
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2012

Application of Auto-tracking to the Study of Insect Body Application of Auto-tracking to the Study of Insect Body

Kinematics in Maneuver Flight Kinematics in Maneuver Flight

Shreyas Vathul Subramanian
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Mechanical Engineering Commons

Repository Citation Repository Citation
Subramanian, Shreyas Vathul, "Application of Auto-tracking to the Study of Insect Body Kinematics in
Maneuver Flight" (2012). Browse all Theses and Dissertations. 1091.
https://corescholar.libraries.wright.edu/etd_all/1091

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/1091?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Engineering

By

SHREYAS VATHUL SUBRAMANIAN

BTech., National Institute of Technology Karnataka

2012

Wright State University

APPLICATION OF AUTO-TRACKING TO THE

STUDY OF INSECT BODY KINEMATICS IN

MANEUVER FLIGHT

WRIGHT STATE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

June 11,2011

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY

SUPERVISION BY Shreyas Vathul Subramanian ENTITLED Application of Auto-

tracking to the Study of Insect Body Kinematics in Maneuver Flight BE ACCEPTED

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF Master of Science in Engineering

Haibo Dong, Ph.D.

Thesis Director

 George Huang, Ph.D., Chair

Department of Mechanical and Materials

Engineering College of Engineering and Computer

Science

Committee on Final Examination

Haibo Dong, Ph.D.

Nasser Kashou, Ph.D.

Hui Wan, Ph.D.

Andrew T. Hsu, Ph.D.

Dean, Graduate School

iii

ABSTRACT

Subramanian, Shreyas Vathul. M.S.Egr. Mechanical Engineering Department, Wright State

University, 2012. Application of Auto-tracking to the Study of Insect Body Kinematics in

Maneuver Flight.

There is a need to explain the complex phenomena that underlies the seemingly effortless

flight modes of the dragonfly (Infra -order Anisoptera). However, measuring the body

kinematics during flight is labor intensive. Thus a robust system was developed that

automatically tracks and quantifies the body kinematics of a dragonfly during voluntary

and escape take-offs, as well as maneuvers. Ultimately, the tool, which was developed

using a custom code in C++ using the open source library OpenCV (Open Computer

Vision), would be used to analyze bulk samples of high speed videos providing raw

images at the rate of approximately 1000 frames per second from pair-wise orthogonal

positions in space. As a result, there would be a considerably large database of

information which may then be used to formulate, generalize and classify standard flight

strategies used. Perceptibly, there is also a need to validate the outputs of this tool by

comparing it to the outputs of a manual reconstruction.

iv

TABLE OF CONTENTS
I. INTRODUCTION .. 1

Insect Flight ... 1

Existing Methodologies ... 2

Reconstruction methods ... 4

II. OBJECTIVE AND SCOPE OF THIS RESEARCH .. 5

Background and Motivation ... 5

Image Processing Strategies ... 7

Camera Projection matrix ... 7

POSIT.. 9

Haar Training ... 12

Template Matching .. 17

SURF... 18

Methodology Comparison – Manual vs Automatic ... 20

Basics of Manual Tracking ... 20

Issues with raw input.. 21

Issues with Manual Tracking .. 24

Auto-Modeling via Image Processing ... 26

Mathematical Modeling of the Wings ... 31

III. AUTO-TRACKING TECHNOLOGY .. 36

Introduction ... 36

The Input Image .. 38

Processing a Single Image ... 40

Smoothing ... 40

Thresholding .. 41

Equalizing the Histogram ... 42

Morphological Operations .. 43

Edge Detection .. 44

Combining the Three Camera-Views ... 45

Contour Information .. 47

Constructing the Voxel Model ... 48

Analyzing Voxels .. 51

Calculating Pitch, Roll and Yaw .. 52

Processing the video .. 54

Graphical User Interface .. 57

Initial screen .. 57

Body-Wing modeling Tab .. 58

v

Yaw-Pitch-Roll tab .. 59

Other Tabs ... 60

Test Cases ... 61

Test Case 1 .. 61

Test Case 2 ... 64

Test Case 3 .. 66

Other Cases (Plots only) ... 69

Test Case 4 .. 69

Test Case 5 .. 69

Test Case 6 .. 70

Test Case 7 .. 70

Test Case 8 .. 71

Test Case 9 .. 71

Test Case 10 .. 72

Test Case 11 .. 72

Discussion ... 73

IV RESULTS .. 78

Classification ... 78

Case Bifurcation .. 80

Validation cases ... 82

Pitch – Roll – Yaw plots .. 82

Dragonfly 8 – an experiment .. 88

Observations .. 90

Dragonfly 8.5 ... 90

Dragonfly 8.3 ... 91

Dragonfly 8.6 ... 91

Dragonfly 8.7 ... 92

Other interesting maneuvers ... 93

Dragonfly 11.1 ... 93

Dragonfly 12.6 ... 93

Conclusions ... 95

Summary .. 99

Future Work ... 99

Bibliography .. 101

Appendix 1 – Code .. 103

Autotracking .. 103

vi

LIST OF FIGURES
Figure Page

1. Experimental set-up ...5

2. Maya Reconstruction ...6

3. Camera projection..8

4. Haar training intermediate output ... 15

5. Output of the template matching algorithm .. 18

6. Perfect matching using SURF .. 19

7. SURF - erroneous output ... 19

8. Issues with raw input ... 23

9. Light 'Bands' seen in the video ... 24

10. Artificial camera rig/set-up .. 25

11. Left-Original image (top view); Right-Thresholded and corrected image along with

detected segments ... 28

12. Side view ... 28

13. 3D wire-frame rendering of the reconstructed body.. 29

14. Actual Left Fore-wing.. 33

15. Closed b-spline modelling the Left fore-wing .. 33

16. Digitized points along with the original picture .. 34

17. The original image with its histogram .. 39

18. Forcing the image to have a particular histogram ... 39

19. Segmentation using histograms .. 40

file:///C:/Users/Shreyas/Desktop/New_Thesis/Thesis_3.2.docx%23_Toc331086274
file:///C:/Users/Shreyas/Desktop/New_Thesis/Thesis_3.2.docx%23_Toc331086275
file:///C:/Users/Shreyas/Desktop/New_Thesis/Thesis_3.2.docx%23_Toc331086279

vii

20. Image after smoothing ... 41

21. Image after thresholding .. 42

22. Image after histogram equalization .. 43

23. Image after eroding .. 44

24. Edge detection ... 44

25. Orthographic views of an object ... 45

26. Reconstruction errors while using only two views .. 46

27. Three views of the camera ... 46

28. Decomposing into sets of contours ... 48

29. Surface and extruded volume of one view .. 49

30. Two views of the reconstructed body ... 50

31. Voxel and pre-constructed bodies .. 50

32. The centroid line and orientation triangle ... 51

33. Trackbar controls ... 55

34. Displaying Euler angles in real time ... 56

35. Initial screen of the GUI Interface .. 57

36. The profile descriptor utility with instructions .. 58

37. Body-wing modeling complete .. 59

38. Yaw - Pitch -Roll calculation tab ... 60

39. Virtual marker and Utilities Tab ... 60

40. Test case 1 in time snapshots ... 62

file:///C:/Users/Shreyas/Desktop/New_Thesis/Thesis_3.2.docx%23_Toc331086294
file:///C:/Users/Shreyas/Desktop/New_Thesis/Thesis_3.2.docx%23_Toc331086305
file:///C:/Users/Shreyas/Desktop/New_Thesis/Thesis_3.2.docx%23_Toc331086306

viii

41. Test case 2 in snapshots ... 64

42. Test case 2 in snapshots ... 66

43. Comparison of CG's : x-y-z vs v1-v2-v3 .. 75

44. Demonstration of oscillating or peaking output .. 76

45. Other types of errors seen in output .. 76

46. Effects of smoothing on erroneous output .. 77

47. Case availability ... 79

48. Forced take-off (Left) vs. Natural take-off (Right) ... 79

49. Instacross magnitude from the v1 and v2 vectors shown .. 89

50. Instacross plot along with P-R-Y, DFLY 8.5 .. 90

51. Instacross magnitude with P-R-Y angles, DFLY 8.3 .. 91

52. Instacross magnitude with P-R-Y angles, DFLY 8.6 .. 92

53. Instacross magnitude with P-R-Y angles, DFLY 8.7 .. 92

54. Instacross magnitude with P-R-Y angles, DFLY 11.1 .. 93

55. Instacross magnitude with P-R-Y angles, DFLY 8.7 .. 94

56. Conventional aircraft vs a Dragonfly.. 96

57. Calculation of Centre of gravity and location of wing roots 98

58. Effect of flexible tail on Centre of Gravity ... 98

59. Multiple point tracking, Cicada .. 100

60. Multiple point tracking, Butterfly ... 100

file:///C:/Users/Shreyas/Desktop/New_Thesis/Thesis_3.2.docx%23_Toc331086307
file:///C:/Users/Shreyas/Desktop/New_Thesis/Thesis_3.2.docx%23_Toc331086308
file:///C:/Users/Shreyas/Desktop/New_Thesis/Thesis_3.2.docx%23_Toc331086309
file:///C:/Users/Shreyas/Desktop/New_Thesis/Thesis_3.2.docx%23_Toc331086311
file:///C:/Users/Shreyas/Desktop/New_Thesis/Thesis_3.2.docx%23_Toc331086315

ix

LIST OF TABLES
Table Page

1. POSIT

 POSIT algorithm outputs .. 11

2. Haar Training

 Types of testing samples .. 14

3. Haar Training

 „Random‟ testing samples .. 14

4. Haar Training

 Haar training outputs .. 17

5. Issues with Raw Input

 Effects of lighting... 23

6. Issues with Manual Tracking

 Errors in orthographic modeling ... 24

7. Issues with Manual Tracking

 Using the artificial camera rig .. 26

8. Auto-Modeling via Image Processing

 Different views of the fully constructed body ... 30

9. Auto-Modeling via Image Processing

 Comparison of static reconstruction results... 31

10. Test Cases

 Test case 1 - Plots and explanations .. 63

11. Test Cases

 Results of test case 2 .. 65

12. Test Cases

 Results of test case 3 .. 68

file:///C:/Users/Shreyas/Dropbox/shreyas_koorosh/Thesis_2.docx%23_Toc330825157
file:///C:/Users/Shreyas/Dropbox/shreyas_koorosh/Thesis_2.docx%23_Toc330825157
file:///C:/Users/Shreyas/Dropbox/shreyas_koorosh/Thesis_2.docx%23_Toc330825158
file:///C:/Users/Shreyas/Dropbox/shreyas_koorosh/Thesis_2.docx%23_Toc330825158

x

13. Test Cases

 Test Cases 4 and 5 .. 69

14. Test Cases

 Test Cases 6 and 7 .. 70

15. Test Cases

 Test Cases 8 and 9 .. 71

16. Test Cases

 Test Cases 10 and 11 ... 72

17. Test Cases

 Validation cases ... 82

18. Pitch-Roll-Yaw Plots

 Slow and high, set 1 ... 83

19. Pitch-Roll-Yaw Plots

 Slow and high, set 2 ... 84

20. Pitch-Roll-Yaw Plots

 Fast and medium, set 1 ... 85

21. Pitch-Roll-Yaw Plots

 Fast and low, set 1 .. 86

22. Pitch-Roll-Yaw Plots

 Fast and low, set 2 .. 87

xi

ACKNOWLEDGMENTS

I would like to thank my research advisor, Dr. Haibo Dong for his constant supervision

throughout the entire period of my thesis study here at Wright State University. His

guidance and timely advice has given me a sense of direction and confidence. Working

with the members of Dr. Dong‟s Flow Simulation Research Group (FSRG) has been a

great learning experience, and has given me a taste of what actual research is.

1

I. Introduction

Insect Flight

Any established biologist would subscribe to the tenet that true flight is shared only by

insects, birds and bats. Insects are the only group of invertebrates known to have evolved

flight. Flight in insects is believed to have developed more than 300 million years ago.

Thus it is only natural to surmise that this is something that has been perfected over time.

Insect wings are outgrowths of the insect exoskeleton, and are referred to as forewings

and hindwings. The ability to fly is not determined by the number or the size of wings.

Flight is one of the primary reasons that insects have survived in nature. Flight assists

insects find food, locate mates and escape from predators. Flight in insects varies

dramatically, from the clumsy patterns of beetles and butterflies to the acrobatic

maneuvers of dragonflies and many true flies. Dragonflies are capable of astounding feats

such as moving forward, backward, turning, and hovering at one position. Insects of the

order Paleoptera (Example, dragonflies) have muscles inserted directly at the base of the

wing. Flight in insects may also be gained by muscles which are not attached directly to

the wings, but move the wings indirectly by changing the shape of the thorax. Thus the

study of the body kinematics in flight may prove to be very important. The primary focus

of many insect flight research teams around the world is to understand the actively

2

changing moment of inertia characteristics. Most of these teams use high speed

photogrammetry as the main experimental tool.

Existing Methodologies

The experiments involved in the measuring of flight parameters, be it kinematics and

dynamics, or flow visualization using computational fluid dynamics, involves the use of

computers with high processing and graphical capabilities. Thus we may broadly classify

insect study into two completely different interest groups-One, The study of low

Reynolds number flyers in nature using CFD visualization and two, the study of the

Kinematics and Dynamics involved in insect flight. Conceivably, both these streams are

important to the study of insect flight. However, the processing time is as large as the

time required to set up the cases in the afore mentioned classes of study. While the actual

processing, for example CFD simulation of insects in free flight, takes up hours of

computational time, the actual reconstruction of these insects in 3d is nothing less than

manual labor. There have been a few attempts to automate the process of digitizing insect

flight. For instance, the advances in high speed imaging studies applied to animal and

fluid motion was studied by Launder et al(6). Here, pixel intensity is measured scene by

scene or frame by frame, after which an accurate cross correlation set of peaks is

generated. Using this information, a matrix of velocity vectors is then produced. Velocity

data is obtained directly and the total body velocity (obtained as average of all velocity

vectors) was reported to be quite accurate. The work of Hedrick et al(2) discusses the

Discusses automation of video analysis for biomimetic systems with freely available

software. The Advantage is that it does not require manipulation of the animal to be

3

measured. This will be one of the major requirements of the tool being developed here.

„Digitizing‟ of the video is achieved by manual mouse-clicks, much like the process of

„Manual Reconstruction‟ at the FSRG laboratory. Similar work was done by Combes et

al (3) where the dramatic deflections during flight were addressed. The work of Sunada et

al (9) also uses optical measurement to quantify the deformation and Motion of the wings

of a Moth (Mythimna Separata).

A major contribution to the topic of automatic tracking of free flying insects was the

research of Fontaine et al(4). The methodology was similar to capturing human motion

using joints and links. This was done using two approaches-model based or direct

reconstructions; the former being better when there are occlusions in the field of view.

The Drosophilia has a near cylindrical body and hence roll estimation proved to be very

difficult. This is not the case in the dragonfly being studied here, and hence roll

estimation is generally expected to be easier and more accurate.

Some research groups have used 3D high speed video to measure morphological

parameters of the wing, for example Yenpeng Liu et al (7) from Beijing University of

Aeronautics and Astronautics. A standard stereo camera set-up is used to shoot videos of

the insects in flight, unlike the orthographic set up used here. The work of Simon Walker

et al(10) talks about reconstruction of high resolution topologies of free flying as well as

tethered insects. The author explains a method for measuring the flapping angle and

torsional angle of a dragonfly wing using two sets of fringe patterns that were projected

from orthogonal directions.

More specifically, Dragonfly maneuvers were studied by Hao Wang et al(12). Eight

individuals were analyzed with 10 sequences each for turning flight and forward flight. A

4

pilot lamp induced the insect to fly across. The angle of the measured fringe is

determined using a reference fringe that is predetermined. The wing base and wing tip are

constructed using identifiable landmarks that are available readily. A Six DOF (Degree of

Freedom) system is emulated which consists of yaw, pitch and roll as a possibility. The

translation is measured with respect to the global origin, which is also predetermined.

The kinematic parameters that were measured are wingbeat frequency, flapping angle,

angle of attack (alpha), torsional angle, and camber deformation amongst others. Some of

these parameters will be measured in the current work.

Reconstruction methods

As discussed by Wilmott et al (14), a common problem in biomechanical studies is the

need to reconstruct three-dimensional motions from two-dimensional film images. This

may be done using single images, or stereo images. Some experimental setups may even

use three orthogonal cameras, or multiple randomly positioned cameras to shoot high

speed images. The work mainly discusses the strips and planes method and compares it to

the symmetry and landmark based procedures. The Symmetry method and the Planes

method form one class of reconstruction methods, as they may be used together. The

Strips and Landmarks methods were developed later and are relatively new strategies.

Wilmott et al (14) also compare all the afore mentioned methods, when applied to the

same experimental set up.

5

II. Objective and Scope of This Research

Background and Motivation

The manual reconstruction method used at the Flow Simulation Research Group (FSRG)

is standard for any insect (or inanimate object) being filmed. The steps of involved are

simple, but time intensive. These steps are discussed below:

1. Three High-speed Cameras aligned along the principle coordinate axes are used.

The capturing system is a Photron Fastcam SA3 60k model (see fig. 1). The

system is capable of capturing a maximum of 1000 black and white frames per

second at full resolution (1024×1024) with a global shutter speed of 2 us. With 4

GB of onboard storage, this stand-alone, network-attached camera system allows

for a maximum continuous record time, at optimum settings, of 2.726 seconds.

Figure 1: Experimental set-up

http://www.cecs.wright.edu/~haibo.dong/wp-content/uploads/fsrg-exclusive/cameralab.jpg

6

2. A similar scene is created in a 3D modeling software called Autodesk Maya, with

the backgrounds set as the images from each camera. Then the body and the

wings are tracked manually by eyeball, and the control points are digitized. This

results in the animation of the insect, complete with moving, rotating and

deforming set of body and wings. A snapshot of this animation sequence is shown

below in fig. 2.

Figure 2 : Maya Reconstruction

Once the geometric information is available, it may be used to calculate the flow around

the bodies or the kinematics involved in a flight sequence. Thus as we can see, the actual

reconstruction is the „bottleneck‟ that slows down the process. The motivation for the

development of auto-tracking software is precisely this. Several questions remained

unanswered; is it possible to create software that can minimize the time required for

7

processing? And if at all it is possible, will the software‟s output be comparable to the

quality of output delivered by manual/human tracking. The use of OpenCV (Open

Computer Vision) along with the C++ programming language is seen in a vast range of

image processing applications. It is chosen over MATLAB because it more robust, and

more flexible. There are several ways to tackle this problem, and these will be discussed

in the next section.

Image Processing Strategies

Camera Projection matrix

The idea of 3D reconstruction from images is not new. However, we must know that the

experimental set up described earlier is special. So, strategies that exist in other research

contributed to learning, but did not contribute directly to the solution of this problem

statement. For example, the research of Walker et al(10) talks about an early attempt at

reconstructing tethered and free-flying insects automatically. Liu et al‟s discussion on

pose estimation was important to this research, although the applications are completely

different(15). Essentially, the problem of Pose estimation is the calculation of the value a

single points position in 3D space from a 2D image. The additional information required

is contained in a Projection Matrix. A projection Matrix contains information about the

camera (or virtual camera) with which the image was shot (or is imagined to be shot

with). The camera matrix gives us the information about the focus, the distortion vectors

8

and the sensor dimensions. This helps imagine how exactly the points were projected on

the plane that we see the image in.

Figure 3 : Camera projection

The pin-hole camera projection model is shown in fig. 3. The point „C‟ represents the

pinhole camera, the vector „An‟ denotes the set of all 3d model points and „an‟ denotes the

set of all corresponding points that are projected onto the screen. Liu et al‟s method to

calculate the values of the projection matrix P, is using error functions. Shape alignment

and model based Pose estimation is done using three points. This gives a maximum of

four solutions. Simply said, length of the vectors forms the focus point, along with the

importance of geometric transformations. Ln is the vector that contains lengths of each

model point from the camera. „P‟ is the centre of perspective, that is, the position of the

camera.

,

,

,

()

| () |

n t

n t

n t

P a f
u

P a f


, , ,n t n t n tPA l u

C

9

Where
,

,

,

()

| () |

n t

n t

n t

P a f
u

P a f


The algorithm has the information of both model points and image points at time t=0.

Using Gaussian elimination and window based correlation, the point‟s in the next time

step are estimated. This is done by minimizing the error function.

E
k
 (I,j,k)= { (l i,t

k
)

2
 + (l j,t

k
)

2
 - 2(l i,t

k
x l j,t

k
) (u i,t

k
 u i,t

k
) }

Thus as we can imagine, for a model with four points, there are 6 error functions to

minimize. For a model insect however, the algorithm described is much more

complicated.

POSIT

 POSIT(Pose estimation from Iterations) is another algorithm that can be made to good

use for this class of problems. Davis et al(17) discuss the development of a simple

algorithm (“25 lines of code”) which uses POS (Pose from orthography and scaling) in

an iteration loop to find better scaled orthographic projections of feature points. This may

be used for planar as well as non planar points with slight modifications. OpenCV has its

own implementation of POSIT, which was used to test the usefulness of such an

algorithm to the problem at hand. Let us say that the dragonfly‟s body could be

represented by four points on the body. It is possible to then reconstruct all points by just

knowing the locations of these points on the image.

10

The code calculates the Euler angles of an object of known geometry once we input the

model coordinates. To explain what‟s happening in a more comprehensive way, the

inputs to the code is the actual 3D coordinates. Based on a picture, the corresponding

points on the picture and a few other factors like the camera projection matrix and the

intrinsic (focal lengths etc) we can estimate the 3D pose of the object that caused this

kind of a projection in space. A series of 40 orientations of the cube were tested. Now, to

check if these predicted values are right, the code uses the estimate and re-projects each

point into image space. Thus, there is an error; however this level of error is expected due

to several factors. The rotation and translation matrices are also outputted along with the

Euler angles.

The code needs at least three non-coplanar points to judge the pose of the objects. This

may be used to get the Euler angles of the insect. The idea of transferring this to the

image tracking code for an insect is not trivial, as the geometry tested here was a simple

cube of side 15 units. A complex geometry like the dragonfly body may not be as simple.

But identifying the corresponding critical points on a body continuously and monitoring

their progress may help. The output of the code is shown below. The black points are the

reprojected values. The red circles are the actual corners of the cube. The red, green and

blue vectors are the sides of the cube that are measured. The output is shown with the

corresponding output, which is the rotation matrix, translation matrix and Euler angles.

11

Sample Output

Table 1 : POSIT algorithm outputs

12

We can see that the algorithm works well for a standard cube. When applied to in insect

however, there are many more complicated issues to be addressed. The insect‟s body is

deformable, albeit in a limited way. The wings on the other hand may rotate, twist and

deform randomly.

Machine learning is one method that may be used to detect special features. Currently

these techniques are very popular for face tracking and human tracking. This leads us to

Haar training.

Haar Training

Haar-like features owe their name to their similarity with Haar wavelets and are used in

face detection algorithms (16). Viola and Jones (18) used the idea and developed the so

called haar-like features. This method involves categorizing the subsections of an image

using the intensities in its rectangular neighborhood. The most popular use of this method

is for face recognition. For example, the eyes are tracked by recognizing the fact that

generally the region around the eyes is darker than the forehead and cheek. So, we force

the code to learn how certain features „look‟ in the neighborhood of other non-objects.

The classifiers are readily available for face detection, and specifically, even for eye, nose

and mouth detection etc. But this kind of a database is not available for insect flight

study. To study the usefulness of this method, 3000 whites samples (with a white

background), 5000 samples with a white-to-gray gradient background, and 3500 color

samples (with random real world backgrounds) were used to create two databases. These

13

images were superimposed with randomly oriented 3D images of one particular wing

(either one of the following – Right forewing, Right hind wing, Left forewing and Left

hind wing). The openCV implementations of haar-training and haar-classifying were

used to display results of the training. The motivation of this exercise is to judge if the

random orientations of the body and wing may be ascertained accurately using this

method. The sample size of 20 X 20 achieved the maximum possible hit rate, as

mentioned in literature (Kuranov et al(19)). Further, if the number of stages to be trained

is 20, we can expect a false alarm rate of 0.5
20

= 9.6 e-07 and a hit rate of 0.999
20

= 0.98

or 98%. In some trials, the training finished at an intermediate stage if at all the minimum

hit rate was exceeded. A few other occasions saw the training utility fail. A set of 3500

images were used for training. These were the set of negative images. Simply put, the

more random the images are, the better the learning process. Several other subsets were

used, such as 100, 500, 1000 etc, and I can conclude here that the more images we use,

the better the results. Now, since the actual set up used in the high speed photogrammetry

lab here has a white background for all three views, I also tried the training with

3000(case 1) and 5000(case 2) white to grey images. However the results were much

better using the 3000 random background images clicked with the lab-provided camera

outdoors. Examples of training images used are shown below:-

14

A „white‟ testing sample A „gray‟ testing sample A „random‟ testing sample

Table 2 : Types of testing samples

 Other „random‟ testing samples are shown below :-

Table 3 : ‘Random’ testing samples

On average, a case run with about 3000 negative images completed all stages of training

successfully with the hardware provided in 3 to 4 days. Although the „training‟ period

takes a long time, the actual identification or „classification‟ is almost instantaneous,

which is the biggest advantage of this method.

