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ABSTRACT 
 

Stinson, Jelynn A., Biomedical Sciences Ph.D. Program, Wright State University, 
2012. Applications of Capillary Electrophoresis for Studying Serum Albumin 
Enantioselection of D,L-Tryptophan Analogs. 
  

  The pharmacokinetic difference between drug enantiomers is the impetus for 

developing analytical techniques to assess enantiomeric purity. Capillary 

electrophoresis (CE) is an analytical technique that is used for characterizing drug-

protein binding.  The pitfall to using CE for drug-protein binding studies is protein 

chiral selectors tend to adsorb onto capillary walls and cause changes in 

electroosmotic flow that lead to decreased enantioselection and migration time 

irreproducibility between consecutive injections. The experimental parameters for 

minimizing the adverse effects of protein adsorption are not clear from the literature.  

  Rinsing protocols to improve enantioselection and migration time repeatability 

were developed using the tryptophan-bovine serum albumin system as a model. The 

enantioselection of bovine serum albumin (BSA) could be improved by: 1) 

increasing separation voltage; 2) using sample buffer ionic strength at least 3 orders 

of magnitude less than the separation buffer; 3) limiting the equilibration time with 

separation buffer; and 4) allowing for protein diffusion. Rinsing the capillary with 

sodium hydroxide, followed by water improved migration time repeatability RSD 

from 24.7%  to 1.8% (n = 4).    



                                                                           iv 

  Drug-protein binding is contingent upon the three dimensional structure of the 

binding site, and the presence of other competing drug molecules. Drug-drug 

displacement is difficult to predict and the effects of protein glycation on binding of 

drugs is not well defined. To highlight the use of CE for addressing questions of 

biochemical interest, CE was applied to characterize drug-drug displacement and the 

effects of protein glycation on the enantioselection of drugs by BSA. The tryptophan-

bovine serum albumin, 5-fluoro-tryptophan-bovine serum albumin, and 5-hydroxy-

tryptophan-bovine serum albumin systems were used as models. 

  A CE method for studying competitive binding was established using ibuprofen 

as the displacer molecule. Accurate calculation of selectivity was found to depend on 

the precomplexation of ibuprofen and BSA.   A CE method for studying the effects 

of protein glycation was developed using BSA containing different degrees of 

glycation as chiral selectors. The enantioselection of tryptophan analogs by BSA was 

altered by glycation as reported in other analytical methods.  These studies can serve 

as guidelines for optimizing serum albumin enantioselection and extending its use in 

other biopharmaceutical applications.  
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Chapter 1 
 

General Introduction 
 
1.1. Background 
 
 Although the majority of active pharmaceutical ingredients (API) are marketed as 

racemates, typically only one isomer is pharmacologically active resulting in 

decreased therapeutic efficacy of the formulated product. Likewise, dissimilar 

properties of enantiomers can result in side effects that range from mild to deadly. 

Because of these problems, there has been increasing demand for the production of 

enantiomerically pure drugs by government agencies like the US Food and Drug 

Administration (FDA). In order to assure the quality of these products there has been 

increasing demand for reliable analytical methodology to assess enantiomeric purity 

(Núñez, et al., 2009).  It is this latter need that is the basis of the current work, which 

is concerned with the characterization and optimization of serum albumin as a chiral 

selector for carrying out enantiomeric separation by capillary electrophoresis.  Unlike 

other standard methods, capillary electrophoresis (CE) does not require the use of 

pure enantiomers, which makes it easy to carry out experiments under various 

conditions.   

 One of the major challenges to using a protein as a chiral selector is it has a 

tendency to adsorb onto the inner walls of the bare-fused capillaries used in this 
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technique. In this case, drug molecules will interact not only with the protein in the 

background electrolyte (BGE), but also with that adsorbed to the capillary wall. 

Adsorbed protein has been reported to cause fluctuations of electroosmotic flow 

(EOF).   This leads to peak shape distortion like tailing and band broadening that 

adversely affects resolution and efficiency (Ventura, et al., 2012). There is limited 

information available in the literature pertaining to the experimental conditions that 

are most relevant for improving chiral recognition of drugs by proteins.  Capillary 

rinsing strategies and adjustment of separation voltage have been reported to improve 

separation (Sokoliess & Koller, 2005; Ribeiro, et al., 2011). The presence of protein 

in the BGE presents a background absorbance that suppresses the sample signal if the 

protein concentration is too high and detection is at a wavelength where the protein 

absorbs strongly.   

