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ABSTRACT

Zhou, Ruolin. Ph.D., Engineering Ph.D. Program, College of Engineering and Computer
Science, Wright State University, 2012.
The Demonstration of SMSE Based Cognitive Radio in Mobile Environment via Software
Defined Radio.

With the emergence of increasing number of wireless devices and demands for

higher data rates, spectrum crowding and congestion increases. Spectrum conges-

tion problem has been challenging wireless communication engineers for a few

decades. However, recent studies indicate that most of the time wide ranges of

the radio spectrum are rarely utilized. Hence, the spectrum congestion is mainly

due to the inefficient spectrum usage rather than the spectrum scarcity. To exploit

under used spectrum and utilize the spectrum efficiently in dynamically changing

environments, a new technology is needed. Cognitive Radio (CR) arises to be a

possible solution to spectral crowding problem by introducing the opportunistic

usage of frequency bands that are not heavily occupied by licensed users.

In this dissertation, we implement and demonstrate an autonomous cogni-

tive radio system in mobile environment via SDR. We first design and implement

an intelligent spectrum sensing engine which can detect the existence of the pri-

mary user (PU) signal and accurately estimate its radio frequency (RF) parame-

ters. Second, with the aid of the spectrum sensing engine, a spectrum mask is

provided. Meanwhile, a multi-carrier waveform is generated based on spectrally

modulated spectrally encoded (SMSE) framework. With the dynamic multi-carrier

non-contiguous waveform, an intelligent interference avoidance SMSE-based cog-

nitive radio is implemented and demonstrated using universal software radio pe-

ripheral (USRP) and GNU software defined radio (SDR) platform. Third, we pro-

pose a novel total intercarrier interference (ICI) cancellation scheme to eliminate

the ICI in mobile environment, apply the algorithm to the SMSE base cognitive ra-
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dio, employ GNU SDR platform and USRP, implement and demonstrate an SMSE

based cognitive radio in high mobility environment. Combined with the spec-

trum sensing engine, the cognitive radio is capable of detecting the availability

of each and every subcarrier in the operational bandwidth. By turning off those

subcarriers occupied by the primary users, the cognitive radio implements a non-

contiguous SMSE transmission waveform. Integrated with total ICI cancellation

algorithm, the cognitive radio has the ability to eliminate the ICI due to the fre-

quency offset caused by mobility.

There are a few unique features of our cognitive radio implementation: (1) we

have demonstrated real-time seamless video transmission without interference to

primary users, and without interference from primary users; (2) our cognitive ra-

dio is capable of taking advantage of multiple spectrum holes and operating over

multiple non-contiguous spectrum bands (our demonstration is the first in the

world to stitch multiple non-contiguous spectrum holes together); (3) the cogni-

tive radio dynamically adjusts which subcarriers to turn off according to the pri-

mary users’ transmission; (4) the cognitive radio can also adjust other parameters

such as the total number of subcarriers, center frequency, and bandwidth of each

subcarrier; (5) the cognitive radio maintains all the features even in high mobility

environment, making it a flexible, agile, and robust cognitive radio node in mobile

communication system.
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Introduction

1.1 Motivation

‘Spectrum is the lifeblood of Radio Frequency (RF) Communications’ [1]. With the

emergence of increasing number of wireless devices, and the demands for higher

data rates, spectrum congestion problem increases. However, recent studies have

characterized that the spectrum congestion is mainly due to the inefficient spec-

trum usage rather than the spectrum scarcity [2]. Dynamic spectrum access (DSA)

[3] and cognitive radio (CR) [4] have been emerging to utilize the frequency spec-

trum in an efficient and opportunistic manner.

To exploit under used spectrum and utilize the spectrum efficiently in dynam-

ically changing environments, CR [4] has been considered as a strong candidate for

next generation wireless communication. In previous work of the Broadband, Mo-

bile and Wireless Networking Laboratory at Wright State University, researchers

have proposed and demonstrated a cognitive centric overlay/underlay waveform

design through a spectrally modulated spectrally encoded (SMSE) framework to

improve the bit error rate (BER) performance and network throughput of a cogni-

tive radio [5][6][7]. In this dissertation, we extend this work to use software de-

fined radio to implement the cognitive centric overlay waveform in [5][6][7] and

demonstrated an adaptive interference avoidance overlay cognitive radio in static
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environment and highly mobile environment.

In mobile radio channels, the orthogonality among subcarriers of SMSE over-

lay waveforms is lost due to the frequency offset caused by mobility. As a direct

result, intercarrier interference (ICI) is observed on each and every subcarrier, lead-

ing to significant performance degradation. We propose a novel total ICI cancella-

tion algorithm for SMSE waveforms in mobile communication system to eliminate

the ICI entirely without lowering the transmission rate nor reducing the band-

width efficiency. Specifically, the total ICI cancellation scheme takes advantage of

the orthogonality of the ICI coefficient matrix and offers perfect ICI cancellation

and significant BER improvement at linearly growing cost. We also integrate the

total ICI cancellation in our SDR based implementation and demonstration of cog-

nitive radio.

We first design and implement an intelligent spectrum sensing engine for cog-

nitive radio network, which can detect the existence of the primary users and ac-

curately estimate their RF parameters. Second, with the aid of the intelligent spec-

trum sensing engine, a spectrum mask is provided. With a multi-carrier waveform

generated from SMSE framework, an intelligent interference avoidance SMSE-

based cognitive radio is implemented and demonstrated using universal software

radio peripheral (USRP) and GNU software defined radio (SDR) platform. Third,

we implement the total ICI cancellation scheme to eliminate ICI and improve the

performance in high mobility environment. Specifically, we employ the SMSE

framework to generate multi-carrier transmission waveforms over multiple non-

contiguous frequency bands. Combined with the spectrum sensing engine, the

cognitive radio is capable of detecting the availability of each and every subcarrier

in the operational bandwidth accurately. By turning off those subcarriers occupied

by the primary users, the cognitive radio implements non-contiguous SMSE trans-

mission. Integrated with total ICI cancellation algorithm, the cognitive radio has
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the ability to eliminate the ICI due to the frequency offset caused by mobility.

There are a few unique features of our cognitive radio implementation: (1)

we have demonstrated real-time seamless video transmission without interference

to primary users, and without interference from primary users; (2) our cognitive

radio is the first in the world to take advantage of multiple spectrum holes and

operating over multiple non-contiguous spectrum bands; (3) the cognitive radio

dynamically adjusts which subcarriers to turn off according to the primary users’

transmission; (4) the cognitive radio can also easily adjust other parameters such

as the total number of subcarriers, center frequency, and bandwidth of each sub-

carrier; (5) the cognitive radio maintains all the features even in high mobility en-

vironment by using total ICI cancellation, making it a flexible, agile, and robust

cognitive radio node in mobile environment.

1.2 Overview of Cognitive Radio

Fig. 1.1 [8] shows the radio frequency spectrum allocation in US. It clearly shows

the spectrum congestion problem facing wireless service providers and wireless

communication engineers. However, recent research characterizing the actual spec-

trum usage by DARPA’s XG program indicates that only up to 6% of the spectrum

is being utilized at a given time. Fig. 1.2 [2] shows the signal strength distribution

over a large portion of the spectrum. Hence, the reason of the spectrum congestion

revealed by these measurements is not mainly due to the spectrum scarcity, but the

inefficient spectrum utilization.

Cognitive radio (CR) and dynamic spectrum access (DSA) have been pro-

posed to solve current spectrum inefficiency problems and increase the utilization

of the spectrum. CR is an intelligent radio which is capable of setting and configur-

ing its own parameters including ’waveform, protocol, transmitting and receiving

3



Figure 1.1: Spectrum Allocation

Figure 1.2: Actual Spectrum Utilization

carrier frequency and networking’ autonomously [4]. The cognition cycle defined

by Mitola in [4] is shown in Fig. 1.3. Specifically, CR system has the ability of

sensing, learning and adapting so that it is the main technology enabler for DSA.

Chakravarthy simplified the cognition cycle in [9] which is shown in Fig. 1.4

4



Figure 1.3: Cognition Cycle

Figure 1.4: Simple Version of Cognition Cycle

Generally, there are three types of cognitive radio. The overlay cognitive ra-

dio, shown in Fig. 3.1, utilizes the unused spectrum or spectrum holes to improve

5



Table 1.1: OFDM via SMSE Analytic Expression

OFMD Expression

SMSE Analytic Sk [m] =

{
amdm,ke

−j
(
θdm,k

)}Nf−1

m=0

Discrete Time Domain sk [n] =
1
Nf

Re

{
Nf−1∑
m=0

(αm,k + jβm,k) e
j(2πfmtn)

}

the spectrum utilization efficiency. The underlay cognitive radio, shown in Fig.

1.5(b), transmits ultra-wideband signal with very low transmission power, which

is lower than the noise floor, to maintain the co-existence between licensed user

and secondary user without harmful interference with each other. In previous

works at my research group ([5][6][7][9]), a hybrid overlay/underlay cognitive

radio has been proposed, which can improve spectrum efficiency and maximize

channel capacity.

1.3 Overview of SMSE Framework

In [10] and [11], a general framework for analyzing, characterizing, and imple-

menting spectrally modulated, spectrally encoded (SMSE) signal was developed.

All multi-carrier transmissions, such as OFDM, MC-CDMA, CI/MC-CDMA, and

TDCS, are collectively classified as SMSE since data modulation and encoding are

applied in the spectral domain, illustrated in Fig. 1.6.

Table 1.1, Table 1.2, and Table 1.3 are popular multi-carrier modulations using

SMSE analytic expression, respectively [9].

6



Table 1.2: MC-CDMA via SMSE Analytic Expression

CDMA Expression

SMSE Analytic Sk [m] =
{
(αk + jβk) e

−j(θcm )
}Nf−1

m=0

Discrete Time Domain sk [n] =
1
Nf

Re

{
Nf−1∑
m=0

(αk + jβk) e
j(2πfmtn+θcm )

}

Table 1.3: CI/MC-CDMA via SMSE Analytic Expression

CI/MC-CDMA Expression

SMSE Analytic Sk [m] =
{
umdke

−j(θdk+θom,k)
}Nf−1

m=0

Discrete Time Domain sk [n] =
1
Nf

Re

{
Nf−1∑
m=0

(αk + jβk) e
j(2πfmtn+θom,k)

}

Table 1.4: TDCS via SMSE Analytic Expression

TDCS Expression

SMSE Analytic Sk [m] =
{
dke

−j(θdk+θcm)
}Nf−1

m=0

Discrete Time Domain sk [n] =
1
Nf

Re

{
Nf−1∑
m=0

dke
j(2πfmtn+θcm+θdk)

}
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(a) Overlay Cognitive Radio

(b) Underlay Cognitive Radio

(c) Hybrid Cognitive Radio

Figure 1.5: Coginitive Radios
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Figure 1.6: Spectrally Modulated Spectrally Encoded Framework

1.4 Overview of Spectrum Sensing

Cognitive radio possesses the ability of adaptivity and awareness, which can make

better use of available spectrum [12]. Spectrum sensing is one of the most impor-

tant tasks in cognitive radios because the spectrum of interest needs to be charac-

terized, meanwhile, the vacant frequency bands should be identified for necessary

exploitation. To characterize the spectrum, the cognitive radio devices should be

able to identify the vacant spectrum in a fast and efficient way. From the stand-

point of the cognitive radios, spectrum sensing has to not only identify spectrum

holes, but also aware the operating environment in a multi-dimensional space such

as time, frequency, space and code [1].

