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ABSTRACT 

Raheja Aarti J., M.S. Egr., Department of Biomedical, Industrial and Human Factors 

Engineering, Wright State University, 2008. Automatic Analysis of Metacarpal Cortical 

Thickness in Serial Hand Radiographs. 

 

To understand the roles of various genes that influence skeletal bone accumulation and 

loss, accurate measurement of bone mineralization is needed. However, it is a 

challenging task to accurately assess bone growth over a person‟s lifetime. Traditionally, 

manual analysis of hand radiographs has been used to quantify bone growth, but these 

measurements are tedious and may be impractical for a large-scale growth study. The aim 

of this project was to develop a tool to automate the measurement of metacarpal cortical 

bone thickness in standard hand-wrist radiographs of humans aged 3 months to 70+ years 

that would be more accurate, precise and efficient than manual radiograph analysis. 

The task was divided into two parts: development of automatic analysis software and the 

implementation of the routines in a Graphical User Interface (GUI). The automatic 

analysis was to ideally execute without user intervention, but we anticipated that not all 

images would be successfully analyzed. The GUI, therefore, provides the interface for the 

user to execute the program, review results of the automated routines, make semi-

automated and manual corrections, view the quantitative results and growth trend of the 

participant and save the results of all analyses.   
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The project objectives were attained. Of a test set of about 350 images from participants 

in a large research study, automatic analysis was successful in approximately 75% of the  

reasonable quality images and manual intervention allowed the remaining 25% of these 

images to be successfully analyzed. For images of poorer quality, including many that the 

Lifespan Health Research Center (LHRC) clients would not expect to be analyzed 

successfully, the inputs provided by the user allowed approximately 80% to be analyzed, 

but the remaining 20% could not be analyzed with the software.  

The developed software tool provides results that are more accurate and precise than 

those from manual analyses. Measurement accuracy, as assessed by phantom 

measurements, was approximately 0.5% and interobserver and intraobserver agreement 

were 92.1% and 96.7%, respectively. Interobserver and intraobserver correlation values 

for automated analysis were 0.9674 and 0.9929, respectively, versus 0.7000 and 0.7820 

for manual analysis. The automated analysis process is also approximately 87.5% more 

efficient than manual image analysis and automatically generates an output file 

containing over 160 variables of interest. The software is currently being used 

successfully to analyze over 17,000 images in a study of human bone growth. 
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1. INTRODUCTION 

 

The measurement of variation in bone geometry throughout life is an important means for 

monitoring bone health, of the genes affecting skeletal growth, but obtaining accurate 

measurement of bone mineralization, especially in children, has always been a challenge 

in the field of skeletal biology. Since adult bone mass is a result of genetic influence on 

bone accrual and bone loss, whereas child bone mass is a result of genes influencing only 

the bone acquisition process, it is possible to use growth measures to discriminate 

between genes that influence bone accumulation and genes that influence bone loss later 

in life. For this, it is critical that the skeletal measurement process works in both age 

populations. Currently, tedious manual measurements of radiographs are acquired with 

digital calipers. The aim of this project is to develop a tool to automate the measurement 

of metacarpal cortical bone thickness in standard hand-wrist radiographs that will be 

more accurate, precise and efficient than manual radiograph analysis. 

The current project falls under the scope of the Fels Longitudinal Study (FLS), which 

was initiated in 1929 and is currently the world‟s largest and longest continuously 

operational serial study of growth, development and body changes throughout the human 

lifespan.
1
 The study subjects include approximately 1,200 serial participants and 

approximately 1,500 nuclear and extended family members, with data spanning five 
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generations. Since the FLS data include serial measurements for each participant, the 

genetic influence on bone accrual and bone loss can be distinguished by comparing the 

genes affecting the bone accrual during childhood and bone accrual and loss during 

adulthood. 

Cortical thickness measurements can be used to estimate bone mass of an individual. 

Bone mass represents the amount of mineralized bone in a person and is generally 

expressed in units of g/cm
2
. Bone mass accumulates most rapidly during childhood and 

gradually peaks in early adulthood.
1,2

 Peak bone mass is the amount of bone present at 

the end of skeletal maturation. In later life, bone loss occurs as a result of an imbalance 

between rates of bone formation and resorption during bone remodeling.
3
 All of these 

changes can be tracked by looking at the serial data from the FLS participants. 
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2. BACKGROUND 

 

 2.1  Bone Accumulation and Bone Loss over the Lifespan 

Bone mass accumulation begins at the onset of endochondral ossification which, for 

some bones, occurs during the fetal stage. There is a marked increase in bone mass 

accumulation during puberty, with peak bone mass attained between the ages of 20 and 

30 years.
2 

The process of bone loss typically starts in the fifth decade for both males and 

females.
4
  

Cortical bone mass accumulation and loss take place at two bone surfaces in the 

diaphysis of any long bone: the periosteal surface and the endosteal surface (Figure 1.1a). 

At the periosteal surface, the changes are positive since there is periosteal apposition 

rather than resorption.
4
 The early periosteal apposition rate is very high and is followed 

by a moderate rate of increase until puberty. There is a rapid increase in the periosteal 

apposition during adolescence, after which time the periosteal apposition continues at a 

slower rate and progresses until about the age of eighty years.
4 

The changes at the endosteal surface are more complex. Three phases occur in the 

endosteal growth cycle: 1) a resorption phase (birth to approximately age 20 years), 

wherein resorptive losses are higher in males than in females; 2) an apposition phase 

(approximately age 20 to age 40 years), which takes place after the periosteal apposition 
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rate spurt during adolescence and again occurs at a greater rate in males versus females; 

and 3) another resorption phase (age 40 years until the end of life), which is the primary 

cause of bone loss in adults due to the disproportionate ratio of endosteal resorption to 

periosteal apposition.
4
  

Although cortical bone represents the majority of skeletal bone mass, trabecular bone is 

also of clinical interest. Trabecular bone is found near the ends of long bones at joint 

surfaces and within the vertebrae.
5
 Due to its large surface-to-volume ratio and the fact 

that the trabeculae are in direct contact with bone marrow, trabecular bone exhibits high 

metabolic activity (bone turnover) and responds more quickly to environmental and 

hormonal changes.
6 

In this project, since measurements are taken in the midshaft region 

of the metacarpal, cortical measurements are of interest. 

2.2  Gender-Related Differences in Bone Accumulation  

Males and females have a more or less similar pattern for bone deposition until the onset 

of puberty.
3 

At the early stages of puberty, bone accumulation in females is markedly 

increased over that in males. However, the bone mass is higher at the end of puberty in 

males due to the longer duration and increased rate of periosteal apposition, which yields 

a larger periosteal diameter throughout the lifespan.
4
 Conversely, adolescent endosteal 

apposition is higher in females than in males, resulting in a narrower medullar cavity in 

females. The rate of bone loss is higher in females than in males but is due to lower 

periosteal bone formation in females and not a result of increased endosteal resorption.
7
 

This is also seen in post-menopausal females where there are decreased levels of estrogen 

which, in turn, inhibit periosteal bone formation due to a decrease in osteoblast (bone 

forming cells) activity.
7 
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2.3 Factors Affecting Bone Accumulation 

Bone accumulation is the product of sexual maturation and genetic and environmental 

factors.
8
 Genetic factors regulate how efficiently the body utilizes its nutrients during 

bone remodeling.
9
 Genetic factors have physiological and pathological effects on bone 

mass accumulation. For example, some genetic disorders such as osteogenesis imperfecta 

(OI), which is a congenital disorder, lead to low bone mass and bone fragility due to 

malfunctions in the production of collagen.
10

 Environmental factors, including nutritional 

intake and exercise, can have either a positive or negative influence on bone mass 

accumulation.
8
 For example, a protein-deficient diet delays the adolescent growth spurt 

and yields a diminished adult periosteal diameter. Bone loading during exercise increases 

bone mass, whereas physical immobilization results in loss of bone.  

2.4 Cortical Thickness 

An estimate of a person‟s bone mass can be calculated by directly measuring the cortical 

thickness of the metacarpals. As in other long bones, the shafts of the metacarpals are 

comprised of approximately 80-90% cortical bone and 10-20% trabecular bone.
11

 In a 

cylindrical segment of a long bone, the net cortical thickness TC is equal to the periosteal 

diameter TD minus the endosteal (medullary cavity) diameter MD (Figure 1.1b). Cortical 

thickness increases from early infancy until approximately the fourth decade in life. 

During adolescence, the rate of increase in cortical thickness is higher in females but has 

a longer duration in males, leading to a greater cortical thickness in males.
4
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(a)                               (b) 

Figure 1.1. Diagrammatic representation of the metacarpal, showing a) the periosteal and 

endosteal surfaces where bone mass accumulation and loss predominantly occur during 

growth stages and b) the cross-section of the bone (at the location indicated by the dashed 

horizontal line in (a)) with the dimensions of total periosteal diameter TD and medullary 

cavity diameter MD displayed. The net total cortical thickness TC is equal to TD – MD. 

 

2.5  Region of Interest for Calculation of Cortical Index 

The metacarpals of the non-dominant hand were selected as regions of interest (ROI) in 

this study. Metacarpal measurements are common in radiogrammetry studies due to easy 

accessibility for imaging and the fact that the cortex of the metacarpal typically 

represents 90% of that bone‟s bone mineral content (BMC).
12

 In fact, the metacarpal 

cortical index (MCI) was used as an index of osteoporosis before dual x-ray 

absorptiometry (DXA) technology was developed. MCI is usually expressed as a ratio of 

the total cortical thickness (medial and lateral) normalized by the outer bone diameter of 

the same bone at the same location.
13 

Periosteal Surface 

Endosteal Surface 
MD TD 
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2.6  Radiogrammetry 

Radiogrammetry has been used since the 1960‟s to calculate bone mass from  

radiographs.
13

 By measuring the metacarpal endosteal and periosteal diameters from hand 

radiographs,
14

 changes in periosteal apposition and endosteal resorption  can be assessed. 

In conventional radiogrammetry, geometric dimensions are measured by an observer 

using a measuring instrument (e.g., calipers). Radiogrammetry is different from other 

methods for bone mass measurements as it returns the geometric dimensions, rather than 

the material density, of the bone. Accordingly, it is less sensitive to beam hardening 

effects and soft-tissue thickness.
15

 Since radiogrammetry involves measurement from 

radiographs that may have been acquired years prior, but are still available, it can be used 

in large populations or for serial studies to determine changes in bone thicknesses 

throughout an individual‟s life span.  

With advances in computer radiography and image processing methods, more precise 

methods have become available to determine bone mass from digital radiographs. The 

newer method is known as digital X-ray radiogrammetry (DXR) and involves computer 

analysis of digitized radiographs. The major advantage of DXR over conventional 

radiogrammetry is observer independence because (in theory) no observer measurements 

are necessary.
12

 The accuracy of digital radiogrammetry can be improved by using film 

digitizers or sensors with high spatial resolution, and DXR is far more accurate than 

conventional radiogrammetry since the digitized pixel size is much smaller than the 

difference the eye can perceive during measurement with the digital calipers. 
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2.7  Blurring and Magnification in Radiographs 

Blurring of an object on an x-ray film is a common characteristic in radiographs. Image 

unsharpness due to patient motion is one blur artifact that cannot be corrected for 

systematically. However, another source of blurring is the finite size of the x-ray focal 

spot, which results in a region of partial irradiation surrounding the object.
16

 Since the 

focal spot is not a point source, it behaves as if it were composed of many x-ray point 

sources, each forming its own image of the object. The edges of these images will not be 

at the same point on the film, leading to an ill-defined edge or penumbra around the 

object. This geometric unsharpness, or edge gradient, appears visually as blurring. Since 

blurring primarily depends on the size of the x-ray focal spot, it is an imaging device 

property and varies with the imaging system. For accurate quantitative analysis of bone 

geometry, a blurring correction is required.  

Object magnification also affects the apparent dimensions of radiographed objects. The 

amount of magnification M is affected by both the source-to-film distance Dsf and the 

source-to-object distance Dso as follows: 

        .                                                         [1] 

2.8  Some Previously Used Methods for Metacarpal Segmentation 

Commercial instruments are available for radiogrammetric measurements of bone. For 

example, Pronosco‟s X-Posure System
TM

 (Sectra Pronosco A/S, Vedbaek, Denmark) 

automatically calculates the MCI from hand radiographs.
17

 This system‟s software uses 

an active shape model (ASM) to find the diaphyses of the middle three metacarpals, and 

then automatically selects the region around the minimum shaft width. Within this region, 
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the endosteal (inner) edges are determined from the maximum grayscale-intensity values 

along each row‟s line profile and the periosteal (outer) edges, are found from the sets of 

adjacent points having the maximum gradient.
17

  

Other researchers have worked on methods for hand radiograph analysis. Sotoca et al. 

used point distribution models (PDM) and ASMs for automatic segmentation of hand 

bones in digitized hand radiographs.
18

 PDMs are statistical models that change shape 

depending on allowable deformation as determined by analysis of a training set of 

images. The software is fine tuned with the help of a training set by allowing variation in 

the possible model deformations. This variation in the model to construct the desired 

shape is called the ASM. The number of points for the model differed according to the 

bone being segmented, which was manually selected by choosing a seed point inside the 

bone. Once the contours of the bone are successfully found, the average grayscale value 

of the region is reported. 

Garcia et al. developed a fully automatic algorithm for the segmentation of phalanges in 

hand radiographs.
19

 Their method was divided in two parts: finding the seed point for the 

active contours (snakes), then using the snakes to achieve segmentation. They first 

separated the hand silhouette from the background by applying a threshold value based 

on local statistics. The skeleton of the hand was then generated from the binary hand 

image and the branches of the skeleton were used to find seed points inside the 

phalanges. Subsequently, the seed points were used to define candidate bone contours. 

The internal and external energies due to the gradient of the image, in concert with the 

adaptive snake algorithm around the bone of interest, were used to create the final bone 

contour. 
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2.9  Metacarpal Variables Calculated in the FLS 

In this section, the major metacarpal variables of interest in the FLS will be defined. 

Historically, the variables have been collected manually along the metacarpal.
1
 

Additional values were derived from the above measurements. Over the past five years or 

so, measurements have been taken with digital calipers and fed directly into a PC.  