15

 An intermediate stage output describes the state at which the training is. At stage 9,

the output is as follows :-

Figure 4 : Haar training intermediate output

The columns above are indicative of the parameters that change throughout the training

stages. Here, an intermediate 9
th

 stage of training is shown. „N‟ is the current feature for

this cascade. „%SMP‟ is percentage of samples used. „F‟ is a parameter which is defines

if symmetry is specified. „ST. THR‟ is the stage threshold, „HR‟ is the Hit rate based on

stage threshold and „FA‟ represents the False alarm rate based on stage threshold. The

time taken for each stage of training is denoted in number of seconds, and the number of

16

features used is also output. The current stage of the classifier is given in a neat diagram

format. To give you an example, 3000 negative images on the machine provided (Intel

Pentium ® processor, 3.4 GHz, with 2 GB RAM and a 64 bit Windows operating system)

takes about 3 days to complete. The all-white or grey images did not show good results as

seen below. The results were erroneous, and even though the hit rate mentioned was

achieved, the outputs were not useful. The results obtained from the right hind wing case

are summarized below.

No. Of

Samples

Case Output

8

White

50

Gray

100

Gray

17

Table 4 : Haar training outputs

As we can see from the results, more number of random images gives better results.

However, the result is never actually an accurate one. The probability that the particular

sub-image is detected accurately increases. Thus this method may not be very useful.

Two other methods of feature specific detection that have no relation to neural networks

and training as seen above are discussed.

Template Matching

Template matching is a very rapid implementation that uses the same concept of

matching a sub-image that is on a super-image. As shown below, zero errors were seen in

the openCV implementation of template matching. However, the downside is that the

method is very idealized. The program moves the sub-image block all over the super-

image and tries to find an exact match. A fore wing obtained from the same super image

of a dragonfly in top view, say, will obviously give a very accurate result. On the other

3000

Random

5000

Random

18

hand, the left forewing of one particular dragonfly will not yield a good result when

compared with that of another. Nevertheless, the implementation of this method is perfect

when the inputs are relevant.

Figure 5 : Output of the template matching algorithm

SURF

Another method that identifies the “best” features to track on say, a wing and then match

those to another photo using a nearest neighbor approach is the SURF method. SURF

(Speeded Up Robust Features) uses important critical pixels and tries to match the sub-

image to the super-image. However, the drawbacks of this method are exactly the same

as the case described above(Template matching). The red circles are the features on the

wing that are used. The white lines denotes a matching correlation. The white box is the

estimated position of the object. As seen in fig. 6, the code does a great job when the left

hind wing of a particular dragonfly is analyzed for features (see the red circles in the

window named “object”) and successfully identifies the wing on the super-image by

matching the features.

19

Figure 6 : Perfect matching using SURF

Shown below in fig. 7 is a test sample with the original Left Hind wing of the dragonfly,

tested with another completely different dragonfly super-image. To add some more

difficulties to this test of robustness of the code, a poor quality image with poor lighting

is used. As shown above, the code fails miserably. This is because the wing of a

dragonfly is like a fingerprint; even though you may be able to find a few matching

features, it is not possible to successfully report a hit.

Figure 7 : SURF - erroneous output

20

Methodology Comparison – Manual vs Automatic

In order to compare the results of a successful automatic reconstruction, it may be useful

to follow the same methodology that is followed when attempting to track or reconstruct

the dragonfly flight video manually.

Basics of Manual Tracking

As mentioned earlier, this is done using a 3D modeling and animating tool, specifically

Autodesk Maya(20). The general steps to achieve a manual reconstruction are outlined

below:-

1) The individual image planes are created perpendicular to each other

(„Orthogonal‟)

2) The actual images are added as dynamic „Lambert‟ materials that change at every

time frame.

3) The body and the wings of the given insect are created to form the static model.

4) Critically important keyframes are chosen to animate the body first.

5) Once the body is animated, the wings are attached to the body at one single point

as a 6 degree of freedom joint.

6) The wings are then animated with the help of control points to give a full

reconstruction.

21

As we may imagine, this would also be the outline to follow while attempting to track the

dragonfly automatically. However, this is not true. The brain‟s processing capabilities to

automatically complete hidden images and objects, to interpolate and extrapolate, and to

automatically ignore noise cannot be underestimated. These are some of the assumptions

that an auto-tracking code cannot take for granted. Manual tracking, however, is very

laborious. A „Full‟ reconstruction of a dragonfly that completes two wing-beats or

strokes may take up to 4 days. This is also one of the factors that imply that an auto-

tracking solution may prove to be very useful in the future.

Issues with raw input

At first, following the same strategies followed by a manual tracker, but putting it in

terms of a computer code, may sound trivial. However, there are several issues that need

to be addressed, some of which are:-

1) Experimental set up

2) Lighting and Shadows

3) Presence of other objects

4) Focus and Resolution

5) Noise

At the very basic level, any image processing tool works with intensities and intensities

only. At least this is the case while dealing with gray images. This stresses on the fact

that the input (raw images) must be of very high quality. The quality is not only

determined by the resolution of the image, which in fact is very good in this case (1024 x

22

1024 pixels), but also by the lighting, composition and focus of this dynamically

changing system.

1. Focus : The insect to be detected is defocused. Hence, however large the

resolution is, the edges are still not well defined.

2. Lighting : The light intensity can be seen as fluctuations of intensity on the

image. Although this noise can be corrected, it is impossible to eliminate

completely.

3. Multiple detections : OpenCV can only identify objects based on color intensity.

As the video input is in grayscale, the options are limited. Shadows of the objects

are also treated as objects. This can lead to errors.

4. Background : There is a need to eliminate random objects such as (4) in the

figure above as much as possible.There are some standard procedures used to

eliminate noise and shadows, and to also isolate dark regions, like in this case, the

body. But these procedures also cause a loss of some very important information.

To understand how important lighting is, let us look at the following example.

23

Original set up With background dimming With Background dimming

and Backlighting

Table 5: Effects of lighting

Shown in table 5 are effects of different lighting situations. The first image shows an old

can pictured with only front lighting. At the same orientation, two other pictures are

taken: one, by darkening the background and two, by adding some backlighting. It can be

seen clearly that the third image with a dark background and backlighting gives the most

amount of details. In addition to this, the light used is an A/C light, which means, the

oscillations of some light pattern will be seen if the camera is fast enough. This is seen as

Figure 8 : Issues with raw input

24

varying bands of intensities in the raw input. Fig. 9 shows the image at a threshold value

of 88 to see the lines or bands caused by the oscillating light.

Issues with Manual Tracking

Although manual tracking has been projected as a close-to-perfect method, there are

several issues that go ignored. One of these issues is about the very method itself. As

described earlier, the orthographic planes set to reconstruct the motion and deformation

of an insect, are not accurate. This is because at any given frame, the insect is at a

different distance from the three cameras. Thus, the magnification and focus change with

every time-frame and with respect to every camera.

Perspective Modeling Orthographic Modeling

Table 6 : Errors in orthographic modeling

Figure 9 : Light 'Bands' seen in the video

25

Table 6 shows visually, the error that is present in measuring the location and orientation

of the body when attempting a plain and simple orthogonal reconstruction. To delve

deeper into this concept, the different views also never match simultaneously. This is

mainly because the background pictures represent how the camera „sees‟ the three planes,

but the modeling procedure assumes that the planes are perfectly orthographic. Placing

three cameras in the modeling software with identical camera matrices decrease manual

tracking error dramatically. Seen in table 7 are examples of such frames in the process of

tracking the body. Fig 7 shows the camera rig in the Autodesk Maya software. The green

color is the mesh that represents the 3D body that is fit to the 2D plane. The three views,

top, side and front along with the perspective views were generally made use of for

modeling.

Figure 10: Artificial camera rig/set-up

This logic may be easily extended to a case where the modeling of wings as a whole, or

control points in particular is involved. The basic idea is to simulate a back projection

model that will retrace how the camera perceives a point.

26

Table 7 : Using the artificial camera rig

Auto-Modeling via Image Processing

 3D modeling is essentially locating the points on the solid mesh of the body accurately.

Once all the points are known, a sensible relation may be derived for the interconnecting

lines and therefore the surfaces (triangulated) involved. Here we will look at a tool that

helps to construct the body and the wings of an insect automatically. This will be useful

in the reconstruction process.

Body modeling

Most insect bodies are symmetric in one particular plane. Thus we would need

information from one less orthogonal plane. Body modeling is done using a single photo

of the insect taken in top view, along with a file called the „profile-descriptor‟. This file

contains information as to how the profile or side-view of the insect changes. The code

processes the picture by first thresholding the picture. This is the process of separating

27

the darker portions of the picture from the lighter ones. Since the body of a dragonfly is

opaque and the wings are transparent, this proves to be a good technique. The body may

be then constructed as semi-ellipses. The major axis of each ellipse that forms one

particular section of the body is along the top view. The minor axis is obtained from the

two separate profile descriptors that describe the top profile and the bottom profile as

seen below. The sections of semi ellipses form a fairly accurate representation of the

dragonfly body.

The veins of the wing on the other hand are darker. The edges and veins may be directly

obtained. The body and wing information together form the 3D model of the insect. The

insect model is created in ten seconds or less. This is much faster than a manual attempt

to model the body and wings in Autodesk Maya. We start off with an image as shown

below that captures the details of the insect from the top view. This picture provides

information about both the body and the wings. The image may be skewed or tilted. The

program rotates the whole image so that the body is exactly vertical. The thresholded

image gives mainly the body information. Then, there are several sections of the body

that are automatically and accurately selected but some other parts are not. The parts that

are not accurately selected are due to mainly the presence of appendages such as

legs(tibia and femur, as shown below). The „void‟ of information in this portion of the

wing is filled in by interpolation. Now that the top view information is known, the

program loads the profile descriptor files that were described earlier and builds the body.

A canny edge detector is used to capture the wing points, that is, points that describe the

wing veins and wing boundaries. Also, the stigma being darker in color may be easily

detected.

28

Figure 11: Left-Original image (top view); Right-Thresholded and corrected image along with

detected segments

Figure 10 shows all the detected segments as gray horizontal line. The vertical resolution

is one pixel, which means that one line is juxtaposed with the next. This makes it seem

like one continuous gray region. This information is used along with the profile

descriptor files that are obtained from a side view, as shown below in fig. 11. This is a

specific file generated for one particular species and need not be generated repeatedly.

Figure 12 : Side view

29

The generated wireframe body is shown in fig. 12, and matches very closely with the

actual dragonfly shape.

As described earlier, the critical points on the wing such as the stigma and the veins are

darker, and hence may be directly obtained from the picture. The table below shows

different perspectives of the fully constructed insect. Again, this information is collected

in less than ten seconds. Compared to a manual reconstruction, the body is as accurate if

not more, and the wings have extra information such as the veins, critical parts like the

stigma and the important edges. The table below shows the actual dragonfly, a picture of

the manual reconstruction and another obtained from the code.

Figure 13 : 3D wire-frame rendering of the

reconstructed body

30

Table 8 : Different views of the fully constructed body

Table 9 tells us that the information obtained by a manual reconstruction or automatic

reconstruction in the static case cannot be directly compared. Both methods give us the

overall idea. Although the manually reconstructed model is visually appealing, it is only

as accurate as the creator himself. The automatic method does not look for a „better-

looking‟ model but is scientifically correct and is accurate to one pixel dimension. The

automatic method is faster and provides more information about the wing. The manual

method is more accurate-looking, and automatically has catmul-clark surfaces defined

between the edges formed by the points.

31

Table 9 : Comparison of static reconstruction results

Mathematical Modeling of the Wings

In the previous section, the body of the insect was modeled mathematically, even though

this wasn‟t stated explicitly. This was done by creating semi-ellipses on either side of the

body (Dorsal and Ventral) with the help of information from the profile descriptor files

and the body segments. The wings however exist as random points and are not related in

any way. Mathematical modeling might be necessary at some stage.

Each wing may be modeled as a separate 3D curve. There are several ways of

representing a wing; two such methods are described below.

32

Modeling using b-splines

Most shapes are too complex to be represented by simple equations in the Cartesian or

polar form. A spline curve or a Bezier curve is more flexible and can adapt to randomly

varying control points very well. A spline curve is a series of curve segments that are

joined in such a way that the result is a single continuous curve. Without going into the

mathematics of it, curvature continuity and point-to-point continuity are required

everywhere. Given m real values of ti (called knots) with t0<=t1<=….<=tm-1, a b-spline of

degree n is a parametric curve S:[tn, tm-n-1] -> R
d

composed of a linear combination of

basis b-splines, bi,n of degree „n‟

2

, 1

0

() (), [,]
m n

i i n n m n

i

S t Pb t t t t
 

 



 
2

, 1

0

() (), [,]
m n

i i n n m n

i

S t Pb t t t t
 

 



 

The points P (“control points” or “De-Boor Points”) here are the points on the outermost

contour of the wing. More number of control points results in a „tighter‟ b-spline. The

points on the wing may be digitized by individual mouse clicks or obtained automatically

by finding the points on the outermost contour. As an example, let us study the left fore

wing. Now, we may recognize the outline of the wing directly. A random number of

points may be digitized and used as the control points on the wing. Next, a closed b-

spline is drawn using these control points. As seen below in fig. 13 , the b-spline

approach gives an almost perfect fit using the control points.

33

Figure 14 : Actual Left Fore-wing

Figure 15 : Closed b-spline

modelling the Left fore-wing

The digitized points are shown in fig. 13 as gray circles on the b-spline blue in color. Not

only is the b-spline method accurate, it is also very flexible. Changing the location of any

control point changes the shape of the whole curve or at least part of it, depending on the

degree. However, there is no definite equation that we can relate the curve to. The

parametric model solves this problem.

Modeling using Parametric Equations

The same left fore-wing may be parameterized using some variables to give a closed

curve. Shown in fig. 14 is the left fore-wing (rotated) of the same test subject along with

the points that were used to „fit‟ a parametric equation to it.

34

Figure 16 : Digitized points along with the original picture

The method of finding a perfect fit is using harmonics. For example, a standard approach

is to use just one harmonic. The resulting curve is an ellipse that is a best fit to all the

given points. We may add several harmonics to let the curve „fit‟ the points better. The

table below shows details about the same. As we can notice, the curve progressively

becomes more accurate when we add more harmonics to represent the closed curve

through the points. Both the methods, Bezier curves and parametric curves have their

own advantages and disadvantages.

No. of

Harmonics

used

Parametric curve Corresponding equations

1

X[u] = 523.84535

+30.157815*sin(2*pi*u)

+30.157815*cos(2*pi*u)

Y[u] = 196.07313 -142.6678*sin(2*pi*u)

-142.6678*cos(2*pi*u)

 X[u] = 524.91486

+32.240129*sin(2*pi*u)

+32.240129*cos(2*pi*u) -

35

2

449.69821*sin(4*pi*u) -

449.69821*cos(4*pi*u)

 Y[u] = 198.28515 -

137.44528*sin(2*pi*u) -

137.44528*cos(2*pi*u) -

77.30617*sin(4*pi*u) -

77.30617*cos(4*pi*u)

4

 X[u] = 569.23315

+55.522314*sin(2*pi*u)

+55.522314*cos(2*pi*u) -

458.27476*sin(4*pi*u) -

458.27476*cos(4*pi*u)

+5.5309542*sin(6*pi*u)

+5.5309542*cos(6*pi*u) -

9.0340476*sin(8*pi*u) -

9.0340476*cos(8*pi*u)

 Y[u] = 221.92512 -

157.50302*sin(2*pi*u) -

157.50302*cos(2*pi*u)

+89.682758*sin(4*pi*u)

+89.682758*cos(4*pi*u)

+8.3766503*sin(6*pi*u)

+8.3766503*cos(6*pi*u) -

5.0076607*sin(8*pi*u) -

5.0076607*cos(8*pi*u)

These equations may not be easily applied to the tracking solution. The purpose of this

exercise was to show that mathematical expressions exist to model both, the wings and

the body. The application of the wing modeling will not be applied in the first stage of

wing kinematics estimation. At a more advanced stage of this research, the above

information may prove to be useful.

36

III. Auto-Tracking Technology

Introduction

Of the several attempts made towards achieving an auto-tracking solution, the two most

prominent research contributions are by Ristroph et al(21) and Ebraheem et al(4). Both

researchers use the fruit fly (Drosophilia) as a test subject for their auto tracking

technology, and use custom software to achieve the same. However, there are several

differences when compared to the methodology used at the FSRG lab.

1. The test subject is different. The FSRG lab uses a female dragonfly (Ajax Junius)

whereas the above mentioned labs use the Fruit Fly (Drosophilia).

2. Deformations of the wing and body are more pronounced; The rigid body

application may not be useful here.

3. The viewing volumes are very small in both the cases. In other words, the volume

of the imaginary cube formed by the intersection of the rays entering each camera

is very small compared to the set up here.

4. Ristroph et al (21) use a Hull reconstruction method (HRMT) and Ebraheem et

al(4) use a model based approach. A completely different method will be

attempted here. The concept of constructing a cloud of voxels was however,

inspired by the pictures in Ristroph et al‟s (21) paper.

37

5. The complexity of the problem increases as the Dragonfly has four pairs of wings.

A combination of these two factors: One, the presence of only one pair of wings

on the Drosophilia, and Two, the small viewing volume as described above,

makes the work of image processing simpler.

6. An added consequence of the small control volume is that shadows are

completely negligible.

7. The fruit fly‟s body is symmetrical. This makes roll estimation difficult. The

dragonfly has a definite shape when seen in the profile view. This will be used to

estimate roll.

8. Both methods make use of a MATLAB implementation. The image processing

here is done using an open source library „OpenCV‟ and the code is written in

C++.

9. Both codes require the user to manually track the first position of the body and

wings. The algorithm then tracks the wings and the body at in subsequent frames.

Thus, it might not be fair to compare the three methods. However, the aim of the three

methods is similar, and this will be used to connect them somehow. At this juncture it

might be relevant to briefly describe the afore mentioned methods.

Ristroph et al(21) use Phantom CMOS digital cameras at a resolution of 512x512 to film

the insect. Magnification is achieved by optical bellows. The cubic filming volume has a

side equal to 1.5 cm. This is to eliminate perspective distortion. In my method,

perspective distortion is eliminated by modeling the camera itself. Shadows are

38

eliminated by directing the light into the camera lens. A laser is used to trigger the three

cameras when the fly is in the filming volume. Voxels are generated by a MATLAB code

and the data is analyzed using Principle component analysis. A clustering algorithm

identifies different parts of the body and the wing. Body as well as wing kinematics are

generated. Finally the auto-tracking method is compared to a manual tracking method.

Ebraheem et al(4) film the fly at 6000 frames per second with a Photron Ultia camera,

also at a resolution of 512 x 512. At each frame and for each camera, a 1D Gaussian

mixture model is fit into the images and the fly pixels are segmented using an

expectation-maximization approach. The pose of the fly is predicted dynamically using

the previous pose (in the previous frame). A generative model is used instead of a triangle

mesh model to reduce complexity. The images are segmented to body and appendages

using a histogram of pixel intensities. About 500 samples are constructed manually in the

training stage for both escape and voluntary take offs. The code then “learns” to predict

the wing and body movement in frames. Errors and kinematics results are also presented.

The Input Image

For any image processing application, it is important to study the data-set in

consideration first. Shown below in fig. is a sample image. The raw image has

dimensions of 1024 x 1024 and is an 8 bit integer „uint‟ image, which means that there is

a maximum possibility of 256(2
8
) gray shades that can be used here. In other words, the

gray intensity values all range from 0 to 255, and are integers. A custom tool was

developed in MATLAB to judge as to which set of images are suitable for studying.

Suppose we have an input image as shown below. The histogram shows that most of the

39

pixels are clustered around the mid-tones region. The image is shown here in a „gray‟

color map along with its histogram. The image is thus not balanced well.

Figure 17 : The original image with its histogram

We may use the tool to draw a custom histogram to see how it affects the raw image. To

include more details we may increase the number of pixels in the shadow region of the

histogram and decrease the highlights in the far right end.

Figure 18 : Forcing the image to have a particular histogram

The non-uniform distribution of light is clearly seen in this image. All three spotlights are

focused at the „origin‟ which is the brightest region. The „forced‟ histogram equalization

in fig. 18 seems to be useful as the background is eliminated and the image is segmented

40

or separated from the rest of the image. But as we can see, only details of the body are

seen as the lighter wings are flushed out too.

Figure 19 : Segmentation using histograms

Processing a Single Image
Though the dataset we have is actually a „video‟ or a series of images from the high

speed camera, we need to address the issue of processing single images first. Later, a

correlation between consequent images may be made. The code involves several levels of

user interaction, but that will not be discussed here. The steps of processing will be

outlined below.

Smoothing

Smoothing, or blurring as it may be better known, is the process using a guassian

function to smudge the image. Mathematically, applying the guassian function is the

same as transforming the image with :

41

2 2

22

2

1
(,)

2

x y

G x y e 








This is also known as a Weistrass transform in two dimensions. The effect obtained is

that of viewing the image through a blurred translucent screen. This helps spread out the

dark shadows and external objects that are present in the scene.

Figure 20 : Image after smoothing

The effects of smoothing the image, specifically by a 17 x 17 window of pixels cannot be

appreciated at this stage directly. This helps the next stage of processing, which is

thresholding.

Thresholding

Thresholding is a process that is applied to each point (or pixel) in the image. According

to the values that are fed into the function, each pixel is marked as an “object” pixel if the

value is above a threshold or in between a particular range, and is marked as a

“background” pixel if the afore mentioned conditions are not satisfied. In this particular

42

implementation, a truncation method is used wherein all the pixels that aren‟t in the

provided range or threshold are truncated to a particular value.

Figure 21 : Image after thresholding

As seen above, the combined effect of blurring followed by thresholding has successfully

segmented the body from the background. The shadows and external objects have been

eliminated. However, the downside is that information from the body has also been

eliminated. Also, the body is not continuous in all regions as holes are seen. These

defects will be corrected by morphological functions.

Equalizing the Histogram

To be able to use the image, we need to convert the image to a black and white image, or

ones and zeros. Since the values around the dragonfly‟s body are all truncated to the same

value, equalizing the histogram of this modified image simply lifts the values of all the

pixels that have been truncated to one set value by the previous stage to the maximum

value. As a result the following conversion is achieved.

43

Figure 22 : Image after histogram equalization

Morphological Operations

The two most common morphological operations are Dilating and Eroding. Both these

are applied to binary (or black and white) images. The effect of this operation is to

gradually enlarge the boundaries of regions of the foreground pixels. Thus the holes in an

image become smaller. The erode operator works mainly on binary images but some

versions of it also work on grayscale images. The effect of the function is to erode away

boundaries of regions on the foreground. The holes therefore become larger.

The result of equalizing the histogram as seen is to create a hole (the darker body) with a

white foreground. Thus to add more artificial detail, we need to use the erode operator.

The result of this stage is shown below.

44

Figure 23 : Image after eroding

Edge Detection

The final stage of processing is detecting the edges of the image produced after the

morphological operations. The method used is called Canny edge detection. The canny

edge detector uses a multi stage algorithm to detect a wide range of edges. Without going

into much detail, the canny edge detector uses the calculus of variations which optimizes

a given functional(Canny Edge Detector 2012). As we can see in the image below, the

outline of the object has been detected, thanks to all the previous stages.

Figure 24 : Edge detection

45

Combining the Three Camera-Views

The discussion in the previous section gives us an idea about how one camera image is

processed. To have a useful outcome, we will have to use information from all three

camera views. It is a fact that two camera views may automatically give information

about the third, but all the details might not surface. It is even safe to say that to an extent,

two orthographic views may never be able to give enough information about the solid

object. The work of Ebraheem et al(4) is not one of a kind, in a manner that the method

of using voxels has been made use of in many research works. A voxel may be described

as a discrete 3D pixel. As a 3D object may be projected on the three mutually

perpendicular planes to obtain the so called „orthographic views‟, we may imagine that a

3D model may be reconstructed from three such views.

Figure 25 : Orthographic views of an object

As seen in fig. 23, we need to address the question of whether the solid gray body in

between the expanded orthographic planes has enough information to reconstruct the

body in between. To show that this is not possible, consider a simple object as shown

46

below. If we had to use only two images or two views to reconstruct it, clearly the result

is not desirable as there is simply not enough information.

Figure 26 : Reconstruction errors while using only two views

Extending the processing of one camera view to the others is simple since the operations

are the same and are done in the same order.

Figure 27 : Three views of the camera

47

Contour Information

The views are processed as mentioned before and combined together. The next step is

simplifying the combined image into „quad‟, „tri‟ and „bi‟ contours. These are various

levels of contours that revearl important information. The edge detected dragonfly body

in each view is fit to a contour. Now, at very high resolution, the contour closely

resembles the edge that is detected. However, we may break down these contours to have

lesser number of total line segments. A typical view is shown below. The green rectangle

around the body of the dragonfly is the „bounding box‟. The yellow

curve is the contour at high resolution, and closely matches the edge

detected by the canny algorithm. The blue quadrilateral is the quad-

contour and the red triangle is tri-contour. The bi-contour simply

joins the head point to the tail point. The purple curve is an ellipse

fit to the points on the contour. Because of the peculiar shape of the

dragonfly body, the location of the head point and the tail point is decided by analyzing

as to which side this ellipse is biased towards. These contours help simplify the problem.

The only user input required is that of aligning the front view (Camera 1), top view

(camera 2) and side view (camera 3). Once this is done, this set of contours and other

information is displayed for all three views. Using the pixel density of the image, it is

possible to identify with 100% accuracy, the head point, tail point and “roll” point as seen

in figure 26. The largest white circle is the “head point”, the white point is the “tail point”

and the gray, medium sized circle is the “roll point”. These three points form a plane. It is

possible to find the pose of a triangle once a mathematical model of the dragonfly is

48

given. But this is not the approach that will be used here. Once all this information is

stored in structures (a c++ object), we may proceed to the next frame.