Different detection and identification of primary users and secondary users

schemes have been proposed, such as matched filtering, waveform-based sens-

ing, energy-based sensing, and cyclostationarity-based sensing, in the literature.

Matched filtering is known as an optimum detection method if we have a priori

knowledge of the primary user signal [13][14][15]. Although it achieves excel-

lent detection performance [16], it requires that the cognitive radio has the perfect

knowledge of the primary users’ features. On the other hand, it is very complex

and impractical on designing the receivers to receive all type of signals. Waveform-

based sensing [17][18][19][20] employs known patterns, such as preambles, pilot
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tones, and spread sequences, to correlate the received signal [1]. Energy-based

sensing detects signal based on received energy [17][21]. The philosophy behind

it is computing the energy of the receive signal, comparing it with noise floor, and

making the decision to decide if there is a present signal or not. Cyclostationarity-

based algorithm detects the primary user by exploiting the cyclostationarity fea-

tures of the received signals [22][23][24][25].

1.5 Overview of Intercarrer Interference

Multi-carrier transmission such as OFDM has been considered a strong candidate

for next generation high-data-rate wireless communication systems [26]. However,

multi-carrier transmission is not suitable for mobile communication systems in

its original form due to the frequency offset introduced by Doppler shift in high

mobility environment. With this frequency offset, the orthogonality among all the

subcarriers is lost and inter-carrier interference (ICI) is observed.

Many methods have been proposed in the literature to mitigate the frequency-

offset problem to cancel the ICI for OFDM system. Most of such methods use sig-

nal processing and/or coding to reduce the sensitivity of the OFDM system to the

frequency offset. For example, in [27], authors developed low-complexity mini-

mum mean-square error and decision-feedback equalizer receivers to suppress ICI

based on the fact that the ICI power mainly comes from a few neighboring sub-

carriers. Some researchers also proposed schemes to estimate the frequency offset,

including data aided estimation [28][29] and blind estimation [30][31][32]. In the

light of the same statement, an effective method known as the ICI self-cancellation

scheme has been proposed in [33] where copies of the same data symbol are modu-

lated on L adjacent subcarriers using optimized weights. In [34], a generalized ICI

self-cancellation scheme has been proposed. In [35], a ICI self-cancellation using
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data-conjugate method is proposed.

1.6 Dissertation Contributions

We have demonstrated an autonomous cognitive radio transmission over multi-

ple non-contiguous spectrum fragments for the first time in the world. This RF

demo was invited to be presented at IEEE DySPAN, the major conference on cog-

nitive radio and dynamic spectrum access, in April 2010 in Singapore. Our recent

demonstration of a cognitive radio in mobile environment received the Best Demo

Award at the prestigious IEEE Globecom conference in December of 2010.

Specifically, we have:

• Implemented and demonstrated an intelligent spectrum sensing engine via

SDR.

• Implemented and demonstrated an overlay cognitive radio which has the

ability to stitch all the spectrum holes and operate over non-contiguous mul-

tiple bands.

• Implemented and demonstrated the total ICI cancellation to eliminate the ICI

without reducing the data rate.

• Implemented and demonstrated the intelligent interference avoidance cog-

nitive radio in static environment and highly mobile environment.

1.7 Dissertation Organization

There are five chapters in this dissertation. Chapter 1 introduces some basic con-

cepts, such as cognitive radio, spectrum sensing algorithms, ICI cancellation schemes,
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etc. Chapter 2 introduces the GNU SDR platform, USRP hardware board, and how

to build the flow graph using GNU SDR. Chapter 3 discusses implementation and

demonstration of an intelligent spectrum sensing engine via SDR to detect the ex-

istence of the signals and accurately estimate their RF parameters. Chapter 4 dis-

cusses implementation and demonstration of an intelligent interference avoidance

SMSE-based cognitive radio. Chapter 5 discusses total ICI cancellation algorithm

and its application to the SMSE-based cognitive radio in highly mobile environ-

ment.
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Overview of GNU Software Defined

Radio and USRP

2.1 Overview of Software Defined Radio

Software defined radio (SDR) has been one of the latest and most evolving tech-

nologies in the communication industry in civilian, military as well as commercial

sectors. SDR is a radio system where the waveform modulation and demodula-

tion are implemented in software domain [4]. Waveforms are generated as sam-

pled digital signals, converted from dignal samples to continous analog signals

via a wideband digital to analog converter (DAC) and then upconverterd from in-

termediate frequency (IF) to radio frequency (RF) via RF front-end. Similarly, the

receiver employs a RF front-end to downconvert the RF to IF, feeds the contiguous

analog signal to a wideband analog to digital converter (ADC) that captures the

raw data of the channels of the SDR. The digitized received signal will be down-

converted to baseband which is able to be processed in software. Figure 2.1 shows

the concept of an ideal SDR receive and transmit path.

The advantages of using SDR are: (1) SDR offers high flexibility. Developing

and debugging software is much easier and low-cost from an operations point of

view; (2) SDR could be upgraded easily, which can save both time and cost of the
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Figure 2.1: Typical Receive/Transmit Path of SDR

design; (3) the software of SDR is reusable; (4) the test of individual signal process-

ing blocks, which are written by the software, the test of performance simulation

and the behavioral test are simple and straightforward, so that the same software

could be reused for a real, over-the-air system [36]. However, the power consump-

tion of the mobile devices is the weakness of using SDR. Hence, application specific

integrated circuit (ASIC), which is customized for a particular use, is necessary for

the hardware design to maintain the power consumption as low as possible.

2.2 GNU SDR and USRP

GNU Radio [37] is one of the most popular SDR implementation platform in hob-

byist, academic and commercial environments. It is a free software development

toolkit which provides the signal processing runtime and processing blocks to im-

plement software radios. Universal software radio peripheral (USRP) is the hard-

ware solution for GNU SDR platform. It enables engineers to rapidly design and

implement low-cost, powerful, and flexible software radio systems. USRP con-

nects the software in the host PC and the RF world perfectly via flexible USB2.0 or

Giga Byte Ethernet interface.

Figure 2.2 illustrates the receive path of GNU Radio. Receive RF front-end,
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Figure 2.2: Recevie Path of GNU Radio

analog to digital converter, and FPGA are implemented on USRP. GNU Radio pro-

vides all signal processing blocks in software domain. The exact inverse is per-

formed in the transmit path. The functionality of each block is explained in detail

following.

2.2.1 USRP

The Universal Software Radio Peripheral (USRP) is the hardware solution for GNU

Software Radio. The demonstrations in this dissertation use the first generation of

USRP. Let’s introduce it in detail.

USRP, which integrates microprocessors and digital signal processors on board,

has been a low-cost resource for conducting SDR based CR research. The basic de-

sign philosophy behind the USRP is that, all the modulation and demodulation

waveform specific processings are implemented in software domain; all the high-

speed digital up conversion (DUC), digital down conversion (DDC), decimation

and implementation are implemented on the FPGA. Figure 2.3 shows a fully pop-

ulated USRP board. Fig. 2.4 is the diagram of it, from which we could tell that

how this hardware module and additional peripherals could perform significant

operations.

As the bridge between the continuous analog signal and the discrete digital

samples, a USRP motherboard provides up to four 12-bit analog-to-digital con-

verters (ADC) at 64 MS/s, four 14-bit digital-to-analog converters (DAC) at 128
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Figure 2.3: Fully Populated USRP Board

Figure 2.4: Universal Software Radio Peripheral Diagram
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Table 2.1: USRP Daughterboards List

D’Board Type Operating Range (MHz)

Basic TX/RX Basic Transmitter/Receiver 1 - 250

LFTX/LFRX Low Frequency Transmitter/Receiver DC - 30

TVRX2 Dual TV Band Receiver 50 - 860

DBSRX Receive-only 800 - 2400

WBX Wide Band Transceiver 50 - 2200

SBX Wide Band Transceiver 400 - 4400

XCVR2450 Dual Band Transmitter 2400 - 2500; 4900 - 5900

RFX400 Transceiver 400 - 500

RFX900 Transceiver 750 - 1050

RFX1200 Transceiver 1150 - 1450

RFX1800 Transceiver 1500 - 2100

RFX2400 Transceiver 2300 - 2900

MS/s, a million gate-field programmable gate array (FPGA) and a programmable

USB2.0 controller. From Fig. 2.4, we can tell that all ADCs and DACs are connected

to the FPGA. The FPGA performs the high-speed general purpose operations, and

reduces the data rate feeding to USB2.0. A USB2.0 interface chip is connected with

the FPGA. Hence, all of the waveform-specific processings could be performed on

the computer via the software.

Each fully populated USRP motherboard can support up to two transmit daugh-

terboards and two receive daughterboards. RF front-end is implemented on the

daughterboard. Each daughterboard slot has the access to two of the four high-

speed ADCs or DACs. There are a variety of daughterboards that work at differ-

ent frequency band. By employing a different daughterboard, the designed system

can be adapted into a totally different frequency band very easily. Table 2.1 lists all

the daughterboards available at this time.
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RF Front-End

Figure 2.5: The Diagram of RF Front-End of USRP

RF front-end implemented on the USRP daughterboard can convert the RF

signal to low-IF [38] or zero-IF [39] with low IF receiver or direct-conversion re-

ceiver technology, respectively. The first and second generation TV receive-only

daughterboards use low-IF receiver technology, and all other transceivers use zero-

IF technology.

Analog to Digital Converter

ADC is the bridge between the continuous analog signals and the discrete digitized

samples in the receive path. ADC has two primary characteristics, sampling rate

and dynamic range [40]. Sampling rate is the number of times in one second that

the ADC measures the analog signal. Dynamic range is the difference between the

lowest and highest signal power level that can be distinguished. The quantization

level is a function of the number of bits in the ADC. For example, a 12-bit ADC at

64 MS/s on USRP can measure and digitize the analog signal 64 million samples

per second with 212 = 4096 quantization levels.
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Field Programmable Gate Array

Altera Cyclone EP1C12 FPGA is integrated on USRP. The FPGA in Figure 2.2

performs high-speed general purpose operations, such as digital-up conversion

(DUC), digital-down conversion (DDC), decimation, and interpolation. The USRP

is able to sustain 32 MB/s across the USB2.0. Therefore, DDC is employed in re-

ceive path to reduce the data rate feeding to USB2.0.

