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Abstract 

The Linked Open Data (LOD) cloud has gained significant attention in the Semantic Web community 
over the past few years. With rapid expansion in size and diversity, it consists of over 800 interlinked 
datasets with over 60 billion triples. These datasets encapsulate structured data and knowledge 
spanning over varied domains such as entertainment, life sciences, publications, geography, and 
government. Applications can take advantage of this by using the knowledge distributed over the 
interconnected datasets, which is not realistic to find in a single place elsewhere. However, two of 
the key obstacles in using the LOD cloud are the limited support for data integration tasks over 
concepts, instances, and properties, and relevant data source selection for querying over multiple 
datasets. We review, in brief, some of the important and interesting technical approaches found in 
the literature that address these two issues. We observe that the general purpose alignment 
techniques developed outside the LOD context fall short in meeting the heterogeneous data 
representation of LOD. Therefore, an LOD specific review of these techniques (especially for 
alignment) is important to the community. The topics covered and discussed in this article fall under 
two broad categories, namely alignment techniques for LOD datasets and relevant data source 
selection in the context of query processing over LOD datasets. 
 

Introduction 

Sir Tim Berners-Lee introduced the idea of Linked Data based on four simple rules1 to publish RDF2 

based datasets on the Web. The four founding rules are: (1) use URIs (Uniform Resource Identifiers) 

for naming things, (2) offer the ability to look up URIs, (3) provide useful information upon URI 

lookup, and (4) include links to other URIs. This set of simple rules laid the foundation for creating 

the “Web of Data”, which is a collection of interlinked datasets (also termed “Linked Open Data”). 

Currently, the Linked Open Data (LOD) cloud consists of over 800 datasets3 covering numerous 

domains like entertainment, life sciences, government, publication, events, etc. Bizer et al.4 pointed 

out how the four founding principles have evolved to create the LOD cloud with RDF datasets and 

how these interlinked datasets could be used in applications.  The rapid growth in publishing 

interlinked datasets on LOD by various communities over the past five years made the LOD cloud an 

experimental platform for interesting applications such as knowledge discovery and question 

answering5, 6. In this regard, the Linked Data concept has taken a big leap in the technology and 

vision of Semantic Web. 

As the LOD cloud continues to rapidly develop towards serving the above mentioned interesting 

applications, it brings forth new challenges in data integration, relevant data source identification, 

query formulation, etc. Data integration over LOD becomes inevitable and beneficial since 

interconnected datasets often have complementary data. Hence, a unified integrated view of the 



 

 

facts of a concept, which reside over several datasets, can produce a complete picture of the 

concept spanning over different viewpoints. Moreover, data integration on these interlinked 

datasets requires alignment techniques over different granularities, as concept and property in the 

schema level and instance in the data level. These alignment techniques not only service data 

integration tasks, but also exploration and querying LOD as a whole, as they make up connections on 

LOD at both schema and data (instance) levels. The growth in the number of datasets brings forth 

challenges in identifying relevant datasets that could be matched for a given task, as it is impossible 

to lookup relevant information in each dataset individually. Furthermore, the relevant data source 

selection problem has garnered high levels of interest to the linked data query processing 

community because it directly affects the execution of an efficient query plan. An example query 

expressed in natural language over LOD datasets, resembling these issues can be outlined and 

explained as follows. 

“Identify Congress members who have lived in Capitol Hill for the past four years, who also have 

mines or power plants in their congressional districts.” 

Answering this query requires searching for facts in multiple datasets. DBpedia7 and GovTrack8 

datasets have “congress member” details and member “time periods” can be found in the GovTrack 

dataset. Locations of “mines” and “power plants” are in the Geonames9 dataset, whereas the 

relevant “congressional districts” are in the US Census10 dataset. Getting similar information from 

two datasets as in DBpedia and GovTrack needs alignment techniques and to identify the above 

mentioned datasets over many other datasets requires relevant data source selection. 

Therefore, addressing both alignment and data source selection problems is imperative in the LOD 

context. Alignment techniques create various links between datasets and build the vast data space 

of the interconnected Web of Data. Locating relevant sources becomes challenging when there are a 

large number of individual datasets in this data space with overlapping and complementary 

information. The first part of the article discusses different approaches for ontology alignment in the 

levels of concept, property, and instance, whereas the second part discusses systems and their 

techniques in identifying relevant data sources for query processing in LOD. We conclude with 

possible interactions between these two areas in brief. 

 

1. Ontology Alignment in Linked Open Data 

An Ontology is “an explicit specification of a conceptualization”11, a definition introduced by Thomas 

Gruber. Willem Borst extended this definition as he thought the original definition was too broad. He 

argued that there should be agreement on the conceptualization because an ontology will not be re-

usable if it is not generally accepted. Borst presented his definition of an ontology as “a formal 

specification of a shared conceptualization”12. Along with this definition, others have identified that 

sharing knowledge and structure is one of the many important contributions of an ontology13,14.  

Data instances can be linked to these concept hierarchies (populating ontology), and relationships 

(also termed “properties” or “predicates”) among these instances can be defined. The ontology level 

information regarding data definitions, relationships, rules, etc. is known as schema information, 



 

 

whereas data instance information representation is known as the instance/data level. “Ontology 

Alignment” in general is about finding alignments (or correspondences) between concepts, 

properties, or instances in two or more ontologies based on their similarities (see Figure 1). In the 

LOD context, it mainly comprises three parts: concept (class) level alignment, property alignment, 

and instance alignment (interlinking or entity co-reference). The first two are about the schema level 

agreements while the latter is about data level agreements. Datasets in LOD are for the most part 

linked to each other by instance level relationships (owl:sameAs, skos:exactMatch, etc.), which are 

created using instance alignment15-17 techniques, but similar relationships between concepts and 

properties are not inherent. Concept alignment in LOD has been investigated to some extent18-21 in 

the recent past and showed significant progress both in precision and coverage, but property level 

alignment is yet to achieve considerable attention, coverage, and results other than a recent effort 

by Gunaratna et al.22. 