For each of the metacarpals of interest (second through fifth), the total metacarpal length 

and diaphyseal metacarpal length measurements were first acquired. In the cases wherein 

diaphyseal/epiphyseal fusion was complete, the diaphyseal length was not determined. 

These values were then used to determine three positions on the metacarpal: midshaft of 

total length, midshaft of diaphyseal length and position of minimum shaft width. At each 

of these three positions, four values were measured: 

1. Total Diameter TD: The periosteal diameter  

2. Medullary Diameter MD: The diameter of the medullary cavity, corresponding 

to the distance between each endosteal surface  

3. Medial Cortex Thickness MC: The distance between the periosteal and 

endosteal edges on the medial side 

4. Lateral Cortex Thickness LC: The distance between the periosteal and 

endosteal edges on the lateral side.  

Four additional values were derived from the measured variables: 

5. Total Cortex TC: The sum of the medial and the lateral cortical thicknesses, 

given by  
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                                                     [2] 

6.    Cortical Index CI: The ratio of total cortex to bone diameter, given by    

                                                                                                         [3] 

7. Polar Moment of Inertia TJ: A bending strength indicator, given by  

                                                         [4] 

8.  Polar Section Modulus TZP: A torsional strength indicator, given by 

.                                                           [5] 
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3. MATERIALS AND METHODS 

 

3.1  Image Acquisition 

Over 17,000 hand radiographs (typically between 20-45 images per participant) are to be 

analyzed in this FLS effort under the direction of Dr. Dana Duren. The visit schedule for 

each FLS participant follows: from birth to age one year, data are collected every three 

months; from the age of one year to 18 years, data are collected every six months; from 

18 years onward there is no fixed time interval between visits. Since the FLS originated 

in 1929, several x-ray tubes have been used to acquire the hand radiographs. The imaging 

protocol has changed slightly over the years: the current hand radiograph acquisition 

protocol parameters are: 50 kVp, 12 mA, 0.1 s at a source-to-film distance of 40 in. All 

radiographs were taken in the posteroanterior (PA) view. For calibration purposes, a 

reference aluminum wedge was included in some of the radiographs. The different types 

of wedges included in the radiographs are listed in Table 3.1. 

The film size used during this study was not uniform; the smallest film size was 3″x5″, 

whereas the typical and largest film size was 8″x10″. In some cases, when the quality of 

the acquired radiograph was questionable, a second radiograph was acquired at the same 

visit and both films were available in the image database.  
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Table 3.1. Different types of wedges imaged on hand-wrist radiographs over the years in 

the FLS. A wedge was not present in some radiographs. Not all wedges are included here, 

because some wedges are not cataloged and are labeled as „Other.‟ 

 

Wedge Types 

Double Small Step 

Large Step Small Step and Slope 

Medium Step Small Step and Double 

Pyramid Medium Step and Slope 

Slope Ruler 

 

Comparison of Digitizers 

One of the first steps was to specify an appropriate film digitizer for this project. Film 

digitization is required for the automatic analysis routines and also provides permanent 

archiving of the acquired radiographs. Of interest was a digitizer that would provide both 

high grayscale resolution and high spatial resolution. A high spatial resolution was 

required for accurately localizing edges of the metacarpals and a high grayscale 

resolution aides in edge definition and permits later analysis of bone mineral density. 

Several digitizers were considered; their specifications are compared in Table 6.1. Based 

on cost and performance specifications, the VIDAR DosimetryPRO Advantage
®
 film 

digitizer (VIDAR Systems Corporation, Herndon, VA) was selected. This digitizer 

provides a nominal 16-bit grayscale resolution and 300 dpi (85 µm pixel size) spatial 

resolution. 

The typical resultant digitized images were approximately 2880 x 2220 pixels. During the 

digitization process, the following file naming scheme was adopted: each filename 

consisted of 20 or 22 characters. The first eight characters identified the participant 
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Table 3.2: Several film digitizers were considered for purchase by the Lifespan Health Research Center (LHRC) researchers. This table 

provides a listing of the digitizers and relevant performance specifications of each instrument. 

Manufacturer Model 
Grayscale 

Resolution 

Spatial 

Resolution 

Optical 

Density 

Range 

Film 

Processing 

Speed 

Max 

Films/Batch 
Cost Notes 

Kodak 
Industrex 

LS85 
12 bit 73 µm 0.03-3.85 

88 s at                       

"highest   

resolution" 

N/A $57,900 
Includes PC system with 

monitor 

Radlink Golbar 

Radiography 
Laser Pro 16 16 bit 166 µm 0-4.0 

13 s (1K)              

26 s (2K)              

39 s (3K) 

8 $15,500 
$14,000 without 

Autoloader 

Vidar Systems 
Dosimetry Pro 

Advantage 
16 bit 89 µm 0.0-4.0 

24 s               

(4Kx5K) 
25 $20,905 

Speciality device sold 

only to cancer centers 

Vidar Systems Sierra Plus 12 bit 85 µm 0.02 - 3.6 
82 s            

(4Kx5K) 
N/A $10,995 No multifeed option 

Vidar Systems 
Diagnostic Pro 

Advantage 
12 bit 85 µm 0.05-4.0 

40 s                

(4Kx5K ) 
25 

Single feed-$12,000   

Multifeed-$19,945 
- 

GE FS50/FS50B 12 bit 50 µm 0.05-4.0 
7 s  at 200um          

120 s at 50um 
N/A $75,750 

Includes workstation and 

monitor 

GE Lumiscan 75 12 bit 100 µm 0.3-4.1 ~ 31 s 6 - - 

GE Lumiscan 20 12 bit 175 µm 0.3-3.8 ~ 13 s 6 - - 

Howtek Fulcrum 16 bit 42.3 µm 0.0-4.4 23 s N/A $39,900 - 
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number, which was present on the radiograph. The next eight characters indicated the 

visit date in yyyymmdd format and the last four characters were the word „HAND‟ to 

identify the body part. When two radiographs were acquired during a single visit, the 21
st
 

character was entered as „A‟ for the first radiograph or „B‟ for the second radiograph; the 

radiograph most suited for analysis was indicated by a „1‟ in the 22
nd

 character position (a 

„2‟ was entered in this position for the less suitable film). 

3.2  Variation in the Set of Hand Radiographs 

Since the FLS participants were involved in a longitudinal study, their age at the time of 

image acquisition ranges from three months to sixty years. However, the acquisition 

parameters did not change based on the subject‟s age. Consequently, most infant films 

were overexposed and of poor contrast due to low amount of mineralized bone. 

Additionally, the radiographs acquired at the beginning of the study have been in storage 

for over seventy years and are beginning to deteriorate. Copies of some original films 

were made in order to preserve the information. The copies were made onto films that 

were larger than the originals, and these films have a substantial unexposed border. Both 

of these issues impact automated segmentation routines and are addressed in the 

following sections. 

The project is broadly divided into three parts: 

1. Automated segmentation of the desired metacarpal 

2. Measurement/calculation of required metacarpal analysis parameters 
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3. Construction of a graphical user interface (GUI) to the software routines. The 

GUI provides functionality for a) automatic analysis, b) results review and manual 

corrections by user, c) storage of analysis results and d) post-review of accepted 

analyses.  

A flowchart summarizing the algorithmic steps for segmenting and measuring the 

metacarpal is provided in Section 3.5. 

3.3  Automated Image Segmentation 

An algorithm was developed to automatically segment the metacarpal of interest from the 

hand radiograph. This task was achieved through the following steps: classifying images 

based on histogram analysis, pre-processing of images, elimination of extraneous 

background objects, segmentation of the general metacarpal region, localization of the 

metacarpal of interest and segmentation of the metacarpal of interest.  

3.3.1  Classifying Images Based on Histogram Analysis 

Given the variation in the images, each image may or may not require particular pre-

processing steps. To automatically determine which steps to apply, images were analyzed 

by evaluating the image histogram, which represents the distribution of the grayscale 

values across the dynamic range of the image. The dynamic range of the image is dictated 

by the imager‟s bit depth; here, digitized 16-bit images yield grayscale values ranging 

from 0 to 65,535. Histogram analysis allowed images to be classified based on the need 

for two distinct pre-processing steps: removal of unexposed areas and correction for 

overexposure. 
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Images with unexposed areas (Figure 3.1a) exhibit histograms with a substantial number 

of pixels in a narrow region in the upper dynamic range that are not contiguous with the 

remaining histogram values (Figure 3.1b). These values needed to be suppressed in the 

image to avoid biasing the threshold value required in subsequent hand segmentation 

steps. To determine if an image contained an unexposed region, the cumulative 

distribution function (CDF) of the histogram was used. Grayscale cutoffs that correspond 

to 90% and 99% of the CDF were calculated. The difference between these two values 

was higher in images with unexposed regions as compared to uniformly exposed images. 

Through trial and error, we found that a difference value greater than 30,000 indicates the 

presence of unexposed regions (Figure 3.1), and all the pixels lying in the region (0.99 

CDF-10,000) were classified as unexposed in this case. A second condition was also 

necessary, since some images had a very large number of unexposed pixels, which 

yielded 90% and 99% CDF cutoffs at high grayscale values. In this case, the presence of 

unexposed regions was indicated if the difference value was greater than 10,000 and the 

99% value was greater than 50,000 (Figure 3.2). All pixels lying in the region (0.90 CDF-

10,000) were classified as unexposed in this case. To automatically detect overexposed 

images, the grayscale cutoff corresponding to 95% of the histogram CDF was computed. 

If this value was below 10,000 (approximately 15% of the total dynamic range), the 

image was classified as having poor contrast (Figure 3.3a). Note that for images 

containing an unexposed region, the 95% value is calculated after eliminating the 

unexposed regions from the image. 
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(a)                                                                                         (b) 

          

(c)                                                                                         (d) 

Figure 3.1.  a) Image containing unexposed region after film duplication, along with its b) 

histogram, showing a corresponding region in the higher dynamic range unrelated to the 

rest of the histogram. The grayscale locations corresponding to 90% and 99% of the 

cumulative distribution function (CDF) of the histogram are displayed. Since there is a 
large difference between these two grayscale values, the given image is classified as 

having an unexposed area, and subsequent pre-processing steps are invoked to eliminate 

that area. c) The resultant image and d) its histogram after pre-processing, showing that 

the unexposed region has been suppressed by setting all pixels with grayscale values 

greater than (0.99 CDF – 10,000) to 0.  
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(a)                                                                                      (b) 

   

(c)                                                                                   (d) 

Figure 3.2. a) Image containing an unexposed region along with its b) histogram showing 

the unwanted group of unexposed pixels. In contrast to the case presented in Figure 3.1, 

here the difference between the grayscale cutoff values is fairly small, and the second 
conditional statement is invoked. Since the 0.99 CDF grayscale value is large (> 50,000), 

this image is classified as having an unexposed area. After preprocessing, all pixels 

greater than (0.90 CDF – 10,000) are set to zero. c) The processed image and d) its 

histogram exhibit no unexposed areas. 
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(a)                (b) 

 

Figure 3.3. a) A given image is automatically classified as having low contrast (usually 

due to overexposure), if the grayscale value corresponding to 0.95 CDF lies below the set 

threshold of 10,000 as observed in b) its corresponding histogram.  

 

3.3.2  Pre-Processing of Images 

To suppress unexposed image regions, the pixels having grayscale values within the 

defined range were set to zero (black). Next, an image-dependent logarithmic 

transformation was applied to all images (Equation 6). Further, clipping is avoided 

through the use of an appropriate scaling factor as follows:   

                                                                                                             [6] 

where Iout is the output pixel value after the log transformation is applied to Iin, the input  
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  (a) 

             

                                        (b)           (c) 

Figure 3.4. a)  An image-specific logarithmic transformation is applied to each image to 

stretch the dynamic range occupied by its histogram and to find the desired threshold 

value to segment the hand from the background. The constant in Equation 1 is selected 

such that, after applying the log transform, the histogram of the image occupies the entire 

dynamic range. Two such curves are plotted, showing that a narrow input grayscale range 
is remapped to cover a wider output grayscale range.  b) Low contrast image before and 

c) after application of its unique logarithmic transform. 
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pixel value and c is the constant that was selected to yield a maxim 

um output grayscale value of 65,536 (meaning that the transformed image values occupy 

the entire dynamic range). The constant c is, therefore, defined as 

,                                                          [7] 

where n is the bit depth resolution and Imax is the maximum intensity value in the input 

image. 

This remapped the original range of grayscale values onto a wider range of output 

grayscale values (Figure 3.4),
20

 which generally improves image contrast and aids in later 

finding an appropriate segmentation threshold value. This process worked well for both 

properly exposed and overexposed images. For hand-wrist radiographs, the image 

grayscale values lie in the lower portion of the dynamic range and so these values are 

stretched rather than compressed as a result of the logarithmic transformation. 

3.3.3  Elimination of Background 

Next, the hand was segmented from the background using a modified version of Matlab's 

graythresh function, which applies Otsu‟s method to select an optimal threshold for 

classifying image pixels into distinct classes.
21

 There are a number of pixels in the image 

having a grayscale value equal to zero, particularly in the cases wherein unexposed 

regions were set to OFF during pre-processing. These pixels should not contribute to the 

selection of a global threshold value, and thus the value at this position of the histogram 

(i.e., the number of pixels in that bin) was reset to zero. In Otsu‟s method, an optimum 

threshold is determined to minimize the within class variances of the background and 
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foreground pixels.
21

 Otsu‟s method is most accurate when the variance within each class 

is inherently low, a condition that is met in this application. The Otsu-suggested threshold 

is intentionally lowered in all cases to avoid losing hand pixels. For overexposed images, 

the returned threshold value was adjusted to a value 15% lower than the Otsu-suggested 

threshold, as opposed to a 10% lower value for good contrast images, to account for the 

higher incidence of low grayscale values. To verify that the selected threshold was 

appropriate, the total number of ON pixels in selected image regions was determined. If 

too many ON pixels existed, then the threshold was increased by 10%. This process was 

continued iteratively until the number of ON pixels met the expectations of an 

appropriately segmented hand image, with only the pixels within the hand turned ON.   

