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ABSTRACT 

 

 
 
Riley, Matthew E. Ph.D. College of Engineering and Computer Science, Wright State 
University, 2011. Quantification of Model-Form, Predictive, and Parametric 
Uncertainties in Simulation-Based Design. 
 
 
 Traditional uncertainty quantification techniques in simulation-based analysis 

and design focus upon on the quantification of parametric uncertainties—inherent 

natural variations of the input variables.  This is done by developing a representation of 

the uncertainties in the parameters and then efficiently propagating this information 

through the modeling process to develop distributions or metrics regarding the output 

responses of interest.  However, in problems with complex or newer modeling 

methodologies, the variabilities induced by the modeling process itself—known 

collectively as model-form and predictive uncertainty—can become a significant, if not 

greater source of uncertainty to the problem.  As such, for efficient and accurate 

uncertainty measurements, it is necessary to consider the effects of these two 

additional forms of uncertainty along with the inherent parametric uncertainty.  

However, current methods utilized for parametric uncertainty quantification are not 

necessarily viable or applicable to quantify model-form or predictive uncertainties.  

Additionally, the quantification of these two additional forms of uncertainty can require 

the introduction of additional data into the problem—such as experimental data—

which might not be available for particular designs and configurations, especially in the 

early design-stage.  As such, methods must be developed for the efficient quantification 

of uncertainties from all sources, as well as from all permutations of sources to handle 

problems where a full array of input data is unavailable.  This work develops and applies 

methods for the quantification of these uncertainties with specific application to the 

simulation-based analysis of aeroelastic structures.   
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1. Introduction 

 
 

  

 

The simulation-based design of air vehicles is a complex process that draws upon 

approaches and models across many disciplines to create an efficient and robust design.  

To design a vehicle capable of stable, efficient, and reliable flight, contributions from 

multiple disciplines such as structures, aerodynamics, controls, propulsion, and 

materials must be analyzed concurrently and the coupling among each discipline must 

be carefully examined.  Due to the high cost of full-scale simulation and testing at the 

conceptual design phase of a vehicle, where hundreds to thousands of configurations 

are analyzed concurrently, these analyses are done through the construction of 

computational or simulation models that capture the relative physics driving the design 

within each discipline.  However, multiple uncertainties arise from this modeling process 

that must be considered to develop a robust and efficient design of these air vehicles. 

 

  

 As a result of the uncertainty that exists in the simulation-based design and 

analysis of air vehicles, the safety of the aircraft being designed can sometimes come 

into question.  As there are so many uncertain aspects to the design problem, there 

exists concurrent uncertainty in the performance of the aircraft within its flight regime.  

To account for this uncertainty, safety factors are often used in the design process as a 
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pseudo-heuristic method for accounting for potential variance in the parameters of the 

system (1).  These safety factors—the values of which are set by the Federal Aviation 

Administration (FAA)—apply adjustments to the expected loads and conditions 

experienced by the aircraft.  These safety factors will often result in an over-

conservative design due to the deterministic measure in which they are applied (2).   

 

 Due to the adverse effects of this conservative design methodology, there has 

been much research in the past 30 years at looking into replacing the use of safety 

factors in aircraft design with probabilistic methods of analysis (2-4).  This research 

intends to no longer handle the uncertainty in the aircraft design problem through 

deterministic measures, such as safety factors, but to instead utilize stochastic measures 

to be able to accurately quantify system reliability and performance.  The approaches 

and definitions used to handle this uncertainty in such a way will be introduced and 

discussed in further detail in Chapters 4 and 5.  The ultimate aim of these new 

approaches is to be able to represent the potential variability in the aircraft design 

problem through stochastic measures such as system reliabilities, or in the best possible 

case, full probability distribution functions that represent the variability in a systems 

performance metrics as a result of the natural variability of the problem as well as the 

uncertainty in the modeling of the problem itself.   

 

 Representing the response of an air vehicle stochastically will allow for risk-

quantified design in which the reliability of the system can be calculated given the 
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variability of the system.  By being able to first quantify this reliability, it can then be 

used as an additional design metric.  That is to say, aircraft can then be designed with a 

desired performance reliability in mind, rather than by simply applying larger safety 

factors in order to achieve a purported higher reliability.  There are two beneficial 

results from a design method of this sort.  The first, and perhaps most important result, 

is that the reliability of the aircraft will be quantified in the design process.  As a result, 

the reliability of the system will be known--meaning that the safety of the aircraft will 

also be known.  This will result in the design of safer air vehicles by considering reliability 

measures during the design process, rather than through deterministic safety factors.  

The second benefit is that the result of a stochastic design is often more efficient than 

one using safety factors (2, 52).  As was mentioned before, safety factors can often 

result in over-conservative designs that contain extra weight or other components that 

are redundant or unnecessary.  This is because the safety factors are applied uniformly 

across the design, even in areas that are not as sensitive to variations within the design.  

A stochastic approach, on the other hand, will only add additional components or 

weight in areas that would beneficial to the performance of the design.  As a result, the 

designs produced through a stochastic approach often are much more efficient than 

those that are produced when large safety factors are used for the design process (4, 

52). 

 

 As detailed in Chapters 4 and 5, traditional stochastic focus primarily upon 

quantifying the uncertainty in input parameters to a model and propagating that 
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uncertainty through the analysis to develop a stochastic representation of the output 

response of interest.  Approaches in this field have matured to the point that this 

stochastic representation is very accurate and can be achieved at an acceptable 

computational cost for most problems. However, a caveat to this approach is that it 

ignores two large sources of uncertainty in the computational modeling and simulation 

of aeroelastic phenomena: model-form and predictive uncertainty.   

 

 
Figure 1.1: Complete Uncertainty Breakdown 

 

 

These two other forms of uncertainty, shown in Figure 1.1, are related to the 

uncertainties that result from the modeling process itself.  The formal definitions of 

these types of uncertainty are introduced in Chapter 4.  However, in short, model-form 

uncertainty is the uncertainty that arises in the selection of the proper or most accurate 

model to use in the evaluation of the output response of interest.  This uncertainty 

could refer to the selection of the proper fidelity of model or modeling assumptions—

such as linear, quasi-linear, or non-linear assumptions—or the selection of model forms 
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or boundary conditions—such as full span or semi-span models used to calculate the 

flutter velocity of a wing design.  The predictive uncertainty associated with a model, is 

the discrepancy between the model’s prediction of the output response of interest and 

the actual physical value for the output.  In short, predictive uncertainty can be thought 

to be related directly to the accuracy of a model.  The more representative that a model 

is of the true physical scenario of interest, the smaller its predictive uncertainty will be.  

This predictive uncertainty that exists with a model is directly related to the 

assumptions that are made in the formation of the model itself, and can only be 

quantified if a representation of the true physical scenario, such as experimental data is 

available.   

 

In the aeroelastic literature, the predictive uncertainty associated with a model is 

commonly only considered during the construction of a model, through a process 

referred to as verification and validation (76).  The verification and validation process is 

often an intrusive process that tweaks and adjusts model parameters to reduce the 

predictive uncertainty of a model at a series of parameters—the benchmark validation 

cases.  Once a model is deemed to have been reduced to an acceptable level for the 

validation cases used, the model is considered validated.  After a model is considered 

validated, the predictive uncertainty associated with the model is often either ignored—

with the assumption that the verification and validation process has reduced said 

uncertainty to an acceptable level—or is handled with a deterministic correction factor, 

analogous to a safety factor.  For problems with parameters near the benchmark 
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validation cases, this method is often sufficient.  However, since the benchmark 

validation cases used in the verification and validation process are often unable to 

encompass the entire potential design space, at parameter values further from the 

benchmark cases the predictive uncertainty inherent to a model can become significant 

and should be quantified in order to present a complete representation of the 

uncertainty in the modeling process. 

 

Model-form uncertainty is currently seldom considered in aeroelastic design and 

analyses.  Often, a best model is selected and used for the simulation process without 

100% certainty that it is the best choice among the model set that can be considered.  

This approach ignores the possibility that at the given data set, or at different sets of 

parameters, that the model selected is not the “best” model among the model set that 

could be considered.  

 

To address the uncertainty that arises from multiple sources in the aeroelastic 

modeling process, numerous approaches must be developed and implemented to 

accurately and efficiently quantify the uncertainty.  In an ideal case, given the 

availability of the distributions of the uncertain parameters, all possible modeling 

choices are available and feasible, and experimental data points are available and 

plentiful at numerous design points, the uncertainty from all three sources can be 

efficiently quantified (Section 5.1.2).  However, for many cases, the ideal case cannot be 

met and portions of the complete data approach are unavailable.  A classic example of 
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this lack of available information occurs in the early design stage of a configuration.  At 

this stage of design, multiple configurations of parameters are to be evaluated 

concurrently and experimental data for most, if not all of these parameters is 

unavailable.  In the absence of any experimental data, the predictive uncertainty 

associated with each model cannot be quantified.  Instead, one can only hope to 

quantify the parametric and model-form uncertainty associated with the design.  As this 

process occurs in the early design stage where multiple configurations are analyzed 

concurrently, this evaluation of uncertainty must be done quickly and efficiently, 

without the necessity of numerous cost-intensive computational simulations.  As such, it 

would be beneficial to have an approach that could efficiently quantify the model-form 

and parametric uncertainties in a design without the necessity for experimental data. 

 

Once this initial model-form and parametric uncertainty has been quantified, the 

next step would be to determine whether it was reducible through either the 

introduction of additional data, or the improvement of some of the models.  If the time, 

money, and effort were to be expended to obtain experimental results to validate 

configurations or models, one would want to ensure that the addition of this data could 

provide a certain level of reduction in the uncertainty in the prediction of the output 

response.  Additionally, one must have a method to integrate all of this information 

together efficiently to quantify all three forms of uncertainty concurrently to give a 

complete representation of the variability in the predictions from the computational 

model.  
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This work develops, adapts, and implements numerous uncertainty 

quantification approaches for the aeroelastic design problem for all possible information 

configurations—from simple model-form uncertainty quantification to the 

quantification of model-form, predictive, and parametric uncertainties concurrently 

within an analysis framework.  These uncertainty quantification techniques are coupled 

with advanced and novel surrogate modeling techniques to reduce the computational 

time required for the multiple model evaluations required.  The key contributions and 

novel methods developed in this work are detailed below: 

 

1. A Weighted Stack Response Surface Method (w-StackRSM) was developed and validated 

against the traditional least-squares response surface method.  The w-StackRSM 

method utilizes k-fold sampling techniques to develop k individual, cross-validated 

response surface models.  Based upon the residual error of these models, weights are 

assigned and a composite response surface model can be developed.  It is shown in this 

work that utilizing the w-StackRSM approach yields approximately a 3-5% decrease in 

residual error when compared to a traditional least-squares response surface approach.  

This response surface model is then used within the parametric uncertainty 

quantification techniques—specifically Fast Fourier Transforms—to efficiently and 

accurately quantify the parametric uncertainties associated with the models being 

considered.  The details of this approach are included in Chapter 3 and were published 

in Riley and Grandhi (5). 
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2. The Probabilistic Adjustment Factors Approach (PAFA) was developed and validated for 

the quantification of parametric and model-form uncertainties in problems with 

computational simulations in the absence of any experimental data.   This approach was 

an adaptation of the original Adjustment Factors Approach, which was developed and 

derived for use in deterministic models with no parametric uncertainties.  This approach 

was derived for general distributions regarding the outputs of each model and 

demonstrated for Gaussian and Beta distributions.  The details of this approach are 

included in Section 5.2.2 and were published in Riley and Grandhi (6). 

 

 

3. The Modified Adjustment Factors Approach (MAFA) was developed in this work to 

estimate the sensitivity of the adjusted models developed using the traditional 

Adjustment Factors Approach and the Probabilistic Adjustment Factors Approach to the 

individual model probabilities that were assigned to the models in the analysis.  This 

approach consists of two stages: estimating the sensitivity of the adjusted model to the 

model probability set as a whole, and estimating the sensitivity of the adjusted model to 

each of the model probabilities individually.  The first stage of the approach determines 

the approximate reduction in model-form uncertainty that can be expected through the 

introduction of additional data into the problem.  If additional data cannot be added, 

the second stage of the approach identifies which models contribute most significantly 

to the overall variance in the adjusted model.  This identifies these models as potential 

outliers or erroneous models that are deserving of additional review or analysis.  It also 
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states that an improvement in the models with the highest sensitivity will have the 

greatest reduction in the variance in the adjusted model.  The details of this approach 

are discussed in Section 5.2.3 and were published in Riley et.al (7). 

 

4. The application of Bayesian Model Averaging (BMA) as a tool to quantify parametric, 

predictive, and model-form uncertainties in an engineering application, specifically the 

aeroelastic analysis of a wing design, is demonstrated in this work.  BMA was originally 

developed as a statistical forecasting tool for producing probabilistic forecasts given a 

set of prior models and results.  Its use in the last ten years or so has been prevalent in 

the fields of economics, geology, and meteorology.  However, the approach was not 

implemented for use with aerospace engineering models and simulations until the last 

two or three years with the work of Park and Grandhi (8) and Riley and Grandhi (9).  

BMA utilizes a given data set to update individual model predictions to quantify the 

predictive uncertainty associated with the model and, in conjunction with Bayes’ 

Theorem, the data to update model probabilities given their relative capability of 

predicting the limited data set introduced into the problem.  This work provides a novel 

application of the Bayesian Model Averaging approach in the field of aeroelastic design 

by integrating the results of aeroelastic models among multiple fidelities to quantify the 

uncertainty in selecting the appropriate level of fidelity needed for an analysis.  The 

details of the BMA approach are included in this work in Section 5.3.1, and the initial 

application to the aeroelastic analysis problem was first presented in Riley and Grandhi 

(9). 
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 The breakdown of this dissertation is as follows.  Chapter 2 will introduce the 

concept of aeroelasticity, as well as introduce the modeling packages that will be used 

for modeling of aeroelastic behaviors.  Chapter 3 will discuss surrogate modeling 

techniques for use in reducing the computational simulation time that is required for 

subsequent evaluations of the design space using the models discussed in Chapter 2.  A 

novel surrogate modeling approach—the weighted Stack Response Surface Method (w-

StackRSM)—is introduced in the chapter and is validated against benchmark surrogate 

modeling problems in the literature.  Chapter 4 will define the three forms of 

uncertainty as they are implemented in this work.  Chapter 5 will then discuss the 

methods that are used in the literature and that have been developed in this work to 

quantify the three forms of uncertainty.  Two novel methods developed in this work—

the probabilistic adjustment factors approach (PAFA) and modified adjustment factors 

approach (MAFA)—are introduced, as well as a novel implementation of Bayesian 

Model Averaging.  Chapter 6 will then demonstrate the application of these uncertainty 

quantification tools to a simple closed-form spring-mass example.  Chapter 7 will expand 

upon this application to a low-fidelity flutter analysis of a two degree of freedom airfoil 

subject to unsteady aerodynamics.  The penultimate demonstration of these methods 

will be shown in Chapter 8 with the full aeroelastic simulation of the flutter velocity of 

the AGARD 445.6 wing using three different commercial aeroelasticity packages.  

Chapter 9 will then summarize the results and research contributions of this work. 

  



12 
 

2. Aeroelasticity 

 

 

 

2.1 Introduction 

 

Aeroelasticity is the field of science defined by Arthur Collar in 1947 as "the 

study of the mutual interactions that take place within the triangle of the inertial, 

elastic, and aerodynamic forces acting on structural members exposed to an airstream, 

and the influence of this study on design" (10).  This breakdown is displayed in Figure 

2.1.   

 

 

Figure 2.1: Aeroelastic Triangle of Forces (11) 
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In general, aeroelasticity is the study of the effects of the coupling of 

aerodynamics and structures in the analysis and design of a structure subject to 

aerodynamic loadings, often an aircraft.  In operation, aircraft are subject to a wide 

range of loading conditions as a result of multiple phenomena such as flight maneuvers, 

dynamic responses, or gust loads.  These loads, produced by the aircraft maneuver, are 

ultimately transferred to the structural components of the aircraft, which must bear the 

load.  This results in a coupling of both the static and dynamic response of the structure 

to the applied loads.  This coupling can be treated as static—obtaining aerodynamic 

loads and applying them to the structure in an instantaneous time-step, or dynamic—a 

continued coupling of the aerodynamic loads and the resulting structural response that 

is carried out for a specified period of time.  As such, in the case of fixed wing aircraft, 

aeroelasticity can be broken down into two distinct disciplines of analysis: static and 

dynamic aeroelasticity.  

 

 

2.1.1 Static Aeroelasticity 

 

Static aeroelasticity is defined as the study of the deflection of flexible aircraft 

structures—such as wings—under the aerodynamic loads of the structure (12).  Static 

aeroelastic problems feature several simplifying characteristics to approximate a static 

response.  The first assumed, as denoted by the term static, is that these analyses are 
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independent of time, and are assumed to occur instantaneously.  With this assumption, 

inertial forces related to the vibration of the aircraft structure are ignored.  In general, 

most of the inertial forces in the equilibrium equation of motion are largely ignored—

with a few exceptions such as the inclusion of rigid body accelerations in trim 

calculations—as they are time-dependent properties.  A final simplification of static 

aeroelasticity is that only steady aerodynamic forces need be considered, as once again, 

unsteady aerodynamic forces are time-dependent. 

 

In static aeroelasticity, there are multiple critical phenomena that are often 

analyzed: control effectiveness, lift effectiveness, induced drag, divergence and control 

reversal (12).  Divergence is the phenomenon that occurs when the moments created by 

the aerodynamic forces overcome the restoring moments of the structural component 

due to its own structural stiffness.  This phenomenon can result in catastrophic failure of 

the air vehicle due to structural failure (13-14).   Often, the divergence dynamic pressure 

of a configuration can be solved for relatively simply, through eigenvalue analysis, as a 

result to the assumptions made in the static analysis.   

 

The other static aeroelastic phenomenon often analyzed is control effectiveness, 

or more specifically, control reversal.  Control surfaces are used to maneuver an air 

vehicle through its flight path.  As such, the sizing of these control surfaces is an integral 

part of the design process.  The effectiveness of the control surfaces changes as 

aerodynamic loading is changed.  It has been shown that for many configurations, as the 
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velocity of an airfoil is increased, that the effectiveness of a control surface can decrease 

(15).  Once the effectiveness of the control surface decreases to zero, the wing 

experiences what is called control reversal, where the effect of the control surface 

under consideration is actually reversed when compared to its intended effect.  While 

this is not necessarily a catastrophic failure, as divergence can be, it can cause dramatic 

problems with controllability if not considered in the design process. 

 

 

2.1.2 Dynamic Aeroelasticity 

 

Dynamic aeroelasticity is defined as the study of the interactions among inertial, 

aerodynamic, and elastic forces (15).  In dynamic analyses, time-dependent forces and 

loads are now considered, resulting in the inclusion of inertial forces to the elastic and 

aerodynamic forces that are considered in a static aeroelastic analysis, completing the 

triangle of forces shown in Figure 2.1.  As a result of the inclusion of the inertial forces, 

the phenomena of interest for dynamic aeroelastic analyses are different than those 

considered in static analyses.  The key phenomena that are explored in dynamic 

aeroelasticity are flutter, buffeting, limit-cycle oscillations, and gust response. 

 

Aeroelastic flutter is "an unstable self-excited vibration in which the structure 

extracts energy from the air stream and often results in catastrophic failure" (12).  This 

phenomenon occurs at two parameters known as the flutter speed, Vf, and frequency, 

ωf.  These two terms are defined, respectively, as “the lowest airspeed and the 
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corresponding circular frequency at which a given structure flying at given atmospheric 

density and temperature will exhibit sustained, simple harmonic oscillations” (15).  The 

harmonic oscillations arise when the aerodynamic forces on the system couple with 

coalescing structural modes of the structure.  This coupling, if undamped, can then grow 

unbounded to cause catastrophic forces and displacements upon the air vehicle, 

resulting in failure of the aircraft.  Aeroelastic flutter is considered as one of the most 

critical and potentially catastrophic of all aeroelastic phenomenon (13-14), and details 

regarding the calculation of this flutter velocity for aircraft wings and structures will be 

detailed in the following section. 

 

In addition to aeroelastic flutter, buffeting is another aeroelastic phenomenon 

that is analyzed using dynamic aeroelasticity.  Buffeting refers to the transient vibrations 

of an aircraft surface—often in the tail of the aircraft—that are due to the aerodynamic 

impulses created by other components of the air vehicle further upstream, such as the 

wing.  In general, the phenomenon can be thought of as the effect of the wake of the 

upstream portions of the aircraft on the downstream structural components.  While 

buffeting can be a detrimental phenomenon if it is encountered unexpectedly, it is not 

always considered as a driving factor in the design of many air vehicles. 

 

Limit cycle oscillations (LCOs) are a primary nonlinear aeroelastic response 

phenomenon that can be roughly considered to be a bounded form of aeroelastic flutter 

(16).  In LCOs, instead of the harmonic oscillations of the structure growing unbounded, 
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as they do in flutter, they are instead bounded at an amplitude, often less than the 

failure point of the structure.  This bounded response is a result of the fact that, as the 

oscillations increase in amplitude, the resisting stiffness of the structure will also 

increase, creating a pseudo-harmonic response, such as sinusoidal motion.  Although 

the amplitude of the motion is bounded in LCOs and will not typically result in near-

instantaneous destruction of the component, as with flutter, fatigue problems can 

quickly arise due to the high-frequency harmonic motion that is induced upon the 

structure.  As such, LCOs can produce very harmful structural effects due to low or high-

cycle fatigue. 

 

 

 

2.2 Flutter Solution Methods 

 

As aeroelastic flutter has been identified as a potentially catastrophic 

phenomenon in air vehicle design, the calculation and analysis of dynamic aeroelastic 

phenomena, namely flutter, will be discussed in this section.  The flutter velocity and 

characteristics of a model can be calculated by first assuming simple harmonic motion of 

the structure, as shown in Eq. (2.1). 

 
    ti

h eutu )(                         (2.1) 

Where u(t) represents a vector of the displacements of the structure, often an 

airfoil or wing, as a function of time, and ω is the frequency of the harmonic motion.  

Substituting in the second order differential equation that describes the linear dynamic 
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behavior of a structure subject to aerodynamic forces, analogous to the fundamental 

equation of finite element analysis, yields Eq. (2.2).  
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In Eq. (2.2), Mh  represents the modal mass matrix, Bh the modal damping matrix, 

and Kh the modal stiffness matrix.  These three matricies represent the structural 

response of the model and can be obtained from a structural finite element model of 

the structure to be analyzed.  The aerodynamic response of the structure is modeled 

using the other two matrices where    
  represents the generalized aerodynamic 

damping matrix and   
  represents the generalized aerodynamic stiffness matrix.  The 

rest of the terms in Eq. (2.2) are constant flow field terms where ρ denotes the air 

density, c represents the mean aerodynamic chord length, V is the airspeed of the 

model, ω is the circular frequency, uh is the modal displacements, and k is the reduced 

frequency of the model, as defined by Eq. (2.3). 

V

c
k

2


                                                              (2.3) 

Although Eq. (2.2) represents the basic equation of motion for flutter, there are 

multiple methods to both obtain the values for the equation, as well as to solve the 

equation itself.  One common method for solving this equation of motion is the 'k' 

Method, also known as the V-g Method (12).   
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'k' Method: 

In the 'k' Method, the aerodynamic damping matrix,   
 , and the aerodynamic 

stiffness matrix,   
 , are both functions of the reduced frequency, k.  The structural 

stiffness and mass matrices are obtained from finite element approximations.  Finally, 

the modal damping matrix, Bhh, is assumed to be defined as shown in Eq. (2.4), where g 

is the structural damping coefficient. 

hh igKB                                                            (2.4) 

By modeling the damping matrix as shown in Eq. (2.4), the structural damping 

inherent to the structure itself is not being calculated exactly, but instead being 

estimated as hysteretic damping as a function of the stiffness of the model.  Assuming a 

harmonic solution of the form      
    into Eq. (2.2) and dividing by ω2, the 

equations of motion of the system can then be rewritten as shown in Eq. (2.5). 
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(2.5) 

As Eq. (2.5) is in terms of only the reduced frequency, k, it can be considered to 

be a generalized eigenvalue problem shown in Eq. (2.6). 

   00  uKF h                                                        (2.6) 

Where F and  λ are defined by Eqs. (2.7) and (2.8): 
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

ig
                                                             (2.8) 

From Eqs. (2.6)-(2.8), with a particular reduced frequency, k, selected, the 

frequencies and damping coefficients can be solved for as shown in Eqs. (2.9) and (2.10). 

 


Re

1
                                                                  (2.9) 

 
 


Re

Im
g                                                                   (2.10) 

The solution of Eqs (2.9) and (2.10) is then repeated across the spectrum of all 

possible k values (or in practice, a subset of k values), resulting in a set of values for ω 

and g for corresponding to different values of k.  The formulation of this data set can be 

a computationally intensive process depending upon the method of development of the 

structural and aerodynamic matrices, as well as the discretization of the k values.  For 

problems utilizing finite elements or other discretization methods, the evaluation of the 

equations of motion can be costly, if not computationally restrictive.  In cases such as 

this, often a branch-and-bound method is used on k values where instead of discretizing 

the k-space evenly, it is only refined near the flutter point in an attempt to reduce the 

number of solutions of the equations of motion required. 