 

 

Figure 1 Concept, property, and instance alignment example 

 

The three types of alignments can be explained using a sub-section of two ontologies (DBpedia 

ontology and Music ontology23) found in the LOD cloud as shown in Figure 1. It illustrates how 

concept, property, and instance alignments can be stated between two datasets having example 

matches for each alignment type. The two datasets (DBpedia and DBTune MusicBrainz24) model 

knowledge on music in different viewpoints for two specific instances, but they both have 

similarities, which can be matched/aligned. Parts of ontology 1 (DBpedia ontology) and ontology 2 

(Music ontology) are drawn in blue and red respectively, and the figure contains two instances for 

each dataset populated using the ontologies. The concepts are shown in oval shapes, whereas the 



 

 

instances are shown in rectangles. The example alignments between these two ontologies are 

marked using black dotted lines numbered from 1 to 4. Number 1 and 2 represent an example of 

concept alignment showing equivalent and sub-class relationships found between datasets. Number 

3 and 4 show property and instance alignment examples found respectively (note: the alignments 

are not within the same dataset). 

1.1 Concept Alignment 

Concept alignment techniques on LOD can be categorised into two main broad categories as systems 

using: (1) external hierarchies and knowledge present in lexical databases like WordNet25 and online 

encyclopedias like Wikipedia26, use of Natural Language Processing (NLP) techniques, and (2) 

instance level information. The classification of systems presented in this article is based on the type 

of systems available on the LOD setting and a more general and comprehensive listing of techniques 

could be found in27. Often, similar or related concepts in two ontologies do not have simple 

synonymous interpretations and hence simple synonym based approaches do not have significant 

coverage in LOD. Therefore, state of the art concept or schema alignment techniques28, 29 (ones that 

also performed well in OAEI30 - Ontology Alignment Evaluation Initiative) often cannot be used 

without making significant changes in the LOD setting. 

1.1.1 Use of external hierarchies and NLP techniques 

In searching for a solution for the alignment challenge described above, Jain et al.18 proposed a 

bootstrapping based system called BLOOMS. BLOOMS builds upon the idea of using external 

community built concept hierarchies for the alignment process. Wikipedia is a free and high quality 

encyclopedia, which is continually maintained by the open community where each page is 

categorized under a set of topics. BLOOMS explores this category hierarchy for concepts to be 

aligned between ontologies and builds a set of tree data structures (forest) for each concept. Then, 

calculating the overlap o(Ts, Tt) of trees from two forests for two concepts (s and t) yields a 

measurement for similarity. If the overlap is equal to the number of nodes in each tree, the concepts 

are considered equivalent, otherwise a sub-class relationship is determined. That is, concept s is a 

sub-class of the other concept t if the overlap value of s is less than the overlap value of t. The 

overlap is calculated using the number of shared terms over the total number of terms in the trees. 

Gruetze et al.31 incorporated the idea of BLOOMS forest construction to compute mappings between 

ontology concepts to an approach called Holistic Concept Matching. The idea of the approach is to 

minimize the number of concept pair comparisons by grouping concepts according to topics. The 

topic sets for concepts are determined by ranking Wikipedia forest tree nodes using tf-idf 

measurement. Then these topic sets are analysed for aligning concepts. 

BLOOMS was also evaluated as a general purpose ontology alignment system with the other existing 

ontology alignment systems like AROMA32, RiMoM33, and S-Match34 outside the LOD domain in18. S-

Match uses an approach of semantic matching by understanding the semantic meaning codified 

implicitly or explicitly in the labels. Furthermore, S-Match uses string manipulation for weak 

semantic matchers and WordNet for its strong semantic matchers. RiMoM quantitatively estimates 

textual and structural characteristics and uses them accordingly for the alignment. AROMA on the 

other hand utilizes an association rule mining concept, which is frequently used in the database 

domain. BLOOMS was shown to be very competitive among all these existing general purpose 



 

 

ontology alignment systems and outperformed them in many cases because of its diverse 

hierarchical structural mapping ability and coverage using Wikipedia. When considering ontology 

alignment in LOD, the general purpose ontology alignment systems are particularly challenged 

because of the multi-domain coverage of LOD.  A system such as BLOOMS that uses broad 

background knowledge will likely produce better overall precision and recall when facing this 

challenge. BLOOMS+19 is an enhanced version of the BLOOMS system where it addresses some of 

the shortcomings by taking into account the size of trees in logarithmic scale and penalizing 

matching nodes appearing in the deeper parts of the trees since those concepts seem to be more 

generic and could add noise to the matching process. Furthermore, BLOOMS+ compares the super-

category of each concept to match the context. For example, it is able to identify “Jaguar” and “Cat” 

as, not a possible alignment considering the fact that “Jaguar” has a super category “Car” and “Cat” 

has a super category “Mammal” whereas in BLOOMS it could have just identified Jaguar as a 

mammal and not a car type. In this regard, BLOOMS+ has improved the BLOOMS framework 

significantly for LOD ontology alignment tasks and evaluated its claims using manual mappings of 

concepts in DBpedia, Geonames and Freebase35 to Proton36. Proton is an upper level ontology, which 

consists of about 300 classes (concepts) and 100 properties, providing coverage for general concepts 

for a wide range of tasks including semantic annotation, indexing, and retrieval of documents. 

AgreementMaker37 is considered to be an efficient ontology/schema alignment system in the 

classical setting, one that OAEI evaluation represents. Cruz et al. have adapted AgreementMaker to 

implement an efficient system called “OnTheGO matching of Linked Open Data ontologies”38 to align 

LOD ontologies. One of the primary goals of this system is to avoid long processing times 

encountered by BLOOMS-like systems for computing similarities in tree/forest data structures. The 

system implemented two methods to discover a mapping between two ontologies based on 

similarity metrics and a third party ontology to discover equivalent, sub-super class relations 

between concepts. The third party ontology (mediator ontology) in this case is WordNet. The system 

is compared with AROMA, S-Match, and BLOOMS and the average results are competitive, while 

BLOOMS has better recall values.  