In our application, the original image (Figure 3.5a) was to be divided into two regions: 

hand pixels and background pixels; we wished to turn the hand pixels ON (white) and the 

background pixels OFF (black) (Figure 3.5b). However, in some images, background 

objects outside the hand (such as patient identification letters, the calibration wedge, etc.) 

had similar grayscale values as the hand and were turned ON. Since these background 

objects were unnecessary in subsequent analysis steps, we wanted to set these pixels 

OFF. As the hand was the largest object in the image, it was easily separated from the 

background objects by counting the pixels in each object and selecting the largest object 

to turn ON (Figure 3.5c). 

3.3.4  Segmentation of the Metacarpal Region 

Following hand segmentation, the next task was to identify the metacarpal region. This 

was achieved in two steps. 
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                            (a)                                                (b)                          (c) 

Figure 3.5. To segment the hand from the background, a) the input image is thresholded 

using Otsu‟s method to obtain a b) binary image. Since the binary image also contains 

unwanted objects, such as the patient identification marker and calibration wedge, 

selection of only the largest object in (b) results in c) a binary image of the hand. 

 

3.3.4.1  Identification of the Phalanges Region 

Along each row of the binary hand image, the number of zero crossings was counted. A 

zero crossing occurred whenever there was a transition from an ON (grayscale value = 1) 

pixel to an OFF (grayscale value = 0) pixel or vice-versa. Consequently, the number of 

zero crossings decreases when the fingers transition to the palm region as the rows 

progress distally-to-proximally along the hand. Since the metacarpals are located just 

below the phalanges, an upper threshold for cropping the metacarpal region was selected 

when the numbers of zero crossings fall below a threshold of six. This threshold works 

best because, although there are two zero crossings for each finger (not counting the 

thumb due to its orientation), in some cases the entire hand is rotated and fewer than eight 

zero crossings exist even in the phalanges region. Subsequently, a fixed number of rows 
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were added as a buffer to prevent inadvertent cropping of the distal metacarpal regions 

(Figure 3.6a). 

3.3.4.2  Separating the Carpal and Metacarpal Regions 

After the first step, the binary image includes regions of the metacarpals, carpals and 

proximal radius and ulna (Figure 3.6b). After masking the original image with this binary 

mask, the resultant image was again thresholded using Otsu‟s method to segment bone 

from soft tissue (Figure 3.6c). Next, a similar zero-crossing method was again applied to 

obtain the metacarpal region. When, working proximally-to-distally, the number of zero 

crossings in an image row exceeded four (determined by trial and error), the proximal 

limit of the metacarpal region was reached. This information was subsequently used to 

extract the metacarpal image of interest (Figure 3.6d). 

3.3.5  Localization of the Second Metacarpal and Other Metacarpals of Interest 

A Medial Axis Transform (MAT) was used to find the specific region around the second 

metacarpal. This transform is based on a Euclidean Distance Map (EDM), which converts 

a binary image into a grayscale image, wherein each foreground pixel in the input binary 

image is assigned a grayscale value based on its Euclidean distance from the nearest 

background pixel. The result is that pixels closer to the object‟s edges will have lower 

grayscale values than pixels closer the object‟s centers.
22

 As a result, pixels equidistant 

from two background pixels will form a ridge of locally bright values in the EDM. 

Generation of these ridges in an object‟s image constitutes the MAT. Since the success of 

the MAT depends on the quality of the input binary image, a two-step process for 
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(a)                            (b) 

                

         (c)                                                                                        (d) 

Fig 3.6. To segment the metacarpal region from the hand, we first find a) the location 

(dotted line) on the binary image where, working distally-to-proximally, the number of 

zero crossings first falls below six. By adding a constant number of buffer rows, the 

image is cropped at the position of the solid line to remove the phalanges. After cropping 

the original image at the position of the dotted line, the b) resulting grayscale image is 

again subjected to Otsu‟s method to find a new threshold for binarization. c) In the 

resultant binary image, a new position (dotted line) is found where, working proximally-

to-distally, the number of zero crossings first exceeds four. After adding a constant 

number of buffer rows (ending at the solid line), the image (b) is re-cropped at the 
position of the solid line in (c) to remove the regions of the radius, ulna and some carpals 

to yield a d) grayscale metacarpal image. 
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generating the binary image of the segmented metacarpal region (Figure 3.7a) was 

implemented. First, a range operator was applied. The range operator is an adaptive 

thresholding method in which each pixel is assigned the value of the difference between 

the k x k neighborhood maximum and minimum values (k = 3 here) (Figure 3.7b). The 

second step was the application of a simple global threshold based on the mean of the 

range image to obtain the binary image (Figure 3.7c).  

After applying the distance transform, the resultant EDM image (Figure 3.7d) exhibited 

ridges along the long axis of each metacarpal. After defining the set of image rows that 

contained five distinct peaks (corresponding to each metacarpal), a grayscale line profile 

was generated across the center row of this subregion (Figure 3.7e). Working left-to-right, 

it was known that the fourth peak corresponded to the second metacarpal, and an area 

around this line profile peak was used to segment the second metacarpal from the rest of 

the image (Figure 3.7f). To obtain the third, fourth and fifth metacarpal ROIs (Figures 

3.8a-c, respectively), the bounding box around the second metacarpal was shifted to the 

left by 30%, 60% and 70%, respectively, of the total width of the second metacarpal ROI. 

When defining the ROI around each metacarpal, the metacarpal located to the left of the 

metacarpal of interest was included because this improved the success of the subsequent 

metacarpal segmentation step.  

Additional image cropping to eliminate any remaining carpal region was accomplished 

by excluding image rows proximal to the intersection of the metacarpal and carpal/wrist 

ridges, which was represented by the highest grayscale value in the EDM image. 
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(a)                                                                              (b) 

 

                           
 

   (c)                                                                                (d) 

 

         
 

           (e)                                  (f) 

 

Figure 3.7. To find the second metacarpal ROI, first a range operator was applied to the     

a) input grayscale image to obtain b) a contrast-enhanced image. Subsequent thresholding 

of the contrast-enhanced image yielded c) a binary image of the localized metacarpal 

region. d) By generating a Euclidean Distance Map (EDM) of the binary image and 

selecting the brightest portions of the map, we obtained the ridges that correspond to each 

metacarpal.   e) A line profile, was generated at the center location of the region in the 

EDM where five distinct peaks were present throughout. The peaks in the line profile 

correspond to the location of each metacarpal. The fourth line profile peak corresponds to 

the location of the second metacarpal and was used to crop the original image to generate 

f) a grayscale image of localized second metacarpal ROI. 
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(a)                                      (b)                                                 (c) 

  

Figure 3.8. To obtain the ROIs for a) the third, b) fourth and c) fifth metacarpal, the 
bounding box around the second metacarpal was shifted to the left by 30%, 40% and 

70%, respectively, of the total width of the second metacarpal. In all cases, the goal was 

to generate an image that simply contains the entire metacarpal ROI. Additional 

metacarpal segmentation in the images was handled through subsequent processing steps. 

 

3.3.6  Segmentation of the Metacarpal of Interest 

Depending on the age of the subject and on the quality of exposure, simple thresholding 

to segment the metacarpal of interest was often unsuccessful. Therefore, within each 

metacarpal ROI, the value corresponding to 0.95CDF of the image histogram was  

calculated. If this value was below 10,000 (approximately 15% of the total dynamic 

range) the local image was deemed to be overexposed, and local pre-processing was 

applied prior to segmentation. The binary image was obtained by logically „ANDing‟ the 

result of three, independently processed, precursor images as described in the next 

sections. 
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3.3.6.1  Adaptive Thresholding Based on a Range Operator 

As described in Section 3.4.4, a range operator was applied, followed by global 

thresholding (Figure 3.9a). In overexposed images, the global threshold value was 

reduced by 20% below that used for the rest of the images. Morphological operations, 

such as closing, were then used to connect disjointed features. After these operations, 

some pixels inside the metacarpal were still OFF (since the range operator yields very 

low values inside the metacarpal); these holes were filled using additional logical 

operations.  

3.3.6.2  Adaptive Thresholding based on Local Statistics 

In this method, background subtraction was used to enhance areas containing both 

background and foreground regions. The thresholded image was convolved with a mean 

operator and subtracted from the original image. The result is expected to be small for 

homogenous regions and larger for regions with both foreground and background pixels. 

By thresholding the difference image (again, the threshold was lowered for low contrast 

images), the area between two different regions was selected (Figure 3.9b).  

3.3.6.3  Global Thresholding 

The image was thresholded based on a simple global threshold value established by 

Otsu‟s method (Figure 3.9c). Since a high global threshold value would likely turn OFF 

some pixel values inside the metacarpal, the binary image in this step was produced by 

applying a threshold value that was 50% below the initial threshold value (which is 

lowered further for low-contrast images). The purpose of this second binary image was to 

  



31 
 

                                            
 

                          (a)                                                     (b)                                                      (c) 

 

                                                          
 

                          (d)                                                     (e)                             (f) 

 

Figure 3.9. To segment the metacarpal of interest, the metacarpal ROI was thresholded 

using three methods. First a) a binary metacarpal image was obtained through adaptive 

thresholding by applying a range operator to the image in Figure 3.7f, followed by global 

thresholding. b) The second binary image was obtained by thresholding the image in 

Figure 3.7f using adaptive thresholding based on local statistics. Finally, c) the third 

binary image was obtained by thresholding the image in Figure 3.7f based on Otsu‟s 

method.  „AND‟ logic was then applied to these three binary images and d) the resultant 

binary image was input to the watershed segmentation process. e) The watershed 

segmented image gives the boundary between individual objects. f) The metacarpal of 
interest was selected as the first object reached by moving inward and down from the 

image‟s upper right hand corner. If the metacarpal was split into two parts due to low 

density within the metacarpal (as in (e) here), then both objects representing the 

metacarpal were selected. 
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counteract the turning ON of soft tissue regions in the adaptive thresholding methods 

(Section 3.3.5.1 and 3.3.5.2).  

3.3.6.4 Watershed Segmentation 

After „ANDing‟ the results of these three approaches (Figure 3.9d), the watershed method 

was applied to find boundaries between individual objects. The EDM image shows two 

overlapping regions with peaks when two structures are touching in a binary image. Each 

structure can be visualized as a mountain in the EDM image; the mountaintop  

corresponds to the ultimate eroded points (UEPs) and the intersection of the mountain 

peaks corresponds to the midpoint between, or intersection of, the structures. To segment 

the two objects, minima in the valleys between the mountains (called „watershed lines‟ in 

reference to how water running down from the mountains would be collected)
23

 are 

connected. The relative height of each mountain is also taken into account during 

watershed line placement. Structures can then be divided into separate regions by 

segmenting the image along these contours. Matlab‟s „watershed‟ function was applied to 

segment each metacarpal (Figure 3.9e). We found that the inclusion of an entire adjacent 

metacarpal (see Section 3.3.4) resulted in better watershed success when differentiating 

the metacarpals. If, instead, the metacarpal of interest was initially closely cropped, a 

portion of an adjacent metacarpal was still likely to be present. In these cases, the small 

structure would often be considered part of the metacarpal of interest and would not be 

eliminated by the watershed method.  

At this point the image for localizing the second metacarpal contained the second and 

third metacarpals (or a portion of the third metacarpal), the image for localizing the third 

metacarpal contained the third and fourth (or portion of the fourth) metacarpal, etc. The 
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metacarpal of interest (Figure 3.9f) was selected as the first object reached by moving 

inward and down from the image‟s upper right hand corner. For the fifth metacarpal only 

(since no sixth metacarpal exists), the metacarpal of interest was selected by moving 

inward and down from the image‟s upper left hand corner. In some cases, low density 

within the metacarpal structure resulted in the watershed method horizontally dividing 

the metacarpal into two separate structures. In these cases, both objects were selected by 

walking along the general direction of the long axis of the first object and selecting the 

second object if it lay along this axis. These objects had only a single row of separation 

between them, since they were initially connected in the binary image that was input to 

the watershed method. When the metacarpal was not split, it was possible to avoid 

picking up the carpals during this process, since there were a number of OFF pixels 

present between the metacarpals and the carpals in the binary image, which were 

maintained in the watershed image. 

3.4  Measurement and Calculations of Various Parameters of the Metacarpals 

3.4.1  Calculation of Total and Diaphyseal Metacarpal Lengths 

To most easily calculate the total and diaphyseal metacarpal lengths, the segmented 

metacarpal of interest was first aligned with the vertical axis. Since the shape of the 

metacarpals is not symmetric, only the middle half of the metacarpal was considered in 

finding its orientation. The midpoint of the ON pixels in each row was found and a 

straight line was fitted to these values (Figure 3.10a). The orientation of this line with 

respect to the vertical axis was calculated by finding the inverse tangent of the line‟s 

slope. Using Matlab‟s „imrotate‟ command, which calculates the rotated image using 
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     (a)                                       

 

                                    
 

         (b)                                                                     (c) 

 

Figure 3.10. To find the orientation of the metacarpal, a) a line was fit to the midpoints of 

the ON pixels in each row. b) The mask and the grayscale metacarpal ROI image were 

then rotated by the negative of the angle found by taking the inverse tangent of the line‟s 

slope, and the resulting mask was used to extract c) the grayscale, segmented metacarpal 

image. 
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bilinear interpolation,  the binary image was then rotated by the negative of the calculated 

angle (Figure 3.10b) and the center line coordinates were updated. Masking of the 

original (rotated) grayscale image with the binary image after dilating it by a few pixels, 

to avoid losing pixels within the metacarpal due to thresholding, yields a vertically-

oriented and segmented metacarpal image (Figure 3.10c).  

The total and diaphyseal lengths (TL and DL, respectively) were calculated along the long 

axis of the metacarpal. The total length extends from the proximal end of the metacarpo-

phalangeal joint to the distal end of the carpal-metacarpal joint. These points correspond 

to the locations of maximum gradients on the line profile taken along the central axis of 

the metacarpal (Figure 3.11). After calculating the first difference array along the line 

profile, the maximum positive difference valuecorresponded to the distal metacarpal 

edge, whereas the maximum negative value corresponded to the proximal edge (Figure 

3.12). If the diaphyseal/epiphyseal fusion was not yet complete, the metacarpal 

diaphyseal length was also calculated. A local maximum gradient between the two 

metacarpal endpoints corresponds to the point at which diaphyseal/epiphyseal fusion is 

initiated (Figure 3.13). To determine if a diaphyseal length should be calculated, we 

checked the following two conditions for each peak location in the line profile: (1) Does 

the peak lie within a distance of 120 pixels (approximately 11 mm) from the distal edge 

location? And (2) does the peak have a magnitude greater then 65% of the negative peak 

value at the proximal edge location? If both conditions were met, the diaphyseal length 

was calculated. 
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Figure 3.11. The line profile taken along the long axis of the metacarpal shows the 

grayscale variation along the total length of the metacarpal, extending from the distal 

edge location to the proximal edge of the metacarpal. If a diaphyseal length should be 

determined, it is calculated as the length of the line extending from the location of the 

diaphyseal/epiphyseal fusion location to the distal edge location of the metacarpal. 