 

From this data set, Vg or Vω plots can be formed by plotting g or ω against V.  

Samples of these Vg and Vω diagrams can be seen in Figures 2.2 and 2.3 respectively. 
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Figure 2.2: Sample Vg Plot 
 

 

Figure 2.3: Sample Vω Plot 
 

 

The data shown in Figures 2.2 and 2.3 can then be used to numerically solve for 

the flutter velocity of the model.  In the Vg method, the Vg data and plot shown in 
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Figure 2.2 is utilized.  Flutter is said to occur when the structural damping of the system 

decreases below the required damping to yield zero overall damping to the system 

(denoted by the value of g on the y-axis).  Thus, the flutter velocity is defined as the 

free-stream air velocity corresponding to the k value at which the artificial damping g 

exceeds the actual structural damping of the system.  Looking at the Vg plot, the onset 

of flutter can be shown to be at the location of the plot in which the damping value g for 

any one of the modes being plotted crosses the zero axis.  In the case of Figure 2.2, this 

would occur where Mode 1 crosses the zero axis at approximately 130 ft/s.   

 

A similar approach can be applied in the Vω approach using the frequencies of 

the modes instead of the artificial damping values.  In this approach, instead of 

observing where a mode will cross the zero-damping axis, the flutter velocity is said to 

occur at the velocity where the two modes that are contributing to the flutter of the 

aircraft move closer to one another and eventually become equal, at which they are said 

to coalesce; where one of the damping ratios become increasingly positive and the 

other negative.  Looking at the plot in Figure 2.3, this can be seen as modes 1 and 2 

begin to coalesce as the velocity is increased, coming together at approximately 130 

ft/s.  Comparing this point to the data shown in Figure 2.2, it can be see that at the point 

of coalescence that the first and second models diverge from one another where mode 

1’s damping ratio becomes positive and mode 2’s damping ratio displays asymptotic 

behavior, driving to large negative values. 
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While looking at a Vg plot might appear to give a more definitive answer, as 

finding the root of a mode is much more straight forward than finding where two modes 

coalesce, there are drawbacks to both plotting methods.  The Vg plot is under the 

assumption that there is no structural damping inherent to the model, which is often 

not the case in a physical system.  As such, there are two flaws with the approach.  The 

first flaw is that, as it is assumed that there is zero structural damping, the results for 

the value of g are only valid for values of k that correspond to a g of 0.  Thus, any value 

of g off the zero-axis is inherently incorrect.  However, it is assumed that for small 

values of g, the zero structural damping assumption holds true, and thus, there is an 

envelope around the zero-axis within which the values of g can be trusted.  The second 

flaw relates to the zero damping assumption in that most physical structures have at 

least a small amount of natural damping, whether it be by design or due to additional 

effects not considered in the analysis, such as the drag encountered in the oscillatory 

motion.  As such, using the intercept of the mode with the zero-damping axis will result 

in a conservative solution.  Instead, a value for structural damping can be estimated, 

and the intersection of the modes with that line can be considered as the flutter point.  

There are caveats to this method though, as the estimate for structural damping must 

be small as to not violate the zero / small damping assumption made in the solution. 

 

'p-k' Method (17) 

The 'p-k' Method for flutter calculation uses a similar derivation to that of the 'k' 

Method, but has some changes in the solution process itself.  First, instead of 
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considering all modes of the model at once, the modes are considered one at a time in a 

sequential manner.  While it is infeasible to often consider all modes in larger models, 

the number of modes considered can be truncated to only include those that are 

expected to contribute in the flutter phenomenon.  For each mode of interest, an initial 

guess to the frequency of the mode is made, and the corresponding reduced frequency 

is then calculated using Eq. (2.3).  Once a reduced frequency is calculated, the 

aerodynamic stiffness and damping matrices can be calculated, as  is done in the 'k' 

Method.  The frequencies of the system can then be calculated at the corresponding 

reduced frequency using the eigenvalue solution to Eq. (2.2).  The frequency solution 

that is closest to the initial guess is then selected and the process is repeated until 

convergence for the mode of interest, which is repeated for all modes of interest.  This 

will result in a set of frequencies, damping values, and air speeds that can then be 

plotted in a similar manner as shown in the 'k' Method to find the flutter speed where 

the damping is shown to be zero. 

 

The 'p-k' Method serves to minimize and eliminate a few of the concerns that 

arise with the 'k' Method.  For instance, while the 'k' Method there was a zero structural 

damping assumption made, and instead, the structural damping matrix was modeled as 

a function of the structural stiffness matrix.  As mentioned in the previous section, this 

resulted in erroneous values for damping away from the zero-damping axis.  The 'p-k' 

Method, though, does not necessarily assume this regarding the structural damping 

matrix, allowing for known structural damping data to be directly included in the 
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calculations.  In addition, as both the 'k' and 'p-k' Methods are frequency-matching 

techniques, there are errors in the estimates of the frequency and damping values away 

from the flutter speed (as mentioned before).  In addition, due to the varying 

assumptions made, the two methods might predict different 'incorrect' values for the 

frequency and damping at these sub- or supercritical speeds.  However, in general, at 

the flutter condition, the two methods will give similar estimates (12). 

 

 

2.3 Simulation Packages 

 

In small, simplified cases, the equations of motion for aerodynamic flutter (Eq. 

(2.2)) can be solved in closed-form.  However, as the fidelity of the model of the air 

vehicle being considered is increased, it quickly becomes necessary to utilize a modeling 

package in order to obtain accurate and efficient results.  There exist multiple modeling 

packages that are capable of modeling the aeroelastic behavior of the air vehicle in 

varying fidelities.  Each modeling package utilizes different assumptions in the 

development of the package that results in each of the packages having different 

requirements, times required for analysis, and applicabilities in  different regions of the 

design space.  For instance, in the different Mach regimes shown in Table 2.1, different 

aeroelastic theories that are often applied for the simulation of aircraft performance 

and responses.  As such, different aeroelastic packages are often utilized depending the 

on region of the design space interested in being analyzed.     
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a
Exact values are configuration dependent 

 

 

While assumptions made in the construction of the model might allow that 

model to be valid in additional regions of the design space—such as models with non-

linearity assumptions still being considered valid in more linear regions of the design 

space—there are often cases where particular models give significantly erroneous 

results if used outside of the intended region of interest.  One such example of this 

shown in Table 2.1 is the transonic Mach regime.  The transonic Mach regime is 

characterized by nonlinearities in the design regime due to the difficulty in the 

prediction of a shock-layer boundary along the profile of the wing of interest (19).  As 

such, the solution to a transonic aeroelastic problem is often more complex and 

intensive than problems in the subsonic and supersonic regimes, as these nonlinearities 

must be accounted for by the software package, either directly or through a 

linearization process.  Often, this complicates the solution process and can dramatically 

increase the simulation time required for the solution. 

 

Table 2.1:  Mach Regime Definition (18) 

Regime 
Lower 

Bound 

Upper 

Bound 

Subsonic 0.0 ~0.80a 

Transonic ~0.80 a ~1.20 a 

Supersonic ~1.20 a 5.0 

Hypersonic 5.0+  
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In this work, the transonic Mach regime will be one of great interest due to the 

uncertainties surrounding the modeling process and the selection of appropriate models 

to utilize.  In the subsonic and supersonic regimes, multiple commercial software 

packages are available that often yield similar representations of the output response 

due to the relatively uniform assumptions made among the different models.  Thus, as a  

result of the linear nature of these regimes, the results of multiple models will often 

show relatively good agreement with each other, meaning that the amount of 

uncertainty introduced into the problem through the modeling process is less than that 

of situations where there is significant disagreement among models being considered 

and can generally be considered as restricted to as parametric uncertainties (Chapter 4).   

 

In addition, many simulation packages are incapable of solving problems in all 

regions of the design space, and are often designed for applicability in only one region 

of the Mach regime.  Nonlinear solution methods, such as those commonly used in the 

transonic regime, can normally be used to solve problems that could be solved using 

linear methods, with an added expense of simulation time.   However, due to the 

nonlinear nature of the solvers, it is possible, although remotely so, for additional 

numerical noise to be created that will ultimately result in an erroneous solution from 

the "higher" fidelity solver.  However, utilizing a linear solution technique within a 

nonlinear region of the design space will nearly always produce erroneous results.  An 

example of this is that linear methods, such as those implemented in many subsonic and 
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supersonic solvers, will give erroneous estimates for responses within the transonic 

region of the design space (20). 

 

As a result when analyzing an air vehicle's performance across a wide range of 

Mach numbers, as must be done to determine the complete performance of a 

supersonic air vehicle, it is not uncommon for multiple simulation packages to be used.  

Although there are boundaries between the Mach regimes, these are not definitive 

values and are often heavily configuration dependent.  As such, there exists a level of 

uncertainty at the transition values of the Mach regimes as to which Mach regime 

governs the physics driving the particular analysis.  In addition, even within a particular 

region of the design space, there will often exist multiple simulation packages and 

models of varying fidelity that are created to simulate the same physical scenario at the 

same conditions.  In cases such as this, it can be difficult for a designer to select the 

model that will most accurately represent the true physical scenario of interest.  A 

simple answer to such a problem would be to select the model with the highest fidelity 

and assume the model to be the “truest” representation of the physical problem.  

However, there are three difficulties to such an approach: 

 

1. For some problems, it could be difficult to determine the relative fidelity of different 

models with respect to one another.  Additionally, often models can exist at similar 

fidelities that still yield divergent results.  A simple example of this would be utilizing 

linear finite elements to analyze the displacement of a beam.  The boundary conditions 
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of such a model could be represented in different manners resulting in multiple models 

of the same physical problem, yet all at the same fidelity.  In such a case, it would be not 

be clear which model would be considered the “highest-fidelity” representation of the 

problem. 

 

2. High fidelity models can often suffer from over-fitting issues when utilized in lower-

order representations.  This is best represented by looking at fitting a curve to a data 

set.  If a large amount of data was available, a higher-order model would yield the 

approximation with the lowest residual in most cases.  However, if that same model was 

then used with a significantly smaller set of data (i.e. a 10th order polynomial regression 

model with only 10 data points), such a model can experience large over-fitting errors.  

As such, in the absence of data for the particular set of parameters being utilized in the 

model, one cannot simply assume that the highest-fidelity model will always yield the 

“most accurate”   

 

 

3. Finally, higher fidelity models tend to have an increased computational time associated 

with their evaluation.  This increased computational time is due to the more advanced 

nature of the assumptions made in the model to provide a higher-order representation 

of the problem.  In problems that require such a representation, this increase in time is 

sometimes unavoidable.  However, in simpler problems, it would be inefficient to use a 

model with such a high-order representation for a response that does not necessitate it.  

A classic aeroelastic example would be the excessive nature of using a full Navier-Stokes 
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coupled aeroelastic solution technique for a simple wing configuration at subsonic 

speeds.  Such a model may require computational time multiple orders of magnitude 

larger than a linear subsonic approach even though both models should—in theory for a 

simple configuration—yield very similar results. 

 

Due to the reasons listed above, fidelity and model management is a critical 

consideration in the design of any configuration, specifically the aeroelastic design of an 

air vehicle.  This critical nature is not only a function of the bloated computational time 

that might be necessitated by inappropriate model selection, but also the uncertainties 

that arise in the selection of the proper model(s) to consider for the analysis of the 

configuration.  For this work, multiple models will be considered and the impact of 

model selection will be discussed from the standpoint of the uncertainty that this choice 

introduces to the modeling process as a whole.  The following sections briefly introduce 

the models and software packages that are utilized in this work for aeroelastic analyses. 

 

2.3.1 V-g Solver Code 

 

The V-g solution method, or the 'k' Method, was derived and described in detail 

in Section 2.2.  However, the execution of the solution technique detailed in the section 

involves the use of numerical techniques for the evaluation of the eigenvalue problem.  

As such, a Matlab code has been developed in this work for the numerical solution of 
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the flutter velocity for a problem with an equation of motion as shown in Eq. (2.2).  The 

code can be found in Appendix A, but will be detailed in this section. 

 

The equation of motion shown in Eq. (2.2) is defined for an airfoil--in this case a 

two degree of freedom airfoil subject to unsteady aerodynamics.  As the model of 

interest has two degrees of freedom, there are two equations of motion that define the 

motion of the system.  By rearranging these equations and setting the determinate 

equal to zero, a single equation can be formed to solve for the frequencies of the 

system.  As mentioned in Section 2.2, though, the terms in the equations of motion are 

functions of the reduced frequency of the system, k.  As such, the code loops through by 

defining a finite number of values for k between two extreme values.  

 

At each value of k, the code evaluates each term within the determinate 

equation of motion, as well as a function value known as Theodorsen's Circulation 

Function.  Theodorsen's Circulation Function is a function consisting of both a real and 

an imaginary part that controls the phasing and amplitude of the lift and pitching 

functions with respect to the motion of the airfoil in the aerodynamic computations of 

the system (21).   This function is represented in the code through different possible 

surrogate models which will be discussed in further detail in Section 6.2.   

 

After evaluating Theodorsen's Circulation Function for a particular value of k, the 

rest of the terms in the determinate of the equations of motion are also evaluated.  This 
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results in an equation that is quadratic with respect to ω.  The two roots to this equation 

are then solved for using the quadratic equation root solver, as to handle potential 

imaginary values for the roots.  Once solving for these roots, the values for g, ω1 and ω2 

(the two frequencies of the airfoil),, and V can be solved for as well for the particular k 

value of interest.   

 

This process is then repeated for each of the k values defined within the range, 

storing the values of k, g, ω1, ω2,, and V at each step in the process.  After completing the 

spectrum of k's, Vg and Vω plots can then be created for the model.  In addition, using a 

numerical interpolation technique, the flutter velocity is approximated between the 

sampled k values.  Refinement of the k values near the flutter point would be beneficial 

to the accuracy of the simulation, but due to the simplicity of the numerical solution 

technique, a large number of k's are evaluated throughout the process, reducing the 

need for further iteration. 

 

 

2.3.2 NASTRAN 

 

MSC.Nastran is a MSC-supported software package that is based around its finite 

element method (FEM) solver.  However, the scope of NASTRAN is not limited to strictly 

finite elements, but also contains aerodynamic solvers to construct aeroelastic analyses.  

NASTRAN contains a wide variety of aerodynamic methods that can be coupled with its 

structural FEM solver to solve problems across a wide range of Mach numbers.  These 
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methods include subsonic doublet lattice method, strip theory, supersonic Mach box 

method, and supersonic piston theory (22).  NASTRAN is also capable of performing 

both static and dynamic aeroelastic analyses, ranging from simple static trim analyses to 

fully dynamic responses such as flutter and modal frequency response.  Concentrating 

upon the dynamic flutter analyses, as that will be the primary scope of this work, 

NASTRAN is capable of using multiple solution methodologies to solve the same 

problem, such as the 'k' Method, the 'P-k' Method, or the 'K-e' Method, which is a 'k' 

Method solution that is restricted to increase the computational efficiency of the solver. 

 

 

2.3.3 ZAERO 

 

ZAERO is a ZONA aerodynamic program that contains a wide variety of analysis 

techniques for flutter, static aeroelasticity, and aeroservoelasticity for subsonic, 

transonic, supersonic, and hypersonic Mach numbers (23).  However, ZAERO does not 

contain an internal structural FEA module.  As such, the structural modal response of 

the model must be imported from an external FEA solver, such as MSC.NASTRAN.  Once 

a modal response is imported, ZAERO contains many sub modules for analysis specific to 

a particular phenomenon or Mach regime.  The two modules that will be utilized in this 

work are ZONA6 and ZTAIC. 
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ZONA6: 

ZONA6 is a ZONA developed code for use with steady and unsteady subsonic 

aerodynamics (i.e. M < 0.8).  The module utilizes a higher-order panel formulation for 

the lifting surfaces of the model than what is commonly used in the conventional 

Doublet Lattice Method (DLM) which allows for the modeling of more complex designs 

(23).  For the flutter case of interest in this work, the structural damping matrix is not 

directly available from the FE solver, and as such, is not used within the ZONA6 

approach. 

 

ZTAIC: 

ZTAIC is a module developed specifically for use within the transonic Mach 

regime that generates unsteady transonic modal AIC provided with an externally 

computed steady mean pressure distribution from an aerodynamics package.  Example 

packages used to compute this steady mean pressure distribution could include CAPTSD, 

a transonic small disturbance CFD code developed by NASA.  Once the modal solution 

and steady mean pressure distributions are imported into the package, ZTAIC utilizes a 

transonic equivalent strip method approach to solve for both the static and dynamic 

aeroelastic response of a model. 

 

2.3.4 ZEUS 

 

ZONA's Euler Unsteady Aerodynamic Solver (ZEUS) is an aeroelastic package that 

incorporates dynamic structural FEM results with computational fluid dynamic (CFD) 
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results from an Euler solver within the program (24).   Similar to ZAERO, ZEUS requires 

that the structural modal solution for the model be computed externally and input into 

the software package before performing the analysis.  Once the modal solution is 

imported, ZEUS solves the Euler equations on a Cartesian grid system utilizing a cell-

centered finite volume method with a dual-time stepping algorithm for use with 

unsteady solutions.  To account for viscous effects in the analysis, ZEUS couples the 

Euler solution with a steady boundary-layer equation, reducing the computing 

requirement for handling viscous effects dramatically when compared to a Navier-

Stokes code.  Another feature of ZEUS that aids its applicability in the design process is 

its automated mesh generation capability, along with the ability to handle overset 

meshes, commonly used in the modeling of complex features. 

 

2.4 Summary 

 

 This work will utilize the aeroelastic modeling packages listed in Section 2.3 in 

two problems to demonstrate the capability of the developed methodologies to 

quantify model-form and predictive uncertainties, as well as traditional parametric 

uncertainties.  In the first aeroelastic problem, only the Vg Solver code will be utilized.  

As mentioned, the model-form uncertainty in this problem will be derived from the 

appropriate selection of the Theodorsen’s Circulation Function approximation, as 

detailed in Section 6.2.   
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 For the second aeroelastic problem of interest, the full simulation of aeroelastic 

flutter will be looked at for the AGARD 445.6 wing.  Three packages will be used to 

simulate the flutter velocity of the wing—ZAERO, ZTAIC, and ZEUS.  The model-form 

uncertainty in this problem will be derived from the selection of the appropriate 

modeling package and the predictive uncertainty associated with each model will be 

quantified as a function of how well the model predicts the “true” physical behavior of 

the wing—denoted by experimental data points made available in the literature.  

  



37 
 

3. Surrogate Modeling 

 

 

 

 In the simulation of the aeroelastic response of an air vehicle, the simulation 

time required for the evaluation of a performance metric or response of interest can 

often be large and restrictive.  When these simulations are coupled with design 

approaches such as optimization or uncertainty quantification, this effect is magnified 

and the necessity for relaxation of simulation time is intensified.  A common strategy in 

computationally intensive approaches is to utilize a metamodel to provide a "model of 

the model" being analyzed in the approach (25).  These metamodels serve to reduce the 

computational cost associated with multiple evaluations of a full-scale model or 

simulation by instead using lower-order representations of the design space to 

repeatedly, quickly, and efficiently evaluate designs.  The history of the development 

and implementation of metamodels in multidisciplinary design optimization was 

detailed in the paper by Sobieszczanski-Sobieski and Haftka (26). 

 

 Many metamodeling techniques exist and have been implemented in the 

literature for optimization and uncertainty quantification applications.  These methods 

include surrogate modeling techniques such as artificial neural networks (27), kriging 

(28), and response surface methodology (29).  Much work in the literature has been 
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done evaluating the relative merit and applicability of each method to a variety of 

problems (30).  Similarly, much work has been done in comparing the relative accuracy 

of each of these methods to given applications or solution forms.  Papila et.al compared 

the accuracy and efficiency of radial basis neural networks and response surface 

methodology for supersonic turbine applications (31).  Similarly, Stander et.al looked at 

response surface approximations, neural networks, and kriging in the modeling of 

automotive crashworthiness (32).  The general consensus among the research 

presented is that there is no single surrogate model that outperforms the others across 

all problems. 

 

 The inaccuracies experienced in previous surrogate models is shown by prior 

work in the literature to be a result of the fact that given a limited data set, it is difficult 

if not impossible to identify a unique surrogate model to fit said data (33).  This 

phenomenon leads to difficulty in identifying the metamodels which best fits the set of 

data, referred to as model-form uncertainty.  A common method used in the literature 

to quantify and reduce model-form uncertainty is to construct an aggregate model as 

the sum of the weighted individual models (7,34).  

 

Constructing multiple surrogate models requires, in many cases, additional data 

points that would not necessarily be required for just a single surrogate.  As such, due to 

the cost of obtaining additional data for the development of surrogate models, the idea 

of incorporating the results of multiple surrogate models into a single response has only 
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been recently explored in research work.  Zerpa et.al detailed the potential of using 

multiple surrogate models in the optimization process of alkali-surfactant-polymer 

flooding processes (35).  In this work, the authors showed that utilizing a weighted 

average surrogate method yields better modeling capabilities than any of the individual 

surrogates used alone.  However, this method also required an additional number of 

data points to form the metamodels being considered.  Goel et.al expanded upon the 

idea of weighted metamodels by weighing the surrogates constructed using polynomial 

response surfaces, kriging, and neural networks to construct a weighted surrogate (36).  

This idea was later demonstrated to helicopter rotor blade vibration reduction showing 

that at a very small additional computational cost in data collection that a more 

accurate surrogate can be achieved (37).  This increased demand on data points was 

primarily driven by the more advanced surrogates such as neural networks, which often 

can require additional data points to train. 

 

Work has been done on adaptive response surface methods as well to develop 

multiple models and integrate them into a more accurate metamodels.  Das and Zheng 

developed a cumulative RSM approach for structural reliability estimates by using 

lower-order responses to drive the sampling for higher order models (38).  These 

methods have been used in recent optimization applications (39), but they are still 

subject to the shortcomings of the traditional response surface methodology with 

respect to cross-validation and computational efficiency. These shortcomings are that, 

using response surface methodology, the highest computationally efficiency is obtained 
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using all of the available data points to form the model.  However, if all data points are 

used to form the model, no data is available to develop a cross-validation metric.  As 

such, there is a trade-off between efficiency and confidence in the model where a 

decision must be made on how many—if any—points are excluded from the model 

development to use as points for cross-validation.  

 

3.1 Response Surface Methodology (RSM): 

 The response surface method (RSM) was developed by Box and Wilson from a 

simple mathematic expression to relate the input and output of experimental data 

points (40).  The approach involves selecting an a priori functional representation of an 

output response of interest as a function of the n design variables ( ̅  and a set of 

parameters,  ̂, as shown in Eq. (3.1). 
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The form of the surrogate shown in Eq. (3.1) is determined a priori and can vary 

among multiple models, as shown in the literature (41).  The number of data points 

required to form the model is bounded below by the number of β coefficients in the 

equation for the surrogate.  If the number of data points n is equal to the number of β 

coefficients, the unique values of β can be solved for using linear regression, as shown in 

Eq. (3.2): 

yXXX TT 1)(                                              (3.2) 
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Where X denotes the design matrix of data points and y is the response vector 

for the response of interest.  In over-determined systems where greater numbers of 

data points exist than β coefficients, a numerical method such as least-squares must be 

used to solve for the β coefficients in Eq. (3.2).  In general, equal weight is given to all 

data points being considered in the analysis.  However, for applications such as 

reliability analysis, where accuracy is more important in particular regions of the design 

space, such as near where the limit state function is equal to zero, a weighted regression 

method has been used to estimate the β coefficients (42). 

 

The RSM metamodels detailed above provide accurate representations of the 

data set, but do not necessarily provide a measure of the degree of accuracy.  As such, 

validation methods in the literature have long been used to estimate the error in the 

metamodels through methods of cross-validation.  Geisser first proposed the 

partitioning of the original data set into two subsets with one being used to estimate 

the coefficients in the response surface model, and the other subset being used to 

estimate the error in the model (43).  One such approach for measuring the error of a 

model is to look at the root mean square error of the excluded subset of data (m x 1 

vector of data), as shown in Eq. (3.3). 
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Partitioning methods such as these provide an estimate of the error in each 

model, but do so at the cost of an increase to the amount of data required.  However, 
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by partitioning the original data set using k-fold cross validation (44), multiple 

metamodels and validation metrics can be developed for the same set of data. 

 

3.2 Weighted Stack RSM (w-StackRSM): 

 The method of utilizing k-fold cross validation measures to estimate over-

determined systems has been utilized in Monte Carlo Sampling approaches—referred to 

as StackMC—to estimate integral response in cases of excess data (45).  The k-fold cross 

validation technique is applied in this work to develop multiple models and error 

measures.  First, the original data set y is partitioned into k subsets of data, as shown in 

Eq. (3.4). 

];...;;[ 21 kyyyy                                               (3.4) 

where each subset of y contains m, of the n original data points.  With the k subsets of 

data, k unique, cross-validated RSM models can then be developed with a measured 

residual error using the k-fold sampling technique, as shown in Table 3.1. 