1.1.2 Use of instance level information 

The idea of utilizing instance data for concept alignment has also been considered in the recent past 

and shown to be effective20, 21, 39, 40. Parundekar et al.39 proposed that identifying equivalent 

instances belonging to concepts leads to an alignment between those concepts. To identify 

equivalent instances, they utilise properties-like owl:sameAs, skos:closeMatch, etc. that link 

instances across datasets. Even though there are issues related to whether owl:sameAs links exactly 

the same instances41, such experiments demonstrate its applicability in general. As a follow up, 

Parundekar et al.20 developed an alignment technique based on concept coverings, which aligns 

concepts as well as aids in curating linked datasets for missing or incorrect data. Findings in20, 39 

showed how the technique can be of benefit especially in areas where concepts are vague and tools 

such as BLOOMS and AgreementMaker can fail. Moreover, the system is able to find one-to-one and 

composite (a set of classes making a concept/class) concept coverings. Along this line of work, 

Correndo et al.21 incorporated a statistical approach utilizing owl:sameAs links between instances 

with the Jaccard co-efficient measurement to measure the overlap of instances in aligning concepts. 

Nikolov et al.40 also utilized owl:sameAs links to infer mappings between ontology concepts in the 



 

 

LOD. They trained a classifier based on instance overlaps for concepts to determine the mappings. 

These mappings can be of low quality as the mapping is based on strong degree of instance overlap 

but serves the system’s intended purpose of recommending to the user other available related 

concepts in the LOD. PARIS42 is a probabilistic alignment approach that can be applied to concepts, 

instances, and properties. PARIS utilizes the instance overlap to compute the subclass relationships 

between the concepts. Such systems attempt to utilise the inherent linking nature on the instance 

level of LOD for the aligning process, thus taking alignment research into new directions. 

1.2 Property Alignment 

Property alignment presents an important and complicated alignment challenge in the ontology 

alignment field. This is because properties capture complex structure and meaning of the instance 

level data, whereas classes have more abstract meaning. In spite of its importance, research and 

tools have been not given the level of attention it deserves in the LOD domain. Some techniques 

have been proposed based on similarity metrics, clustering, machine learning, and more recently 

using property extension matching. Property alignment has two components: data-type and object-

type property alignments. Object-type properties are the ones having RDF resources as both subject 

and object of the property. Data-type property alignment is primarily centered on string similarity 

based metrics. Tran et al.43 proposed a cluster based technique using four similarity metrics such as 

string similarity, WordNet similarity, profile similarity, and instance similarity for ontology alignment. 

The system uses the same technique used for concept alignment for properties, which is based on 

weighted similarity measures. The results demonstrated on OAEI benchmarks were not competitive 

and need further refinements to improve performance. Sleeman et al.44 incorporated a density 

estimation approach using Kernel Density Estimation (KDE) to map opaque properties. Opaque 

properties are properties conveying the same meaning, having similar names or different names. 

The proposed technique can be applied to both types of properties but the need of transformation 

of values into a numerical format, to be compatible with KDE is problematic. This transformation can 

be difficult in the LOD domain. 

Graph based ontology analysis and learning proposed by Zhao et.al45 is an approach for querying 

linked datasets by developing an upper level ontology using ontology learning techniques. They use 

a property grouping strategy for aggregating similar properties based on object overlap (in triples) 

found in the datasets. But the approach is not suitable for finding property mappings since it can 

group semantically different properties like “birthPlace” and “deathPlace” into one group. 

TripleRank46 is a system built for faceted browsing over linked data and as a by-product of the 

Singular Value Decomposition (SVD) process, it claims to identify equivalent properties within a 

dataset. However, no evaluation is available to show to what extent it can handle identifying 

equivalent properties among datasets.   

Gunaratna et al.22, 47 proposed a successful approach that can be used in the LOD environment by 

utilizing existing links between the data instances to match property extensions for property 

alignment. These links are the Entity Co-Reference (ECR) links, which are used to link two 

semantically same instances in two datasets. Property extension for a property P in a dataset is 

defined as the set of all the Subject (S) and Object (O) pairs (S,O) that the property is connected to, 

in the dataset. The idea behind the approach is that semantically same properties in two datasets 



 

 

have more matching subject-object (S,O) pairs in their property extension. There arises the issue of 

coincidental matches as for example “birthPlace” and “deathPlace” properties, where many 

matching (S,O) pairs can be found when many people are born and dead at the same city. But when 

analysing the aggregated results for a larger sample, these coincidental matches can be eliminated. 

This elimination of incorrect matches was handled by using several statistical measures found in the 

extension matching. One of the limitations of the approach is that it uses ECR links in the matching 

process and when the ECR links are sparse, the matching process cannot be performed successfully. 

The other is that, it may be used with overlapping datasets where common facts and entities are 

present whereas totally different datasets in the same domain may not produce results. The results 

of the alignment shows better alignment ability over current syntactic and WordNet based 

approaches for the LOD cloud. Along this line of work, Zhang et al.48 proposed the concept of 

Statistical Knowledge Patterns (SKP) to cluster synonymous property pairs and tested it with the 

DBpedia dataset. They analysed subject overlap, triple overlap (subject and object overlap for two 

properties) and cardinality of the properties to define property similarity in using agglomerative 

clustering techniques but limited to intra-dataset analysis. 

The general topic of property alignment for ontologies has been addressed by the above systems, 

but none of them are tested in the LOD context except for the extension based approach proposed 

by Gunaratna et al.22. Lack of approaches proposed and techniques tested on LOD signifies a 

considerable gap in this area of research but could improve on novel approaches like analysing 

property extensions together with syntactic and external dictionary based techniques in the future. 

1.3 Instance Alignment 

Alignment on this level is important because identifying the same entity in different datasets 

improves data interoperability. The links created in this process are mainly owl:sameAs links that 

intend to link the same entities (by entity we mean the real world object, whereas different 

instantiations of this entity are instances) and there seems to be other types of links resembling 

different levels of similarity such as rdfs:seeAlso, skos:closeMatch, skos:relatedMatch. Moreover,  as 

pointed out by Halpin et al.41, 49, the owl:sameAs links are sometimes misused in the LOD context. 

Often, what they link is not entirely incorrect, but instances with different granularities (i.e., London 

vs. Greater London). However using owl:sameAs to link two similar instances leads to a key question, 

whether there should be exactly the same thing with two URIs. Finding the owl:sameAs semantics 

between instances in different datasets is defined as instance alignment, interlinking, link discovery,  

or entity co-reference. The systems for interlinking can be categorized into two parts, as systems: (1) 

requiring manual link specification including semi-automatic matching, and (2) that automatically 

identify specifications and domains for interlinking. 

