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Transport in porous media is quite complex, and still yields occasional surprises. In geological

porous media, the rate at which chemical reactions (e.g., weathering and dissolution) occur is

found to diminish by orders of magnitude with increasing time or distance. The temporal rates of

laboratory experiments and field observations differ, and extrapolating from laboratory

experiments (in months) to field rates (in millions of years) can lead to order-of-magnitude errors.

The reactions are transport-limited, but characterizing them using standard solute transport expres-

sions can yield results in agreement with experiment only if spurious assumptions and parameters

are introduced. We previously developed a theory of non-reactive solute transport based on apply-

ing critical path analysis to the cluster statistics of percolation. The fractal structure of the clusters

can be used to generate solute distributions in both time and space. Solute velocities calculated

from the temporal evolution of that distribution have the same time dependence as reaction-rate

scaling in a wide range of field studies and laboratory experiments, covering some 10 decades in

time. The present theory thus both explains a wide range of experiments, and also predicts changes

in the scaling behavior in individual systems with increasing time and/or length scales. No other

theory captures these variations in scaling by invoking a single physical mechanism. Because the

successfully predicted chemical reactions include known results for silicate weathering rates, our

theory provides a framework for understanding changes in the global carbon cycle, including its

effects on extinctions, climate change, soil production, and denudation rates. It further provides a

basis for understanding the fundamental time scales of hydrology and shallow geochemistry, as

well as the basis of industrial agriculture. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4913257]

Chemical reactions at the surfaces of porous media drive

the weathering of silicate minerals in the earth’s crust.

This weathering affects surface denudation rates and the

global carbon cycle, and thereby also climate change and

extinctions through geologic time. But reactions within

porous media exhibit non-trivial dependences on time,

space, and measurement scales that cannot be interpreted

as transport-limited in the context of Gaussian transport.

Thus, the role of solute transport in controlling such

reaction rates has been controversial. Because our trans-

port theory, which is based on concepts from percolation

theory, is the first theory that can actually predict non-

Gaussian solute transport in porous media, we are able to

resolve the controversial aspects of chemical reaction

rate scaling. In particular, we show that our calculated

functional dependence of the solute velocity acts as a

proxy for chemical reaction rates, proving that they are

limited by transport. Importantly, the solute velocity is

not based on diffusion; rather, it is generated by the flow

of fluids in the medium, and is nearly a power law in both

space and time. A wide range of experimental results and

field observations are united by this theory, including

experiments on the dissolution of radioactive elements,

chemical weathering rates, weathering rind formation

on surface clasts, and seafloor weathering rates. The

agreement between theory and experiment extends over

10 orders of magnitude of time scales.

INTRODUCTION

Predicting the scaling of chemical reaction rates in po-

rous media is important but difficult. In this study, we focus

on the temporal and spatial dependences of surface reactions,

rather than on their initial values. The relevant physics

addresses a complex of interacting processes, scales, and

materials, and researchers must ultimately choose between

differential equations for transport in homogeneous media

(Bear, 1972), and difference equations for transport in heter-

ogeneous media (Berkowitz and Scher, 1995; Berkowitz

et al., 2006; and Hunt et al., 2011). The issue has practical

significance, as it concerns (for example) weathering of sili-

cate minerals, asserted (Algeo and Scheckler, 1998; Berner,

1992; Dixon et al., 2009; Raymo, 1994; Sheldon, 2006;

Vance et al., 2009; and Anderson and Anderson, 2010) to be

a driver for variations in the global carbon cycle, with

impacts on episodes of extinction, climate change, soil pro-

duction, and surface denudation rates. Yet reaction rate scal-

ing is even more broadly important, informing the transport

1054-1500/2015/25(7)/075403/15/$30.00 VC 2015 AIP Publishing LLC25, 075403-1
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and fate of subsurface radioactive contaminants, the time

scale of soil formation (Loague and Corwin, 2006), and even

the role of fertilization in agricultural time scales.

Many factors influence rates of chemical reactions in

natural porous media (Brantley et al., 1986; Dentz et al.,
2011; Li et al., 2008; Noniel et al., 2012; Navarre-Sitchler

et al., 2007; and Raoof and Hassanizadeh, 2010), including

(1) concentration gradients, (2) solute advection or diffusion,

and (3) physical and chemical changes in mineral surfaces. If

we are considering natural processes relevant to chemical

weathering, then we must also include changes in (4) flow

rates, 5) surface conditions, (6) climate, and even (7) tecton-

ics. We postulate that, for chemical reactions that are trans-

port limited, the reaction rate is proportional to the solute

velocity. In that case, reaction rates can be predicted from

the solute transport velocity and its scaling with time or dis-

tance. As we show here, the velocity scaling can be given by

conservative solute transport theory (Hunt et al., 2014). It is

critical to note that at scales greater than the pore scale, our

theoretical construction does not yield equal solute and fluid

velocities, because the solute travel time is proportional to

the solute travel distance to a power greater than 1 (Lee

et al., 1999; Sheppard et al., 1999). Such a result is also

found in theoretical descriptions employing the continuous

time random walk (CTRW) (Scher and Montroll, 1975;

Scher et al., 1991; Berkowitz and Scher, 1995; and

Berkowitz et al., 2006), or fractional advection-dispersion

equations (FADE) (Pachepsky et al., 2000; Meerscheart

et al., 1999, 2002; Sanchez et al., 2005; and Park et al.,
2005). In percolation theory, CTRW and the FADE, the

same non-linear scaling relationship between transport dis-

tance and transport time is obtained; what distinguishes per-

colation theory, though, is that it predicts the precise value

of the power (Lee et al., 1999; Sheppard et al., 1999). Our

interpretation of the distinction between solute and fluid

velocities, which arises from the power-law scaling, is that it

is a product of the fact that the fluid flow is incompressible,

while the solute transport is not. In fact, if the shape of the

solute distribution does not change with transport distance

(Scher et al., 1991), then the mean solute density must be

inversely proportional to the mean solute transport distance.

Our treatment explains nearly all observations through a

single functional dependence, uniting data from many differ-

ent experiments and field studies in a single curve. The pre-

dicted functional dependence in time, t, for the solute

velocity (and thus the reaction rate) is nearly a power-law,

while the spatial dependence (on x) deviates further from

power-law behavior. Functional dependences are referenced

to a fundamental (pore-scale) fluid velocity v0 (which can of-

ten be determined or guessed) and to either a fundamental

time scale t0 or a fundamental spatial scale x0. When spatial

heterogeneity is relevant at the scale of a single pore, then x0

is the pore length, the pore crossing time t0¼ x0/v0, and from

any two of these values (x0, t0, and v0), the third can be deter-

mined. The assumed proportionality between the reaction

rate and the solute velocity generates for reaction rates the

same dependence on x and x0, or t and t0 as for solute velo-

cities. The interpretation of the scaling of surface reactions

in porous media is thus greatly simplified.

Our conclusions do not depend on specifics such as min-

eralogy or tectonic regime. We have seen relevant variations

in only two parameters, namely, temperature and velocity of

the advecting fluid, both of which are affected by climate. In

one experimental case (Liu et al., 2008), the advective flow

paths appeared to exhibit two-dimensional connectivity

in invasion percolation rather than the expected three-

dimensional connectivity in random percolation. The

observed change in scaling was exactly as expected from the

fractal dimension of the percolation backbone, Db (Sheppard

et al., 1999), in different universality classes. The choice of

universality class depends on conditions of saturation (the

fraction of the pore space occupied by water) and the con-

nectivity of the flow paths. Two-dimensional invasion perco-

lation is consistent with unsaturated flow (the pore space

only partially filled with water) along surfaces (e.g., frac-

tures; Glass et al., 2005), while 3D random percolation

applies to saturated flow (the pore space completely filled

with water). Weathering rind formation on surface clasts

appears to follow scaling predicted for unsaturated flow con-

ditions, as would be expected.

THEORY

Our theory for conservative solute transport was first

developed in Hunt and Skinner (2008), while the temporal

evolution of the solute’s spatial distribution was first dis-

cussed in Hunt and Skinner (2010a) and Hunt et al. (2014).