Constructing the Voxel Model

Now that all the information has been collected from all views, we may construct the

voxel representation of the body. The contour that closely follows the actual edge of the

body is a closed curve. This curve is first filled so that all points inside the contour are

ones, and all points outside the contour are zeros. Essentially this is like creating a

surface from a closed curve. Next, the surface formed in each plane is extruded outwards

to form a volume that has a cross section that is the same as the surface obtained from the

curve in the first place. Thus, at this stage we have three extruded volumes from each

Figure 28 : Decomposing into sets of contours

49

view. The bounding boxes (in green) that are calculated in the contour stage define the

bounding „volume‟ that will enclose the final body volume. This 3D array is dynamically

created in the computer at every single frame since the dimensions of this box are

different for different frames.

Figure 29 : Surface and extruded volume of one view

Fig. 27 shows an example of the 2D surface constructed from the edges and also the

extruded volume. The intersection of such extruded volumes from all three views gives a

3D representation of the body in voxel format. Fig. 28 shows the resulting voxel formed

using the information from one time frame(i.e. three cameras).

50

Figure 30 : Two views of the reconstructed body

One method of finding the orientation of the body is to fit the body that was constructed

originally (discussed in Auto-modeling) to this set of voxels. The least square fit would

determine the orientation. However this method was not very accurate and was hence

discarded. The results are shown below. The left hand side image shows the axes and the

voxel body whereas the right hand side shows the pre-constructed body oriented to match

these voxels using lease squares.

Figure 31 : Voxel and pre-constructed bodies

51

Analyzing Voxels

The generated voxels are stored in the dynamically created bounding volume that was

described earlier. Recounting the shape of the dragonfly‟s body we see that the „hump‟

on the back of the dragonfly may be used to our advantage. The shoulder and the thorax

turn upwards near the head. The body is also symmetric about the longitudinal plane.

Therefore, the orientation of the dragonfly is fully specified by this particular plane only.

There is no other information required. We first slice the voxel body and find out the

centroids of the each slice (or surface). To obtain the orientation of the plane, we define

three points: A point on the tip of the head, a point on the shoulder and a point on the

auricle or the portion where the tail segments start. We may also choose the tail point as

the third point.

Figure 32 : The centroid line and orientation triangle

 This as we will see later is troublesome as the tail moves erratically throughout any take

off or maneuvers. All these points lie on the curve that joins the centroids „line‟ which is

shown in white above. As we can see below, the red shaded area is the section that cuts

52

the dragonfly into two longitudinal halves. The blue „orientation triangle‟ is the plane

formed by the three points mentioned earlier. The fact that these points are not collinear

at any given point of time may be used to our advantage. These three points specify the

orientation triangle plane in 3D space, which then gives us information about how the

dragonfly is oriented (Pitch, Roll and Yaw).

Although the orientation of this plane is continuously changing, the choice of the three

points that form the orientation triangle is one that gives reliable information. If the third

point was selected to be the tail point, the problem would yield more erratic results. This

is because the dragonfly‟s tail segments are much more flexible. The body can thus be

classified as the more rigid body-head portion and the more flexible tail portion. The

body-head portion does not deform and so it makes sense to use the this triangle rather

than the larger, more unstable triangle involving the tail. However, algorithm wise,

involving the tail would be simpler as it would not require analyzing of voxels. All points

may be located on the surface of the Dragonfly body itself.

Calculating Pitch, Roll and Yaw

Pitch, Roll and Yaw are the three critical flight dynamics parameters that describe the

orientation of an aircraft about its centre of mass. This set of angles along with the

translation of the centre of mass in 3D is the information we look to harvest. There are

several ways to calculate the pitch, roll and yaw but the simplest way is to use the

definition itself to calculate the successive three rotations required to transform the object

coordinate system to the global (fixed) coordinate system.

53

The dragonfly is oriented randomly with respect to the global coordinate system. Using

vector manipulation in an iterative procedure, we may find a reasonably accurate

solution. To calculate the angles, the code iterates until it hits an appropriate plane, and

stores that rotation in degrees. The order of calculating the angles are „Yaw‟ first, then

„Pitch‟ and finally „Roll‟. Some other authors may use different notations. To understand

what is really happening, refer fig. . Initially the object (represented by a sphere) has two

axes connected to it. As shown below, the red vectors are the body coordinate system

after each rotational transform. The fixed blue vectors constitute the Global coordinate

system. Initially the body is oriented at some random angles of pitch roll and yaw. First,

we rotate the body about the y‟ (Yaw) axis until the red z‟ vector hits the X-Z plane. Next,

we Pitch about the new z‟ axis until the x‟ vector reaches the X-Z plane. At this stage the

y‟ axis is in line with the Y axis. Finally we Roll about the y‟ axis so that all three vectors

match the corresponding vectors in the global coordinates system. This may also be done

using matrices.

54

Processing the video

Processing a video is exactly the same as processing multiple images in succession. The

processing that was discussed until this point will be applied one by one to all frames that

describe the flight of the dragonfly and thus we will obtain the history of motion and

kinematics of the body as a result. The steps involved in operating the software to enable

processing of the entire video are outlined here.

STEP 1 – Initiation

The user first directs the program to the folder that has the required image sequence.

Once the path is set and the code is compiled, the three views from the three cameras are

seen on one pop-up window.

55

STEP 2 – Aligning

The user must then middle-click the image to let the program know that the initiation

process has begun. Then the global origin of the imaginary 3-D space is set by dragging

first, from the front view (top left) to the side view (top right), and then from the front

view to the top view. After this point the continuous auto-tracking begins.

STEP 3 – Tweaking Parameters

The parameters that control the image processing may be tweaked using the trackbar

window shown below. The user is allowed to change four parameters:

 Threshold: The default value of threshold is 54. It has a range of 1 to 100.

 Erode: The default value of the erode trackbar is 4. It ranges from zero (no erode)

to 10 (10 iterations of eroding.

 Smooth: The smooth trackbar has a default value of 5. It is allowed to have only

odd values due to constraints of the function as specified by the OpenCV library.

 Canny: The canny trackbar has a default value of 4. As this value increases the

size of the segments used to form the closed edge around the dragonfly body

decreases.

Figure 33 : Trackbar controls

56

 The parameters may be changed at any point of time during the video processing.

STEP 4 – Displaying results

The values of Pitch, Roll and Yaw calculated by the techniques described before are

immediately displayed on a separate „plot‟ window. The red, blue and green lines

represent the time history of the values of Pitch, Roll and Yaw respectively. Thus the

kinematic parameters of the maneuver are being displayed as the required angle in real

time. The range of values of all three angles are from -180
o
 to +180

o
.

Figure 34 : Displaying Euler angles in real time

57

Graphical User Interface

There were several „codes‟ referenced to up until now. These codes are reproduced in the

appendix section of this document. For an end user who is just looking for results of each

of these codes it is difficult to vary parameters and variable values as is. Therefore a GUI

was created to access these codes in a systemized way. The GUI was written in c++ as a

forms application. Some screenshots of the GUI are shown below:-

Initial screen

Figure 35 : Initial screen of the GUI Interface

Fig. 34 shows the initial screen of the GUI interface. The user first selects which insect is

being studied in the region marked „1‟.

58

Body-Wing modeling Tab

 The region marked „2‟ is the Body-Wing modeling tab where the two entities of the

insect, Body (comprising of the head, thorax and abdomen) are built. Once a choice of

the insect is made through the radio buttons in region one, the appropriate „profile

descriptor‟ of that particular choice of insect is loaded. Note that only the „Dragonfly‟

module has been completed. To manually digitize a profile descriptor, the user presses

the „change profile data‟ button in region „3‟. The program for manually clicking the top

and bottom profiles of the insect then pops up. The user then clicks the two endpoints to

generate a grid in light gray. This grid helps the user to manually trace the upper and

lower profiles. Once the user completes digitizing the points on both the profiles, the

profile descriptor files for that specific species are written onto a file. A screen-shot of

this particular utility is shown in fig. 35.

Figure 36 : The profile descriptor utility with instructions

59

Once the profile descriptor is loaded and the body is constructed, the wing extraction

utility is enabled and the status-bar and the time are updated as shown below.

Figure 37 : Body-wing modeling complete

Yaw-Pitch-Roll tab

The second tab is for the Euler angles calculation utility that was described in the

previous section. This tab is shown in fig. 35. The user must direct the GUI to the path

that contains images from the three different camera views. The user may also choose to

„Move Files‟ to one single location. If the user has moved the files manually into the

working directory, he may use the check-box to specify so. Once the three folders are

recognized, the views appear on the right hand side of the second tab as shown below.

The user specifies three numbers in the text boxes shown in the fourth quadrant of images

in the second tab. The Tabs „From‟, „To‟ and „Skip‟ let the user specify the range frames

to process and the number of frames to skip in between one processing stage to the next.

A „Skip‟ value of 1 would process each and every frame in the specified range. The skip

value may also be specified by the mini trackbar. Once all the parameters are supplied,

the „Calculate‟ button is used to start the Euler angle program.

60

Figure 38 : Yaw - Pitch -Roll calculation tab

Other Tabs

The third tab shows

information about a „Virtual

Marker technology‟. This will

be described in the future

work section. The GUI also

opens the user to some open

source utilities, either

available online or developed

in house. „VirtualDub‟ is a

software that may be used to

enhance or preprocess the

image before getting into the

actual processing stage. The

 Figure 39 : Virtual marker and Utilities Tab

61

contrast and sharpness may be improved and the noise may be eliminated. The

„ConvertAvi‟ simply converts the input or the output .tif images into a movie. The

„RenameFiles‟ utility helps the user rename multiple files at once. This is used during the

manual reconstruction stage before importing the image files into the software Autodesk

Maya. Finally, „MeshLab‟ is the software that is used to display the „.asc‟ geometry files

that are generated by the code.

 Test Cases

In an attempt to further study the working of the Euler angle code, test cases will be

discussed in detail. Several cases were studied out of which only some will be discussed

in detail. The final results of the other codes will be discussed in brief to confirm the

validity of such a software. All cases were studied by first reconstructing the body

movements using Autodesk Maya by hand and then comparing it with the results

obtained by the software. The Euler angles from the software are displayed or written

automatically as discussed earlier. To calculate the Euler angles from the manual

reconstruction, a customized code was used that was developed by another member of the

FSRG group. This code has been used extensively and tested by the members for other

applications.

Test Case 1

 Shown alongside is the first case to be studied. The dragonfly is initially close to a wall

in an almost vertical position (see the blue body). The color scale represents time. The

hotter the color is (redder), the more towards the end of the maneuver the snapshot is.

62

 Verbally describing a maneuver is close to impossible, but simply said, we can see that

that the dragonfly is initially at a random orientation, after which it dives backward and

rolls to regain a straight heading. There is data before the starting time and after the

ending time shown here, but clearly this is the most important part of the maneuver. What

can be seen directly is that the body rolls in a negative sense. It must also be clarified that

the though the centre of mass decreases, it does not mean we may get a good picture

about whether the insect is pitching down or pitching up. The three kinematic parameters

will be looked at hereafter. Shown below is a table describing three graphs. Each graph

compares the results obtained from the manual reconstruction and the auto-reconstruction

software. A dimensionless time scale simply implies that the time at which the maneuver

starts is represented as „0‟ and the time at which the maneuver ends is represented as „1‟.

Figure 40 : Test case 1 in time snapshots

63

Plot Explanation

()phi roll 

First of all, the range of variation of

both values does not differ by much.

The auto-tracking results seem to

fluctuate much more than the results of

the manual tracking. The roll decreases

smoothly from an initial value of 110 to

a value as low as 50.

()psi yaw 

The code generated points that were in

very close agreement with the manual

tracking code. The error seems to be

very small. From t=0 to t=0.2 however

there is a slight fluctuation. This range

of peaks corresponds to fluctuation

discussed in the roll.

()theta pitch 

We find that the pitch calculated is also

in close agreement to the manual

tracking results. The initial fluctuation

corresponds to the that of the other two

angles.

Table 10 : Test case 1 - Plots and explanations

64

Test Case 2

The dragonfly in test case 2 is seen flying across the filming volume towards a wall. The

dragonfly is initially pitched down; it continues in the same angle for a short period of

time and then suddenly starts pitching up. Similar to the previous test case, we see that

the bodies shown in fig 39 are color coded. Blue or colder colors represent starting of the

maneuver and Redder colors represent the end. The body orientation also makes it

obvious for us to understand the manner in which the dragonfly is moving. This is a very

smooth pitch – up maneuver and does not have any sudden oscillations. Shortly after the

portion of the filmed maneuver shown above, the dragonfly hits the wall. But this does

not seem to affect the trajectory of the turn before the end, which is very smooth. By

inspection we can see that the dragonfly pitches up slowly until the end. We cannot

decipher yaw and roll from the video, which says that the variation of these parameters

cannot be much.

Figure 41 : Test case 2 in snapshots

65

Plot Explanation

()phi roll 

Most of the values of roll is in very

close to the calculated roll except for

the last portion, from time 0.85

onwards. As predicted there is not

much of a change in roll angle

throughout the maneuver time (T = 0 to

1).

()psi yaw 

A very steep increase in yaw is seen in

the values generated by the manual

tracking. This is unrealistic as there is

no such apparent jump in the yaw

value. Thus in this case, the auto-

tracking code generates more reliable

results.

()theta pitch 

The pitch calculated by the manual

tracking code also shows a similar

fluctuation in the initial part of the

maneuver, which is not reflected by the

results of the autotracking code. Also,

the manual code shows the value of

pitch to go past the negative line into

the positive region. By inspection we

can see that the dragonfly body doesn‟t

really reach a position that is parallel to

the X-Z plane (see the last red body in

fig. 39.

Table 11 : Results of test case 2

66

As seen in the results, the dragonfly mainly pitches up. The quality of the video is good.

Since the insect flies across a relatively small filming volume, the lighting distribution is

even. It is not a take-off case and hence there are no external objects, be it light or dark.

There are almost no shadows in the videos except for the top view, and this is acceptable

as the shadow formed is light and disappears towards the end of the sequence. As all

conditions are favorable and the maneuver is simple and smooth, one can expect the

results to be in good agreement.

Test Case 3

Shown above is the second case studied. Again the color scheme indicates that the redder

or hotter the color is the later the snapshot is taken. The view shown is close to a top

 Figure 42 : Test case 2 in snapshots

67

view, but slightly rotated about the y-axis. The dragonfly is initially at rest. It is rolled

towards the left side and is ready to take off. Once it leaves the stand on which it was

perched, it makes a very sharp left turn and climbs slightly. The insect rolls in unstable

looking jerks, trying to stabilize itself. It seems as though the turn taken by the dragonfly

is very sharp as it then senses this, and follows by stabilizes itself by pitching down too.

It can be said that in the first portion of the maneuver the rotational and translational

accelerations and velocities are low. That is, this portion is sluggish. After the quick turn,

the dragonfly moves in the positive x direction considerably faster than in the first portion

where it is seen taking off. It must be noted that the left turn is completed within two

wingbeats. The typical wingbeat frequency is about 30 to 40 times per second. One of the

purposes of this study is to find out how such a tight maneuver is possible in such a short

amount of time.

The results comparing the three angles, phi (roll), psi(yaw) and theta(pitch) are shown in

the table below. As the lighting in this particular video was not of very high quality, noise

is added to the images. Now, the presence of external objects in the video such as the

stand and the stick used to force the insect to take-off also contribute to results of lower

quality. This case shows that the code works sufficiently well in bad lighting and local

environmental conditions.

68

Plot Explanation

()phi roll 

The range of values does not match in

the second portion of the maneuver. It

seems like the code fails to capture the

correct trend of the body rotations when

the insect moves towards a dark object

in lower lighting conditions. The initial

portions of the graph however, do

match well.

()psi yaw 

Unlike roll, the yaw angle is mostly in

the range of angles calculated by the

manual reconstruction code. However

towards the end, the angle of yaw,

which is also related to the roll is

influenced by the highly erroneous roll

value.

()theta pitch 

The pitch angle calculated agrees with

the trend of the manual results, much

more than the other angles. In this

particular case, the fluctuating roll and

yaw angles do not cause any

fluctuations in pitch in the same time

frame. However, as we saw in the

previous case, the angle seems to be

shifted above the actual plot that is

computed from the manual

reconstruction.

Table 12 : Results of test case 3

69

Other Cases (Plots only)

Test Case 4 Test Case 5

Table 13 : Test Cases 4 and 5

70

Test Case 6 Test Case 7

Table 14 : Test Cases 6 and 7

71

Test Case 8 Test Case 9

Table 15 : Test Cases 8 and 9

72

Test Case 10 Test Case 11

Table 16 : Test Cases 10 and 11

73

Discussion

 The corresponding outputs from the three cases are mostly in agreement with the

values obtained from the manual reconstruction method.

 Three major differences exist between the maneuvers chosen to be discussed. All

other cases are similar and may be classified as one of the following types:

o Type 1: Test case 1 shows a maneuver where the lighting is and shadows are

moderately dark. There is only one external object present. The auto-tracking

code has small errors when compared to the outputs of the manual

reconstruction.

o Type 2: Test case 2 shows a case where the auto-tracking code seems to

reflect the tendency of the maneuver more closely than the outputs of the

manual code. The lighting is very good and there are almost no shadows or

external objects.

o Type 3: Test case 3 is a „worst-case-scenario‟. The lighting is bad, there are

multiple shadows of very high intensity and the maneuver is complicated. In

addition, there are external objects such as the stand and the probe used to

force the insect to take off.

 Results seem to agree with the trend almost always, but the lines are to be shifted in

some cases.

 The roll angle measured is almost always inaccurate. This could mean that either of

the methods is inaccurate. However, at the onset it seems like the output from the

manual tracking code seems unrealistically smooth.

74

 Using varying n-skip values, which means skipping some frames before processing

the next, smoothes the plot by varying amounts. A smoothing algorithm has not been

incorporated into the code yet.

 The trend and limits from each method are similar.

 Fluctuations in the angle of roll always seem to influence the values of other angles

recorded at the same range of time.

 It is tough to compare the values of roll obtained from both the methods as roll is the

most difficult value to obtain by inspection. Although the position of the wing root or

appendages gives an estimation of the body roll, it is based completely on the users

guess, and nothing else.

 The code also gives sudden peaks in the values of angles. The point at a peak is

generally 90, 180 or 270 degrees apart. This is because the code follows an iterative

strategy and hence might skip a convergence plane. Of two planes that divide a 3D

space into octants, the vector that we are rotating may converge or match with a

corresponding plane in any octant. Calculation of the change in centre of gravity is

also possible. Shown below is the variation of coordinates in the manual

reconstruction method versus the auto reconstruction method.

75

In this representation x-y-z is compared with the coordinates of the imaginary 3D

space used by the auto-tracking logic which is V1-V2-V3. Two graphs are sufficient

to compare all three variables and their change with respect to time. It can be seen

that after a transformation, the values of translation also can be made to match the

manual tracking output. It should be noted that unlike estimation of the kinematic

angles Pitch, Roll and Yaw, CG translation in 3D is bound to be more accurate than

the auto-tracking code output.

Similar to the fluctuations in angle, we may also have peaks in the translation values.

These are shown in fig. 40. These can be smoothed easily using a plotting software or

through a piece of code that involves a filter.

Figure 43 : Comparison of CG's : x-y-z vs v1-v2-v3

76

Figure 44 : Demonstration of oscillating or peaking output

 Some graphs though, may not be directly comparable. For instance the graph in fig.

41 compares the value of pitch for one particular case. Though the error is large, we

can see that the overall trend has been captured properly. This includes the sudden

pitch-up motion followed by a short plateau.

On the left hand side we see that the trend has been captured, however the plot seems

to have shifted up by approximately 40
o

 Figure 45 : Other types of errors seen in output

77

 Also, when lighting is very less, or the presence of shadows is affecting the output,

one might see oscillations such as those shown in fig. 42. If the trend is agreeable, the

right output may be obtained by using a smoothing filter or averaging.

Figure 46 : Effects of smoothing on erroneous output

78

IV RESULTS

The test cases were selected to be random to show that the code was robust in any kind of

maneuver – be it a take-off, turn, or a simply fly-by. However, to be able to use this tool,

we need to select one particular kind of maneuver. Due to the existence of several videos

of dragonflies roughly performing a left turn, this would be a natural choice to bring

about some interesting observations to light.

Classification
Of the 35 available left turn videos, 30 videos were selected as experimental data to be

analyzed. These videos may be further classified as follows:

1. Forced Take off – where the dragonfly is forced to take-off. This causes it to

follow an unnatural trajectory as its main priority is to escape from the „predator‟.

Thus, this kind of take off is also known as „escape take-off‟. Two (8) of the 30

videos are escape take-offs.

2. Natural Take off – Here the dragonfly is allowed to take-off on its own.

Generally, the dragonfly flies towards one of the light sources. These 22 videos

are the ones we are interested in.

There are several ways to classify the 22 natural take-off videos. One possible way is

presented below in fig. 45. The numbers represent the „identification number of the

dragonfly used in that video, as per laboratory format.

79

Figure 47 : Case availability

These are the cases available for us to analyze. Slow or fast describes roughly how fast

the maneuver is completed. Medium, Low and High describes the height the dragonfly

finally reaches. A forced take-off happens when the insect is prodded by the rod shown in

the fig 46. A Natural take off is when no human initiation is necessary. The blue cases in

fig. 45 are Natural whereas the Red cases are forced.

Figure 48 : Forced take-off (Left) vs. Natural take-off (Right)

80

Case Bifurcation

Based on the available cases as discussed above, we may test several important features

of this particular „Left Take-off case‟ only. Here are the tests that will be carried out:-

1. Slow Take-off vs. Fast Take-off

2. High Take-off vs. Medium Take-off

3. High Take-off vs. Low Take-off

4. Medium Take-off vs. Low Take-off

5. Forced Take-off vs. Natural Take-off

6. Dragonfly 15 Left Take-off (4 cases)

7. Dragonfly 13 Left Take-off (7 cases)

8. Dragonfly 12 Left Take-off (5 cases)

9. Dragonfly 8 Left Take-off (3 cases)

The list above shows all the possible individual experiments that can be performed with

the given dataset while aiming to produce some interesting results. The combinations

involve the study of either one dragon-fly in several seemingly similar, but different left

turn maneuvers, Forced versus Natural take-off, as well as combinations between high

medium and low left turns. These appeared in the classification table also. The idea of

classifying videos into high, medium and low take offs comes from the follow through

observed after the dragonfly takes off. For example, a high take off means that generally,

the insects gains a lot of altitude by the end of the video sequence. Similar explanations

81

may be given for low and medium left turns. Examples of these maneuvers are shown

below in table 17.

Classification of left turns pictorially

Motion merged image Description

High

Characterized by very smooth

movements with a steady follow

through after take-off with slow gain

in altitude.

Medium

Generally smooth movements are

observed in this kind of take-off.

The dragonfly however does not

gain as much altitude as the „high‟

case.

Low

These are really fast left turns since

most of the effort goes into turning,

and not gaining altitude.

82

Validation cases
Some cases did not fit into any of the above ways of describing the take off, but were

available for use nevertheless. Some may not have been used due to poor lighting or

presence of a large external object in the scene. These cases were used for validation and

are listed below.

Dragonfly number Reason

14.4 Straight take-off

19.1_gust External Object

19.2 Flyby

20.1 Flyby

20.2 Flyby
Table 17 : Validation cases

Pitch – Roll – Yaw plots

A list of several plots is presented below. These plots include information about the Pitch,

Roll and Yaw angles of the body in that particular video sequence. A smoother is

incorporated in the code so that the plots do not show unrealistic oscillations. All plots

shown below are graphs of these variables for the body in left turn only.

It is easy to observe that yaw decreases and becomes more negative in each of the cases.

This is expected as a negative yaw implies left turn, generally speaking. It may be

premature to decide by inspection only, that the dragonfly uses one strategy and nothing

else for a left turn. Further analysis is needed, and will be presented in a later section.

83

Table 18 : Slow and high, set 1

84

Table 19 : Slow and high, set 2

85

Table 20 : Fast and medium, set 1

86

Table 21 : Fast and low, set 1

87

Table 22 : Fast and low, set 2

As a general observation, it is impossible to even surmise by inspection, the approximate

value of Pitch, Roll and Yaw. Every turn is a result of a different strategy, or at least, it is

safer to assume so. The dragonfly maneuvers showcased above have been provided

enough follow through time while processing the video so that the insect is completely,

or almost completely reoriented after the take-off.

88

There is now an abundance of data. However, completely decoding all the mysteries of

insect flight is not our goal. It was suggested that any further analysis be focused to an

extent that only a few variables are allowed to change. This is discussed in the following

section.

Dragonfly 8 – an experiment

In addition to the pitch roll angle, there is also information on the body and tail tip

vectors of the body. The flexible tail may prove to be very useful in maneuvers.

Intuitively, the insect would attempt to make a turn with the least amount of effort.

Extreme amounts of deflection in the tail show that this might be an important factor in

the turn being executed. Several animals and fish can be seen using the posterior part of

the body to an advantage, for balance, control or posture. It is only natural to think that

after years of evolution, a long tail exists for a reason in the Odonata class. What remains

to be done is the quantification of this idea. A simple hypothesis is made in this stage.

The tail must naturally bend towards the center of the instantaneous axis of rotation, if

not always, at least during the most important section of the turn, or during turn initiation.

We will be comparing 4 left turn maneuvers of the very same dragonfly, filmed on the

same day in close succession. The dragonflies used in this test are 8.3, 8.5, 8.6 and 8.7.

Two quantities are used to quantify the relationship between the tail-thorax angle and the

instantaneous axis of rotation – „Instacross‟ magnitude (defined as the magnitude of the

unit vector obtained as a result of the cross product of two vectors v1 and v2) where V1 is

the cross product of the tail and the thorax to head vector and V2 is the instantaneous

rotation axis.