Finding similar instances in different datasets is challenging for reasons such as: (1) millions of 

instances need to be compared with each other that in turn requires a good blocking mechanism 

(blocking is pruning possible instances, which are irrelevant before comparing pairs for similarity), (2) 

most instances seem to be matching but are actually different, reflecting the need to have high 

precision, and (3) many parameters to check as many dimensions available in the instance level. 

Because of the complex nature of the problem, early attempts for interlinking were manual.  

1.3.1 Systems requiring manual link specifications 



 

 

To make progress towards partial automation,  Volz et al.16, 50 proposed the SILK framework to 

identify the same entities in different LOD datasets. The system uses a link specification language 

called Silk Link Specification Language (SILK-LSL) to express rules for the matching process to decide 

the relationship between entities. It makes use of several similarity metrics (string similarity, qgram, 

taxonomic similarity, etc.) for similarity calculation, which ranges between 0 and 1. These similarity 

values are then aggregated by several defined functions to decide the best match over a threshold, 

while the rest that fall below the threshold are manually verified. LIMES15 is another link discovery 

system developed to consider the efficiency of calculating the mappings and the volume of data to 

be processed. LIMES uses the triangle inequality in metric spaces for calculating instance similarities 

and outperformed SILK showing lesser computation times for large datasets. Based on these triangle 

inequality measures, LIMES can filter out many instance pairs that cannot suffice matching 

conditions. Compared to LIMES, SILK uses instance pre-matching, which also causes recall values not 

guaranteed to be 1. To avoid this problem, SILK adopted the MultiBlock (multidimensional blocking) 

approach in pre-processing that guaranteed lossless recall51. 

1.3.2 Automatic interlinking systems 

1.3.2.1 Unsupervised approaches 

SERIMI17 is a link discovery tool, which consists of two phases. In the first phase, it utilizes traditional 

information retrieval strategies to select which candidate instances to be aligned. For this, entity 

labels of the source dataset are used to search for candidate entities in the target dataset. When 

candidates are selected, they are disambiguated for correctness in the second phase. SERIMI does 

not require any alignment between ontologies for the process and hence it is able to link instances 

belonging to the same entity representing different factual representations in two datasets (for 

example a city expressed using social aspect and geological aspect in two datasets). Song et al.52 

introduced a different approach to the interlinking problem by understanding coverage and 

discriminability of properties of instances. For example, an instance having a property connected to 

a rare value (discriminating factor) could lead to a better blocking mechanism and disambiguate the 

instance from others.  

1.3.2.2 Supervised and genetic algorithm based approaches 

There are approaches designed to aid interlinking systems by learning rules. They utilize genetic 

algorithms, supervised, and active learning techniques. EAGLE53 is a system proposed by Ngonga et 

al. that utilizes genetic algorithms and active learning techniques that require minimal user 

interaction in labelling instance pairs for automatically learning link specifications for the matching 

process. Ngonga et al. further improved the EAGLE system that they call COALA54. COALA is an 

improvement over EAGEL in terms of accuracy and efficiency where active learning is incorporated 

with correlations of classes.  The approach tries to solve the fundamental problem of a user having 

to provide a link specification for instance matching in systems such as LIMES and SILK by learning 

the specification by itself. Along with LIMES and EAGLE, Ngonga et al. further extended the work and 

addressed the theoretical quality in the link discovery framework55. Isele et al.56 introduced a genetic 

algorithm based approach to the SILK framework to identify link specification rules for instance 

alignment. They further improved the system to incorporate the active learning paradigm to learn 

linkage rules in the SILK framework57. 



 

 

1.4 Alignments, applications and summary   

The practical use of the alignments on LOD can be seen in applications that try to make sense of this 

immense data. For example, ALOQUS58 is an alignment based querying system for LOD, built using 

Proton upper level ontology and its concept mappings to other datasets using BLOOMS18. Graph 

based ontology analysis approach45 is another kind of approach, it groups concepts and properties 

on several ontologies to build an upper ontology for querying underlying data. Furthermore, 

instance alignments are used for both querying and concept alignments20, 21, 39. In this sense, the 

three types of alignments we briefly discussed are tightly coupled with interesting applications as 

well as among themselves. Therefore, it is important to have links not only in the data level but also 

in the schema level as well. Even though property alignment takes an important place in data 

integration and organization of the integrated results, it is yet to achieve its maturity. Concept and 

instance alignments have shown considerable progress over the past years but could be further 

improved for higher precision and recall values. Furthermore, to gain the full potential of this large 

set of datasets, many other useful relationship types such as partonomy, which is to some extent 

explored by Jain et al.59 and causality, which is hard to capture, should be investigated. Hence, in the 

future, the research community will need to look at important types of complex relationships, such 

as partonomy and causality, and understand how such relationships can be modelled, discovered, 

extracted, reconciled, and exploited for deeper insights and decision making as in60 using LOD. 

 

2. Data Source Selection for Querying on LOD 

The increasing attention from the diverse range of communities to publish the data and create 

SPARQL61 endpoints to access these published data make LOD a good querying platform for 

knowledge exploration and discovery. Data publishers can easily use a number of available tools and 

techniques to convert various structured data formats to RDF and make them available for access 

through SPARQL endpoints. The LOD cloud allows data publishers to publish their data on the web 

and link with other related datasets giving them more flexibility, avoiding global constraints such as a 

central schema or choice of word selection.  This flexibility for data publication over LOD raises 

issues for having an overall knowledge about the datasets found in this global space, which is crucial 

for data consumption. In fact, this directly affects the relevant data source selection for various tasks 

and applications such as query processing and interlinking. The problem becomes even more 

challenging with the increasing number of datasets and dynamic nature in terms of adding or 

removing datasets, and updating their content. 

The topic of query processing over datasets has discussed the data source selection problem in 

detail, considering it as one of the major challenges. For instance, Hartig et al.62 pointed out that 

data source selection poses new challenges for query processing on LOD, which is not investigated 

by traditional federation. Ladwig et al.63 categorized three state of the art strategies for Linked Data 

query processing and the categorization is primarily based on the variations of data source selection 

approaches by different query processing systems. We use the same three strategies to describe the 

various source selection approaches including approaches used in query processing. The three 

strategies are, 



 

 

 Top-Down 

Top-down strategy identifies the relevant data sources using some form of source 

selection indexes by processing datasets in advance. Data selection approaches use this 

as a prior knowledge to select the relevant data sources.  