Figure 2.6: The Diagram of DDC on FPGA

Figure 2.6 is the diagram of DDC on FPGA. The DDC can further remove any

residual frequency offset caused by the finite tuning steps of the RF front-end on

the daughterboard, which is exactly equivalent to the functionality of RF front-end

but on digitized samples rather than the analog signal. A decimator is followed to

decimate the baseband signal as required for data across USB2.0. DUC is used in

the transmit direction. The FPGA of USRP contains multiple instances of DDC and

DUC. These instances can be connected to the same or different ADCs to meet the

user’s need [41].

2.2.2 GNU Radio Design

GNU Radio is an open source Python-based architecture for building SDR projects.

It provides software package of signal processing blocks. The user could tie blocks
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via Python [42] to create a flow graph. Any block written in C++ provided by GNU

Radio Software can be a source with only output ports, such as usrp.source() which

is the source of the flow graph through USRP; a sink with just input ports, such as

usrp.sink() which is the sink of the flow graph through USRP, or a general block

with both input and output ports, such as gr.multiply const cc(k) which multiplies

the input with a constant number k, and outputs the result. We have chosen GNU

Radio as the platform and USRP as the hardware solution for our cognitive radio

implementation and demonstration.

For any application, from Python’s point of view, we just need to select neces-

sary signal source, sink and processing blocks, set proper parameters, and connect

all together. In other words, there is nothing but drawing a diagram to show the

signal flow from the source to the sink using Python, sometimes with the graphical

user interface (GUI) support. A flow graph of SDR may include many sources and

sinks and many paths. In a single flow graph, there is no loops, and there must be

a connection between each output port and each input port.

Figure 2.7: GNU Radio Flow Graph

A GNU Radio flow graph of FM-based SDR shows in Figure 2.7. The first

block gr.wavfile source() generates the source data from .wav file. blks2.wfm tx()

is the frequency modulator. gr.multiply const cc() multiplies the input with a con-
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Figure 2.8: FM Transmitter in Python

stant number to amplify the signal, the data type of the inputs and the outputs are

both complex. There are three sink blocks in the flow graph, usrp.sink c() sinks the

modulated data onto USRP, converts the baseband signal up to RF analog signal

in the air; fftsink2.fft sink c() and scopesink2.scope sink c() are graphical user

interface which display the frequency domain signal and the time domain signal,

respectively. Figure 2.8 illustrates how the flow graph is implemented in Python.

It is straightforward to connect the necessary signal processing blocks and show

the signal flow from the source to the sinks. One snapshot of time domain and
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Figure 2.9: Frequency Modulated Signal at the Transmitter

frequency domain FM signal is displayed in Figure 2.9.

2.3 Conclusions

In this chapter, GNU SDR and USRP have been reviewed. An FM-based SDR

transmitter has been set up, which can be used as the primary user’s trasmission

in the following chapters. Throughout the implementations and demonstrations,

GNU SDR platform combined with the USRP hardware solution of GNU Radio

are used.
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SDR-based Spectrum Sensing Engine

Design and Implementation

3.1 Introduction

Cognitive radio has the ability to adapt to the dynamically changing environment

and make better use of available spectrum [12]. Spectrum sensing is one of the

most important tasks in cognitive radio design so that the spectrum of interest can

be characterized, meanwhile, the primary user can be detected and its RF parame-

ters, such as center frequency and symbol rate, can be accurately estimated.

Currently, most of existing cognitive radio research is based on the overlay

cognitive radio shown in Fig. 3.1. Overlay cognitive radio utilizes the spectrum

holes to avoid interference from/to the primary users and coexists with the pri-

mary users. Hence, a spectrum sensing is needed to detect the existence of primary

user transmission as well as the spectrum holes. Energy based sensing algorithm

[18][43][44] is widely used for overlay cognitive radio. Energy based signal detec-

tor can identify the vacant spectrum in a fast and efficient way.

However, the spectrum sensing engine needs to provide a spectrum mask for

the overlay CR design. Hence, it should have the ability to accurately estimate

the important RF paramters so that the CR knows which subcarriers should be
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Figure 3.1: Overlay Coginitive Radio

Figure 3.2: Intelligent Spectrum Sensing

turned off to avoid interference to the primary users. Fig. 3.2 illustrates an intel-

ligent spectrum sensing engine. In previous work at our research group, Like has

proposed a cyclostationary-based signal detection and classification [45]. I have

extended this work and implemented a hierarchical intelligent spectrum sensing

engine to estimate important RF parameters of the primary users so that CR can

adaptively adjust its transmission waveform to coexist with primary users.

In this chapter, we use USRP and SDR platform [46] to implement and demon-

strate an intelligent spectrum sensing engine for cognitive radio network applica-

tions. Specifically, we implement a hierarchical cyclostationary-based signal pro-

cessing algorithm to (1) detect the existence of primary user transmissions; (2) es-

timate the carrier frequency and symbol rate of the primary user transmission.
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3.2 Overview of Spectrum Sensing Algorithm

3.2.1 Overview of Energy-based Detection Concept

Energy detection is a signal detection mechanism using received energy [17][21].

The philosophy behind it is computing the energy of the receive signal, comparing

it with noise floor, and making the decision to decide if there is a present signal or

not. Energy detection does not need a priori knowledge of the signal.

Figure 3.3: Energy-based Detection Algorithm in Time-domain

Figure 3.4: Energy-based Detection Algorithm in Frequency-domain

Signal energy can be measured in both time domain and frequency domain.

If measuring the signal energy is in a particular frequency region in time domain,

a bandpass filter is necessary to match the signal bandwidth, followed by a signal

samples energy measurement, which is shown in Figure 3.3, . If the signal energy

measurement is in frequency domain, FFT is employed to transform the time do-

main signal to frequency domain, then the measurement on the combined signal

energy over all frequency bins are evaluated, which is shown in Figure 3.4.

Theoretically, either in time domain or in frequency domain, there is no differ-

ence in signal detecting and analyzing. Meanwhile, the received signal is
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r(n) = s(n) + w(n) (3.1)

where s(n) is the target signal, w(n) is the white Gaussian noise, n is the sample

index for time-domain signal, or FFT symbol index for frequency-domain signal.

For simple derivation, the signal sample s(n)s are assumed to be independent as a

Gaussian random process with zero mean and σ2
s variance [17]. The white Gaus-

sian noise sample w(n)s are also independent, so the received signal sample r(n)s

are independent.

Based on the model defined in 3.1, the decision making on the received signal

energy is the test of two hypotheses in 3.2. H0 is the null hypothesis which indi-

cates that the received signal consists of noise only and no signal is present; and

Ha, alternate hypothesis, indicates that the received signal composes signal and

noise, so the signal is present.

H0 : r(n) = w(n)

Ha : r(n) = s(n) + w(n)
(3.2)

As described in [17], the power sensing metric, which is the summation of

signal power, is compared to the threshold to make decision:

M =
N−1∑
n=0

|r(n)|2 (3.3)

When there is no signal, the sensing metric is M =
N−1∑
n=0

|w(n)|2, which should be

less than the threshold; when there is a signal present, the sensing metric is M =
N−1∑
n=0

|r(n)|2, which should be larger than the threshold.

It is well known that under the Neyman-Pearson criteria, the performance

of the detection algorithm can be measured by two probabilities: probability of

detection Pd and probability of false alarm Pf . A large detection probability Pd is
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desired because it is the probability of detecting a signal on a certain frequency

band when it is truly present. Pf is the probability of false alarm which happens

when the primary signal is present but the detector declares that it is absent. Thus,

the smaller the Pf the better. There is a tradeoff between Pd and Pf . Increasing

Pd will increase Pf , decreasing Pf will decrease Pd. Hence, we need to find an

optimum balance between Pd and Pf . Each pair of Pd and Pf is associated with the

particular threshold γ that tests the power sensing metric M . The threshold value

is chosen to control the parameters such as Pd and Pf [21][47].

3.2.2 Overview of Cyclic Spectral Analysis for Signal Classifica-

tion

Modulated signals have built-in periodic features due to the modulated data are

coupled with symbol rate, carriers or cyclic prefix, etc. A signal x(t) is considered

to be cyclostationary in wide sense if

mx(t+ T0) = mx(t) (3.4)

Rx(t+ T0, u+ T0) = Rx(t, u) (3.5)

where T0 is the period of mean mx and autocorrelation Rx. We can also rewrite

(3.5) in Fourier series as [48][49]:

Rx(t, τ) = Rx(t+ τ/2, t− τ/2)

= E{x(t+ τ/2)x∗(t− τ/2)}

=
∑
α

Rα
x(τ)e

j2παt

(3.6)
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where α is the cyclic frequency which can be extracted and used as features for

identifying transmitted signals [25], and Rα
x(τ) denotes the cyclic autocorrelation

function (CAF), which is given by

Rα
x(τ) = lim

T→∞

1

T

∫ T/2

−T/2

Rx(t, τ)e
−j2παtdt (3.7)

when Rx(t, τ) is periodic in t with period T0, (3.7) can be expressed as [45]:

Rα
x(τ) =

1

T0

∫ T0/2

−T0/2

Rx(t, τ)e
−j2παtdt (3.8)

The Fourier transform of the CAF is defined as the Spectral Correlation Func-

tion (SCF), which is given by:

Sα
x (f) =

∫ ∞

−∞
Rα

x(τ)e
−j2πfτdτ (3.9)

SCF can be measured by the normalized correlation between two spectral

components of x(t) at f + α
2

and f − α
2

over ∆t interval. Then, the ideal mea-

surement of SCF can be expressed as:

Sα
X(f) = lim

T→∞
lim

∆t→∞

1

∆t

∫ ∆t/2

−∆t/2

1

T
XT

(
t, f +

α

2

)
X∗

T

(
t, f − α

2

)
dt

(3.10)

where finite time Fourier transform of x(t) is

XT (t, f) =

∫ t+T/2

t−T/2

x(u)ej2πfudu (3.11)

Fig. 3.5 and Fig. 3.6 illustrate the theoretical SCFs of a BPSK modulated sig-

nal and a QPSK modulated signal, respectively. From these two figures, we can

observe that (1) for the SCF of BPSK signal, there are four peaks, two appear at
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Figure 3.5: The SCF of BPSK Modulation

Figure 3.6: The SCF of QPSK Modulaiton
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f = 0 and α = 2fc, and other two appear at α = 0 and f = fc; (2) for the SCF of

QPSK signal, there are two peaks at α = 0. The two peaks in the cyclic frequency

domain at f = 0 and α = 2fc disappear in the SCF of QPSK signal because the in-

phase and quadrature components of QPSK signal create cyclic frequency peaks

with different sign and cancel each other out. It is obvious that when α = 0 the

SCF reduces to the power spectrum density (PSD) of the signal. It is important to

note that both Fig. 3.5 and Fig. 3.6 are generated from a large number of data. In

reality, we can only obtain a short length of RF signal to perform SCF and the in-

phase and quadrature components of QPSK signal would not entirely cancel each

other’s cyclic frequency peaks out. Hence, we will still observe two smaller peaks

in cyclic frequency domain.