 

 

               
 

(a)                                                                 (b) 

 

Figure 3.12. To find the total  length of  the metacarpal, a) a plot of the first difference of 

the line profile was generated along the long axis of the metacarpal. The location of the 

maximum gradients at the two ends of the curve (after coming in a few pixels from the 

both the ends) correspond to the distal and proximal edge locations of the metacarpal. b) 

The distance between these two end points is equal to the total length of the metacarpal. 
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  (a)                                                                            (b) 

 

Figure 3.13. To find if there exists a diaphyseal length, the first difference of the line 

profile across the long axis of the metacarpal was computed. a) If, between the ends of 

the metacarpal, a peak exists that satisfies both of the following two conditions: (1) it lies 

within a distance of 120 pixels from the distal edge location and  (2) it has a magnitude 

greater then 65% of the negative peak value at the proximal edge location, then a 

diaphyseal length should be computed. Here a peak was selected as the diaphyseal/ 
epiphyseal fusion point and b) the diaphyseal length was then calculated as the distance 

between the diaphyseal/epiphyseal fusion point and the proximal edge of the metacarpal. 

 

3.4.2  Calculation of the Total Midshaft, Diaphyseal Midshaft and Minimum Shaft                  

Width Locations 

Cortical widths were assessed at three locations in the metacarpal: at the total midshaft 

position, at the diaphyseal midshaft position and at the position of minimum shaft width. 

The diaphyseal and total lengths were used to calculate the diaphyseal midshaft and total 

midshaft position, respectively. In each case, the midshaft position lies exactly halfway 

between the segment ends. To find the position of minimum shaft width, the metacarpal 

diameter was calculated at each row along the middle 50% of the metacarpal, and the 

position of the minimum diameter was stored. 
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3.4.3  Location of the Endosteal and Periosteal Edges 

Radiographs record the projection of three dimensional structures onto a two dimensional 

space. Consider a transverse cross-section of a simplified metacarpal, constructed using 

simple geometry and homogenous material densities (Figure 3.14). If we sum, column-

wise, the grayscale values in that representation, the result represents the total material 

path length and density seen by the x-ray beam at that location. The array of column-wise 

sums represents the projection recorded in the PA hand radiographs at each row position. 

The highest grayscale value in that line profile (row) corresponds to the position at which 

the x-ray beam passes through the maximum amount of material/density. In our case, that 

occurred when the beam passed through the maximum amount of cortical bone. 

Assuming a cylindrical metacarpal cortex, and both symmetric and homogenous soft 

tissue and marrow cavity distributions, this position of highest grayscale value occurred 

at the endosteal edge.  

Referring again to Figure 3.14, the periosteal edge can be found at the position between 

the outer soft tissue region and the endosteal edge, at which the line profile exhibits 

maximum curvature. For image analysis, this location was found by taking the first 

difference of the line profile, finding all candidate peaks with magnitudes between 70% 

of the medial (positive) peak and 70% of the lateral (negative) peak and selecting the 

outermost peaks, which corresponded to the medial (transition from soft tissue to bone) 

and lateral (transition from bone to soft tissue) periosteal edges, respectively (Figure 

3.15a).  
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3.4.4  Calculation of Medial and Lateral Cortical Thicknesses and Derived 

Parameters 

The medial/lateral cortical thickness (Figure 3.15b) is the difference between the 

medial/lateral periosteal and endosteal edge positions; the number of pixels between 

these locations was calculated and the result was multiplied by the known pixel 

dimension (85 μm). Additional measurements derived from the edge locations included 

the total bone diameter (difference between the medial and lateral periosteal edge 

positions) and the medullary diameter (difference between the medial and lateral 

endosteal edge positions). The total cortex, cortical index, polar moment of inertia and 

polar section modulus were then calculated using Equations 2-5. 

Multiple corrections were made to found edge locations. Some are due to known shifts in 

the edge and others are made to allow the user to easily arrive at consistent decisions 

when manual adjustments to the edge locations are required. The two known edge shift 

issues are the half-pixel shift when using gradient information (difference arrays) and the 

blur correction.  

3.4.5  Calculation of Blurring Correction Factor 

Among others, two known factors contributed to measurement accuracy. Here we present 

the correction process for both known errors. The first issue was edge blurring due to the 

finite dimensions of the x-ray tube focal spot. Although the actual x-ray tube used during 

image acquisition has changed over the course of the FLS study, we were limited to 

experimentally determining that parameter for the current set-up only. To develop the 

blur correction, the image of an aluminum step wedge was acquired from the current  
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Figure 3.14. To review the edge locations from the metacarpal projection image, a 

transverse cross-section of the metacarpal was simulated using two concentric circles 

with homogenous density values. A “density” value of 0.5 was associated with the inner 

circle to simulate medullary cavity. The region between the inner and outer circle was 

given a value of 1 to simulate the cortical bone. Finally, a “density” value of 0.1 was 

given to the region outside both circles to simulate soft tissue. The highest grayscale 

value in the projection occurs when the x-ray beam passes through the maximum amount 
of material/density, which in the case of the metacarpal corresponds to the endosteal 

edges. The periosteal edges lie between the soft tissue and the cortical bone and are 

represented as the points of maximum curvature (gradient) in the soft tissue-bone 

transition region. 
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        (a)                                                                       (b) 
 

Figure 3.15. To find the maximum curvature points along the metacarpal line profile 

corresponding to the periosteal edges across the metacarpal, the maximum gradient was 

found in a) the first difference of the line profile (data for this plot were generated from 

simulation described in Figure 3.14). Based on the periosteal and endosteal edge 

locations, the dimensions of b) the medullary cavity (solid line), the medial and lateral 

cortical thickness (dashed lines), and the total diameter (dashed plus solid lines) were 

calculated. 

 

 

x-ray system (Figure 3.16a), and a line profile across the wedge was extracted (Figure 

3.16b). This line profile was then compared to the profiles found by convolving a perfect 

edge profile (Figure 3.17a) with different blurring functions (Gaussian kernels with 

different values of sigma (Figure 3.17b)). The blur factor (sigma) that yielded the highest 

correlation coefficient between the experimentally measured line profile and the ideal 

edge under that blur indicated the best approximation of the actual system blur (Figure 

3.17c). 

Because the ideal edge profile exists only for step objects of constant material density and 

thickness (such as a slab), and because we recognized that our object does not  

fall into that class of objects, we wanted to separately assess the effect of object shape on 

measured edges. To simulate the expected line profile across the metacarpal, we first 
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generated a test image consisting of two concentric circles that represented cortical bone. 

The region outside the outer circle was assigned a low grayscale value to simulate soft 

 

 

        
 

(a) 

 

   
 

          (b) 

 

Figure 3.16.  To find the blurring function of the system, a) an image of a step wedge was 

acquired with the x-ray tube currently used in the FLS and b) a line profile was generated 

at a location across the edge of the step wedge perpendicular to the long edges of the 

wedge (solid line in (a)). 
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                          (a)                             (b) 
 

 

 
 

        (c) 

 

Figure 3.17. Assuming that the imaging system‟s point spread function can be modeled 

as a Gaussian blur, a) the line profile of an ideal edge was blurred with different blurring 

functions (Gaussian kernels with different values of sigma) to find the sigma of the 

blurring function. b) The blurring factor (sigma), which yielded the c) highest correlation 

between the simulated blur edge and the experimentally determined blur edge gives the 
best approximation of the actual system blur.  

 

 

 

tissue, the region between the two concentric circles was assigned a high grayscale value 

to simulate cortical bone, and the innermost region was assigned an intermediate 

grayscale value to simulate trabecular bone and bone marrow.  
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The values across each image column were summed to achieve the ideal (non-blurred) 

line profile, and this profile was then blurred with the experimentally-determined blur 

function. The amount of periosteal edge shift and endosteal edge shift in the blurred line 

profile were found by comparing the original and the blurred line profiles.  

3.4.6  Half Pixel Shift in the Edge Locations 

The second known issue was due to the pixelation of our image data. As we used first 

differences to locate the positions of maximum gradients in the line profiles, we needed 

to store the calculated difference values in a corresponding array. The actual edge lies 

between the two pixels that yielded the maximum difference, yet we must store the 

difference value at one of the two locations. The first pixel of the edge pair was selected 

for storing the edge information, so the required half-pixel shift is +0.5. Although the 

storage scheme is consistent across the profile, we felt that the analyst should not have to 

understand this aspect of the program. Our solution was to store the periosteal edge 

information at the position of the roof (the highest grayscale value along an edge 

transition) for both the medial and lateral edges (Figure 3.18) and make the adjustment 

within the program so that the user always moves the periosteal markers to the “top” of 

the maximum gradient on the profile. The appropriate half-pixel shift is then -0.5 for the 

medial periosteal edge and +0.5 for the lateral periosteal edge (Figure 3.18) toward the 

floor (the lowest grayscale value along an edge transition). The half-pixel shift issue is 

slightly different for the endosteal edges, which are found from peaks in the line profile. 

Referring to Figure 3.14, the actual endosteal edge lies between the position at which the 

maximum amount of bone is present and the neighboring pixel that represents bone and  
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Figure 3.18. The half-pixel shift is illustrated here for the endosteal and the periosteal 

edges. The square markers indicate periosteal edge locations (pixel locations 6 and 20) 

and the circular marker indicate endosteal edge locations (pixel locations 10 and 16) after 

the storage scheme has been adjusted for storing the edge locations at the roof of the 

edge. The shift in the periosteal edges is away from the center because again the roof was 

selected for storing the periosteal edge locations and the thickness between the two edges 

was underestimated by one pixel. The shift in the endosteal edge location is toward the 

medullary cavity (the floor of the edge transition), because the endosteal edge locations 
were stored at the roof, leading to an overestimation of the cortical thickness by one 

pixel.. 

 

marrow material. In marking the endosteal edge, the user positions the marker at the 

position of the peak and the half-pixel adjustment is a 0.5 shift toward the medullary 

cavity. 

3.5 Phantom Study to Assess Method Accuracy 

To validate the approach for finding periosteal and endosteal edges, a phantom with 

known dimensions (Figure 3.19) was imaged using the current FLS x-ray system. The 

phantom dimensions were verified by manual measurements and were found to agree 

within 0.1 mm to the literature value. Magnification corrections were applied using 
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Equation 1, and the actual phantom dimensions were compared to those obtained through 

the automatic analysis. 

Since the centers of each cylinder step within the outer Plexiglas cylinder lie along the 

same line, the object-to-film distance was taken from the cylinder‟s center axis to the 

center of the cassette, in which the film is placed, yielding a source-to-object distance Dso 

of 982 mm. The source-to-film distance Dsf was 1016 mm (40 inches). The calculated 

magnification factor M of 1.0346 was applied to the actual phantom dimensions before 

comparison to the dimensions calculated using the software. As with metacarpal analysis, 

the long axis of the phantom image was rotated so as to align it with the vertical image 

axis (Figure 3.20). The dimensions of each cylinder step were calculated at ten individual 

rows (object cross-sections) within the step, the half pixel shift and blurring corrections 

were applied to each result and the measurements were averaged to obtain the dimensions 

of each cylinder step. Results of the phantom study are summarized in Table 3.2.  

 

 

  

 

 

Figure 3.19. Cross-section of the aluminum cylindrical step phantom used to validate the 

edge finding methods. The aluminum thickness within the cylindrical step phantom 

decreases with the outer diameter of the step. The aluminum pieces is enclosed within a 

Plexiglas cylinder. All dimensions are in mm. Figure based on 24. 
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Figure 3.20. Radiograph of the cylindrical step phantom imaged using the current x-ray 

system at FLS. The acquired image was used to assess the accuracy of our software in 

finding outer and inner edges of cylindrical objects. The white and the black lines 

indicate the positions at which outer cylinder widths and wall thicknesses were measured. 

These measurements were compared to the known dimensions of the phantom at that 

location. 

 

The agreement between the actual and measured phantom dimensions was very high, 

exceeding 99% at every step. We concluded that the edge finding method applied was 

quite accurate for the measurement of a cylindrical object. 

To validate the automated method for calculating total cortical thickness, the total 

thickness of aluminum wall at the 24 mm step (4.12 mm, since the inner hollow cylinder 

diameter found was 19.82 mm) was calculated using the automated software. This 

position on the phantom was selected because the total aluminum wall thickness most 

closely approximates the normal adult metacarpal cortical thickness (Figures 3.19 and 

3.20). The automatically calculated total wall thickness of 4.0640 mm was compared to 

the magnified true total wall thickness of 4.2625 mm, representing an accuracy of 4.65%.  

The accuracy error while finding the total cortical thickness that consists of overall four 

edges, is 0.1985 mm which is less than three pixels, hence giving subpixel accuracy 

while finding each edge location. 
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Table 3.3: Phantom results to assess the accuracy of the automated analysis routines. 