89

It is intuitive to think that the dragonfly must bend its tail towards the centre if a turn is

being negotiated. It can also be argued that such a configuration decreases the moment of

inertia about the v1 axis and shifts the CG outside the body (and to the left) to assist in

roll (Dong et al,AIAA compliant tail MAV). But how do we relate these quantities? The

cross product of this quantity must be zero if v1 is normal to v2 and one if they are

parallel. As mentioned before, we are not talking about ideal systems. Thus satisfaction

of this idea only helps in a better understanding of how a turn is executed, and will bring

us closer to understanding insect flight.

The figure below shows the vectors v1 and v2 as well as the body rotating about an

imaginary axis (blue circle).

Figure 49: Instacross magnitude from the v1 and v2 vectors shown

90

Observations

The data from the additional piece of code that relates the trajectory of the insect with the

tail vector is to be analyzed along with the Pitch, Roll and Yaw angles shown earlier. The

afore mentioned Dragonfly cases are discussed below along with the relevant plots.

Dragonfly 8.5

DFLY 8.5 shows a very interesting take off. It first releases its hold from the stand and

starts the actual turn during the downstroke of the second wing-beat. However, at this

point of time, the instantaneous circle plane‟s normal is close to perpendicular to the

magnitude vector. The second part of the maneuver is a simple pitch up where the tail

seems to be kept at an upward angle. Thus we expect that the magnitude is close to one

(1) in the beginning, and zero (0) towards the end.

Figure 50 : Instacross plot along with P-R-Y, DFLY 8.5

91

Dragonfly 8.3

DFLY 8-3 Is relatively simpler to explain. The points marked with circles show clearly

where the two vectors are parallel. The dragonfly takes off by a powerful downstroke

while maintaining the initial orientation, rolls quickly clockwise just after the first

upstroke. This clockwise roll is seen along with a clear leftward slipping. This is shown

in point „1‟. The point marked „2‟ is roughly where the dragonfly yaws to the left while

keeping an intuitively obvious tail orientation towards the left. This is followed by a slow

ascent while pitching up.

Figure 51 : Instacross magnitude with P-R-Y angles, DFLY 8.3

Dragonfly 8.6

DFLY 8.6 shows a different strategy as compared to DFLY 8.3 above. Here, the first

downstroke is used to increase yaw first, while maintaining the initial orientation. During

the second down stroke the dragonfly increases its yaw further. The clockwise roll to re

orient itself is done during the second upstroke and third downstroke. The rest of the

motion is a constant ascent. Thus most of the values must be close to zero.

92

Figure 52 : Instacross magnitude with P-R-Y angles, DFLY 8.6

Dragonfly 8.7

The turn seen in DFLY 8.7 seems like a blended combination of the above turns. There

are no clearly demarcated sections like that described in the above cases. The later part is

only an ascent using the tail up configuration as usual. As seen from the ro curve, the

relatively straight path (very high value) gradually becomes a tight curve.

Figure 53 :Instacross magnitude with P-R-Y angles, DFLY 8.7

93

Other interesting maneuvers

Dragonfly 11.1

A very typical vertical initial pose is seen. Just after the dragonfly releases its hold from

the take-off stand, it‟s body falls significantly. To make up for this sudden loss in

altitude, the dragonfly attempts to pitch up as well as turn leftwards. Thus, although the

trajectory is a left turn, the tail is seen bobbing upwards at the end of each forewing

downstroke and the instacross magnitude is expected to be close to 1. In addition there is

a sudden and purposeful pitch action downwards towards the end of the video sequence.

This is also seen in the Pitch-Roll-Yaw graph. The later part of the video shows a

completely reoriented dragonfly that is trying to regain altitude, therefore the instacross

magnitude is expected to be close to zero.

Figure 54 : Instacross magnitude with P-R-Y angles, DFLY 11.1

Dragonfly 12.6

This dragonfly exhibits a very unique left turn, and is also part of a separate wing damage

experiment. The dragonfly directly yaws to the left from the moment it leaves the take-

94

off stand. Here we expect the magnitude to be close to zero as the tail bends towards the

turn. For a very short amount of time, after the first downstroke, the maximum deflection

of the tail towards the turn is seen. So, we expect a low value for a very short time,

sometime after the downstroke (close to 50
th
 frame). The dragonfly does not reorient

itself completely as yet. At the end of the second downstroke (close to 100
th
 frame) the

dragonfly quickly rolls to the left and pitches up to continue the left turn trajectory. After

this the dragonfly reorients itself completely.

Figure 55 : Instacross magnitude with P-R-Y angles, DFLY 8.7

95

Conclusions

The same dragonfly, filmed on the same day with the same lighting conditions thus

shows four different ways of executing a left turn. This left turn was quantified using the

instantaneous vector and „instacross‟ magnitude. Also it may not be concluded that the

tail movement is categorically passive, or active. In some cases, an active turn may be

followed by passive damping and so on.

A note on Longitudinal Static Stability

Comparing the dragonfly to a conventional aircraft is not at all possible, since they

operate in different regimes and environments. However, similar explanations may be

offered at this stage. The longitudinal stability of an aircraft refers to the aircraft‟s

stability in the pitching plane(22 1975). In a stable aircraft, a small change in angle of

attack will cause a pitching moment that restores the plane to equilibrium pitching angle.

For an aircraft, the force and corresponding moment caused by the horizontal stabilizer is

responsible, or at least plays a very important role in aircraft stability (in the longitudinal

or pitching plane). A dragonfly does not have such a stabilizer (see fig. 52) that can make

use of aerodynamic forces. Stability in the other directions (Yaw and Roll) may be

attributed to forces transmitted to the body from the wings. However, since the wing

roots, which are the only source of transfer of flapping flight-forces to the body (here, the

fuselage), are located a small distance from each other (about 2.94 mm), the moment

contributed in the longitudinal direction may be significant, only if the forces are very

high. But this is not practical.

96

Figure 56 : Conventional aircraft vs a Dragonfly

In fig. 52, „w‟ on both the dragonfly and the aircraft is where the gravity force acts. This

varies erratically in the case of a dragonfly as shown in the „instacross‟ magnitude plots.

„Lfore‟ and „LHind‟ are forces transmitted from the center of pressure of the corresponding

wing pair to the wing roots (marked as red circles in fig. 53). The resultant forces due to

the aerodynamics of each flapping wing act at the center of pressure of that wing. This

acts at a distance from the wing root, and hence has a corresponding moment. „Stroke

amplitude‟ may be defined as the angle swept by the wing from two extreme positions,

say downstroke to upstroke, in a single wingbeat as seen in the projected top view. The

dragonfly does not (at least in the videos observed) pull its wings far enough to get close

to the tail, which is to say that the stroke amplitude much lesser than 180
o
 when measured

from the body axis (as opposed to that seen in butterfly flight). Thus, the moment caused

97

by these aerodynamic forces in the longitudinal direction is much lesser than the

moments in the other two directions. A more detailed analysis is required to understand

the complete picture.

It is logical then, to conclude that the tail must have a significant effect on the stability of

the dragonfly during flight. Even though the tail is light, it is long enough to cause

significant changes in the center of gravity. The centre of mass of the dragonfly is

calculated by measuring the weight of separate sections such as the head, thorax and

abdomen. Fig. 54 shows the effect of the angle that the tail makes (in any plane, i.e. about

any axis) on the centre of gravity. For perfect static stability, the centre of pressure must

coincide with the centre of gravity. In other words, the center of gravity must be as close

as possible to the resultant of the forces transferred by the wings to the body (at the wing

roots).

 Dynamic stability may be inherent in long tailed insects (Dudley 2002), and external

perturbations may be damped out by actively or passively holding the tail in certain

positions.

Figure 53 also shows the data used in the calculation of center of mass. The head, thorax

and tail were separated as three components that contributed to center of mass. The effect

of angle of the tail on center of mass is shown in fig. 54. The dashed box represents the

area between the wing roots.

98

Figure 57 : Calculation of Centre of gravity and location of wing roots

Figure 58 : Effect of flexible tail on Centre of Gravity

99

Summary

A robust image processing tool was developed to automatically track the Pitch, Roll and

Yaw angles of a dragonfly in free flight. Additional information such as the trajectory of

the center of mass, as well as the relationship of the continuously changing tail vector

angle with the turning radius was presented. The videos recorded and analyzed were

categorized into several types. One of these sub-categories was studied in detail

(Dragonfly 8, Take-off followed by left turn).

Future Work

Even though there are several directions to explore with just information from the body,

explanations in all these directions would be incomplete without involving kinematics of

the four wings. A code was written to simultaneously track several points on the wing by

using the Lucas Kanade Pyramidal search algorithm. The code in this preliminary stage

was used to track features on a butterfly and a cicada in free flight. Shown below is the

automatic, multiple point tracking algorithm at work. The code successfully tracks

appendages such as antennae and legs, points on the steadily moving body, as well as

points on the fast moving wings (like wing tips of fore- and hind-wings).

100

Figure 59 : Multiple point tracking, Cicada

 Also, trajectory of a particular point may be tracked throughout the video sequence as

shown below.

Figure 60 : Multiple point tracking, Butterfly

It is very important to obtain the wing kinematic parameters along with the body

information for a complete understanding of a maneuver. Automatic body reconstruction

only naturally leads to future work on wing kinematics study. Also, the quality of the

images may be improved by changing the lighting set-up as explained earlier.

101

Bibliography

1. Non-Journal references

Canny Edge Detector. March 9, 2012. http://en.wikipedia.org/wiki/Canny_edge_detector.

Dudley, R. The Biomechanics of Insect Flight: Form, Function, Evolution. 2002.

http://si.edu/Encyclopedia_SI/nmnh/buginfo/insflght.htm.

2. Tyson L Hedrick. "Software Techniques For Two and Three Dimensional Kinematic

Measurements of Biological and Biomimetic Systems." Bioinspiration and Biomimetics, 2008.

3. S.A. Combes & T.L Daniel. "Flexural stiffness in insect wings I. Scaling and the influence of

wing ve nation." Journal of Experimental Biology, 2003: 2979-2987.

4. Ebraheem I Fontaine, Fransisco Zabala, Michael H. Dickenson, Joel W. Burdick. "Wing and

Body Motion During Flight Initiation in Drosophilia Revealed By Automated Visual Tracking."

Journal of Experimental Biology, 2009: 1307-1323.

5. Chauncey F. Graetzel, Steven N. Fry, and Bradly J. Nelson. "A 6000 Hz Computer Vision

System for Real Time Wing Beat Analysis of Drosophilia." Neuroinformatics conference, Zurich,

2003.

6. George V. Lauder, Peter G.A Madden. "Advances in Comparative Physiology from High

Speed Imaging of Animal and Fluid Motion." Annual review of Physiol, 07 2008: 143-163.

7. Yanpeng Liu,Mao Sun. "Wing kinematics measurement and aerodynamics of hovering

droneflies." Journal of Experimental Biology, 2008: 2014-2025.

8. Degiang Song, Hao Wang, Lijiang Zeng, Chunyong Yin. "Measuring the camber deformation

of a dragonfly wing using projected comb fringe." Review of Scientific Instruments, 2011.

9. Shigeru Sunada, Deqiang Song,Xiannan Meng, Hao Wang, Lijiang Zeng, Keiji Kawachi.

"Optical Measurement of the Deformation, Motion, and Generated Force of the Wings of a Moth,

Mythimna Separata(Walker)." JSME International Journal, 2002: No.4 Vol. 2.

10. Simon M Walker, Adrian L.R Thomas, Graham K Taylor. " Photogrammetric reconstruction

of high-resolution surface topographies and deformable wing kinematics of tethered locusts and

free-flying hoverflies." Journal of Royal Society Publishing, 2008: 1098.

11. Simon M Walker, Adrian L.R Thomas and Graham K Taylor. "Deformable wing kinematics

in the desert locust: how and why do camber, twist and topography vary through the stroke?"

Journal of Royal Society Interface, 2008: 435.

102

12. Hao Wang, Lijiang Zeng, Hao Liu, Chunyong Yin. "Measuring wing kinematics, flight

trajectory and body attitude during forward flight and turning maneuvers in dragonflies." Journal

of Experimental Biology, 2002: 745 - 757.

13. Lijiang Zeng, Hirokazu Matsumoto, Keiji Kawachi. "A fringe shadow method for measuring

flapping angle and torsional angle of a dragonfly wing." Measurent Science and Technology,

1996: 776-781.

14. Alexander P. Wilmott, Charles P. Ellington. "Measuring the Angle of Attack of Beating insect

Wings : Robust Three Dimensional Reconstruction from Two Dimensional Images." Journal of

Experimental Biology, 1997: 2693-2704.

15. M L Liu, K H Wong. Pose Estimation Using Four Corresponding Points. Hong Kong:

Chinese University of Hong Kong, Department of Computer Science, 1998.

16. Haar-like features. March 30, 2012. http://en.wikipedia.org/wiki/Haar-like_features.

17. Daniel F Dementhon, Larry S Davis. Model-Based object pose in 25 lines of code. Computer

vision laboratory, University of Maryland, 2003.

18. Viola, Jones. "Rapid Object Detection Using Boosted Cascade of Simple Features." Pattern

Recognition, 2001.

19. Alexander Kuranov, Rainer Lienhart,Vadim Pisarevsky. Emperical Analysis of Detection

Cascades of Boosted Classifiers for Rapid Object Detection. MRL, 2002.

20. Haibo Dong, Christopher Koehler, Zongxian Liang, Hui Wan, Zach Gaston. "An Integrated

Analysis of a Dragonfly in Free Flight." AIAA, 2010: 4390.

21. Leif Ristroph, Gordon J. Berman, Attila J. Bergou, Z. Jane Wang and Itai Cohen. "Automated

Hull Reconstruction Motion Tracking (HRMT) Applied to Sideways Maneuvers of Free-flying

Insects." Journal of Experimental Biology, 2009: 1324-1335.

22. L.J. Clancy. Aerodynamics, Chapter 16. London: Pitman Publishing ltd., 1975.

103

Appendix 1 – Code

Autotracking

#include "stdafx.h"
#include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include<math.h>
#include <iostream>

#include <fstream>
#define GLUT_DISABLE_ATEXIT_HACK
#ifdef __APPLE__
#include <OpenGL/OpenGL.h>
#include <GLUT/glut.h>
#else
#include <GL/glut.h>
#include <GL/freeglut.h>

#endif
using namespace std;
using namespace cv;
char basecam1[190]="C:\\SUMMER VIDEOS\\summer2010_22.3\\Camera No.1_C001H001S0001\\Camera
No.1_C001H001S0001000";
char basecam3[190]="C:\\SUMMER VIDEOS\\summer2010_22.3\\Camera No.2_C002H001S0001\\Camera
No.2_C002H001S0001000";
char basecam2[190]="C:\\SUMMER VIDEOS\\summer2010_22.3\\Camera No.3_C003H001S0001\\Camera

No.3_C003H001S0001000";
char ext[10]="001.tif";
char num[10];
char temp10[10]="00";
char temp10bi[10]="00";
char temp100[10]="0";
char temp100bi[10]="0";
float GlobalBodyLength=0;

int Nmax=660;
double xforCOM=0,yforCOM=0,zforCOM=0;
int writeall=0;
//
CvMemStorage* g_storage=NULL;
CvMemStorage* g_storage1=NULL;
CvMemStorage* g_storage2=NULL;
CvMemStorage* g_storage3=NULL;

CvMemStorage* dp_storage=NULL;
CvSeq* contours=0;
CvSeq* contours1=0;
CvSeq* contours2=0;
CvSeq* contours3=0;
CvSeq* quad1=0;
CvSeq* tri1=0;
CvSeq* bi1=0;
CvSeq* quad2=0;

CvSeq* tri2=0;
CvSeq* bi2=0;
CvSeq* quad3=0;
CvSeq* tri3=0;
CvSeq* bi3=0;
CvSeq* dps=0;
CvPoint pdps;

104

CvPoint dummyhead;
CvPoint dummytail;
CvPoint dummyroll;
CvPoint exchange;
int choice=0;

int sub_choice=0;
CvPoint dummy1;
CvPoint dummy2;
CvPoint dummy3;
CvPoint dummy4;
CvPoint dummy5;
ofstream A1;
ofstream fkpc;

ofstream cross;
ofstream COM;
double testmag=0;
int idps=0;
int plot=0;
//
CvPoint plot_old_pitch=cvPoint(0,0);
CvPoint plot_new_pitch=cvPoint(0,0);

CvPoint plot_old_roll=cvPoint(0,0);
CvPoint plot_new_roll=cvPoint(0,0);
CvPoint plot_old_yaw=cvPoint(0,0);
CvPoint plot_new_yaw=cvPoint(0,0);
//
char base1cam1[190]="C:\\SUMMER VIDEOS\\summer2010_22.3\\Camera No.1_C001H001S0001\\Camera
No.1_C001H001S0001000";
char base1cam3[190]="C:\\SUMMER VIDEOS\\summer2010_22.3\\Camera No.2_C002H001S0001\\Camera

No.2_C002H001S0001000";
char base1cam2[190]="C:\\SUMMER VIDEOS\\summer2010_22.3\\Camera No.3_C003H001S0001\\Camera
No.3_C003H001S0001000";
CvRect bdrect = cvRect(0,0,0,0);
CvScalar red=CV_RGB(250,0,0);
CvScalar blue=CV_RGB(0,0,250);
CvScalar green=CV_RGB(0,250,0);
CvScalar yellow=CV_RGB(0,250,250);
CvScalar colour1=CV_RGB(0,200,250);

CvScalar colour2=CV_RGB(150,50,100);
CvScalar colour3=CV_RGB(100,100,200);
CvScalar colour4=CV_RGB(125,125,50);
IplImage* imgCam1=NULL;
IplImage* imgCam2=NULL;
IplImage* imgCam3=NULL;
IplImage* imgCam1small=NULL;
IplImage* imgCam2small=NULL;

IplImage* imgCam3small=NULL;
IplImage* imgCam1smallc=NULL;
IplImage* imgCam2smallc=NULL;
IplImage* imgCam3smallc=NULL;
IplImage* PiP=NULL;
IplImage* im1clone=NULL;
IplImage* im1dummy=NULL;
IplImage* ctrimg=NULL;

IplImage* trackbars=NULL;
IplImage* graphs=NULL;
CvRect cam1rect;
CvRect cam2rect;
CvRect cam3rect;
CvRect cam4rect;
CvRect drag1rect;
CvRect drag2rect;

105

CvRect border1;
CvRect border2;
int tripoints1=0;
int tripoints2=0;
int tripoints3=0;

int xdrag=0;
int ydrag=0;
int updiff=0;
int rightdiff=0;
int align=0;
int xo1=0;
int yo1=0;
int xo2=0;

int yo2=0;
int xo3=0;
int yo3=0;
float zoomfact1=0;
float zoomfact2=0;
float zoomfact3=0;
double
xnot=0,ynot=0,znot=0,rnot=0,M11=0,M12=0,M13=0,M14=0,M15=0,a11=0,a22=0,a33=0,a44=0,m00,m01,m02,m03,

m10,m11,m12,m13,m20,m21,m22,m23,m30,m31,m32,m33;
double x4det(double m00,double m01,double m02,double m03,double m10,double m11,double m12,double
m13,double m20,double m21,double m22,double m23,double m30,double m31,double m32,double m33)
{
double det=0;

det = m03 * m12 * m21 * m30 - m02 * m13 * m21 * m30- m03 * m11 * m22 * m30+m01 * m13 * m22 * m30+ m02
* m11 * m23 * m30-m01 * m12 * m23 * m30- m03 * m12 * m20 * m31+m02 * m13 * m20 * m31+ m03 * m10 *

m22 * m31-m00 * m13 * m22 * m31- m02 * m10 * m23 * m31+m00 * m12 * m23 * m31+ m03 * m11 * m20 * m32-
m01 * m13 * m20 * m32- m03 * m10 * m21 * m32+m00 * m13 * m21 * m32+ m01 * m10 * m23 * m32-m00 * m11
* m23 * m32- m02 * m11 * m20 * m33+m01 * m12 * m20 * m33+ m02 * m10 * m21 * m33-m00 * m12 * m21 *
m33- m01 * m10 * m22 * m33+m00 * m11 * m22 * m33;
return(det);
}

float zoomfact1x=0;
float zoomfact2x=0;

float zoomfact3x=0;
float zoomfact1y=0;
float zoomfact2y=0;
float zoomfact3y=0;

float rollmax=0;
float areamax=0;
float per1,per2,per3;

//For ellipse ________________________________
const double pi=3.1415926535;
int i=0;
int count=0;
CvPoint center;
CvSize size;
 CvBox2D32f* box;
 CvPoint* PointArray;

 CvPoint2D32f* PointArray2D32f;
CvBox2D ellipse1;
CvSeq* c;

//__
int n_smooth=5;
int n_threshold=54;
int n_erode=4;

106

int n_canny=4;
void on_trackbar(int)
 {
if(n_smooth%2==0) n_smooth++;
 }

CvRect maxrect=cvRect(0,0,0,0);
struct raw
{
 float le;
 float we;
 CvRect bdbox;
 CvBox2D ebox;

 CvPoint headpt;
 CvPoint tailpt;
 CvPoint rollpt;
 float A;
 float roll;
 float angle;

}rawCam1[700],rawCam2[700],rawCam3[700];
float thresh=0.1;
float rollframe[700];
float rollaccum=0;
//_______________
// | |
// 1 | 3 |
//_______|_______|

// | |
// 2 | 4 |
//_______|_______|

CvPoint T1;

//For solve pnp__

Mat op;

vector<Point3f> modelPoints;

float m_L=1;
float m_Ldash;
float m_Lddash;
float m_Ltdash;

float m_Lddashtil;
float m_Lnot;
float m_angle=30*3.141532/180;
float m_BL;

double rot[9] = {0};
Vec3d eav;

Mat backPxls;
GLuint textureID;

vector<double> rv(3), tv(3);
Mat rvec(rv),tvec(tv);
Mat camMatrix;

//__

107

float roll,pitch,yaw;
CvPoint ecentroid;
float frame1length=0;
void solve_euler(void);

//

void iterate_for_roll(int,int,int,int***);

struct vector1
{
 double x;
 double y;

 double z;
}axis,body,body_rot,roll_axis,centroid_plane,temp1,temp2,temp3,main1,main2,main3,tail,test1,test2,test2a,test2b,vect
_thorax,vect_tail,test1x2;
struct coord
{
 double x;
 double y;
 double z;

}a,am,amm;

struct coordinate_system
{
 vector1 v1;
 vector1 v2;
 vector1 v3;
}global,body_cood,initial,post_yaw,post_pitch,post_roll,initial_dummy,initial_dummy2;

float angle_pitch=0;
float angle_yaw=0;
float angle_roll=0;
void model_body(void)
{
 m_Ldash=m_L/cos(m_angle);
 m_Lddash=m_L*tan(m_angle);
 m_Lddashtil=m_L*(1-tan(m_angle));

 m_Ltdash=m_Lddashtil/sin(m_angle);
 m_BL=m_Ltdash+m_Ldash;
 m_Lnot=m_Lddashtil*cos(m_angle);

 modelPoints.push_back(Point3f(0.0f,0.0f,0.0f)); //thorax front
 modelPoints.push_back(Point3f(m_L*sin(m_angle),m_L*cos(m_angle),0.2f)); //thorax top
 modelPoints.push_back(Point3f(m_L*cos(m_angle),-m_Lddash*cos(m_angle),0.0f)); //thorax bottom
 modelPoints.push_back(Point3f(m_Ldash,0.0f,0.0f)); //tail start bottom

 modelPoints.push_back(Point3f(m_BL,0.0f,0.1f)); //tailtip
op = Mat(modelPoints);

op = op / 35;

rvec = Mat(rv);
double _d[9] = {1,0,0,
 0,-1,0,

 0,0,-1};

Rodrigues(Mat(3,3,CV_64FC1,_d),rvec);
tv[0]=0;tv[1]=0;tv[2]=0;
 tvec = Mat(tv);
 double _cm[9] = { 20, 0, 160,
 0, 20, 120,
 0, 0, 1 };

108

camMatrix = Mat(3,3,CV_64FC1,_cm);
}

void loadNext(CvPoint A,CvPoint B,CvPoint C,CvPoint D,CvPoint E)
{
vector<Point2f > imagePoints;
imagePoints.push_back(Point2f((float)A.x,(float)A.y));
imagePoints.push_back(Point2f((float)B.x,(float)B.y));
imagePoints.push_back(Point2f((float)C.x,(float)C.y));
imagePoints.push_back(Point2f((float)D.x,(float)D.y));
imagePoints.push_back(Point2f((float)E.x,(float)E.y));

Mat ip(imagePoints);
double _dc[] = {0,0,0,0};
solvePnP(op,ip,camMatrix,Mat(1,4,CV_64FC1,_dc),rvec,tvec,true);
Mat rotM(3,3,CV_64FC1,rot);
Rodrigues(rvec,rotM);
double* _r = rotM.ptr<double>();

Mat tmp,tmp1,tmp2,tmp3,tmp4,tmp5;

double _pm[12] = {_r[0],_r[1],_r[2],0,
 _r[3],_r[4],_r[5],0,
 _r[6],_r[7],_r[8],0};

decomposeProjectionMatrix(Mat(3,4,CV_64FC1,_pm),tmp,tmp1,tmp2,tmp3,tmp4,tmp5,eav);
cout<<eav[0]<<","<<eav[1]<<","<<eav[2]<<endl;

eav[0]=0;
eav[1]=0;
eav[2]=0;