A significant benefit of using the SCF in spectrum sensing and parameter es-

timation is its insensitivity to noise. Noise is stationary process, hence the SCF

of noise Sα
N(f) is zero when α ̸= 0. Therefore, SCF provides excellent spectrum

sensing and RF parameter estimation in low signal to noise ratio (SNR).

To remove the channel effect, a normalized version of the SCF called the Spec-

tral Coherence Function (SOF) is generated:

Cα
X(f) =

Sα
X(f)[

S0
X

(
f +

α

2

)∗
S0
X

(
f − α

2

)]1/2 (3.12)

It can be shown that the channel effects are removed from the SOF and the SOF

is preserved as a reliable feature for RF parameter estimation and identification.

In this chapter, we first employ the energy-based algorithm to fast sweep the

spectrum, detect the existence of primary users; next, we tune the USRP to the

estimated primary user transmission to shrink the data size, employ SCF/SOF to

accurately estimate the RF parameters via software defined radio.
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3.3 SDR-based Spectrum Sensing Engine Implemen-

tation

3.3.1 Energy-based Spectrum Sensing Engine Implementation

An energy-based emission detection is implemented by the software. GNU Radio

has built-in signal detection and signal source blocks which, most of the time, can

be used directly to facilitate easy signal detection. The signal detection block is an

energy based detector that averages the signal over time and estimate the power

spectral density (PSD) of the received signal [50]. The layout of the detection path-

way is shown in Fig. 3.7.

Figure 3.7: The Pathway of GNU Signal Detection

First, the source digitized sample stream is converted into vector with length

256 by stream-to-vector block, then the vector is decimated to a rate for real-time

processing. A Blackman-Harris window is applied to every vector with 256 sam-

ples. A complex Fast Fourier Transform (FFT) is followed, then averaging block is

used to average the magnitudes of each bin over all samples. Last block estimates

the PSD.

Fourier analysis assumes that all the real world signal can be approximated

as a sum of sinusoids at different frequencies with naturally better approximation

when the sum is higher. Fourier analysis is performed using Fourier transform.

Since everything is performed in the digital domain, let’s see how the Discrete

31



Fourier Transform (DFT) is defined. The sequence of N complex numbers x0, x1,

. . . , xN−1 is transformed into the sequence of N complex numbers X0, X1, . . . , XN−1

by the DFT according to the formula:

Xk =
N−1∑
n=0

xne
− 2πi

N
kn (3.13)

where, k = 0, 1, . . . , N−1, and e
2πi
N is a primitive Nth root of unity. The phenomenal

application of Fourier analysis is the frequency spectrum which is signal harmonic

magnitudes plotted versus frequency of the harmonic. This design uses the idea

of frequency spectrum as part of the spectrum analysis. The DFT can be computed

efficiently in practice using a Fast Fourier Transform (FFT) algorithm. FFT plays a

key role in this energy-based spectrum sensing engine.

Since the spectral leakage problem changes the result of the FFT performance

significantly, the spectrum analysis is extremely difficult or even impossible. A

windowing technique needs to be used to minimize this effect. In this emission

detection system, a Blackman-Harris window is applied before the FFT to reduce

the side-lobes of the spectrum around the required pulse. The Blackman-Harris

window, a straightforward generalization of the Hamming family, is obtained by

adding shifted aliased sinc-function. The window is defined for the DFT by

ω(n) = a0 − a1cos(
2π

N
n) + a2cos(

2π

N
2n)− a3cos(

2π

N
3n) (3.14)

where n = 0, 1, 2, · · · , N −1 [51]. This Blackman-Harris window is a good window

for the small number of terms in their trigonometric series. It minimizes the side-

lobes of the spectrum.

On the other hand, due to the USRP hardware limitation, a spectrum which

is larger than 8 MHz cannot be examined. To analyze a wide band RF spectrum,

for example the 20 MHz FM band or the entire ultra-high frequency (UHF) TV
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band, we need to tune the USRP RF front-end in steps so that the wide band is

swept over and analyzed. In this section, we will demonstrate the energy-based

spectrum sensing engine on FM band and on UHF TV band.

Energy-based Spectrum Sensing Demonstration on FM Band

To examine the 20 MHz FM band from 88 MHz to 108 MHz, we set the decimation

rate to 16, which means that 4 MHz spectrum is captured each time. Therefore, the

USRP is first tuned to 90 MHz so that 88 MHz to 92 MHz has been covered. After

performing complex FFT analysis, the USRP is tuned to the next center frequency

94 MHz to cover 92 MHz up to 96 MHz. We keep tuning the RF center frequency

of USRP up to 106 MHz, until the entire 20 MHz FM band frequency spectrum

contents have been collected. We make decision on the entire spectrum contents

to estimate the RF parameters of the primary FM signals. Fig. 3.8 shows the entire

FM band with all the active FM stations as well as the spectrum holes.

Figure 3.8: Entire FM Band with All the FM Stations and Spectrum Holes
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Energy-based Spectrum Sensing Demonstration on UHF TV Band

In this section, we will demonstrate the energy-based spectrum sensing over UHF

TV band to detect the active TV stations and the ‘white space’ over TV spectrum. It

is necessary to learn ATSC standard digital TV signal characteristics first. In United

States, the digital TV follows the ATSC standard. 8-level vestigial sideband mod-

ulation scheme is applied, and the modulated signal uniformly occupies almost

the entire 6 MHz TV channel. A pilot tone is located at around 310 kHz above the

lower edge of the channel. Fig. 3.9 illustrates that TV Channel 50, which is cap-

tured by USRP, occupying 686 MHz to 692 MHz band with a pilot tone about 310

kHz above 686 MHz.

Figure 3.9: TV Channel 50 Captured via TVRX USRP

TVRX USRP daughterboard is employed to sense the whole UHF TV band,

which operates from 470 MHz up to 806 MHz. The decimation rate is set to 8 with

25% overlap so that the RF center frequency tune step size is 6 MHz. Fig. 3.10

shows the UHF TV band spectrum sensing result at a given time. TV Channel

26, 30, 41, 50, and 51 are active. There are other transmissions detected at 519.3

MHz, 576.0 MHz, 627.3 MHz, 640.1 MHz, 704.1 MHz, 716.6 MHz, and 768.3 MHz.

Meanwhile, according to FCC’s Second R&O for White Spaces Order, all the ‘white

spaces’ are determined, 512 MHz to 518 MHz, 524 MHz to 542 MHz, 548 MHz to
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566 MHz, 584 MHz to 626 MHz, and 644 MHz to 686 MHz,

Figure 3.10: Spectrum Sensing on UHF TV Band in US

Other Application - Emission Detector

The energy-based spectrum sensing engine can also be used as an emission detec-

tor without knowing the features of the signal. In this demonstration, USRP DB-

SRX receive-only daughterboard is used to monitor Cellular Phone Band from 800

MHz up to 2300 MHz in the United States, detects the cellular phone if it is being

used, and recognizes the cellular phone by standards, such as GSM850, GSM900,

GSM1800, GSM1900, CDMA2000 or W-CDMA.

The designed low-cost wideband emission detector is based on energy detec-

tion with bandwidth estimation schemes, thus we need to know some character-

istics about cellular phone standards. Global system for mobile communication

(GSM) is presently the most successful mobile communication standard world-

wide. Channel access is done via FDMA/TDMA and GSM uses FDD/TDD. The

modulation mode of GSM is GMSK with a bandwidth time product of BT = 0.3 [52].

GSM consists of GSM850, GSM900, GSM1800 and GSM1900. GSM850 uses 824-849
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Table 3.1: Summary of GSM in the US

System Band Uplink (MHz) Downlink (MHz) BW

GSM850 850 824.0-849.0 869.0-894.0 0.2M

GSM900 900 890.0-915.0 935.0-960.0 0.2M

GSM1800 1800 1710.0-1785.0 1805.0-1880.0 0.2M

GSM1900 1900 1850.0-1910.0 1930.0-1990.0 0.2M

MHz for uplink and 869-894 MHz for downlink, providing 124 RF channels from

channel 128 to channel 251. Duplex spacing is 45 MHz. GSM900 uses 890-915

MHz for uplink and 935-960 MHz for downlink, providing 124 RF channels from

channel 1 to channel 124 spaced at 200 kHz. Duplex spacing is 45 MHz. In some

countries, the GSM900 has been extended, which uses 880-915 MHz for uplink and

925-960 MHz for downlink, adding 50 channels from channel 975 to channel 1023

and channel 0. GSM1800 uses 1710-1785 MHz for uplink and 1805-1880 MHz for

downlink, providing 374 channels from channel 512 to channel 885. Duplex spac-

ing is 95 MHz. GSM1900 uses 1850-1910 MHz for uplink and 1930-1990 MHz for

the downlink, providing 199 RF channels from channel 512 to channel 810. Duplex

spacing is 80 MHz [53].

W-CDMA850 uses 824-849 MHz for uplink providing channel 4132 to channel

4233, and 869-894 MHz for downlink providing channel 4357 to channel 4458. W-

CDMA1700 uses 1710-1755 MHz for uplink providing channel 1312 to channel

1513, and 2110-2155 MHz for downlink providing channel 1537 to channel 1738.

W-CDMA1900 uses 1850-1910 MHz for uplink providing channel 9262 to channel

9538, and 1930-1990 MHz for downlink providing channel 9662 to channel 9938.

The bandwidth per frequency channel is 0.2 MHz for GSM, 1.25 MHz for

CDMA2000, and 5 MHz for W-CDMA. Table I summarizes the features for GSM,

and Table II summarizes the features for 3G, which is concentrating on W-CDMA.
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Table 3.2: Summary of 3G in the US

System Band Uplink (MHz) Downlink (MHz) BW

W-CDMA850 850 824.0-849.0 869.0-894.0 5.0M

W-CDMA1700 1700 1710.0-1755.0 2110.0-2155.0 5.0M

W-CDMA1900 1900 1850.0-1910.0 1930.0-1990.0 5.0M

W-CDMA2100 2100 1920.0-1980.0 2110.0-2170.0 5.0M

The emission detector monitors the United State Cellular Phone Band from

800MHz up to 2300MHz, detects the cellular phone if it is being used, and recog-

nizes the cellular phone by standards via different operating frequency. The emis-

sion detector scans the entire spectrum from 800MHz to 2300MHz every 2 seconds,

displays and reports any emission in the real-time. Fig.3.11, one of the snapshot,

shows that the system is sensing spectral environment, and detecting a GSM850

cellular phone at 844MHz. Fig.3.12, another snapshot, indicates that the system

detects that two cellular phones are being used, and recognizes them by their stan-

dards, a GSM850 detected at 848MHz and GSM1900 detected at 1873MHz. The

designed detector can detect multiple emissions simultaneously as long as they

are within this band.