 

Table 3.1: k-fold Validation Models 

Model  # Model Data Validation Data 

                

                     

… … … 
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 In the k-fold sampling technique shown above, each partition of the data set is 

excluded from the construction of a response surface model and used to estimate the 

residual error of the corresponding model, resulting in k individual models which make 

up the model set M, as shown in Eq. (3.5).   

MMMM k ,...,, 21                                               (3.5)          

   As such, there is a degree of model-form uncertainty that results in the selection 

of the “best” model among the model set M.   Jin et.al explored multiple metrics and 

criteria for evaluating the best metamodels among a model set considered (46).  

However, instead of considering the results of a single model, increased accuracy and 

fidelity can be obtained by constructing a weighted model of the individual models 

constructed in the analysis.  In this methodology, the weights of the models are 

determined through an inverse relationship among the residual errors of each of the 

models constructed using the k-fold validation—referred to as the weighted stack 

response surface methodology (w-StackRSM). 

 

 To calculate the weights of the individual models, two factors are considered.  As 

a larger residual error indicates a less accurate metamodel, the weights are to be 

inversely related to the residual error of each model.  Additionally, to ensure the proper 

scale of the weighted surrogate, the weights of the individual models must be 

normalized to a sum of 1.  The result of these two factors is Eqs. (3.6) and (3.7) which 

show the development and normalization of the individual model weights respectively. 
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 Having derived weights for each of the individual metamodels in the model set, 

the composite model can then be formed as shown in Eq. (3.8). 
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 This composite model consists of a linear combination of k independently cross-

validated models weighted by their relative accuracy.  This methodology stands in 

contrast to using all of the available data points to construct a single model in that it is 

validated through points not utilized in the construction of the model, providing a 

measure of cross-validation.  As such, for the complete set of data considered, the 

traditional least-squares approach of considering all points results in a smaller overall 

residual error than this approach—as the points used to evaluate the model are the 

same points that are used to construct the model.  However, as will be shown, when an 

additional set of data is used to validate the two approaches, the w-StackRSM provides 

a smaller residual error than the traditional least-squares approach at no increase in 

data cost. 
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3.3 Validation Cases: 

 The proposed methodology is first tested against conventional least-squares 

response surface methods using two surrogate modeling benchmark examples 

established in Jin et.al (46).  In the validation problem, three response surface 

methodology approaches are considered; full least-squares estimation, cross-validation, 

and w-StackRSM.  For the full least-squares estimation, all of the data points will be 

utilized to estimate the β coefficients and to estimate a residual error.  Using the k-fold 

validation, k cross-validated models will be developed in these validation cases where 

the model with the lowest residual error can be considered.  Finally, the accuracy of the 

proposed w-StackRSM method will be determined.  The accuracy of these three 

methods will be compared for two data scenarios—only considering the initial data set 

used to form the models and by obtaining additional a posteriori points for error 

measures. 

 

Case 1: 

 The two-variable problem shown in Eq. (3.9) is considered on the bounds 

       and        . 

)]exp(4[*)]sin(30[)( 2

2111 xxxxf                         (3.9) 

To isolate one of the sources of model-form uncertainty, third order response 

surface models of the form shown in Eq. (3.10) are considered in the following analyses: 
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 This surrogate results in ten β coefficients to be estimated using the response 

surface methodologies.  Thirty data points were randomly sampled within the variable 

intervals specified and evaluated using Eq. (3.9) to construct the data set to be 

considered in the problem.  Using five folds, the original data set is partitioned into five, 

six-point data sets to be utilized for the w-StackRSM approach.  Utilizing k-fold 

validation, five individual and independent models and residual measures can be 

developed.  Weights for these five models were then obtained from their respective 

residuals using Eqs. (3.6) and (3.7).  Finally, the weighted response surface model was 

constructed using Eq. (3.8).  Concurrent to the w-StackRSM approach, the traditional 

least-squares RSM approach was applied to the 30 data points to develop a seventh 

model to compare.  Using the seven models constructed, the residual error of each 

model with respect to the complete data set was calculated (Table 3.2). 

 

Table 3.2: Case 1 Residuals (n=30, k=5) 

 

 

 

 

 

 

Model Residual 

   8.3526 

   8.9339 

   8.2792 

   8.5808 

   8.7839 

w-StackRSM 7.2147 

LS-RSM 7.1744 
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 Initially focusing on the first six models in Table 3.2, it is clear that the w-

StackRSM approach yields a model with a significantly reduced residual error when 

compared to the individual cross-validated models that were constructed using the k-

fold sampling technique (Models M1-M5).  The w-StackRSM approach and the least-

squares RSM approach produced nearly identical residual errors, with the LS-RSM error 

being slightly smaller than the w-StackRSM approach.  As was noted previously, due to 

the fact that all of the points were used in the measurement of the residual were 

considered in the construction of the least-square RSM model, the least-squares RSM 

approach mathematically should yield the smallest residual error when only considering 

the data set used to construct the models.  However, this is a biased result as the 

samples that are used for the analysis of the model are not independent of the model 

itself.  To determine the relative impact of this bias, as well as to validate the results of 

these two models against a posteriori data, 30 additional points were then sampled at 

random from the design space and the average residual error of both the w-StackRSM 

model and the LS-RSM model was measured with respect to this new data set.  This 

process of generating 60 data points—using 30 to construct the w-StackRSM and LS-

RSM models and the other 30 to calculate each model’s residual—was then repeated 

100 times and the average residual for each approach is shown in Table 3.3. 
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Table 3.3: Average Residuals for Additional Data Set, Case 1 (m=100) 

Model Avg. Residual 

w-StackRSM 22.091 

LS-RSM 23.392 

 

 It can be seen in Table 3.3 that, for the problem of interest, the w-StackRSM 

approach yields, on average, a smaller residual error than the traditional least-squares 

RSM approach when calculated using an independent data set.  As such, using the same 

original data set of 30 points, the w-StackRSM approach is able to weigh and integrate k 

independently cross-validated models to construct a superior surrogate model with no 

additional data cost.  The only additional step when compared to a traditional least-

square response surface method is the partitioning of the data into the data sets 

through k-fold sampling, and the subsequent model formulations.  While this 

computational cost is not trivial, it pales in comparison to the cost associated with 

obtaining even one more data point for many models.  As a frame of reference, on a 

personal computer with a 3.3 GHz I5 Processor and 4 GB of RAM, the LS-RSM for the 

above problem took 0.05s and the w-StackRSM approach took 0.09s. 

 

The methodology validation process detailed above was then repeated on an 

additional problem in Jin et.al to verify the trends observed. 
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Case 2: 

 The two-variable problem shown in Eq. (3.11) is considered on the bounds 
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 Similar to the prior example, to isolate a possible source of model-form 

uncertainty, all response surface models considered in this case study assume the form 

of the model shown in Eq. (3.10).  Repeating the process established before, data points 

were randomly sampled from the intervals given above and a data set of 30 points was 

acquired to construct the response surface models.  Using five folds for the k-fold 

sampling process, the w-StackRSM surrogate was constructed by weighing each of the 

five individual models based upon their respective residuals, as shown in Eqs. (3.6-3.8).  

Considering the five individual models, the w-StackRSM model, and a full LS-RSM model, 

the residual error for each model can be determined given the 30 data points used in 

the model construction process (Table 3.4). 

Table 3.4: Case 2 Residuals (n=30, k=5) 

Model Residual 

   0.005867 

   0.006015 

   0.007162 

   0.008089 

   0.009543 

w-StackRSM 0.004435 

LS-RSM 0.004257 
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 For the second case study considered, similar results to the first problem are 

observed.  Focusing initially on only the first six models, it is apparent that the w-

StackRSM approach yields a model with a smaller residual error than its five constituent, 

independently cross-validated models.  When comparing the performance of the w-

StackRSM approach to the traditional LS-RSM approach, it is once again observed, as 

expected, that the LS-RSM approach will yield the smallest residual error when only the 

data that is utilized in the construction of the model is considered.  To test the merit of 

these two approach to data not considered in the construction of the model, 30 

additional data points are once again sampled, and only the residual of these models 

with respect to this a poseriori data is considered.  Repeating this process 100 times 

yields the average residuals shown in Table 3.5. 

 

Table 3.5: Average Residuals for Additional Data Set, Case 2 (m=100) 

Model Avg. Residual 

w-StackRSM 0.03969 

LS-RSM 0.04097 

 

 Once again, it is observed that when determined using an independent data set, 

the w-StackRSM approach yields a surrogate model with a smaller residual error than 

the traditional LS-RSM approach while still using the same original data set. 
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3.4. Concluding Remarks on Surrogate Modeling 

 

From the validation cases presented above, a couple of conclusions can be 

developed.  It is apparent from the results that, when a residual error is used as the 

figure of merit in evaluating the accuracy of a response surface model, the least-squares 

response surface methodology will yield the lowest residual error for any form of a 

surrogate.  This accuracy is ensured through the formulation of the least-squares 

approach, which mathematically minimizes the residual error with the beta coefficients 

as the design variables.  As such, the w-StackRSM approach will never yield a smaller 

residual than the least-squares RSM approach when only considering the points used in 

the construction of the model. 

 

Proper validation and analysis of error in a surrogate model, though, should be 

an independent process from the model formulation itself.  As such, the points that 

were used in the construction of a model should not be used in the evaluation of the 

accuracy of a model as the model will, by design, be most accurate at and near those 

points.  Instead, to test the predictive ability of a surrogate model, an independent set 

of data points should be used to test the ability of the model to predict a response 

outside of points that were used in the construction of the model.  In this case, after 

formulation of the models, additional samples were obtained through and independent 

sampling of the design space to test the predictive capabilities of both the w-StackRSM 

approach and the LS-RSM approach.  It was observed that the w-StackRSM approach 
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yielded approximately a 3-6% reduction in residual when compared with the classic LS-

RSM approach.  It can then be inferred—due to the comparable computational cost—

that in instances where the classical least-squares response surface methodology is to 

be employed, that employing the w-StackRSM approach will yield a more accurate 

model at no increase the required simulation or data costs. 
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4. Uncertainty Definition 

 

 

Uncertainty in the prediction of a response through a simulation-based modeling 

process can be thought of as taking one of three forms: parametric, predictive, and 

model-form uncertainty (47).  For the prediction of a generic output response of interest 

y, this breakdown of uncertainty can, for a general modeling problem, be shown by the 

equation and definitions shown in Figure 4.1. 

 

 
Figure 4.1: Modeling Uncertainty Breakdown 

 

                                                                      

 In Figure 4.1,   ̃  ̅  represents the result of model i, to a set of input parameters, 

 ̅.  The second term in the equation,   ̂, represents the discrepancy between the result 

of model i, and the true physical value of the output of interest, y.  Given this 
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representation of a modeling problem, the selection of the appropriate model,   ̃  ̅ , is 

representative of  the model-form uncertainty, the variation of   ̃  ̅  due to 

uncertainties in the set of input parameters,  ̅  is representative of parametric 

uncertainty, and the determination of the value of   ̂  represents the predictive 

uncertainty inherent to model i.  The three forms of uncertainty detailed above are 

defined uniquely, but are often closely coupled for modeling problems of interest.  As 

such, careful and rigorous consideration must be given to decide which uncertainties 

will be quantified within the modeling process and which uncertainties can be 

considered to be negligible with respect to the others. 

 

4.1. Parametric Uncertainty 

Parametric uncertainty refers to the uncertainty in the parameters, or inputs, 

into a model of interest.  Simulation models require inputs into the system to represent 

aspects of the physical scenario such as dimensions, material properties, environmental 

conditions, or modeling properties.  Most models require that these values be input as 

deterministic values for each of the parameters of interest.  However, it is often 

possible, and likely, that the value for any parameter in the true physical scenario 

cannot always be known with infinite precision.  As such, there is an uncertainty in the 

assignment of a value to any parameter within a model.  This uncertainty is what is 

referred to as parametric uncertainty.  Parametric uncertainty can commonly be defined 
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as taking one of two forms: aleatory and epistemic uncertainty, based upon the amount 

of information known regarding the uncertainty in the parameter (44,48). 

 

Aleatory Uncertainty: 

Aleatory uncertainty is defined as the uncertainty that arises as a result of 

natural, unpredictable variation in the performance of the system (49).  This type of 

uncertainty is commonly thought of as an uncertainty to which enough information is 

known to assign probability density functions to represent the random nature of the 

variable.  While the form of this density function could range from uniform to a complex 

custom density, it is assumed that the variability of the parameter is understood well 

enough that the density function accurately represents it without introducing additional 

error. 

 

Epistemic Uncertainty: 

Epistemic uncertainty is defined as any uncertainty that is due to the lack of 

knowledge regarding the behavior of a system that could, in theory, be resolved through 

the introduction of additional information (50).  In terms of this definition, any type of 

uncertainty, including model-form and predictive uncertainty can be thought of as 

epistemic, as they are uncertainties which could, in theory, be reduced by the 

introduction of more information into the problem.  However, in the scope of this work, 

the phrase epistemic uncertainty will be used to refer to epistemic uncertainties in the 

parameters of a model.  Epistemic uncertainty is commonly referred to as incomplete 
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uncertainty; or more simply put, inherent variability of which not enough is known to 

accurately approximate the uncertainty through a form such as a density function.  If a 

density function was assumed, it would introduce additional errors, and as such, 

additional uncertainty into the problem due to the inaccuracies in the assumptions of 

both the form and distribution of the parameter.  This is often the case in situations 

where a very limited sample size is available, and no further information is known 

regarding the parameter. 

 

4.2. Model-Form Uncertainty 

 When simulation modeling is utilized in engineering problems, there are often 

multiple models available to represent the same situation.  Examples of this can include 

modeling packages among various fidelities or even differing assumptions regarding a 

model within the same level of fidelity, as a result of varying boundary conditions, 

different theories of behaviors or response, linearity assumptions, or mesh sizes.  In 

well-understood phenomena or problems, these models are often refined through 

validation and verification metrics and a "best" model will often emerge.  In this work, 

the term "best" model implies the model that most accurately represents the physical 

scenario being modeled.  However, in many multi-physics problems, there exists a 

significant uncertainty in the selection of the best model, or more specifically, the 

assumptions made to represent a given physical scenario.  As a result of this 

uncertainty, multiple models across different fidelities or even within the same fidelity 
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can produce different results for the same physical problem of interest.  These 

discrepancies among the models are the result of the different assumptions that go into 

forming the individual models.  As such, in order to completely quantify the uncertainty 

that is present in the modeling process, it is crucial that not only the parametric 

uncertainties be quantified, but also the uncertainty that exists in the selection of the 

"best" model—the model-form uncertainty. 

 

4.3. Predictive Uncertainty 

 While model-form uncertainty denotes the discrepancies between multiple 

models of interest, predictive uncertainty denotes the difference between a model and 

the true physical scenario that is being represented in the model (51).  The presence of 

predictive uncertainty is a direct result of the simplifying assumptions made in the 

construction of a model, such as an inviscid or incompressible flow assumption in an 

aerodynamic analysis.  As a result, each individual model has its own unique predictive 

uncertainty associated with it, as the assumptions in each model are not necessarily the 

same.  The predictive uncertainty associated with a model is often considered in the 

model validation process. 

 

 To quantify predictive uncertainty, information regarding the true physical 

scenario of interest must be known.  While this information is commonly experimental 

data points, a couple of caveats are introduced.  The experimental data that is acquired 

is not necessarily infallible for a couple of reasons. First, experiments are often done on 
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a reduced order model, or at least a model with artificial constraints--such as a full-scale 

wing test in a wind tunnel.  As such, the experiment could technically be considered an 

additional model.  In addition, measuring the value of parameters or outputs in an 

experiment is an imprecise science.  As such, there is additional uncertainty introduced 

to the problem in that the supposed true value is also an uncertain value.  To represent 

the complete picture of uncertainty, Kennedy and O'Hagan represent the true physical 

scenario as shown in Eq. (4.1) (47). 

exp)()|Pr(   ikik yMd                                      (4.1) 

 In Eq. (4.1), dk represents the true physical value of the output response of 

interest—such as flutter velocity.  The equation shows that this true value is actually the 

sum of three different terms.  In the first term, γ represents an unknown regression 

parameter that cannot be solved for empirically.  Pr(Mi|θk), represents the results of 

model i given the parameter set, θk.  This could either be a probability distribution, as 

denoted by the equation, or a deterministic value if the model is deterministic in nature.  

δ(yi) is the discrepancy term in the equation that represents the difference between the 

model result and the true physical scenario.  This function is also referred to as the 

model inadequacy function (47), and it is independent of the model output, Pr(Mi|θk).  

Finally, εexp  is the observation error term, and it represents the uncertainty that exists in 

the measurement of output dk.  This term can either be a deterministic value, or a 

distribution representing the uncertainty in the measurement of the experimental 

value.  By rearranging Eq. (4.1), expressions for different representations of the 
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predictive uncertainty for a modeling problem can be developed, as will be shown in the 

following sections.  
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5. Uncertainty Quantification 

 

   

 Although the three types of uncertainty detailed in the prior section are defined 

uniquely, they are not necessarily independent of one another.  While methods exist in 

the literature for quantification of one or more types of uncertainty in a simulation 

problem of interest, there are often multiple additional assumptions that are made in 

this uncertainty quantification process that restrict these approaches from being utilized 

to quantify the uncertainties from all possible sources.  Looking at the field of 

simulation-based design in aerospace engineering, much of the work done in 

uncertainty quantification has focused upon only the quantification of the parametric 

uncertainties in the modeling process.  Pettit summarized the approaches utilized for 

uncertainty quantification in aeroelastic design as well as detailed challenges facing the 

community--included in which quantifying the uncertainty associated with the analysis 

itself (52).  With respect to uncertainty quantification in flutter calculations, work in the 

literature has primarily concentrated upon quantifying the effects of parametric 

uncertainties.  Cheng et.al explored the effects of uncertainties in structural parameters 

on the quantification of the flutter velocity for suspension bridges suspect to high 

velocity wind loads (53).  Kurdi et.al looked specifically at the AGARD 445.6 wing and the 

effects of parametric uncertainty on the flutter boundary of the wing through Monte 

Carlo Sampling (54).  Similarly, Beran et.al looked at the effects of uncertain parameters 
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on limit-cycle oscillations using stochastic expansion methods (55).  This work was 

expanded upon by Witteveen and Bijl to develop an Unsteady Adaptive Stochastic Finite 

Element (UASFE) approach for the quantification of uncertainties in the transonic flutter 

of a NACA0012 airfoil (56).  The methods for the quantification of parametric 

uncertainties have been developed and matured, but are incapable of quantifying the 

uncertainty from all of its possible sources. 

 

 The effects of the other two forms of uncertainty—model-form and predictive—

are less considered, but have not been completely ignored in the literature.  Much work 

has focused upon intrusive methods for the quantification and eventual minimization of 

predictive uncertainty—often referred to in the literature as model validation and 

verification.  Chen et al have looked at the coupling effects of parametric uncertainties 

in the model validation process as a preliminary approach to quantifying uncertainties 

induced by the modeling process, but stopped short of quantifying the predictive 

uncertainty (57).  Numerous other researchers have looked at model validation 

approaches in the literature, but these approaches are often intrusive with respect to 

the model, and unique to each problem of interest.  An additional shortcoming is that in 

order to quantify the predictive uncertainty of a model, a representation of the physical 

data—most commonly experimental data of some form—must be obtained.  While the 

presence of this data allows for the quantification of uncertainties from all sources, it is 

inefficient and infeasible to obtain experimental data early in the design phase of many 

engineering projects.  In problems such as this, it is necessary to evaluate numerous 
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designs quickly and efficiently, meaning that obtaining experimental data for each 

configuration is infeasible.  As predictive uncertainty can only be quantified given 

experimental data, predictive uncertainty cannot be quantified in cases where the 

experimental data is unavailable.  Instead, only model-form and parametric 

uncertainties can be quantified in these cases.    

 

 Additionally, the computational time involved in the evaluation of many physics-

based simulations can be very large.  As such, it is imperative that any technique to 

quantify the uncertainty in the analyses must be computationally efficient by requiring a 

minimal number of model evaluations.  It is thus necessary to develop a method that is 

capable of efficiently quantifying these two forms of uncertainty in the absence of 

experimental data points.  

 

 

5.1. Parametric Uncertainty Quantification Methods 

 

Parametric uncertainty is the most frequently considered form of uncertainty in 

the literature (44).  These methods, in general, follow the same basic steps.  They first 

attempt to capture the uncertainty associated with the parameters in some form.  

Aleatory uncertainty quantification methods will do this by representing each variable 

through a probability density function of any ordinate form while epistemic uncertainty 

quantification methods will often use a more abstract data structure such as fuzzy logic, 

or basic belief assignments (58).  Next, these methods will attempt to propagate this 
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information regarding each of the variables through the simulation-based model 

through either exhaustive or “fast” reliability methods.  The goal of this approach is 

normally one of two metrics of interest: developing a distribution of a single, or set of 

output parameters, or determining the reliability of the system of interest.  The 

approach that the methods take to determine the output metric of interest results in 

the methods being split into two different categories of approaches: exhaustive 

sampling methods and analytical approaches. 

 

5.1.1 Sampling Methods 

 

 Sampling methods will, in general, utilize the developed form of each of the 

uncertainty variables to develop a set of deterministic parameters to be utilized in 

subsequent model evaluations.  While methods such as this are, when compared to 

analytical methods, more computationally expensive, they are often much easier to 

implement in complex simulations or with complex designs due to their non-intrusive 

nature.  In addition, while sampling methods began as a crude approximation tool for 

reliability that required a restrictive number of evaluations for adequate accuracy, as 

the methods have matured, the applicability and usefulness of the methods have 

improved as well. 

 

 In general, sampling methods are capable of approximating both metrics of 

interest: the distribution of a set of output parameters, or simply the probability of an 
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event.  However, there are trade-offs to these techniques, as will be discussed in the 

following section.   

 

 

Monte Carlo Sampling: 

 The Monte Carlo Sampling Method (MCS) is a numerical sampling method that 

was first developed by Metropolis and Ulam in 1949 (59).  This method is loosely 

defined with a wide range of approaches that follow similar patterns.  The approaches 

first define a domain of possible uncertain input parameters, and then generate the 

input values randomly from this domain utilizing a specified probability distribution 

function for each uncertain input parameter.  After generating a vector of input values, 

a deterministic calculation or simulation is performed using these inputs.  This process is 

repeated multiple times and the results of each of these individual calculations or 

simulations are aggregated into the final result.  For example, the expected value of an 

arbitrary distribution function fx(x) of a variable x could be estimated through the Monte 

Carlo Sampling method by repeatedly sampling the distribution function of the design 

variable  k times, and taking the mean of these values, as shown in Eq. (5.1). 
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 The concept can then be extended to multi-dimensional space where multiple 

variables defined by vector  ̅ are assumed to be represented by distributions that can 

each be sampled and computed in the same way as shown in Eq. (5.1) 
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 When the samples              are independent, as is the assumption with 

Monte Carlo Sampling, the laws of large numbers ensure that the approximation can be 

made accurate by using a sufficiently large sample size, T.  For a problem with multiple 

variables, a sufficiently large sample size can range well up into the millions.  While a 

million evaluations is not entirely cost restrictive in the evaluation of a closed-form 

expression, traditional Monte Carlo Sampling techniques can quickly become cost-

restrictive when a computational simulation is required for each evaluation of the 

model of interest.  

 

 In addition to the computational cost associated with Monte Carlo Sampling 

methods, there are other caveats.  As each of the samples drawn in Monte Carlo 

Sampling are independent of each other, a large amount of samples will naturally fall 

around the mean value of each uncertain parameter.  As such, it is likely that very few 

samples will be drawn from the extreme tails of an input parameters' distribution.  In 

problems where the primary interest is in the tails of the distributions--as most 

engineering reliability problems are--this results in very few samples being observed 

from the tails.  In fact, even with a large amount of numbers, Monte Carlo Sampling 

does not guarantee that any samples would be drawn from the tails of the design.  As 

such, it very possible for Monte Carlo Sampling to grossly misestimate values that fall in 

the extrema of the design envelope. 

 



66 
 

 Monte Carlo Sampling is most frequently used to approximate the probability of 

a particular event occurring, such as the amount of output values that fall below a 

particular threshold given initial variable distributions.  This is done by sorting the 

resultis through a pass / fail filter with respect to the threshold value, and then finding 

the frequency of a particular occurrence.  However, Monte Carlo Sampling can also be 

used to develop a distribution for this output response as well.  This is done by sorting 

the output data points into a histogram and then approximating a probability density 

function to the values of the histogram.  There are many sources of potential error in a 

method such as this, though, as a large number of evaluations are required and the final 

distribution can be very sensitive to the bin size of the histogram being used. 

 

 

Latin Hypercube Sampling: 

 In order to attempt to capture the tails of a design in the sample set to be 

generated, McKay et al developed Latin Hypercube Sampling (LHS) in 1979 (60).  In Latin 

Hypercube Sampling, each distribution is broken into equally probable bins based upon 

the amount of samples to be considered.  This is done by dividing the cumulative 

distribution function and dividing it into 1/k sized intervals of equal probability, where k 

is the number of sample points of interest (Figure 5.1).  By then dividing the probability 

distribution function into the same intervals, k individual bins can be formed on the pdf, 

as shown in Figure 5.2.  These bins can then be sampled, drawing one random sample 

from each of the bins.  These sample points are then input into the deterministic 
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simulation in the same way as was done with Monte Carlo Sampling, and metrics 

regarding the output can then be computed. 