Below we give a brief overview. New in this communication

are the explicit calculation of the solute velocity from the

temporal evolution of the spatial solute distribution, and the

comparison of predicted solute velocity with experimental

results from reaction rate scaling.

Many features of solute transport are poorly described by

the traditional continuum mechanics approach. In particular,

the Advection-Dispersion Equation (ADE), based on the

assumption of Gaussian mixing (Bear, 1972), does not predict

the observed long tailed distributions (Cortis and Berkowitz,

2004) nor does it yield the observed proportionality between

the variance in the distribution and the square of the solute

transport distance (Berkowitz and Scher, 1995; Berkowitz

et al., 2006). But the transport theory of Hunt and Skinner

(2008), based on percolation theory applied to groundwater

transport, both reproduces and predicts the experimental

results. In particular, we see (Ghanbarian-Alavijeh et al.,
2012) that the fractal dimension of the percolation backbone,

together with system-specific information about the pore size

distribution, accurately predict the saturation dependence of

the solute arrival time distribution. The predicted and experi-

mentally observed distributions agreed almost exactly over

three orders of magnitude, with only slight adjustment of the

fundamental time scale, t0 (Ghanbarian-Alavijeh et al., 2012).

Consider the flow paths through a complex, disordered

medium described by a wide distribution of local flow resis-

tances. Under a wide range of conditions, critical path analy-

sis (Pollak, 1972; Hunt, 2001) can generate accurate results

for the hydraulic conductivity K (Ghanbarian-Alavijeh and

Hunt, 2012). The basis of critical path analysis is that K
scales inversely with the smallest possible value of the

075403-2 Hunt et al. Chaos 25, 075403 (2015)
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largest resistance on a continuously interconnected path

through the system. This conceptual approach addresses the

two acknowledged barriers (Freeze, 1975; Gelhar, 1986; and

Dagan and Neuman, 1997) to understanding flow and trans-

port: heterogeneity and connectivity.

Our theoretical description of solute transport, while

related to this picture of K, is based on enumerating all the

transport paths through a system of a given length. We

organize the enumeration using the structure of percolation

theory (Stauffer and Aharony, 1994; Sahimi, 1994; Hunt,

2001; and Hunt and Skinner, 2010a). The organization has

its conceptual basis in the tendency for flow to maximize dis-

sipation by taking paths of lowest cumulative resistance. But

avoiding large resistances tends to increase the length of a

path. Critical path analysis uses the percolation threshold to

define the smallest resistance value for which a continuous

interconnected path across the system can be found. Exactly

at the threshold, however, the length of interconnected paths

tends to infinity. This competition, between minimizing the

controlling resistance value, and minimizing the path length,

allows determination of an optimal theoretical arrival time,

which corresponds to the peak arrival time in experiments.

The long tail in the distribution results from the increasingly

tortuous pathways, with tortuosity diverging precisely at the

threshold (Hunt and Skinner, 2008). An important distinction

(Lee et al., 1999) is that the fractal dimension of the percola-

tion backbone governs solute arrival times, whereas the frac-

tal dimension of the optimal (shortest; Cieplak et al., 1996;

Porto et al., 1998) paths determines the geometrical tortuos-

ity, relevant for path length calculations, and also useful for

hydraulic and electrical tortuosity. The time result has been

verified by comparison with transient photoelectric currents

in amorphous semiconductors and polymers (Hunt et al.,
2011), while the distance has been verified through compari-

sons with measured and calculated hydraulic, electrical, and

diffusive tortuosities (Ghanbarian et al., 2013a; 2013b).

Consider first the probability distribution function, W(g),

of local conductance values, g. These local conductances

correspond to regions of pore space in the model, so they

also contribute to the total pore volume. For a regular net-

work model, W(g) can be normalized asð1
0

WðgÞdg ¼ 1: (1)

We are interested in the integralð1
g

Wðg0Þdg0 ¼ pðgÞ; (2)

which represents the cumulative distribution of conductance

values greater than a given value, g. As g is reduced from its

largest possible value, the probability p is increased. The

value of g for which p¼ pc—the critical percolation proba-

bility for the given network—is defined as gc. The procedure

to generate gc thus satisfies our requirement that it represent

the largest possible value of the smallest conductance on a

path of continuously interconnected conductances that spans

the system.

This problem was reformulated in terms of the total pore

volume by allowing g to be a specific function of pore size.

Many complicated methods for making this association are

available in the literature, but we followed a relatively sim-

ple procedure. Initially, we used the Rieu and Sposito (1991;

henceforth RS) discrete random truncated fractal model as a

parsimonious means to represent pore-size heterogeneity, in

other words for expedience. In order to be able to account

for a wider range of media, we later generalized this model

to a continuous form of the Bird et al. (2000) pore-solid frac-

tal mode (e.g., in Ghanbarian-Alavijeh et al., 2012). So far,

this theoretical construction has been almost universally suc-

cessful, indicating that either (1) it is well suited to describ-

ing many real systems, or (2) details of the medium are not

critical to the final result.

To date our comparisons with chemical reaction rates
have only utilized the original, and simpler, RS model. In the

present treatment, we write the porosity / as a fractional

pore volume, integrated over all pore radii. The volume of a

pore is proportional to r3, while the probability distribution

function (pdf) for the pore radius r is given by W(r) (between

the limits r0 and rm). The pore volume with radius between r
and rþ dr is r3W(r). Use of r3 is consistent with any pore

shape which preserves the relationships between the mean

pore dimensions with increasing pore size (a constant aspect

ratio). The porosity / is thus

/ ¼
ðrm

r0

r3WðrÞdr: (3)

For a truncated power law pore size distribution, W(r) is pro-

portional to r�D�1, where D is the fractal dimensionality of

the pore space. For example, a value D¼ 1.0 indicates a nar-

row pore size distribution; wide pore size distributions have

D approaching 3.0. A suitable choice of normalization con-

stant now retrieves the known RS result for the porosity

/ ¼
ðrm

r0

3� D

r3�D
m

r2�Ddr ¼ 1� r0

rm

� �3�D

: (4)

While not shown here, the result for the RS soil water reten-

tion curve also follows from this treatment. Assuming a con-

stant aspect ratio across all pore sizes, combined with

Poiseuille’s law for fluid flow through a tube, generates a

conductance (see Hunt, 2001) that is proportional to r3 as

well. The percolation probability p and its critical value pc

now correspond to a volume fraction, V, and its critical

value, Vc. Thus, one can write for an arbitrary smallest pore

radius, r� g1/3, on a path of interconnected conductances

V ¼
ðrm

r

3� D

r3�D
m

r0
2�D

dr0: (5)

With these equations, we now find an expression for V – Vc:

V � Vc / 1� g

gc

� �1�D=3

: (6)

The probability of finding an interconnected path of conduc-

tances greater than or equal to this particular g, that spans a
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system of length x, is then found using the cluster statistics

of percolation (Hunt, 1998). This probability can also be

regarded as the probability that a given value of a bottleneck

resistance governs the flow through the cluster. The cluster

statistics of percolation theory describe the frequency of

occurrence of clusters for any bond (site or volume) fraction

p with a given number s of interconnected bonds or sites,

where s is interpreted as a cluster volume (Stauffer, 1979).

The process of generating the desired distribution involves

integrating the cluster statistics over all cluster sizes larger

than the system in question, and also transforming the varia-

bles appearing in the cluster statistics (Hunt, 1998). One

such transformation, mentioned above, is the substitution

p – pc! V – Vc, which converts the system from site or bond

percolation to continuum percolation. Following this trans-

formation, Eq. (6) allows us to generate a function of the

minimum conductance value, g and its critical value, gc. The

second significant change of variables arises from the need

to change cluster volumes to cluster lengths; in principle,

this involves the mass fractal dimensionality of the percola-

tion clusters. However, use of the dimensionally dependent

scaling law (Toulouse, 1974) generates a length dependence

that is independent of details of the cluster (Hunt, 1998), and

even (to lowest order approximation) independent of dimen-

sion, provided one uses the dimensionally correct value of

the critical exponent � for the correlation length.

