heating
was examined.

II. EXPERIMENTAL PROCEDURE

A. Sol-gel synthesis of Ni0.5Zn0.5Fe2O4 films

Nickel zinc ferrites were prepared by the citrate precur-
sor method.28 Iron �III� nitrate nonahydrate, nickel nitrate
hexahydrate, and zinc nitrate hexahydrate �all from Aldrich
Co., ACS grade� were used as precursors for the preparation

of the starting sol. The precursors were dissolved in ethanol
in a molar ratio of Ni:Zn:Fe=1:1 :4. Then the former salt
solution was dissolved into the citric acid solution and stirred
for 12 h. This solution was titrated quantitatively by an am-
monia solution to a pH of 2. The resulting sol was dropped
on a 1.0�1.0 cm2 Si plate and spin-coated for 25 s at 3500
rpm with an acceleration rate of 1250 rpm/s. Drying was
performed in an oven at 353 K for 30 min and then it was
kept at temperatures 673, 873, 973, or 1073 K for 1 or 3 h,
respectively. A part of the corresponding sols was dried in an
oven at 353 K to get the powder.

B. Microstructure and magnetic properties
characterization

Thermogravimetric analysis was carried out in an air
flow �50 cm3 /min� with a heating rate of 10 K/min from
room temperature to 973 K. The initial mass of the sample
was 20 mg. X-ray diffraction �XRD� patterns were recorded
at a scanning rate of 0.3° 2-theta/min using an x-ray diffrac-
tometer �Rigaku� with nickel filtered Cu K� radiation pro-
duced at 40 kV and 27.5 mA. The microstructure analysis
was performed with a scanning electron microscope �SEM,
Quanta 3D FEG, FEI� operated at 20 kV and with atomic
force microscopy �AFM, The NanosurfeasyScan 2� by using
a contact mode.

X-ray photoelectron spectroscopy �XPS� measurements
were carried out with a Kratos AXIS Ultra spectrometer,
equipped with a monochromatic Al K� x-ray source and a
delay-line detector. Spectra were obtained using the alumi-
num anode �Al K�=1486.6 eV� operating at 150 W. The
background pressure was 2�10−9 mbar.

The hysteresis loop, remnant magnetization �Mr�, satu-
ration magnetization �Ms�, and coercivity �Hc� of the com-
posite films were measured at 295 and 355 K by means of a
vibrating sample magnetometer equipped with a 2 T electro-
magnet and a furnace. Ms, Mr, Hc, and hysteretic losses were
evaluated from hysteresis curves. The microwave absorption
properties of the powders were determined at 2.4 GHz in a
multimode microwave cavity at a constant power input of
100 W.

A near field evanescent microwave microscope was used
to characterize the dielectric properties of the ferrites through
frequency shift and quality factor measurements. The relative
sensitivity of the microscope is in the range of 10−2 and the
resolution is governed by the radius of the probe tip.29 The
microwave probe consists of a tuned � /4 coaxial transmis-
sion line with an end wall aperture. A transverse electromag-
netic wave created by a frequency generator moves along the
coaxial probe and is totally internally reflected at the surface
of the end wall aperture. The evanescent waves emanate
from a sharpened tip extending concentrically through the
aperture and interact with the sample. The coaxial micro-
wave probe is capacitively coupled to the film, and to a
Hewlett-Packard 8722ES network analyzer through a tuning
network.

The resonant frequency and quality factor data are pro-
duced by setting the reference resonant frequency and the
quality factor at approximately 10 �m above the sample sur-
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face and moving the probe tip in micrometer steps to the
position almost touching the surface of the film at 295, 315,
335, and 355 K. The resonant frequency and quality factor
shift data is best fitted by a method of images model that
produces the real and complex parts of the permittivity.30

Coplanar waveguide �CPW� test structures were used for
experimental evaluation of the scattering parameter S21 of
the ferrite films. The insertion loss of the circuit under mea-
surement �S21� represents the ratio of the output to the input
power in decibel. The S21 is determined over the frequency
range of 1–18 GHz based on appropriate impedance match-
ing at both the source and load ends. The test structures were
fabricated on bare substrates as well as on the thin film test
samples for determination of attenuation and phase constants
with and without the ferrite thin films.31–33

III. THEORY

The extraction of data through evanescent microwave
microscopy requires detailed knowledge of the field configu-
ration outside the probe-tip region.34 The fundamental as-
sumption of the theory is that the presence of the film intro-
duces a perturbation to the existing electromagnetic field
distribution. The changes in resonant frequency and recipro-
cal quality factor are described by Eqs. �1�–�3� �Ref. 35�

− 2
�f

f
− i�� 1

Q
� =

�V���E� 0
* · E� �dV

�V��E� 0
* · E� �dV

, �1�

�f

f
=

�f − f0�
f

, �2�

�� 1

Q
� =

1

Q
−

1

Q0
, �3�

where E� 0 is the unperturbed electric field, E� is the perturbed
field, V is the volume of a region outside the resonator tip, f
and Q are the perturbed resonant frequency and quality fac-
tor, and f0 and Q0 are the reference �or unperturbed� resonant
frequency and quality factor, respectively.