}

void calculate_pose(void)
{

}
float distance_ptsf1(CvPoint P1, CvPoint P2)
{
 return (fabs(float(sqrt(pow(double(P1.x-P2.x),2) + pow(double(P1.y-P2.y),2)))));
}

float distance_ptsf1(CvPoint P1,CvPoint2D32f P2)
{

 return (fabs(float(sqrt(pow(double(P1.x-P2.x),2) + pow(double(P1.y-P2.y),2)))));
}

float distance_linept(CvPoint P1,CvPoint P2,CvPoint2D32f P3)
{
 float a,b,c;

 a=float(P2.y)-float(P1.y);

 b=float(P2.x)-float(P1.x);
 c=float(P1.y)*b - float(P1.x)*a;

 return((a*float(P3.x) + b*float(P3.y) +c)/(sqrt(pow(a,2)+pow(b,2))));
}

float distance_linept(CvPoint P1,CvPoint P2,CvPoint P3)
{

109

 float a,b,c;

 a=float(P2.y)-float(P1.y);
 b=float(P2.x)-float(P1.x);
 c=float(P1.y)*b - float(P1.x)*a;

 return((a*float(P3.x) + b*float(P3.y) +c)/(sqrt(pow(a,2)+pow(b,2))));
}

float trianglearea(CvPoint P1,CvPoint P2,CvPoint2D32f P3)
{
 float A=float(P3.x*P1.y) + float(P1.x*P2.y) + float(P2.x*P3.y) - float(P2.x*P1.y) - float(P3.x*P2.y) -

float(P1.x*P3.y);
A=fabs(A)/2.0;
return(A);
}

float trianglearea(CvPoint P1,CvPoint P2,CvPoint P3)
{
 float A=float(P3.x*P1.y) + float(P1.x*P2.y) + float(P2.x*P3.y) - float(P2.x*P1.y) - float(P3.x*P2.y) -

float(P1.x*P3.y);
A=fabs(A)/2.0;
return(A);
}

float sameside(CvPoint P1,CvPoint P2,CvPoint P3,CvPoint P4)
{
float a,b,c;

 a=float(P2.y)-float(P1.y);
 b=float(P2.x)-float(P1.x);
 c=float(P1.y)*b - float(P1.x)*a;
float s1,s2;

s1=a*float(P3.x) + b*float(P3.y) +c;
s2=a*float(P4.x) + b*float(P4.y) +c;

return(s1*s2);

}

void drag_line(int event, int x, int y, int flags, void* param)
{

 if(event!=CV_EVENT_MOUSEMOVE && event==CV_EVENT_LBUTTONDOWN)

 {
 xdrag=x;
 ydrag=y;
 xo1=xdrag;
 yo1=ydrag;

 }

 if(event==CV_EVENT_MOUSEMOVE && flags==CV_EVENT_FLAG_LBUTTON)
 {
 cvLine(im1clone,cvPoint(xdrag,ydrag),cvPoint(x,y),cvScalar(50,50,50),2,8,0);
 updiff=y-ydrag;
 rightdiff=x-xdrag;

110

 if(rightdiff>updiff) {rightdiff=0; xo2=x;yo2=y;}
 else if(rightdiff<updiff) {updiff=0; xo3=x;yo3=y;}
 cvShowImage("PiP",im1clone);
 cvCopy(im1dummy,im1clone);

 }

 if(event==CV_EVENT_RBUTTONUP)
 {
 cvDestroyWindow("PiP");
 align++;

 }

}
void my_mouse(int event, int x, int y, int flags, void* param)
{

 if(event==CV_EVENT_MOUSEMOVE) {}

 if(event==CV_EVENT_LBUTTONDOWN) {}

 if(event==CV_EVENT_MBUTTONDOWN && align<=1)
{cvShowImage("PiP",PiP);cvSetMouseCallback("PiP", drag_line, (void*)PiP); cvWaitKey(0); }

 if(event==CV_EVENT_RBUTTONUP && align<=1) {cvDestroyWindow("PiP");}

}

 int N_start=1;
 int N_end=199;
 int N=N_start;
 int N_skip=2;

 char * string1;
 char * string2;
 char * string3;

void calc_roll(float a,float b, float c)
{

 if(a<0 && b<0 && c>0) { rollframe[N]=(fabs(a)+fabs(b)+fabs(c))/3.00;} //clockwise positive guess
 else if(a>0 && b>0 && c<0) { rollframe[N]=-1*(fabs(a)+fabs(b)+fabs(c))/3.00;} //anti-clockwise
positive guess
 else { rollframe[N]=max(fabs(a),max(fabs(b),fabs(c)))*0.5;} //average positive guess

}
void processmap(void);

int main(int argc, char** argv)
{

// {N_start=atoi(argv[1]);N_end=atoi(argv[2]); N_skip=atoi(argv[3]);}
 N=N_start;

cout<<"Processing frames "<<N_start<<" to "<<N_end<<" (every "<<N_skip<<")"<<endl;

CvFont font;
double hScale=0.35;
double vScale=0.35;
int lineWidth=1;
int mainloopcall=0;
A1.open("dfly22-3-Pitch-Roll-Yaw.dat");

111

COM.open("22-3-centreofmass_path.dat");
fkpc.open("kpc-22-3.dat");
cross.open("instacross-22-3.dat");
A1<<"VARIABLES=\"T\",\"auto_theta\",\"auto_psi\",\"auto_phi\"\n";
fkpc<<"Variables = \"i\" \"j\" \"k\"\n";

cross<<"Variables = \"Frame\" \"Magnitude\",\"r_not\"\n";
//Define the model
model_body();
//_________________

cvInitFont(&font,CV_FONT_HERSHEY_TRIPLEX|CV_FONT_ITALIC, hScale,vScale,0,lineWidth);

imgCam1=cvLoadImage("C:\\SUMMER VIDEOS\\summer2010_22.3\\Camera No.1_C001H001S0001\\Camera
No.1_C001H001S0001000001.tif",0);
 imgCam1small=cvCreateImage(cvSize(imgCam1->width/2,imgCam1->height/2),imgCam1-
>depth,imgCam1->nChannels);
 imgCam2small=cvCreateImage(cvSize(imgCam1->width/2,imgCam1->height/2),imgCam1-
>depth,imgCam1->nChannels);
 imgCam3small=cvCreateImage(cvSize(imgCam1->width/2,imgCam1->height/2),imgCam1-

>depth,imgCam1->nChannels);
 graphs=cvCreateImage(cvSize(imgCam1->width/2,imgCam1->height/2),IPL_DEPTH_32F,3);

 trackbars=cvCreateImage(cvSize(imgCam1->width,50),imgCam1->depth,imgCam1->nChannels);
PiP=cvCreateImage(cvSize(imgCam1->width,imgCam1->height),imgCam1->depth,imgCam1->nChannels);
im1clone=cvCreateImage(cvSize(imgCam1->width,imgCam1->height),imgCam1->depth,imgCam1->nChannels);
im1dummy=cvCreateImage(cvSize(imgCam1->width,imgCam1->height),imgCam1->depth,imgCam1->nChannels);

ctrimg=cvLoadImage("C:\\SUMMER VIDEOS\\summer2010_22.3\\Camera No.1_C001H001S0001\\Camera
No.1_C001H001S0001000001.tif",1);
imgCam1smallc=cvCreateImage(cvSize(ctrimg->width/2,ctrimg->height/2),ctrimg->depth,ctrimg->nChannels);
imgCam2smallc=cvCreateImage(cvSize(ctrimg->width/2,ctrimg->height/2),ctrimg->depth,ctrimg->nChannels);
imgCam3smallc=cvCreateImage(cvSize(ctrimg->width/2,ctrimg->height/2),ctrimg->depth,ctrimg->nChannels);

g_storage=cvCreateMemStorage(0);
g_storage1=cvCreateMemStorage(0);
g_storage2=cvCreateMemStorage(0);

g_storage3=cvCreateMemStorage(0);
dp_storage=cvCreateMemStorage(0);
//
plot_new_pitch=cvPoint(35,imgCam1smallc->width/2);
plot_old_pitch=cvPoint(35,imgCam1smallc->width/2);
plot_new_roll=cvPoint(35,imgCam1smallc->width/2);
plot_old_roll=cvPoint(35,imgCam1smallc->width/2);
plot_new_yaw=cvPoint(35,imgCam1smallc->width/2);

plot_old_yaw=cvPoint(35,imgCam1smallc->width/2);
//
cvZero(graphs);
//cvNot(graphs,graphs);
cvLine(graphs,plot_new_pitch,cvPoint(plot_new_pitch.y*2,plot_new_pitch.y),cvScalarAll(100),1,8,0);
cvLine(graphs,cvPoint(plot_new_pitch.x,0),cvPoint(plot_new_pitch.x,plot_new_pitch.y*2),cvScalarAll(100),1,8,0);
cvPutText (graphs,"--Pitch--",cvPoint(400,40), &font, cvScalar(0,0,155));
cvPutText (graphs,"--Roll--",cvPoint(400,80), &font, cvScalar(155,0,0));

cvPutText (graphs,"--Yaw--",cvPoint(400,120), &font, cvScalar(0,155,0));
//
for(int i=-180;i<=180;i=i+20)
{
itoa(i,num,10);
cvPutText (graphs,num,cvPoint(0,int(35.00+float((180-i)*float(graphs->width-70)/float(360)))), &font,
cvScalarAll(55));
}

112

 while(N<=N_end)//earlier Nmax
 {
//cout<<" \r";
 cvSetZero(ctrimg);
 cvSetZero(imgCam1smallc);

 cvSetZero(imgCam2smallc);
 cvSetZero(imgCam3smallc);

 cam1rect=cvRect(rightdiff,updiff,imgCam1small->width,imgCam1small->height);
 cam2rect=cvRect(0,imgCam1small->height,imgCam2small->width,imgCam2small->height);
 cam3rect=cvRect(imgCam1small->width,0,imgCam3small->width,imgCam3small->height);
 cam4rect=cvRect(imgCam1small->width,imgCam1small->height,imgCam3small->width,imgCam3small-
>height);

 if(align>=2) cout<<N<<"/"<<N_end<<" || ";
 itoa(N,num,10);

 if(N<10) { strcat(temp10,num);
strcat(temp10,".tif");strcat(basecam1,temp10);strcat(basecam2,temp10);strcat(basecam3,temp10);strcpy(temp10,temp1
0bi);}
 else if(N>=10 && N<100) {strcat(temp100,num);
strcat(temp100,".tif");strcat(basecam1,temp100);strcat(basecam2,temp100);strcat(basecam3,temp100);strcpy(temp100,

temp100bi);}
 else if(N>=100 && N<1000) {strcat(num,".tif");
 strcat(basecam1,num);
 strcat(basecam2,num);
 strcat(basecam3,num);}
 if(align>=2){N=N+N_skip;}
 imgCam1=cvLoadImage(basecam1,0);
 imgCam2=cvLoadImage(basecam2,0);

 imgCam3=cvLoadImage(basecam3,0);

 if(!imgCam1 && N!=N_end)
 {
 cout<<"Could not open \'"<<basecam1<<"\'..Exiting...";getchar();exit(0);
 }

 if(!imgCam2 && N!=N_end)
 {

 cout<<"Could not open \'"<<basecam2<<"\'..Exiting...";getchar();exit(0);
 }

 if(!imgCam3 && N!=N_end)
 {
 cout<<"Could not open \'"<<basecam3<<"\'..Exiting...";getchar();exit(0);
 }

 cvFlip(imgCam2,imgCam2,-1);//if required
 //cvFlip(imgCam2,imgCam2,1);//if required
 cvResize(imgCam1,imgCam1small);
 cvResize(imgCam2,imgCam2small);
 cvResize(imgCam3,imgCam3small);

 strcpy(basecam1,base1cam1);
 strcpy(basecam2,base1cam2);

 strcpy(basecam3,base1cam3);

 cvSetImageROI(PiP,cam1rect);
 cvResize(imgCam1small,PiP,1);
 cvResetImageROI(PiP);

 cvSetImageROI(PiP,cam2rect);

113

 cvResize(imgCam2small,PiP,1);
 cvResetImageROI(PiP);

 cvSetImageROI(PiP,cam3rect);
 cvResize(imgCam3small,PiP,1);

 cvResetImageROI(PiP);
 if(align<2){rawCam1[N].A=0;rawCam1[N].roll=0; rawCam2[N].A=0;rawCam2[N].roll=0;
rawCam3[N].A=0;rawCam3[N].roll=0;}
 if(align>=2){
 cvSmooth(PiP,PiP,CV_GAUSSIAN,n_smooth,n_smooth);//17,17 for test1,
 cvWaitKey(20);
 cvThreshold(PiP,PiP,n_threshold, 100, CV_THRESH_TRUNC);
 cvEqualizeHist(PiP,PiP);

 cvErode(PiP,PiP,0,n_erode);
 cvCanny(PiP, PiP,n_canny, 100,3);
if(updiff<0) drag1rect=cvRect(0,imgCam1small->height+updiff-4,imgCam2small->width+4,-updiff+8);
 if (rightdiff<0) drag2rect=cvRect(imgCam1small->width+rightdiff-8,0,-rightdiff+12,imgCam2small->height+4);
 if(updiff>0)drag1rect=cvRect(0,0,imgCam2small->width+4,updiff+8);
 if(rightdiff>0)drag2rect=cvRect(0,0,rightdiff+8,imgCam2small->height+4);
 border1=cvRect(0,imgCam1small->height-8,imgCam1->width,16);
 border2=cvRect(imgCam1small->width-8,0,16,imgCam1->height);

 cvSetImageROI(PiP,cam4rect);
 cvSetZero(PiP);
 cvResetImageROI(PiP);
//
 cvSetImageROI(PiP,drag1rect);
 cvSetZero(PiP);
 cvResetImageROI(PiP);
//

 cvSetImageROI(PiP,drag2rect);
 cvSetZero(PiP);
 cvResetImageROI(PiP);

 cvSetImageROI(PiP,border1);
 cvSetZero(PiP);
 cvResetImageROI(PiP);

 cvSetImageROI(PiP,border2);

 cvSetZero(PiP);
 cvResetImageROI(PiP);

 }
 if(align>=2) {xo1=xo3;yo1=yo2;

//Split into images again for processing

 cvSetImageROI(PiP,cam1rect);
 cvResize(PiP,imgCam1small,1);
 cvResetImageROI(PiP);

 cvSetImageROI(PiP,cam2rect);
 cvResize(PiP,imgCam2small,1);
 cvResetImageROI(PiP);

 cvSetImageROI(PiP,cam3rect);
 cvResize(PiP,imgCam3small,1);
 cvResetImageROI(PiP);

//--------------------------------------

 cvFindContours(PiP,g_storage,&contours,sizeof(CvContour),CV_RETR_EXTERNAL,CV_CHAIN_APPR
OX_SIMPLE);

114

 cvFindContours(imgCam1small,g_storage1,&contours1,sizeof(CvContour),CV_RETR_EXTERNAL,CV_C
HAIN_APPROX_NONE);
 cvFindContours(imgCam2small,g_storage2,&contours2,sizeof(CvContour),CV_RETR_EXTERNAL,CV_C
HAIN_APPROX_NONE);
 cvFindContours(imgCam3small,g_storage3,&contours3,sizeof(CvContour),CV_RETR_EXTERNAL,CV_C

HAIN_APPROX_NONE);
 cvSetZero(imgCam1small);
 cvSetZero(imgCam2small);
 cvSetZero(imgCam3small);

 //if(contours) cvDrawContours(ctrimg,contours,colour4,colour4,2);
 if(contours1) cvDrawContours(imgCam1smallc,contours1,colour4,colour4,2);
 if(contours2) cvDrawContours(imgCam2smallc,contours2,colour4,colour4,2);

 if(contours3) cvDrawContours(imgCam3smallc,contours3,colour4,colour4,2);
 if(contours) cvDrawContours(PiP,contours,cvScalarAll(255),cvScalarAll(255),2);
quad1=contours1;
quad2=contours2;
quad3=contours3;
maxrect=cvRect(0,0,0,0);
for(c=contours1;c!=0;c=c->h_next)
{

 if(cvBoundingRect(c,0).width*cvBoundingRect(c,0).height > maxrect.height*maxrect.width)
 maxrect=cvBoundingRect(c,0);
}
rawCam1[N].bdbox=maxrect;

maxrect=cvRect(0,0,0,0);
for(c=contours2;c!=0;c=c->h_next)
{

 if(cvBoundingRect(c,0).width*cvBoundingRect(c,0).height > maxrect.height*maxrect.width)
 maxrect=cvBoundingRect(c,0);
}
rawCam2[N].bdbox=maxrect;

maxrect=cvRect(0,0,0,0);
for(c=contours3;c!=0;c=c->h_next)
{
 if(cvBoundingRect(c,0).width*cvBoundingRect(c,0).height > maxrect.height*maxrect.width)

 maxrect=cvBoundingRect(c,0);
}
rawCam3[N].bdbox=maxrect;

//-------------------------------
//imgcam1small contours
for(c=contours1;c!=0;c=c->h_next)
{

 if(c->total >=6 && fabs(cvContourArea(c))>500.0)
 {
 bdrect = cvBoundingRect(c,0);
 if(rawCam1[N].bdbox.height==bdrect.height && rawCam1[N].bdbox.width==bdrect.width)
 {
 ellipse1=cvFitEllipse2(c);
 ellipse1.angle=-ellipse1.angle;

 cvEllipseBox(imgCam1smallc,ellipse1,colour3);

 cvRectangle(imgCam1smallc,cvPoint(bdrect.x,bdrect.y),cvPoint(bdrect.x+bdrect.width,bdrect.y+bdrect.heig
ht),colour4, 1);
 rawCam1[N].ebox=ellipse1;
 }

 }

115

}
//imgcam2small contours

for(c=contours2;c!=0;c=c->h_next)
{

 if(c->total >=6 && fabs(cvContourArea(c))>500.0)
 {
 bdrect = cvBoundingRect(c,0);
 if(rawCam2[N].bdbox.height==bdrect.height && rawCam2[N].bdbox.width==bdrect.width)
 {
 ellipse1=cvFitEllipse2(c);
 ellipse1.angle=-ellipse1.angle;

 cvEllipseBox(imgCam2smallc,ellipse1,colour3);

 cvRectangle(imgCam2smallc,cvPoint(bdrect.x,bdrect.y),cvPoint(bdrect.x+bdrect.width,bdrect.y+bdrect.heig
ht),colour4, 1);
 rawCam2[N].ebox=ellipse1;
 }
 }
}

//imgcam3small contours

for(c=contours3;c!=0;c=c->h_next)
{

 if(c->total >=6 && fabs(cvContourArea(c))>500.0)
 {

 bdrect = cvBoundingRect(c,0);
 if(rawCam3[N].bdbox.height==bdrect.height && rawCam3[N].bdbox.width==bdrect.width)

 {
 ellipse1=cvFitEllipse2(c);
 ellipse1.angle=-ellipse1.angle;
 cvEllipseBox(imgCam3smallc,ellipse1,colour3);

 cvRectangle(imgCam3smallc,cvPoint(bdrect.x,bdrect.y),cvPoint(bdrect.x+bdrect.width,bdrect.y+bdrect.heig
ht),colour4, 1);
 rawCam3[N].ebox=ellipse1;
 }
 }
}

//------------------------

 contours1 = cvApproxPoly(contours1, sizeof(CvContour), g_storage1, CV_POLY_APPROX_DP,9, 1);
 if(contours1) cvDrawContours(imgCam1smallc,contours1,colour1,colour2,2);
tri1=contours1;
contours2 = cvApproxPoly(contours2, sizeof(CvContour), g_storage2, CV_POLY_APPROX_DP,9, 1);
 if(contours2) cvDrawContours(imgCam2smallc,contours2,colour1,colour2,2);
tri2=contours2;

contours3 = cvApproxPoly(contours3, sizeof(CvContour), g_storage3, CV_POLY_APPROX_DP,9, 1);
 if(contours3) cvDrawContours(imgCam3smallc,contours3,colour1,colour2,2);
tri3=contours3;

 contours1 = cvApproxPoly(contours1, sizeof(CvContour), g_storage1, CV_POLY_APPROX_DP,37, 1);
 if(contours1) cvDrawContours(imgCam1smallc,contours1,colour2,colour1,2);
bi1=contours1;
contours2 = cvApproxPoly(contours2, sizeof(CvContour), g_storage2, CV_POLY_APPROX_DP,37, 1);

116

 if(contours2) cvDrawContours(imgCam2smallc,contours2,colour2,colour1,2);
bi2=contours2;
contours3 = cvApproxPoly(contours3, sizeof(CvContour), g_storage3, CV_POLY_APPROX_DP,37, 1);
 if(contours3) cvDrawContours(imgCam3smallc,contours3,colour2,colour1,2);
bi3=contours3;

//---------------------------------

// Processing bi and tri contours for each camera...
//Cam1
//cout<<"\ncam1 :";

for(c=contours1;c!=0;c=c->h_next)
{

CvSeqReader reader1;
cvStartReadSeq(c, &reader1, 0);
if(fabs(cvContourPerimeter(c))>50.0 && c->total==2)
{//cout<<c->total<<",";

 for (int i = 0; i < 2; i++)
 {
 CV_READ_SEQ_ELEM (T1, reader1);
 if(i==0) dummyhead=T1;
 if(i==1) dummytail=T1;
 //cout<<"("<<T1.x<<","<<T1.y<<")";
 }
 //cout<<"Cam1[("<<dummyhead.x<<","<<dummyhead.y<<"),("<<dummytail.x<<","<<dummytail.y<<")]";

}

if(dummyhead.x>=rawCam1[N].bdbox.x && dummyhead.x<=rawCam1[N].bdbox.x + rawCam1[N].bdbox.width &&
dummyhead.y>=rawCam1[N].bdbox.y && dummyhead.y<=rawCam1[N].bdbox.y + rawCam1[N].bdbox.height &&
dummytail.x>=rawCam1[N].bdbox.x && dummytail.x<=rawCam1[N].bdbox.x + rawCam1[N].bdbox.width &&
dummytail.y>=rawCam1[N].bdbox.y && dummytail.y<=rawCam1[N].bdbox.y + rawCam1[N].bdbox.height)
{if(distance_ptsf1(dummyhead,rawCam1[N].ebox.center)>distance_ptsf1(dummytail,rawCam1[N].ebox.center))
{exchange=dummyhead; dummyhead=dummytail; dummytail=exchange;

rawCam1[N].le=distance_ptsf1(rawCam1[N].headpt,rawCam1[N].ebox.center);
rawCam1[N].we=fabs(trianglearea(rawCam1[N].headpt,rawCam1[N].tailpt,rawCam1[N].ebox.center)*2.00/distance_p
tsf1(rawCam1[N].headpt,rawCam1[N].tailpt));}
}
}
cvCircle(imgCam1smallc,dummyhead,5,cvScalarAll(255),2,8,0);
cvCircle(imgCam1smallc,dummytail,1,cvScalarAll(255),2,8,0);
rawCam1[N].headpt=dummyhead;rawCam1[N].tailpt=dummytail;

areamax=0;
for(c=tri1;c!=0;c=c->h_next)
{
 CvSeqReader reader1;

 cvStartReadSeq(c, &reader1, 0);
 tripoints1=c->total;
 //cout<<tripoints1<<"*";

 for (int i = 0; i < c->total; i++)
 {
 CV_READ_SEQ_ELEM (dummyroll, reader1);
 if(tripoints1==5)
 {
 if(i==1) dummy1=dummyroll;
 if(i==2) dummy2=dummyroll;
 if(i==3) dummy3=dummyroll;

117

 if(i==4) dummy4=dummyroll;
 if(i==5) dummy5=dummyroll;

 }
if(dummyroll.x>=rawCam1[N].bdbox.x && dummyroll.x<=rawCam1[N].bdbox.x + rawCam1[N].bdbox.width &&

dummyroll.y>=rawCam1[N].bdbox.y && dummyroll.y<=rawCam1[N].bdbox.y + rawCam1[N].bdbox.height)
{//cout<<"!";
 if(areamax<trianglearea(rawCam1[N].headpt,rawCam1[N].tailpt,dummyroll))
{areamax=trianglearea(rawCam1[N].headpt,rawCam1[N].tailpt,dummyroll);rawCam1[N].rollpt=dummyroll;}
 }
}
}
//if(tripoints1==5)cout<<"\nCam1 gives :"; loadNext(dummy1,dummy2,dummy3,dummy4,dummy5);

tripoints1=0;
//cout<<"\n";

//Cam2
//cout<<"\ncam3 :";
for(c=contours2;c!=0;c=c->h_next)
{

CvSeqReader reader2;
cvStartReadSeq(c, &reader2, 0);
if(fabs(cvContourPerimeter(c))>50.0 && c->total==2)
{//cout<<c->total<<",";
 for (int i = 0; i < 2; i++)
 {
 CV_READ_SEQ_ELEM (T1, reader2);

 if(i==0) dummyhead=T1;
 if(i==1) dummytail=T1;
 //cout<<"("<<T1.x<<","<<T1.y<<")";
 }
//cout<<"Cam2[("<<dummyhead.x<<","<<dummyhead.y<<"),("<<dummytail.x<<","<<dummytail.y<<")]";

}
if(dummyhead.x>=rawCam2[N].bdbox.x && dummyhead.x<=rawCam2[N].bdbox.x + rawCam2[N].bdbox.width &&
dummyhead.y>=rawCam2[N].bdbox.y && dummyhead.y<=rawCam2[N].bdbox.y + rawCam2[N].bdbox.height &&

dummytail.x>=rawCam2[N].bdbox.x && dummytail.x<=rawCam2[N].bdbox.x + rawCam2[N].bdbox.width &&
dummytail.y>=rawCam2[N].bdbox.y && dummytail.y<=rawCam2[N].bdbox.y + rawCam2[N].bdbox.height)
{if(distance_ptsf1(dummyhead,rawCam2[N].ebox.center)>distance_ptsf1(dummytail,rawCam2[N].ebox.center))
{exchange=dummyhead; dummyhead=dummytail; dummytail=exchange;
rawCam2[N].le=distance_ptsf1(rawCam2[N].headpt,rawCam2[N].ebox.center);
rawCam2[N].we=fabs(distance_linept(rawCam2[N].headpt,rawCam2[N].tailpt,rawCam2[N].ebox.center)); }
}
}

cvCircle(imgCam2smallc,dummyhead,5,cvScalarAll(255),2,8,0);
cvCircle(imgCam2smallc,dummytail,1,cvScalarAll(255),2,8,0);
rawCam2[N].headpt=dummyhead;rawCam2[N].tailpt=dummytail;
areamax=0;
for(c=tri2;c!=0;c=c->h_next)
{
 CvSeqReader reader2;

 cvStartReadSeq(c, &reader2, 0);
 tripoints2=c->total;
 //cout<<tripoints2<<"*";
 for (int i = 0; i < c->total; i++)
 {
 CV_READ_SEQ_ELEM (dummyroll, reader2);
 if(tripoints2==5)
 {