For a given rate-limiting hydraulic conductance g, at a

given distance x from the source, the desired pdf for the

probability that a specific value of a bottleneck resistance

governs the flow through the cluster is given in terms of an

exponential integral, Ei (Hunt and Skinner, 2008)

W gjxð Þ / Ei 1� g

gc

� �3�D
3

�����
�����
2

x

L

� �2
�

2
4

3
5; gmin < g < gmax; (7)

where L is a fundamental length scale (which for weathering

rates on particle surfaces we take to be on the order of a par-

ticle size), gc is the critical hydraulic conductance (propor-

tional to rc
3, where rc is the critical pore radius in the

medium), � is the correlation length exponent from percola-

tion theory (0.88 in a three dimensional system), and gmin

and gmax are (Ghanbarian-Alavijeh et al., 2012)

gmin ¼ gc

1� /
1� ht

� �3= 3�Dð Þ
; (8a)

gmax ¼ gc

1

1� ht

� �3= 3�Dð Þ
: (8b)

Here, ht is the percolation threshold of the medium,

expressed as a volumetric moisture content.

The topology of percolation theory, and the distribution

of controlling conductances for gmin< g< gmax, are then

used to calculate the time that solutes take to travel across

the system on such a path. This time, t, is a function of g

t ¼ t0

x

L

� �Db

h gð Þ; (9)

where t0 is the pore crossing time, and

h gð Þ ¼
D

3� D

1

1� htð Þ� Db�1ð Þ 1þ ht

1� ht

� �
gc

g

� �1�D=3

� 1

" #

� 1

g

gc

� �1�D=3

� 1

2
64

3
75
� Db�1ð Þ

; ð10Þ

where Db is the fractal dimensionality of the percolation

backbone. Note that h(g) diverges as a power law for g¼ gc.

The exponents Db and �, whose values are known from per-

colation theory, are critical to the form of the long-tailed dis-

tribution and thus the scaling of the solute velocities.

Equations (7) and (9) (Hunt and Skinner, 2008, and subse-

quent publications) may be combined using W(t j x)dt
¼ gW(g j x)dg to find the arrival time distribution, W(t j x) as

a function of position, x, where W(g j x) is calculated using

Eq. (7), and dt/dg using Eqs. (9) and (10). Note the factor g
in the identity. This factor makes the solute transport propor-

tional to the fluid flux on each particular pathway, since that

flux is proportional to the smallest conductance included.

The actual calculation of the arrival time distribution

involves a numerical procedure which was described in

detail by Hunt and Skinner (2008).

Following Hunt and Skinner (2008) and Hunt et al.
(2011), we used the results of Lee et al. (1999) to assign Db

as the exponent for the typical system crossing time. Thus,

the typical time taken for a solute particle to enter a system

at one side and exit the system a distance x downstream is

proportional to xDb, where Db> 1. In three dimensions and

for random percolation (appropriate for fully saturated con-

ditions; see Sheppard et al., 1999), Db¼ 1.87. Since Db> 1,

the solute velocity is a decreasing function of both time and

of solute transport distance. If Db¼ 2, and h(g) could be

ignored, then solute velocity would scale exactly like diffu-

sion. But because these conditions are not fulfilled, we have

the result that the solute velocity scaling looks very much

like diffusion at first, but changes to a steeper dependence at

later times. At the length scale of a single pore, where the

ADE is valid (Neuman, 1990; Hunt et al., 2011), t0 is propor-

tional to a distance divided by a fluid velocity: the pore-scale

solute velocity is identical to the pore-scale fluid velocity.

Since t0 is actually obtained as an integral over the conduct-

ance distribution, t0 is also inversely proportional to the min-

imum conductance on the path, meaning that the solute

velocity so obtained is equivalent to a solute flux.

When the known statistics of g are applied, Eq. (9)

might be thought useful for finding a mean travel time.

However, with Db¼ 1.87, the tail of the distribution is so

long that such a mean travel time does not exist, as discussed

in Berkowitz and Scher (1995). But even without a mean

travel time, one can still find the mean position, hxi, of the

solute at any given time, from an integral over the derived

spatial distribution of the solute, using an equation analogous

to Eq. (9) (Hunt and Skinner, 2008). Such a calculation was

verified (Hunt et al., 2011) to give a result for the typical

(not mean) time for a particle to cross the system, t(x) / xDb,
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in the case of electron transport in disordered semiconduc-

tors and polymers (Pfister, 1974; Pfister and Scher, 1977;

Pfister and Griffiths, 1978; Tiedje, 1984; and Bos et al.,
1989). Particularly important in this comparison is that Db

values from random percolation (Sheppard et al., 1999) gen-

erate the appropriate scaling of typical travel time as a func-

tion of system length, for both the three-dimensional

transport in amorphous semiconductors and the two-

dimensional transport in polymer systems.

Using hx(t)i, one can obtain a mean solute velocity:

v¼ d h x(t) i / dt. When the value of the solute distribution

variance is also known, one can predict related quantities,

such as the longitudinal dispersion coefficient and the disper-

sivity as functions of either transport distance or of transport

time (the elapsed time over which transport occurs) (Hunt

and Skinner, 2010a; 2010b; and Hunt et al., 2011). The pre-

dictions given in those papers were made with the same cal-

culations that are applied here. The mean solute velocity

predicted depends on transport time and can be written as

v tð Þ ¼ L

t0

f
t

t0

� �
� v0

t

t0

� � 1�Dbð Þ=Db

; (11)

where v0� L/t0 and the function f must be determined

numerically via the procedure referenced above using the

probabilistic transformation. However, evaluation of Eq.

(11) at t¼ t0 gives f(1)¼ 1. Using the mean solute velocity,

one can transform Eq. (11) so that x is the independent vari-

able. Note that the approximate equality, which is all that

can be obtained analytically, holds only for certain ranges of

time, specifically at smaller time values. The full numerical

solution predicts a change to a steeper reduction in reaction

rate with time scale at larger length scales. The hypothesis

here, that surface reaction rates R(t) are solute transport lim-

ited, makes them proportional to solute velocities and pro-

vides an unexpected opportunity to verify that the theoretical

result in Eq. (11) holds also for groundwater transport.

Therefore

R tð Þ ¼ R0

v0

L

t0
f

t

t0

� �
� R0

t

t0

� � 1�Dbð Þ=Db

; (12)

where R0 is the initial reaction rate, i.e., the value of R when

t¼ t0, or x¼ x0. Again, the approximate equality holds only

for early time. We stress that we do not have a general theo-

retical approach for finding R0, the value of which will

depend on quantities such as fluid velocity, saturation condi-

tions, temperature, pH, and potentially other inputs such as

changes of the surface characteristics over time. But what

has been considered most puzzling about reaction rates has

been their time (or length) dependence, and that is what is

addressed in Eq. (12). Equation (12) can be transformed so

that x is the independent variable by substituting t(x), as

obtained from Eq. (9). After such a transformation, the ap-

proximate power-law result for the reaction rate would be

R0(x/L)1�Db, which can also be written as

R xð Þ / LDb

t0Db

x1�Db : (13)

When Eq. (13) is valid (at shorter length scales, as will be

seen), reaction rates decay according to the power 1�Db.

The value of t0 provides a relevant scale to the time

(horizontal) axis. Particle-sized reactant sources (e.g., for

chemical weathering and Uranium dissolution) provide a

particle-size scale for heterogeneity, meaning that L can of-

ten be assumed to be a characteristic particle size, as noted

above. We typically do not know the value of t0 in Eqs. (11)

and (12), although it can be calculated under well-defined

laboratory conditions. For comparison with experimental

data, it is also necessary to define a vertical scale. This can

be either a fundamental rate constant (R0 from Eq. (12)), or a

fundamental velocity (v0 from Eq. (11)).

Sometimes one is interested in how reaction rates

depend on the scale of measurement, rather than the scale of

transport. For example, Navarre-Sitchler and Brantley

(2007) found a power-law increase of apparent reaction rates

with increasing scale of measurement, and interpreted this

result in terms of a reaction front with a fractal structure.