 

 
Figure 5.1: Division of CDF of a Random Variable for LHS 

 

 
Figure 5.2: Corresponding Division of PDF of a Random Variable for LHS 

 

 

 Latin Hypercube Sampling provides assurance that a limited sample size will span 

the full range of the distribution for the variable of interest.  This ensures that even with 

a relatively limited number of samples taken, the tails of the distributions will still be 

accounted for in the sample region.  This idea can be extended into n-dimensional 
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space, where each variable is divided into a number of equal probability bins, and the 

intersections of these bins are then sampled, as shown in Figure 5.3 in a two-

dimensional case. 

 

 
Figure 5.3: Two Dimensional LHS Sampling Scheme 

 
 
 
 Latin Hypercube Sampling still suffers from the curse of dimensionality, as more 

variables will require more samples to achieve the same level of confidence in the 

results.  In addition, adding one sample to a LHS scheme after performing an analysis 

requires a complete restructuring of the sampling space.  However, when used properly, 

LHS can provide a computational benefit when compared with traditional MCS in both 

accuracy and efficiency. 

 



69 
 

 Similar to Monte Carlo Sampling, LHS can provide both the probability of a 

particular occurrence, or be used to approximate a distribution of the output of interest.  

While LHS can be more efficient at calculating the probability of a particular occurrence, 

it suffers from the same problems as MCS in the approximation of a distribution for an 

output parameter of interest. 

 

Markov Chain Monte Carlo Sampling: 

 While traditional Monte Carlo Sampling generates a sequence of random 

variables              where each sample,   , is independent of the prior states,     .  

In Markov Chain Monte Carlo Sampling (MCMCS), the next state      is sampled from a 

distribution,           , which depends only upon the current state of the chain,   .  

Thus, after a sufficient break-in period of p iterations, points               } will 

then be dependent samples from the original data set             .  After discarding 

the samples from the burn-in period of the chain, the expected value of the single 

model, fx(x), can then be calculated from Eq. (5.2). 
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 Next, it must be determined how to construct a Markov chain such that the new 

state, xt+1 depends only upon its prior state, xt.  Many such chains have been proposed 

in the literature, the first by Metropolis et al. in 1953 (61).  For this algorithm, the next 

state in the sample,      is determined using a proposal density Q(x’|xt), to generate a 

new proposed sample, x’.  The proposal density Q(x’|xt) is defined based upon the 
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current sample xt.  Such a proposal density for a Gaussian Function can be shown in Eq. 

(5.3) where the distribution is centered on the current point xt. 

 2,~)|'( tt xNormxxQ                     (5.3) 

 The Metropolis algorithm defines this proposal density to be symmetric, 

meaning that Q(x’|xt) = Q(xt|x’).  As such, the proposed next state x’ is accepted as the 

next value (e.g. x’ = xt+1) if a value α, drawn from a Uniform(0,1) distribution satisfies Eq. 

(5.4). 
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  If Eq. (5.4) does not hold true, then the future state remains the current 

state: xt+1 = xt.  Additional chains have been proposed in the literature by Tierney (62), 

Roberts (63), and Gilks (64).  Due to the robust operating ability and efficiency shown in 

the literature (61), the original chain proposed by Metropolis et al. in 1953 will be used 

in this work where Markov Chain Monte Carlo Sampling is implemented. 

  

 MCMCS is different than LHS or traditional MCS in that its sampling method is 

biased, meaning that post-processing of the output data must be done in order to 

quantify any information to be extended regarding the output.  Similar to the other 

sampling methods, MCMCS is quite adept at approximating the probability of a 

particular event, but can experience errors in the generation of a full distribution 

function to represent the potential variation in a particular output parameter. 
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Distribution Fitting: 

 All three of the sampling methods discussed above produce a set of output 

responses              as a function of the T input parameter sets:              . If a 

pdf representation of the output response is needed, this can be done by fitting a 

distribution to the data set.  A distribution form must first be assumed in this approach.  

In the absence of any additional information, a Gaussian form shall be assumed for the 

data set (Eq. (5.5)). 
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The two parameters μ and σ2 can then be estimated using the Method of 

Moments as shown in Eqs. (5.6)-(5.7). 
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 While a Gaussian distribution is the most general form of a distribution, they are 

not capable of handling distributions with skewness.  A four-parameter Beta distribution 

is a more robust form of a distribution that, while still capable of handling a non-skewed 

distribution such, can capture skewness as well.  As such, for the given data set in Eq. 

(5.4), a Beta distribution of the form shown in Eq. (5.8) can be assumed.  
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 The a and b parameters in Eq. (5.8) represent the lower and upper bound for the 

distribution.  As such, given a reasonably well populated data set (n > 1,000), a and b 

can be defined as shown in Eq. (5.9) and (5.10). 
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 Given two parameter values, the other two parameters can be estimated using 

the Method of Moments as shown in Eqs. (5.11) and (5.12). 
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where: 

 





n

i

iy
n

y
1

1
                                                           (5.13) 

2

1

2 )(
1




n

i

iy
n

s                                                       (5.14) 

 

 

 

 

 



73 
 

5.1.2 Analytical Methods 

 

As mentioned in Section 5.1, calculating the probabilistic response of a system to 

uncertain parameters is very sensitive to the number of uncertain parameters that are 

input into the problem.  In a subset of the uncertainty quantification field-- reliability--

the metric of interest is the probability of failure (Pf) of a system, where failure is 

defined as the violation of a particular set of constraints, as mentioned in Section 5.1.1.   

The evaluation of this probability of failure is paramount to the quantification of the 

uncertainty present in the modeling problem.  To determine the probability of failure, a 

limit state function g(x) is first defined where a value of g(x) less than zero indicates a 

failure of the design.  Using Eq. (5.15) the probability of failure of the system can be 

evaluated through the n-dimensional integration of the joint PDF of all uncertain 

variables,             . 
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Evaluation of the integral shown in Eq. (5.15) is difficult in most modeling 

problems as there is no closed-form expression available for the joint-pdf of all n 

variables, fx(x1,..,xn), or the limit state function gx(x).  As such, most analytical methods 

will concentrate upon representing the limit state function through some sort of 

surrogate expression, and use that surrogate to evaluate the probability of failure for 

the system.  This, however, will only provide the probability of failure and not a 

probability distribution function of any output parameters.  To remedy this, additional 

methods exist to evaluate an expression for fx(x) in closed form to provide a distribution 
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of an output parameter of interest, fy(y) where y = f(x).  These methods each quantify 

the system response in different ways to produce varying levels of accuracy with 

different levels of computational effort (65).  These methods will be introduced in this 

section and their relative merit and applicability within a complete uncertainty 

quantification framework will be discussed. 

 

FORM and SORM 

 

As mentioned before, many analytical methods attempt to approximate the limit 

state function g(x) so that closed-form evaluation of Eq. (5.15) is possible.  The First 

Order Reliability Method (FORM) and Second Order Reliability Method (SORM) 

approximate this function through the use of first- and second-order Taylor series 

respectively (66).  For FORM, this approximation is represented by Eq. (5.16) where gx(x) 

is the limit-state to be approximated, n is the number of variables in the problem, and ci 

are a set of constants to be solved for. 
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The SORM method utilizes a similar approximation to Eq. (5.16), but with a 

quadratic term included as well.  The question then becomes what values of the design 

variable vector should this approximation be formed around.  In reliability analysis, the 

safety-index approach is used to find the most probable point (MPP) of failure, and this 

point is used as the basis point for the approximation of the limit-state function.  In 

general terms, any such point could be used to form the approximation around, but 
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with the possibility of increased error due to the linear or quadratic nature of the 

approximation.  In addition, different approximation methods can be used to form a 

surrogate for either the joint pdf or the limit state function. 

 

After constructing an approximation of the limit-state function, the n-

dimensional integral shown in Eq. (5.15) can then be evaluated to solve for the 

probability of failure.  This provides a numeric value for the probability that the output 

of the system violates any of the set constraints, much in a similar way as the sampling 

methods.  However, these methods are unable to provide a distribution of the output 

parameter of interest, but instead, only the probability that it falls above or below a 

prescribed value in the design space. 

 

 

Fast Fourier Transforms (FFT): 

 

Another method for the quantification of the uncertainty in an engineering 

modeling problem, and more specifically, the estimation of the probability of failure, is 

to compute and evaluate the cumulative distribution function of the limit-state function 

(or in the case of simple uncertainty quantification, the CDF of the joint probability 

distribution function).  Similar to the joint pdf, though, this evaluation is often 

unavailable in closed-form, and can be very costly to compute.  However, the Fast 

Fourier Transform (FFT) technique has been developed for an efficient evaluation of the 

reliability of a system by solving the convolution integral to estimate the limit-state 
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function of the problem.  The applicability of this approach to engineering problems has 

been demonstrated in the literature for both structural reliability estimates (67) and 

numerical simulations schemes (68). 

 

 The Fast Fourier Transform technique first requires that the output of interest be 

approximated as a linear combination of intervening variables, as shown in Eq. (5.17).  

ny zzzyf  ...)( 21                                   (5.17) 

 In Eq. (5.17), y is the output response of interest, a function of variables {x1 – xn} 

and zi is an intervening variable defined to make the function approximation a linear 

combination of these variables.  The intervening variables are functions of the original 

variables x, where x→{x1 – xn}.   The approximation of the function can take many forms 

ranging from a simple Taylor Series expansion to multi-point approximations such as 

response surface approximations or Two-Point Nonlinear Approximations (TANA).  The 

accuracy of the Fast Fourier Transform is a function of how accurately these 

approximations of the output response of interest estimate the actual response of the 

model.  In this work, weighted Stack Response Surface Methodology (w-StackRSM) 

discussed in Section 3.2 was utilized to approximate the output response subject to the 

uncertain input parameters.  This approach was selected due to its relative efficiency 

and accuracy, the fact that it does not require gradients for the approximation, which 

are not analytically available in the simulation being used in this work, and the fact that 

the form of the surrogate is easily tailorable to exclude the interaction terms.  As the 
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approximation for the output response must remain a linear combination of the 

intervening variables for the Fast Fourier Transform technique, interaction terms in a 

surrogate model could not be considered in the approximation.  

 

 After a linear approximation of the output value of interest is obtained, the 

probability distribution of the intervening variables must be obtained.  Using the Chain 

Rule, the distributions of the intervening variables zi can be obtained as shown in Eq. 

(5.18) where zi = f(xj).  
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As fy(y) is now a linear function of the intervening variables, its distribution can 

be solved for by the convolution of the intervening variables, as shown in Eq. (5.19). 
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 The convolution shown in Eq. (5.19) can be solved for by first applying a Fast 

Fourier Transform to both sides of the equation, as shown in Eq. (5.20).   
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 Using the properties of Fourier Transforms, FFT[fy(y)] can be solved for as the 

product of the FFTs of each of the intervening variables.  After performing the product 

shown in Eq. (5.20), the distribution of fy(y) can be obtained by taking the inverse 
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Fourier Transform of FFT[fy(y)]. In this work, the inverse Fourier Transform is done 

numerically, resulting in a discrete set of nint values and probabilities.  Using discrete 

statistics, the first and second moments of the data can be estimated as shown in Eqs. 

(5.21) and (5.22): 
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As such, a number distribution can be selected to fit the data to, as discussed in 

Section 5.1.1.  In this work, two distributions were selected for demonstration--Gaussian 

and Beta distributions. 

 

5.2. Model-Form Uncertainty Quantification 

Many methods in the literature that quantify model-form uncertainty require 

the presence of experimental data points to quantify predictive uncertainty as well.  An 

example of this is Bayesian Model Averaging (69), which will be discussed in further 

detail in Section 5.3, that uses the experimental data to develop maximum likelihood 

estimates for each of the models—quantifying the predictive uncertainty--and to 

approximate model probabilities using Bayes Theory—quantifying model-form 

uncertainty.  However, this methodology is not applicable in its current form to 

problems without experimental data available.  Many other methods in the literature 
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are also not applicable due to similar conflicts. The methods of Continuous Model 

Expansion explored by Drapert showed a reliance on experimental data points, as well 

as difficulty in handling asymmetric distributions of parametric uncertainties (70).  

Likewise, work done recently by Allaire and Willcox requires a maximum entropy 

representation of the modeling uncertainty, an extra step that could be cost-intensive 

for a high simulation-cost model (71).  The common thread among these methods is 

that they use experimental data to quantify the model-form uncertainty and identify the 

best models.  However, in the absence of experimental data, other metrics must be 

utilized to quantify this uncertainty. 

 

5.2.1. Adjustment Factors Approach: 

 The adjustment factors approach was first demonstrated by Mosleh and 

Apostolakis as a method to utilize expert opinions in the absence of experimental data 

to quantify model-form uncertainty using an adaptation of Bayes' Theorem (72).  The 

adjustment factors approach modifies the result of the best model—the model with the 

highest model probability among the model set being considered—by an adjustment 

factor to account for the uncertainty that exists in the selection of the best model: 

model-form uncertainty.  The applicability of this approach to engineering problems has 

been demonstrated in the literature.  Zio and Apostolakis used an adjustment factors 

approach to quantify the uncertainty in the selection of radioactive waste repository 
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models (73).  In addition, Reinert and Apostolakis included an adjustment factors 

approach in the assessment of risk for decision-making processes (74). 

 

 Two derivatives of the adjustment factors approach exist in the literature.  The 

derivations of the approaches employ the similar technique of quantifying the model-

form uncertainty through the use of expert opinions regarding each individual model's 

accuracy relative to the other models.  This is done through the assigning of model 

probabilities to each of the models, most commonly based upon expert opinions 

regarding the relative merit and accuracy of each individual model.  In this approach, 

Pr(Mi) represents the probability of model i.  By definition, this is the probability that 

model i is the best model among the model set being considered: M = {M1,M2,…,MN}. 

 

 The model probabilities for each of the N individual models within the model set 

M remain bounded by the laws of probability theory.  Thus, constraints are applied to 

the model probability values, as shown in Eq. (5.23). 

1)Pr(
1




N

i

iM          such that          1)Pr(0  iM       (5.23) 

 Where the various derivations of the adjustment factor approach differ is with 

the form of the factor that is used to adjust the "best" model--specifically the 

distribution assigned to the factor.  In the additive adjustment factors approach, the 

adjusted model, y, is formed by adding an additive adjustment factor, 
*

aE , to the best 

model in the model set being considered, as shown in Eq. (5.24). 
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**

aEyy                     (5.24) 

 The response of the best model, y*, is simply defined as the prediction of the 

model with the highest model probability.  The additive adjustment factor, 
*

aE , is 

assumed to be a normally distributed factor that represents the uncertainty in the 

selection of the most accurate model, the model-form uncertainty in the problem.  By 

assuming a Gaussian form to this factor, the first and second moments of the additive 

adjustment factor can be calculated as shown in Eqs. (5.25)-(5.26). 





N

i

iia yyMEE
1

** ))(Pr(][                    (5.25) 



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iia yEyMEVar
1

2* ])[)(Pr(][            (5.26) 

 Where yi the prediction of model i. By definition, the models considered in the 

traditional formulation of the adjustment factors approach are assumed to be 

deterministic.  As such, the expected value of the adjustment model, denoted as E(y), 

can be calculated as shown to be the sum of the best models result and the expected 

value of the additive adjustment factor, as shown in Eq. (5.27). 

][][ **

aEEyyE                           (5.27) 

 Similarly, as each individual model is deterministic, the variance of the adjusted 

model y can be said to be equal to the variance of the additive adjustment factor, as 

shown in Eq. (5.28). 

][][ *

aEVaryVar              (5.28) 
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 The first and second moments shown in Eqs. (5.27)-(5.28) now fully define a 

normally distributed adjusted model, y, that represents the uncertainty in the 

calculation of an output value as a result of model-form uncertainty.  There exist 

additional derivations of the adjustment factors approach in the literature for different 

assumptions regarding the distribution of the adjustment factor itself (72).  In the 

multiplicative adjustment factors approach, the adjustment factor   
  is assumed to be 

a lognormal random variable, as opposed to the normality assumption that was applied 

to the adjustment factor,   
 , in the additive adjustment factors approach.  Thus, the 

adjusted model for the multiplicative is shown in Eq. (5.29). 

** * mm Eyy                                                             (5.29) 

 Similar to the derivation of the additive adjustment factor, the multiplicative 

adjustment factors approach first calculates the first and second moments of the 

multiplicative adjustment factor,   
 , as shown in Eqs. (5.30) and (5.31). 

       *
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                                 (5.30) 
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                              (5.31) 

 The key differences between the Eqs. (5.25)-(5.26) and Eqs. (5.30)-(5.31) are that 

in the multiplicative adjustment factors approach, that the model outputs are 

lognormally transformed before calculating their moments, to account for the 

lognormal assumption regarding the adjusted model.  The model probabilities in Eqs. 

(5.30) and (5.31), are assigned with the same constraints that are set upon the additive 
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adjustment factors approach.  Once the expected value of the multiplicative adjustment 

factor is known (Eq. (5.30)), the expected value of the adjusted model,   , can be found 

using Eq. (5.32) as the sum of the lognormally transformed best model result and 

multiplicative adjustment factor. 

       ** lnlnln mm EEyyE                                        (5.32) 

 Finally, similar to the additive adjustment factors approach, the variance of the 

adjusted model,   , can be shown to be equal to the variance of the multiplicative 

adjustment factor (Eq. (5.33)). 

     *lnln mm EVaryVar                                              (5.33) 

 However, in the absence of any data suggesting else wise, a normally distributed 

adjustment factor is used in this research. 

 

 While the traditional adjustment factors approaches are capable of quantifying 

model-form uncertainty without experimental data points, they are incapable, in the 

presented form, of quantifying or even handling parametric uncertainties within each of 

the individual models.  This incapability is due to the assumption made in the derivation 

that each of the individual models in the adjustment factors approach be deterministic.  

However, if the adjustment factors approach shown above was to be re-derived with 

the assumption that each individual model be stochastic in nature with an assigned 

form, the approach could be adapted to handle parametric uncertainty. 
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5.2.2. Probabilistic Adjustment Factors Approach: 

 The probabilistic adjustment factors approach is an adaptation of the traditional 

adjustment factors approach derived to handle stochastic models.  While this approach 

does not quantify the parametric uncertainty within each model, it can stochastic 

models provided that the output quantity of interest in the models is represented 

through a probability density function.  In the probabilistic adjustment factors approach, 

similar to the traditional adjustment factors approach, a distribution is assumed for each 

of the individual models, as well as the adjustment factor itself.  In general, there are no 

restrictions on the form of this distribution other than that it be defined.  However, 

similar to the additive adjustment factors approach detailed before, each of the 

individual models will initially be assumed to be normally distributed, as shown in Eq. 

(5.34). 

Ninormyf iiiy ...1),()( 2

,             (5.34) 

 Model probabilities are then applied to each of the models shown in Eq. (5.34) 

such that the constraints in Eq. (5.23) are still satisfied, identical to the methods used in 

the traditional adjustment factors approaches.  The adjusted model for the probabilistic 

adjustment factors approach can then be computed as shown in Eq. (5.35). 

** ][ aEyEy                          (5.35) 

 Eq. (5.35) is similar to Eq. (5.25) with the exception that since each model, 

including the best model y* is stochastic, that the expected value of y* is what is 

operated on rather than the deterministic model result.  Calculating the first and second 
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moments of the additive adjustment factor *

aE  is also slightly different for this new 

approach, as the approach had to be re-derived to handle the stochastic model set.  The 

calculation of these two moments can be seen in Eqs. (5.36)-(5.37). 
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              (5.37) 

 After calculating the first and second moments of the additive adjustment factor, 

the expected value and variance of the adjusted model can then be calculated as shown 

in Eqs. (5.38) and (5.39). 

][][][ **

aEEyEyE                  (5.38) 
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 While the representation for the expected value of the adjusted model remains 

relatively unchanged from the traditional to the probabilistic adjustment factors 

approach, there is a noticeable difference in the formulation of the equation for the 

variance of the model.  The variance computed in Eq. (5.39) is shown to be a sum of two 

terms.  The first term represents the variance in the adjusted model that is due to the 

variance between each of the individual models--between-model variance--which arises 

as a result of the different assumptions that are used within each model.  The second 

term in the equation represents the variance in the adjusted model due to variances 

within each of the individual models--the within-model variance.  As such, the first term 
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in Eq. (5.39) can be thought of as representing the model-form uncertainty within the 

problem while the second term represents the parametric uncertainties inherent to 

each of the individual models. 

 

 The above approach was derived with the assumption that the parametric 

uncertainty within each individual model be represented by a Gaussian distribution.  

However, as mentioned, the approach can be applied to any number of predefined 

distributions for outputs of the models.  To demonstrate an additional, more robust 

distribution, and to broaden the scope of output responses that can be represented, the 

probabilistic adjustment factors approach was also derived for models with a Beta 

distribution in the following. 

   

 Similar to the assumption with Gaussian models, it is first assumed that the 

distribution of the output response of interest for each individual model can be 

represented with a Beta distribution as shown in Eq. (5.40). 

Nibabetayf iiiiiy ...1),,,()(,          (5.40) 

 The adjusted model can then be developed by adding a parameter with a beta 

distribution,
*

E , to the expected value of the best model y* as shown in Eq. (5.41).  

**][ EyEy 
                       (5.41) 

 While the Gaussian form demonstrated before only requires two parameters to 

be estimated, the beta-distributed form requires the estimation of four parameters.  
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However, due to the definition of the a and b parameters as the upper and lower 

bounds to the distribution, the limit parameters of the adjusted model y can be 

computed as the  weighted values of the individual model bounds, as shown in Eqs. 

(5.42) and (5.43). 
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             (5.43) 

 As two parameters are already defined in the adjusted model y, only two 

moments of the model are then needed to estimate the two shape parameters in the 

adjustment model, α and β.  Thus, the same approach that was used to derive the 

moments for the Gaussian form can be used for the beta form.  The derivation of these 

two moments is shown in Eqs. (5.44) and (5.45) where the calculation of the first and 

second moments of the adjustment factor are shown in Eqs. (5.46) and (5.47). 
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 After obtaining the first and second moments of the adjusted model y using the 

probabilistic adjustment factors approach, the two remaining parameters to define the 



88 
 

adjusted model, α and β , must be determined.  Using the Method of Moments, the 

shape parameters of any Beta distribution can be approximated from the first and 

second statistical moments of the distribution, as shown in Eqs. (5.48) and (5.49). 
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 As such, the four parameters of the adjusted model y are defined by Eqs. (5.42)-

(5.43) and Eqs. (5.48)-(5.49). 

 

 The probabilistic adjustment factors approach provides a method that—given 

the parametric uncertainty within each model is first quantified and represented as a 

pdf of some output response of interest—can quantify both the parametric and model-

form uncertainties in the estimation of a particular output response of interest.  As such, 

a parametric uncertainty quantification method that is capable of producing a pdf 

representation of an output parameter of interest must be coupled with the 

probabilistic adjustment factors approach to quantify both forms of uncertainty.  In this 

work, the Fast Fourier Transform approach detailed in Section 5.1.2 is utilized to 

quantify the parametric uncertainty.  The FFT implementation requires a surrogate 
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model of the output response of interest.  For this work, the weighted Stack Response 

Surface Method that was discussed in Section 3.2 was utilized. 

 

 The traditional and probabilistic adjustment factors approaches discussed thus 

far provide robust methodologies for the quantification of the model-form uncertainties 

given model probabilities, primarily elicited through expert opinion.  As these model 

probabilities are an integral part of the model-form UQ process, great care must be 

given to ensure that they do not falsely represent the data.  Model probabilities can only 

be refined through the introduction of additional data.  This data can either take the 

form of additional expert opinion—which still suffers from the infallibility associated 

with the initial model probability predictions—or addition experimental data introduced 

into the problem.  As mentioned prior, obtaining experimental data points can be a 

cost-intensive and even restrictive process, especially early the in the design stage 

where multiple configurations of parameters are being evaluated in quick succession. 

Thus, it would be beneficial to know the sensitivity of the adjusted model to the 

individual model probabilities.  In this regard, two primary pieces of information could 

be obtained: 

 

1. By looking at the sensitivity of the adjusted model to the model probability set as a 

whole, it could be determined what the effect of introducing additional data into the 

problem—for the purpose of refining the individual model probabilities—would have on 
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the overall variance in the prediction of the output response of interest given by the 

adjusted model. 

 

2. On another level, determining the sensitivity of the adjusted model response to each 

individual model probability would provide an estimate of the individual models within 

the model set that contribute most significantly to the overall variance in the adjusted 

model.  As such, if additional data was unable to be obtained, the models with the 

highest sensitivity would indicate the models that, if refined or improved, would have 

the greatest effect of the overall variance in the adjusted model. 

 

 To estimate the sensitivities listed above, the Modified Adjustment Factors 

Approach was developed in this work. 