Periosteal Edge 

 

 

Step 

 

 

 

 
Actual 

Cylinder 

Outer  

Dimension 

[mm] 

 

 

Expected Cylinder 
Image Dimension 

(Magnification 

Correction 

Applied) 

[mm] 

Cylinder Dimension 

Obtained with 
Automated Analysis 

(Includes Half-Pixel 

Shift and Blur 

Corrections) 

[mm] 

 

Difference 
Between 

Actual and 

Measured 

Dimensions 

[mm] 

 

 
 

 

Accuracy 

Error 

[%] 

1 20.6 21.31 21.34 0.03 0.14% 

2 22 22.76 22.69 0.07 0.31% 

3 24 24.83 24.74 0.09 0.36% 

4 26 26.89 26.70 0.19 0.71% 

5 28 28.96 28.73 0.23 0.79% 

Cortical Thickness 

3 4.12 4.2625 4.0640 0.1985 4.65% 
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3.5 Flowchart 

A flowchart of the automated analysis procedure is provided here. The steps below detail 

how the second metacarpal analysis is performed. The third, fourth and fifth metacarpal 

analyses are carried out using this same approach. 
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3 

Use binary cropped image as mask on grayscale metacarpal 

region image 

Threshold remaining image using range operator followed by 

global thresholding based on image sample mean 

Figure  

3.7 b and c 

Figure  

3.7 d 

Figure  

3.7 e 

Figure  

3.7 f 

Figure  

3.9 a 

Figure  

3.9 b 

Figure  
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Remove small structures (tip of phalanges or thumb) by 
labeling and selecting only largest object(s) 

Generate EDM image, apply Medial Axis Transform 

Generate line profile across the center row of region exhibiting 
five peaks (each corresponding to a metacarpal)  

Expand along the peak to obtain second metacarpal ROI 

Find the peak corresponding to the second metacarpal  

Threshold metacarpal ROI image using range operator (E1) 

Enhance metacarpal-carpal joint space (E2 = original grayscale 
image – blurred median image) 

Thresholded final image = AND(E1,E2,E3) 

Threshold metacarpal ROI image using Otsu‟s Method (E3) 

2 

Find EDM image    
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Find locations of total and diaphyseal length midshafts and 

minimum shaft width 

At each location, find medial and lateral periosteal edges using 

line profile gradient information 

At each location, find medial and lateral endosteal edges using 

peaks in the line profile 
Figure 

 3.14 

Figure  

3.15 

3 

Find first length estimate from binary image 

Apply watershed segmentation 

Find object corresponding to the metacarpal of interest,     
select two adjacent objects when metacarpal is split  

Figure  

3.9 e 

 

Figure  

3.9 f 

Define middle half of metacarpal (25% to 75% of length) 

Figure  

3.10 a 

Figure  

3.10 c 

Figure  

3.11 

Fit a line passing through the center ON pixels of each row 

Find the angle α between the fit line and the vertical 

Rotate binary and  grayscale ROI images by -α 

Generate line profile along central axis of (rotated) metacarpal  

Take first derivative of line profile to find total and diaphyseal 
lengths 

 

Figure  

3.12,  3.13 
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4. GRAPHICAL USER INTERFACE 

 

A graphical user interface (GUI) provides the software user with a pictorial view of the 

algorithm to assist with program interaction. Using Matlab‟s Graphical User Interface 

Development Environment (GUIDE) (Matlab R2007b, MathWorks, Inc., Natick, MA, 

USA) we developed an interface with various user interaction tools, such as display 

panels, pushbuttons, radio buttons, text boxes, etc.  

4.1  Requirements of the GUI 

The GUI serves to provide the output (images, line profiles and calculated data) of the 

automated analysis process and to offer tools for the user to correct the process at various 

stages in the event that the output of the automatic routines is incorrect. User intervention 

is possible at the following stages: metacarpal selection, metacarpal segmentation, 

diaphyseal and total length calculation and cortical thickness calculation.  

4.2  Components of the GUI 

The main GUI was designed to meet the stated requirements of automatic analysis and 

manual intervention (Figure 4.1). During the GUI design phase, feedback from the client 

was incorporated to generate a user-friendly tool to accomplish the analysis. Details of 

each GUI section are described below. 
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Figure 4.1. Layout of the main GUI. Each panel guides specific tasks as explained in detail in subsequent figures. 
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4.2.1  Selection of the Input and Output Directory, Assessor and Wedge Type 

To initiate the analysis procedure, the user first copies the images to be analyzed to a 

particular directory. The GUI is then invoked in Matlab, and within Panel A (Figure 4.1), 

using the „BROWSE‟ button (Figure 4.2, Item 1), the analyst selects the input directory 

that contains the participant folders, and then clicks the „RUN‟ button (Figure 4.2, Item 

2). This causes the program to be executed sequentially for all images in all participant 

folders in the input directory. It is envisioned that this operation will run overnight and 

that the results will be reviewed by the analyst on the following day. During program 

execution, individual output .mat files containing the full analysis results (subimages, 

point locations, calculated parameters, etc.) are generated for each image inside the 

individual folders created for each of the participants and stored at the location 

„C:\mat_files_final‟ (Table 4.1). When the analyst is ready to review the automated 

analysis results, clicking the „BROWSE‟ button (Figure 4.2, Item 3) associated with the 

output directory prompts for the path name of the location in which the output file will be 

stored. The user also inputs the assessor information (the analyst‟s initials) along with the 

calibration wedge type present in the image (the default is „0-No Wedge‟) (Figure 4.2, 

Items 4 and 5). Clicking on „New Folder‟ (Figure 4.2, Item 6) retrieves the first image in 

the first folder within the directory of analyzed images and displays the original full 

image in GUI Panel B. At any time, the user can advance to the next or previous image 

within a folder by selecting the „>>‟ or the „<<‟ buttons in Panel A (Figure 4.2, Item 7). 

The user can also go to a specific image in the folder by inputting the image number in 

the text box next to the „New Folder‟ button (Figure 4.2 Item 8), and then selecting the  
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Figure 4.2: Layout of Panel A. The user initiates the analysis by selecting the input 

directory using the (1) Input Directory „BROWSE‟ button and then selecting (2) „RUN‟. 

To view the automated analysis results, first the output directory is selected using the (3) 
Output Directory „BROWSE‟ button, and then the (4) assessor information and (5) 

wedge type are input. Selecting the (6) „New Folder‟ button then displays the first image 

in the first folder (and increments the folder number when it is subsequently selected). To 

go to the next or previous image, the user selects (7) the „>>‟ or the „<<‟ button; to jump 

to a particular image in the folder, the image number may be directly entered in the (8) 

edit box before selecting the „>>‟ button. The user can also enter narrative comments as 

needed using the (9) „COMMENT‟ button. The (10) „NO ANALYSIS‟ button is selected 

to save NaN values in the output file for images that cannot be analyzed (either 

automatically or manually). 

 

„>>‟ button. If the user wants to include a narrative comment in the output file, selecting  

 the „COMMENT‟ button (Figure 4.2, Item 9) will open a new window for this purpose. 

The user can type the comment or make changes to the previously stored comments. 

Finally, if a particular image cannot be reliably analyzed (due, for example, to very low 

contrast or a high degree of rotation) then user can check the „NO ANALYSIS‟ box 

(Figure 4.2, Item 10) which will cause NaN to be written for all variables in the output 

file.  

  1 

  2 

  6 

  3 

  7 

  8 

 10   9   5   4 
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4.2.2  Viewing the Output of the Automated Segmentation Process 

The results of automated segmentation are displayed on the right hand side of the GUI 

(Figure 4.1 Panel C). For the metacarpal of interest, the image of the segmented 

metacarpal and a line along its approximate length are displayed in the „Length Estimate‟  

Table 4.1. Essential auto-analysis results variables are stored in individual .mat files, 

which are used to quickly re-generate images and results to display in the GUI for review 

by the analyst. 

 

 Variable Name 

 

Variable Description 

 

1 rect_points Coordinates of metacarpal ROI in original image 

2 image_line1 Coordinates of the approximate length line 

3 Angle Inclination of the metacarpal in original image 

4 Ccrop Column value corresponding to the long axis of the metacarpal 

5 L3 Binary image of the segmented metacarpal 

6 Lengths 
Row location of metacarpal distal and proximal edges, 

epiphysis/diaphysis location. Dummy values (zeros) are stored if 

this does not apply. 

7 total_pos Row position (along long axis) of the midshaft of total length 

8 diaphyseal_pos 
Row position (along long axis) of the midshaft of diaphyseal 

length 

9 min_pos 
Row position (along long axis) of the position of minimum shaft 

width 

10 total_cortical_thickness Periosteal and endosteal edge locations at midshaft of total length 

11 diaphyseal_cortical_thickness 
Periosteal and endosteal edge locations at midshaft  

of diaphyseal length 

12 minimum_cortical_thickness Periosteal and endosteal edge locations at minimum shaft width 

 

window. The rotated metacarpal image and lines representing its total and diaphyseal 

lengths are displayed in the „Total Length‟ and „Diaphyseal Length‟ windows, 

respectively. In the „Thickness‟ window, a zoomed in version of the metacarpal midshaft 

region is provided and three different colored horizontal lines that correspond to the 
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position of the total midshaft, diaphyseal midshaft and minimum shaft width are 

superimposed on the image. Each line is comprised of three line segments; the outer two 

segments show the calculated widths of the medial and lateral cortex, and the center line 

segment shows the width of the medullary canal. (Figure 4.1 Panel D). A table of results 

(Figure 4.1 Panel E) displays the values of the total bone diameter, along with the medial 

and lateral metacarpal cortical widths and the cortical index. A plot of total cortical width 

at the position of minimum shaft width as a function of the radiograph acquisition date is 

displayed for each participant (Figure 4.1 Panel F), giving the user visual feedback of 

individual image results as well as the trend of total cortical width with respect to visit 

date. The point in this plot corresponding to the currently viewed radiograph is 

highlighted in a different color. To accept and store the results for the current image, the 

user presses the „SAVE >>‟ button. Output variables (Table 4.2) are written to the output 

file (an excel spreadsheet) with each spreadsheet row corresponding to one image in the 

current folder. Once review of all images in a participant‟s folder is complete, the user 

can select the next folder by selecting the „New Folder‟ button.  

4.2.3  Correction for Wrong Metacarpal 

Depending on image quality, patient positioning, patient anatomy, etc., the automated 

analyses can fail at one or more processing steps. The GUI provides options for user 

intervention at different stages in the processing. Often, correcting an upstream error will 

allow the processing to complete successfully. Next to each image output in Panels B, C 

and D are buttons that invoke user corrective actions for that particular processing step. 

First, if the incorrect metacarpal region is selected, pressing the „INCORRECT‟ button 
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Table 4.2: Variables stored in the output file (an excel sheet) after the user accepts the results by pressing the  „SAVE >>‟ button. Analysis 

results of one metacarpal of one image are written to the output file with each SAVE button. The output for all metacarpals is stored in single 

row of the output file. Analysis results for subsequent images of that participant are stored in subsequent rows (one row per image). 

Field Variable Name Variable Description Comments 

1 IDCODE Identification code for participant (alpha-numeric) e.g., FEL00001 or FEL00247 

2 PTNO Participant number (numerical) e.g., 1 or 247 

3 VISIT Visit date Eight digit date, e.g., 20080509 

4 YEAR Visit year Four digit year, e.g., 2008 

5 MONTH Visit month Two digit month, e.g., 05 

6 DAY Visit day Two digit day, e.g., 09 

7 WEDGE Type of wedge Drop-down list of 12 wedge types 

8 MULTIX Multiple radiograph designation 
A and B represent first and second radiograph at visit; 

1 designates best radiograph if multiple available 

9 COMMENT Comments regarding radiograph Comment text field 

10 MC2MISS MC2 is missing Default is 0; 1 indicates missing metacarpal 

11 MC2DATE MC2 date of analysis Eight digit date 

12 ASSESSOR Initials of the user User initials are in dropdown menu 

13 MC2LINE MC2 line profile adjusted by user Default is 0; 1 indicates manual adjustment by user 

14 MC2 LPeak MC2 lateral peak value at the minimum shaft location Used to calculate quality index 

15 MC2MPeak MC2 medial peak value at the minimum shaft location Used to calculate quality index 

16 MC2LTROUGH MC2 trough location between the peaks Used to calculate quality index 

17 MC2LQUALP MC2 bone quality at the lateral side w.r.t. the peak value MC2LPeak-MC2TROUGH/ MC2Lpeak 

18 MC2MQUALP MC2 bone quality at the medial side w.r.t. the peak value MC2MPeak-MC2TROUGH/ MC2Mpeak 

19 MC2LQUALT MC2 bone quality at the lateral side w.r.t. the trough value MC2LPeak-MC2TROUGH/ MC2TROUGH 

20 MC2MQUALT MC2 bone quality at the medial side w.r.t. the trough value MC2MPeak-MC2TROUGH/ MC2TROUGH 

 Variable Name Variable Description Comments 
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Field 

 

21 MC2TL MC2 total length Two decimal places 

22 MC2DL MC2 diaphyseal length Two decimal places 

23 MC2TMD MC2 midshaft diameter taken at midshaft of total length Two decimal places 

24 MC2TMC MC2 medial cortex taken at midshaft of total length Two decimal places 

25 MC2TLC MC2 lateral cortex taken at midshaft of total length Two decimal places 

26 MC2TMED MC2 medullary diameter at midshaft of total length Two decimal places 

27 MC2TTC MC2 total cortex at midshaft of total length = MC2TMC + MC2TLC 

28 MC2TCI MC2 cortical index at total midshaft = MC2TTC / MC2TMD 

29 MC2TJ Polar moment of inertia at midshaft of MC2 total length = π/32*(MC2TMD – MC2TMED) 

30 MC2TZP Polar section modulus at midshaft of MC2 total length = MC2TJ / (MC2TMD / 2) 

31 MC2DMD MC2 midshaft diameter taken at midshaft of diaphyseal length Two decimal places 

32 MC2DMC MC2 medial cortex taken at midshaft of diaphyseal length Two decimal places 

33 MC2DLC MC2 lateral cortex taken at midshaft of diaphyseal length Two decimal places 

34 MC2DMED MC2 medullary diameter taken at midshaft of diaphyseal length Two decimal places 

35 MC2DTC MC2 total cortex at midshaft of diaphyseal length = MC2DMC + MC2DLC 

36 MC2DCI MC2 cortical index at diaphyseal midshaft = MC2DTC / MC2DMD 

37 MC2DJ Polar moment of inertia at midshaft of diaphyseal length MC2 = π/32*(MC2DMD – MC2DMED) 

38 MC2DZP Polar section modulus at midshaft of diaphyseal length of MC2 = MC2DJ / (MC2DMD / 2) 

39 MC2MMD MC2 midshaft diameter taken at minimum shaft Two decimal places 

40 MC2MMC MC2 medial cortex taken at minimum shaft Two decimal places 

41 MC2MLC MC2 lateral cortex taken at minimum shaft Two decimal places 

42 MC2MMED MC2 medullary diameter taken at minimum shaft Two decimal places 

43 MC2MTC MC2 total cortex at minimum shaft = MC2MMC + MC2MLC 

44 MC2MCI MC2 cortical index at minimum shaft = MC2MTC / MC2MMD 
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Field 

 

Variable Name Variable Description Comments 

45 MC2MJ Polar moment of inertia at minimum shaft of MC2 = π/32*(MC2MMD – MC2MMED) 

46 MC2MZP Polar section modulus at minimum shaft of MC2 = MC2MJ / (MC2MMD / 2) 

47 MC2MNF 
MC2 total diameter at minimum shaft larger than that at the  

midshaft of the total or the diaphyseal length? 
Default is 0; 1 indicates the condition is true 

114 -161  Fields 9 to 47 are repeated for the third, fourth and fifth metacarpals  

 

 

Figure 4.3: Layout of Panel B. If the automated region selection around the metacarpal of interest is incorrect, the user selects the (1) „WRONG 

METACARPAL‟ button, which opens a new GUI for manually defining a new metacarpal ROI.  
 