Percolation theoretical treatments also generate such fractal

surfaces, and in principle, it is possible to calculate the ge-

ometry of such a reaction front within the same theoretical

framework that generates the solute velocities. In particular,

the perimeter of a percolation cluster in three dimensions has

two contributions (Kunz and Souillard, 1976; Hunt and

Ewing, 2009): one proportional to the square of the radius,

and one proportional to the volume of the cluster. The theo-

retical results from percolation theory apply only when the

linear dimension of such a cluster is on the order of at least

ten individual units (such as bond lengths, pore separations,

or a surface roughness scale; Hunt, 2001). Let us define the

radius of a large cluster as the correlation length, v, from per-

colation theory. Consider first the term in the surface area

proportional to the cluster volume. The volume of a three-

dimensional percolation cluster of length v is proportional to

v 2.5: M / v Dm, where Dm� 2.5 is the universal mass fractal

dimension of large clusters near the percolation threshold

(Stauffer and Aharony, 1994; Hunt and Ewing, 2009).

This means that the surface area A has two terms: one

proportional to v2, and the other proportional to v2.5. Thus,

we have

A � Cv2
0

v2

v2
0

þ v2:5

v2:5
0

 !
: (14)

Equation (14) contains an unknown numerical factor C, and

a scale factor v0. The scale factor v0 represents a length scale

above which the fractal properties of the surface of percola-

tion cluster begin to dominate, so v0
2 is also a fundamental

area. The value of v0 cannot be smaller than the size of a

molecule that probes the surface. In fact, however, the above

argument on the minimum cluster size implies the necessity

of using a value for v0 of at least a factor 10 larger than a

molecular diameter, since the cluster surface does not exhibit

fractal characteristics at smaller length scales.

COMMENT ON SCALE FACTORS

It has already been pointed out (Chao et al., 2000) that

two values of the length scale can be important for solute
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transport. One is the transverse extent of the initial solute

distribution, and the second relates to the medium. If there is

only a single scale of heterogeneity in the medium, then the

larger length scale, whether characteristic of the medium or

the plume, is most important. However, when the medium is

heterogeneous at many (or all) length scales, then the only

relevant length scale is that set by the experimenter. In a pre-

vious work (Hunt et al., 2011), we suggested that the uni-

formity in the observed data for the dispersivity (1600

values), which were all consistent with the choice of a length

scale of 1 m, was due to the relative consistency of the size

of experimental apparatus, which in turn was related to the

size of the experiment. We will see that for most experiments

related to chemical reaction rates in porous media, the rele-

vant length scale is close to the size of a single pore, mean-

ing that the relevant heterogeneity scale is set by the

variability in particle mineralogy. Interestingly, a quite dif-

ferent dominant length scale emerges when we apply our cal-

culations to industrial agriculture.

NATURAL FLOW RATES

In order to compare the theory with field weathering

rates and fundamental hydrological scales, it is necessary to

characterize flow rates. We contend that for the majority of

field and laboratory data related to these topics, reaction rates

are controlled primarily by transport. The following data

summaries indicate that the predominant range of observed

flow velocities is almost precisely the theoretical range of

fluid flow velocities over which reaction rates are transport

limited.

Consider a saturated hydraulic conductivity value

KS� 10�4 cm/s (a median order of magnitude for crustal

materials; Anderson and Anderson, 2010) under conditions

of gravity flow. This combination, for porosity /¼ 0.5,

would be consistent with a single pore flow rate of about

2 lm/s. This flow rate, i.e., 2� 10�6 m/s, is the median value

given by Bl€oschl and Sivapalan (1995) as dominating

groundwater flows (unconsolidated media). The darkly

shaded region in Fig. 2 of Bl€oschl and Sivapalan (1995),

within which most measurements are alleged to fall, corre-

sponds to a variation of about two orders of magnitude in

flow velocity centered around this value. While KS in crystal-

line rocks can be much smaller, similar K values are found in

sedimentary rocks where, however, a smaller porosity gener-

ates larger pore-scale flow rates. Such a range of flow rates is

nearly the same as the 0.5 lm/s suggested by Maher (2010),

and the 100 lm/s suggested by Molins et al. (2012), as

bounding the regime where chemical reactions are transport-

limited. In particular, reaction rates are shown by Maher

(2010; her Figures 4 and 5) to be proportional to flow rates

in the transport-limited regime (flow rates greater than

16 m/yr in her analysis, which is equal to 0.5 lm/s). As

an upper limit, Molins et al. (2012) assert that transport

control is expected only for flow velocities less than

100 lm/s, about two orders of magnitude greater than the

lower limit. A similar range of flow velocities under which

chemical reaction rates are transport-controlled is given by

Salehikhoo et al. (2013).

Fig. 1 is adapted from Loague and Corwin (2006). In

addition to reproducing their placement of various processes,

we also plot a fluid flow rate of 2 lm/s and the associated 3D

solute velocity function. In each case, we give the appropri-

ate two order of magnitude envelope in the scaling, attribut-

able to a two order of magnitude range in hydraulic

conductivity. The solute and fluid velocities in the figure are

constrained to be equal at the scale of 1 lm. The choice of

1 lm as a fundamental scale for heterogeneity is intended to

be compatible with a pore scale, without contending that this

value is exact or universal.

In this context, the noteworthy features of Fig. 1 are that

(1) the vegetation time and length scales (relevant to indus-

trial agriculture: plant canopy, tillage ridge, crop) tend to fol-

low the line of constant fluid velocity, while (2) the chemical

process length and time scales associated with chemical

processes (relevant to weathering, chemically limited land-

scape evolution, and soil development) follow the line of

constant solute velocity. Most vegetation features lie

between the two lines. Our interpretation is that natural proc-

esses that follow the solute velocity line are chemical-

limited, while those that follow the fluid flow velocity line

are water-limited. The equality of solute and fluid velocities

at the scale of a single pore suggests that the relevant

FIG. 1. Depiction of spatial and temporal scales of various processes of rele-

vance to hydrology (after Loague and Corwin, 2006). Lines of slope 1 on

log-log graphs represent processes of constant velocity. The atmospheric

processes tend to follow a line that corresponds to a velocity of a few meters

per second out to continental scales. The surface processes are in accord

with a velocity that is closer to centimeters per second. A typical value of

the saturated hydraulic conductivity in crustal materials is 10�4 cm/s

(Anderson and Anderson, 2012) which, under conditions of gravity flow,

leads to the same order of magnitude pore-scale fluid velocity. Following

Bl€oschl and Sivapalan (1995), we represent that fluid velocity and approxi-

mately one order of magnitude variability on either side, in blue, as reflect-

ing typical fluid flow velocities and their variability in the subsurface. The

scaling of solute transport in time, t¼ t0(x/x0)Db, is shown in brown. In this

case t0¼ 1 s at the scale of a pore of radius x0¼ 1 lm, where solute and fluid

velocities are identical, if the relevant heterogeneity is mineralogical, i.e.,

associated with chemical variability in micron-sized particles. The lighter

colored regions on both sides correspond to the variability in solute transport

scaling introduced by the depicted variability in fluid velocity. Note that the

placement of most processes associated with soil development and chemical

weathering along the approximate solute velocity line, while vegetative

processes tend to lie in between the solute and fluid flow velocities.
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heterogeneity is set by mineralogical variability among the

individual particles. We will see below that the fundamental

length scales associated with chemical weathering are indeed

frequently in the range of microns to millimeters. However,

as we previously noted (Hunt et al., 2011), field experiments

on solute dispersion tend to introduce a relevant length scale

of approximately 1 m. This fundamental length scale is trace-

able to the experimentally imposed solute plume, and shows

up in universal scaling behavior of the dispersivity at length

scales substantially longer than 1 m. Interestingly, a funda-

mental length scale for solute transport that is orders of mag-

nitude larger than a pore scale can also result from relatively

uniform application of chemical fertilizers over agricultural

length scales.