The right hand side of Eq. �1� is a complex number
dependent on the local complex permittivity, describing the
dielectric properties of the films. Although this can be solved
for the general case, let us restrict our discussion to the case
when the tip touches the film �g is the distance between a tip
and a film�

�f

f�g = 0�
=

f�g = 0� − f0

f�g = 0�
=

1

2
Re�1 +

ln�1 − b�
b

	 , �4�

�� 1

Q
� =

1

Q�g = 0�
−

1

Q0
= Im�1 +

ln�1 − b�
b

	 , �5�

and

b =
�1 − 1 − i�2

�1 + 1 − i�2
, �2 =

��

�0
, �1 =

��

�0
, �/�0 = �1 − i�2.

�6�

When the resonator tip approaches the surface of the film,
the resonant frequency �f� and the quality factor �Q� will
change. In measuring the frequency shift and the quality fac-
tor, the reference resonant frequency f0 and corresponding
Q0 are set at a significant distance above the film �theoreti-
cally at infinity�. This distance between the probe tip and the
film should be sufficient to make sure that the evanescent
field from the tip is not interacting with the film. Typical
experimental data for the resonant frequency and quality fac-
tor were collected for a film-tip distance g=0 and 10 �m.
The changes in resonant frequency and quality factor be-
tween these two extreme positions therefore amount to

2��f�
A · f�g = 0�

= 1 +

x · ln
�1 − x�2 + y2 − y · arctan
y

�1 − x�
�x2 + y2�

,

�7�

� 1

B
��� 1

Q
� =

x · arctan
y

�1 − x�
+ y · ln
�1 − x�2 + y2

x2 + y2 ,

�8�

where

x =
�

�
, y =

2�2

�
, � = �1

2 + �2
2 − 1, � = ��1 + 1�2 + �2

2

�9�

Substituting the values A=7.044�10−5 and B=4.12�10−5

determined experimentally, we can solve Eqs. �7� and �8�
with respect to x and y. By using Eq. �9� we finally arrive at
the effective values of the complex permittivity and the loss
tangent �tan 	=�2 /�1=�� /���.

IV. RESULTS AND DISCUSSION

A. Thermal decomposition study

Figure 1 shows the thermogravimetry-differential ther-
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FIG. 1. The TG-DTG of Ni0.5Zn0.5Fe2O4 powder. Heating rate 10 K/min.
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mogravimetral �TG-DTG� �analysis� curves of the obtained
powder at the temperature range of 300–973 K. It can be
seen from Fig. 1 that the decomposition process of the pow-
der consists of several stages. First, adsorbed water is re-
moved from the �N2H5�3Ni0.5Zn0.5Fe2�N2H3COO�9 ·3H2O
citrate precursor below 393 K. This corresponds to approxi-
mately 5.5% of the total weight loss which is in agreement
with the theoretical value �5.4 wt %�. The second stage at
433–513 K is related to a partial decomposition reaction of
the citrate precursor.36 This corresponds to 55% of the total
weight loss. The minor weight loss in the range of 513–673
K �19 wt %� corresponds to the combustion of residual cit-
ric and a small quantity of carbon.36 The overall weight loss
is 78.8 wt % which is close to the theoretical value
�76.3 wt %�.

In order to get the films without microcracks, the calci-
nation treatment was performed at a slow heating rate of 2
K/min below 673 K and at a higher rate of 5 K/min up to
1173 K.