3.3.2 Cyclostationary-based Spectrum Sensing Engine Implemen-

tation

In section 3.3.1, the energy-based spectrum sensing engine has been demonstrated

and implemented to detect the existence of primary users. Based on the sensing

result, we will fine tune the USRP around to the emission’s center frequency to

reduce the collected data size. For example, a RFX400 USRP daughterboard is used

to sweep the spectrum from 400MHz to 450MHz. If there is an emission detected
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Figure 3.11: GSM850 Detected at 844MHz

Figure 3.12: GSM850 at 848MHz and GSM1900 at 1873MHz

through energy-based detector around at 430MHz with about 100kHz bandwidth,

we will tune the USRP RFX400 to 430MHz with 256 decimation rate. Hence, the

reduced size data are collected and RF parameters can be accurately estimated by

cyclostationary-based algorithm.

In this section, we use Tektronix arbitrary waveform generator (AWG) to gen-

erate the primary user’s signal. Next, the signal is fed into a Spirent SR5500 wire-
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less channel emulator to emulate the channel effect such as multi-path, Doppler

shift, and additive Gaussian noise. Finally, a USRP SDR receives the primary user’s

signal, down-convert it to baseband. The intelligent spectrum sensing engine re-

siding on the software defined radio performs (1) primary user detection; (2) RF

parameter estimation. Fig. 3.13 illustrates the system setup.

Figure 3.13: System Setup for Intelligent Spectrum Sensing

Tektronix Arbitrary Waveform Generator

Tektronix arbitrary waveform generator (AWG7062B) with 6 GS/s can easily gen-

erate very complex signals complete with controllable jitter, noise and other signal

impairments [54]. In this demonstration, we use AWG7062B to generate different

kinds of primary user’s signals.

Spirent Wireless Channel Emulator

The SR5500 Wireless Channel Emulator (WCE) [55] is a complete and efficient

channel emulator that provides various built-in multi-path fading channel model,

Doppler shift and additive white Gaussian noise functions. We use Spirent SR5500

to mimic the multi-path fading channel of the transmitted primary user signals.

Intelligent Spectrum Sensing Demonstration

We first apply an energy based spectrum sensing algorithm to sweep 10 MHz

bandwidth to roughly estimate the primary user’s carrier frequency and band-
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Figure 3.14: Sweeping the Spectrum with 10MHz Bandwidth

Figure 3.15: SCF of the Signal Received via USRP

width. Fig. 3.14 shows an example of the sweeping result. Here, it can be seen that

a primary user’s signal exists somewhere between 430.5MHz to 431.5MHz with

bandwidth about 5 kHz. This coarse estimated carrier frequency and symbol rate

are fed into the SCF and SOF generator to perform a high-resolution RF parameter
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Figure 3.19: SCF of QPSK Signal Received by USRP
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estimation.

In example 1, we use the Tektronix AWG to generate a BPSK signal at 431.017

MHz and feed the signal to Spirent WCE. The WCE introduces multi-path, adds

noise and provides a Doppler shift to the signal. Then, we use USRP to collect the

signal at 431 MHz with 80k sampling rate. Fig. 3.15 illustrates the SCF obtained

by the intelligent spectrum sensing engine. By observing the SCF of the received

signal, we can easily determine its modulation type is BPSK since there is a peak in

cyclic frequency domain with similar height to the peaks observed in the frequency

domain.

Next, by calculating high resolution SOF around coarsely estimated symbol

rate and carrier frequency, we obtain very accurate estimation of both parameters.

Fig. 3.16 to Fig. 3.18 show the detailed SOF of the signal in cyclic frequency do-

main (f = 0). In Fig. 3.16, a spectral line is observed at α = 4000Hz, which is

the estimated symbol rate of the signal. In Fig. 3.17, a spectral line is observed at

α = 2fc = 34100. The estimated baseband center frequency can then be calculated

as 17050Hz. Adding the 431 MHz down-convertion frequency back, the estimated

transmitted signal center frequency is then 431.01705 MHz. The frequency off-

set between estimated carrier frequency and transmitted frequency is due to the

Doppler shift introduced by the channel. Therefore, an accurate center frequency

is estimated.

In example 2, we use AWG to generate a QPSK modulated signal at 431.017

MHz and use USRP to receive the signal at 431 MHz. Fig. 3.19 shows the SCF plot

of the received signal. Compared to the SCF of BPSK, it is obvious that this is a

QPSK modulated signal since the cyclic frequency peaks have much lower height.

However, by zooming in the cyclic frequency projection of SOF, symbol rate fb and

carrier frequency fc can be estimated as shown in Fig. 3.20 and Fig. 3.21.
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3.4 Conclusion

In this chapter, we have implemented and demonstrated an intelligent spectrum

sensing engine for cognitive radio network using GNU Radio with USRP SDR

platform. We first use energy-base detection algorithm to sweep the wide band

quickly and detect the existence of signals. Then, we fine tune the USRP to the

band of interest to shrink the data size and employ the second-order cyclic fea-

tures SCF and SOF to accurately estimate the carrier frequency and symbol rate

of the primary user’s signal. Without any a priori knowledge of the primary user,

the intelligent spectrum sensing engine blindly estimates the center frequency and

baud rate very accurately.
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SMSE-base Overlay Cognitive Radio

Implementation and Demonstration

4.1 Motivation

With the emergence of increasing number of wireless devices, the radio spectrum

becomes scarce. Recent studies indicate that most of the time wide ranges of the

radio spectrum are rarely utilized while other bands are heavily utilized. Hence,

the scarcity is mainly due to the inefficient spectrum usage. Cognitive radio arises

to be a possible solution to spectral crowding problem by introducing the oppor-

tunistic usage of frequency bands that are not heavily occupied by licensed users

[56]. As an intelligent wireless system, it has the capability of sensing the spec-

trum, being aware of its surrounding environment, dynamically adjusting the ra-

dio operating parameters, and autonomously adapting itself into the environment

to meet user needs.

Specifically, to achieve this goal, the PHY (physical layer) of CR needs to be

highly flexible and adaptable [1]. Multi-carrier technology is the most widely used

technology for CR, such as OFDM (orthogonal frequency division multiplexing),

MC-CDMA (multi-carrier code division multiple access), CI/MC-CDMA (carrier

interferometry/multi-carrier code division multiple access), and TDCS (transform-
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domain communication system) [57]. The beauty of using multi-carrier technology

is that the subcarriers can be easily turned on and off. The secondary user can

generate a wide band multi-carrier waveform. If there is a primary user active

within the band, the secondary cognitive radio just needs to turn off the subcarriers

which are occupied by the primary user to provide the coexistence between the

primary user and the secondary cognitive radio. This is called overlay cognitive

radio.

In this chapter, we present an adaptive interference avoidance cognitive ra-

dio implementation using USRP software defined radio boards and GNU radio

software platform. Specifically, we employ SMSE framework to generate multi-

carrier waveform for secondary cognitive radio. Combined with a spectrum sens-

ing engine, the cognitive radio detects the availability of each and every subcar-

rier in the operational bandwidth. By turning off those subcarriers occupied by

the primary users, the cognitive radio implements a non-contiguous multi-carrier

transmission. There are a few unique features of our cognitive radio implemen-

tation: (1) we have demonstrated real time seamless video transmission without

interference to primary users and from primary users; (2) our cognitive radio is

capable of taking advantage of multiple spectrum holes and operating over mul-

tiple non-contiguous spectrum bands; (3) the cognitive radio dynamically adjusts

which subcarriers to turn off according to the primary users’ transmission; (4) the

cognitive radio can also easily adjust other parameters such as the total number of

subcarriers, center frequency, and bandwidth of each subcarrier.

4.2 Design Solution

Overlay CR is designed using SMSE framework to generate multi-carrier wave-

form which can autonomously avoid interference to and from the existing users.

47



Fig. 4.1 shows the overlay CR implementation setup. Two SDR-based CR nodes

are in the system. PU TX and PU RX are primary user’s transmitter and receiver,

respectively. SU TX and SU RX are cognitive radio’s transmitter and receiver, re-

spectively. The primary user in the system could transmit either a narrow band

FM transmission with about 200kHz bandwidth or a wide band digital modulated

transmission with 2MHz bandwidth.

The designed secondary user’s bandwidth is 2MHz. To demonstrate the func-

tionality of the overlay CR, we build a transmission between PU TX and PU RX

with (1) narrow band transmission so that CR can turn off the subcarriers and

transmit over non-contiguous multi-carrier band; (2) wide band transmission, which

means the primary user will operate on the entire 2MHz bandwidth, so that the CR

could perform the spectrum mobility feature. FM and GMSK modulation are em-

ployed by PU. Multi-carrier waveform with 64 subcarrier is applied for SU. USRP

RFX400 and RFX2400 daughterboards are used to perform that it is easy to demon-

strate the intelligent interference avoidance SMSE-based cognitive radio node on

different band by using different USRP daughterboards.

The SDR-based spectrum sensing engine on SU TX will first sense the spec-

trum, detect the primary user and classify the signal by narrow/wide band. If

no primary users are active within 2MHz band, the SU will transmit a contiguous

multi-carrier waveform carrying seamless real-time video signal. If a PU is de-

tected, SU will first analyze the spectrum and classify the signal by narrow band

or wide band transmission. If the bandwidth of PU is narrow, a non-contiguous

multi-carrier waveform can be applied by turning off the subcarriers occupied by

the PU, thus the CR operates over non-contiguous multi-band to avoid interfer-

ence from and to the PU. If the bandwidth of detected signal is 2MHz, there is

no spectrum available for CR. Hence, the spectrum mobility feature is performed.

SDR-based spectrum sensing engine should allocate a new spectrum holes to SU,
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Figure 4.1: Overlay Cognitive Radio Implementation Setup

where it can use contiguous or non-contiguous multi-carrier technology. The spec-

trum analyzer in the system will validate all the unique features of the intelligent

interference avoidance SMSE-based CR node.

4.3 Spectrum Sensing and Adaptation

With the aid of spectrum sensing engine, PU is detected, important RF parameters

are estimated, and a spectrum mask is provided for the SMSE-based multi-carrier

waveform generator.