118

 if(i==1) dummy1=dummyroll;
 if(i==2) dummy2=dummyroll;
 if(i==3) dummy3=dummyroll;
 if(i==4) dummy4=dummyroll;
 if(i==5) dummy5=dummyroll;

 }
if(dummyroll.x>=rawCam2[N].bdbox.x && dummyroll.x<=rawCam2[N].bdbox.x + rawCam2[N].bdbox.width &&
dummyroll.y>=rawCam2[N].bdbox.y && dummyroll.y<=rawCam2[N].bdbox.y + rawCam2[N].bdbox.height)
{//cout<<"!";
 if(areamax<trianglearea(rawCam2[N].headpt,rawCam2[N].tailpt,dummyroll))
{areamax=trianglearea(rawCam2[N].headpt,rawCam2[N].tailpt,dummyroll);rawCam2[N].rollpt=dummyroll;}
 }

}
}
//if(tripoints2==5)cout<<"\nCam2 gives :"; loadNext(dummy1,dummy2,dummy3,dummy4,dummy5);
tripoints2=0;

//cout<<"\n";
rawCam2[N].A=trianglearea(rawCam2[N].headpt,rawCam2[N].tailpt,rawCam2[N].rollpt);
if(rawCam2[N-1].A!=0)

{

 if(rawCam2[N].A<=rawCam2[N-1].A) rawCam2[N].roll=acos(float(rawCam2[N].A)/float(rawCam2[N-
1].A));
 else if(rawCam2[N].A>rawCam2[N-1].A) rawCam2[N].roll=-1*acos(float(rawCam2[N-
1].A)/float(rawCam2[N].A));

}

//Cam3
//cout<<"\ncam1 :";
for(c=contours3;c!=0;c=c->h_next)
{

CvSeqReader reader3;
cvStartReadSeq(c, &reader3, 0);
if(fabs(cvContourPerimeter(c))>50.0 && c->total==2)

{//cout<<c->total<<"\n";
 for (int i = 0; i < 2; i++)
 {
 CV_READ_SEQ_ELEM (T1, reader3);
 if(i==0) dummyhead=T1;
 if(i==1) dummytail=T1;
 //cout<<"("<<T1.x<<","<<T1.y<<")";
 }

//cout<<"Cam3[("<<dummyhead.x<<","<<dummyhead.y<<"),("<<dummytail.x<<","<<dummytail.y<<")]";

}
if(dummyhead.x>=rawCam3[N].bdbox.x && dummyhead.x<=rawCam3[N].bdbox.x + rawCam3[N].bdbox.width &&
dummyhead.y>=rawCam3[N].bdbox.y && dummyhead.y<=rawCam3[N].bdbox.y + rawCam3[N].bdbox.height &&
dummytail.x>=rawCam3[N].bdbox.x && dummytail.x<=rawCam3[N].bdbox.x + rawCam3[N].bdbox.width &&
dummytail.y>=rawCam3[N].bdbox.y && dummytail.y<=rawCam3[N].bdbox.y + rawCam3[N].bdbox.height)
{if(distance_ptsf1(dummyhead,rawCam3[N].ebox.center)>distance_ptsf1(dummytail,rawCam3[N].ebox.center))

{exchange=dummyhead; dummyhead=dummytail; dummytail=exchange;
rawCam3[N].le=distance_ptsf1(rawCam3[N].headpt,rawCam3[N].ebox.center);
rawCam3[N].we=fabs(distance_linept(rawCam3[N].headpt,rawCam1[N].tailpt,rawCam3[N].ebox.center)); }
}
}
cvCircle(imgCam3smallc,dummyhead,5,cvScalarAll(255),2,8,0);
cvCircle(imgCam3smallc,dummytail,1,cvScalarAll(255),2,8,0);
rawCam3[N].headpt=dummyhead;rawCam3[N].tailpt=dummytail;

119

areamax=0;
for(c=tri3;c!=0;c=c->h_next)
{
 CvSeqReader reader3;

 cvStartReadSeq(c, &reader3, 0);
 tripoints3=c->total;
 //cout<<tripoints3<<"*";
 for (int i = 0; i < c->total; i++)
 {
 CV_READ_SEQ_ELEM (dummyroll, reader3);
 if(tripoints3==5)
 {

 if(i==1) dummy1=dummyroll;
 if(i==2) dummy2=dummyroll;
 if(i==3) dummy3=dummyroll;
 if(i==4) dummy4=dummyroll;
 if(i==5) dummy5=dummyroll;

 }
if(dummyroll.x>=rawCam3[N].bdbox.x && dummyroll.x<=rawCam3[N].bdbox.x + rawCam3[N].bdbox.width &&

dummyroll.y>=rawCam3[N].bdbox.y && dummyroll.y<=rawCam3[N].bdbox.y + rawCam3[N].bdbox.height)
{//cout<<"!";
 if(areamax<trianglearea(rawCam3[N].headpt,rawCam3[N].tailpt,dummyroll))
{areamax=trianglearea(rawCam3[N].headpt,rawCam3[N].tailpt,dummyroll);rawCam3[N].rollpt=dummyroll;}
 }
}
}
//if(tripoints3==5)cout<<"\nCam2 gives :"; loadNext(dummy1,dummy2,dummy3,dummy4,dummy5);

tripoints3=0;
//cout<<"\n";
rawCam3[N].A=trianglearea(rawCam3[N].headpt,rawCam3[N].tailpt,rawCam3[N].rollpt);
if(rawCam3[N-1].A!=0)
{

 if(rawCam3[N].A<=rawCam3[N-1].A) rawCam3[N].roll=acos(float(rawCam3[N].A)/float(rawCam3[N-
1].A));
 else if(rawCam3[N].A>rawCam3[N-1].A) rawCam3[N].roll=-1*acos(float(rawCam3[N-

1].A)/float(rawCam3[N].A));

}
//-------------------------------------
//Angle calculation

//cam1

if(rawCam1[N].headpt.x > rawCam1[N].tailpt.x) // 3 or 4 in camera sense
{
 if(rawCam1[N].headpt.y < rawCam1[N].tailpt.y) rawCam1[N].angle=atan(float(-
rawCam1[N].headpt.y+rawCam1[N].tailpt.y)/float(rawCam1[N].headpt.x-rawCam1[N].tailpt.x));
 else if(rawCam1[N].headpt.y > rawCam1[N].tailpt.y)
rawCam1[N].angle=1.5*pi+atan(float(rawCam1[N].headpt.y-rawCam1[N].tailpt.y)/float(rawCam1[N].headpt.x-
rawCam1[N].tailpt.x));
}

else if(rawCam1[N].headpt.x < rawCam1[N].tailpt.x) // 1 or 2 in camera sense
{
 if(rawCam1[N].headpt.y < rawCam1[N].tailpt.y) rawCam1[N].angle=pi+atan(float(-
rawCam1[N].headpt.y+rawCam1[N].tailpt.y)/float(-rawCam1[N].headpt.x+rawCam1[N].tailpt.x));
 else if(rawCam1[N].headpt.y > rawCam1[N].tailpt.y)
rawCam1[N].angle=0.5*pi+atan(float(rawCam1[N].headpt.y-rawCam1[N].tailpt.y)/float(-rawCam1[N].headpt.x-
rawCam1[N].tailpt.x));
}

120

rawCam1[N].A=trianglearea(rawCam1[N].headpt,rawCam1[N].tailpt,rawCam1[N].rollpt);

if(align>=2 && sameside(rawCam1[N].headpt,rawCam1[N].tailpt,rawCam1[N].rollpt,rawCam1[N-1].rollpt)>0)
{
 if(rawCam1[N-1].A!=0)

 {

 if(rawCam1[N].A<=rawCam1[N-1].A) rawCam1[N].roll=acos(float(rawCam1[N].A)/float(rawCam1[N-
1].A));
 else if(rawCam1[N].A>rawCam1[N-1].A) rawCam1[N].roll=-1*acos(float(rawCam1[N-
1].A)/float(rawCam1[N].A));

 }

}

per1=fabs((rawCam1[N].A-rawCam1[N-1].A)/rawCam1[N].A);
if(per1 < thresh || per1>thresh+0.04) rawCam1[N].roll=0;
zoomfact1=distance_ptsf1(cvPoint(xo1,yo1),rawCam1[N].ebox.center)/imgCam1small->width;
zoomfact1x=fabs(float(xo1-rawCam1[N].headpt.x))/imgCam1small->width;
zoomfact1y=fabs(float(yo1-rawCam1[N].headpt.y))/imgCam1small->width;

//cam2

if(rawCam2[N].headpt.x > rawCam2[N].tailpt.x) // 3 or 4 in camera sense
{
 if(rawCam2[N].headpt.y < rawCam2[N].tailpt.y) rawCam2[N].angle=atan(float(-
rawCam2[N].headpt.y+rawCam2[N].tailpt.y)/float(rawCam2[N].headpt.x-rawCam2[N].tailpt.x));
 else if(rawCam2[N].headpt.y > rawCam2[N].tailpt.y)

rawCam2[N].angle=1.5*pi+atan(float(rawCam2[N].headpt.y-rawCam2[N].tailpt.y)/float(rawCam2[N].headpt.x-
rawCam2[N].tailpt.x));
}
else if(rawCam2[N].headpt.x < rawCam2[N].tailpt.x) // 1 or 2 in camera sense
{
 if(rawCam2[N].headpt.y < rawCam2[N].tailpt.y) rawCam2[N].angle=pi+atan(float(-
rawCam2[N].headpt.y+rawCam2[N].tailpt.y)/float(-rawCam2[N].headpt.x+rawCam2[N].tailpt.x));
 else if(rawCam2[N].headpt.y > rawCam2[N].tailpt.y)
rawCam2[N].angle=0.5*pi+atan(float(rawCam2[N].headpt.y-rawCam2[N].tailpt.y)/float(-rawCam2[N].headpt.x-

rawCam2[N].tailpt.x));
}

if(align>=2 && sameside(rawCam2[N].headpt,rawCam2[N].tailpt,rawCam2[N].rollpt,rawCam2[N-1].rollpt)>0)
{
 if(rawCam2[N-1].A!=0)
 {

 if(rawCam2[N].A<=rawCam2[N-1].A) rawCam2[N].roll=acos(float(rawCam2[N].A)/float(rawCam2[N-
1].A));
 else if(rawCam2[N].A>rawCam2[N-1].A) rawCam2[N].roll=-1*acos(float(rawCam2[N-
1].A)/float(rawCam2[N].A));

 }

}

per2=fabs((rawCam2[N].A-rawCam2[N-1].A)/rawCam2[N].A);
if(per2 < thresh || per2>thresh+0.04) rawCam2[N].roll=0;
zoomfact2=distance_ptsf1(cvPoint(xo2,yo2),rawCam2[N].ebox.center)/imgCam1small->width;
zoomfact2x=fabs(float(xo2-rawCam2[N].headpt.x))/imgCam1small->width;
zoomfact2y=fabs(float(yo2-rawCam2[N].headpt.y))/imgCam1small->width;

//cam3
//note the change

121

if(rawCam3[N].headpt.x < rawCam3[N].tailpt.x) // 3 or 4 in camera sense
{
 if(rawCam3[N].headpt.y < rawCam3[N].tailpt.y) rawCam3[N].angle=atan(float(-
rawCam3[N].headpt.y+rawCam3[N].tailpt.y)/float(rawCam3[N].headpt.x-rawCam3[N].tailpt.x));
 else if(rawCam3[N].headpt.y > rawCam3[N].tailpt.y)

rawCam3[N].angle=1.5*pi+atan(float(rawCam3[N].headpt.y-rawCam3[N].tailpt.y)/float(rawCam3[N].headpt.x-
rawCam3[N].tailpt.x));
}
else if(rawCam3[N].headpt.x > rawCam3[N].tailpt.x) // 1 or 2 in camera sense
{
 if(rawCam3[N].headpt.y < rawCam3[N].tailpt.y) rawCam3[N].angle=pi+atan(float(-
rawCam3[N].headpt.y+rawCam3[N].tailpt.y)/float(-rawCam3[N].headpt.x+rawCam3[N].tailpt.x));
 else if(rawCam3[N].headpt.y > rawCam3[N].tailpt.y)

rawCam3[N].angle=0.5*pi+atan(float(rawCam3[N].headpt.y-rawCam3[N].tailpt.y)/float(-rawCam3[N].headpt.x-
rawCam3[N].tailpt.x));
}
if(align>=2 && sameside(rawCam3[N].headpt,rawCam3[N].tailpt,rawCam3[N].rollpt,rawCam3[N-1].rollpt)>0)
{
 if(rawCam3[N-1].A!=0)
 {

 if(rawCam3[N].A<=rawCam3[N-1].A) rawCam3[N].roll=acos(float(rawCam3[N].A)/float(rawCam3[N-
1].A));
 else if(rawCam3[N].A>rawCam3[N-1].A) rawCam3[N].roll=-1*acos(float(rawCam3[N-
1].A)/float(rawCam3[N].A));

 }

}

per3=fabs((rawCam3[N].A-rawCam3[N-1].A)/rawCam3[N].A);
if(per3 < thresh || per3>thresh+0.04) rawCam3[N].roll=0;
zoomfact3=distance_ptsf1(cvPoint(xo3,yo3),rawCam3[N].ebox.center)/imgCam1small->width;
zoomfact3x=fabs(float(xo3-rawCam3[N].headpt.x))/imgCam1small->width;
zoomfact3y=fabs(float(yo3-rawCam3[N].headpt.y))/imgCam1small->width;
cvCircle(imgCam1smallc,rawCam1[N].rollpt,3,cvScalarAll(155),2,8,0);
cvCircle(imgCam2smallc,rawCam2[N].rollpt,3,cvScalarAll(155),2,8,0);
cvCircle(imgCam3smallc,rawCam3[N].rollpt,3,cvScalarAll(155),2,8,0);
cvRectangle(imgCam1smallc,cvPoint(rawCam1[N].bdbox.x,rawCam1[N].bdbox.y),cvPoint(rawCam1[N].bdbox.x+ra

wCam1[N].bdbox.width,rawCam1[N].bdbox.y+rawCam1[N].bdbox.height),CV_RGB(10,100,55), 1);
cvRectangle(imgCam2smallc,cvPoint(rawCam2[N].bdbox.x,rawCam2[N].bdbox.y),cvPoint(rawCam2[N].bdbox.x+ra
wCam2[N].bdbox.width,rawCam2[N].bdbox.y+rawCam2[N].bdbox.height),CV_RGB(10,100,55), 1);
cvRectangle(imgCam3smallc,cvPoint(rawCam3[N].bdbox.x,rawCam3[N].bdbox.y),cvPoint(rawCam3[N].bdbox.x+ra
wCam3[N].bdbox.width,rawCam3[N].bdbox.y+rawCam3[N].bdbox.height),CV_RGB(10,100,55), 1);

 cvSetImageROI(ctrimg,cam1rect);
 cvResize(imgCam1smallc,ctrimg,1);

 cvResetImageROI(ctrimg);

 cvSetImageROI(ctrimg,cam2rect);
 cvResize(imgCam2smallc,ctrimg,1);
 cvResetImageROI(ctrimg);

 cvSetImageROI(ctrimg,cam3rect);
 cvResize(imgCam3smallc,ctrimg,1);

 cvResetImageROI(ctrimg);

cvWaitKey(10);
cvShowImage("Contours",ctrimg);

//if(align>=2 && mainloopcall == 0) { loadNext(rawCam1[N].headpt,rawCam1[N].rollpt,rawCam1[N].tailpt);
start_opengl_with_stereo(argc,argv); mainloopcall++;}

122

}
 cvCircle(PiP,cvPoint(xo1,yo1),3,cvScalarAll(255),2,8,0);
 cvCircle(PiP,cvPoint(xo2,yo2),3,cvScalarAll(255),2,8,0);
 cvCircle(PiP,cvPoint(xo3,yo3),3,cvScalarAll(255),2,8,0);

 if(N%5==0)
 {
 if(xo2!=0)cvLine(PiP,cvPoint(xo1,yo1),cvPoint(xo2,yo2),cvScalarAll(180),1,8,0);
 if(xo3!=0)cvLine(PiP,cvPoint(xo1,yo1),cvPoint(xo3,yo3),cvScalarAll(180),1,8,0);
 }
 //cvShowImage("1",imgCam1);
 //cvShowImage("2",imgCam2);

 //cvShowImage("3",imgCam3);

if(align==0) cvPutText (PiP,"Align Left to Right...",cvPoint(700+40,550+40), &font, cvScalar(255,255,0));

if(align==1) cvPutText (PiP,"Align Top to Bottom...",cvPoint(550+40,750+40), &font, cvScalar(255,255,0));

 if(align>=2){
cvPutText (PiP,"_____________",cvPoint(700+40,750+40), &font, cvScalar(255,255,0));
cvPutText (PiP," | ",cvPoint(699+40,770+40), &font, cvScalar(255,255,0));
cvPutText (PiP," 1 | 3 ",cvPoint(696+40,790+40), &font, cvScalar(255,255,0));
cvPutText (PiP,"_____________",cvPoint(700+40,810+40), &font, cvScalar(255,255,0));
cvPutText (PiP," | ",cvPoint(700+40,830+40), &font, cvScalar(255,255,0));

cvPutText (PiP," 2 | 4 ",cvPoint(697+40,850+40), &font, cvScalar(255,255,0));
cvPutText (PiP,"_____________",cvPoint(700+40,870+40), &font, cvScalar(255,255,0));

//loadNext(rawCam1[N].headpt,rawCam1[N].rollpt,rawCam1[N].tailpt);
 processmap();
//**********HELLLOO************

 }

// solve_euler();
 cvShowImage("PiP",PiP);
 if(align>=2)cvShowImage("trackbars",trackbars);
 cvCreateTrackbar("Threshold","trackbars", &n_threshold, 150, on_trackbar);
 cvCreateTrackbar("Erode","trackbars", &n_erode, 10 , on_trackbar);
 cvCreateTrackbar("Smooth","trackbars",&n_smooth,20, on_trackbar);
 cvCreateTrackbar("Canny","trackbars",&n_canny,50, on_trackbar);

 on_trackbar(0);
 //cvCreateTrackbar("Static_Ignore","PiP",&static_switch, 1 , on_trackbar);
 cvResize(PiP,im1clone);
 cvResize(PiP,im1dummy);

 cvSetMouseCallback("PiP", my_mouse, (void*)PiP);
 cvWaitKey(20);
 }

 A1.close();
 return 0;
}

float GlobalTriArea=0;

void solve_euler(void)
{

123

 int choice=0; // Chooses which is the defective camera
 if(N<3) GlobalBodyLength = sqrt(float(pow(distance_ptsf1(rawCam1[N].headpt,rawCam1[N].tailpt),2) +
pow(distance_ptsf1(rawCam2[N].headpt,rawCam2[N].tailpt),2) +
pow(distance_ptsf1(rawCam3[N].headpt,rawCam3[N].tailpt),2)));
 if(N<3) GlobalTriArea = sqrt(float(pow(rawCam1[N].A,2) + pow(rawCam2[N].A,2) + pow(

rawCam3[N].A,2)));

float CurrentBodyLength=sqrt(float(pow(distance_ptsf1(rawCam1[N].headpt,rawCam1[N].tailpt),2) +
pow(distance_ptsf1(rawCam2[N].headpt,rawCam2[N].tailpt),2) +
pow(distance_ptsf1(rawCam3[N].headpt,rawCam3[N].tailpt),2)));
float CurrentTriArea= sqrt(float(pow(rawCam1[N].A,2) + pow(rawCam2[N].A,2) + pow(rawCam3[N].A,2)));

 if(quad1->total > 3 && quad2->total>3) choice=3;

 else if(quad1->total > 3 && quad3->total>3) choice=2;
 else if(quad2->total > 3 && quad2->total>3) choice=1;
 else cout<<"\nCannot calculate for this frame!\n";
 //choice=2;
float actualscaling=0;
float apparentscaling=CurrentBodyLength/GlobalBodyLength;
if(apparentscaling>1) apparentscaling=1/apparentscaling;
float distance=0;

rawCam1[N].we=fabs(trianglearea(rawCam1[N].headpt,rawCam1[N].tailpt,rawCam1[N].ebox.center)*2.00/distance_p
tsf1(rawCam1[N].headpt,rawCam1[N].tailpt));
rawCam2[N].we=fabs(trianglearea(rawCam2[N].headpt,rawCam2[N].tailpt,rawCam2[N].ebox.center)*2.00/distance_p
tsf1(rawCam2[N].headpt,rawCam2[N].tailpt));
rawCam3[N].we=fabs(trianglearea(rawCam3[N].headpt,rawCam3[N].tailpt,rawCam3[N].ebox.center)*2.00/distance_p
tsf1(rawCam3[N].headpt,rawCam3[N].tailpt));
//cout<<rawCam1[N].we<<","<<rawCam2[N].we<<","<<rawCam3[N].we<<endl;

if(choice==3)
 {
 distance=rawCam3[N].ebox.center.x-float(xo3);
 if(distance<0) actualscaling=1/(1+distance/200);
 else if(distance>0) actualscaling=1+(distance/200);
 yaw=actualscaling/apparentscaling;
 pitch=rawCam1[N].angle;
 roll=acos(GlobalTriArea/(CurrentTriArea *actualscaling *apparentscaling));
 //cout<<"\n*"<<GlobalTriArea/(CurrentTriArea *actualscaling *apparentscaling);

 //cout<<"Choice 3 :"<<roll*180/pi<<","<<pitch*180/pi<<","<<yaw*180/pi<<endl;

 }

else if(choice==1)
 {
 distance=rawCam3[N].ebox.center.x-float(xo1);

 if(distance<0) actualscaling=1/(1+distance/200);
 else if(distance>0) actualscaling=1+(distance/200);
 yaw=actualscaling/apparentscaling;
 pitch=rawCam1[N].angle;
 roll=acos(GlobalTriArea/(CurrentTriArea *actualscaling *apparentscaling));
 //cout<<"\n*"<<GlobalTriArea/(CurrentTriArea *actualscaling *apparentscaling);
 //cout<<"Choice 1 :"<<roll*180/pi<<","<<pitch*180/pi<<","<<yaw*180/pi<<endl;

 }

else if(choice==2)
 {
 distance=rawCam3[N].ebox.center.y-float(yo2);
 if(distance<0) actualscaling=1/(1+distance/200);
 else if(distance>0) actualscaling=1+(distance/200);
 yaw=actualscaling/apparentscaling;

124

 pitch=rawCam1[N].angle;
 roll=acos(GlobalTriArea/(CurrentTriArea *actualscaling *apparentscaling));
 //cout<<"\n*"<<GlobalTriArea/(CurrentTriArea *actualscaling *apparentscaling);
 //cout<<"Choice 2 :"<<roll*180/pi<<","<<pitch*180/pi<<","<<yaw*180/pi<<endl;

 }

else cout<<"\nCannot calculate for this frame!\n";
}

void processmap()
{

int L=0,B=0,H=0;

struct sizes
{
 int XX;
 int YY;
 int missing; //1 - L, 2 - B, 3 - H
}surf1,surf2,surf3;

//int offset1x,offset1y,offset2x,offset2y,offset3x,offset3y;

if(rawCam1[N].bdbox.height*rawCam1[N].bdbox.width > rawCam2[N].bdbox.height*rawCam2[N].bdbox.width &&
rawCam1[N].bdbox.height*rawCam1[N].bdbox.width > rawCam3[N].bdbox.height*rawCam3[N].bdbox.width)
choice=1;
else if(rawCam2[N].bdbox.height*rawCam2[N].bdbox.width > rawCam1[N].bdbox.height*rawCam1[N].bdbox.width
&& rawCam2[N].bdbox.height*rawCam2[N].bdbox.width > rawCam3[N].bdbox.height*rawCam3[N].bdbox.width)
choice=2;
else choice=3;
float scalep=0;

float scalepp=0;
//choice=2;
choice=4;
//cout<<choice<<".";
CvSeq* c;
CvPoint *alongquad1;
CvPoint dummyquad1=cvPoint(0,0);
int **quadsurf1=NULL;

CvPoint * A1=NULL;
int *done_checking_index1=NULL;
int count_quadsurf1=0;
int count_alongquad1=0;

CvPoint *alongquad2;
CvPoint dummyquad2=cvPoint(0,0);
int **quadsurf2=NULL;

CvPoint * A2=NULL;
int *done_checking_index2=NULL;
int count_quadsurf2=0;
int count_alongquad2=0;

CvPoint *alongquad3;
CvPoint dummyquad3=cvPoint(0,0);
int **quadsurf3=NULL;