 

 

5.2.3. Modified Adjustment Factors Approach: 

 The model probabilities,       , assigned to each model are initially based on 

expert opinion, or an incomplete set of preliminary data, which introduces an additional 

layer of uncertainty into the output distribution, y.  As such, it would be beneficial to 

know the sensitivity of the adjusted model’s response to the model probability set as a 

whole, as a high sensitivity would denote the potential for a reduction in model-form 

uncertainty through the introduction of additional data into the problem.  To 
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approximate this sensitivity, first the values for each the model probabilities,       , 

are treated as uncertain variables with a defined normal distribution (Eq. 5.50): 

      NiMnormM iii ,...,1),)(Pr()Pr( 2

exp                         (5.50) 

where           represents the original model probability based on the expert opinion 

and    is the standard deviation applied to the model probability distributions as defined 

in Eq. (5.51).  

  
exp

Pr*25.0,05.0min ii M                                           (5.51) 

 The variance defined in Eq. (5.51) is developed as an artificial metric to explore 

the design space with respect to the model probabilities.  As a result of the definition in 

Eq. (5.50), there are now distributions of model probabilities for each of the N models.  

These model probability distributions are then independently sampled using Monte 

Carlo Sampling to obtain a set model probability values.  Before these sampled values 

are used, though, they must be renormalized to maintain the constraints set forth in Eq. 

(5.23).  After normalization, the sampled values are then used in a adjustment factors 

approach, either traditional or probabilistic, to obtain a modified adjusted model, 

referred to as     
 

 .  This process of sampling the model probability distributions is then 

repeated p times, resulting in a set of adjusted models: {    
      

       
 }, with each 

adjusted model representing the result of a different set of model probabilities.  These 

individual adjusted models are then sampled using Markov Chain Monte Carlo Sampling 

and m samples.  Using the m samples of the j adjusted models, a new aggregate 
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adjusted model,      , can then be constructed by fitting the data set to the same 

distribution defined in the adjustment factors approach, as shown in Section 5.1.1. 

 

 After completing the Modified Adjustment Factors Approach, two adjusted 

models now exist that represent the model-form uncertainty in the problem of interest: 

y, which uses the deterministic model probability values obtained from expert opinions 

and     , which represents the potential variance in the prediction of the adjusted 

model as a result of perturbations of       .  A metric must now be implemented that 

measures the similarity of the two models.  The Bhattacharyya distance is a metric 

developed to measure the geometric similarity between two distinct distributions (Eq. 

5.52) (75).   
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 In Eq. (5.52),    
    and    

    represent the distributions of the two models of 

interest, y and       respectively.  The Bhattacharyya distance is a bounded value 

between 0 and 1 where a value of 1 implies that the two models of interest are 

identically distributed.  As such, a value of the Bhattacharyya distance close to 1 implies 

a greater similarity between the two models being considered whereas a lower value 

implies that there is a greater variance between the models.  Thus, for the given 

problem, a critical value for the Bhattacharyya number can be defined.  This critical 

value is a function of the cost of obtaining additional data.  For problems where 

additional data is at a high cost, one would want to ensure that introducing additional 
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data would result in a significant reduction in the variance of the adjusted model, 

meaning that the critical value for the Bhattacharyya number would be lower.  

However, a value for the Bhattacharyya number less than the critical value would 

indicate that, should additional data be introduced into the problem and used to update 

the model probabilities, that the variance in the output response predicted by the 

adjusted model can be significantly reduced.  While the opportunity for reduction in 

model-form uncertainty is indicated by this approach, it cannot guarantee a reduction.  

In cases where all models were inaccurate with respect to the true physical scenario, the 

model-form uncertainty might actually be increased due to the discrepancy  

 

 While the approach detailed above identifies whether or not a significant 

reduction of variance in the adjusted model could theoretically be obtained through the 

introduction of additional data, it does not identify the models that contribute most 

significantly to the variance in the adjusted model.  To identify the contribution of each 

model to the overall variance, the approach detailed above can be modified slightly.  

Instead of treating each of the N model probabilities as being stochastic in nature, as 

shown in Eq. (5.50), each model probability is considered individually while holding the 

other N-1 model probabilities to be held constant at their prior model probability 

values.  The rest of the approach is followed as before, resulting in a Bhattacharyya 

number for each of the N individual models.  Now, instead of comparing the value of the 

Bhattacharyya number to a defined threshold value, they are compared relative to one 

another, analogous to sensitivities.  The models with the highest Bhattacharyya number, 
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i.e. greatest sensitivity, is thus identified as the model that contributes most significantly 

to the variation in the output response predicted through the adjusted model.  As such, 

if additional data was unable to be obtained, that the models with the highest 

sensitivities can be identified as models to refine for potential reduction in the overall 

variance of the adjusted model.   

 

 

5.3. Predictive Uncertainty Quantification 

 The quantification of predictive uncertainty is commonly associated with the 

field of model validation and verification (V&V).  Oberkampf and Roy provided an in-

depth overview of methods used both in academic and in industry for V&V approaches 

(76).  These approaches are generally intrusive methods that adjust and change model 

parameters and formulations to better match the experimental data points provided to 

the system.  There are two primary problems with this approach in regards to this work: 

 

1. The methods discussed in Oberkampf and Roy assume access to the source code of 

every model considered in the analysis, which is not available in many cases, such as 

those explored in Chapter 8.  As such, in situations where direct access to the source 

code is not available—such as “black-box” models where only the input parameters and 

output responses are known—only non-intrusive methods can be considered.  This 

results in a situation in that the predictive uncertainty can only be quantified, not 
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necessarily reduced, and to reduce to the predictive uncertainty would require a change 

of the model itself. 

 

2. Validating a model against a set of experimental data points is analogous to fitting a 

curve to a set of data points in that it will guarantee good performance of the model at 

and near the design points used in the validation process, but provides no guarantee of 

the performance outside of those regions.  As it is impossible to validate models with all 

possible permutations of designs, there exists an unknown predictive uncertainty 

associated with each model and each design point that should be quantified to obtain 

an accurate estimate of the complete uncertainty in the model itself. 

 

 As such, for the problems of interest in this work, it is not the goal to minimize 

the predictive uncertainty associated with the model—which would require an intrusive 

approach.  Instead, it is the goal to merely quantify the predictive uncertainty of the 

model, which allows the use of non-intrusive approaches.  This work categorizes non-

intrusive methods into two general categories: Bayesian approaches and artificial 

uncertainty approaches.  Artificial uncertainty approaches, in general, aim to induce a 

greater level of uncertainty in the response of a model as a function of observed data 

points, analogous to a correction factor of sorts.  This artificial uncertainty is different 

from that used in prior model-form uncertainty approaches such as the adjustment 

factors approach in that instead of representing the uncertainty associated with the 

selection of the “best” model, this factor represents the predictive uncertainty 
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associated with a particular model.  In applications to aerospace design, this approach 

has most often been seen with respect to surrogate models.  Papila and Haftka used a 

noise function derived from the residual errors of points within surrogate models used 

in the design of the High-Speed Civilian Transport (HSCT) to represent the predictive 

uncertainty associated with a particular model of interest (77).  This work was expanded 

upon by Hosder et.al to include variable complexity modeling into the construction of 

the artificial factor for HCST surrogates (78).  Much work in the field of artificial 

predictive uncertainty representation has concentrated on quantifying the predictive 

uncertainty associated with the surrogate models, which could be extrapolated to black-

box models, but was not developed with such models in mind.  

 

 As opposed to artificial predictive uncertainty representations, work done using 

Bayesian approaches for the quantification of predictive uncertainty in engineering 

problems has been more plentiful.  Zhang and Mahadevan have shown for multiple 

problems the use of Bayesian networks to update the stochastic response of a model of 

interest, given experimental data points, for both full scale experiments (79) and lower-

order experimental data (80).  Rebba et.al later expanded on this methodology to use 

Bayesian networks for error estimates by isolating the source of the predictive error to 

input data error, discretization error, output measurement error, and model-form error, 

but for an intrusive model (81).   Bayesian networks have been shown to be a robust 

technique for quantifying this error; and for cases where intrusive models are available, 

at isolating its sources as well.  As these approaches quantify the predictive uncertainty, 
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as well as are capable of handling parametric uncertainties, all which is left is to couple 

them with an approach to handle model-form uncertainty. One such approach for 

coupling the Bayesian network approach to quantifying predictive uncertainties with a 

model integration technique to quantify model-form uncertainties is Bayesian Model 

Averaging.  

 

 

5.3.1. Bayesian Model Averaging: 

  Bayesian Model Averaging (BMA) is a methodology that quantifies both the 

model-form uncertainty addressed in Section 5.2, as well as the predictive uncertainty 

associate with each model.  This approach was first proposed in theory by Leamer in 

1978 (69).  Since then, it has gone through minor changes in both the way that the data 

points are used to calculate posterior model distributions (i.e. quantify predictive 

uncertainty) and update model probabilities (i.e. quantify model-form uncertainty).  

BMA is a broad approach with numerous applications.  The approach that is adapted in 

this work begins with the introduction of an empirical data set D = {d1,…,dm} to the 

problem of interest (normally considered a set of experimental data points), and then 

consists of two primary steps: 

 

1. Update the individual model predictions to include the predictive uncertainty associated 

with each models prediction of the points included in the data set D using a Maximum 

Likelihood Estimate. 
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2. Update the model probabilities by means of the model likelihoods evaluated given the 

data set D using Bayes Theorem and a Maximum Likelihood Estimate for the model 

likelihoods. 

 

 The adjusted model Pr(y|D) can then be shown to be the product of each of the 

N models’ predictive distribution             and posterior model probability 

         , as shown in Eq. (5.53). 
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Updating Model Predictions: 

 Initially, each model in the model set M={M1,M2,…,MN} is assumed to be either 

deterministic or stochastic with respect to only parametric uncertainties.  It is then 

necessary to account for the predictive uncertainty associated with each particular 

model in the model set.  This is done by modifying the result of a particular model at a 

set of parameters Xk, denoted fi(Xk), as shown in Eq. (5.54). 

kk ikii Xfy  )(                                 (5.54) 

 Where yik represents the prediction of model i at parameter set Xk and εik is the 

value of the random error term for model i at that parameter set.   εik is assumed to be 

an independent and identically distributed normal random variable, as shown in Eq. 

(5.55).   
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 In Eq. (5.55), the random error term is assumed to have a mean value of 0 to 

represent an unbiased model response.  The predictive uncertainty is assumed to be 

represented by the variance term in Eq. (5.55),   
 .  If model i is deterministic, then the 

predictive distribution of the output response y made by model i can be shown in Eq. 

(5.56). 

)),((),|Pr( 2

ikii XfNormDMy                              (5.56) 

 However, if model i is stochastic, then the predictive distribution must be 

computed using Eq. (5.57). 

iikiiii dDMXyMDMy
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),,,|Pr()|Pr(),|Pr(              (5.57) 

 In Eq. (5.57),            is a joint pdf of the uncertainties in random parameter 

set θi and                   is the predictive distribution of response y estimated by 

model i with random parameter set θi.  A closed form expression for                

cannot be obtained and instead must be approximated using an approach such as the 

Fast Fourier Transform approach detailed earlier in Section 5.1.2. 

 

 Looking back at the case shown in Eq. (5.56), if model i is deterministic, the 

predictive uncertainty can easily be estimated through the representation shown above, 

provided that the variance term,   
 , can be solved for analytically.  This is done using a 

Maximum Likelihood Estimate which determines the value of   
  that maximizes the 

likelihood of observing the data set D in the model prediction,          (8).  To do this, it 
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is first assumed that each of the data points in the observed data set are independent of 

each other, allowing the representation of           shown in Eq. (5.58). 


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
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ikimi dddMD
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1 )|Pr()|,...,Pr()|Pr(                    (5.58) 

 As it is assumed that the distribution of y can be represented, in general, by Eq. 

(5.56), the distributions            shown in Eq. (5.58) can be represented as a function 

of    as shown in Eq. (5.59). 










 


2

2

2 2

))((
exp

2

1
)|Pr(

i

kik

i

ik

Xfd
d


                    (5.59) 

 Substituting the expression for             shown in Eq. (5.59) into Eq. (5.58) 

yields:  
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 Because the above equation is considered to be a function of only one variable, 

  
 , the maximum likelihood value of the variable of interest can be solved by 

differentiating the logarithm of the likelihood function,          , and setting it equal 

to 0, which yields: 
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 Eq. (5.59) provides the maximum likelihood estimator for the variance in Eq. 

(5.54) which is shown to be a function of only the observed data points dk and the 

model predictions of the data points, fi(Xk). 

 

Updating Model Probabilities: 

 Bayesian Model Averaging usually assumes equal probability among all models, 

providing an unbiased initial estimator (Eq. (5.62)).  This approach stand in contrast to 

the prior adjustment factor approaches which used potentially biased expert opinion to 

assign the model probabilities.  The reason a Bayesian approach is applied here is that in 

the prior adjustment factor case, additional data was unavailable to use to update the 

probability predictions while in this case, the data set will be used to update the 

unbiased model probability predictions. 

N
M i

1
)Pr(                                      (5.62) 

 By introducing the data set D into the problem, Bayes’ Theorem can be applied 

and the posterior model probabilities given data set D can be solved for each model 

using Eq. (5.63), which is a direct interpretation of Bayes Theorem. 
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 In Eq. (5.63),          represents the probability of model    prior to the 

observation of experimental data, as defined by Eq. (5.62), and           represents the 
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likelihood of model    given an experimental data set, D, the derivation of which was 

shown in prior section in Eq. (5.60). 

 

The model probability updating process is then repeated for each of the 

additional data points to provide updated model probabilities for the Bayesian Model 

Averaging Approach.  These posterior model probabilities can then be combined with 

the posterior predictive distributions defined in Eq. (5.56) or (5.57), depending upon the 

presence or absence of parametric uncertainties, to construct the distribution of the 

adjusted model y. 

 

Retaining every model in the Bayesian Model Averaging approach can become 

burdensome and cost restrictive when used in the design process.  As such, metrics exist 

to mathematically eliminate models from consideration when they are deemed to have 

minimal effect upon the adjusted model y.  To determine models eligible for elimination 

from consideration, a Bayes’ Factor Bi is defined for each model as a function of the 

models’ posterior model probabilities (Eq. (5.64)).  

)|Pr(

,...,1)]|max[Pr(

DM

NiDM
B

i

i
i


                       (5.64) 

The Bayes’ Factor represents the potential impact that a particular model would 

have on the adjusted model’s estimate of the output response.  A model with a large 

Bayes factor, such as a value of 100, would be considered to have a negligible effect on 

the adjusted model, regardless of its divergence from the “best” model in the model set.  
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As such, a critical Bayes’ Factor can be defined in the analysis approach where models 

that have Bayes’ Factors that rise above that number can be eliminated from 

consideration without a significant effect on the adjusted model itself.  The critical 

Bayes’ Factor value would be defined as a function of the relative cost of running a 

particular model in the model set.  As such, if the cost of evaluating a model is low, a 

higher critical Bayes’ Factor could be used than if the computational cost associated 

with the models was significant.  In this work, a critical Bayes’ Factor of 10 will be used 

for all problems. 

 

The applicability of Bayesian Model Averaging approaches have been shown for 

multiple problems in the literature.  Draper proposed a standard Bayesian solution to 

the problem of fitting general mathematic models to structural uncertainties for 

Continuous Model Expansion (82).  Hoeting later published a baseline methodology for 

the development of posterior distributions for Bayesian Model Averaging approaches 

which was the basis used in the development of this section (83).  Wasserman later 

reviewed the methods in the literature for the evaluation of posteriors looking at both 

their relative accuracies and efficiencies (84).  Droguett and Mosleh   developed an 

approach to handle different forms of data to be input into the Bayesian methodology, 

such as single points, interval bounds, probability density functions, and qualitative 

inputs (51).  Concurrently, Ando developed a Bayesian predictive criteria as a function of 

each model’s posterior model probability for the purpose of down-selecting from a large 

model set to a smaller (85).  Vrugt et.al later proposed using Markov Chain Monte Carlo 
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sampling to evaluate the posterior distributions under uncertain variables (Eq. (5.57)) 

(86). 

 

 Only recently, though, have Bayesian Model Averaging approaches been applied 

to aerospace engineering problems.  Park et.al also developed a Bayesian approach to 

quantify the model-form and predictive uncertainty among the difference among 

multiple material models and experimental data sets in the simulation of laser peening 

of an aircraft lug (8).  Riley and Grandhi quantified the model-form and predictive 

uncertainty in the calculation of the flutter velocity of the AGARD 445.6 wing using 

Bayesian Model Averaging (9).  Swiler et.al also championed the potential of Bayesian 

Model Averaging for handling model-form uncertainty in aerospace application, but 

stopped short of demonstrating its applicability (87).   

 

In this work, the Bayesian Model Averaging approach is adapted and 

implemented in situations where experimental data is available to allow for 

quantification of model-form, predictive, and parametric (if applicable) uncertainties.  

This methodology provides an approach for the complete quantification of uncertainties 

in the presence of full available data—parametric uncertainty representations, multiple 

models, and experimental data.  In the absence of this full available data, the 

approaches detailed in the earlier sections of this chapter must be utilized to quantify 

the uncertainty from as many sources as possible given the available data.  Examples of 
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the applications of these approaches will be demonstrated in the following three 

chapters. 
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6. Spring-Mass Demonstration Problem 

 

 

 

 To demonstrate the application of some of the uncertainty quantification 

techniques discussed in Chapter 5, a simple nonlinear spring-mass system (shown in 

Figure 6.1) with model-form and parametric uncertainties will be considered and 

analyzed.  This problem was originally demonstrated as a benchmark problem for 

model-form uncertainty quantification by Park et.al (8), who drew upon the work of He 

to develop the problem (88). 

 

 

 

 

Figure 6.1: Single DOF Spring-Mass System 

 

 

6.1. Problem Definition: 

 The free vibration of the mass in the single degree of freedom system shown in 

Figure 6.1 can be described by the governing equation shown in Eq. (6.1). 

m 

f
 
(u) 
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0)(  ufum                                       (6.1) 

 Where m is the mass of the block, u is the displacement of the mass for the 

equilibrium point, and f(u) is the spring force, a nonlinear function of the displacement 

of the mass.   For different spring-mass systems, there are different models to represent 

the spring force functions, as shown in Eqs. (6.2)-(6.4) (88): 

3/1

1 )( uuf                                                  (6.2) 

3

2 )( buauuf                                          (6.3) 

2
3

1
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u

du
cuuf


                               (6.4) 

Where the constants applied to Eqs. (6.2)-(6.4) can be seen in Table 6.1: 

Table 6.1: Parameter Values 

Parameter Value 

ε 0.65 [N/cm1/3] 

a 1 [N/cm] 

b -0.35 [N/cm3] 

c 1 [N/cm] 

d -0.5 [N] 

 

Plotting the three forcing functions defined in Eqs. (6.2)-(6.4) with the 

parameters listed in Table 6.1 yields the three forces as a function of the displacement 

of the mass, shown in Figure 6.2. 
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Figure 6.2: Plot of Spring Forcing Functions 

 

 Given a set of initial conditions shown in Table 6.2, ODE solver can be used to 

solve for the natural frequency of the spring-mass system for each of the models.  The 

results of these analyses are shown in Table 6.3. 

Table 6.2: Initial Conditions 

Condition Value 

m 1 [kg] 

u(0) 1 [cm] 

u'(0) 0 [cm/s] 
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Table 6.3: Solution Results 

Model Frequency [rad/s] 

f1(x) 0.864 

f2(x) 0.859 

f3(x) 0.808 

 

 

6.2. Quantification of Model-Form Uncertainty: 

 Given the three different models shown in Eqs. (6.2)-(6.4), there exists a degree 

of model-form uncertainty in selecting the model that best captures the physics being 

modeled in the problem.  To quantify the model-form uncertainty in this problem, the 

Adjustment Factors Approach detailed in Section 5.2.1 will be utilized.  The first step in 

this approach is to assign model probabilities to the constitutive models of interest.  In 

the absence of any experimental data, this is done through the elicitation of expert 

opinions.  For this problem, the values of the model probabilities used in Park et.al will 

be used and are shown in Table 6.4 (8). 

 

Table 6.4: Model Probabilities 

Model P(Mi) 

f1(x) 0.30 

f2(x) 0.50 

f3(x) 0.20 
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After assigning the model probabilities as shown in Table 6.4, the appropriate 

form of the Adjustment Factors Approach must be applied.  In the absence of any 

information regarding the output distribution forms of the models within the model set, 

a Gaussian form will be assumed, and thus, the Additive Adjustment Factors Approach 

will be utilized.  The first step is to calculated the expected value of the adjustment 

factor   
  using Eq. (5.25), as shown in Eq. (6.5): 

)859.0808.0(2.0)859.0859.0(5.0)859.0864.0(3.0][ * aEE  

009.0][ * aEE                                             (6.5) 

 

 From this result, the expected value of the adjusted model can be calculated 

using Eq. (5.27): 

850.0009.0859.0][ yE                                 (6.6) 

 After calculating the expected value of the adjusted model, the variance of the 

adjustment factor can be solved for using Eq. (5.26): 

222* )850.0808.0(2.0)85.0859.0(5.0)85.0864.0(3.0][ aEVar  

021.0][ * aEVar                                                (6.7) 

Eq. (5.28) shows that due to the deterministic nature of each of the models, the 

adjusted model’s variance is equation to the adjustment factor’s variance, shown in Eq. 

(6.7).  As such, the adjusted model y can be shown in Eq. (6.8) and Figure 6.3. 

)021.0,850.0(Norm                                  (6.8) 
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Figure 6.3: Adjusted Model w/ Model-Form Uncertainty 

 

The distribution shown in Figure 6.3 represents the model-form uncertainty that 

exists in the estimation of the natural frequency of the system as a result of the multiple 

models that exist to represent its behavior and the inability of the designer to know with 

complete certainty the “best” model of the behavior among the models that are 

considered.  At this point in the design process, one of two questions might arise: 

 

1. How can the variance observed in the adjusted model be reduced? 

2. What model(s) contribute most significantly to the variance observed in the adjusted 

model? 
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The answer to the two questions posed above can be obtained through the use 

of the Modified Adjustment Factors Approach.  The Modified Adjustment Factors 

Approach, introduced in Section 5.2.2, has two stages to approximate the sensitivity of 

the adjusted model developed through an adjustment factors approach (Eq. (6.8)) to the 

individual model probabilities that were assigned in the problem (Table 6.4).  The first 

stage of the approach determines the sensitivity of the adjusted model to the model 

probability set as a whole.  The magnitude of this sensitivity is related to the 

Bhattacharyya number between the adjusted models using the traditional Adjustment 

Factors Approach and the Modified Adjustment Factors Approach (Table 6.5). 

 

Table 6.5: Modified Adjustment Factors Approach Results 

 
Mean [rad/s] Standard Dev. 

Additive AFA 0.8500 0.0208 

Modified AFA 0.8501 0.0209 

Model Disagreement 0.011% 0.481% 

Bhattacharyya Number: 0.99991 

 

 

It is observed in Table 6.5 that the adjusted models obtained through the 

additive Adjustment Factors Approach and the Modified Adjustment Factors Approach 

are very similar with a Bhattacharyya number greater than the threshold value of 0.99.  

This result indicates that the adjusted model shown in Eq. (6.8) is not particularly 
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sensitive to the model probabilities assigned in Table 6.4.  As such, even with the 

addition of new data to refine the model probability distributions, the expected 

decrease in variance would be minimal.  Of course, this statement is a relative 

statement, as in theory, it would be possible to reduce the model-form uncertainty to 0 

if one model were shown to match an infinite experimental data set with no associated 

experimental error.  However, in practice, one cannot obtain this result.  As such, in this 

problem, with the introduction of new data, a minimal decrease in the variance of the 

adjusted model is expected. 

 

While the first stage identified that the adjusted model is not particularly 

sensitive to the individual model probabilities assigned in the approach, the sensitivity 

of the adjusted models to the individual models themselves remains to be estimated.  

The Modified Adjustment Factors Approach approximates these sensitivities by 

individually redefining each model’s model probability stochastically, obtaining a 

Bhattacharyya Number for each model.  Relative to one another, the model with the 

lowest Bhattacharyya Number can then be seen to have the highest sensitivity to the 

adjusted model.  Running this approach on the problem of interest yields the results 

shown in Table 6.6. 
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Table 6.6: Modified Adjustment Factors Approach Results for Individual Models 

 
Mean [rad/s] SD Bhattacharyya No. 

Additive AFA 0.8500 0.0208 --- 

Modified AFA, f1(x) 0.8500 0.0211 0.99949 

Modified AFA, f2(x) 0.8499 0.0211 0.99946 

Modified AFA, f3(x) 0.8501 0.0209 0.99991 

 

 

Two features of the Bhattacharyya Numbers shown in Table 6.6 are of note.  The 

first feature is that all three Bhattacharyya Numbers are very high, close to 1.  This 

effect is the coupling of two measures: 

 

1. The sensitivity of the adjusted model to the model probability set as a whole was small 

(Table 6.5), implying that the sensitivity of the adjusted model to each individual model 

probability should remain relatively small. 

 

2. The sensitivity of the adjusted model to each model as a whole is relatively small, and 

similar among each of the three models considered. 
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Given the results in Table 6.6, it is apparent that, given the problem and 

available data, the model-form uncertainty cannot be reduced by a significant amount 

without the introduction of significant amounts of data or refinement of the models. 