 Bottom-Up 

Bottom-up strategy discovers the relevant data sources on the fly by using some form of 

an input (input in the forms of urls, labels, etc.) as seeds. This strategy does not rely on 

any prior knowledge about the datasets.  

 Mixed strategy 

Mixed strategy uses both top-down and bottom-up approaches to discover relevant 

data sources appropriately. 

In the following sections (2.1 to 2.4), we discuss different source selection approaches that fall under 

the aforementioned three strategies in the context of federated querying and interlinking. 

While querying applications are looking for the datasets which contain the relevant results for a 

given query, it is also useful to manually identify the relevant data sources for a given task at hand. 

Existing catalogues such as LOD bubble diagram64, CKAN65, and LODStats3 provide an interface for 

this purpose by being the entry points for LOD datasets. In section 2.5, we briefly discuss the recent 

developments on manual selection of the datasets.   

2.1 Top-Down Strategy 

The top-down strategy mainly relies on various kinds of indexing mechanisms to find relevant data 

sources. Harth et al.66 proposed an indexing structure to store the summaries of datasets and 

leverage this indexing structure to identify the relevant datasets for query processing. The index 

structure focuses on storing only an approximation of the dataset rather than keeping every entity in 

the index. The indexing is handled by converting RDF triples into a numerical format using a hash 

function and index it in the mapping bucket of a “QTree”67. QTree is a multidimensional indexing 

structure, and in this case coordinates are obtained by applying the hash functions to the Subject (S), 

Predicate (P), and Object (O) of the triples and a bucket contains data items with similar hash values. 

Once they have a query looking for datasets, it is converted into a numerical format using the same 

hash function that was used for triple conversion and identifies the matching region from the QTree.  

The follow on approach (named SPLENDID) by Görlitz et al.68 incorporated existing metadata 

descriptions to build an index, which consists of relevant information for data source selection used 

by the query federation. SPLENDID68 uses VoID69 descriptions for query federation. A VoID 

description of a dataset has metadata about the dataset such as types, predicates, SPARQL endpoint, 

and number of triples. SPLENDID collects the statistical information from VoID descriptions and 

creates a local index, which maps predicates and types to datasets and other statistical information. 

When executing the query, it assigns datasets for each triple pattern based on mapping bounded 

predicates and type information in the query with the local index. Whenever there are no bounded 



 

 

predicates in the triple patterns, a SPARQL ASK query is sent to all the collected SPARQL end points 

to see whether there exist any results for the specific patterns. 

FEDX70, 71 is another query processing system, which follows a top-down strategy for relevant source 

selection. FEDX issues SPARQL ASK queries for each triple pattern of the query to each SPARQL 

endpoint (the list of SPARQL endpoints are known in advance) before query optimization. The result 

of the ASK query is maintained for any upcoming queries with similar triple patterns. But this will 

overestimate the relevance of a dataset if there is a generic triple pattern such as “?s rdf:type ?o”.  

SchemeX72 uses a scalable index structure for indexing LOD datasets, which can be useful in data 

source identification. Its index structure abstracts RDF instances to classes and builds type clusters 

based on the identified classes. These type clusters can be further partitioned based on the same 

outgoing properties for instances of the type clusters. It keeps track of the dataset details along with 

the type and property information of the dataset. This supports the building of an index without a 

persistent storage of data by using a stream-based approach. 

Even though top-down strategy can identify the relevant data sources with a fast response time by 

using the prior knowledge stored in the form of an index, it suffers from identifying fresh or more up 

to date datasets since the results are based on the information collected at indexing time.                            

2.2 Bottom-Up Strategy 

The bottom-up strategy focuses on finding relevant data sources on the fly. Hartig et al.62 find the 

relevant datasets on the fly through link traversal techniques. They make use of the de-

referenceable nature of URIs, and most importantly the approach does not rely on any indexing 

mechanisms. Initially they execute parts of the SPARQL query by looking up URIs in the query and 

then further leverage the other URIs retrieved from the partial results. But in this approach, in order 

to initiate the query execution it must have initial URIs and at the same time it is possible that the 

approach fails to retrieve the complete result at the end. Furthermore, the solution can lead to 

infinite link discovery, where the system is unable to fulfil termination conditions and continues 

searching for links. 

Feedback73 proposed another approach to data source selection, which also starts with URIs in the 

application queries to track the relevant datasets. The system crawls datasets by taking these URIs 

as the seed resources and then looks for other URIs using predicates like rdfs:seeAlso, owl:sameAs, 

and owl:equivalentClass. After identifying these datasets, the system ranks datasets by analysing 

user feedback.  

Nikolov et al.74 addressed the relevant data source selection in the context of identifying suitable 

datasets for interlinking for a given dataset. They extract a sample set of instance labels from the 

dataset to be interlinked and query those instance labels in Sigma75 to identify the relevant data 

sources and then rank those datasets based on the degree of similarity. 

Unlike the top-down strategy, bottom-up strategy has the capability to identify more recent (fresh) 

results, but this may lead to issues like infinite link discovery and slower query time compared to the 

top-down strategy.  



 

 

 

2.3 Mixed Strategy 

The mixed strategy tries to get the best from both top-down and bottom-up approaches in order to 

make sure it retrieves more recent/up-to date results with a fast respond time. This assumes a 

partial prior knowledge of relevant datasets and further updates knowledge at the time of query 

processing. Query processing systems described by Ladwig et al.63, 76 and Umbrich et al.76 use this 

approach for source selection. Ladwig et al.63 use local indexes along with query triple patterns to 

identify the data sources as an initial list of possible relevant sources and further discover sources 

based on the content processed from the initial relevant source and intermediate results. The 

process of finding the relevant datasets terminates based on the preconfigured values such as 

number of results to produce and number of source datasets. They introduce a ranking mechanism 

for the sources whenever appropriate to rank more relevant data sources. Ranking is performed by 

using certain metrics, which use a number of features such as the cardinality (number of triples in a 

dataset matches with a given triple pattern), specificity (number of constants in a given query triple 

pattern), and number of incoming links from a relevant resource. 