If no PU is detected, SU TX adapts to the environment and transmit a con-

tiguous multi-carrier waveform to SU RX. If one PU is detected, the learning and

adaptation process which resides on SU TX estimates the center frequency of PU,

meanwhile, classifies the signal by the signal bandwidth. If a narrow band PU

transmission is determined, the adaptation process calculates which subcarriers

are interfering to PU and turn these subcarriers off. A control signal is send to the
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SU RX to indicate the subcarriers that are off. Meanwhile, an overlay multi-carrier

waveform is generated by the software. If a wide band PU transmission is deter-

mined, the spectrum sensing engine will search for other available spectrum holes

which can accommodate 2MHz transmission. Again, the control signal will inform

the SU RX to switch to the new center frequency.

Throughout the demonstration, we assume the control signal does not inter-

fere from/to the primary users. We have a fix band for the control signal.

4.4 SMSE-based Overlay CR Implementation via SDR

To implement and demonstrate the overlay CR via GNU SDR, we employ SMSE

framework to generate multi-carrier waveforms. Specifically, as shown in Fig. 4.2,

if the entire 2MHz band could be used by the CR, a contiguous multi-carrier wave-

form is generated. If a narrow band primary user is active within the 2MHz band,

some of the subcarriers which are occupied by the primary user need to be turned

off, which is in dot line shown in Fig. 4.2. Hence, a non-contiguous multi-carrier

waveform is generated.

Figure 4.2: Contiguous Multi-carrier Waveform vs. Non-contiguous Multi-carrier
Waveform

The block diagram of the SMSE encoder and decoder is illustrated in Fig.
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(a) Transmit Path

(b) Receive Path

Figure 4.3: SMSE Encoder/Decoder Block Diagram

4.3(a) and Fig. 4.3(b), respectively. The modulated frame truncates the modulated

data to the frames with inserted preambles for frame detection and synchroniza-

tion [58]. The serial data are converted to parallel which is fed to the code block,

followed by the IFFT block to get the time domain symbols. Cyclic prefix (CP) is

added to avoid inter-symbol interference (ISI). In the receive path, after removing

the CP, the serial symbols are converted to parallel which passes through the FFT

block to obtain the frequency domain symbols. Then, the symbols multiply the

transpose conjugate of the code to get the data which can be demodulated after

the parallel to serial block.

The overview of SMSE-based cognitve radio block diagram is shown in Fig.

4.4. The webcamera with microphone captures the real-time video and audio sig-

nals. Video and audio codec is implemented by VideoLAN, which is a complete

software solution for media streaming developed under the GNU General Public

License. The video and audio streaming is fed into the SMSE-based multi-carrier

waveform generator. The intelligent spectrum sensing engine senses and learns

the environment, and provides the spectrum mask to the SMSE encoder. There-
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Figure 4.4: SMSE-based Cognitive Radio Block Diagram

fore, the contiguous or non-contiguous multi-carrier waveforms could be gener-

ated. Last, the data are fed into the USRP via USB2.0 to convert the digitized sam-

ples to analog signal, and upconvert the baseband signal to RF signal. The receive

path is vise versa. After the USRP downconverts the RF to baseband and converts

to digital signal, the SMSE decoder is applied to demodulate the data, which is

sent to the VideoLAN to decode the video/audio signal and real-time play it.

The spectrum sensing engine resides on the SU TX. To reduce the size of col-

lected data for sensing, packets-based sensing strategy is used. Specifically, the

SU TX senses the spectrum, learns the environment, adapts itself to the dynami-

cally changed environment, sends the control signal to SU RX, and transmits real-

time video. After every 200 packages are sent, the SU TX transmission halts and

the spectrum sensing performs, followed by the transmission. The circle does not

stop until the user terminates it. The transmitter state diagram shown in Fig. 4.5

illustrates how this SU TX works.

At the receiver side, SU RX listens to the control signal, which includes center
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Figure 4.5: Transmitter State Diagram

Figure 4.6: Receiver State Diagram
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frequency, total number of subcarriers, which subcarriers are tuned off, etc. Then,

it adjusts the parameters according to the control signal and receives the data. Af-

ter receiving 200 packets, it goes back to listen to the control signal. Meanwhile,

the video streaming is played in real-time. Fig. 4.6 illustrates how SU RX works.

Fig. 4.7 shows the spectrum captured by the USRP board when the cogni-

tive radio is operating over one contiguous spectrum hole. Evidently, if no nar-

row band transmission exists in the transmission band, the designed CR transmits

over the entire 2MHz band. Fig. 4.8 shows the non-contiguous multi-carrier spec-

trum. It is obvious from this figure that the cognitive radio operates over two

non-contiguous bands by transmitting a non-contiguous multi-carrier waveform

by turning off a few subcarriers around the frequency of 430.5MHz of the pri-

mary user. Fig. 4.9 shows when the primary user jumps to a different frequency,

431.5MHz, the cognitive radio dynamically changes the waveform by turning off

some other subcarriers to avoid interference dynamically. As a direct result, the

real time video and audio transmission supported by the cognitive radio link ex-

periences no interruption.

Figure 4.7: Adaptive Interference Avoidance CR Demonstration - Contiguous
Multi-carrier Transmission
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Figure 4.8: Adaptive Interference Avoidance CR Demonstration - Non-Contiguous
Multi-carrier Transmission 1

Figure 4.9: Adaptive Interference Avoidance CR Demonstration - Non-Contiguous
Multi-carrier Transmission 2

Fig. 4.10 shows the setup of the interference avoidance cognitive radio. As can

be seen on the two laptop screens, real time video and audio transmission over the

cognitive link is supported seamlessly.

Fig. 4.11, Fig. 4.12, and Fig. 4.13 illustrate the spectrum of contiguous and

non-contiguous multi-carrier waveforms captured by Agilent spectrum analyzer,
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Figure 4.10: CR Demonstration

confirming the effectiveness of our overlay waveform transmission. Fig. 4.13

shows the cognitive radio taking advantage of transmitting multiple spectrum

holes by utilizing multiple non-contiguous spectrum bands.

Figure 4.11: Contiguous Multi-carrier Transmission Spectrum Observed by Spec-
trum Analyzer
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Figure 4.12: Non-Contiguous Multi-carrier Transmission Spectrum Observed by
Spectrum Analyzer - 1 Primary User

Figure 4.13: Non-Contiguous Multi-carrier Transmission Spectrum Observed by
Spectrum Analyzer - 2 Primary Users
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4.5 SMSE-based Overlay CR with Spectrum Mobility

Feature Demonstration

Spectrum mobility [59] is the process that a secondary based CR user changes its

operation frequency, uses the spectrum in a dynamic manner by allowing the CR

to operate in the best vacant band, and maintains seamless communication during

the transition to a better band.

In Chapter 4.4, the SMSE-based intelligent interference avoidance CR has been

demonstrated. However, if the PU TX transmits a wide band signal, for example

a signal with 2MHz bandwidth, there is not enough spectrum available for SU.

Hence, SU will perform spectrum mobility feature to switch to the next available

spectrum hole. In this section, we demonstrate the spectrum mobility over SMSE

based overlay CR via GNU SDR and USRP. The block diagram of frequency mo-

bility demonstration is shown in Fig. 4.4.

Fig. 4.14 illustrates how the SU TX works. Going through the ADC and DDC

on the USRP, digitized data are collected and fed to the spectrum sensing engine.

All the activated TV channels and other transmissions can be detected, as well

as all the ‘white spaces’. SU TX will select a better band which is relatively far

away from the primary users, and communicate with SU RX. To avoid huge size of

collected digitized data, the spectrum sensing engine applies packet based sensing

algorithm. The spectrum sensing engine senses the environment when every 200

packets are transmitted. If no PU is sensed reactive, SU stays on the current band to

communicate. If a PU is reactive, the sensing engine analyzes it further to decide

that it is a narrow band PU (PU NB) or a wide band PU (PU WB). If a PU NB

is active, the corresponding subcarriers are turned off to avoid any interference

from and to the PU NB, which we have demonstrated in section 4.4. If a PU WB

is active, the SU TX changes to the next available band. Then, a control signal is
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sent out to inform the SU RX. Meanwhile, SU TX adapts itself to the new band to

transmit the real-time video. After SU changing to a new band, if other PU NB

is active, SU still has the ability to dynamically turn off the subcarriers which are

occupied by the PU NB. All the PUs and SU coexist without interference from and

to each other.

Figure 4.14: Secondary User Transmission State Diagram

Fig. 4.15 illustrates how SU RX works. It is much simpler than the transmis-

sion diagram. First, SU RX listens to the control signal. Then, it sets the recep-

tion parameters according the control signal, such as turning off the subcarriers or

changing the operating frequency. Last, it adapts itself to the new environment.

By experiments, 98.3% of the transmitted packets are received and 99.4% of the

received packets are error-free.

Again, to validate our demonstration, we utilize Agilent Spectrum Analyzer
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Figure 4.15: Secondary User Reception State Diagram

to capture the frequency-domain waveform during transmission. Fig. 4.16 shows

the result that PU NB is avoided. The Agilent Spectrum Analyzer screen shows

a 2 MHz span. SU employs SMSE framework to generate multi-carrier transmis-

sion waveforms. The subcarriers, which are occupied by PU NB, are turned off.

Hence, SU transmits over non-contiguous spectrum holes with lower power. No

interference is caused from and to PU NB.

Fig. 4.17 demonstrates the spectrum mobility feature. The Agilent Spectrum

Analyzer screen is set to 5 MHz span. We can tell from the screen that a wider PU

is active. Hence, to avoid interference to each other, a better band is decided, and

SU dynamically adapts into it. Again, no interference is caused from and to each

other.

After SU changing to the new operating band, other PU NB is active. The re-

sult is shown in Fig. 4.18. 5 MHz span is set on the Agilent Spectrum Analyzer

screen. Two primary users are reactive in the band, the SU not only has the ability

to turn off the subcarriers and operate on non-contiguous spectrum holes, it also

has the ability to dynamically change the operating frequency to a better band if
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Figure 4.16: Secondary User Coexisting with Narrow Band Primary User

Figure 4.17: Secondary User Coexisting with Wide Band Primary User

70% of current band is occupied by the PU or the channel condition getting worse.

Meanwhile, seamless communication is maintained during the transition to a bet-

ter band. All the PUs and SU coexist with no interference from and to each other.
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Figure 4.18: Secondary User Coexisting with Wide Band and Narrow Band Pri-
mary User

4.6 Conclusion

In this chapter, an SMSE-based overlay CR with spectrum mobility feature is im-

plemented and demonstrated via SDR. A real-time seamless video transmission is

implemented and demonstrated without interference from the primary user and to

the primary user. By utilizing multi-carrier technology, a multiple non-contiguous

overlay waveform is generated which can take advantage of multiple spectrum

holes. Through dynamically adjusting transmission parameters, a flexible, agile

and robust cognitive radio node is demonstrated. Agilent spectrum analyzer con-

firms the effectiveness of our CR design.
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SMSE-base Overlay Cognitive Radio

Implementation and Demonstration

in Highly Mobile Environment

5.1 Motivation

Multi-carrier transmission such as OFDM has been considered a strong candidate

for next generation high-data-rate wireless communication systems [26]. However,

it is not suitable for mobile communication systems due to the frequency offset

introduced by Doppler shift in high mobility environment. With this frequency

offset, the orthogonality among all the OFDM subcarriers is lost and intercarrier

interference (ICI) is generated. This is illustrated in Fig. 5.1.