B. Structural analysis

Five thin films calcined at different temperatures and
time intervals were used in this study �Table I�. Figure 2
shows the XRD patterns of the as-prepared samples A, B, D,
and E. All the peaks could be assigned to a single spinel
phase. An increase in grain size with increasing calcination

temperature and time is clearly observed from the narrowing
of the XRD lines. The average crystallite size has been cal-
culated from the �311� diffraction peak using Scherrer’s for-
mula. The lattice constant of the NiZn ferrite films was 8.383
Å. This value is smaller than that of 8.410 Å previously
reported for Ni0.5Zn0.5Fe2O4 nanopowders.37

The evolution of the microstructure of the sintered speci-
mens with variations in the calcination temperature was ob-
served in SEM and AFM micrographs. As can be seen from
Fig. 3 the films calcined at 1073 K are homogeneous with
very dense microstructures and they have high adhesion to
the substrate. The film E demonstrates obvious grain growth
and few pores. There were no microcracks in the films and
film A was amorphous �not shown�.

Film B revealed well-developed grains and fewer pores
in comparison to the others with appreciable differences be-
tween them. The grains slowly appeared with increasing
temperature and diameters of these grains are increasing also
very slowly. A fine grain structure with grain sizes ranging
from 20–50 nm is obtained.

Figure 4 shows AFM line profiles for samples B, D, and
E. Sample C have a similar profile to that of sample D �not
shown�. The film thickness was estimated to be 1 �m. It can
be seen that sample B has a low surface roughness with a
difference between the highest and the lowest points of to-
pography below 30 nm. Both samples D and E have much
larger surface roughness with differences between peaks and
troughs in the order of 140 nm.

Figure 5 presents the particle size distribution obtained
from an AFM image of film E. The average size and the
standard deviation obtained from the analysis of the histo-
gram were 52.6
6 nm. XRD data showed the presence of
crystalline particles, with sizes of 26.9 nm. These results are
of the same order of magnitude, although the AFM measure-
ments systematically exhibit higher values. This tendency
can be understood by considering the interaction between the
specimen surface and the tip of the AFM probe. If the par-

b

500 nm

c

500 nm500 nm

a

FIG. 3. SEM images of the NZF films calcined at different temperatures: �a�
sample B, �b� sample D, and �c� sample E.

TABLE I. Size and structure of calcined films.

Sample code
Calcination temperature

�K�
Calcination time

�h� Crystal structurea
XRD average

sizeb �nm�

A 673 1 S+H �10
B 873 1 S 12
C 973 1 S 21
D 1073 1 S 24
E 1073 3 S 27

aS=spinel, H=hematite, �-Fe2O3.
bCalculated from the Scherrer formula using reflection planes �3 1 1�.

FIG. 2. XRD of films with a nominal composition of Ni0.5Zn0.5Fe2O4 cal-
cined at different temperatures: �a� sample A 673 K for 1 h, �b� sample B
873 K for 1 h, �c� sample D 1073 K for 1 h, and �d� sample E 1073 K for 3
h. Reflections from the Si substrate are marked with an asterisk.
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ticles are dispersed on the substrate surface, the lateral inter-
action between the tip and the particles leads to a distortion
of their shape and to an overestimation of the measured
dimensions.38,39

C. EDS/XPS analysis

The presence of Zn, Ni, and Fe in the films was revealed
by energy dispersive spectroscopy analysis. The Ni:Zn:Fe
ratio was close to the stoichiometric one for Ni and Fe within
the error of the EDS system, while the data suggest a slight
deficiency of Zn by a few atomic percents in the films as
compared with that in the initial solutions �see Table II�. The
Fe, Ni, and Zn concentrations in the films remained constant
irrespective of the position and calcination conditions.

The chemical composition and the purity of the samples
were checked by XPS analysis. The relative elemental con-
centrations were used to estimate the atomic composition of
the deposited films, by considering their values normalized
to the nominal composition �see Table II�.

A surface composition analyzed by XPS showed the
Fe:Zn:Ni ratio of 4.5:0.5:0.5 indicating that the film surface
was enriched in iron. The surface enrichment in iron oc-
curred due to different mobility of the cations in the oxygen
lattice during the formation and growth of spinel grains. The
binding energies of Fe, Ni, and Zn are depicted in Fig. 6. The
binding energy of Fe 2p3/2 was in the range from 711.3 to
710.5 eV. The presence of Fe3+ was confirmed by a satellite
peak at around 8.0 eV above the principal peak.40,41 An in-

crease in the calcination temperature to 1073 K does not
significantly change the Fe 2p3/2 binding energy which is in
agreement with literature data.41 The binding energy of Ni2+

of 855.1 eV �sample A� reduced slightly toward 854.9 eV at
the highest calcination temperature �sample E� �Fig. 6�. The
peak shape of Ni 2p3/2 in NiO and spinel is different.41 There
is a shoulder �satellite peak� in NiO while no such shoulder
is reported in the spinel structure. Therefore it can be con-
cluded that samples B–E contain all Ni in the spinel struc-
ture. The binding energy of Zn2+ monotonously decreased
with the increasing temperature confirming transformation of
the mixed oxide to a ferrite spinel structure.42