 

 

  1 
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Figure 4.4: GUI for manual metacarpal ROI selection. A rubberband box is drawn around 

the metacarpal of interest and the medially adjacent metacarpal. This box may be deleted 

by pressing the (2) „CLEAR‟ button. Once the user is satisfied with the selected ROI, 

pressing the (1) „SAVE‟ button stores the ROI coordinates, and returns control to the 

main GUI. If the metacarpal of interest is not present in the image, the user presses the 

(3) „NO METACARPAL‟ button and then presses (1) „SAVE‟ to exit this GUI.  

 

(Figure 4.3, Item 1) located below the image window in Panel B will open a new GUI for 

manually selecting the region around the metacarpal (Figure 4.4). Once the user is 

satisfied with the bounding box selection, pressing the „SAVE‟ button (Figure 4.4, Item 

1) invokes the segmentation algorithm and the automated process continues with 

recalculation of all values. If the metacarpal of interest is not present in the image, the 

user selects the „NO METACARPAL‟ button (Figure 4.4, Item 2), which results in NaN 

values being stored in the output file. 

4.2.4  Correction for Wrong Approximate Length of the Metacarpal 

The GUI also allows for corrections of the approximate metacarpal length assessment, 

which is subsequently used to calculate the metacarpal orientation. To adjust the 

automatically determined approximate length, the analyst selects the „INCORRECT‟ 

  

  3   1 

  2 
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Figure 4.5 : Layout of Panel C. The „INCORRECT‟ button, located below the (1) 

approximate length, (2) total length or (5) the diaphyseal length figure window, is 

selected if adjustments are necessary. The „REJECT‟ button located below the (3) total 

length or (6) diaphyseal length figure window is selected to reject either of these lengths 

if the length is not applicable. The (4) „DIAPHYSEAL NOT TOTAL‟ AutoFix button 

replaces the diaphyseal length with the total length and deletes the total length whereas 

the (7) „TOTAL NOT DIAPHYSEAL‟ AutoFix button replaces the total length with the 

diaphyseal length and deletes the diaphyseal length.  

 

button (Figure 4.5, Item 1) located below the „Approximate Length‟ window, which will 

open a new GUI (Figure 4.6). Within this new window, the user can adjust the endpoints 

of the initial length estimate line by dragging them to the correct location(s) (Figure 4.6, 

Item 1). Pressing „SAVE‟ passes this information to the main GUI, which re-initiates  

metacarpal segmentation using the updated information and, the automated 

processcontinues with recalculation of all subsequent values. 

4.2.5  Correction of Metacarpal Total Length 

If the total length (actual length, not length estimate) is incorrect, the user selects the 

„INCORRECT‟ button (Figure 4.5, Item 2) located below the „Total Length‟ window,  

 

  1   2 
  4   3   5   7   6 
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Figure 4.6: GUI to manually adjust the approximate length. The user clicks on the most 

distal end of the metacarpal and then drags the mouse to the most proximal end of the 

metacarpal to draw the approximate length line. Once the user is satisfied with the 

manually adjusted approximate length line, pressing (1) the „SAVE‟ button updates the 

values and returns the user to the main GUI. (2) The „CLEAR‟ button deletes the 

manually drawn line.   

 

which will open a new window for manually correcting the total length (Figure 4.7, Item  

 1). After adjustment of the total length line endpoints, pressing „SAVE‟ passes the new 

length to the main GUI, and all subsequent calculations are updated. In cases for which a 

total length measurement is not appropriate (for example, in young children total length is 

not defined if the epiphysis is not yet calcified), the user can delete the total length 

measurement by selecting the AutoFix „REJECT‟ button (Figure 4.5, Item 3) located 

below the „Total Length‟ window. If the automated analysis labels the diaphyseal length 

as the total length, pressing the AutoFix „DIAPHYSEAL NOT TOTAL‟ button (Figure 

4.5, Item 4) will replace the diaphyseal length with the total length and will delete the 

total length measurement. This information is passed to the main GUI, and processing 

continues with updated calculations.  

  2   1 
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Figure 4.7 : GUI to manually adjust the total length. The auto generated line is initially 

displayed along the long axis of the metacarpal (since it is difficult for the user to position 
the line along the exact bone midline), and the user simply adjusts the endpoints of this 

line as needed. Once satisfied with the manual adjustment, pressing  (1) the „SAVE‟ 

button updates the values and returns the user to the main GUI. The user also has the 

option to clear the total length line by selecting (2) the „CLEAR‟ button. 

 

4.2.6  Correction of Incorrect Metacarpal Diaphyseal Length 

As with total length, incorrect diaphyseal length adjustment is initiated by selection of the 

„INCORRECT‟ button (Figure 4.5 5) located below the „Diaphyseal Length‟ window. 

Within the new window (Figure 4.8), the user can adjust the diaphyseal length. The user 

can also select the REJECT‟ button (Figure 4.5, Item 6) to delete the diaphyseal length in 

cases for which this measurement does not apply (i.e., post-fusion). Selecting the 

„TOTAL NOT DIAPHYSEAL‟ (Figure 4.5, Item 7) AutoFix button will replace the total  

length with diaphyseal length and delete the diaphyseal length. Processing continues 

using the updated information. 

  1   2 
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Figure 4.8: GUI to manually adjust the diaphyseal length. (1) As with the total length, the 

auto generated line is initially displayed along the long axis of the metacarpal, and the 

user simply adjusts the endpoints of this line as needed. Once the user is satisfied, 

pressing (1) the „SAVE‟ button updates the values and returns the user to the main GUI; 

pressing (2) the „CLEAR‟ button deletes the line.  

 

4.2.7  Correction of Incorrect Cortical Thickness Measurements 

To correct automatically calculated cortical thickness values (at any of the three 

locations), the user first selects the „INCORRECT‟ (Figure 4.9 Item 1) button located 

below the „Thickness‟ window in PANEL D. A new GUI (Figure 4.10) is displayed, in 

which radio buttons allow the user to select the particular location for adjustment of the 

cortical values (Figure 4.10, Item 1). Next, the user selects the „Edit Line Profile‟ (Figure 

4.10, Item 2) button. A new screen appears that displays the line profile at the selected 

position; the four automatically determined edge positions (two periosteal and two 

endosteal edges) are shown as points on the line profile (Figure 4.11, Item 1). The 

zoomed-in grayscale metacarpal image is also shown with the total and medullary widths 

(diameters) indicated by colored lines (Figure 4.11, Item 2). The user can select the edge 

  2   1 
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to be corrected by clicking on the corresponding line profile point and making changes to 

the location of that point using the left and right arrow buttons located below the line 

profile plot (Figure 4.11, Item 3). These changes are simultaneously used to update the 

width of the line displayed in the grayscale image so that the user has immediate 

feedback about their adjustments. Any changes made in the edge locations can be stored 

by selecting the „SAVE‟ button (Figure 4.11, Item 4), or the user may continue by saving 

the updated edge locations and then selecting a different edge on the line profile for 

manual adjustment. At any time the user can reset the edge locations to their original 

automatically-found values by selecting the „Reset‟ button (Figure 4.11, Item 5). 

Alternatively, the user can execute the „SAVE and BACK‟ button (Figure 4.11, Item 6) 

which returns the user to the main correction screen to select a different location on the 

metacarpal. After all corrections are made, selecting the „SAVE‟ button (Figure 4.11, 

Item 3) on the selection screen returns control to the main GUI. An additional AutoFix 

button is provided to correct a problem that arises with the automatic selection of the 

periosteal edges in the line profile. For most images, an edge-gradient threshold of 70% is 

successful for selecting the point on the line profile that corresponds to the periosteal 

edge. However, in some images that threshold must be substantially reduced to find the 

edge. This occurs when lines have been drawn on the image, but it also occurs in some 

images without any visible markings. Here, it seems that the overall shape of the 

metacarpal may be responsible for this problem, and it is reasonable to hypothesize that a 

non-circular metacarpal might require a lower threshold. Selection of an AutoFix button 

(“Recalculate Total,” “Recalculate Diaphyseal,” “Recalculate Minimum Shaft,” (Figure 

4.10, Items 4-6)) in the „Thickness GUI‟ window for each of the three positions invokes a 
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new edge gradient threshold of 35%. Usually the correct periosteal edge is found with the 

adjusted threshold even if the gradient between other point pairs in the line profile is 

much higher than along the actual periosteal edge. 

 

 
 

 

 

Figure 4.9. Layout of Panel D. The automatically generated cortical and medullary 
widths are indicated by colored line segments in the figure window. If any width needs to 

be manually adjusted, selecting (1) the „INCORRECT‟ button opens a new GUI for this 

purpose. Pressing (2) the „ZOOM‟ button zooms in on the metacarpal image.    
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Figure 4.10. GUI for adjustment of automatically calculated cortical thickness values. The user first selects (1) the location, at which the 

thickness calculations are to be adjusted and then selects the (2) „Edit Line Profile‟ button which opens a new line profile GUI. After making 

all adjustments via the line profile GUI, pressing the (3) „Save‟ button updates the stored data and returns the user to the main GUI. Three 

AutoFix buttons (4-6) are available (one for each location) that, when selected, modify the edge selection criteria and recalculate the cortical 

thickness at that location.        
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Figure 4.11. Line profile GUI for adjusting cortical width measurements. The GUI displays (1) the line profile at (2) the selected metacarpal 

position. The lengths of the colored line segments (representing cortical thickness and medullary cavity thickness) are adjusted when the user 

updates the edge points on the line profile. After selecting the green marker corresponding to the edge that needs to be corrected, the user can 

update the edge position either toward or away from the bone midline using (3) the arrow buttons. Pressing the (4) „Save‟ button stores the 

current edge locations and allows the user to adjust another edge position. At any time, the user can reset the edge locations to their original, 

automatically found values by selecting the (5) „Reset‟ button. When all adjustments are satisfactory, pressing the (6) „Save And Back‟ button 

returns the user to the Thickness GUI. 
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5.  RESULTS 

 

5.1  Edge Corrections 

The sigma for the blurring function of the system was found to be 1.65. This sigma 

yielded a correlation value (R) of 0.9983 between the experimentally measured edge and 

the blurred ideal edge. By applying this blurring function to the simulated metacarpal line 

profile and comparing the original and blurred profiles, we found that the shift in the peak 

location corresponding to the endosteal edge was one pixel toward the midline of the 

bone (Figure 5.1). Comparing the positions of the maximum gradient in the two line 

profiles yielded the shift in the location of the periosteal edge. This shift due to blurring 

was found to be one pixel in the outer direction (toward soft tissue) (Figure 5.1).  To 

summarize the edge corrections, the total number of edge adjustment pixels by edge is 

provided in Table 5.1. These corrections are applied within the software to the edges 

found either automatically or manually.  

5.2  Cortical Width Plot 

To illustrate the output of the analysis procedures, the total cortical width TC at the 

minimum shaft location for a single participant is plotted as a function of the year in 

which the radiograph was acquired (Figure 5.2). Recall that the participant‟s age at the  
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     (a) 

 

                 
                    (b) 

 

Figure 5.1. To find the shift in the location of the metacarpal edges due to system blur, a 

simulated line profile across the metacarpal was convolved with the blurring function of 
the system. For the medial edge, a) the shift in the peak location (corresponding to the 

endosteal edge) was one pixel in the outward direction (seen more clearly on the right) 

and b) the shift in the maximum gradient in the first difference (corresponding to the 

periosteal edge) was one pixel in the inward direction (seen more clearly on the right). 

 

 

 
Table 5.1: Edge corrections due to blur and finite pixel size are invoked on the 

automatically found edge locations. Effects at the periosteal and endosteal edges are 

different and are shown here for both the medial and lateral cortices. The signed values 

represent the number of pixels to be added to the automatically or manually found edge 

locations. The corrections take place within the software routines. 

 Medial Lateral 

 Periosteal Endosteal Endosteal Periosteal 

Blur Factor -1 +1 -1 +1 

Half Pixel Shift -0.5 +0.5 -0.5 +0.5 

TOTAL -1.5 1.5 -1.5 1.5 
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time of image acquisition is not stored in the filename and is, thus, unavailable within the 

program. However, the time interval between the radiographs corresponds to the 

difference in age between subsequent visits, and a trained analyst can estimate the 

participant‟s age at the first radiograph. Subsequent images can then be associated with 

an age based on this references value, and the participant‟s TC value over time can be 

compared to the expected trend of a normal individual. As one would expect, TC 

increases rapidly until adolescence, peaking in early adulthood, and then decreases with 

age. Program output at specific time points throughout that participant‟s lifespan show 

the anatomical variation with age (Figure 5.2, Figure 5.3, Table 5.2).  

 

 

Figure 5.2. Plot showing the typical variation in the total cortical width as a function of 

age, throughout the lifespan. These data are for the participant whose hand-wrist 

radiographs are shown in Figure 5.3 (the highlighted points here correspond to the 

provided hand and metacarpal images) with the horizontal axis tick marks labeling every 

fifth visit.  
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                                                            (a)                                                           (b)                                            (c)     

                                       

                (d)             (e)                               (f) 

Figure 5.3 Variation in the anatomy as a function of age of the participant whose growth data are plotted in Figure 5.2. For each 
highlighted point on that plot, the corresponding hand-wrist radiograph and the segmented and rotated metacarpal is shown. 

Metacarpal cortical thickness is marked at the midshaft of the total length, midshaft of the diaphyseal length and at the position of 

minimum shaft width. 
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Table 5.2 The parameters of interest measured across the second metacarpal 

corresponding to the participant images in Figure 5.3(a-f). N/A = not applicable. 