To cancel the ICI, existing methods are with their drawbacks. The BER per-

formance after ICI cancellation is still significantly worse than the original OFDM

system without ICI. More important, most of the existing ICI cancellation meth-

ods reduce the ICI and improve the BER performance at the cost of lowering the

transmission rate and reducing the bandwidth efficiency.

It has been observed that the ICI coefficient matrix in OFDM is an orthogonal
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Figure 5.1: Intercarrier Interference

matrix. Hence, at the receiver side, an OFDM with ICI can be considered as a MC-

CDMA system where all the N data symbols carried by the OFDM transmission

are spread over all N subcarriers. However, since the frequency offset is time vary-

ing and unknown at the receiver side, the spreading code matrix of the equivalent

MC-CDMA system is unknown. Hence, it has been proposed to transmit training

sequences to estimate the frequency offset and cancel ICI via the estimated fre-

quency offset. Obviously, it requires that some communication resource needs to

be allocated for the training sequence.

In this chapter, we propose a brand new approach to solve the ICI problem in

mobile OFDM system without estimating frequency offset through training sym-

bols (and without reducing data rate). Specifically, we propose to quantize the nor-

malized frequency offset into M discrete values, leading to M spreading code ma-

trices as candidates. Next, by decoding the received signal using these M spread-

ing code matrices, M decisions are made on the data symbols. Using these M

data symbols to recreate the received signal with ICI and measuring the Euclidean
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distance of the M recreated signals with the actual received signal, the best nor-

malized frequency offset is chosen and the best corresponding data symbols are

determined. Simulation results over AWGN channel and mobile multi-path fad-

ing channel demonstrate that not only the proposed system effectively eliminates

ICI and offers the best BER performance available which matches the BER per-

formance of OFDM system without ICI, it achieves the superb performance with

reasonable computational complexity. It is shown that the complexity of the pro-

posed system is linearly growing with the number of quantization levels M , and

M does not have to be a big number to achieve the best performance. Simulation

results show that we only need to pick M = 10. Last, an SMSE-base cognitive radio

in highly mobile environment is implemented and demonstrated using GNU SDR

and USRP platform.

5.2 ICI of OFDM Systems and Orthogonality

It is well known that the received OFDM signal on subcarrier k in AWGN channel

with ICI is

Y (k) = X(k)S(0) +
N−1∑

l=0,l ̸=k

X(l)S(l − k) + nk, (5.1)

k = 0, 1, . . . , N − 1

where N is the total number of the subcarriers, X(k) denotes the transmitted sym-

bol (X(k) ∈ {+1,−1} if BPSK is employed, for example) for the kth subcarrier, nk

is the additive Gaussian noise sample. The sequence S(l − k) is the ICI coefficient

between lth subcarrier and kth subcarrier:
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S(l − k) =
sin(π(ε+ l − k))

N sin( π
N
(ε+ l − k))

· exp
(
jπ

(
1− 1

N

)
(ε+ l − k)

)
(5.2)

where ε is the normalized frequency offset given by ε = f0
∆f

, f0 is the frequency

offset, ∆f is the subcarrier bandwidth of the OFDM system. It is reasonable to

assume that 0 ≤ ε < 1.

Now, denote vector X⃗ as the transmitted symbol X⃗ = {X(0), X(1), . . . , X(N−

1)}, vector Y⃗ as the received signal vector Y⃗ = {Y (0), Y (1), . . . , Y (N − 1)}, and

n⃗ = {n0, n1, . . . , nN−1}, we have:

Y⃗ = X⃗S+ n⃗ (5.3)

where S is the ICI coefficient matrix, and the pth row and qth column element of

NxN matrix S is

Sp,q = S(p− q) (5.4)

and the matrix S corresponds to

S =



S(0) S(−1) ... S(1−N)

S(1) S(0) ... S(2−N)

...
... . . . ...

S(N − 1) S(N − 2) · · · S(0)


(5.5)

From equation (5.3), it is obvious that the received signal can be viewed as a

MC-CDMA (multi-carrier code division multiple access) signal with N users, the

kth user’s information symbol is X(k), and the kth user’s spreading code is the kth

column of matrix S.

Now, it is important to note that the ICI coefficient matrix S is an orthogonal
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matrix, i.e.,

SS
′∗ = I (5.6)

where S
′∗ is the conjugate transpose of matrix S and I is identity matrix.

Hence, the OFDM signal with ICI at receiver side can be considered as an or-

thogonal MC-CDMA system with spreading code matrix S. As a direct result, the

ICI can be totally removed from the OFDM signal if we apply a matrix multiplica-

tion to the received signal vector Y⃗ :

R⃗ = Y⃗ S
′∗ = X⃗ + n⃗S

′∗ (5.7)

Next, we can simply make decision of X⃗ based on R⃗. Since S
′∗ is also an

orthogonal matrix, the noise vector n⃗S
′∗ in R⃗ has the same covariance matrix as

that of n⃗. Hence, the entire ICI is eliminated and the BER performance would be

the same as the OFDM system without ICI.

However, the problem is: the receiver does not know the spreading code ma-

trix S because the normalized frequency offset ε is unknown. Hence, it has been

proposed to estimate the normalized frequency offset ε through some training

symbols. Obviously, it requires that some data rate be allocated for the training

symbols.

5.3 Total ICI Cancellation for OFDM

We propose a total ICI cancellation scheme to eliminate ICI on mobile OFDM sys-

tems without transmitting any training symbols (and reducing data rate). While

the normalized frequency offset ε is unknown to the receiver, we can quantize ε

into M equally spaced values:
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ε′m = m ·∆ε,m = 0, 1, . . . ,M − 1 (5.8)

where ∆ε is the quantization level of normalized frequency offset, and M is the

number of quantization levels:

∆ε =
1

M
,m = 0, 1, . . . ,M − 1 (5.9)

One of these M quantized ε′s is the closest to the true ε.

Now, let’s build M parallel branches at the receiver. Each branch uses one of

the M quantized ε′s to create the corresponding ICI coefficient matrix S̃. Hence, we

have M ICI coefficient matrices S̃0, S̃1, . . . , S̃M−1 where the mth matrix corresponds

to:

S̃m =



Sm(0) Sm(−1) ... Sm(1−N)

Sm(1) Sm(0) ... Sm(2−N)

...
... . . . ...

Sm(N − 1) Sm(N − 2) · · · Sm(0)


(5.10)

and

Sm(l − k) =
sin(π(ε′m + l − k))

N sin( π
N
(ε′m + l − k))

· exp
(
jπ

(
1− 1

N

)
(ε′m + l − k)

)
(5.11)

Using these M matrices, we can have M decisions on the transmitted data

vector X⃗ where the mth branch will make decision on the estimation of X⃗ as:

ˆ⃗
Xm = sgn{Y⃗ S̃

′∗
m} (5.12)
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where sgn(X) presents the sign of X .

Next, with the data vector estimation ˆ⃗
Xm, each branch can reproduce the re-

ceived signal ˆ⃗Ym by using the data vector estimation ˆ⃗
Xm, the ICI coefficient matrix

of that branch S̃m:

ˆ⃗
Ym =

ˆ⃗
XmS̃m (5.13)

It is easy to understand that the one branch whose ε′m is the closest to the

true value of ε should reproduce the received signal ˆ⃗Ym also closest to the received

signal vector Y⃗ . Hence, we only need to calculate and compare the Euclidean dis-

tances between the M reproduced received signal vectors ˆ⃗
Ym and the truly received

signal vector Y⃗ and pick the one with the minimum distance to be the best branch

and use that branch’s estimated data vector as the final decision:

ˆ⃗
X = argmin{|| ˆ⃗Ym − Y⃗ ||2} (5.14)

where || ˆ⃗Ym − Y⃗ ||2 represents the Euclidean distance between vector ˆ⃗
Ym and vector

Y⃗ .

It is important to note that the complexity of the proposed total ICI cancella-

tion method is linearly growing with the quantization level M , keeping the com-

putational complexity at reasonable range. For each OFDM symbol, the total ICI

cancellation scheme requires 2M matrix multiplications and M comparisons. The

increased complexity is not significant, especially when M is small. As we will

show in the next Section, we don’t need to use a huge M to achieve the best perfor-

mance. In all the cases, M = 8 is good enough to provide perfect ICI cancellation

and superb BER performance matching the lower bound.

The block diagram of the proposed total ICI cancellation scheme is shown in

Figure 5.2.
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Figure 5.2: Block Diagram of the Total ICI Cancellation

5.3.1 Analysis in Multipath Fading Channels

In a multipath fading channel, let’s denote the complex fading gain on the kth

subcarrier is αk. Then the received OFDM signal after transmission through such

a fading channel with frequency offset is:

Y⃗ = X⃗αS+ n⃗ (5.15)

where α is a diagonal matrix α = diag{α0, α1, . . . , αN−1}.

Similar to the analysis in AWGN channel, the received OFDM signal repre-

sented in equation (5.15) can also be viewed as an N user MC-CDMA system with

spreading code matrix S and the kth user’s data symbol is αkX(k). Hence, if the

spreading code matrix S is known, we can eliminate the ICI by multiplying S
′∗ to

the received vector Y⃗ .

So the total ICI cancellation schemes works the same way as in AWGN chan-
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nel with only one exception: the fading channel characteristics α needs to be es-

timated at the receiver side (which is required for OFDM transmission) and the

reproduced received signal vector now has to consider the fading effects:

ˆ⃗
Ym =

ˆ⃗
XmαS̃m (5.16)

5.4 Simulation Results

In this section, we use numerical simulation results to present the effectiveness of

the proposed total ICI cancellation scheme. We provide BER simulation results for

the proposed total ICI cancellation scheme in AWGN channel and multipath fad-

ing channel.All the systems are assumed to have N = 32 subcarriers and employ

BPSK modulation.