If the fundamental scale of heterogeneity employed for

Figure 1 is increased from 1 lm to 1 m, the solute transport

line is displaced downwards by 6 orders of magnitude and

diverges from the constant flow line at about the placement

of tillage ridge. Such a change in the heterogeneity scale can

be effected by applying nutrients homogeneously over scales

of at least meters. While 1 m of vertical soil development,

tied to natural heterogeneity at roughly the micron scale,

shows up at about 1000 years, tillage ridge structures, also at

nearly a meter, are displaced to a time scale of less than a

month, more than four orders of magnitude shorter. Of

course, it is possible to dig a structure at virtually any length

scale in days or less, but only surface patterns like tillage

ridges are suitable to agriculture. This is then a critical

advantage of industrial agriculture, which can reduce time

scales for vegetation development by orders of magnitude

with the simple expedient of homogenizing the nutrient

delivery.

MATERIALS AND METHODS

In order to evaluate the proposed percolation theoretical

approach, we used several datasets available in the literature.

For each of these datasets, we discuss here our estimation of

the relevant parameters. The datasets are divided into those

for which we can estimate both x0 and t0, and those for which

only x0 is known or estimated.

Datasets for which we can estimate both t0 and x0

White and Brantley (2003)

The authors reported weathering rates versus time for

silicate minerals, in particular, plagioclase, K-feldspar, horn-

blende, and biotite, for both laboratory and field conditions

(Tables IV–VII in the original article). This database covers

a time range from 10�2 to 107 years. While accurate flow

rates cannot be calculated for field conditions, the article

presents data for an experiment intended to correspond to

field conditions (fresh Panola plagioclase or granite), at least

in its general characteristics. White and Brantley (2003)

crushed 750 g of granite and placed it in a column 100 cm

long and 2.4 cm in diameter, leading to a bulk density qb of

750 g/[100 cm(p)(1.2 cm)2]. Using a value of q¼ 2.7 g/cm3

for the particle density of granite, and applying the equation

qb¼ (1�/) q, one finds /� 0.4 for the porosity. At the

given volume flux of 10 ml/h through this column, mass con-

servation gives a pore-scale velocity of about 15 lm/s. Given

that the particle sizes in the experiment range from 0.25 mm

to 0.85 mm, we estimate a typical pore radius as 0.3 times

the typical particle radius (Gvirtzman and Roberts, 1991), or

about 0.15 mm. The inferred pore size distribution is actually

so narrow that one should not necessarily expect percolation

theory to be the best means to enumerate the solute transport

paths. The purpose of this calculation is to check the reason-

ableness of the absolute time scales inferred from the theory.

With a typical pore size of 150 lm, a typical pore crossing

time is about 150 lm/15 lm/s¼ 10 s. With a column length

of 100 cm, one can find between 1000/0.85¼ 1176 and

1000/0.25¼ 4000 particles along the length of the core, and

a similar number of pores. Core solute transit times of

between (10 s) (1176)1.87¼ 0.17 yr and (10 s)

(4000)1.87¼ 1.7 yr would be expected (from Eq. (9)), compa-

rable to the time values in the experiment that range from

0.19 yr to 6.2 yr. For establishing the pore scale reaction rate,

we use the scaling relationship R¼R0 x1�Db from Eq. (13) to

translate the measured reaction rate at the shortest time inter-

val (for the full column length) to its value at a single pore

scale. For this single calculation, we used a geometric mean

(1176� 4000)0.5 value for the number of pores along the col-

umn. Note that one cannot then use inferences from the ADE

to extract a spatial tortuosity factor as proportional to the

temporal tortuosity. The spatial tortuosity exponent in three

dimensions (for conditions of full saturation; Sheppard et al.,
1999) is 1.43, which would yield total solute path lengths of

21 m–35 m for a 1 m long column.

For comparison with the field data, we plot the tabulated

data of White and Brantley on a horizontal axis in units of

years, and normalize the vertical scale to the greatest

observed rate.

Du et al. (2012)

The experiment was performed in a stirred flow cell

25 mm tall with 0.5 g of particles in 10 ml of liquid—in other

words, it was a suspension, not a grain-supported medium.

The data were collected from elution experiments for six dif-

ferent samples that were sieved into 5 distinct size fractions:

<75 lm, 75–500 lm, 500–2000 lm, 20–2000 lm, and two

replicates for the 2000–4000 lm gravel fraction. A synthetic

groundwater with a pH value in the range of 7.8–7.9 was

applied to study Uranium release from these different size

fractions. The output data were concentration as a function

of pore volume, which for constant flow rate could be

assumed to be proportional to travel time. In Table I, we use

the published particle sizes and the particle numbers derived

therefrom to calculate mean particle separations and the flow

time (neglecting effects of stirring). The mean distance

between the particles was calculated by assuming the par-

ticles were equidistantly dispersed. The total flow time was

calculated from the product of an interparticle flow time and

the quotient of the column length to interparticle distance

raised to the power 1.87. Results from two different runs of

the experiment on the largest particles were compared

(Fig. 2). In order to generate the same regression coefficients
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in both experimental results, the time scale of the second run

had to be chosen a factor 1.86 larger than for the first run

(9.4 h rather than 5.2 h, as given in column 7), leading to the

conclusion that the flow rates were probably not identical,

but carried an uncertainty of about a factor 2. For later com-

parison with experiment, we used first the calculated column

crossing time to normalize the time axis, and subsequently

the values in parentheses.

Liu et al. (2008)

Liu et al. (2008) measured the desorption of U(VI) from

contaminated sediments collected at the Hanford 300 area of

the Hanford site. In a small column (10.5 cm length � 2.4 cm

diameter), sediments with size of 2 mm and less were packed

with a porosity of 0.41. In a large column (80 cm length

� 15 cm diameter), cobbles and gravels were also included to

investigate the effect of such large particles on U(VI) desorp-

tion. Applying the medium descriptions with the given

pore-scale velocity, we used the geometric mean pore size to

calculate fluid advection times for single pores, t0, to be

0.08 min for the short column and 0.19 min for the long. The

geometric mean pore size was inferred from the geometric

mean particle size, itself derived from the particle-size distri-

bution. R0 was calculated similarly as for White and

Brantley’s (2003) Panola plagioclase, exploiting the known

scaling of R with time at small times: R(t/t0)0.47¼R0. The

columns were saturated from the bottom with synthetic

groundwater, and then a constant flow rate was applied to

leach the sediments: 8.6 cm/h for the short column and

3.52 cm/h for the long. Particularly with such coarse Hanford

sediments, wall flow may not be negligible (Cherrey et al.,
2003), and indeed our investigations (Ghanbarian-Alavijeh

et al., 2012) of those arrival time distributions showed evi-

dence of 2D flow attributable to wall flow. For the present

data, comparison with experiment will indicate that wall flow

under unsaturated conditions dominated the solute delivery in

the short columns.

Zhong et al. (2005)

The sediment was collected from the Oak Ridge site in

eastern Tennessee to investigate the microbial immobiliza-

tion of groundwater U(VI). Uranium(VI) sorption to the

sediment and desorption were performed with and without

Fe(II) at different pH values. For the purpose of this study,

we considered only the experiments that showed U(VI) de-

sorption at pH 7. We used the initial data points to generate

both the fundamental reaction rate and the fundamental time

scale in each case. For the case that the iron concentration

was 0 mmol/g, the initial Uranium concentration was

158 lg/l at 5.3 days. For the case that the iron concentration

was 0.02 mmol/g, the initial Uranium concentration was

226 lg/l at 5.3 days.

Datasets for which only x0 is known

Maher (2010)

The data, collected from different published papers, are

chemical weathering rates of granitic alluvial materials and

sea-floor sediments as a function of fluid residence time in

the range of 10�3–105 yr, weathering rates versus flow rates,

and surface ages (104–106 yr) versus flow rates. A fundamen-

tal “surface controlled” reaction rate of 10�2.3 yr�1 is

assumed in Maher. For analyzing her data, we appropriate

this value for use as R0. In her Figure 7, the collected data

TABLE I. Calculated flow characteristics from the Du et al. experiment (2012).

