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Very high levels ofn-type doping of AlxGa12xN alloys were recently achieved by rf plasma-induced
molecular-beam epitaxy on sapphire substrates and Si as a dopant. Electron concentrations were
obtained up to 1.2531020 cm23 when the Al mole fraction was 50%, and 8.531019 cm23 electrons
were measured even when the Al mole fraction was 80%. Other material properties were determined
by optical absorption, photoluminescence, cathodoluminescence, x-ray diffraction, and atomic force
microscopy measurements and high optical and morphological qualities were shown. ©2002
American Institute of Physics.@DOI: 10.1063/1.1534395#

Successful doping of AlGaN is essential for the realiza-
tion of many device applications, but it has been known that
AlGaN suffers a rapid decrease in the conductivity with in-
creasing Al mole fraction.1 The unintentionaln-type conduc-
tivity in AlGaN has been attributed to the incorporation of
nitrogen vacancies or oxygen impurities during growth.2 In
the case ofn-type doping with oxygen, there were reports
that shallow oxygen donor is converted to a deep level by a
DX transition whenx.0.4 causing a decrease in then-type
conductivity.3–5 For intentionaln-type doping of AlGaN, Si
is the most widely used dopant. However, the Si donor depth
increases with increasing Al mole fraction. There are also
reports on theDX state or a localized deep state formation of
Si in AlN. It was reported that Si could have a stable deep
DX state in AlN and doping efficiency decreases with in-
creasing Al content,3,6 while other researchers proposed that
Si remains a shallow donor over the whole range of
Al xGa12xN.4 Experimentally, there have been few reports on
high n-type conductivity in high Al mole fraction AlGaN. Si
doped AlxGa12xN grown by molecular-beam epitaxy~MBE!
on a Si wafer was reported to have 831019 cm23 electron
density whenx50.4,7 and AlxGa12xN:Si grown by metalor-
ganic vapor-phase epitaxy was reported to exhibit 3.1
31018 cm23 electron concentrations whenx50.58.8 In this
letter, doping and materials properties of heavily Si-doped,
high Al mole fraction AlGaN were investigated.

Si-doped AlGaN was grown in a turbomolecular pumped
Varian Gen II MBE system which uses standard effusion
cells for the group III elements. An EPI RF plasma source
was used for the nitrogen source and 2 in. sapphire wafers

with c-plane orientation were used as substrates. After load-
ing into the growth chamber, each wafer was nitrided by
nitrogen plasma at 200 °C for 30 min and then heated to
830 °C for AlN nucleation layer growth. Si-doped AlGaN
wafers with different Al mole fractions and Si fluxes were
grown at 800 °C, after the deposition of 200 Å AlN. The
growth rate of each sample was almost the same, about 4000
Å/h. The Al mole fraction was determined by x-ray diffrac-
tion measurements. The thickness of each of the AlGaN
samples was about 4000 Å and all of them were assumed to
be completely relaxed.

Figure 1 shows the dependence of electron density,n, on
Al mole fraction, x, when the Si furnace temperature was
1300 °C. With a fixed Si flux, capacitance–voltage (C–V)
measurements show that electron density falls from 1
31019 cm23 to 531018 cm23 with increasing Al mole frac-

a!Electronic mail: jh124@cornell.edu

FIG. 1. The dependence of electron density on Al mole fraction, obtained by
C–V and Hall measurements, when Si furnace temperature was fixed at
1300 °C. The inset is the variable temperature Hall measurement result of
65% Al mole fraction AlGaN:Si with a increasing Si flux. Electron density,
resistivity, and electron mobility do not change with varying temperature.
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tion from x50 to x50.5, which is expected if the donor
levels are becoming deeper with increasing Al content. Note
in Fig. 1 thatnC–V.nHall for the higherx values, because
deeper donors can contribute to capacitance even though
they are not contributing free electrons. Note that all the
following electron density and mobility data in this letter
were measured by the Hall method and actual Si concentra-
tions of all samples are now under investigation. Figure 2
shows the electron density of different Al mole fraction
Al xGa12xN samples as a function of reciprocal Si furnace
temperature. With increasing Si fluxes, higher electron den-
sities, up to 1.2531020 cm23, were obtained whenx50.5.
8.531019 cm23 electron concentration was also achieved
when the Al mole fraction was up to 80%. The threshold
temperature of the Si furnace for conducting AlGaN in-
creased as the Al mole fraction increased. The minimum
electron density that could be measured by the Hall method
also increased with increasing Al mole fraction, except one
data point in 80% Al mole fraction. Variable temperature
Hall measurements were performed in order to find the Si
donor ionization energy, but there was no variation at all in
the electron density with varying temperature, indicating that
the samples were highly degenerate. The results for 65% Al
mole fraction AlGaN with 8.831019 cm23 electron density
and 18 cm2/V s Hall mobility are shown in the inset of Fig. 1.