125

CvPoint * A3=NULL;
int *done_checking_index3=NULL;
int count_quadsurf3=0;
int count_alongquad3=0;

int A11=0,A22=0,B11=0,B22=0,C11=0,C22=0;
int ***volex=NULL;
int ***volex1=NULL;
int ***volex2=NULL;
int ***volex3=NULL;

alongquad1=new CvPoint[500];
alongquad2=new CvPoint[500];
alongquad3=new CvPoint[500];

for(int i=0;i<500;i++)
{
 alongquad1[i].x=0;

 alongquad1[i].y=0;

 alongquad2[i].x=0;
 alongquad2[i].y=0;

 alongquad3[i].x=0;
 alongquad3[i].y=0;
}

 choice=4;
 if(rawCam1[N].bdbox.width>rawCam2[N].bdbox.width)L=rawCam1[N].bdbox.width;
 else L=rawCam2[N].bdbox.width;
 //
 if(rawCam1[N].bdbox.height>rawCam3[N].bdbox.height)B=rawCam1[N].bdbox.height;
 else B=rawCam3[N].bdbox.height;
 //
 if(rawCam2[N].bdbox.height>rawCam3[N].bdbox.width)H=rawCam2[N].bdbox.height;
 else H=rawCam3[N].bdbox.width;

 //
 sub_choice=4;

 scalep=float(rawCam3[N].bdbox.width)/float(B); //cam3
 scalepp=float(rawCam1[N].bdbox.height)/float(L); //cam1

 surf1.XX=L;surf1.YY=B;surf1.missing=3;
 surf2.XX=L;surf2.YY=H;surf2.missing=1;

 surf3.XX=H;surf3.YY=B;surf3.missing=2;

L++;
B++;
H++;
quadsurf1=new int*[L];
for(int i=0;i<L;i++)
{

 quadsurf1[i]=new int[B];
}
for(int i=0;i<L;i++)
{
 for(int j=0;j<B;j++)
 {
 quadsurf1[i][j]=0;
 }

126

}

quadsurf2=new int*[L];
for(int i=0;i<L;i++)

{
 quadsurf2[i]=new int[H];
}
for(int i=0;i<L;i++)
{
 for(int j=0;j<H;j++)
 {
 quadsurf2[i][j]=0;

 }
}

quadsurf3=new int*[H];
for(int i=0;i<H;i++)
{
 quadsurf3[i]=new int[B];
}

for(int i=0;i<H;i++)
{
 for(int j=0;j<B;j++)
 {
 quadsurf3[i][j]=0;
 }
}

A11=rawCam1[N].bdbox.x+L;
A22=rawCam1[N].bdbox.y+B;

B11=rawCam2[N].bdbox.x+L;
B22=rawCam2[N].bdbox.y+H;

C11=rawCam3[N].bdbox.x+H;
C22=rawCam3[N].bdbox.y+B;

//}

volex=new int**[L];
for(int i=0;i<L;i++)
{
 volex[i]=new int*[B];
}
for(int i=0;i<L;i++)

{
 for(int j=0;j<B;j++)
 {
 volex[i][j]=new int[H];
 }
}

//----------

//initialize
for(int i=0;i<L;i++)
{
 for(int j=0;j<B;j++)
 {
 for(int k=0;k<H;k++)
 {
 volex[i][j][k]=0;

127

 }
 }
}

for(c=quad1;c!=0;c=c->h_next)

{
 CvSeqReader reader1;
 cvStartReadSeq(c, &reader1, 0);

 for (int i = 0; i < c->total; i++)
 {
 CV_READ_SEQ_ELEM (dummyquad1, reader1);
 if(dummyquad1.x>rawCam1[N].bdbox.x && dummyquad1.y>rawCam1[N].bdbox.y &&

dummyquad1.x<A11 && dummyquad1.y<A22)
 {
 alongquad1[count_alongquad1].x=dummyquad1.x;
 alongquad1[count_alongquad1++].y=dummyquad1.y;
 }
 }

}

int t=0;
int x=0;
int y=0;
c=NULL;
while(t<count_alongquad1)
{
 // y const scanning
 //use bounding box and mark 1 for a projection of a volex point in the bounding box coordinates

 if((alongquad1[t].x - rawCam1[N].bdbox.x)<L && (alongquad1[t].y-rawCam1[N].bdbox.y)<B){
 quadsurf1[alongquad1[t].x - rawCam1[N].bdbox.x][alongquad1[t].y-rawCam1[N].bdbox.y]=1;}
t++;
}

for(c=quad2;c!=0;c=c->h_next)
{
 CvSeqReader reader2;

 cvStartReadSeq(c, &reader2, 0);

 for (int i = 0; i < c->total; i++)
 {
 CV_READ_SEQ_ELEM (dummyquad2, reader2);
 if(dummyquad2.x>rawCam2[N].bdbox.x && dummyquad2.y>rawCam2[N].bdbox.y &&
dummyquad2.x<B11 && dummyquad2.y<B22)
 {

 alongquad2[count_alongquad2].x=dummyquad2.x;
 alongquad2[count_alongquad2++].y=dummyquad2.y;
 }
 }

}
t=0;
x=0;

y=0;
c=NULL;
while(t<count_alongquad2)
{
 // y const scanning
 //use bounding box and mark 1 for a projection of a volex point in the bounding box coordinates
 if((alongquad2[t].x - rawCam2[N].bdbox.x)<L && (alongquad2[t].y-rawCam2[N].bdbox.y)<H){
 quadsurf2[alongquad2[t].x - rawCam2[N].bdbox.x][alongquad2[t].y-rawCam2[N].bdbox.y]=1;}

128

 t++;

}

for(c=quad3;c!=0;c=c->h_next)
{
 CvSeqReader reader3;
 cvStartReadSeq(c, &reader3, 0);

 for (int i = 0; i < c->total; i++)
 {

 CV_READ_SEQ_ELEM (dummyquad3, reader3);
 if(dummyquad3.x>rawCam3[N].bdbox.x && dummyquad3.y>rawCam3[N].bdbox.y &&
dummyquad3.x<C11 && dummyquad3.y<C22)
 {
 alongquad3[count_alongquad3].x=dummyquad3.x;
 alongquad3[count_alongquad3++].y=dummyquad3.y;
 }
 }

}
t=0;
x=0;
y=0;
while(t<count_alongquad3)
{
 // y const scanning
 //use bounding box and mark 1 for a projection of a volex point in the bounding box coordinates

 if((alongquad3[t].x - rawCam3[N].bdbox.x)<H && (alongquad3[t].y-rawCam3[N].bdbox.y)<B){
 quadsurf3[alongquad3[t].x - rawCam3[N].bdbox.x][alongquad3[t].y-rawCam3[N].bdbox.y]=1;}

t++;
}
//point polygon test fill
CvPoint2D32f double_point;
//1

for(int i=0;i<surf1.XX;i++)
{
 for(int j=0;j<surf1.YY;j++)
 {

 double_point=cvPoint2D32f(double(rawCam1[N].bdbox.x + i),double(rawCam1[N].bdbox.y + j));
 if(cvPointPolygonTest(quad1,double_point,0)>=0)
{quadsurf1[i][j]=1;/*cout<<"("<<i<<"/"<<surf1.XX<<","<<j<<"/"<<surf1.YY<<")";*/}

 }
}

//2

for(int i=0;i<surf2.XX;i++)
{

 for(int j=0;j<surf2.YY;j++)
 {

 double_point=cvPoint2D32f(double(rawCam2[N].bdbox.x + i),double(rawCam2[N].bdbox.y + j));
 if(cvPointPolygonTest(quad2,double_point,0)>=0)
{quadsurf2[i][j]=1;/*cout<<cvPointPolygonTest(quad2,double_point,0)<<"-
"<<i<<"/"<<surf2.XX<<","<<j<<"/"<<surf2.YY<<").."*/;}

129

 }
}
//3

for(int i=0;i<surf3.XX;i++)

{
 for(int j=0;j<surf3.YY;j++)
 {

 double_point=cvPoint2D32f(double(rawCam3[N].bdbox.x + i),double(rawCam3[N].bdbox.y + j));
 if(cvPointPolygonTest(quad3,double_point,0)>=0) {quadsurf3[i][j]=1;}

 }

}
//HIT BC METHOD
int hit_bc=-1;
int bound=0;
//--
for(int j=1;j<surf1.YY-2;j++)
{
hit_bc=-1;

bound=0;
for(int k=0;k<surf1.XX-2;k++) {if(quadsurf1[k][j]==1) bound++;}
if(bound!=1)
{
 for(int i=1;i<surf1.XX-2;i++)
 {
 if(quadsurf1[i][j]+quadsurf1[i+1][j]+quadsurf1[i-1][j]==1 && quadsurf1[i][j]==1) {hit_bc*=-1;}
 else if(quadsurf1[i][j]+quadsurf1[i+1][j]+quadsurf1[i-1][j]==2 && quadsurf1[i+1][j]==0) hit_bc=-

1;
 else if(quadsurf1[i][j]+quadsurf1[i+1][j]+quadsurf1[i-1][j]==2 && quadsurf1[i-1][j]==0) hit_bc=1;
 else if(quadsurf1[i][j]==0 && hit_bc==1) quadsurf1[i][j]=1;
 else if(quadsurf1[i][j]==0 && hit_bc==-1) quadsurf1[i][j]=0;
 }
}
else if(bound==1)
{
for(int k=0;k<surf1.XX-2;k++) {quadsurf1[k][j]=quadsurf1[k][j-1];}

}
}
//--
for(int j=1;j<surf2.YY-2;j++)
{
hit_bc=-1;
bound=0;
for(int k=0;k<surf2.XX-2;k++) {if(quadsurf2[k][j]==1) bound++;}

if(bound!=1)
{
 for(int i=1;i<surf2.XX-1;i++)
 {
 if(quadsurf2[i][j]+quadsurf2[i+1][j]+quadsurf2[i-1][j]==1 && quadsurf2[i][j]==1) hit_bc*=-1;
 else if(quadsurf2[i][j]+quadsurf2[i+1][j]+quadsurf2[i-1][j]==2 && quadsurf2[i+1][j]==0) hit_bc=-
1;
 else if(quadsurf2[i][j]+quadsurf2[i+1][j]+quadsurf2[i-1][j]==2 && quadsurf2[i-1][j]==0) hit_bc=1;

 else if(quadsurf2[i][j]==0 && hit_bc==1) quadsurf2[i][j]=1;
 else if(quadsurf2[i][j]==0 && hit_bc==-1) quadsurf2[i][j]=0;

 }
}
else if(bound==1)
{
for(int k=0;k<surf2.XX-2;k++) {quadsurf2[k][j]=quadsurf2[k][j-1];}

130

}
}
//--
for(int j=1;j<surf3.YY-2;j++)
{

hit_bc=-1;
bound=0;
for(int k=0;k<surf3.XX-2;k++) {if(quadsurf3[k][j]==1) bound++;}
if(bound!=1)
{
 for(int i=1;i<surf3.XX-1;i++)
 {
 if(quadsurf3[i][j]+quadsurf3[i+1][j]+quadsurf3[i-1][j]==1 && quadsurf3[i][j]==1) hit_bc*=-1;

 else if(quadsurf3[i][j]+quadsurf3[i+1][j]+quadsurf3[i-1][j]==2 && quadsurf3[i+1][j]==0) hit_bc=-
1;
 else if(quadsurf3[i][j]+quadsurf3[i+1][j]+quadsurf3[i-1][j]==2 && quadsurf3[i-1][j]==0) hit_bc=1;
 else if(quadsurf3[i][j]==0 && hit_bc==1) quadsurf3[i][j]=1;
 else if(quadsurf3[i][j]==0 && hit_bc==-1) quadsurf3[i][j]=0;

 }
}

else if(bound==1)
{
for(int k=0;k<surf3.XX-1;k++) {quadsurf3[k][j]=quadsurf3[k][j-1];}
}
}
//--
//now fill in converse direction

//ENDPOINT METHOD
int p1=0;
int p2=0;
int bnd1chk=0;

//--
//SURF1
for(int i=1;i<surf1.XX;i++)
{

 for(int j=1;j<surf1.YY;j++)
 {

 if(bnd1chk==0 && quadsurf1[i][j]==1){bnd1chk=1;p1=j;}
 else if(bnd1chk==1 && quadsurf1[i][j]==1) {p2=j;bnd1chk=0; for(int
j=p1;j<p2;j++){quadsurf1[i][j]=1;} }
 }

}
//SURF2
bnd1chk=0;
p1=0;
p2=0;
for(int i=1;i<surf2.XX;i++)

{
 for(int j=1;j<surf2.YY;j++)
 {

 if(bnd1chk==0 && quadsurf2[i][j]==1){bnd1chk=1;p1=j;}
 else if(bnd1chk==1 && quadsurf2[i][j]==1) {p2=j;bnd1chk=0; for(int
j=p1;j<p2;j++){quadsurf2[i][j]=1;} }

131

 }
}//SURF3
bnd1chk=0;
p1=0;
p2=0;

for(int i=1;i<surf3.XX;i++)
{
 for(int j=1;j<surf3.YY;j++)
 {

 if(bnd1chk==0 && quadsurf3[i][j]==1){bnd1chk=1;p1=j;}
 else if(bnd1chk==1 && quadsurf3[i][j]==1) {p2=j;bnd1chk=0; for(int
j=p1;j<p2;j++){quadsurf3[i][j]=1;} }

 }

}
//SURF1
for(int j=1;j<surf1.YY;j++)
{
 for(int i=1;i<surf1.XX;i++)

 {

 if(bnd1chk==0 && quadsurf1[i][j]==1){bnd1chk=1;p1=j;}
 else if(bnd1chk==1 && quadsurf1[i][j]==1) {p2=j;bnd1chk=0; for(int
j=p1;j<p2;j++){quadsurf1[i][j]=1;} }
 }

}

//SURF2
bnd1chk=0;
p1=0;
p2=0;
for(int j=1;j<surf2.YY;j++)
{
 for(int i=1;i<surf2.XX;i++)
 {

 if(bnd1chk==0 && quadsurf2[i][j]==1){bnd1chk=1;p1=j;}
 else if(bnd1chk==1 && quadsurf2[i][j]==1) {p2=j;bnd1chk=0; for(int
j=p1;j<p2;j++){quadsurf2[i][j]=1;} }

 }

}//SURF3
bnd1chk=0;

p1=0;
p2=0;
for(int j=1;j<surf3.YY;j++)
{
 for(int i=1;i<surf3.XX;i++)
 {

 if(bnd1chk==0 && quadsurf3[i][j]==1){bnd1chk=1;p1=j;}

 else if(bnd1chk==1 && quadsurf3[i][j]==1) {p2=j;bnd1chk=0; for(int
j=p1;j<p2;j++){quadsurf3[i][j]=1;} }

 }

}
if(writeall==1)
{

132

 ofstream f11("abc1.asc");
for(int i=0;i<surf1.XX;i++)
{
 for(int j=0;j<surf1.YY;j++)
 {

 if(quadsurf1[i][j]==1) f11<<i<<","<<j<<",0\n";
 }
}
f11.close();

 ofstream f22("abc2.asc");
for(int i=0;i<surf2.XX;i++)
{

 for(int j=0;j<surf2.YY;j++)
 {
 if(quadsurf2[i][j]==1) f22<<i<<","<<j<<",0\n";
 }
}
f22.close();

 ofstream f33("abc3.asc");

for(int i=0;i<surf3.XX;i++)
{
 for(int j=0;j<surf3.YY;j++)
 {
 if(quadsurf3[i][j]==1) f33<<i<<","<<j<<",0\n";
 }
}
f33.close();

}

//cout<<sub_choice<<" ";
cout<<"(L,B,H)="<<L<<","<<B<<","<<H<<" ";

//extrude these created surfaces to form volumes volex 1 volex2 and volex3

//First dynamically create memory

//for 1
volex1=new int**[L];
for(int i=0;i<L;i++)
{
 volex1[i]=new int*[B];
}
for(int i=0;i<L;i++)
{

 for(int j=0;j<B;j++)
 {
 volex1[i][j]=new int[H];
 }
}
//initialize
for(int i=0;i<L;i++)
{

 for(int j=0;j<B;j++)
 {
 for(int k=0;k<H;k++)
 {
 volex1[i][j][k]=0;
 }
 }
}

133

//for 2
volex2=new int**[L];
for(int i=0;i<L;i++)

{
 volex2[i]=new int*[B];
}
for(int i=0;i<L;i++)
{
 for(int j=0;j<B;j++)
 {
 volex2[i][j]=new int[H];

 }
}
//initialize
for(int i=0;i<L;i++)
{
 for(int j=0;j<B;j++)
 {
 for(int k=0;k<H;k++)

 {
 volex2[i][j][k]=0;
 }
 }
}

//for 3
volex3=new int**[L];

for(int i=0;i<L;i++)
{
 volex3[i]=new int*[B];
}
for(int i=0;i<L;i++)
{
 for(int j=0;j<B;j++)
 {
 volex3[i][j]=new int[H];

 }
}
//initialize
for(int i=0;i<L;i++)
{
 for(int j=0;j<B;j++)
 {
 for(int k=0;k<H;k++)

 {
 volex3[i][j][k]=0;
 }
 }
}

//depending on "choice" variable build the volume in each subspace

if(choice==1 || choice==4)
{
 for(int i=0;i<L;i++)
 {
 for(int j=0;j<B;j++)
 {

134

 for(int k=0;k<H;k++)
 {
 // LB,LH,HB (ij)
 volex1[i][j][k]=quadsurf1[i][j];
 volex2[i][j][k]=quadsurf2[i][k];

 volex3[i][j][k]=quadsurf3[k][j];

 }
 }
 }

}

else if(choice==2)
{
 for(int i=0;i<L;i++)
 {
 for(int j=0;j<B;j++)
 {
 for(int k=0;k<H;k++)
 {

 // BH,BL,LH
 volex1[i][j][k]=quadsurf1[j][k];
 volex2[i][j][k]=quadsurf2[j][i];
 volex3[i][j][k]=quadsurf3[i][k];
 }
 }
 }

}

else if(choice==3)
{
 for(int i=0;i<L;i++)
 {
 for(int j=0;j<B;j++)
 {
 for(int k=0;k<H;k++)

 {
 // HL,HB,BL
 volex1[i][j][k]=quadsurf1[k][i];
 volex2[i][j][k]=quadsurf2[k][j];
 volex3[i][j][k]=quadsurf3[j][i];
 }
 }
 }

}

else cout<<"No choice made..!"<<endl;
long int icount=0;
for(int i=2;i<L-2;i++)
 {
 for(int j=2;j<B-2;j++)

 {
 for(int k=2;k<H-2;k++)
 {
volex[i][j][k]=volex1[i][j][k]+volex2[i][j][k]+volex3[i][j][k];
if(volex[i][j][k]==3) {icount++;}

 }
 }

135

}
//SAMPLE WRITE FILE !!!!
if(writeall==1)
{
 ofstream f1("voxel1.asc");

for(int i=0;i<L;i++)
 {
 for(int j=0;j<B;j++)
 {
 for(int k=0;k<H;k++)
 {
 if(volex1[i][j][k]==1) f1<<i<<","<<j<<","<<k<<endl;
 }

 }
}
f1.close();

ofstream f2("voxel2.asc");
for(int i=0;i<L;i++)
 {
 for(int j=0;j<B;j++)

 {
 for(int k=0;k<H;k++)
 {
 if(volex2[i][j][k]==1) f2<<i<<","<<j<<","<<k<<endl;
 }
 }
}
f2.close();

ofstream f3("voxel3.asc");
for(int i=0;i<L;i++)
 {
 for(int j=0;j<B;j++)
 {
 for(int k=0;k<H;k++)
 {
 if(volex3[i][j][k]==1) f3<<i<<","<<j<<","<<k<<endl;

 }
 }
}
f3.close();

if(writeall==1)
{
ofstream f4("voxel.asc");

for(int i=0;i<L;i++)
 {
 for(int j=0;j<B;j++)
 {
 for(int k=0;k<H;k++)
 {
 if(volex[i][j][k]==3) f4<<i<<","<<j<<","<<k<<endl;
 }

 }
}
f4.close();
}

}

cout<<"{"<<icount<<"}/"<<long(L*B*H)<<" ";//getchar();

136

if(icount>5000) {plot=1;iterate_for_roll(L,B,H,volex);}
else cout<<"Not enough voxels available!\n";
plot=0;
//getchar();

}

void iterate_for_roll(int L,int B,int H,int *** volex)
{
 global.v1.x=1;
 global.v1.y=0;
 global.v1.z=0;

 global.v2.x=0;
 global.v2.y=1;
 global.v2.z=0;

 global.v3.x=0;
 global.v3.y=0;
 global.v3.z=1;

double x1,x2,x3,x4,y1,y2,y3,y4,z1,z2,z3,z4;//y1 is local as it is already used by math.h

 int ***frame=NULL;
 int ***wireframe=NULL;
 int ***wireframe_r=NULL;
 int ***wireframe_r2=NULL;
 int ***wireframe_r3=NULL;
 int ***wireframe_t=NULL;

 int ***wireframe_final=NULL;
 int **centroids=NULL;

centroids=new int *[L];
for(int i=0;i<L;i++)
{
 centroids[i]=new int[2];
}
//initialize

for(int i=0;i<L;i++)
{
 for(int j=0;j<2;j++)
 {
 centroids[i][j]=0;
 }
}

for(int i=0;i<L;i++)
{
int A=0,xc=0,yc=0;
for(int j=0;j<B;j++)
{
 for(int k=0;k<H;k++)
 {
 if(volex[i][j][k]==3)

 {
 A=A+1;
 xc=xc+j*1;
 yc=yc+k*1;
 }

 }
}

137

if(A==0) {xc=B/2; yc=B/2;}
else
{
xc=int(float(xc)/float(A));
yc=int(float(yc)/float(A));

centroids[i][0]=xc;
centroids[i][1]=yc;
}
//cout<<i<<"-"<<xc<<","<<yc<<endl;
}
//getchar();
//cout<<"3..";
int body_start_volex=0;

int body_end_volex=0;
//find out which is the first and last planes with points
int check=0;
for(int i=0;i<L;i++)
{
 for(int j=0;j<B;j++)
 {
 for(int k=0;k<H;k++)

 {
 if(volex[i][j][k]==1) check++;
 }
 }
 if(check!=0){ body_start_volex=i; i=L;}
}
check=0;
for(int i=L-1;i>=0;i--)

{
 for(int j=B-1;j>=0;j--)
 {
 for(int k=H-1;k>=0;k--)
 {
 if(volex[i][j][k]==1) check++;
 }
 }
 if(check!=0){ body_end_volex=i; i=-1;}

}

body_rot.x=body_end_volex-body_start_volex;
body_rot.y=centroids[body_end_volex][0] - centroids[body_start_volex][0];
body_rot.z=centroids[body_end_volex][1] - centroids[body_start_volex][1];
double length11=sqrt(pow(body_rot.x,2) + pow(body_rot.y,2) + pow(body_rot.z,2));
body_rot.x/=length11;

body_rot.y/=length11;
body_rot.z/=length11;

//body is now at 0,B/2,H/2 to L,B/2,H/2

body.x=1; // from L/L
body.y=0;
body.z=0;

//cross product

axis.x=body.y*body_rot.z - body.z*body_rot.y;
axis.y=body.z*body_rot.x - body.x*body_rot.z;
axis.z=body.x*body_rot.y - body.y*body_rot.x;

length11=sqrt(pow(axis.x,2) + pow(axis.y,2) + pow(axis.z,2));

138

axis.x=axis.x/length11;
axis.y=axis.y/length11;
axis.z=axis.z/length11;

roll_axis.x=body_rot.x;

roll_axis.y=body_rot.y;
roll_axis.z=body_rot.z;

float degrees=0;
float theta=0;//15*3.14156/180;
float c1=0;//cos(theta);
float s1=0;//sin(theta);
float t1=0;//1-c1;

float conv=0.00001;

float theta_max=0;
int icount=0;
int icount_max=0;
int exit=0;
int z_tail_end=body_end_volex;
int z_tail_start=int(float(body_start_volex)+0.333*float(body_end_volex-body_start_volex)); //guess

float m_0=(centroids[z_tail_start][0]-centroids[body_start_volex][0])/(z_tail_start-body_start_volex);
float m_1=(centroids[z_tail_start][1]-centroids[body_start_volex][1])/(z_tail_start-body_start_volex);
int p_count=0;
int x_imp=0;
int y_imp=0;
//
for(int i=body_start_volex;i<=z_tail_start;i++)

{
x_imp+=centroids[i][0]+m_0*(i-body_start_volex);
y_imp+=centroids[i][1]+m_1*(i-body_start_volex);
p_count++;
}
centroid_plane.x=z_tail_start-body_start_volex;
centroid_plane.y=x_imp/p_count;
centroid_plane.z=y_imp/p_count;
//

//

//
temp1.x=z_tail_start-body_start_volex;
temp1.y=centroids[z_tail_start][0]-centroids[body_start_volex][0];
temp1.z=centroids[z_tail_start][1]-centroids[body_start_volex][1];
//

temp2.x=centroid_plane.y*temp1.z - centroid_plane.z*temp1.y;
temp2.y=centroid_plane.z*temp1.x - centroid_plane.x*temp1.z;
temp2.z=centroid_plane.x*temp1.y - centroid_plane.y*temp1.x;
//
main1.x=temp2.y*temp1.z - temp2.z*temp1.y;
main1.y=temp2.z*temp1.x - temp2.x*temp1.z;
main1.z=temp2.x*temp1.y - temp2.y*temp1.x;
//

main2.x=temp1.x;
main2.y=temp1.y;
main2.z=temp1.z;
//
main3.x=main2.y*main1.z - main2.z*main1.y;
main3.y=main2.z*main1.x - main2.x*main1.z;
main3.z=main2.x*main1.y - main2.y*main1.x;
//