Diameter, lm
Number of particles

in 0.5 g

Mean distance

between particles, lm

Flow time between

particles, s

Column crossing

time, hLower bound Upper bound Geometric mean

20 75 38.7 6 202 812 117 28 177 (93)

75 500 193.6 49 622 586 141 43.8 (68)

500 2000 1000.0 360 3028 727 10.5 (34)

20 2000 200.0 45 044 606 145 42.3

2000 4000 2828.4 16 8563 2550 5.2a

aFor comparison in Fig. 3, 5.2 h was used for both runs.

FIG. 2. Temporal scaling of elution rates of Uranium in two separate column

experiments of Du et al. (2012). The two experiments were conducted nomi-

nally under the same conditions and with the same size range of particles

within the column. In order to minimize the differences in regression equa-

tions, which in this case corresponds to an intersection of the two regression

lines in the middle of the data range, the two values of t0, each proportional

to the inverse of the fluid velocity, had to be chosen to be a factor of 1.86

different from each other. For the same column length and the same particle

size distribution, this result could imply pore-scale velocities in the two dif-

ferent experiments in the same ratio. However, it could equally imply an

equivalently different typical particle separation.
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for the spatial scaling of reaction rates extrapolate to

10�2.3 yr�1 at about 1 mm. Using the flow rate of 0.05 m/yr

(from Maher’s Figure 7) assumed relevant for these data,

and a fundamental time scale of about 10�2 yr (from

Maher’s Figure 2) one finds a fundamental length scale about

0.5 mm. We used the mean of these two values,

x0¼ 0.75 mm, as the fundamental length scale for this

dataset.

We also compare Maher’s data for the temporal scaling

of reaction rates directly with the data of White and Brantley

(2003), and use the actual time scales for both. However, in

that comparison we scale the reaction rates from Maher to

10�2.3 yr�1, just as in the spatial comparison.

Salehikhoo et al. (2013)

Column experiments on magnesite dissolution were per-

formed in columns of length from 5 to 22 cm, and at various

flow velocities. Results were reported in terms of the

Dammkohler number, DaI¼ x/(v0 sR), where sR is a reaction

time and x the column length. For constant fluid velocity v0,

the Dammkohler number is therefore a proxy for the column

length. In their experiments, magnesite and quartz were both

ground to a size range of 300 lm–540 lm, leaving a typical

particle size (geometric mean) of about 400 lm. Using the

commonly assumed ratio of pore size to particle size of 0.3

gives a mean pore size of about 120 lm, which we take as

the fundamental length scale. Salehikhoo et al. (2013) dem-

onstrated that data for different column lengths and flow

velocities could be reasonably collapsed to a single curve

when represented in terms of the Dammkohler number. We

digitized their data and chose to represent the dependence of

the reaction rate on system length, in accord with the obser-

vation above that for a constant flow velocity, the

Dammkohler number is proportional to the system length.

This means that a factor of 5 range in Dammkohler numbers

corresponds to a range of system lengths of the same factor 5

and allows us to find approximate positions for 5 cm and

22 cm on the horizontal axis, at the beginning and end of

their data range.

Peng et al. (2012)

Peng et al. measured Uranium and Copper concentra-

tions as functions of depth from the surface of an individ-

ual basaltic clast using laser ablation. The depths ranged

from 0.6 lm to 29 lm. They reported that the copper and

uranium concentrations were highly correlated, so we plot-

ted them simultaneously. Our strategy for choosing funda-

mental length and time scales was to normalize both the

copper and the uranium depths and their rates to their

initial values generated at a depth of slightly less than

1 lm. Presented in this manner, the two data series are

nearly indistinguishable.

For more information about the datasets used in this

study, the interested reader is referred to the original pub-

lished papers.

RESULTS AND DISCUSSION

The above calculations or estimations of R0 and t0

allow graphical representations of different datasets on the

same plot. In order to emphasize universality, we utilize

this information wherever possible. Note that we use the

same theoretical function in every case, meaning that the

model morphology and the fluid flow characteristics are

always assumed to be the same. These particular assump-

tions correspond to random percolation exponents (valid

for saturated conditions) and a fractal dimensionality of

the pore space of 2.95. For porosities of 0.2–0.4, D¼ 2.95

corresponds to pore size ranges of between 100 and

20 000, respectively, representing fairly heterogeneous

materials.

The data from Du et al. are shown together in Fig. 3(a).

To construct this figure, we used the raw data for the concen-

trations, and transformed the pore volume data to a column

crossing time using the values calculated in Table I, column

7. We did not assume any variation in the fundamental

FIG. 3. (a) Temporal scaling of elution rates for all experiments of Du et al. (2012). The distinction in the experiments is that they are conducted on media

with different particle size distributions. The time values are scaled to the calculated values of t0 and compared with predictions from 3D random percolation

of highly heterogeneous media (fractal dimensionality D¼ 2.95). (b) The same as for Figure 3(a), except that in three of the six cases the value for t0 was cho-

sen to be approximately a factor 2 different from the calculated value. Note that such a variability in t0 has already been established in the case of the largest

particle fraction in Figure 2. Reprinted with permission from Hunt et al., “Applications of percolation theory in geochemistry: Silicate weathering,” in

Encyclopedia of Complexity and Systems Science, 2nd ed., edited by Andrew Spencer (Springer, 2015). Copyright 2015 Springer Science þ Business Media.
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reaction rate (or, therefore, the initial concentration). Thus,

the comparison with experiment uses two adjustable parame-

ters, t0 and R0. Because there is uncertainty in the flow rate

of about a factor 2 (see earlier discussion of Du et al., 2012),

we adjusted the times of three of the six experiments by a

factor of roughly 2 (the values in parentheses in Table I, col-

umn 7) to generate Fig. 1(b). This increases to 5 (three ex-

perimental, two theoretical) our total number of adjustable

parameters for comparing one function with six different ex-

perimental conditions. With these 5 total parameters we can

fit four values of the slope, and three times at which the slope

changes for each of six different experiments, for a total of

42 different constants.

Next consider the experimental data from Zhong et al.
(2005), White and Brantley (2003), and Liu et al. (2008)

(Fig. 4). For these three datasets, knowing the actual flow ve-

locity allowed us to calculate t0 quite accurately. In Zhong

et al. (2005) and Liu et al. (2008), we used the characteristics

of the column to generate R0 at the time scale of t0 (and scale

of a single pore) by applying the simple power-law scaling

of reaction rates at short times (Eq. (12)). Note that this

power-law scaling would represent a slight underestimation

of the initial R0 for the White and Brantley data (fresh

Panola plagioclase), and hence overestimation of R/R0, since

the values of t/t0 exceed somewhat the maximum value for

which the simple power law relationship is valid.

Consequently, we use the full numerical solution to generate

R0 from the values of R at the smallest times measured. For

the first data set (Zhong et al., 2005), we used the value of

the time at which a maximum concentration was reached for

t0, and that value of the concentration for R0. Consequently,

Fig. 4 compares a prediction with zero adjustable parameters

to three separate experiments.

In Fig. 5, we show together the field data for weathering

rates compiled by White and Brantley (2003) and Maher

(2010). R0 for Maher was given as 10�2.3, while for White

and Brantley we simply used the largest value measured,

which for most silicate minerals was 3.6� 10�11. Note

therefore that for both datasets, the largest individual values

of log(R/R0) are 0. The time scales for both are in years; we

have not attempted to find the fundamental time scales for

the hundreds of individual reaction rates tabulated. This par-

ticular comparison uses a two-parameter fit, with both R0

and t0 chosen to optimize the agreement between experi-

ment and theory. Recall that our prediction for the reaction

rates would exhibit a two order of magnitude variability at

any time scale due to the uncertainty in flow rate, and this

two order of magnitude variation is in exact accord with the

variability in flow rates for which reactions may be consid-

ered to be transport controlled (Maher, 2010; Molins et al.,
2012). Under the circumstances, the agreement obtained

between the theory and experiment is quite good. Navarre-

Sitchler and Brantley (2007) argue that when temperature

variability is accounted for, the remaining variability in

reaction rates is about two orders of magnitude. Thus, one

could reasonably conjecture that the variability beyond that

predicted is attributable to the lack of control of the temper-

ature variable.