Umbrich et al.76 proposed a hybrid query plan execution strategy to identify the relevant sources 

either from materialized indexes (results from the top-down approach) or on the fly queries at run 

time (results from the bottom-up approach). It tries to identify which strategy can be used to 

retrieve the results for parts of a query based on statistics and these statistics are based on 

dynamicity and coverage of materialized indexes.  

2.4 The three approaches  

The top-down approach relies on having prior knowledge of datasets, which is stored using index like 

data structures and therefore can be optimized for a fast response time in identifying relevant data 

sources. But the top-down approach may fail to recognize up-to-date results because the identified 

datasets are collected at indexing time and the results might be different in querying time. In 

contrast, the bottom-up strategy finds relevant datasets on the fly during the querying time, which 

enables identifying up-to-date/fresh results. However, this encounters slow response times 

compared to the top-down approach.  The mixed strategy combines both approaches hoping to 

maintain a balance between up-to date results and a fast response time. Even though the source 

selection is discussed with querying applications in detail, it needs to be further improved in the 

context of source selection for applications such as interlinking.  

2.5 Dataset Catalogues for manual data selection   

There are well known datasets such as DBpedia7, Freebase35, and MusicBrainz77, and datasets that 

are not widely known such as ClimbData78 and Lingvoj79 that might be useful for certain use cases. It 

is extremely difficult to identify the potential datasets for a given task without a catalogue of 

datasets. Existing catalogues such as CKAN and LODStats allow users to search for datasets using 

keywords, manually assigned tags, and other kinds of metadata. CKAN encourages data publishers to 

manually tag datasets from a predefined set of tags and use these tags to organize the LOD cloud 



 

 

bubble diagram. LODStats uses a stream-based approach for gathering statistics of the datasets 

based on the classes, properties, and vocabularies used in the datasets. 

While the existing catalogues rely on keywords, manually assigned tags, and known URIs of the 

datasets, there are some recent approaches proposed to improve the descriptions of these datasets. 

The improved descriptions (including metadata) of the datasets can be used to better organize this 

huge data cloud in order to ease the trouble encountered in finding datasets. Frosterus et al.80 

presented a system to create and enrich such metadata about the datasets via annotation tools and 

faceted search. However, this approach expects that the data publishers or some third party provide 

the annotations. Lalithsena et al.81 proposed an approach to automatically identify the domains of 

these datasets by utilizing Freebase, both as the background knowledge and the vocabulary 

(Freebase domains and categories). This approach can be used to address the scalability issues in 

manual tagging of datasets of the aforementioned approaches. Even though this approach provides 

the ability to automatically identify the topics of the datasets, the topics are limited to the Freebase 

vocabulary. This work can be useful to categorize the datasets automatically with improved domain 

coverage. In conclusion, LOD datasets still need efficient mechanisms to catalogue the datasets to 

identify the relevant data sources.  

Conclusion 

Ontology alignment and data source selection are considered to be two of the more important 

research problems among the LOD community over the past few years, because, they can make 

facts and information present in LOD datasets more useful by providing solutions in tasks like data 

integration for more complete knowledge acquisition, querying data in finding answers, etc. In this 

article, we have discussed these two problems highlighting some of the existing systems that 

attempt to solve them, varying from NLP to information retrieval and background knowledge based 

approaches. The nature of LOD is such that its knowledge is distributed among many datasets and 

aligning and querying brings useful information, which cannot be realistically stored in a single place.  

Alignment techniques over datasets support merging them together to help fetch information in 

querying and most importantly make up the LOD cloud by creating connections in both schema and 

data levels. However the merging of all possibilities is not a viable solution unless the relevant data 

sources are identified. Hence, identifying which datasets to align and query is also equally important. 

Therefore, techniques developed in alignment and source selection will indeed make steps towards 

realizing the potentials of these huge interconnected datasets (in a sense, knowledge bases). In 

conclusion, LOD contains many datasets covering many domains and consuming this vast knowledge 

requires alignment and identification of relevant data sources. The article reviews these issues and 

solutions highlighting the need for LOD specific techniques in using the LOD cloud for applications 

and future research directions. 

References 

1. Berners-Lee T. Linked data-design issues (2006). Available at: 
http://www.w3.org/DesignIssues/LinkedData.html. (Accessed 23/03/2013) 

2. Klyne G, Carroll JJ, McBride B. Resource description framework (RDF): Concepts and abstract 
syntax. Available at: http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/. (Accessed 
03/23/2013) 



 

 

3. LODStats. Available at: http://stats.lod2.eu/. (Accessed 25/07/2013) 
4. Bizer C, Heath T, Berners-Lee T. Linked data-the story so far. International Journal on 

Semantic Web and Information Systems (IJSWIS) 2009, 5:1-22. 
5. Shekarpour S, Ngonga Ngomo A-C, Auer Sr. Question answering on interlinked data. In: 

Proceedings of the 22nd international conference on World Wide Web: International World 
Wide Web Conferences Steering Committee; 2013. 

6. Lopez V, Nikolov A, Sabou M, Uren V, Motta E, d'Aquin M. Scaling up question-answering to 
linked data. In: Knowledge Engineering and Management by the Masses: Springer; 2010, 
193-210. 

7. DBpedia. Available at: http://dbpedia.org/. (Accessed 25/07/2013) 
8. GovTrack. Available at: http://www.govtrack.us/. (Accessed 25/07/2013) 
9. GeoNames. Available at: http://geonames.org/. (Accessed 25/07/2013) 
10. U.S. Census. Available at: http://www.rdfabout.com/demo/census/. (Accessed 25/07/2013) 
11. Gruber TR. A translation approach to portable ontology specifications. Knowledge 

acquisition 1993, 5:199-220. 
12. Borst WN. Construction of engineering ontologies for knowledge sharing and reuse: 

Universiteit Twente; 1997. 
13. Noy NF, McGuinness DL. Ontology development 101: A guide to creating your first ontology. 

Available at: http://www.ksl.stanford.edu/people/dlm/papers/ontology101/ontology101-
noy-mcguinness.html. (Accessed 03/23/2013) 

14. Gruber T. What is an Ontology. Encyclopedia of Database Systems 2008, 1. 
15. Ngomo ACN, Auer S. LIMES: a time-efficient approach for large-scale link discovery on the 

web of data. In: Proceedings of the Twenty-Second international joint conference on Artificial 
Intelligence-Volume Three: AAAI Press; 2011. 