 

6.3. Quantification of Parametric Uncertainty: 

 To demonstrate the potential of the methods developed in this work of handling 

uncertainties from multiple sources, uncertain input parameters are included in this 

analysis.  For the problem of interest, Park and Grandhi looked at exploring the 

parametric uncertainty associated with the initial displacement by considering it to be a 

random input parameter with a value described by Eq. (6.9) (89). 

])[04.0],[0.1()0( 2cmcmNormu                    (6.9) 

 With the given representation of the parametric uncertainty in each of the three 

models, the uncertainty within each model in predicting the natural frequency of the 

system can be solved for using the Fast Fourier Transform / weighted-Stack Response 

Surface Method approach detailed in Section 5.1.2.  To implement this approach, a 

surrogate model of the natural frequency predicted by each of the models as a function 

of the uncertain input parameter must be constructed.  Using a third order polynomial 

regression approximation, as shown in Eq. (6.10), the β coefficients in the 

approximations can be solved for using the weighted Stack Response Surface Method 

(w-StackRSM) with 16 data points and 4 folds in the data (k=4).  The 16 data points are 
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obtained through a Latin Hypercube Sampling of the distribution function shown in Eq. 

(6.9).  

3

1,3

2

1,21,1,0)( xxxxf iiiiifi
                               (6.10) 

 The β coefficients obtained through this approach are seen in Table 6.7: 

 

 

 

 

 

 

 After obtaining the β coefficients in the surrogate models (Table 6.7), the Fast 

Fourier Transform technique can be implemented to estimate the output distribution of 

the natural frequency of the system for each of the models.  In the absence of any 

known information regarding the output form of each of the models, a Gaussian form 

shall be assumed for the numerical evaluation of the distribution of the natural 

frequency.  This approach, detailed in Section 5.1.2, was repeated for each of the three 

models, yielding the results shown in Table 6.8.  Additionally, the results for the FFT / w-

StackRSM approach were compared to results obtained through Monte Carlo Sampling 

(n=100,000) as a measure of validation for the approach.  The comparison of these two 

approaches can be seen in Table 6.8. 

 

Table 6.7:  Surrogate Models 

 β1 β2 β3 β4 

f1(x) 0.4395 0.5962 -0.2098 0.0372 

f2(x) 1.0327 -0.1178 0.0195 -0.0756 

f3(x) 0.8759 0.6814 -0.5835 0.1634 
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 It can be seen in Table 6.8 that the FFT / w-StackRSM approach captures the 

stochastic behavior of the natural frequency of the system for each of the three models 

reasonable well when compared to the “true” results of the exhaustive Monte Carlo 

Sampling technique.  It should be noted that the FFT / w-Stack RSM approach was able 

to yield these results with only 16 evaluations of the model while the Monte Carlo 

Sampling technique utilized 100,000 evaluations.  For a simple problem such as this, this 

savings in number of function evaluations might be not necessary or even beneficial.  

However, for problems with larger simulations times, this reduction is necessary for 

evaluation of the parametric uncertainties.   

 

6.4. Quantification of Parametric and Model-Form Uncertainties: 

 The prior two sections have detailed approaches for the quantification of model-

form and parametric uncertainties individually.  This section deals with the 

quantification of the two forms of uncertainty concurrently using the Probabilistic 

Adjustment Factors Approach that was detailed in Section 5.2.2.  This approach, 

Table 6.8:  Parametric UQ Results 

 FFT w/ w-StackRSM Monte Carlo 

(n=250,000)  µ σ2 
µ σ2 

f1(x) 0.8697 0.0053 0.8713 0.0040 

f2(x) 0.8511 0.0059 0.8504 0.0042 

f3(x) 0.8014 0.0047 0.7859 0.0037 
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integrates the probabilistic response of each of the individual models shown in Table 6.8 

into the probabilistic adjustment factor using the model probabilities defined in Table 

6.4.  Using this data, an adjusted model can be developed using the Probabilistic 

Adjustment Factors Approach that captures both the model-form and parametric 

uncertainties present in the problem.  To apply this approach, it is first noted that each 

of the three output response predictions shown in Table 6.8 are equivalent to Eq.  (5.34) 

defining three normally distributed outputs.  Looking at the model probabilities shown 

in Table 6.4, it can be seen that model 2 has the highest model probability, 0.50, and 

thus is represented as y* in Eq. (5.35) with an expected value of 0.8511.  As such, by 

applying Eq. (5.36), the expected value of the adjustment factor    
  can be computed as 

shown in Eq. (6.11): 

)8511.08014.0(2.0)8511.08511.0(5.0)8511.08697.0(3.0][ * aEE

0076.0][ * aEE                                                (6.11) 

 

 With the expected value of the adjustment factor computed, the expected value 

of the adjusted model y can be obtained through the application of Eq. (5.38): 

8435.00076.08511.0][ yE                         (6.12) 

 Next, the variance of the adjustment factor must be computed using Eq. (5.37): 

222* )8435.08014.0(2.0)8435.08511.0(5.0)8435.08697.0(3.0][ aEVar

             
0006.0][ * aEVar                               (6.13) 
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The variance of the adjusted model can then be calculated trhough Eq. (5.39): 

 

)0047.0(2.0)0059.0(5.0)0053.0(3.0)8435.08014.0(2.00006.0][ 2 yVar

0061.0][ * aEVar                                       (6.14) 

Eqs. (6.12) and (6.14) define the first and second moments of the normally 

distributed adjusted model y, which represents the uncertainty involved in the 

prediction of the natural frequency ω, as shown in Eq. (6.15) and Figure 6.4. 

)0304.0,8435.0(Normpafa                          (6.15) 

 

 

Figure 6.4: Adjusted PAFA Model w/ Model-Form and Parametric Uncertainties 
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 It can be seen by comparing that the adjusted model in Eq. (6.15) is greater than 

the variance seen in the adjusted model capturing only the model-form uncertainty (Eq. 

(6.8)) and the models capturing only parametric uncertainties (Table 6.7).  This increase 

in variance is a result of the fact that by ignoring one of the possible sources of 

uncertainty, an under-conservative design can result.  In problems with reliability and 

safety in mind, under-conservative designs are far more dangerous than over-

conservative designs due to the over-estimation of system safety that can accompany 

under-conservative predictions.   

 

 Looking at the variance observed in Eq. (6.15), it is observed that in this problem, 

the model-form uncertainty contributes more to the overall variance in the prediction of 

the natural frequency than the parametric uncertainty does.  This is concluded because 

the variance observed in the adjusted model obtained using the Adjustment Factors 

Approach (0.0208) is approximately four times the variance observed in each of the 

models considering only parametric uncertainties (~0.005).  Thus, if only the parametric 

uncertainty in the “best” model (distribution shown in red) was considered as the 

stochastic response of the system, it would result in a dramatically under-conservative, 

and potentially dangerous, result when compared to the PAFA result (distribution 

shown in blue), as shown in Figure 6.5.  It can be observed, then, that for the spring-

mass problem of interest, the contribution from model-form uncertainty is greater than 

the contribution from simply parametric uncertainty.  This conclusion can be noted by 
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observing the relative variances of the two adjusted models shown in Figure 6.5.  The 

adjusted model only considering the parametric uncertainty—shown in red—has a 

variance significantly smaller than the adjusted model that considers both model-form 

and parametric uncertainties—shown in blue. 

 

 

Figure 6.5: Comparison of “Best” Model and PAFA Adjusted Model 
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7. Flutter of Two Degree of Freedom Airfoil 
Subject to Unsteady Aerodynamics 
 

 

 

7.1. Problem Definition: 

 To demonstrate the application of the uncertainty quantification tools 

developed in this work, they will first be applied to solve a simple aeroelastic analysis 

problem—the determination of the flutter velocity of a 2 degree of freedom (pitching 

and plunging) airfoil subject to unsteady aerodynamics (Fig. 7.1). 

 

 

 
Figure 7.1: 2-DOF Airfoil 
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 As this work includes the presence of parametric uncertainties, not all 

parameters in this model are considered deterministic.  To represent the uncertainty 

associated with the structural components of the airfoil, the pitching and plunging 

frequencies of the airfoil are assumed to be stochastic parameters that are represented 

by the distributions shown in Eqs. (7.1) and (7.2). 

)043.0,869.0(Normh                   (7.1) 

)078.0,552.1(Norm                  (7.2) 

 The other parameters in the system are assumed to be deterministic in nature 

and are shown in Table 7.1. 

 

Table 7.1: Parameter Values 

Parameter Value 

  40 

  30 [in] 

 ̅  0.489 

  269 

 

   

Where    is the reduced mass of the system, b is the semi-chord,  

 ̅  is the radius for pitching motion, and m is the mass of the system.  All other 

parameters not listed in Table 7.1 are assumed to be equal to 0.  As such, for this two 

degree of freedom system, the equations of motion can be shown in Eq. (7.3). 
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)5.0( aLLxB h                             (7.5) 

)5.0( aLMxD hh                         (7.6) 
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 Of note from Eqs. (7.4)-(7.7) are the lift terms denoted Lh and Lα.  As shown in 

Eqs. (7.8) and (7.9), these two terms are a function of Theodorsen’s Circulation 

Function, denoted C(k), and the reduced frequency k, defined in Eq. (7.10). 
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 Upon selection of an appropriate Theodorsen’s Circulation Function, the 

eigenvalue of the equations of motion shown in Eq. (7.3) can be solved along a 

spectrum of k values and the flutter velocity of the airfoil can be determined using the 

Vg solution method. 
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7.2. Uncertainty Definition 

 The parametric uncertainties within the problem of interest were defined in Eqs. 

(7.1) and (7.2).  Predictive uncertainty is inherent to a model due to the nature of the 

model-formulation process.  In his problem, the source of model-form uncertainty 

originates with the formulation of Theodersen’s Circulation Function that is used in the 

analysis of the system.  Theodorsen’s Circulation Function is a complex function that 

controls the relative phasing and amplitude of the lift and pitching moments with 

respect to the airfoil motion.  While an empirically correct representation of the 

function exists (Eq (7.15), (it should be noted that Eq. (7.13) is mathematically the same 

as Eq. (7.15) but can differ slightly depending on the evaluation of the Bessel functions) 

multiple lower-order approximations exist and have been used in prior solution 

approaches to approximate Theodorsen’s Function as a function of k over the range of 

k-values experienced by the system (Eqs. (7.11)-(7.16)): 
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 It can be seen that the real and imaginary parts of these six surrogate models 

vary over an average operating range of k’s, as shown in Figures 7.2 and 7.3. 

 

 
Figure 7.2:  Real Component of C(k) for 6 Models 
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Figure 7.3:  Imaginary Components of C(k) for 6 Models 

 It is assumed for the purpose of this demonstration problem that the “best” 

model among the model set M is not clear along the entire spectrum of k values.  Thus, 

there is a degree of model-form uncertainty in the selection of which model is best.  As 

such, all three forms of uncertainty introduced in Chapter 4 are present in the problem 

of interest: the parametric uncertainty associated with the value of the pitching and 

plunging frequencies of the airfoil, the model-form uncertainty associated with the 

selection of the proper Theodorsen’s Circulation Function to use in the flutter solution 

technique, and the predictive uncertainty associated with the assumptions that were 

made to develop the equations of motion of the system represented in Eq. (7.3). 

 

 

7.3. Quantification of Model-Form Uncertainty 

 The first analysis that will be done is the quantification of the model-form 

uncertainty associated with the selection of the proper Theodorsen’s Circulation 

Function to use in the flutter analysis.  The model-form uncertainty associated with the 
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model selection process will be done using the Adjustment Factors Approach detailed in 

Section 5.2.1.  In this approach, each of the six models are first run to determine the 

flutter velocity prediction of the airfoil for each of the models of interest.  The 

parameters that were used in this problem are shown in Table 7.1.  As the two 

parameters shown in Eqs. (7.1) and (7.2) were initially assigned to be stochastic in 

nature, they must be represented as deterministic in this initial analysis.  This is done by 

simply considering the two stochastic parameters to be equal to their expected values 

for this analysis.   

 

 After defining the input variables to the problem, the solution approach detailed 

in Eqs. (7.3)-(7.10) can be performed for each of the six Theodorsen’s Circulation 

Functions denoted in Eqs. (7.11)-(7.16), solving for the flutter velocity of the airfoil using 

each of the six model individually (the Matlab code for this analysis is included in 

Appendix A to this dissertation).  This approach yields the results shown in the second 

column of Table 7.2. 

 

 

 

 

 

 



129 
 

 

 

 

 

 

 

 

 

 To apply the adjustment factors approach, model probabilities must first be 

assigned to each model considered in the analysis.  In the absence of experimental or 

historical data, this is done using expert opinions regarding the relative accuracy and 

merit of each model being considered.  In this analysis, the model probabilities are 

assigned as a function of the complexity of the form of the Theodorsen’s Circulation 

Function, as shown in the third column of Table 7.2.  The effect of the assigning of these 

particular model probabilities will be explored in the subsequent analysis.  

 

 After assigning the model probabilities, an adjusted model to represent the 

potential variance in the flutter velocity of the airfoil as a result of the model-form 

uncertainty in the problem can be developed.  Using the additive adjustment factors 

Table 7.2:  Flutter Velocities and Model 
Probabilities for 6 Models 

     [ft/s]       

f1(x) 163.32 0.20 

f2(x) 163.61 0.10 

f3(x) 163.33 0.25 

f4(x) 163.70 0.10 

f5(x) 163.49 0.30 

f6(x) 164.19 0.05 
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approach detailed in Eqs. (5.22)-(5.26), an adjusted model is developed and presented 

in Eq. (7.17) and Figure 7.4. 

)207.0,48.163(Normyadd                         (7.17) 

 

 
Figure 7.4:  PDF of Adjusted Model, yadd 

 

 

 It can be seen in Figure 7.4 that although each of the individual component 

models in this analysis are deterministic, that when the model-form uncertainty in the 

selection of the “best” model is considered that a stochastic representation of the 

flutter velocity of the airfoil is obtained.  After completing an analysis such as this, 

multiple questions arise.  First, as the model probabilities that were assigned to each of 

the individual models were done so using an imprecise and non-empirical method—
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expert opinions—is the adjusted model shown in Eq. (7.17) highly sensitive to the values 

selected, and if so, which models in particular contribute most significantly to this 

variance?  Additionally, if the variance that is observed in Eq. (7.17) is considered too 

large for the problem of interest, can it be reduced through the introduction of 

additional data? 

 

 The answers to the questions proposed above are addressed by the Modified 

Adjustment Factors Approach detailed in Section 5.2.3.  First, the sensitivity of the 

adjusted model to the individual model probabilities is to be estimated.  To do this, the 

model probabilities for each of the six models of interest are redefined as stochastic 

parameters as shown in Eqs. (5.49) and (5.50).  This information is then propagated 

through the problem using the Modified Adjustment Factors Approach to develop an 

adjusted model as a function of these redefined model probabilities, shown in Table 7.3. 

 

Table 7.3: Modified Adjustment Factors Approach Results 

 
Mean [ft/s] Standard Dev. 

Additive AFA 163.48 0.207 

Modified AFA 163.49 0.252 

Model Disagreement 0.06% 21.7% 

Bhattacharyya Number: 0.9892 
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 As the Bhattacharyya number between the two models is smaller than the 

critical value of 0.990 used in this work, this indicates that the problem is sensitive to 

the individual model probabilities that were assigned in Table 7.2. However, since the 

value is barely below the threshold, a large reduction in the model-form uncertainty in 

the problem is not to be expected, as the adjusted model is not particularly sensitive to 

the model probabilities assigned to its constituent models, which is clear by looking at 

the two distributions plotted in Figure 7.5. 

 

 
Figure 7.5:  Additive and Modified AFA Models 

 

As a result, the model-form uncertainty in the problem should be able to be 

reduced significantly through the introduction of additional data, which will be 
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discussed in Section 7.4.  In addition, it would be of interest to know which of the 

models contribute most significantly to the amount of model-form uncertainty observed 

in the adjusted model.  To obtain this information, the Modified Adjustment Factors 

Approach is applied to the problem defining only one model probability at a time as 

stochastic, as detailed in Section 5.2.3.  By repeating the process detailed above and 

isolating each model individually, six different Bhattacharyya numbers can be 

determined, each representing the approximate sensitivity of the adjusted model to the 

model probability of a particular model.   The results for this analysis can be seen in 

Table 6.4. 

 

 

 

 

 

 

 

 

 From Table 7.4, the sensitivity of the adjusted model to the individual models 

can be shown to be related to the inverse of the Bhattacharyya number.  This implies 

that, at the current set of model probabilities, model 6 has the greatest impact on the 

adjusted model while model 1 has the smallest effect.  If additional data was unable to 

be obtained, then this approach says that relative to the other models, improvement in 

Table 7.4:  Individual Sensitivities Through 
MAFA 

Model Bhattacharyya Number 

f1(x) 0.9874 

f2(x) 0.9773 

f3(x) 0.9733 

f4(x) 0.9809 

f5(x) 0.9866 

f6(x) 0.9581 
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model 6 would result in the greatest decrease in the amount of model-form uncertainty 

in the problem.   

 

A qualitative statement regarding the magnitude of the improvement to be 

expected cannot be made though.  Instead, only qualitative conclusions can be drawn 

from this approach regarding the rank and magnitude of the model sensitivities.  For 

instance, if the Bhattacharyya Number for model 6 had been 0.5 as opposed to 0.9581 

then it could be said that model 6 had a much more significant effect on the adjusted 

model than the other five models.  However, the value of 0.5 would not necessarily 

indicate that the model was incorrect, as this information cannot be drawn without the 

availability of experimental or validation data.  Instead, a significantly divergent value 

when compared to the other models would indicate a high potential for inaccuracy and 

that further consideration should be given to the model. 

 

7.4. Quantification of Model-Form and Predictive Uncertainties 

As discussed in the previous section, due to the results of the Modified 

Adjustment Factors Approach applied to all models being less than the critical value for 

the problem of interest, a significant reduction of the model-form uncertainty in the 

prediction of the flutter velocity for this problem can be expected with the introduction 

of additional data.  For the parameters defined in Table 7.1 and the expected values of 
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the distributions defined in Eqs. (7.1) and (7.2), wind tunnel data exists in the literature 

for the flutter velocity of the airfoil (90).  By introducing experimental data into the 

problem, the predictive uncertainty associated with the modeling of the flutter velocity 

of the airfoil can be quantified using the Bayesian Model Averaging scheme detailed in 

Section 5.3.1.  Additionally, the data can be used to update the model probabilities 

using Bayes’ Theorem, reducing the amount of model-form uncertainty present in the 

problem as well. 

 

The first step in the Bayesian Model Averaging approach is to update the model 

prediction to include the predictive uncertainty in representing the physical data 

provided in data set D.  In this case, data set D consists of a single flutter point at the 

specified parameters with a flutter velocity of 163.4 [ft/s] (90).  This is done using the 

Maximum Likelihood Estimator derived in Section 5.3.1.  As such, the predictive variance 

of each model,   
 , can be calculated through Eq. (5.59), there results of which are 

shown in Table 7.5. 
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 After defining the predictive distributions of the models of interest, the next step 

in the Bayesian Model Averaging approach is to determine the posterior model 

probabilities of each model.  While approaches such as the Adjustment Factors 

Approach utilized expert opinions to develop a prior model probability, Bayesian Model 

Averaging assumes uniform prior model probabilities in the absence of data.  As such, all 

six model probabilities are assumed to be 0.166, as shown in Table 7.5.  Bayes’ Theorem 

is then applied, as shown in Eq. (5.61) to determine the posterior model probabilities for 

each model of interest.   

 

 

 

Table 7.5:  Predictive Distributions 
of Models 

Model µ   
  

f1(x) 163.32 0.0061 

f2(x) 163.61 0.0441 

f3(x) 163.33 0.0049 

f4(x) 163.70 0.0900 

f5(x) 163.49 0.0081 

f6(x) 164.19 0.6241 
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 From Table 7.6, two conclusions can be drawn.  It is clear that model 3 has the 

highest model probability.  This conclusion speaks well for the approach because, 

although it was assumed that the “best” model was not known going into the analysis, it 

is known the f3(x) is the proper representation of Theodorsen’s Circulation Function.  

Secondly, the Bayes’ Factor for model 6 is greater than the critical Bayes’ Factor value 

established in Section 5.3.1.  As such, model 6 can be excluded from the Bayesian Model 

Averaging approach.  However, to maintain the model probability constraints 

established in Eq. (5.21), the remaining five posterior model probabilities must be 

renormalized, as shown in Table 7.7.  

 

Table 7.6:  Posterior Model Probabilities 

                      Bayes’ Factor 

f1(x) 0.1666 0.2645 1.143 

f2(x) 0.1666 0.1008 2.999 

f3(x) 0.1666 0.3023 1 

f4(x) 0.1666 0.0705 4.288 

f5(x) 0.1666 0.2351 1.286 

f6(x) 0.1666 0.0268 11.280 
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 After updating the model probabilities, the Bayesian Model Averaging approach 

shown in Eq. (5.51) can be applied, resulting in the adjusted model shown in Eq. (7.18). 

)063.0,424.163(Normybma                        (7.18) 

 The adjusted model obtained using the Bayesian Model Averaging approach—

quantifying predictive uncertainty and reducing the model-form uncertainty—can be 

compared to the model-form uncertainty quantification technique utilized in the 

adjustment factors approach (Eq. (7.18)), as shown in Table 7.8 and Figure 7.6. 

 

 
 
 

Table 7.7:  Updated Posterior Model Probabilities 

                             

f1(x) 0.2645 0.2718 

f2(x) 0.1008 0.1036 

f3(x) 0.3023 0.3106 

f4(x) 0.0705 0.0724 

f5(x) 0.2351 0.2416 

Table 7.8:  Adjusted Models from Two Approaches 

 Mean [ft/s] Standard Dev. 

AFA 163.481 0.207 

BMA 163.424 0.063 
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Figure 7.6:  PDFs for AFA and BMA Adjusted Models 

 

Figure 7.6 illustrates that by introducing the additional knowledge of the 

experimental data through the Bayesian Model Averaging approach, two primary 

changes in the adjusted model (shown in green) are noted.  First, the mean of the 

adjusted model is shifted slightly lower, from 163.481 [ft/s] to 163.424 [ft/s].  This 

reduction in the mean of the adjusted model is due to the fact that since experimental 

data was introduced into the problem, the predictive uncertainty within the problem 

could begin to be quantified.  As such, the mean value of the adjusted distribution 

begins to approach the value shown in the experimental data set, 163.40 [ft/s].  The 

second change observed in the adjusted model from the adjustment factors approach to 

the Bayesian Model Averaging approach is the reduction in the variance of the adjusted 

model from 0.207 to 0.063.  This reduction in variance is due to the fact that the model-

form uncertainty in the problem was able to be reduced by the introduction of 
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additional data to update the model probabilities.  This potential for reduction in model-

form uncertainty was indicated by the Modified Adjustment Factors Approach result, 

where the Bhattacharyya number below the critical value indicated that the adjusted 

model was sensitive to the model probabilities assigned to the problem. 

 

7.5. Quantification of Model-Form and Parametric Uncertainties 

 In Section 7.3, the model-form uncertainty problem associated with the selection 

of the appropriate approximation to Theodorsen’s Circulation Function was addressed.  

In this approach, all parameters were considered to be deterministic in nature, include 

the two frequency parameters which shown in Eqs. (7.1) and (7.2).  As such, both 

parametric and model-form uncertainties are to quantified.  This will be done using the 

Probabilistic Adjustment Factors Approach that was introduced in Section 5.2.2. 

 

To utilize the Probabilistic Adjustment Factors Approach, the parametric 

uncertainty within each model must first be quantified using the Fast Fourier Transform 

approach, as mentioned in Section 5.1.2.  In the FFT approach, a third order response 

surface was constructed to estimate the flutter velocity of the airfoil for each of the 

models as shown in Eq. (7.19). 

3

2,6

2

2,52,4

3

1,3

2

1,21,1,0)( xxxxxxxfv iiiiiiiifi
            (7.19) 



141 
 

 Where x1 represents the plunging frequency (ωh) and x2 represents the pitching 

frequency (ωθ).  The approximation shown in Eq. (7.19) is then constructed for each of 

the six approximations to Theodorsen's Circulation Function by performing a basic 

design of experiments within the design space at µ±nσ perturbations of the 

parametrically uncertain variables, obtaining a total of twenty data points.  The 

weighted Stack Response Surface Method approach (Section 3.3) was then applied to 

the data set with 25 samples to obtain estimates the seven β-values to approximate the 

output response (flutter velocity) of the model.  After obtaining the β-values for each of 

the six models, the FFT approach was applied, using the chain rule to convert the x-

space distributions into z-space, as shown in Eq. (5.19), to solve for the distribution of 

the flutter velocity of the airfoil predicted by each respective model.  To validate the 

results of this FFT approach, as well as the approximations being used to represent the 

behavior of the system, the results for each of the six models is compared to a brute-

force Monte Carlo evaluation of the flutter distribution with 250,000 simulations as 

shown in Table 7.9.  