In Fig. 6, we show field data and laboratory data

together for the scaling of chemical reactions with distance

or depth. The data that were given directly in terms of spatial

variables are taken from Maher (2010) and Peng et al.
(2012). The data from Salehikhoo et al. (2013), originally

given in terms of the Dammkohler number, DaI, are

FIG. 4. Temporal scaling of reaction rates in three separate experiments of

White and Brantley (2003) (weathering of fresh Panola granite), Zhong

et al. (2005) (microbial immobilization of groundwater Uranium VI), and

Liu et al. (2008) (long column experiment on desorption of Uranium VI

from contaminated Hanford site sediments). Note the equivalence in scaling

between immobilization, mobilization, and weathering. In two cases, the

values of t0 were calculated by standard methods for determining pore-scale

fluid velocities and pore crossing times, while R0 was obtained from the the-

oretical scaling relationship (Eq. (11)), while in the third case t0 and R0 were

simply referred to their initial values, as insufficient information to calculate

t0 was available. Because the same function with the same input parameters

(3D random percolation, strongly heterogeneous medium) was used as in

Figure 3 (and in all the remaining comparisons) this can be regarded as a

zero parameter prediction.

FIG. 5. Comparison of temporal scaling of field weathering rates with the

3D random percolation prediction for strongly heterogeneous media. As

shown in Hunt et al. (2014), the predicted function is consistent with a fluid

velocity of roughly 10 lm/s; Using the known proportionality of reaction

rates to fluid velocity for transport limited conditions, and the known rele-

vance of transport limited reactions for a range of roughly 1 to 100 lm/s

fluid velocities generates the envelope of predicted values shown. The meas-

ured values are from White and Brantley (2003) and Maher (2010). A value

for R0 was given in Maher, while the data collected by White and Brantley

was simply normalized to the largest value measured. Since there was no

knowledge of t0 for individual experiments, we used the same time scale as

the authors, in years.
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represented here as a function of length. The values of R0

and x0 for the data of Maher (2010) were discussed above in

Materials and Methods. R0 and x0 for the data of Peng et al.
(2012) were simply chosen as the largest R and correspond-

ing x0 value, respectively. The choice of x0 for Salehikhoo

et al. (2013) was also described in Materials and Methods.

Note that use of the value of R0 reported by Salehikhoo et al.
(2013) would not allow such outstanding correspondence

between theory and experiment. The value we use is

obtained by extrapolating the dependence R¼R0(x/x0)�0.87

from the smallest system sizes (5 cm) back to the dimensions

of a single pore (120 lm); this implies that, in our model, the

length dependence of the reaction rate sets on already at

120 lm, rather than at about 5 mm, as assumed by

Salehikhoo et al. (2013). Our value for R0 is thus about 1.5

orders of magnitude higher than the value given by the

authors. Consequently, Fig. 6 may be assumed to have a sin-

gle adjustable parameter. But our use of this parameter

implies that the reaction is transport-limited over a larger

range of length scales than was assumed by Salehikhoo et al.
(2013), a discrepancy that should be further investigated.

Our hypothesis that reaction rates are proportional to the ve-

locity, together with our result that R is proportional to x�0.87

for smaller distances, and a rather larger negative power at

larger distances, generates R�DaI
�1 as a very good approxi-

mation. Thus, our general results are compatible with the

statement of Salehikhoo et al. (2013) that reaction rates can

be scaled by the Dammkohler number.

While we have here shown that a large amount of data

are consistent with a single prediction, it should be empha-

sized that not all data can be explained by 3D random perco-

lation exponents. The exceptions that we have seen so far are

all consistent with 2D invasion percolation theory, which is

applicable for unsaturated flow along surfaces. The

appropriate value of Db in this case is 1.22 (Sheppard et al.,
1999), while � takes the value 4/3 (Stauffer and Aharony,

1994). This yields a scaling of R with t(Db�1)/Db� t �0.18. Of

all the data we have investigated in detail, we have only one

specific case for which this complication is observed: the

short column experiment reported in Liu et al. (2008). In

Fig. 7, we show the clear distinction between the results of

the short column and those of the long column. The exponent

extracted from the short column experiments is �0.17, and

from the long column experiments, �0.47, almost precisely

the predicted values, as was already apparent for the latter

case in the comparison from Fig. 4. An analogous result was

also found in the arrival time distribution in one Hanford site

sediment. In that case, the interpretation was that the two-

dimensional unsaturated conditions were a result of the rele-

vance of wall flow in the case that the individual particles

were large compared with the dimensions of the experimen-

tal apparatus. Note, however, that unsaturated flow and flow

along fracture surfaces can also be dominant in arid environ-

ments (Glass et al., 2005). Thus, it may not be surprising that

a collection of field data (Sak et al., 2003) for reaction rate

scaling in alpine areas of New Zealand (Chinn, 1981;

Knuepfer, 1994) show a weathering rind thickness depend-

ence x� t0.8, which our theory would predict to be

x�
Ð
v(t)dt¼

Ð
t�0.18dt¼ t0.82. The difference between the

observed exponent (0.8) and its theoretical value (0.82) is

probably insignificant.

In Figure 8, we compare the predicted and observed

dependences of reaction rates with the scale of the measure-

ment. We also compare these two results with those of a

theory that predicts a fractal reaction front, with a fractal

dimensionality of 2.33 as a fitted parameter. In percolation

theory, there are two contributions to the perimeter of a clus-

ter: one is proportional to the square of the cluster size and

FIG. 6. Spatial scaling of experimental and field reaction rates. The field

data were collected by Maher (2010) with the value of R0 given in that refer-

ence, and the calculation of x0 from Maher’s (2010) description was

described in the text. The extraction of x0 for the experiments in Salehikhoo

et al. (2013) was described in the text, as was the discrepancy in the value of

R0 given by those authors and our value. The values of x0 and R0 for the ex-

perimental data of Peng et al. (2012) were obtained from the initial values of

x and R. The same 3D random percolation scaling in strongly heterogeneous

media was assumed as elsewhere. Thus, five of the six scale factors in the

three experiments were fixed by the authors or by conditions. Reprinted with

permission from Hunt et al., “Applications of percolation theory in geo-

chemistry: Silicate weathering,” in Encyclopedia of Complexity and

Systems Science, 2nd ed., edited by Andrew Spencer (Springer, 2015).

Copyright 2015 Springer Science þ Business Media.

FIG. 7. A comparison of the extractions of the power-law decay exponents

from the two experiments of Liu et al. (2008). The value for the long column

(0.46) differs from the prediction (0.47) for 3D random percolation by a neg-

ligible amount, while the value for the short column (0.17) differs minimally

from the prediction for 2D invasion percolation (0.18). Reprinted with per-

mission from Hunt et al., Percolation Theory for Flow in Porous Media,

Lecture Notes in Physics, 3rd ed. (Springer, Berlin, 2014), Vol. 880, pp.

333–408. Copyright 2014 Springer Science þ Business Media. Properties

Based on Tortuosity (Fig. 11.35, p. 385).
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the other is proportional to the volume of the cluster. The

first term provides the horizontal asymptote for the reaction

rate at small cluster sizes. But percolation theory yields the

mass fractal dimensionality (�2.5) of clusters near the perco-

lation threshold, so that the fractal dimensionality is not a fit-

ting parameter; the percolation model therefore has one

fewer adjustable parameter than the fractal model.

We now consider why our particular results, derived for

solute transport, unite in understanding the various phenom-

ena discussed, and why this could not have been accom-

plished otherwise. The most important factors are (1) that the

solute velocity is proportional to the flow velocity, (2) the

time dependence of the solute velocity resembles the de-

pendence from diffusion closely (under saturated conditions

of 3D flow connectivity), and (3) is referred to a fundamental

length scale of heterogeneity. The resemblance to diffusion

coupled with the experimental results triggers association

with the ADE. But the proportionality of reaction rates also

to the flow velocity, as revealed in analysis of the experi-

ments of Salehikhoo et al., 2013 in terms of the

Dammkohler number, leads to confusion if a diffusion mech-

anism is invoked. Further, an interpretation of the time scales

in Figure 1 in terms of a flow velocity for water-limited proc-

esses, and diffusion for chemical-limited processes, would

not have united these processes at the length scale of a pore.