D. Magnetic properties

The average crystallite sizes, calculated using the Scher-
rer equation from the XRD peaks, were found to vary from
less than 10 to 26.9 nm for the samples under investigation
�Table I�. The characteristics of the hysteresis loop, the co-
ercivity, and the saturation magnetization, are shown in Fig.
7�a� while the remnant magnetization and hysteresis loss are
presented in Fig. 7�b� as a function of the average crystallite
size at 295 and 355 K.

It is can be seen from Fig. 7�a� that the saturation mag-
netization monotonously increases with increasing the calci-
nation temperature from 873 to 1073 K and duration of cal-
cination from 1 to 3 h at 1073 K. However, the highest value
of 47.5 J/T/kg obtained for the largest grain size remains
lower than that of the bulk ferrite particles �60 J/T/kg�.43 The
magnetizing mechanism of soft ferrites results from spin do-
main rotation and domain walls motion. In turn, domain
walls motion is affected by the grain size and the sintering
density,44,45 and is enhanced by the increase in the grain
size.46,47 In smaller grains, an increased surface to volume

TABLE II. Elemental analysis of film D from the EDS data.

Sample code wt % at. % Relative atomicratio

Fe 4.58 2.22 2.0
Ni 1.15 0.53 0.48
Zn 1.08 0.45 0.41

FIG. 4. AFM scans along the surface of the NZF films B, D, and E.
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FIG. 5. Particle size distribution, determined from AFM images, for the
NiZn ferrite film �sample E�. FIG. 6. XPS spectra for Zn, Ni, and Fe in samples A, B, D, and E.
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ratio leads to a noncollinearity of magnetic moments on the
surface.48,49 This causes a decrease in the saturation magne-
tization with a decrease in the grain dimensions.

The change in the average crystallite size influenced the
coercivity of the ferrite samples as it is also shown in Fig.
7�a�. The coercivity increases with increasing diameter until
it reaches a maximum value at the critical diameter. A further
drop of Hc for the films calcined at 1073 K originates from
the transition of the magnetic single domain to the magnetic
multidomain within a single grain. The critical diameter �dcr�
can be calculated using Eq. �10� �Ref. 50�

dcr =
9 � 10−7�p

2�Ms
2 , �10�

where �p as the surface energy of the domain wall is defined
as follows:

�p = �2kBTCK1

a
�0.5

, �11�

where kB is the Boltzmann constant �1.38�10−23 J /K�, Tc

is the Curie temperature �Tc=425 K �Ref. 51��, K1 is the
magnetocrystalline anisotropy constant �1.5�103 J /m3

�Ref. 52��, a is the lattice parameter �8.41�10−10 m�, and
Ms is the spontaneous magnetization �3.1�10−2 T �Ref.
43��. The critical diameter calculated by Eq. �10� is 21.6 nm.
This value is in good agreement with the experimental value
of 21 nm.

The maximum value of the coercivity was 4.4 kA/m �54
Oe� for the grain size of 21 nm. This Hc value is larger than
that of 41 Oe reported by Caizer and Stefanescu52 for 29 nm

Ni0.35Zn0.65Fe2O4 nanoparticles, while it is smaller than that
of 90 Oe reported by Albuquerque et al.53 for
Ni0.5Zn0.5Fe2O4 nanoparticles with a mean size of 39 nm. In
the latter study, the authors concluded that Ni atoms occupy
octahedral B sites only, whereas Zn atoms occupy tetrahedral
A sites in accordance with the minimum lattice energy in the
spinel structure. In the single domain region, the coercivity
decreases when the particle size is reduced, since the align-
ment of the magnetic moments inside the domain is fully
controlled by thermal energy, resulting in superparamagnetic
behavior. Film B showed superparamagnetic behavior as can
be concluded from almost closed M-H loops with a hyster-
esis loss below 0.8 kJ /m3 �Fig. 7�b��.

The remnant magnetization increases from 0.6 to 2.9
J/T/kg with increasing the grain size from 11 to 26.9 nm
�Fig. 7�b��. The latter value coincides with that reported for
Ni0.5Zn0.5Fe2O4 ferrite nanoparticles with a size of 20 nm.54

The increase in remnant magnetization is also attributed to
an increase in the mean grain size. The magnetic parameters
obtained at 355 K temperature show the same tendency as
those measured at 295 K.