 

 

 

 

 

 

 

Table 7.9:  Parametric UQ Results 

 FFT w/ w-StackRSM Monte Carlo 

(n=250,000)  µ σ µ σ 

f1(x) 163.59 4.24 163.79 4.18 

f2(x) 163.87 4.49 164.00 4.19 

f3(x) 162.22 5.53 162.35 5.64 

f4(x) 163.84 4.26 164.08 4.23 

f5(x) 164.04 4.41 163.88 4.26 

f6(x) 164.23 4.05 164.56 3.99 
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 It can be seen in Table 7.9 that the distributions predicted by the FFTs match 

very closely with those determined through rigorous Monte Carlo simulation.  It should 

be noted that the values for the FFT / w-StackRSM approach were obtained with only 

twenty-five simulations while the Monte Carlo approach required 250,000 simulations. 

 

 As the parametric uncertainty within each model can now be approximated as a 

distribution function of the output response of interest, the probabilistic adjustment 

factors approach can then be applied.  The first step in this approach is to assign the 

model probabilities to each of the six models being considered.  These model 

probabilities are determined from expert opinion regarding the relative accuracy of 

each model, and are the same that was used with the traditional adjustment factors 

approach shown in Table 7.2. 

 

 After assigning the model probabilities, it can be seen that Model 5 is shown to 

have the highest model probability, and is thus assumed to be the "best" model (y*) in 

this analysis.  By applying Eqs. (5.34)-(5.37) to each of the two sets of models shown in 

Table 7.9, two different adjusted models for the flutter velocity can be solved for—one 

using the FFT approximations and one using the Monte Carlo Results.  These two models 

are shown below in Table 7.10 and plotted on Figure 7.7. 
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Figure 7.7. PAFA Results for Two Parametric UQ Approaches 

 

 It can be seen in Table 7.10. and Figure 7.7 that both parametric uncertainty 

quantification techniques, when propagated through the probabilistic adjustment 

factors approach, produced similar adjusted models for the flutter velocity of the airfoil 

of interest.  This result implies that utilizing Fast Fourier Transforms to quantify the 

parametric uncertainties in a problem such as this is viable when coupling this method 

with the probabilistic adjustment factors approach.  The methodology developed in this 

work results in an adjusted model (shown in red in Figure 7.7) that quantifies both the 

Table 7.10:  PAFA Results 

 Mean [ft/s] Standard Dev. 

FFT 163.38 5.64 

MC 163.53 5.31 
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parametric uncertainty associated with the pitching and plunging frequencies used in 

the flutter analysis as well as the model-form uncertainty associated with the selection 

of the proper Theordorsen's Circulation Function approximation to use in the analysis. 

  

 Looking at a histogram of the Monte Carlo results for a particular model of 

interest, it can be seen that the Gaussian distribution assumption assigned to the output 

response results in a discrepancy between the "true" data represented by the Monte 

Carlo data points and the assumed response represented by the distribution (the blue 

line in Figure 7.8). To address this discrepancy, the methodology was repeated with a 

beta distribution assumed as the form of the responses for each of the models.  It can 

be seen in the red line on Figure 7.8 that assuming the form of a beta distribution 

resulted in a much more accurate representation of the response of the system. 

 

 

Figure 7.8. Fits of Distributions to Monte Carlo Results 
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 Using the Beta distribution assumption for the output of the data, the flutter 

velocity of each of the models could be estimated using both the numerical data from 

the inverse Fourier Transform and the Monte Carlo data points, as was done prior for 

the Gaussian assumption.  The results for these two approaches are shown in Table 

7.11. 

 

 

 

 

 

 

 

 

 

 

 It can be seen in Table 7.11 that as with the Gaussian assumption, the Fast 

Fourier Transform technique provides an accurate representation of the response of the 

system at a dramatically reduced computational cost.  Similar to before, the 

probabilistic adjustment factors approach was then applied to both sets of models, 

obtaining two adjusted models--one for the FFT technique and one using the Monte 

Carlo data--shown in Table 7.12 and Figure 7.9. 

Table 7.11. Parametric UQ Results (Assumed Beta Distribution) 

 

Table 6.7:  Parametric UQ Results 

 FFT w/ RSM Monte Carlo (n=250,000) 

 l u α β l u α β 

f1(x) 150.85 187.52 5.19 10.63 151.66 188.43 5.28 10.80 

f2(x) 151.22 188.00 5.44 10.56 151.80 188.63 5.35 10.78 

f3(x) 142.80 189.74 7.03 10.04 141.20 189.94 7.52 9.81 

f4(x) 151.12 188.64 5.50 11.11 151.71 188.76 5.37 10.70 

f5(x) 151.40 188.94 5.28 10.72 151.49 188.68 5.32 10.65 

f6(x) 153.23 189.66 5.42 11.74 152.82 188.56 5.47 11.18 



146 
 

 

 

 

 

 

 

 

 

Figure 7.9. PAFA Results for Beta Distributions 

 

 Once again, Table 7.12 and Figure 7.9 show the distribution of the flutter velocity 

of the airfoil that is due to both the parametric and model-form uncertainty associated 

with the computational prediction of its value.  Comparing the results of the two 

approaches for parametric uncertainty quantification, it can be seen that the Fast 

Table 7.12:  PAFA Results (Beta Assumption) 

 FFT (RSM) Monte Carlo 

l 149.19 149.07 

u 188.77 188.94 

α 5.59 5.77 

β 10.23 10.14 
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Fourier Transform technique produces results very close to those produced by the 

exhaustive Monte Carlo sampling approach.  In addition, by comparing the results 

shown through the FFT technique with looking simply at the results of the "best" model, 

f5(x), which only include the parametric uncertainty in the problem, it can be seen that 

ignoring the model-form uncertainty in this problem results in an overly-conservative 

representation of the flutter velocity (Figure 7.10).  

 

 

Figure 7.10. Comparison of PAFA / FFT to "Best" Model 

 

 This example demonstrated a methodology developed to quantify the model-

form and parametric uncertainties that arose from the use of six aerodynamic models 

and two parametrically uncertain variables in the evaluation of the flutter velocity of a 

two degree of freedom airfoil subject to unsteady aerodynamics.  The approach 
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demonstrated yields a single PDF of an output response of interest that represents the 

uncertainty in its prediction due to these uncertainties.  The form of this PDF was shown 

to be applied for any number of distributions, although only Gaussian and Beta 

distributions were demonstrated in the example. 

 

 

7.6. Quantification of Complete Uncertainties 

 In the prior four sections, different methods and approaches have been 

presented to quantify different subsets of the three forms of uncertainty, depending on 

the amount of data available in the analysis.  In this final section, all three forms of 

uncertainty—model-form, parametric, and predictive—will be quantified for the 

problem of interest.  These uncertainties will be quantified using the Bayesian Model 

Averaging approach detailed in Section 5.3.1.  For this approach, the parametric 

uncertainty within each of the six models must be quantified.  This has been done for 

the models of interest in Section 7.4 using the Fast Fourier Transform technique and the 

weighted Stack Response Surface Method approximation approach, and the results of 

which are presented in the first two columns of Table 7.9.   

 

 After quantifying the parametric uncertainty in each of the models, the next step 

in the approach is to calculate the posterior distribution of each model given the data 

set D.  As mentioned in Section 7.5, the data set D consists of an experimental data 

point run at the expected value of all parameters with a value of 163.4 [ft/s].  Inputting 
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this data into the expression shown in Eq. (5.55), the posterior model distributions for 

each of the six models can be computed through a numerical integration technique with 

an assumed Gaussian form.    

 

 

 

 

 

 

 

 

 It can be seen by comparing the results of Table 7.13 to Table 7.9 that for this 

problem, the parametric uncertainty associated with each model dominates and 

renders the predictive uncertainty associated with each model nearly moot.  This result 

is to be expected, as each model among the model set being considered predicts the 

results shown in the experimental data reasonable well—within about 1%—while the 

parametric uncertainty associated with each model comprises about 3-5% error.  After 

developing the predictive distributions for each of the models, quantifying both the 

parametric and predictive uncertainties with the models, the next step in the approach 

is to calculate the posterior model probabilities for each model, as shown in Table 7.14. 

 

Table 7.13:  Posterior Distributions 

 FFT w/ w-StackRSM 

 µ σ 

f1(x) 163.57 4.25 

f2(x) 163.81 4.51 

f3(x) 162.74 5.54 

f4(x) 163.80 4.27 

f5(x) 163.94 4.43 

f6(x) 164.03 4.45 
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 It should be noted from Table 7.14 that although this process remains the same 

as the process detailed in the earlier Bayesian Model Averaging approach, that the 

posterior model probabilities for the models will not be identical to those shown in 

Table 7.6 due to the presence of parametric uncertainties as well.  It can be noted from 

Table 7.14, though, that very similar results to those seen in Table 7.14 are observed.  

Model 3 remains the model with the highest model probability, although by a lesser 

margin this time.  This decrease in margin is due to the fact that the parametric 

uncertainty associated with model 3 is slightly larger than the other five models 

considered.  It can also be observed that, as with the case in Section 6.4, model 6 has a 

Bayes’ Factor value greater than the critical value of 10.  As such, it can be concluded 

that the model has minimal effect on the adjusted model to be constructed due to 

inaccuracies within the model, and as such, can be eliminated at this time from 

consideration.  As with the prior case, though, it is necessarily to renormalize the 

Table 7.14:  Posterior Model Probabilities 

                      Bayes’ Factor 

f1(x) 0.1666 0.2714 1.044 

f2(x) 0.1666 0.1118 2.535 

f3(x) 0.1666 0.2834 1 

f4(x) 0.1666 0.0744 3.809 

f5(x) 0.1666 0.2336 1.213 

f6(x) 0.1666 0.0254 11.157 
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posterior model probabilities after elimination of the model to maintain the constraints 

set forth in Eq. (5.21), as shown in Table 7.15. 

 

 

 

 

 

 

 Using the posterior predictions shown in Table 7.13 with the posterior model 

probabilities in Table 7.15, the adjusted model can be solved for using Bayesian Model 

Averaging, as shown in Eq. (7.20). 

)643.4,611.163(Normybma                     (7.20) 

 The distribution shown in Eq. (7.20) represents the uncertainty in the calculation 

of the flutter velocity of the airfoil due to the parametric, model-form, and predictive 

uncertainties associated with the computational modeling process.  As such, by looking 

at the approaches shown in the sections of this chapter, it can be seen that depending 

upon the availability of input data—experimental data points, input variable 

distributions, or multiple models—the uncertainty in the prediction of the flutter 

Table 7.15:  Updated Posterior Model Probabilities 

                             

f1(x) 0.2714 0.2789 

f2(x) 0.1118 0.1147 

f3(x) 0.2834 0.2909 

f4(x) 0.0744 0.0763 

f5(x) 0.2336 0.2397 
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velocity of the airfoil can be solved by quantifying the uncertainty from as many of the 

potention sources as possible.   
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8. Full Flutter Simulations using Three 
Aeroelasticity Packages 
 
 

 

8.1. AGARD Wing Background 

 

To demonstrate the applicability of the modeling uncertainty framework on a full 

scale aeroelasticity problem, the design and analysis of an AGARD Standard 445.6 

Weakened Wing will be observed.  The AGARD Standard 445.6 Weakened Wing is a 

tapered wing with a quarter-chord weep angle of 45 degrees, an aspect ratio of 1.65, 

and a taper ratio of 0.66.  The profile of the wing is a semispan model with a NACA 

65A004 airfoil (91).   The wing has a span of 2.50 [ft] with a planform shape seen in 

Figure 8.1, and natural frequencies shown in Table 8.1. 
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Figure 8.1:  Planform view of AGARD 445.6 Wing 
 

Table 8.1:  Experimental Natural Frequencies of  
AGARD 445.6 Wing 

 
Experimental Frequency [Hz][91] Mode Shape 

Mode 1 9.60 1st Bending 

Mode 2 38.10 1st Torsion 

Mode 3 50.70 2nd Bending 

Mode 4 98.50 2nd Torsion 
 

 

The initial wing design was constructed and tested in NASA Langley’s Transonic 

Dynamics Tunnel in 1963 using various wing models and angles of attack.  One such 

popular configuration was the weakened wing model which was constructed of 

laminated mahogany with holes bored throughout the structure to artificially reduce the 

frequency of the wing, inducing a lower flutter velocity (20).   
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The aeroelastic flutter behavior of the weakened AGARD 445.6 wing has been 

explored and addressed in great detail in the literature in both the experimental and 

simulation field.  Yates explored the transonic flutter of the airfoil through experimental 

measures by developing wind tunnel data for a model with both standard atmospheric 

and Freon-flow conditions (92).  Initial studies in CFD simulation by Rausch (93) and Lee-

Rausch (94) using Euler methods experienced errors in the prediction of flutter 

conditions when compared to experimental data.  Lee-Rausch et al then studied the 

wing using an unsteady Navier-Stokes code (CFL3D) to further investigate the initial 

discrepancies that were found between the Euler investigations and the experimental 

data (95).   It was found that both the Euler and Navier-Stokes codes initially 

experienced much greater success at predicting the flutter boundary of the wing in the 

upper transonic regime (M=0.96) than in the transonic / supersonic border region 

(M=1.141).  Further analysis by Liu et al demonstrated the capture of the transonic 

flutter dip phenomenon through the use of a coupled CFD-CSD method (96). 

 

 

 

8.2. Model Definition and Parameters 

To quantify the complete uncertainty in the prediction of the flutter behavior of 

the AGARD 445.6 wing, models of the wing were constructed in the three aeroelasticity 

packages listed in Section 2.3.2-2.3.4: ZONA6, ZTAIC (CAPTSD), and ZEUS.  As mentioned 

in Section 2.3, each of these aeroelastic modeling packages requires a representation of 
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the structural components of the wing using FEM.  Before applying the parametric 

uncertainties to the problem of interest, the structural model to be used in these three 

codes was validated at the expected values of all structural parameters.  An overview of 

these deterministic parameters can be seen below in Table 8.2. 

 

Table 8.2:  Deterministic Structural and Aerodynamic Parameters of 
Three Aeroelastic Models Considered 

Panel Span 2.50 [ft] 

Aspect Ratio 1.6525 

Streamwise Semichord 0.9165 [ft] 

Wing Mass 0.1276 [slugs] 

Sweep Angle 45˚ 

Mach Number 0.95 
 

 

To determine the structural response of the wing, a Nastran model of the AGARD 

wing structure was first constructed (Figure 8.2) that could be validated against the 

experimental data published by Yates, and then be used with the modeling packages 

identified above to perform the aeroelastic analysis.  The Nastran model was 

constructed with 10 chord-wise elements and 20 span-wise elements for a total of 200 

CQUAD4 elements using the model parameters set forth by Kolonay (97).  Table 8.3 

below shows the comparison of the frequencies observed in the Nastran structural 

model to the experimental data points published by Yates (92). 
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Figure 8.2:  Nastran Model of AGARD 445.6 Wing 

 

Table 8.3: Frequency Comparison of Structural Model  
of AGARD 445.6 Weakened Wing 

 
Nastran Model Experimental (92) Mode Shape 

Mode 1 [Hz] 9.60 9.60 1st Bending 

Mode 2 [Hz] 36.77 38.10 1st Torsion 

Mode 3 [Hz] 49.93 50.70 2nd Bending 

Mode 4 [Hz] 88.71 98.50 2nd Torsion 

 

 

It can be seen in Table 8.3 that the structural model's dynamic response 

demonstrates an acceptable level of agreement with the published experimental 

results.  Although the higher frequencies, such as the third and fourth frequencies, show 

approximately 2-10% disagreement, the contribution of these frequencies to the 

aerodynamic flutter phenomenon is less than the lower frequencies.  In addition, as will 
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be shown in the analysis, the first and second mode shapes are the primary modes 

contributing to the aerodynamic flutter, so agreement between the model and the 

physical scenario for these two frequencies is most critical. 

 

In the wind tunnel tests conducted by Yates at NASA Langley (92), the results 

were presented in terms of the flutter velocity coefficient (Eq. (8.1)): 

s

f
b

U
v                                                               (8.1) 

Where in Eq. (8.1), U∞ refers to the free stream velocity of the flow at the flutter 

of the wing, bs is the semispan root of the wing, ωα is the first torsional frequency of the 

wing, and µ is the relative density of the wing, calculated as shown in Eq. (8.2): 

V

m


                                                                    (8.2) 

In Eq. (8.2), m is defined as the mass of the wing, ρ is the free stream density of 

the fluid medium at the flutter speed, U, and V is the volume of a conical frustrum with 

the streamwise root chord as a lower base diameter, the streamwise tip chord as the 

upper base diameter, and the span of the wing panel as the height.  As a general frame 

of reference, in the original wind tunnel studies, the flutter speed coefficients observed 

ranged from about 0.3 to 1.1 depending upon the particular parameters used in the 

analysis. 
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Now that the structural model has been proven valid and the output response of 

interest has been clearly defined, the uncertainties can be formally introduced into the 

problem.  For this analysis, three different aeroelastic packages were used to estimate 

the flutter velocity coefficient, representing three different models.  The selection of the 

most appropriate or accurate model among the model set represents the model-form 

uncertainty in the problem.  Wind tunnel data is available in the literature for the 

baseline parameters that are run in this analysis, allowing for the quantification of 

predictive uncertainty as well.  Finally, the mass of the wing in the analysis will be 

considered stochastic to represent possible changes in the fuel state contained within 

the wing, as well as to demonstrate the capability of the approach to quantify 

parametric uncertainties as well.  The mass is treated as a Gaussian variable and is 

defined in Eq. (8.3). 

)0128.0,1276.0(Normm                                             (8.3) 

 

8.3. Simulation Results 

 For a baseline set of values, the three models discussed above were run at the 

expected value of the mass of the wing and the parameters defined in Table 8.2, 

yielding the results shown in Table 8.4. 
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Table 8.4: Deterministic Results of 3 
Simulation Models 

Solver    

ZONA6 Linear Method 0.3460 

ZTAIC (CAPTSD) 0.3170 

ZEUS g-Method 0.3086 

 

 

It is observed at the given parameters that while there is approximately 10% 

disagreement between the models' prediction for the flutter velocity coefficient,   , the 

results seem consistent with the expectations regarding their assumptions.  The linear 

solver, ZONA6, produces the highest estimate of the flutter velocity coefficient while the 

more advanced, non-linear approaches produce a lower estimate of the value.  It can be 

noted, as well, that the ZONA6 code is not intended for use within the transonic regime.  

However, the simulation model is included within this analysis.  This is done 

intentionally to determine if the approaches developed in this work can identify an 

erroneous model, as the definitions of the boundaries within which models are valid are 

not necessarily clear for many application problems. 

 

After ensuring the relative accuracy of each of the three models, a number of 

evaluations of the models must be performed to construct the surrogate that will be 

used in the parametric uncertainty quantification approach.  In this problem, twelve 

simulations are to be run of each model, varying the mass of the wing, to construct the 

surrogate model relating the change in the flutter velocity coefficient as a function of 
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the change in the variable.  The value of the parameter to run these twelve simulations 

was determined using a Latin Hypercube Sampling of the parameter distribution defined 

in Eq. (8.3). 

 

 

8.4. Quantification of Complete Uncertainty 

The first step in the complete uncertainty quantification process is to quantify 

the parametric uncertainty inherent to each of the three models.  In this approach, the 

parametric uncertainty is quantified using the Fast Fourier Transform / weighted-Stack 

Response Surface Methodology approach that was detailed in Section 5.1.2.  For this 

problem with one uncertain variable, a third order surrogate was used (Eq. (8.4)) and 

the twelve points that were sampled using Latin Hypercube Sampling (as mentioned in 

the prior section) are used to populate the surrogate and estimate the four β 

coefficients using w-StackRSM with k = 4. 

3

1,3

2

1,21,1,0)( xxxxfv iiiiifi
                               (8.4) 

The trained surrogate model is then used in the Fast Fourier Transform approach 

to estimate the pdf of the output response of interest—in this case, the flutter 

coefficient of the wing.  As mentioned in Section 5.1.2, for the numerical integration 

technique utilized in this work to be implemented, an a priori distribution form must be 

assumed to the output response.  By the Central Limit Theorem, in the absence of any 

data suggesting otherwise, a Gaussian distribution is assumed.  Thus, the numerical 
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integration results for each of the three models are then fit to Gaussian distributions, 

producing the results shown in Table 8.5. 

 

 

 

 

 

 

 The distributions defined in Table 8.5 represent the parametric uncertainties 

associated with each of the three models.  The next step in the complete uncertainty 

quantification process is to quantify both the model-form and predictive uncertainty 

using the Bayesian Model Averaging approach.  For this to be done, experimental data 

must be introduced into the problem.  From Yates’ wind tunnel experiments, the flutter 

velocity coefficient at the parameters defined in Table 8.1 for the wing was 0.3059.  

With this experimental data set D, consisting of only one point in this case, the 

predictive uncertainty in each model can be quantified through the numerical 

evaluation of Eq. (5.55), resulting in the distributions shown in Table 8.6. 

 

 

 

Table 8.5:   Distributions Due to Parametric 
Uncertainties 

 FFT w/ w-StackRSM 

 µ σ 

ZONA6 0.3451 0.0281 

ZTAIC 0.3173 0.0127 

ZEUS 0.3094 0.0145 
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 Looking at the results in Table 8.6, two points become apparent.  First, it is clear 

that the predictive uncertainty associated with each of the models has an effect on the 

variance of the  predictive distributions on each of the models when the results in Table 

8.6 are compared to those of Table 8.5.  Secondly, it can be seen that the models that 

show greater disagreement from the data point obtained at 0.3059 experience a larger 

increase in model variance when the predictive uncertainty is quantified.  This result is 

to be expected, as the predictive uncertainty represents the potential of a model to 

accurately predict the true physical results.  If the true physical results are shown to be 

different from the predictions of the model, it is then expected that the variance in 

those predictions, the predictive uncertainty associated with the model, would increase. 

 

After obtaining the predictive distributions for each of the models, the model 

probabilities of each model must be calculated to complete the Bayesian Model 

Averaging approach.  Using Bayes’ Theorem as shown in Eq. (5.61), the posterior model 

probabilities for each of the three models can be calculated as shown in Table 8.7. 

 

Table 8.6:   Model Predictive Distributions 

 µ σ 
ZONA6 0.3451 0.0481 

ZTAIC 0.3173 0.0171 

ZEUS 0.3094 0.0149 
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 Looking at the posterior model probabilities in Table 8.7, it can be seen that the 

ZEUS model has the highest posterior model probability, an expected result as this 

model is considered the highest fidelity among the models considered.  Additionally, 

looking at the Bayes’ Factor for each of the three models shown in Table 8.7, it can be 

seen that the ZONA6 model has the largest Bayes’ Factor of 6.46, but it is not greater 

than the critical value of 10 defined earlier in this work.  Although the deterministic 

result from the ZONA6 model is divergent from the other values, the parametric 

uncertainties associated with the model results prohibits the elimination of the model 

from just one experimental data point.  Extending the results, if additional points were 

to be observed in the future near the current data point of 0.3059, the trends observed 

in Table 8.7 would continue and the Bayes’ Factor for the ZAERO6 model would 

continue to increase. 

 

 With the posterior model probabilities shown in Table 8.7, the adjusted model 

for the flutter velocity coefficient the contains the parametric, model-form, and 

Table 8.7:  Posterior Model Probabilities 

                      Bayes’ Factor 

ZONA6 0.3333 0.1179 4.3328 

ZTAIC 0.3333 0.3714 1.3880 

ZEUS 0.3333 0.5107 1 
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predictive uncertainties associated with the estimation of its value can be obtained 

using Eq. (5.51) and is shown in Eq. (8.5) and Figure 8.3. 

)023.0,315.0(, Normv bmaf                         (8.5) 

 

Figure 8.3:  Adjusted Model of Flutter Velocity Coefficient 

 

 The amount of uncertainty in the prediction of the flutter velocity coefficient for 

the AGARD 445.6 at the parameter set listed in Table 8.1 can be seen in the figure 

above.  This uncertainty is a complete representation of the uncertainty in the modeling 

process, including both the uncertainty in the selection of the most appropriate model 

to evaluate to the output response of interest, as well as the uncertainty associated with 

each model’s relative ability to predict the true physical scenario of interest.  If the 

adjusted model obtained through this approach was to be compared to an approach 

ignorant of model-form and predictive uncertainty, such as simply selecting the model 
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representing the parametric uncertainty in the ZEUS model, it can be seen that an 

under-conservative design results (Figure 8.4). 

 

  

 

Figure 8.4:  Comparison of Adjusted Model to “Best” Model 

 

 This under-conservative design is the result of ignoring multiple potential 

sources of uncertainty in the computational modeling process.  As with any reliability 

engineering problem, under-conservative designs are dangerous as they can give a false 

sense of confidence regarding a particular output response.  When handling a response 

as critical and potentially catastrophic as the flutter of an aircraft, this can be incredibly 

reckless and dangerous.  It has been shown in this example, though, that be 

systematically considering all possible models and data available to the designer, the 
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uncertainty from all possible sources can be considered, resulting in a more accurate 

and representative distribution of uncertainty.   
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9. Summary 

 

  

 

This work developed and demonstrated methods for the complete quantification 

of uncertainty from all sources for the application to aeroelastic analyses.  Aeroelasticity 

is a complex, multi-disciplinary field that draws upon background from the fields of 

structures, aerodynamics, control theory, and dynamics to analyze the coupling 

between the inertial, aerodynamic, and elastic forces on an air vehicle.  As a result of 

the complexities in the analyses within each of the individual disciplines, and with their 

couplings, there is a great deal of uncertainty associated with both the simulation and 

modeling of aeroelastic responses and phenomena.  Chapter 4 showed how these 

uncertainties could be thought of as originating from three sources: parametric, model-

form, or predictive uncertainty.  While it is important to be able to quantify, and if 

possible, minimize these uncertainties, methods that can be used to quantify 

uncertainties from one source are not necessarily applicable to the other two sources.  