16. Volz J, Bizer C, Gaedke M, Kobilarov G. Silk–a link discovery framework for the web of data. 
In: Proceedings of the 2nd Linked Data on the Web Workshop: Citeseer; 2009. 

17. Araujo S, Hidders J, Schwabe D, De Vries AP. SERIMI-resource description similarity, RDF 
instance matching and interlinking. CoRR abs/1107.1104 2011. 

18. Jain P, Hitzler P, Sheth A, Verma K, Yeh P. Ontology alignment for linked open data. The 
Semantic Web–ISWC 2010:402-417. 

19. Jain P, Yeh P, Verma K, Vasquez R, Damova M, Hitzler P, Sheth A. Contextual ontology 
alignment of lod with an upper ontology: A case study with proton. The Semantic Web: 
Research and Applications 2011:80-92. 

20. Parundekar R, Knoblock CA, Ambite JL. Discovering concept coverings in ontologies of linked 
data sources. In: The Semantic Web - ISWC 2012: Springer, 427-443. 

21. Correndo G, Penta A, Gibbins N, Shadbolt N. Statistical analysis of the owl: sameAs network 
for aligning concepts in the linking open data cloud. In: Database and Expert Systems 
Applications: Springer; 2012. 

22. Gunaratna K, Thirunarayan K, Jain P, Sheth A, Wijeratne S. A statistical and schema 
independent approach to identify equivalent properties on linked data. In: Proceedings of 
the 9th International Conference on Semantic Systems. Graz, Austria: ACM; 2013. 

23. Music Ontology. Available at: http://musicontology.com/. (Accessed 14/10/2013) 
24. DBTune MusicBrainz data server. Available at: http://dbtune.org/musicbrainz/. (Accessed 

14/10/2013) 
25. Miller GA. WordNet: a lexical database for English. Communications of the ACM 1995, 38:39-

41. 
26. Wikipedia. Available at: http://www.wikipedia.org/. (Accessed 25/07/2013) 
27. Euzenat Jrm, Shvaiko P. Ontology matching: Springer; 2007. 
28. Shvaiko P, Euzenat Jrm. Ontology matching: state of the art and future challenges. IEEE 

Transactions on Knowledge and Data Engineering 2011. 



 

 

29. Bellahsene Z, Bonifati A, Rahm E. Schema Matching and Mapping. Schema Matching and 
Mapping:, Data-Centric Systems and Applications, ISBN 978-3-642-16517-7. Springer-Verlag 
Berlin Heidelberg, 2011, 1. 

30. Ontology Alignment Evaluation Initiative. Available at: http://oaei.ontologymatching.org/. 
(Accessed 25/07/2013) 

31. Gruetze T, Bohm C, Naumann F. Holistic and Scalable Ontology Alignment for Linked Open 
Data. In: LDOW; 2012. 

32. David J, Guillet F, Briand H. Matching directories and OWL ontologies with AROMA. In: 
Conference on Information and Knowledge Management: Proceedings of the 15 th ACM 
international conference on Information and knowledge management; 2006. 

33. Li J, Tang J, Li Y, Luo Q. RiMOM: A dynamic multistrategy ontology alignment framework. 
Knowledge and Data Engineering, IEEE Transactions on 2009, 21:1218-1232. 

34. Giunchiglia F, Shvaiko P, Yatskevich M. S-Match: an algorithm and an implementation of 
semantic matching. The semantic web: research and applications 2004:61-75. 

35. Freebase. Available at: http://www.freebase.com/. (Accessed 25/07/2013) 
36. Terziev I, Kiryakov A, Manov D. D. 1.8. 1 Base upper-level ontology (BULO) Guidance. 

Deliverable of EU-IST Project IST 2005. 
37. Cruz IF, Antonelli FP, Stroe C. AgreementMaker: efficient matching for large real-world 

schemas and ontologies. Proceedings of the VLDB Endowment 2009, 2:1586-1589. 
38. Cruz I, Palmonari M, Caimi F, Stroe C. Towards on the go matching of linked open data 

ontologies. In: Workshop on Discovering Meaning On The Go in Large Heterogeneous Data; 
2011. 

39. Parundekar R, Knoblock C, Ambite J. Linking and building ontologies of linked data. The 
Semantic Web - ISWC 2010:598-614. 

40. Nikolov A, Motta E. Capturing emerging relations between schema ontologies on the web of 
data. 2010. 

41. Halpin H, Hayes P, McCusker J, Mcguinness D, Thompson H. When owl: sameas isn’t the 
same: An analysis of identity in linked data. The Semantic Web–ISWC 2010:305-320. 

42. Suchanek FM, Abiteboul S, Senellart P. PARIS: probabilistic alignment of relations, instances, 
and schema. Proc. VLDB Endow. 2011, 5:157-168. 

43. Tran QV, Ichise R, Ho BQ. Cluster-based similarity aggregation for ontology matching. In: 
Proc. of 6th Ontology Matching Workshop; 2011. 

44. Sleeman J, Alonso R, Li H, Pope A, Badia A. Opaque Attribute Alignment. In: Data Engineering 
Workshops (ICDEW), 2012 IEEE 28th International Conference on: IEEE; 2012. 

45. Zhao L, Ichise R. Graph-based ontology analysis in the linked open data. In: Proceedings of 
the 8th International Conference on Semantic Systems: ACM; 2012. 

46. Franz T, Schultz A, Sizov S, Staab S. Triplerank: Ranking semantic web data by tensor 
decomposition. The Semantic Web-ISWC 2009:213-228. 

47. Gunaratna K, Thirunarayan K, Sheth A. Types of Property Pairs and Alignment on Linked 
Datasets -- A Preliminary Analysis. Proceedings of the I-SEMANTICS 2013 Posters & 
Demonstrations Track:35. 

48. Zhang Z, Gentile AL, Blomqvist E, Augenstein I, Ciravegna F. Statistical Knowledge Patterns: 
Identifying Synonymous Relations in Large Linked Datasets. In: The Semantic Web-ISWC 
2013: Springer, 703-719. 

49. Halpin H, Hayes PJ. When owl: sameAs isn’t the same: An analysis of identity links on the 
semantic web. In: Linked Data on the Web WWW2010 Workshop (LDOW2010); 2010. 