 

 

Figure 

Number 

 

Year of 

Image 

Acquisition 

 

Total 

Length 

TL 

[mm] 

 

Diaphyseal 

Length 

DL 

[mm] 

 

Medullary 

Diameter 

MD 

[mm] 

 

Medial 

Cortex 

MC 

[mm] 

 

Lateral 

Cortex 

LC 

[mm] 

 

Total 

Cortex 

TC 

[mm] 

 

Total 

Diameter 

TD 

[mm] 

 

Cortical 

Index 

CI 

 

5.3a 1961 N/A 21.72 1.78 0.89 0.79 1.60 3.38 0.473373 

5.3b 1963 37.38 31.24 2.58 0.98 1.16 2.14 4.72 0.453390 

5.3c 1969 51.98 43.79 2.49 1.78 1.69 3.47 5.96 0.582215 

5.3d 1972 63.37 56.60 2.49 1.96 2.40 4.36 6.85 0.636496 

5.3e 1977 71.65 N/A 2.58 2.14 2.58 4.72 7.30 0.646575 

5.3f 1986 71.82 N/A 3.03 2.14 2.14 4.28 7.30 0.586301 

 

5.3 Success of Automated Analysis  

Algorithm success was evaluated by running the automated analysis on 357 hand-wrist 

images (from the available data set of 17,000 images), the output of which were analyzed 

by two well trained image analysts from the FLS. Since image quality directly impacts 

the success of the automated analysis, the images were first classified into two groups: 

Group 1 is comprised of images of reasonable quality; images in Group 2 (Figure 5.4-5.6) 

exhibit poor quality due to very low contrast (60.4%), presence of a substantial portion of 

the radius and ulna (6.3%), a high degree of hand rotation (7.9%), marks across 

metacarpals (19.0%), etc (6.3%) (Figures 5.4 and 5.5). Images in Group 2 are likely to 

require user intervention.  

Within Group 1, automated analysis was defined to be successful if no manual 

intervention was needed, if the analyst used the auto fix button(s) or if only limited 

manual intervention was necessary (i.e., slightly extending a calculated metacarpal length 
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Figure 5.4. In some images, spatula-like devices were used to flatten infant‟s hands to 

better visualize the metacarpals. Depending on how the holding device affected image 

quality, these images may be classifed into either Group 1 or Group 2.  

 

 

                              

 (a)                            (b) 

Figure 5.5. These are examples of images that were classified into Group 2. a) An 

underexposed image yields poor bone-edge definition and finding the endosteal edges 

proves difficult. b) A severely overexposed image is also problematic. Both automated 

analysis and manual analysis failed in each of these cases. 
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                                   (a)                                                                            (b) 

Figure 5.6. These Group 2 images exhibit a) a substantial portion of the forearm (radius 

and ulna) in the image, and b) a high degree of hand rotation, resulting in the failure of 

automated analysis routines. In each of these cases, manual analysis also failed. 

 

line). This characterization is consistent with the analysts‟ (our clients) definition of 

success.  

Apart from issues that can be resolved using the AutoFix tools or other limited manual 

intervention, auto analysis failed for Group 1 and 2 images when 1) the correct 

metacarpal of interest is not automatically selected initially; or 2) the values for the 

endosteal or the periosteal edges are incorrect and cannot be corrected through the 

AutoFix mechanism. The outcomes of each of these two cases can be further subdivided 

based on whether the user was able to obtain correct measurement values after more 

substantial manual intervention. The overall software success is reported here by tallying 

the number of tested images within each group that fall into the three outcome groups: 

automatic success (includes limited manual intervention), success after manual 

intervention and unsuccessful (Figure 5.7). Two values for the success percentage at each 
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step are given; the first value is the percent success from all images in the preceding step 

and the second value (in curly brackets) is the fraction of all analyzed images successful 

at that stage.  

5.4  Interobserver Agreement and Reliability  

One anticipated benefit of automated image analysis is improvement in measurement 

precision. To analyze the reproducibility and the agreement of the developed algorithm, 

the interobserver agreement, which is the degree of agreement between multiple 

observers viewing the same event, object or phenomenon,
25

 was tested using the 

following definition: 

,                                 [5.1]                      

where na corresponds to the number of agreements and no corresponds to the number of 

opportunities to agree. 

The 357 images analyzed to assess the overall algorithm success were used to gauge 

interobserver agreement. Two observers (the trained FLS image analysts) analyzed those 

images and the generated data (Excel output files) were compiled for this task. To 

examine interobserver agreement, the total cortical width TC at the minimum shaft 

location was selected as the measurement of interest (this is a major variable of interest in 

the overarching study and is the value reported graphically within the GUI). The 

definition of “agreement” was set by our client as follows: “two measures are in 

agreement if they lie within 0.5 mm of each other.” This physical measurement is 

equivalent to approximately five pixels. In the event that one of the analysts was able to
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Figure 5.7. Results of the automated analysis routines. At each step the number of images in that category are given, along with two values for 

the success percentage; the first value is the percent success from all images in the preceding step and the second value (in curly brackets) is the 

fraction successful from all 357 analyzed images.  
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analyze the image but the other selected „No Analysis‟, or if both selected „No Analysis‟, 

then the difference between the TC values from the two analysts cannot be calculated and 

these images were excluded from the interobserver agreement analysis. Of the 316 

images retained, measurements of 297 images were in agreement, yielding an 

interobserver agreement of 92.08%.  

To assess interobserver reliability, the Pearson correlation coefficient and the mean of the 

absolute difference of the measurements by the two observers were calculated. The 

correlation coefficient (r) and mean were 0.9674 and 0.1793 mm, respectively.  

5.5  Intraobserver Agreement and Reliability 

Intraobserver reliability indicates the stability of given responses obtained from the same 

respondent at different times.
26

 To assess intraobserver reliability, a set of 30 images was 

analyzed twice. The entire set was analyzed once before repeating the analyses the 

second time, approximately 8 days later. Similar to the interobserver study, the total 

cortical width values at the position of minimum shaft width were extracted from the 

output files and compared for agreement. Here, we defined agreement as TC values 

within 0.267 mm of each other (corresponding to 3 pixels). Intraobserver agreement is 

defined as 

,                          [5.2] 

where na corresponds to the number of agreements and no corresponds to the number of 

opportunities to agree. Of the 30 images analyzed, 29 were in agreement, yielding an 

intraobserver agreement of 96.7%. 
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To assess intraobserver reliability, the Pearson correlation coefficient and the mean of the 

absolute difference between the measurements by a single analyst were calculated. The 

correlation coefficient (r) and mean were 0.9929 and 0.0506 mm, respectively.  

5.6  Comparison of Manual versus Automated Measurement Reliability 

The interobserver and the intraobserver agreements of the automated method were 

compared to those from manual analysis using digital calipers (Table 5.3). For the 

manual analysis reliability studies, the interobserver agreement was assessed using 20 

images and the intraobserver agreement was assessed using 16 images. For the automatic 

analysis assessment, the output files generated in the reliability analysis were compiled 

and the actual measurement values were compared.  

 

Table 5.3: Comparison of interobserver and intraobserver agreement for the manual and 
automated analyses of total metacarpal cortical thickness at the position of minimum 

shaft width. 

 Manual Analysis Automated Analysis 

 
Interobserver 

Agreement 

Intraobserver 

Agreement 

Interobserver 

Agreement 

Intraobserver 

Agreement 

 

# of Images 

Analyzed 

 

 

20 

 

 

16 

 

 

316 

 

 

30 

 

Agreement 

Threshold [mm] 
0.500 0.267 

 

0.500 

 

0.267 

 

Percentage in 

Agreement 
 

 

50.00% 

 

50.00% 92.08% 96.70% 
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The correlation r was much higher for the automated versus the manual analysis: the 

interobserver study yielded a correlation value of 0.9674 versus 0.7000, and the values 

for the intraobserver study were 0.9929 versus 0.7820.  

 

Table 5.4: Comparison of interobserver and intraobserver reliability for the manual and 

automated analyses of total metacarpal cortical thickness at the position of minimum 
second metacarpal shaft width. 

 

 

Manual Analysis 

 

Automated Analysis 

 

 

Interobserver  

 

 

Intraobserver 

 

Interobserver  

 

Intraobserver 

 

Correlation 

Value (r) 

 

0.7000 

 

0.7820 0.9674 0.9929 

Mean [mm] 

 

0.6420 
 

0.3568 0.1793 0.0506 
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6. DISCUSSION 

 

We have developed a tool for analyzing metacarpal thickness from hand-wrist 

radiographs. Testing the software on a set of approximately 360 images revealed that the 

program was successful in automatically analyzing images (including poor quality 

images) about 75% of the time with no more than limited manual intervention. The 

remaining images were classified by the analyst as being of reasonable or poor quality. 

Of these reasonable quality images, 100% were able to be analyzed by the analyst. The 

60 poor-quality images required user intervention. Of this group, 79.3% were able to be 

analyzed using user intervention, and the remaining 20.7% could not be analyzed (even 

with manual intervention).  

Since the automated analysis gave high interobserver and intraobserever reliability 

values, we can conclude that the program is largely independent of user intervention and 

would generally arrive at the same output, even if the user(s) manual corrections are not 

exactly identical. Also minimal training was required to use this software successfully. 

Although the users in the reliability tests were trained, they had not used the program 

extensively before the reliability studies.  

Our software was customized to the client‟s needs, using feedback received from them 

during the development process. Compared to commercially-available software, we have 
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provided a product that can be modified as needed if new measurement requirements are 

identified or if changes to the layout are desired.  

6.1  Challenges in Automated Image Analysis  

Thresholding and Segmentation Issues 

Automatic thresholding to first segment the hand and then the metacarpals is challenging 

because of image variability. Differences in anatomy and degree of mineralization across 

the age range of FLS participants impacts image contrast. Additional variability due to 

film quality affects the success of our automated routines. We attempted to mitigate the 

issues related to image quality by customization of the pre-processing phase based on a 

particular image‟s overall contrast. Still, the degree of mineralization in a given image 

will directly affect contrast and can make segmentation of the metacarpal region of 

interest difficult, since mineralization varies across participants and also across a single 

participant with age. 

The method relies on a-priori information about the anatomy of the hand, but that 

anatomy is variable across the participant‟s lifespan. At an early age, the metacarpals and 

carpals are well separated, but over time, the metacarpal and the carpals begin to overlap 

and, in adulthood, distinguishing the boundaries is impossible at times. In these cases, 

portions of the carpal region are also included in the output of the metacarpal 

segmentation process, and this affects the length estimate. To more accurately find the 

inclination, even when the length estimate is off by several pixels, the rows selected 

along the middle half of the length estimate while calculating the angle were rejected as 

follows. First, the mean column value of all included rows was calculated. If the mean 
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value of any row, proceeding distally-to-proximally, exceeded this value by 25%, the 

rows below it were excluded from the inclination angle calculation. This yielded an 

accurate orientation calculation even if only a small portion of the carpal region was 

included. To avoid errors in the total length calculation when metacarpal segmentation 

was grossly inaccurate, two length criteria were checked. If the total length was greater 

than 850 pixels, the lower 5% of pixels were excluded and if the total length value was 

greater than 950, then the lower 10% of pixels were excluded. The total length was then 

recalculated.  

Film quality variation was the most important factor leading to failure in thresholding 

even after applying appropriate pre-processing steps. This is because the overall 

histogram shape changes with image quality. Pixels of an overexposed film lie in the 

lower histogram regions and occupy a very small portion of the overall dynamic range, 

whereas an underexposed film‟s histogram shows its pixels occupying a very small 

region in the upper portion of the available dynamic range. In overexposed radiographs, 

the threshold value obtained from Otsu‟s method (which relies on the image histogram) 

tends to over-segment (turn off pixels even within the object) the hand and metacarpal 

regions, whereas unwanted background regions are included after segmentation of 

underexposed radiographs (under-segmentation).  

Since the algorithm is divided into steps and each step is dependent on the success of the 

previous step, failure at any stage is propagated and usually leads to failure of the 

subsequent steps.  
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Selecting the ROI for the Second Metacarpal 

Hand anatomy also plays an important role in metacarpal ROI selection. Here, accurate 

information about the location of the peaks corresponding to each metacarpal is required, 

but in some participants the inclination of the thumb metacarpal makes it difficult to 

obtain the five peaks across any row. Further, since the soft-tissue thickness is usually 

greater between the thumb and the second metacarpal than between the other 

metacarpals, the segmentation step may result in the thumb being separated from the rest 

of the hand. In these cases, the thumb will be eliminated when the largest object in the 

image is retained. This issue led to our approach in counting peaks from the left (medial) 

side of the image and checking to see if five peaks exist in a row. When no image row 

contained five peaks, rows having four peaks were selected instead and it was assumed 

that these corresponded to the second to fifth metacarpal (excluding the thumb). 

However, in some four peak cases it was the fifth metacarpal, rather than the thumb, that 

was missing. This was caused by a different thresholding issue, and relates to the small 

size and, therefore, low grayscale values within the fifth metacarpal. In this event, the 

program incorrectly labeled the thumb as the second metacarpal (fourth peak from the 

left). To avoid this error if four peaks were present, the inter-peak distances and the 

heights of the peaks were calculated and used to label the third peak as the second 

metacarpal. Still there are cases wherein the method was not successful. When less than 

four peaks were present, we used the most probable case (second to fourth metacarpals 

are present) to label the structures. The method to find the location of the second 

metacarpal is further complicated if the hand is rotated, since the calculations of the inter-

peak distances and the heights of the peaks are not reliable. 
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 Imaging protocol changes could have a major impact on the quality of the radiographs 

obtained. It is understandable that a fixed set of imaging parameters is desirable for such 

a study. Further, the study protocol has been adapted to accommodate new x-ray tubes 

and film types. Based on film analysis, we propose that at least two sets of exposure 

conditions should be specified in the protocol: one set for children and one set for adults. 

If the settings were adjusted based on participant size (age) there would be fewer cases of 

overexposure in images of children and fewer cases of underexposure in adults. Also by 

keeping the hand consistently aligned with the film‟s axes, several failures in segmenting 

the second metacarpal ROI would likely be avoided. 