As mentioned, much of the research in uncertainty quantification in aeroelasticity has 

focused upon quantifying the parametric uncertainty with aeroelastic modeling tools 

and packages.  Such an approach ignores two potential forms of uncertainty, and as 

shown in Section 7.4, can result in an under-conservative representation of the 

potential uncertainty in the problem.   
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 This work addresses the two often ignored sources of uncertainty, as well as 

parametric uncertainties, by developing and demonstrating methods for the 

quantification of uncertainties from all sources in aeroelastic simulation problems, as 

shown in Chapter 5.  While the methods developed in this work are not limited to 

aeroelastic problems, they are demonstrated and validated on such.  While the 

quantification of the uncertainties from all three potential sources is the optimal goal of 

an approach, this goal is not always feasible depending upon the information available 

for the problem of interest.  For instance, as mentioned in Section 4.3, the 

quantification of the predictive uncertainty in a model is impossible without data 

regarding the true physical scenario of interest—often some form of experimental data.  

As such, in instances where complete information is unavailable, methods must exist to 

quantify as much of the uncertainty as possible.  Chapter 5 detailed multiple methods 

developed in this work for the quantification of different forms of uncertainty given 

different sets of available information to the designer.  

 

 Section 2.3 detailed the extensive computational cost that can be associated 

with the aeroelastic analysis of a design using different simulation packages.  As 

uncertainty quantification is often a process that is heavily limited by the simulation 

time of the respective models, it is imperative to minimize the computational time 

required to develop these accurate stochastic measures.  Chapter 3 detailed a novel 

surrogate modeling technique, the weighted Stack Response Surface Methodology, to 



170 
 

be coupled with the parametric uncertainty quantification techniques discussed in 

Section 5.1.2 to yield surrogate models with improved accuracies at no additional 

computational cost.  For the validation cases demonstrated in Section 3.3, a 3-6% 

improvement in residual error was observed when compared to the established least-

squares response surface methodology.  This surrogate modeling method was then 

utilized to quantify the parametric uncertainty associated with each of the models using 

a Fast Fourier Transform technique, detailed in Section 5.1.2. 

 

 Finally, the applicability of the uncertainty quantification tools developed in this 

work was demonstrated on three different problems of interest: a simple closed-form 

spring-mass problem, a two degree of freedom airfoil subject to unsteady 

aerodynamics, and the flutter simulation of the AGARD 445.6 wing using commercial 

aeroelastic packages.  For the closed-form spring-mass system and the airfoil problem, 

many possible permutations of available data were explored to demonstrate the 

capability of the different approaches at efficiently and accurately quantifying the 

sources of uncertainty and identifying the sources contributing most significantly to 

those uncertainties.  For the AGARD 445.6 simulation problem, the Bayesian approach 

for the quantification of uncertainties from all sources was demonstrated by coupling 

the results of the individual models with published experimental data to develop a 

complete representation of the uncertainty associated with the estimation of the flutter 

velocity coefficient for the wing. 
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9.1. Research Contributions 

  

 As mentioned in the introduction, there are four primary and novel research 

contributions in this work. First, as discussed in Section 3.3, the weighted Stack 

Response Surface (w-StackRSM) method was developed in this work as an improved and 

efficient surrogate modeling technique for situations where an a priori surrogate model 

must be assumed, such as Fast Fourier Transforms.  The w-StackRSM approach utilizes 

k-fold sampling measures to partition the complete data set into smaller, independent 

data sets.  Using these smaller data sets, multiple independent models can be 

developed and cross-validated using the traditional least-squares response surface 

method, resulting in k different models and residual errors.  Then, by weighing each of 

the component models inversely with respect to their residual errors, a weighted 

response surface model can be developed that is shown to have a 3-6% reduced 

residual error when compared to simply using least-squares RSM on the complete data 

set. 

 

 The second research contribution of this work was the development of the 

Probabilistic Adjustment Factors Approach (PAFA).  This approach utilizes the 

framework of an existing approach, the Adjustment Factors Approach (73), which was 

originally developed to quantify the model-form uncertainty among deterministic 

models.  By redefining each of the constituent models as stochastic with a specified 
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distribution on an output response of interest, the Adjustment Factors Approach was re-

derived for different possible distribution assumptions to develop an approach that was 

capable of quantifying both the model-form and parametric uncertainties in the 

modeling process without the necessity for experimental data points.  While this 

approach is applicable for distributions of any form, it does require an a priori 

assumption regarding the distribution form itself.  In Section 5.2.2, the derivation of this 

approach for both Gaussian and Beta distribution assumptions was demonstrated. 

 

 The third research contribution of this work was the development of the 

Modified Adjustment Factors Approach (MAFA).  This approach approximates the 

sensitivity of an adjusted model developed using either the traditional Adjustment 

Factors Approach or the Probabilistic Adjustment Factors Approach to the individual 

model probabilities that are assigned to each of the models using expert opinions.  The 

MAFA has two different stages to its application.  The first stage approximates the 

sensitivity of the adjusted model to the model probability set as a whole.  This 

sensitivity, quantified through a Bhattacharyya metric, estimates the potential reduction 

in model-form uncertainty that could be experienced through the refinement of the 

model probability values assigned to each of the models—likely done through the 

introduction of additional data or knowledge into the problem.  If additional data or 

knowledge is unable to be introduced due to limitations on experimental data sets, then 

the second stage of the MAFA approximates the sensitivity of the adjusted model to 

each of the individual models utilized.  The models with the highest sensitivity can then 
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be identified as models that contribute most significantly to the variance in the adjusted 

model.  As such, if a model has a significantly higher sensitivity than the majority of the 

model set, this approach identifies that model as being potentially erroneous or 

misused, and that further analysis or attention should be given to the particular model 

of interest. 

 

 The final research contribution of this work is the adaptation of the Bayesian 

Model Averaging (BMA) approach to aerospace engineering applications.  As mentioned 

in Section 5.3.1, BMA has been used in the last 10 years for forecasting models in the 

fields of economics, geology, and meteorology by combining multiple historical models 

into a singular predictive model of future events.  This same approach is applied in this 

work to utilize the results of individual constituent models of aeroelastic responses to 

develop a composite prediction of the expected uncertainty that can be associated with 

the true physical response that is being modeled.  BMA, through the use of Bayes’ 

Theorem and Maximum Likelihood Estimators enables to the quantification of 

uncertainty from all three potential sources, provided that experimental data is 

available.  This approach does so through two steps: first developing the predictive 

distribution of each of the constituent models to include the predictive uncertainty 

associated with the model itself and then using the data set, and Bayes’ Theorem, to 

develop posterior model probabilities of the constituent models that are determined 

empirically through the capability of the individual models to capture the physics 

represented in the given data set.  By coupling this approach with methods to quantify 
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the parametric uncertainties within each of the models (FFT / w-StackRSM approach), 

the BMA approach can be utilized to quantify the complete uncertainty in a problem 

where the full amount of information is made available to the designer.    
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Appendix A:  2 DOF Airfoil Matlab Solver (w/ parametric uncertainties): 

 

%%   Establish Uncertain Database: 
num_it = 1; 
vf_hist1 = zeros(1,num_it); 
vf_hist2 = zeros(1,num_it); 
vf_hist3 = zeros(1,num_it); 
vf_hist4 = zeros(1,num_it); 
vf_hist5 = zeros(1,num_it); 
vf_hist6 = zeros(1,num_it); 

  
%   Define Problem Parameters 
num_div=200; 
invk_min=1; 
invk_max=4; 
size_div=(invk_max-invk_min)/num_div; 
n=0; 
tol=0.0001; 

  
%   Define Certain Parameters: 
wtheta=1.5524;      %[rad/sec]      1.5524 
wh=0.8689;          %[rad/sec]      0.8689 
b=30;               %[ft]           30 
m=269;              %[slug/ft]      269 
mu=40;              %               40 
xthetabar=0;        %               0 
rthetabar=0.4888;   %               0.7888 
a=0;                %               0 

  
%   Define Uncertain Parameters: 
% wtheta_mean = 1.5524; 
% wtheta_std = 0.0776; 
%  
% wh_mean = 0.8689; 
% wh_std = 0.0434; 

  
%%   Begin Uncertainty Loop: 
for ii=1:num_it 

  
    %  Redefine Uncertain Variables: 
%     wtheta = normrnd(wtheta_mean,wtheta_std); 
%     wh = normrnd(wh_mean,wh_std); 

     
    %%   Begin Solution Loop 1 
    for invk=invk_min:size_div:invk_max; 
        n=n+1; 

     
        k=1/invk; 

  
        Ck=1-((0.165*k)/(k-0.0455*1i))-((0.355*k)/(k-0.3*1i)); 

  
        Lh=1-(1i*2*Ck)/k; 
        La=1/2-(1i*(1+2*Ck))/k-(2*Ck)/(k^2); 
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        Mh=1/2; 
        Ma=3/8-1i/k; 

  
        x = wh^2/wtheta^2; 
        temp = -Mh*(0.5+a) + Ma - La*(0.5+a) + Lh*(0.5+a)^2; 

  
        quad = mu^2*x*rthetabar^2; 

  
        linear = -mu^2*rthetabar^2 - mu^2*rthetabar^2*x - mu*x*temp - 

... 
            mu*rthetabar^2*Lh; 

  
        con = mu^2*rthetabar^2 + mu*temp + mu*Lh*rthetabar^2 + Lh*temp 

-(mu^2*xthetabar^2 + ... 
            mu*xthetabar*Mh - 0.5*mu*xthetabar*Lh - a*mu*xthetabar*Lh + 

mu*xthetabar*La + ... 
            La*Mh - 0.5*Lh*La - a*Lh*La - 0.5*mu*xthetabar*Lh - 

0.5*Lh*Mh + 0.25*Lh^2 + ... 
            0.5*a*Lh^2 - mu*a*xthetabar*Lh - a*Lh*Mh + 0.5*a*Lh^2 + 

a^2*Lh^2); 

  
        eqn = [quad linear con]; 
        w = roots(eqn); 
        w1=wtheta/sqrt(w(1,1)); 
        w2=wtheta/sqrt(w(2,1)); 

  
        w_real=zeros(2,1); 
        w_real(1,1)=real(w1); 
        w_real(2,1)=real(w2); 
        if real(w1)<real(w2) 
            wi=imag(w1); 
        else 
            wi=imag(w2); 
        end 
        w=min(w_real); 

  
        wf=sqrt(wtheta/w); 
        vf=wf*b/k; 
        g=wi/(wtheta^2/w^2); 

  
        if abs(g)-tol <= 0 
            vfinal=vf;  
            break 
        end 
    end  % Solution Routine 1 

     
    vf_hist1(1,ii)=vf; 
    n=0; 

     
    %%   Begin Solution Loop 2 
    for invk=invk_min:size_div:invk_max; 
        n=n+1; 
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        k=1/invk; 

  
        Ck=(0.01365+0.2808*1i*k-0.5*k^2)/(0.01365+0.3455*1i*k-k^2); 

  
        Lh=1-(1i*2*Ck)/k; 
        La=1/2-(1i*(1+2*Ck))/k-(2*Ck)/(k^2); 

  
        Mh=1/2; 
        Ma=3/8-1i/k; 

  
        x = wh^2/wtheta^2; 
        temp = -Mh*(0.5+a) + Ma - La*(0.5+a) + Lh*(0.5+a)^2; 

  
        quad = mu^2*x*rthetabar^2; 

  
        linear = -mu^2*rthetabar^2 - mu^2*rthetabar^2*x - mu*x*temp - 

... 
            mu*rthetabar^2*Lh; 

  
        con = mu^2*rthetabar^2 + mu*temp + mu*Lh*rthetabar^2 + Lh*temp 

-(mu^2*xthetabar^2 + ... 
            mu*xthetabar*Mh - 0.5*mu*xthetabar*Lh - a*mu*xthetabar*Lh + 

mu*xthetabar*La + ... 
            La*Mh - 0.5*Lh*La - a*Lh*La - 0.5*mu*xthetabar*Lh - 

0.5*Lh*Mh + 0.25*Lh^2 + ... 
            0.5*a*Lh^2 - mu*a*xthetabar*Lh - a*Lh*Mh + 0.5*a*Lh^2 + 

a^2*Lh^2); 

  
        eqn = [quad linear con]; 
        w = roots(eqn); 
        w1=wtheta/sqrt(w(1,1)); 
        w2=wtheta/sqrt(w(2,1)); 

  
        w_real=zeros(2,1); 
        w_real(1,1)=real(w1); 
        w_real(2,1)=real(w2); 
        if real(w1)<real(w2) 
            wi=imag(w1); 
        else 
            wi=imag(w2); 
        end 
        w=min(w_real); 

  
        wf=sqrt(wtheta/w); 
        vf=wf*b/k; 
        g=wi/(wtheta^2/w^2); 

  
        if abs(g)-tol <= 0 
            vfinal=vf;  
            break 
        end 
    end  % Solution Routine 2 

     
    vf_hist2(1,ii)=vf; 
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    n=0; 

     
    %%   Begin Solution Loop 3 
    for invk=invk_min:size_div:invk_max; 
        n=n+1; 

     
        k=1/invk; 

  
        Ck=(besselj(1,k)-1i*bessely(0,k))/(besselj(1,k)+besselj(0,k)-

1i*(bessely(0,k)+bessely(1,k))); 

  
        Lh=1-(1i*2*Ck)/k; 
        La=1/2-(1i*(1+2*Ck))/k-(2*Ck)/(k^2); 

  
        Mh=1/2; 
        Ma=3/8-1i/k; 

  
        x = wh^2/wtheta^2; 
        temp = -Mh*(0.5+a) + Ma - La*(0.5+a) + Lh*(0.5+a)^2; 

  
        quad = mu^2*x*rthetabar^2; 

  
        linear = -mu^2*rthetabar^2 - mu^2*rthetabar^2*x - mu*x*temp - 

... 
            mu*rthetabar^2*Lh; 

  
        con = mu^2*rthetabar^2 + mu*temp + mu*Lh*rthetabar^2 + Lh*temp 

-(mu^2*xthetabar^2 + ... 
            mu*xthetabar*Mh - 0.5*mu*xthetabar*Lh - a*mu*xthetabar*Lh + 

mu*xthetabar*La + ... 
            La*Mh - 0.5*Lh*La - a*Lh*La - 0.5*mu*xthetabar*Lh - 

0.5*Lh*Mh + 0.25*Lh^2 + ... 
            0.5*a*Lh^2 - mu*a*xthetabar*Lh - a*Lh*Mh + 0.5*a*Lh^2 + 

a^2*Lh^2); 

  
        eqn = [quad linear con]; 
        w = roots(eqn); 
        w1=wtheta/sqrt(w(1,1)); 
        w2=wtheta/sqrt(w(2,1)); 

  
        w_real=zeros(2,1); 
        w_real(1,1)=real(w1); 
        w_real(2,1)=real(w2); 
        if real(w1)<real(w2) 
            wi=imag(w1); 
        else 
            wi=imag(w2); 
        end 
        w=min(w_real); 

  
        wf=sqrt(wtheta/w); 
        vf=wf*b/k; 
        g=wi/(wtheta^2/w^2); 
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        if abs(g)-tol <= 0 
            vfinal=vf;  
            break 
        end 
    end  % Solution Routine 3 

     
    vf_hist3(1,ii)=vf; 
    n=0; 

     
    %%   Begin Solution Loop 4 
    for invk=invk_min:size_div:invk_max; 
        n=n+1; 

     
        k=1/invk; 

  
        

Ck=(1+10.61*1i*k)*(1+1.774*1i*k)/((1+13.51*1i*k)*(1+2.745*1i*k)); 

  
        Lh=1-(1i*2*Ck)/k; 
        La=1/2-(1i*(1+2*Ck))/k-(2*Ck)/(k^2); 

  
        Mh=1/2; 
        Ma=3/8-1i/k; 

  
        x = wh^2/wtheta^2; 
        temp = -Mh*(0.5+a) + Ma - La*(0.5+a) + Lh*(0.5+a)^2; 

  
        quad = mu^2*x*rthetabar^2; 

  
        linear = -mu^2*rthetabar^2 - mu^2*rthetabar^2*x - mu*x*temp - 

... 
            mu*rthetabar^2*Lh; 

  
        con = mu^2*rthetabar^2 + mu*temp + mu*Lh*rthetabar^2 + Lh*temp 

-(mu^2*xthetabar^2 + ... 
            mu*xthetabar*Mh - 0.5*mu*xthetabar*Lh - a*mu*xthetabar*Lh + 

mu*xthetabar*La + ... 
            La*Mh - 0.5*Lh*La - a*Lh*La - 0.5*mu*xthetabar*Lh - 

0.5*Lh*Mh + 0.25*Lh^2 + ... 
            0.5*a*Lh^2 - mu*a*xthetabar*Lh - a*Lh*Mh + 0.5*a*Lh^2 + 

a^2*Lh^2); 

  
        eqn = [quad linear con]; 
        w = roots(eqn); 
        w1=wtheta/sqrt(w(1,1)); 
        w2=wtheta/sqrt(w(2,1)); 

  
        w_real=zeros(2,1); 
        w_real(1,1)=real(w1); 
        w_real(2,1)=real(w2); 
        if real(w1)<real(w2) 
            wi=imag(w1); 
        else 
            wi=imag(w2); 
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        end 
        w=min(w_real); 

  
        wf=sqrt(wtheta/w); 
        vf=wf*b/k; 
        g=wi/(wtheta^2/w^2); 

  
        if abs(g)-tol <= 0 
            vfinal=vf;  
            break 
        end 
    end  % Solution Routine 4 

     
    vf_hist4(1,ii)=vf; 
    n=0; 

     
    %%   Begin Solution Loop 5 
    for invk=invk_min:size_div:invk_max; 
        n=n+1; 

     
        k=1/invk; 

  
        Hankel_1=besselj(1,k)-1i*bessely(1,k); 
        Hankel_0=besselj(0,k)-1i*bessely(0,k); 
        Ck=Hankel_1/(Hankel_1+1i*Hankel_0); 

  
        Lh=1-(1i*2*Ck)/k; 
        La=1/2-(1i*(1+2*Ck))/k-(2*Ck)/(k^2); 

  
        Mh=1/2; 
        Ma=3/8-1i/k; 

  
        x = wh^2/wtheta^2; 
        temp = -Mh*(0.5+a) + Ma - La*(0.5+a) + Lh*(0.5+a)^2; 

  
        quad = mu^2*x*rthetabar^2; 

  
        linear = -mu^2*rthetabar^2 - mu^2*rthetabar^2*x - mu*x*temp - 

... 
            mu*rthetabar^2*Lh; 

  
        con = mu^2*rthetabar^2 + mu*temp + mu*Lh*rthetabar^2 + Lh*temp 

-(mu^2*xthetabar^2 + ... 
            mu*xthetabar*Mh - 0.5*mu*xthetabar*Lh - a*mu*xthetabar*Lh + 

mu*xthetabar*La + ... 
            La*Mh - 0.5*Lh*La - a*Lh*La - 0.5*mu*xthetabar*Lh - 

0.5*Lh*Mh + 0.25*Lh^2 + ... 
            0.5*a*Lh^2 - mu*a*xthetabar*Lh - a*Lh*Mh + 0.5*a*Lh^2 + 

a^2*Lh^2); 

  
        eqn = [quad linear con]; 
        w = roots(eqn); 
        w1=wtheta/sqrt(w(1,1)); 
        w2=wtheta/sqrt(w(2,1)); 
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        w_real=zeros(2,1); 
        w_real(1,1)=real(w1); 
        w_real(2,1)=real(w2); 
        if real(w1)<real(w2) 
            wi=imag(w1); 
        else 
            wi=imag(w2); 
        end 
        w=min(w_real); 

  
        wf=sqrt(wtheta/w); 
        vf=wf*b/k; 
        g=wi/(wtheta^2/w^2); 

  
        if abs(g)-tol <= 0 
            vfinal=vf;  
            break 
        end 
    end  % Solution Routine 5 

     
    vf_hist5(1,ii)=vf; 
    n=0; 

     
    %%   Begin Solution Loop 6 
    for invk=invk_min:size_div:invk_max; 
        n=n+1; 

     
        k=1/invk; 

  
        Ck=(0.015+0.3*1i*k-0.5*k^2)/(0.015+0.35*1i*k-k^2); 

  
        Lh=1-(1i*2*Ck)/k; 
        La=1/2-(1i*(1+2*Ck))/k-(2*Ck)/(k^2); 

  
        Mh=1/2; 
        Ma=3/8-1i/k; 

  
        x = wh^2/wtheta^2; 
        temp = -Mh*(0.5+a) + Ma - La*(0.5+a) + Lh*(0.5+a)^2; 

  
        quad = mu^2*x*rthetabar^2; 

  
        linear = -mu^2*rthetabar^2 - mu^2*rthetabar^2*x - mu*x*temp - 

... 
            mu*rthetabar^2*Lh; 

  
        con = mu^2*rthetabar^2 + mu*temp + mu*Lh*rthetabar^2 + Lh*temp 

-(mu^2*xthetabar^2 + ... 
            mu*xthetabar*Mh - 0.5*mu*xthetabar*Lh - a*mu*xthetabar*Lh + 

mu*xthetabar*La + ... 
            La*Mh - 0.5*Lh*La - a*Lh*La - 0.5*mu*xthetabar*Lh - 

0.5*Lh*Mh + 0.25*Lh^2 + ... 
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            0.5*a*Lh^2 - mu*a*xthetabar*Lh - a*Lh*Mh + 0.5*a*Lh^2 + 

a^2*Lh^2); 

  
        eqn = [quad linear con]; 
        w = roots(eqn); 
        w1=wtheta/sqrt(w(1,1)); 
        w2=wtheta/sqrt(w(2,1)); 

  
        w_real=zeros(2,1); 
        w_real(1,1)=real(w1); 
        w_real(2,1)=real(w2); 
        if real(w1)<real(w2) 
            wi=imag(w1); 
        else 
            wi=imag(w2); 
        end 
        w=min(w_real); 

  
        wf=sqrt(wtheta/w); 
        vf=wf*b/k; 
        g=wi/(wtheta^2/w^2); 

  
        if abs(g)-tol <= 0 
            vfinal=vf;  
            break 
        end 
    end    % Solution Routine 6 

     
    vf_hist6(1,ii)=vf; 

    
end  % Uncertainty Routine 

  

  
%%   Post-Processing of Data: 

  
vf1_mean_tot=0; 
vf1_std_tot=0; 

  
vf2_mean_tot=0; 
vf2_std_tot=0; 

  
vf3_mean_tot=0; 
vf3_std_tot=0; 

  
vf4_mean_tot=0; 
vf4_std_tot=0; 

  
vf5_mean_tot=0; 
vf5_std_tot=0; 

  
vf6_mean_tot=0; 
vf6_std_tot=0; 

  
for jj=1:num_it 
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    vf1_mean_tot=vf1_mean_tot+vf_hist1(1,jj); 
    vf2_mean_tot=vf2_mean_tot+vf_hist2(1,jj); 
    vf3_mean_tot=vf3_mean_tot+vf_hist3(1,jj); 
    vf4_mean_tot=vf4_mean_tot+vf_hist4(1,jj); 
    vf5_mean_tot=vf5_mean_tot+vf_hist5(1,jj); 
    vf6_mean_tot=vf6_mean_tot+vf_hist6(1,jj); 
end 

  
vf1_mean=vf1_mean_tot/num_it 
vf2_mean=vf2_mean_tot/num_it 
vf3_mean=vf3_mean_tot/num_it 
vf4_mean=vf4_mean_tot/num_it 
vf5_mean=vf5_mean_tot/num_it 
vf6_mean=vf6_mean_tot/num_it 

  
for kk=1:num_it 
    vf1_std_tot=vf1_std_tot+(vf_hist1(1,kk)-vf1_mean)^2; 
    vf2_std_tot=vf2_std_tot+(vf_hist2(1,kk)-vf2_mean)^2; 
    vf3_std_tot=vf3_std_tot+(vf_hist3(1,kk)-vf3_mean)^2; 
    vf4_std_tot=vf4_std_tot+(vf_hist4(1,kk)-vf4_mean)^2; 
    vf5_std_tot=vf5_std_tot+(vf_hist5(1,kk)-vf5_mean)^2; 
    vf6_std_tot=vf6_std_tot+(vf_hist6(1,kk)-vf6_mean)^2; 
end 

  
vf1_std=sqrt(vf1_std_tot/num_it) 
vf2_std=sqrt(vf2_std_tot/num_it) 
vf3_std=sqrt(vf3_std_tot/num_it) 
vf4_std=sqrt(vf4_std_tot/num_it) 
vf5_std=sqrt(vf5_std_tot/num_it) 
vf6_std=sqrt(vf6_std_tot/num_it) 
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