Such an interpretation would also never have revealed the

role of homogenization of solute delivery relevant to indus-

trial agriculture. It is the fractal structure of the critical (and

related) flow paths near the percolation threshold that govern

the solute velocity. Homogenization of the solute delivery to

any particular length scale larger than the natural heterogene-

ity leads to the elimination of the relevance of fluctuations in

solute concentration at smaller length scales. Reduction of

the size range of relevant fractal structures impeding trans-

port diminishes the tortuosity of the dominant paths, increas-

ing the speed of the solute transport. Finally, diffusion, as a

means to overcome the limitations of solute gradients, would

never, in the same theoretical framework, generate a change

of solute velocities at larger times to dependences much

slower than diffusion.

Thus, in order to simultaneously explain all the results

reported here, a theory must have all the features that our

derivation supplied. Note that all these features were present

in the original derivation; since the original publication

(Hunt and Skinner, 2008) neither the theory nor the results

have changed. The same solute distributions have been used

to predict the arrival time distributions of solutes as a func-

tion of saturation (Ghanbarian-Alavijeh et al., 2012), the dis-

persivity as a function of length scale (Hunt et al., 2011), the

variance as a function of time (Hunt and Skinner, 2010b),

and the scaling of the typical arrival time with system length

(Hunt et al., 2011).

We note that weathering rates in other circumstances

have also been studied frequently, particularly for rocks

lying on the earth’s surface (surface clasts). Summaries of

the development of the weathering rinds on these rocks, all

from Alpine New Zealand were given in Sak et al., 2008.

For those cases (Chinn et al., 1981; Knuepfer et al., 1994),

which were assumed to be power law in nature, i.e., rind

thickness x� td, the extracted values of d were 0.76, 0.82,

and 0.86, with mean 0.81. The simplest prediction, from Eq.

(9) is that x� t1/Db. Use of Db¼ 1.217 (Sheppard et al.,
1999), appropriate for 2-D flow paths through unsaturated

media, generates d¼ 1/Db¼ 1/1.217¼ 0.82, extremely close

to the mean measured value. For further confirmation, we

took data from four experiments on the weathering rinds of

basalt clasts in tropical, or otherwise highly vegetated

regions (Sak et al., 2003; Pelt et al., 2008; Ma et al., 2012;

and Oguchi and Matsukura, 1999), and plotted the logarithm

of the weathering rind thickness as a function of the loga-

rithm of time (Fig. 9). The extracted power in the power-law

relationship was 0.688, which compares well with the theo-

retical value of 1/Db¼ 1/1.458¼ 0.686 for 3-D invasion per-

colation (Sheppard et al., 1999).

CONCLUSIONS

We have shown that the available data for the scaling of

surface reactions in porous media conform closely to the

FIG. 8. Dependence of weathering rates on length scale, interpreted in terms

of a fractal weathering front (from Navarre-Sitchler et al., 2007) but asserted

here to relate to the surface area of a large cluster from the perspective of

percolation theory. The former employs two adjustable parameters, the slope

and the weathering rate prefactor, while the latter employs a single adjusta-

ble parameter, the fundamental weathering rate prefactor, which was

assigned the same value as in Navarre-Sitchler et al. (2007). Reprinted with

permission from Hunt et al., Percolation Theory for Flow in Porous Media,

Lecture Notes in Physics, 3rd ed. (Springer, Berlin, 2014), Vol. 880, pp.

333–408. Copyright 2014 Springer Science þ Business Media. Properties

Based on Tortuosity (Fig. 11.38, p. 390).

FIG. 9. Weathering rind thickness as a function of time. Field data for basalt

surface clasts in humid climates from Sak et al., 2003; Ma et al., 2012; Pelt

et al., 2008; and Oguchi and Matsukura, 1999.
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predictions of our transport theory. The comparisons used a

minimum of adjustable parameters, and sometimes none.

The implication is that the observed reaction-rate scaling is a

consequence of transport limitations, whether on the avail-

ability of reagents or the removal of products. In the context

of percolation theory, the evidence from experiment implies

that the solute transport is chiefly through the bulk medium

under saturated conditions. In one experimental case and in

some field summaries, evidence for unsaturated two-

dimensional flow conditions controlling reaction rates was

found. In an experiment, such flow conditions could be

caused by incompletely saturated wall flow through coarse

sediments. Field results indicating similarly unsaturated flow

conditions, obtained in Alpine regions, suggest flow along

fracture surfaces: flow conditions within fractures are much

more frequently unsaturated than in the surrounding matrix.

We emphasize that we have avoided discussion of the

details of the reactions themselves. We have sought the guid-

ance of unifying, rather than distinguishing, characteristics.

As an example, we have not addressed the distinct influences

of chemical gradients in the mineralogy and those in the

fluid. Ignoring such differences means, for example, that our

upscaling technique as presently developed does not address

complexities that can develop from secondary deposition of

reaction products.

Our conclusions for the media and experiments consid-

ered are:

• Weathering reaction rates are fundamentally transport

limited.
• The relevant type of transport limitation is advective.
• An increase of reaction rate with measurement scale is

generated by the known increase in surface area of perco-

lation clusters; the fractal dimensionality of the surface is

equal to the mass fractal dimensionality of percolation

theory.
• Reaction rate scaling (in time and space) can be predicted

by scaling the velocity of conservative solute transport.
• The solute transport scaling cannot be predicted from con-

ventional continuum mechanics modeling (i.e., the

Advection Dispersion Equation, ADE), but must be pre-

dicted using the percolation theoretical framework.
• The observed scaling exponents in space and time relate

simply and directly to the fractal dimensionality of the

percolation backbone.
• Known variability of fluid velocities and previously pub-

lished limitations on the range of fluid flow velocities for

transport-controlled reactions reproduce very well the

observed range of data for field weathering rates over 11

orders of magnitude in the time scale.
• The same dependence of solute transport on fluid flow

rates and fundamental length scales of heterogeneity

organizes existing graphical summaries of length and time

relationships in subsurface processes (Bl€oschl and

Sivapalan, 1995; Loague and Corwin, 2006).
• Massive use of fertilizer sets a much larger fundamental

length scale for solute transport in agriculture than is

derived from natural heterogeneity, accelerating agricul-

tural time scales by many orders of magnitude.

It is interesting that similar effects of homogenization on nu-

trient transport are found in streams (Helton et al., 2011;

Petersen et al., 2001), whereas the homogeneous nutrient

delivery to crops reflects their nearly homogeneous delivery

by fluvial processes to the near-shore environment of the

ocean. Increasing productivity of the land surface through

industrial agriculture leads to greater nutrient loading of the

streams. Sufficient overloading of the streams produces an

overloading of the ocean in any case. But homogenization

of, in particular, river headwaters, contributes to a more

rapid delivery of the increased nutrient load to the oceans,

and increased oceanic productivity. The transport of

nutrients from river headwaters to trunk streams involves

repeated nutrient recycling, as is also possible in reactive

contaminant transport in soils. But we have seen that the

temporal dependence of the chemical reactions in porous

media is not primarily a consequence of their adsorption and

desorption; rather it is a consequence of the relevance of the

fractal paths that the solute follows. The fractal dimensions

of percolation theory are relevant to these paths because of

the tendency for the advecting fluid, i.e., water, to find the

paths of minimum resistance. But a similar argument can be

applied for nutrient transport along streams, which is likely

to be controlled by the tendency for water to find the path of

minimum resistance through the heterogeneity of the sub-

strate. Whatever delays are possible due to interactions with

biota, the number of such relevant interactions will increase

dramatically if the path of least resistance is fractal. But the

range of length scales over which percolation governs the

transport is reduced with homogenization of the streambed.

Thus similar changes, drastic reduction in nutrient delivery

times, in solute transport in both soils and streams may result

from analogous physical constraints.
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