6.2  Total Cortical Width Plot 

The plot of the total cortical width displayed in the GUI serves several functions. Apart 

from verifying whether a particular participant follows the typical trend, this plot also 

allows the analysts to easily spot outlier points. Since the trend of cortical width, as well 

as the expected maximum deviation away from this trend line, is known to the trained 

analyst, it is likely that the automatic analysis has failed if a point falls outside these 

limits. The analyst should review that image carefully. Further, the software can also 

recognize that it has failed and is unable to generate meaningful output; in those cases, 

the cortical width is set to zero and that image point is obvious in the plot. Lastly, when 

an image is marked as „No Analysis‟ possible, cortical thickness is also set to zero. To 

distinguish between the latter two cases, the “automatic analysis failed” zero points are 

displayed in red, whereas the “No Analysis possible” zero points are displayed in green. 

Red data points are flags that indicate the need for additional manual intervention.  



88 
 

6.3  Other Approaches Investigated 

As with most image processing tasks, several approaches were tested at each step, and the 

most reliable method was retained in the final version of the software. Here, we will 

describe a few techniques that were tested and subsequently abandoned. 

Skeletonization  

Initially, to find the ROI around the second metacarpal region, the skeleton of the binary 

image was formed by eroding the image without letting objects break apart and vanish. A 

skeleton is one pixel thick, and it always passes through the center of an object, while 

preserving the object‟s shape or topology. The obtained skeleton is usually very noisy, 

because it is a function of the shape of the object and non-uniformity generates additional 

branches in its skeleton. In this project, it was difficult to find the location of the second 

metacarpal from the skeleton of the hand because of the many branches that existed. We 

needed more information to obtain the location of the second metacarpal. The images‟ 

EDM provided a more complete picture of the hand shape and thickness, since the main 

structure and branches are distinguished by differing grayscale values. 

Periosteal Edge Selection 

Initially, to find the periosteal and the endosteal edges, we found the roof and the floor 

along the line profile taken horizontally across the metacarpal at the location of interest. 

The method assumed a perfect edge such that the edge lies exactly in the center of the 

roof and the floor. Depending upon the imager‟s blurring function, the slope of the line 

connecting the floor and the roof changes and the number of pixels required to reach the 

roof from the floor changes. The position of the edge sits at the value corresponding to 
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floor + some fraction of the distance between the floor and the roof. In an ideal profile, 

that fraction would be 50%, but in the blurred profile, this fraction must be determined 

experimentally. We first found this percentage value from the images of the step-wedge 

imaged using the FLS x-ray system. Using the known step wedge width, we adjusted the 

fraction until the corrected image width matched the wedge width and noted the final 

fraction required in that case. However, we later realized that this method is only accurate 

when the object being imaged is a perfect slab. In our case, the geometry was quite 

different, so a different approach to finding the blur correction was needed. In the case of 

a circular object like a metacarpal, the transition from the floor to the peak will depend on 

the radius of the metacarpal, the thickness of the cortex as well as the blurring factor. 

Material inhomogeneities also impact the shape of the line profile, but we assumed a 

homogeneous cortex. The method used in the actual automation process to find the 

periosteal and the endosteal edge was confirmed by simulating circular objects and then 

finding the pixel location in the line profile corresponding to actual edge location. This 

simulation method can be used even for non-circular objects if the object shape can be 

reasonably estimated.  

6.4  Future Work 

More accurately labeling the diaphyseal and total lengths 

Currently there are AutoFix buttons present to replace the diaphyseal length with total 

length, or total length with diaphyseal length. In infants, no total length is present since 

the epiphysis is not yet calcified, but the program finds the total length first and the 

diaphyseal length is mislabeled as total length. The „DIAPHYSEAL NOT TOTAL‟ 

button is used more often than the „TOTAL NOT DIAPHYSEAL‟ button. Although the 
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AutoFix button readily corrects this issue, a method to automatically and correctly label 

each length would be preferred. A proposed method would be to find a length threshold 

for the total length and label any length below this length as a diaphyseal length. Since 

only infant radiographs are mislabeled, the metacarpal length in these cases is small. To 

implement this requires a careful analysis of a sufficient number of metacarpal lengths 

over all age ranges; it may be necessary to determine a metacarpal-specific threshold if 

there are appreciable differences in the lengths of the second, third, fourth and/or fifth 

metacarpals.  

Improvement in finding lengths 

Active Shape Models (ASM) are used in a lot of computer vision based projects and their 

application is potentially useful for metacarpal segmentation in this project. ASMs are 

defined by points on the boundary of the shape that is to be reconstructed.
27 

The 

algorithm needs to be trained by placing the points manually on a set of training images 

and then constructing a model from it. Since we were more interested in taking 

measurements at specific metacarpal locations, rather than precisely defining the contour 

around the metacarpal, we did not explore the use of ASMs. Also the learning curve for 

ASM is steep, and the project had to be completed in a set time period.  

The major advantage of a well-trained ASM would have been the ability to segment the 

metacarpal and the carpals even when there is no clear separation between them, because 

the approach is based on a-priori information about the shape of each metacarpal. Apart 

from accurate calculation of the lengths, the ASM could also be used for accurate 

calculations of the periosteal edges because it should return a smooth outer contour of the 
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metacarpal. One disadvantage of ASMs is the need for a seed point inside the object and 

often that is accomplished through manual intervention. Our method does not require this 

initiation. If an ASM approach is ever implemented in the future, our software could be 

used for identifying this seed point automatically inside the metacarpal. 

Reducing the time required for analysis 

The average time required to automatically analyze each image is approximately four 

minutes, with the infant hands being completed in approximately one to two minutes and 

an adult hand in four to five minutes. Since a typical participant‟s folder of images 

contains, on average, about 25 images, the analysis of an entire set of images from a 

single participant requires approximately 100 minutes. Analysis is usually done 

overnight, and at least 8 subjects can be analyzed per night (more over a weekend) on a 

single workstation, which is then available for regular use during the workday. Review of 

the results requires approximately 25 minutes per participant folder, including manual 

correction of results. In contrast, it was estimated that the manual analysis of these 

images using digital calipers would require at least 3 to 5 minutes per image and all 

radiographs are analyzed twice to obtain accurate manual measurements. Manual analysis 

of a single participant‟s folder of images would require about 200 minutes per metcarpal 

(a time increase of about 87.5% when compared to the time the analyst takes to review 

the results of the automated analysis (Table 6.1)). Of course, the digitization step required 

a tremendous number of hours, but that was accomplished while the code was being 

developed and, to date, almost 80% of the 17,000 radiographs to be analyzed in this study  
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Table 6.1: Efficiency calculations of the automated analyisis process across a 

patient folder containing an average of 25 folders.  

 

 

Manual Analysis 

 

Automated Analysis 

Review 

Each Metacarpal 8 minutes 1 minute 

Time/Image (all metacarpals) 32 minutes 4 minutes 

Time/Folder 800 minutes 100 minutes 

 

have been digitized. Automated analysis of these images should be completed within 

three months. 

Although efficiency of the software was considered at each step in the algorithm, the 

need for accurate measurements rather than the speed of execution drove the final 

implementation of the processes. The code can run faster if the image data are 

downsampled, so that each of the processing steps is completed faster. Also since we are 

working with 16 bit images, the time required for any step that involves histogram 

analysis is relatively long; this could be reduced by carrying out the analysis at a lower 

grayscale bit depth. In the current implementation, some strategies were employed to 

minimize repetitive calculations. For example, while carrying out steps like selecting the 

largest object in the original hand radiograph or finding the metacarpal after watershed 

segmentation, every tenth row and column were analyzed (rather than every row and 

column) because an object of interest cannot be less than 10 pixels wide. 
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 Using the present tool to analyze other bones in the hand 

Since the shapes of the phalanges and the metacarpals are similar, by using the 

knowledge about the shape and the position of the bones relative to one another in the 

hand, this work could be extended to provide a tool for measuring the phalanges. With a 

little modification of the segmentation code, the software could be used for assessing 

cortical widths in the phalanges. Using the same GUI, the user could select a region 

around a region of a phalanx and obtain the variables of interest for this bone. It is likely 

that the segmentation algorithms would need to be optimized for this task, but the basic 

modules and tools are available for this analysis. To test if the present tool (without any 

modifications) could be used for the segmentation of the phalanx, a phalanx ROI was 

selected instead of the metacarpal ROI, and the analysis was carried out. The phalanx was 

segmented properly and, with some limited user intervention, appropriate phalangeal 

measurements were obtained. This simple experiment demonstrated the versatility of the 

code for other long bone analysis tasks.  

6.5  Conclusion 

Overall, we feel that the requirements put forward by the client were achieved and that a 

customized, well tailored product was developed. The software is currently being used 

successfully at the Lifespan Health Research Center (Department of Community Health, 

Boonshoft School of Medicine, Wright State University) for analysis of metacarpal 

cortical thickness in hand radiographs of the FLS participants.   

  



94 
 

 

 

 

REFERENCES 

 

1. Duren DL, Sherwood RJ, Choh AC, Czerwinski SA, Chumlea WC, Lee M, Sun 

SS, Demerath EW, Siervogel RM and Towne B (2006) Quantitative genetics of 

cortical bone mass in healthy 10-year-old-children from the Fels Longitudinal 

Study. Bone, 40, 464-470. 

2. Olney RC (2003) Regulation of bones mass by growth hormone. Medical and 

Pediatric Oncology, 41, 228-234.Nguyen TV, Maynard LM, Towne B, Roche AF, 

Wisemandle W, Li J, Guo SS, Chumlea WC and Siervogel RM (2001) Sex 

differences in bone mass acquisition during growth. Journal of Clinical 

Densitometry, 4(2), 147-157. 

3. Nguyen TV, Maynard LM, Towne B, Roche AF, Wisemandle W, Li J, Guo SS, 

Chumlea WC, and Siervogel RM (2001) Sex differences in bone mass acquisition 

during growth. Journal of Clinical Densitometry, 4(2), 147-157. 

4. Garn SM (1970) The Earlier Gain and the Later Loss of Cortical Bone. Charles C 

Thomas Publisher, Bannerstone House, Springfield, IL, 3-59. 

5. Ruimerman R (2005) Modeling and remodeling in bone tissue. Ph.D. 

Dissertation, University of Technology, Eindhoven, Netherlands. 



95 
 

6. Wilson AN, Schmid MJ, Marx DB and Reinhardt RA (2003) Bone turnover 

markers in serum and periodontal microenvironments. Journal of Periodontal 

Research, 38, 355-361. 

7. Raisz LG and Seeman E (2001) Causes of age-related bone loss and bone 

fragility: an alternative view. Journal of Bone and Mineral Research, 16(11), 

1948-1952. 

8. Audi L, Ramirez MG and Carrascosa A (1999) Genetic determinants of bone 

mass. Hormone Research, 51(3), 105-123. 

9. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V and 

Weaver C (2000) Peak bone mass. Osteoporosis International, 11(12), 985-1009. 

10. John DK and Walter PB (1972) Osteogenesis imperfecta: an orthopaedic 

description and surgical review. Division of Orthopaedic Surgery, Hospital for 

Sick Children, Toronto. 

11. Bonnick SL (2003) Bone Densitometry in Clinical Practice: Application and 

Interpretation. Humana Press, New York, NY, 32.   

12. Grampp S, Steiner E and Imhof H (1997) Radiological diagnosis of osteoporosis. 

European Journal of Radiology, 7(2), S11-S19. 

13. Barnett E and Nordin BE (1960) The radiological diagnosis of osteoporosis: a 

new approach. Clinical Radiology, 11, 166-174. 

14. Crespo R, Revilla
 
M, Usabiago

 
J, Crespo

 
E, Arino

 
JG, Villa

 
LF and Rico

 
H (1998) 

Metacarpal radiogrammetry by computed radiography in postmenopausal women 

with Colles' fracture and vertebral crush fracture syndrome. Calcified Tissue 

International, 62, 470-473.   

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22BARNETT%20E%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22NORDIN%20BE%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus


96 
 

15. Rosholm A, Hyldstrup L, Baeksgaard L, Grunkin M and Thodberg HH (2001) 

Estimation of bone mineral density by digital x-ray radiogrammetry: theoretical 

background and clinical testing. Osteoporosis International, 12(11), 961-969. 

16. Curry TS, Dowdey ED and Murry RC (1990) Christensen’s Physics of Diagnostic 

Radiology, Lea & Febiger, Philadelphia. 

17. Bottcher J, Pfeil A, Rosholm A, Schafer ML, Malich A, Petrovitch A, Seidl B, 

Lehmann G, Mentzel H, Hein G, Wolf G and Kaiser WA (2006) Computerized 

digital imaging techniques provided by digital x-ray radiogrammetry as new 

diagnostic tool in rheumatoid arthritis. Journal of Digital Imaging, 19(3), 279-288. 

18. Sotoco JM, Inesta JM and Belmonte MA (2002) Hand bone segmentation in 

radioabsorptiometry images for computerized bone mass assessment. 

Computerized Medical Imaging and Graphics, 27, 459-467. 

19. Garcis LR, Fernandez MM, Arribas JI and Lopez A (2003) A fully automatic 

algorithm for contour detection of bones in hand radiographs using active 

contours. IEEE International Conference on Image Processing, 3, 421-424. 

20. Gonzalez RC and Woods RE (2004) Digital Image Processing, Addison-Wesley 

Publishing Company, Menlo Park, CA, 79-80.  

21. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE 

Transaction on Systems, Man and Cybernetics, 1, 62-66. 

22. Russ J (2002) The Image Processing Handbook, CRC Press, Boca Raton, Florida. 

23. Beucher S and Lantejoul C (1979) Use of watersheds in contour detection. 

Proceedings of International Worshop Image Process, CCETT, Rennes, France. 



97 
 

24. Hangartner TN (1987) Correction of scatter in computer tomography images of 

bone. Medical Physics, 14(3), 335-340. 

25. www.ccny.cuny.edu, accessed on 11/7/2008 

26. www.statistics.com, accessed on 11/7/2008 

27. Thodberg HH and Rosholm A (2003) Application of the active shape model in 

commercial medical device for bone densitometry. Image and Vision Computing, 

21, 1155-1161. 

 


	Automated Analysis of Metacarpal Cortical Thickness in Serial Hand Radiographs
	Repository Citation

	tmp.1466622011.pdf.7KVLa