At very high Si doping density, the Bohr orbital of donor
probably overlaps each other. From the Mott-transition con-
dition, ND(Mott)>(0.24/aB)3, ND(Mott) is estimated to be
831018 cm23 for the 65% Al mole fraction AlGaN, where
aB is the Bohr radius of donor electron. Anything above this
has metallic, temperature independent conductivity. As the
result of the interactions of donors, donor band would start to
form near theND(Mott) or at a little lower concentration
than theND(Mott), and at even higher doping density the
donor band would widen and finally merge with the conduc-
tion band. The increase of the minimum measurable electron
density,nmin , with increasing Al mole fraction,x, suggests
that an unknown acceptor is also increasing withx and that
this acceptor has a concentrationNA of roughly nmin . It is
possible that previous attempts to dope AlGaN at highx
values failed because the unknown acceptor concentration
was too high. In this regard, the very low oxygen contami-
nation of this MBE machine can be another important factor.
Secondary ion mass spectroscopy measurements of our MBE
grown GaN did not show any oxygen signal within the de-
tection limit ~mid 1016 cm23) and the GaN was always in-
sulating if there was no intentional doping. This low oxygen

contamination can reduce problems associated with Al and
enable us to grow higher quality materials.

However, these techniques have not been successful in
growing conducting AlxGa12xN whenx.0.8. It is interest-
ing that this result coincides well with a theory of dielectric
constant change.9 Figure 3 shows the theoretical Si donor
ionization energies in AlGaN with reported experimental
data.10–12 TO phonon energies of AlGaN are also shown.13

From a simple hydrogen model, donor ionization energy of
Al xGa12xN increases from 34 meV (x50) to 90 meV (x
51) when low-frequency dielectric constants are used. The
electron effective mass used here was 0.2m0(12x)
10.48m0x for Al xGa12xN, applying Vegard’s law.14,15 Ac-
cording to the theory, it is necessary to use high-frequency
dielectric constant,e~`!, rather than the low-frequency value,
e~0!, when the ionization energy is larger than the transverse
optical phonon energy. In AlGaN, this occurs when the Al
mole fraction is larger than; 80%. Due to the smaller value
of e~`!, the donor ionization energy would become much
deeper abruptly, whenx.;0.8. This agrees well with the
experimental data. The radius of Si donor electron’s wave
function also becomes much smaller in that case and a higher
doping density would be needed for degeneracy. This may
explain why degenerate doping was difficult to achieve for
x.0.8. Recently, there was a report on conducting Si-doped
AlN.16 The ionization energy data in that report also show a
sudden increase in the Si donor ionization energy near 80%
Al mole fraction, even though the ionization energy is much
smaller, 83 meV in AlN, than 320 meV in the Ref. 12.

A theoretical AlGaN band gap with experimental data of
AlGaN:Si obtained by light absorption, photoluminescence
~PL!, and cathodoluminescence~CL! is shown in Fig. 4. The
bowing parameter used for AlGaN band gap calculation was
1.3 eV.17 The optical absorption data are in good agreement
with the theoretical band gap expectation and the absorption
spectra in the inset shows that band edge absorption with
heavy Si doping does not have any added significant fea-
tures. The Burstein–Moss shift observed in a heavily doped
semiconductor is not noticeable in the AlGaN:Si and no deep
levels or other absorption centers are introduced, which
would absorb UV light. These features make the AlGaN:Si
very promising materials for UV light emitters or detectors.
It seems that band filling effect competes with band tailing
and band gap renormalization. PL and CL data show the

FIG. 2. Electron density in the AlxGa12xN as a function of reciprocal Si
furnace temperature.

FIG. 3. Theoretical and experimental Si donor ionization energies in AlGaN
as a function of Al mole fraction, with TO phonon energies of AlGaN.
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same trend but have a little lower energy. This may be ex-
plained as PL and CL likely come from electrons in the bot-
tom of the band, because they have betterk conservation
with the holes, which are neark50. Also, there could be the
band tailing effect, and the localization effect resulting from
compositional variation. The PL lifetime was around 180 ps
with insignificant dependence on Al mole fraction or doping
density.

In contrast to GaN:Si18 causing rough surface, the rms
surface roughness measured by atomic force microscopy
~AFM! was significantly smaller for AlGaN:Si layers. The
rms value of 80% and 65% Al mole fraction AlGaN samples
with ;131020 cm23 electron density was 1.2 and 1.3 nm,
respectively, and two-dimensional step growth was observed
in these samples with concentric and spiral shape steps.
There was no disadvantage of high Si doping on the AlGaN
surface morphology and the morphology was even improved
with Si doping. It was hard to find a general trend of mor-
phology change as a function of electron density. Also, no
consistent correlation was observed between the full width at
half maximum~FWHM! of x-ray measurements of AlGaN:Si
and the electron density. In the 2u-scan mode, the smallest
value of FWHM was;9 arc min when the Al mole fraction
was 0%, or 100% and the FWHMs of other Si-doped AlGaN
layers varied within;24 arc min.

In conclusion, very highn-type doping,;1020 cm23

electron density, of AlxGa12xN layers was successfully
achieved by MBE in the range of 0<x<0.8. Despite the
very high Si doping density, there was no significant degra-
dation of materials properties, and, in fact, the layers showed
superior optical and structural qualities suitable for device
applications.

This research was supported by ONR~Contract Nos.
N00014-99-10714 and N00014-00-1-0042!, AFOSR ~Grant
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FIG. 4. Theoretical graph of AlGaN band gap as a function of Al mole
fraction, with the experimental data of AlGaN:Si measured by optical ab-
sorption, PL, and CL. Each sample has different Al mole fraction and elec-
tron density, n. The inset shows the optical absorption spectra of the
AlGaN:Si samples. Samples above 80% Al are insulating.
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