139

//normalize main vectors (body coord system)
//
float length_centr=sqrt(pow(main1.x,2) + pow(main1.y,2) + pow(main1.z,2));
main1.x/=-length_centr;
main1.y/=-length_centr;

main1.z/=-length_centr;
//
length_centr=sqrt(pow(main2.x,2) + pow(main2.y,2) + pow(main2.z,2));
main2.x/=length_centr;
main2.y/=length_centr;
main2.z/=length_centr;

length_centr=sqrt(pow(main3.x,2) + pow(main3.y,2) + pow(main3.z,2));

main3.x/=length_centr;
main3.y/=length_centr;
main3.z/=length_centr;

initial.v1=main1;
initial.v2=main2;
initial.v3=main3;

//convert orientation corresponding to choice made initially
double temp11,temp22,temp33,temp44,temp55,temp66,temp77,temp88,temp99;

temp11=initial.v1.x;
temp22=initial.v1.y;
temp33=initial.v1.z;
temp44=initial.v2.x;
temp55=initial.v2.y;

temp66=initial.v2.z;
temp77=initial.v3.x;
temp88=initial.v3.y;
temp99=initial.v3.z;

if(choice==1 || choice==4)
{

if(sub_choice==1 || sub_choice==4)

 {
 initial.v1.z=temp11;
 initial.v1.y=temp33;
 initial.v1.x=temp22;
 initial.v2.z=temp44;
 initial.v2.y=temp66;
 initial.v2.x=temp55;
 initial.v3.z=temp77;

 initial.v3.y=temp99;
 initial.v3.x=temp88;
 }
else if(sub_choice==2)
 {
 initial.v1.z=temp22;
 initial.v1.y=temp33;
 initial.v1.x=temp11;

 initial.v2.z=temp55;
 initial.v2.y=temp66;
 initial.v2.x=temp44;
 initial.v3.z=temp88;
 initial.v3.y=temp99;
 initial.v3.x=temp77;
 }

140

}
//
else if(choice==2)
{
 if(sub_choice==1)

 {
 initial.v1.z=temp33;
 initial.v1.y=temp22;
 initial.v1.x=temp11;
 initial.v2.z=temp66;
 initial.v2.y=temp55;
 initial.v2.x=temp44;
 initial.v3.z=temp99;

 initial.v3.y=temp88;
 initial.v3.x=temp77;
 }
 else if(sub_choice==2)
 {
 initial.v1.z=temp11;
 initial.v1.y=temp33;
 initial.v1.x=temp22;

 initial.v2.z=temp44;
 initial.v2.y=temp66;
 initial.v2.x=temp55;
 initial.v3.z=temp77;
 initial.v3.y=temp99;
 initial.v3.x=temp88;
 }
}

//
else if(choice==3)
{
 if(sub_choice==1)
 {
 initial.v1.z=temp22;
 initial.v1.y=temp11;
 initial.v1.x=temp33;
 initial.v2.z=temp55;

 initial.v2.y=temp44;
 initial.v2.x=temp66;
 initial.v3.z=temp88;
 initial.v3.y=temp77;
 initial.v3.x=temp99;
 }
 else if(sub_choice==2)
 {

 initial.v1.z=temp22;
 initial.v1.y=temp33;
 initial.v1.x=temp11;
 initial.v2.z=temp44;
 initial.v2.y=temp66;
 initial.v2.x=temp55;
 initial.v3.z=temp77;
 initial.v3.y=temp99;

 initial.v3.x=temp88;
 }
}
//

float v1_length=sqrt(pow(initial.v1.x,2) + pow(initial.v1.y,2) + pow(initial.v1.z,2));
initial.v1.x/=v1_length;
initial.v1.y/=v1_length;

141

initial.v1.z/=v1_length;
//

float v3_length=sqrt(pow(initial.v3.x,2) + pow(initial.v3.y,2) + pow(initial.v3.z,2));
initial.v3.x/=v3_length;

initial.v3.y/=v3_length;
initial.v3.z/=v3_length;
float v2_length=sqrt(pow(initial.v2.x,2) + pow(initial.v2.y,2) + pow(initial.v2.z,2));
initial.v2.x/=v2_length;
initial.v2.y/=v2_length;
initial.v2.z/=v2_length;
//
if(writeall==1)

{
ofstream axis33("axis3beforeR.asc");
//
for(int u=0;u<100;u++)
{
 axis33<<u*initial.v1.x<<","<<u*initial.v1.y<<","<<u*initial.v1.z<<endl;
 axis33<<2*u*initial.v2.x<<","<<2*u*initial.v2.y<<","<<2*u*initial.v2.z<<endl;
 axis33<<3*u*initial.v3.x<<","<<3*u*initial.v3.y<<","<<3*u*initial.v3.z<<endl;

}
axis33.close();
}
//YAW**
//about v1
initial_dummy.v1=initial.v1;
initial_dummy.v2=initial.v2;

initial_dummy.v3=initial.v3;
initial_dummy2.v1=initial.v1;
initial_dummy2.v2=initial.v2;
initial_dummy2.v3=initial.v3;
//

for(double degrees=-180;degrees<180;degrees=degrees+0.001)
{

icount=0;
theta=(float(degrees)/180.0)*3.14156;
c1=cos(theta);
s1=sin(theta);
t1=1-c1;
//rotation matrix
double R[3][3]={t1*initial.v1.x*initial.v1.x + c1,t1*initial.v1.x*initial.v1.y - s1*initial.v1.z,t1*initial.v1.x*initial.v1.z
+ s1*initial.v1.y,

 t1*initial.v1.x*initial.v1.y + s1*initial.v1.z,t1*initial.v1.y*initial.v1.y +
c1,t1*initial.v1.y*initial.v1.z - s1*initial.v1.x,
 t1*initial.v1.x*initial.v1.z- s1*initial.v1.y,t1*initial.v1.y*initial.v1.z +
s1*initial.v1.x,t1*initial.v1.z*initial.v1.z + c1};
//
initial_dummy2.v2.x=(R[0][0]*initial.v2.x + R[0][1]*initial.v2.y + R[0][2]*initial.v2.z);
initial_dummy2.v2.y=(R[1][0]*initial.v2.x + R[1][1]*initial.v2.y + R[1][2]*initial.v2.z);
initial_dummy2.v2.z=(R[2][0]*initial.v2.x + R[2][1]*initial.v2.y + R[2][2]*initial.v2.z);

//
initial_dummy2.v3.x=(R[0][0]*initial.v3.x + R[0][1]*initial.v3.y + R[0][2]*initial.v3.z);
initial_dummy2.v3.y=(R[1][0]*initial.v3.x + R[1][1]*initial.v3.y + R[1][2]*initial.v3.z);
initial_dummy2.v3.z=(R[2][0]*initial.v3.x + R[2][1]*initial.v3.y + R[2][2]*initial.v3.z);
//
 angle_yaw=degrees;
if(initial_dummy2.v3.x>=-conv && initial_dummy2.v3.x<=conv && initial_dummy2.v3.z>0)
{

142

 initial.v2=initial_dummy2.v2;
 initial.v3=initial_dummy2.v3;
*/break;
}
else{initial.v1=initial_dummy.v1;initial.v2=initial_dummy.v2;initial.v3=initial_dummy.v3;}

}
if(writeall==1)
{
ofstream axis34("axis3afterY.asc");

for(int u=0;u<100;u++)
{
 axis34<<u*initial.v1.x<<","<<u*initial.v1.y<<","<<u*initial.v1.z<<endl;

 axis34<<2*u*initial.v2.x<<","<<2*u*initial.v2.y<<","<<2*u*initial.v2.z<<endl;
 axis34<<3*u*initial.v3.x<<","<<3*u*initial.v3.y<<","<<3*u*initial.v3.z<<endl;

}
axis34.close();
}
//***

//PITCH**
//about v3
initial_dummy.v1=initial.v1;
initial_dummy.v2=initial.v2;
initial_dummy.v3=initial.v3;

initial_dummy2.v1=initial.v1;
initial_dummy2.v2=initial.v2;

initial_dummy2.v3=initial.v3;

for(double degrees=-180;degrees<180;degrees=degrees+0.001)

{

icount=0;
theta=(float(degrees)/180.0)*3.14156;
c1=cos(theta);

s1=sin(theta);
t1=1-c1;
//rotation matrix
double R[3][3]={t1*initial.v3.x*initial.v3.x + c1,t1*initial.v3.x*initial.v3.y - s1*initial.v3.z,t1*initial.v3.x*initial.v3.z
+ s1*initial.v3.y,
 t1*initial.v3.x*initial.v3.y + s1*initial.v3.z,t1*initial.v3.y*initial.v3.y +
c1,t1*initial.v3.y*initial.v3.z - s1*initial.v3.x,
 t1*initial.v3.x*initial.v3.z- s1*initial.v3.y,t1*initial.v3.y*initial.v3.z +

s1*initial.v3.x,t1*initial.v3.z*initial.v3.z + c1};
//
initial_dummy2.v2.x=(R[0][0]*initial.v2.x + R[0][1]*initial.v2.y + R[0][2]*initial.v2.z);
initial_dummy2.v2.y=(R[1][0]*initial.v2.x + R[1][1]*initial.v2.y + R[1][2]*initial.v2.z);
initial_dummy2.v2.z=(R[2][0]*initial.v2.x + R[2][1]*initial.v2.y + R[2][2]*initial.v2.z);
//
initial_dummy2.v1.x=(R[0][0]*initial.v1.x + R[0][1]*initial.v1.y + R[0][2]*initial.v1.z);
initial_dummy2.v1.y=(R[1][0]*initial.v1.x + R[1][1]*initial.v1.y + R[1][2]*initial.v1.z);

initial_dummy2.v1.z=(R[2][0]*initial.v1.x + R[2][1]*initial.v1.y + R[2][2]*initial.v1.z);
//

 angle_pitch=degrees;
if(initial_dummy2.v1.x>=-conv && initial_dummy2.v1.x<=conv)
{
 initial.v1=initial_dummy2.v1;
 initial.v2=initial_dummy2.v2;

143

*/break;
}
else{initial.v1=initial_dummy.v1;initial.v2=initial_dummy.v2;initial.v3=initial_dummy.v3;}

}

//***
if(writeall==1)
{
ofstream axis35("axis3afterP.asc");

for(int u=0;u<100;u++)
{
 axis35<<u*initial.v1.x<<","<<u*initial.v1.y<<","<<u*initial.v1.z<<endl;

 axis35<<2*u*initial.v2.x<<","<<2*u*initial.v2.y<<","<<2*u*initial.v2.z<<endl;
 axis35<<3*u*initial.v3.x<<","<<3*u*initial.v3.y<<","<<3*u*initial.v3.z<<endl;

}
axis35.close();
}
//ROLL***
//about v2

initial_dummy.v1=initial.v1;
initial_dummy.v2=initial.v2;
initial_dummy.v3=initial.v3;
initial_dummy2.v1=initial.v1;
initial_dummy2.v2=initial.v2;
initial_dummy2.v3=initial.v3;

//

for(double degrees=-180;degrees<180;degrees=degrees+0.001)

{

icount=0;
theta=(float(degrees)/180.0)*3.14156;
c1=cos(theta);
s1=sin(theta);
t1=1-c1;

//rotation matrix
double R[3][3]={t1*initial.v2.x*initial.v2.x + c1,t1*initial.v2.x*initial.v2.y - s1*initial.v2.z,t1*initial.v2.x*initial.v2.z
+ s1*initial.v2.y,
 t1*initial.v2.x*initial.v2.y + s1*initial.v2.z,t1*initial.v2.y*initial.v2.y +
c1,t1*initial.v2.y*initial.v2.z - s1*initial.v2.x,
 t1*initial.v2.x*initial.v2.z- s1*initial.v2.y,t1*initial.v2.y*initial.v2.z +
s1*initial.v2.x,t1*initial.v2.z*initial.v2.z + c1};
//

initial_dummy2.v3.x=(R[0][0]*initial.v3.x + R[0][1]*initial.v3.y + R[0][2]*initial.v3.z);
initial_dummy2.v3.y=(R[1][0]*initial.v3.x + R[1][1]*initial.v3.y + R[1][2]*initial.v3.z);
initial_dummy2.v3.z=(R[2][0]*initial.v3.x + R[2][1]*initial.v3.y + R[2][2]*initial.v3.z);
//
initial_dummy2.v1.x=(R[0][0]*initial.v1.x + R[0][1]*initial.v1.y + R[0][2]*initial.v1.z);
initial_dummy2.v1.y=(R[1][0]*initial.v1.x + R[1][1]*initial.v1.y + R[1][2]*initial.v1.z);
initial_dummy2.v1.z=(R[2][0]*initial.v1.x + R[2][1]*initial.v1.y + R[2][2]*initial.v1.z);

 angle_roll=degrees;
if((initial_dummy2.v3.y>=-conv && initial_dummy2.v3.y<=conv)||(initial_dummy2.v1.z>=-conv &&
initial_dummy2.v1.z<=conv))
{
 initial.v1=initial_dummy2.v1;
 initial.v3=initial_dummy2.v3;
/*
initial_dummy2.v3.x=initial.v1.y*initial.v2.z - initial.v1.z*initial.v2.y;

144

initial_dummy2.v3.y=initial.v1.z*initial.v2.x - initial.v1.x*initial.v2.z;
initial_dummy2.v3.z=initial.v1.x*initial.v2.y - initial.v1.y*initial.v2.x;
initial.v3=initial_dummy2.v3;
float v3_length=sqrt(pow(initial.v2.x,2) + pow(initial.v2.y,2) + pow(initial.v2.z,2));
initial.v3.x/=v3_length;

initial.v3.y/=v3_length;
initial.v3.z/=v3_length;
*/
 break;}
else{initial.v1=initial_dummy.v1;initial.v2=initial_dummy.v2;initial.v3=initial_dummy.v3;}

}

//**

if(writeall==1)
{
ofstream axis36("axis3afterR.asc");

for(int u=0;u<100;u++)
{

 axis36<<u*initial.v1.x<<","<<u*initial.v1.y<<","<<u*initial.v1.z<<endl;
 axis36<<2*u*initial.v2.x<<","<<2*u*initial.v2.y<<","<<2*u*initial.v2.z<<endl;
 axis36<<3*u*initial.v3.x<<","<<3*u*initial.v3.y<<","<<3*u*initial.v3.z<<endl;

}
axis36.close();
}
if(writeall==1)

{
ofstream axis1("axis1.asc");
axis1<<"0,0,0\n";

for(int u=0;u<50;u++)
{
axis1<<u*axis.x<<","<<u*axis.y<<","<<u*axis.z<<endl;
axis1<<u*roll_axis.x<<","<<u*roll_axis.y<<","<<u*roll_axis.z<<endl;
axis1<<"0,0,"<<u<<endl;

}
axis1.close();

ofstream axis2("axis2.asc");

for(int u=0;u<500;u++)
{
axis2<<"0,0,"<<u/3<<endl;

axis2<<"0,"<<u/2<<",0\n";
axis2<<u<<",0,0\n";
}
axis2.close();

ofstream axis3("axis3.asc");

for(int u=0;u<50;u++)

{
 axis3<<u*initial.v1.x<<","<<u*initial.v1.y<<","<<u*initial.v1.z<<endl;
 axis3<<2*u*initial.v2.x<<","<<2*u*initial.v2.y<<","<<2*u*initial.v2.z<<endl;
 axis3<<3*u*initial.v3.x<<","<<3*u*initial.v3.y<<","<<3*u*initial.v3.z<<endl;

}
axis3.close();

145

ofstream main11("main1.asc");

for(int u=0;u<50;u++)
{
 main11<<u*main1.x<<","<<u*main1.y<<","<<u*main1.z<<endl;

 main11<<u*main2.x<<","<<u*main2.y<<","<<u*main2.z<<endl;
 main11<<u*main3.x<<","<<u*main3.y<<","<<u*main3.z<<endl;
 main11<<2*u*main1.x<<","<<2*u*main1.y<<","<<2*u*main1.z<<endl;
 //last statement shows the normal vector to be longer
}
main11.close();
}
if(choice==1 && sub_choice==1) {angle_pitch=180+angle_pitch;angle_yaw=90-angle_yaw;

angle_roll=angle_roll+180.0;}
if(choice==1 && sub_choice==2) {}
if(choice==1 && sub_choice==3) {}

if(choice==2 && sub_choice==1) {angle_yaw=angle_yaw-180;angle_pitch=-180-
angle_pitch;angle_roll=(90+angle_roll);}
if(choice==2 && sub_choice==2) {angle_yaw=-angle_yaw;angle_pitch=angle_pitch+90;angle_roll=-angle_roll;}
if(choice==2 && sub_choice==3) {}

if(choice==3 && sub_choice==1) {angle_pitch=-angle_pitch-90;angle_yaw=-angle_yaw;angle_roll=-90-angle_roll;}
if(choice==3 && sub_choice==2) {angle_pitch=-1*angle_pitch;angle_yaw=-1*(90+90-
angle_yaw);angle_roll=90+angle_roll; }
if(choice==3 && sub_choice==3) {}

if(choice==4 && sub_choice==4) {angle_yaw=90+angle_yaw;angle_pitch=180+angle_pitch;angle_roll=-angle_roll;}

int ik=0;
cout<<"{Y,P,R}="<<angle_yaw<<","<<angle_pitch<<","<<angle_roll<<endl;
//getchar();
if(plot==1)
{
 plot_new_pitch=cvPoint(int(35.00+float((float(N-N_start)/float(N_end-N_start))*float(graphs->width-
70))),int(35.00+float((180-angle_pitch)*float(graphs->width-70)/float(360))));
 plot_new_roll=cvPoint(int(35.00+float((float(N-N_start)/float(N_end-N_start))*float(graphs->width-
70))),int(35.00+float((180-angle_roll)*float(graphs->width-70)/float(360))));

 plot_new_yaw=cvPoint(int(35.00+float((float(N-N_start)/float(N_end-N_start))*float(graphs->width-
70))),int(35.00+float((180-angle_yaw)*float(graphs->width-70)/float(360))));

 //cout<<"{"<<plot_new_pitch.x<<","<<plot_new_pitch.y<<"}\n";
 //if(fabs(distance_ptsf1(plot_new_pitch,plot_old_pitch))>0 &&
fabs(distance_ptsf1(plot_new_pitch,plot_old_pitch))<50)
 if(distance_ptsf1(plot_new_pitch,plot_old_pitch)<50){cvLine(graphs,plot_old_pitch,plot_new_pitch,cvScala
r(0,0,155),1.5,8,0);ik++;}

 if(distance_ptsf1(plot_new_roll,plot_old_roll)<50)
 {cvLine(graphs,plot_old_roll,plot_new_roll,cvScalar(155,0,0),1.5,8,0);ik++;}
if(distance_ptsf1(plot_new_yaw,plot_old_yaw)<50)
 {cvLine(graphs,plot_old_yaw,plot_new_yaw,cvScalar(0,155,0),1.5,8,0);ik++;}

if(ik==3) A1<<float(N-N_start)/float(N_end-N_start)<<" "<<angle_pitch<<" "<<angle_yaw<<" "<<angle_roll<<endl;
 plot_old_pitch=plot_new_pitch;
 plot_old_roll=plot_new_roll;

 plot_old_yaw=plot_new_yaw;
ik=0;
//
//
tail.x=centroids[z_tail_start][0]-centroids[body_end_volex][0];
tail.y=centroids[z_tail_start][1]-centroids[body_end_volex][1];
tail.z=z_tail_start-body_end_volex;

146

if(choice==1 || choice==4) {xforCOM=-1*(rawCam1[N].ebox.center.x-xo1);yforCOM=-
1*(rawCam1[N].ebox.center.y-yo1);zforCOM=-1*(float(rawCam2[N].ebox.center.y-
yo2)+float(rawCam3[N].ebox.center.y-yo3))/2.0;}
else if(choice==2) {xforCOM=-1*(rawCam2[N].ebox.center.x-xo3);yforCOM=-1*(float(rawCam1[N].ebox.center.y-

yo2)+float(rawCam3[N].ebox.center.y-yo3))/2.0;zforCOM=-1*(rawCam2[N].ebox.center.y-yo2);}
else if(choice==3) {xforCOM=-1*(float(rawCam1[N].ebox.center.x-xo2)+float(rawCam2[N].ebox.center.x-
xo3))/2.0;yforCOM=-1*(rawCam3[N].ebox.center.y-yo2);zforCOM=-1*(rawCam3[N].ebox.center.x-xo2);}
//COM<<" "<<((xforCOM*1.2/90.0)-6.0)<<" "<<(((yforCOM+500.0)/300.0)*1.6 - 5.9383)<<"
"<<(((zforCOM+85.0)/50.0)-9.0)<<endl;

float ALL=sqrt(pow(xforCOM,2)+pow(yforCOM,2)+pow(zforCOM,2));
COM/*<<float(N-N_start)/float(N_end-N_start)<<" "*/<<xforCOM/ALL<<" "<<yforCOM/ALL<<"

"<<zforCOM/ALL<<endl;
fkpc<<"Zone I=2 Datapacking = point"<<endl<<(tail.x-xforCOM)/ALL<<" "<<(tail.y-yforCOM)/ALL<<" "<<(tail.z-
zforCOM)/ALL<<" \n"<<" "<<(xforCOM)/ALL<<" "<<(yforCOM)/ALL<<" "<<(zforCOM)/ALL<<endl;

vect_tail.x=centroids[z_tail_start][0]-centroids[body_end_volex][0];
vect_tail.y=centroids[z_tail_start][1]-centroids[body_end_volex][1];
vect_tail.z=z_tail_start-body_end_volex;

vect_thorax.x=centroids[body_start_volex][0]-centroids[z_tail_start][0];
vect_thorax.y=centroids[body_start_volex][1]-centroids[z_tail_start][1];
vect_thorax.z=body_start_volex-z_tail_start;
//cross product
//
test1.x=vect_thorax.y*vect_tail.z - vect_thorax.z*vect_tail.y;
test1.y=vect_thorax.z*vect_tail.x - vect_thorax.x*vect_tail.z;

test1.z=vect_thorax.x*vect_tail.y - vect_thorax.y*vect_tail.x;

testmag=sqrt(pow(test1.x,2) + pow(test1.y,2) + pow(test1.z,2));
test1.x/=testmag;
test1.y/=testmag;
test1.z/=testmag;

if(N==N_start) {a.x=xforCOM;a.y=yforCOM;a.z=zforCOM;}

else if(N==(N_start+N_skip)) {am.x=a.x; am.y=a.y; am.z=a.z;a.x=xforCOM;a.y=yforCOM;a.z=zforCOM;}
else if(N>=(N_start+(2*N_skip)))
{
 amm.x=am.x;amm.y=am.y;amm.z=am.z; am.x=a.x;am.y=a.y;am.z=a.z;
a.x=xforCOM;a.y=yforCOM;a.z=zforCOM;
 test2a.x=a.x-am.x;test2a.y=a.y-am.y;test2a.z=a.z-am.z;
 test2b.x=am.x-amm.x;test2b.y=am.y-amm.y;test2b.z=am.z-amm.z;
//cross product

test2.x=test2a.y*test2b.z - test2a.z*test2b.y;
test2.y=test2a.z*test2b.x - test2a.x*test2b.z;
test2.z=test2a.x*test2b.y - test2a.y*test2b.x;
x3=test2.x;
y3=test2.y;
z3=test2.z;
testmag=sqrt(pow(test2.x,2) + pow(test2.y,2) + pow(test2.z,2));
test2.x/=testmag;

test2.y/=testmag;
test2.z/=testmag;

test1x2.x=test1.y*test2.z - test1.z*test2.y;
test1x2.y=test1.z*test2.x - test1.x*test2.z;
test1x2.z=test1.x*test2.y - test1.y*test2.x;

testmag=sqrt(pow(test1x2.x,2) + pow(test1x2.y,2) + pow(test1x2.z,2));

147

//cross<<N<<" "<<testmag<<endl;

//x4det use

x1=a.x;
y1=a.y;
z1=a.z;
//
x2=am.x;
y2=am.y;
z2=am.z;
//

//
x4=amm.x;
y4=amm.y;
z4=amm.z;
//
a11=x1*x1 + y1*y1 + z1*z1;
a22=x2*x2 + y2*y2 + z2*z2;

a33=x3*x3 + y3*y3 + z3*z3;
a44=x4*x4 + y4*y4 + z4*z4;
//
M11=x4det(x1,y1,z1,1,x2,y2,z2,1,x3,y3,z3,1,x4,y4,z4,1);
M12=x4det(a11,y1,z1,1,a22,y2,z2,1,a33,y3,z3,1,a44,y4,z4,1);
M13=x4det(a11,x1,z1,1,a22,x2,z2,1,a33,x3,z3,1,a44,x4,z4,1);
M14=x4det(a11,x1,y1,1,a22,x2,y2,1,a33,x3,y3,1,a44,x4,y4,1);
M15=x4det(a11,x1,y1,z1,a22,x2,y2,z2,a33,x3,y3,z3,a44,x4,y4,z4);

//
if(fabs(M11)>0)
{
 xnot=M12/M11;
 ynot=-M13/M11;
 znot=M14/M11;
 rnot=xnot*xnot + ynot*ynot + znot*znot -M15/M11;
 rnot=rnot/1000;
}

if(M11==0)
{
 xnot=0;
 ynot=0;
 znot=0;
 rnot=0;

}

cout<<endl<<rnot<<endl;
if(M11!=0)cross<<N<<" "<<testmag<<" "<<rnot<<endl;
}
}
cvShowImage("plot",graphs);
delete(frame);
delete(wireframe);

delete(wireframe_r); //method1
delete(wireframe_r2);
delete(wireframe_r3);
delete(wireframe_t);
delete(wireframe_final);
delete(centroids);

}

	Application of Auto-tracking to the Study of Insect Body Kinematics in Maneuver Flight
	Repository Citation

	APPLICATION OF AUTO-TRACKING TO THE STUDY OF INSECT BODY KINEMATICS IN MANEUVER FLIGHT