50. Volz J, Bizer C, Gaedke M, Kobilarov G. Discovering and maintaining links on the web of data. 
The Semantic Web-ISWC 2009:650-665. 

51. Isele R, Jentzsch A, Bizer C. Efficient Multidimensional Blocking for Link Discovery without 
losing Recall. In: WebDB; 2011. 



 

 

52. Song D, Heflin J. Automatically generating data linkages using a domain-independent 
candidate selection approach. The Semantic Web-ISWC 2011:649-664. 

53. Ngonga Ngomo A-C, Lyko K. EAGLE: efficient active learning of link specifications using 
genetic programming. The Semantic Web: Research and Applications 2012:149-163. 

54. Ngomo A-CN, Lyko K, Christen V. COALA - Correlation-Aware Active Learning of Link 
Specifications. In: The Semantic Web: Semantics and Big Data: Springer, 442-456. 

55. Ngomo A-CN. Link discovery with guaranteed reduction ratio in affine spaces with minkowski 
measures. In: The Semantic Web-ISWC 2012: Springer, 378-393. 

56. Isele R, Bizer C. Learning expressive linkage rules using genetic programming. Proc. VLDB 
Endow. 2012, 5:1638-1649. 

57. Isele R, Bizer C. Active learning of expressive linkage rules using genetic programming. Web 
Semantics: Science, Services and Agents on the World Wide Web 2013. 

58. Joshi AK, Jain P, Hitzler P, Yeh PZ, Verma K, Sheth AP, Damova M. Alignment-based Querying 
of Linked Open Data. In: On the Move to Meaningful Internet Systems: OTM 2012: Springer, 
807-824. 

59. Jain P, Hitzler P, Verma K, Yeh PZ, Sheth AP. Moving beyond sameAs with PLATO: Partonomy 
detection for Linked Data. In: Proceedings of the 23rd ACM conference on Hypertext and 
social media: ACM; 2012. 

60. Sheth A, Arpinar I, Kashyap V. Relationships at the heart of semantic web: Modeling, 
discovering, and exploiting complex semantic relationships. Enhancing the Power of the 
Internet 2004:63-94. 

61. Prud’Hommeaux E, Seaborne A. SPARQL query language for RDF. Available at: 
http://www.w3.org/TR/rdf-sparql-query/. (Accessed 23/03/2013) 

62. Hartig O, Bizer C, Freytag JC. Executing SPARQL queries over the web of linked data. The 
Semantic Web-ISWC 2009:293-309. 

63. Ladwig Gn, Tran T. Linked data query processing strategies. In: Proceedings of the 9th 
international semantic web conference on The semantic web-Volume Part I: Springer-Verlag; 
2010. 

64. The Linking Open Data cloud diagram. Available at: http://lod-cloud.net/. (Accessed 
25/07/2013) 

65. Datahub. Available at: http://datahub.io/group/lodcloud. (Accessed 25/07/2013) 
66. Harth A, Hose K, Karnstedt M, Polleres A, Sattler KU, Umbrich J. Data summaries for on-

demand queries over linked data. In: Proceedings of the 19th international conference on 
World wide web: ACM; 2010. 

67. Hose K, Karnstedt M, Koch A, Sattler KU, Zinn D. Processing rank-aware queries in P2P 
systems. Databases, Information Systems, and Peer-to-Peer Computing 2007:171-178. 

68. Görlitz O, Staab S. SPLENDID: SPARQL Endpoint Federation Exploiting VOID Descriptions. In: 
Proceedings of the 2nd International Workshop on Consuming Linked Data, Bonn, Germany; 
2011. 

69. Alexander K, Hausenblas M. Describing linked datasets-on the design and usage of void, 
the’vocabulary of interlinked datasets. In: In Linked Data on the Web Workshop (LDOW 09), 
in conjunction with 18th International World Wide Web Conference (WWW 09): Citeseer; 
2009. 

70. Schwarte A, Haase P, Hose K, Schenkel R, Schmidt M. FedX: Optimization techniques for 
federated query processing on linked data. The Semantic Web–ISWC 2011 2011:601-616. 

71. Schwarte A, Haase P, Hose K, Schenkel R, Schmidt M. FedX: a federation layer for distributed 
query processing on linked open data. The Semanic Web: Research and Applications 
2011:481-486. 

72. Konrath M, Gottron T, Scherp A. SchemEX—Web-Scale Indexed Schema Extraction of Linked 
Open Data. Semantic Web Challenge, Submission to the Billion Triple Track 2011. 



 

 

73. de Oliveira HR, Tavares AT, Lóscio BF. Feedback-based data set recommendation for building 
linked data applications. In: Proceedings of the 8th International Conference on Semantic 
Systems: ACM; 2012. 

74. Nikolov A, d’Aquin M, Motta E. What should I link to? Identifying relevant sources and 
classes for data linking. The Semantic Web 2012:284-299. 

75. Tummarello G, Cyganiak R, Catasta M, Danielczyk S, Delbru R, Decker S. Sig. ma: Live views 
on the Web of Data. Web Semantics: Science, Services and Agents on the World Wide Web 
2010, 8:355-364. 

76. Umbrich Jr, Karnstedt M, Hogan A, Parreira JX. Freshening up while staying fast: Towards 
hybrid SPARQL queries. In: Knowledge Engineering and Knowledge Management: Springer; 
2012, 164-174. 

77. MusicBrainz. Available at: http://musicbrainz.org/. (Accessed 14/10/2013) 
78. ClimbData. Available at: http://datahub.io/dataset/data-incubator-climb. (Accessed 

14/10/2013) 
79. Lingvoj. Available at: http://www.lingvoj.org/. (Accessed 14/10/2013) 
80. Frosterus M, Hyvonen E, Laitio J. Datafinland--a semantic portal for open and linked 

datasets. In: The Semanic Web: Research and Applications: Springer; 2011, 243-254. 
81. Lalithsena S, Jain P, Hitzler P, Sheth A. Automatic Domain Identification for Linked Open 

Data. In: Proceedings of the 2013 IEEE/WIC/ACM International Conferences on Web 
Intelligence. Atlanta, USA; 2013. 

 
 


	Alignment and Dataset Identification of Linked Data in Semantic Web
	Repository Citation

	tmp.1409752427.pdf.qj1lG