E. Microwave losses

The real and imaginary parts of the relative permittivity
��1 and �2, respectively� as a function of frequency in the
range from 2 to 15 GHz were calculated from Eqs. �7� and
�8�. Figures 8 and 9 show the dependence of the permittivity

FIG. 7. �a� Coercivity and saturation magnetization �Ms�; �b� hysteresis loss
and remnant magnetization �Mr� as a function of crystallite size. Solid lines
and closed symbols: measurements at 295 K, dashed lines and open sym-
bols: measurements at 355 K.

FIG. 8. �Color online� Real ��1� and imaginary ��2� parts of the relative
complex permittivity measured for sample E at different temperatures: �a�
295 K, �b� 315 K, �c� 335 K, and �d� 355 K.

FIG. 9. Loss tangent as a function of temperature and frequency for sample
E.
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on the frequency for ferrite film E at 295, 315, 335, and 355
K and its loss tangent as a function of frequency and tem-
perature. It is clearly seen from these figures that the losses
are the largest for high frequencies and low temperatures
�Fig. 9� due to roughly a linear decrease in �1 �from �8 to
�5� with frequency independently of the temperature. These
values are close to those of 6.5–5.5 reported for
Ni0.5Zn0.5Fe2O4 ferrite materials in the 1–15 GHz range55,56

at room temperature. The real part of the permittivity slightly
increased with an increase in temperature from 295 to 355 K.
In the same range of frequencies, the imaginary part of the
permittivity ��2� increases, contributing to the overall in-
crease in the loss tangent with frequency. These data are also
in a good agreement with those reported in Ref. 56, where �2

values were around 0.5 and slightly increased at higher fre-
quencies.

The insertion loss of the circuit under measurement �S21�
is a complex quantity with a magnitude and phase. The mag-
nitude of S21 determines the loss within the CPW transmis-
sion line and is used to estimate the attenuation constant,
while the phase represents the electrical length of the line
and is used to estimate the phase constant. The magnitude of
S21 itself represents transmission and is plotted in Fig. 10 as
a function of frequency between 1 and 18 GHz. Transmis-
sion losses were as low as �35 dB for film A. The largest
loss is observed again for ferrite film D at the highest fre-
quency.

The heating curves in Fig. 11 show that the grain size

strongly affects the heating process. In addition to the study
of the heating behavior of the ferrite films, the effect of the
Si substrate was also studied. The volume and heat capacity
of the Si substrate are larger than these of ferrite films.
Therefore, the substrate absorbs most of the thermal energy
that is converted from microwave energy. It can be seen from
Fig. 11, that the trend in the heating curves follows the trend
in the film transmission curves in Fig. 10. The highest heat-
ing rate at 2.4 GHz was observed for the sample with the
grain size close to the critical size calculated by Eq. �10�.
The temperature change in microwave heating reaches a
steady-state value when the flux of the thermal energy gen-
erated from the microwave absorption becomes equal to the
thermal energy loss to the environment �Fig. 11�. It appears
that deposition of film A with a mixed ferrite+hematite
structure increases the reflection losses of the substrate which
decreases the heating rate as compared with pure ferrite
films.

V. CONCLUSIONS

A hydrothermal process was employed to produce
single-phase, highly crystalline, nanometric Ni0.5Zn0.5Fe2O4

mixed ferrite films with a thickness of 1 �m. The average
size of the nanocrystallites ranging from 12–27 nm can effi-
ciently be controlled by modifying the calcination tempera-
ture between 873 and 1073 K and the calcination time be-
tween 1 and 3 h. The saturation and remnant magnetization
increased with increasing the grain size, while the coercivity
demonstrated a maximum near a critical grain size of 21 nm
due to the transition from monodomain to multidomain be-
havior. This value was in a good agreement with that resulted
from the calculation taking into account the surface effects,
particle shape, and interactions. The highest heating rate in a
multimode cavity at 2.4 GHz was observed for the ferrite
films subjected to calcination at 973 and 1073 K for 1 h. This
conclusion is based on experimental results from evanescent
microwave microscopy and direct microwave heating mea-
surements. A feasible way to prepare NiZn ferrite films as a
microwave absorber by controlling the grain size by calcina-
tion temperature and calcination time has been demonstrated.
The Ni–Zn ferrite thin films can be prepared on the walls of
microstructured reactors for efficient and fast microwave
heating allowing nonsteady-state operation.
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