5.4.1 AWGN Channel with a Constant Frequency Offset

The simplest way to examine the effectiveness of the proposed total ICI cancel-

lation scheme is to transmit signals through a AWGN channel with a constant

frequency offset between the transmitter and receiver. Figure 5.3 illustrates the

simulation result when the normalized frequency offset (NFO) ε = 0.1, Figure 5.4

shows the case when ε = 0.2, and Figure 5.5 shows the case when ε = 0.3. In the

total ICI cancellation scheme, we use M = 10. In both of the two figures, the blue

line shows the BER performance of OFDM without ICI, the green line marked with

circles represents the performance of OFDM with ICI, and the red line marked with

stars represents that of our proposed total ICI cancellation scheme. Since we chose

M = 10, the quantization level of normalized frequency offset ∆ε = 0.1. Hence,

one of the M branches actually has the perfect ICI coefficient matrix to work with.
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To prove the effectiveness of our total ICI cancellation method in all scenarios, Fig-

ure 5.6 presents the results when ε = 0.287532 so none of the M branches matches

the actual ε. It is obvious from these figures that when the normalized frequency

offset ε increases, the BER performance of OFDM significantly degrades, but the

total ICI cancellation scheme eliminates the ICI and provides the same BER perfor-

mance as that of a OFDM without ICI.
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Figure 5.3: AWGN Channel with NFO=0.1

Figure 5.7 shows the BER performance versus normalized frequency offset ε.

It is evident that with the increase of ε, the BER performance of OFDM significantly

degrades while the OFDM with total ICI cancellation keeps the same performance

despite the frequency offset.

5.4.2 Multipath Mobile Channels

In a practical mobile multipath radio channel, time-variant multipath propagation

leads to Doppler frequency shift which is a random variable. Here we measure

72



0 1 2 3 4 5 6 7 8
10

−4

10
−3

10
−2

10
−1

10
0

AWGN Channel with NFO=0.2

SNR

B
E

R

 

 

OFDM without ICI

OFDM with ICI

OFDM with ICI and Total ICI Cancellation

Figure 5.4: AWGN Channel with NFO=0.2
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Figure 5.5: AWGN Channel with NFO=0.3
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Figure 5.6: AWGN Channel with NFO=0.287532
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Figure 5.7: AWGN Channel with Fixed SNR

the performance of the proposed total ICI cancellation method in multipath fading

channels. As a measure of Doppler frequencies, we use the normalized maximum
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Doppler spread εB, which is defined as the ratio between the channel maximum

Doppler spread to the subcarrier bandwidth. We use the Hilly Terrain (HT) chan-

nel models defined by the GSM standard as our channel model. Total number of

subcarriers is also assumed to be 32.

Figure 5.8 shows the case when εB = 0.1, Figure 5.9 shows the case when

εB = 0.2, and Figure 5.10 shows the case when εB = 0.3. In the total ICI cancel-

lation scheme, we use M = 10. In all the figures, the blue line shows the BER

performance of OFDM without ICI, the green line marked with circles represents

the performance of OFDM with ICI, and the red line marked with stars represents

that of our proposed total ICI cancellation scheme. Obviously, the proposed total

ICI cancellation entirely eliminates the effect of ICI and matches the performance

of the OFDM without ICI in fading channels as well.

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

Multipath Fading Channel with maximum Dopper spread = 0.1

SNR

B
E

R

 

 

OFDM without ICI
OFDM with ICI
OFDM with Total ICI Cancellation

Figure 5.8: Fading Channel with Normalized Maximum Doppler Dpread = 0.1

Figure 5.11 illustrates the effect of the number of normalized frequency offset

75



0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

Multipath Fading Channel with maximum Dopper spread = 0.2

SNR

B
E

R

 

 

OFDM without ICI
OFDM with ICI
OFDM with Total ICI Cancellation

Figure 5.9: Fading Channel with Normalized Maximum Doppler Spread = 0.2

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

Multipath Fading Channel with maximum Dopper spread = 0.3

SNR

B
E

R

 

 

OFDM without ICI
OFDM with ICI
OFDM with Total ICI Cancellation

Figure 5.10: Fading Channel with Normalized Maximum Doppler Spread = 0.3
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quantization levels M on the performance of the proposed total ICI cancellation

scheme. In Figure 5.11, three BER versus M curves of different SNRs are shown.

It is easy to understand that when M increases, more quantization levels are used

and better ICI coefficient matrix estimation is achieved, so the performance of the

proposed scheme will also improve. As shown in Figure 5.11, when M is very

small, the proposed total ICI cancellation scheme actually offers pretty bad perfor-

mance due to the large quantization error. However, when M increases, the total

ICI cancellation converges fast and provide ICI cancellation and BER improvement

quickly. When M is larger than 5, there is no noticeable performance gain to in-

crease the quantization level. This can be explained as the following: when the

quantization step ∆ε is small enough, the total ICI cancellation’s ICI cancellation

capability is enough to remove all the intercarrier interference and there is no need

to decrease ∆ε anymore. It is evident from Figure 5.11 that the computational

complexity of the proposed scheme is very reasonable.
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Figure 5.11: Effect of NFO Quantization Levels in AWGN Channel NFO=0.1
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5.5 Demonstration via SDR

To demonstrate an adaptive interference avoidance cognitive radio in highly mo-

bile environment, we integrate total ICI cancellation scheme onto SMSE-based in-

telligent interference avoidance CR, and implement an SMSE based overlay CR

in highly mobile environment. Specifically, the spectrum sensing engine detects

which subcarriers are occupied by the primary users. Next, by switching off those

subcarriers, a non-contiguous multi-carrier transmission is performed over non-

contiguous multiple spectrum bands. To perform the CR in highly mobile environ-

ment, a frequency offset is added manually onto the transmitter’s center frequency.

The CR receiver SU RX applies the total ICI cancellation algorithm to remove the

ICI and decode the SMSE-based waveform. The real-time video transmission is

maintained.

The system block diagram of the adaptive interference avoidance CR is de-

picted in Fig. 5.12.

The webcam with a microphone captures the real-time video and audio sig-

nals. SU TX senses the spectrum, finds an unoccupied band, and adapts itself into

the environment. Next, we employ a control channel to inform the receiver impor-

tant parameters necessary to decode the data. Such parameters include center fre-

quency, total number of subcarriers, subcarriers to be tuned off, etc. Last, we em-

ploy SMSE waveform generator to generate contiguous multi-carrier waveform, as

well as the non-contiguous multi-carrier waveform to carry the real-time seamless

video data. It is reasonable to use package based sensing algorithm. SU TX senses

the spectrum when every 200 packages are transmitted. If there is any primary

user becoming active in the band, SU TX adapts to the environment quickly, and

turns off the subcarrier that are occupied by narrowband emission, or switches to

the next available spectrum hole.

Because this SMSE based overlay CR is in a highly mobile environment, we
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Figure 5.12: SMSE Based Overlay CR in Highly Mobile Environment Block Dia-
gram

employ the total ICI cancellation scheme at the demodulation side. By calculating

and comparing the Euclidean distances between the M reproduced received signal

vectors and the truly received signal vector, the best branch is chosen, meanwhile,

that branch’s estimated data vector is utilized as the final decision. Then, the de-

modulated data are fed into the VLC video decoder and played in real-time.

For this demonstration, the total transmission bandwidth is 2MHz. The total

number of subcarriers is 64. Hence, the frequency separation between adjacent

subcarriers is ∆f = 2M/64 = 0.03125MHz. Fig. 5.13 is the spectrum captured by

USRP, centered at 515MHz with 2MHz bandwidth. The spectrum in red is the one

without frequency offset. The spectrum in blue is the one with frequency offset.

Fig. 5.14 and Fig. 5.15 are spectrum captured by USRP, which demonstrate that

PU and SU coexist without and with frequency offset, respectively. Obviously, the

receiver needs to eliminate this frequency offset to perfectly demodulate the data.

We have conducted thorough test and experiments on the performance of our
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Figure 5.13: Spectrum Comparison with and without Frequency Offset, Captured
by USRP

Figure 5.14: PU and SU Coexisting without ICI, Captured by USRP

demonstration for both static and mobile environments. In static environment

where no mobility and no ICI is involved, 98.13% of the transmitted packets are

successfully received and 99.4% of the received packets are errorless. When mobil-

ity and ICI are introduced, no package can be received. After total ICI cancellation

scheme is applied, 98.1% of the transmitted packets are received and 99.26% of the
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Figure 5.15: PU and SU Coexisting with ICI, Captured by USRP

received packets are errorless. This vividly proves the effectiveness of the total ICI

cancellation scheme.

Figure 5.16: CR Demonstration

Fig. 5.16 shows the setup of this SMSE based overlay CR. As can be seen on
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Figure 5.17: SMSE-based Cognitive Radio in Highly Mobile Environment, Cap-
tured by Agilent Spectrum Analyzer

the two laptop screens, real-time video and audio transmission over the cognitive

link is supported seamlessly.

The beauty of employing GNU radio and USRP as the software platform and

hardware solution is making a flexible, agile, and robust cognitive radio node. To

validate the transmission, we also employ RFX2400 and Agilent Spectrum Ana-

lyzer. Fig. 5.17, captured by Agilent spectrum analyzer, shows the result that SU,

centered at 2.411GHz, is occupying the entire 2MHz band in mobility environment

with normalized frequency offset at ϵ = 0.3 when no PU is active. Fig. 5.18 and Fig.

5.19 show the results that PUs are avoided in mobility environment with normal-

ized frequency offset at ϵ = 0.3. The Agilent Spectrum Analyzer screen shows a

2MHz span. SU employs SMSE framework to generate multi-carrier transmission

waveforms. The subcarriers, which are occupied by PU NB, are turned off. Hence,

SU transmits over non-contiguous spectrum holes with lower power. No interfer-
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Figure 5.18: Secondary User Coexisting with one Narrow Band Primary User in
Highly Mobile Environment with ϵ = 0.3 , Captured by Agilent Spectrum Ana-
lyzer

ence is caused from and to PU. Meanwhile, the interference caused by frequency

offset is also eliminated at the receiver side, and the real-time video transmission

is maintained.

5.6 Conclusion

In this chapter, we propose a novel intercarrier interference cancellation scheme

called total ICI cancellation for mobile OFDM systems. Taking advantage of the or-

thogonality of the ICI coefficient matrix, the proposed ICI cancellation scheme can

eliminate the ICI experienced in mobile OFDM systems entirely and provide sig-

nificant BER improvement which matches the BER performance of OFDM system

without ICI at all. The total ICI cancellation scheme (1) provides perfect perfor-

83



Figure 5.19: Secondary User Coexisting with Two Narrow Band Primary Users in
Highly Mobile Environment with ϵ = 0.3 , Captured by Agilent Spectrum Ana-
lyzer

mance; (2) doesn’t reduce the bandwidth efficiency of OFDM system. Simulations

confirm the effectiveness of the proposed scheme, which achieves such superb

performance at a very reasonable computational complexity which linearly grows

with the number of normalized frequency offset quantization. More importantly,

a demonstration of SMSE-based CR in high mobility environment is performed

using GNU SDR and USRP platform. All the unique features of the SMSE-based

CR are maintained.
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