 Tryptophan, one of the compounds used to carry out the CE chiral recognition 

studies, is an amino acid that exists as both D- and L-stereoisomers. The D-and L- 

structures, and two other tryptophan analogs used in the current study are shown in 

Figure 1.  Since tryptophan is a chemical precursor to the biosynthesis of serotonin, it 

along with its analogs, are administered for treatment of diseases where there is 

impaired synthesis of serotonin (Muck-Seler & Pivac, 2011).  Tryptophan is used as 

an additive in over the counter antidepressants, appetite suppressors, and in sleep aid 

products (Doghramiji, P., 2006; Robinson et. al, 2012). Tryptophan and its analogs 

also are administered in the treatment and diagnosis in more serious diseases such as 

carcinoid tumor metastases, migraines, and attention-deficit/hyperactivity disorder 

(Nikolaou, et.al., 2010; Johansson, et. al, 2011; Niederhofer, 2011).  
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Figure 1:  Tryptophan and analogs : 5-fluoro-tryptophan; 5-hydroxy-tryptophan. 
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 Despite the advances made in stereoselective synthesis, the direct enantiomeric 

synthesis of drugs may be expensive and not always achievable (Ye, 2011).  For the 

analogs investigated in this work, a single step synthesis has been reported for 5-

fluorotryptophan (Winn et al., 2008). There are a number of established techniques in 

the pharmaceutical field used for stereoselective analysis (Christodoulou, 2010).  Of 

these, chiral separations performed using high pressure liquid chromatography 

(HPLC) continues to be the preferred approach (Wong et al., 2008; McConnell et al., 

2007; Núñez, et al., 2009). Enantiomers are separated in HPLC either indirectly with 

chiral derivatization reagents or directly with chiral stationary phases (CSPs). The 

most important protein-based CSPs used in HPLC are based on human serum 

albumin (HSA), α1-acid glycoprotein (AGP), crude ovumocoid (OVM) and 

cellobiohydrolase I (Lammerhofer, 2010).  The AGP CSPs have been used in the 

enantioseparation of D,L-penicillamine, D,L-cysteine, and β2 agonist, formoterol 

(Bhushan & Kumar, 2009; Akapo et al., 2009).  Work has been carried out in our lab 

to develop methods using immobilized human serum albumin, bovine serum albumin 

(BSA), sheep albumin, and pig albumin in the enantioseparation of D,L-tryptophan 

(Tittelbach & Gilpin, 1995). Bovine serum albumin-gold conjugates as stationary 

phase have been described for use in chip-based enantioselective capillary 

electrochromatography (Li et al., 2009). Recently, HPLC has been combined with 

nuclear magnetic resonance (NMR) to screen the chromatographic enantiorecognition 

process on CSPs as well as to determine the absolute configuration of enantiomers 

(Uccello-Barretta et al., 2010; Cirilli et al., 2010; Thompson et al., 2009).    
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 Other methods used for chiral separations include super-critical fluid 

chromatography, and preparative and simulated moving bed chromatography 

(Speybrouck et al., 2012; Zhang et al., 2012; Guiochon & Tarafder, 2011; Hsu et al., 

2011).  Spectroscopic techniques such as NMR provide a clear view of the binding 

mechanisms; however they have a high sample consumption rate (Oravcova et al., 

1996; Liu et al., 2008; Mathur et al., 2007).  Chromatographic assays also require the 

immobilization of the protein on a support, which alter the binding properties of the 

protein (Ascoli et al., 2006; Hage et al., 2009).  The cost efficiency and 

environmental aspects of CE, such as the use of very small volumes of sample and 

buffer solutions, along with short analysis time, and ease of automation make it 

advantageous over other methods.  Capillary electrophoresis has become a powerful 

tool for the separation of chiral drugs and biomolecules as reviewed by a number of 

publications on this topic (Altria & Elder, 2004; Natishan, 2005; Smith & Evans, 

1994; Lu & Guonan, 2010; Liu et al., 2008). The first use of CE for chiral separation 

was demonstrated in 1985 by Zare and co-workers, who resolved racemic mixtures of 

dansylated amino acids (Gassmann et al., 1985). 
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Figure 2:  Schematic of a Capillary Electrophoresis Instrument. 
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1.2. Principles of separation in capillary electrophoresis  

 Capillary electrophoresis is a highly sensitive and selective method that separates 

components based on solute velocity in an electric field. The direction of movement 

is determined by the charge on the species, and the velocity is determined by the 

electrosmotic flow (EOF), electric field strength, shape of the solute, and ionic 

mobility. A general schematic of a capillary electrophoresis instrument is presented in 

Figure 2. Present commercially available systems also have a thermostatting system 

for temperature control.  

 Capillary electrophoretic separations are performed by first filling the capillary 

with an appropriate background electrolyte (BGE). A sample plug is then drawn into 

the capillary inlet by hydrodynamic or electrokinetic means.  Both the cathode and 

the anode are submerged in vials containing the BGE, and a voltage is applied to the 

system.   Solutes in the sample plug migrate along the capillary separating into zones 

according to their electrophoretic mobilites that are determined by their mass to 

charge ratio differences. 
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1.2.1.  Electrophoretic Mobility 

 When a separation voltage is applied, an electric field E (V/L) (where V is the 

voltage and L is the length of the capillary), develops along the length of the 

capillary.  Under the influence of this electric field, ionic species with charge q 

experience an electrostatic force  eF , 

                                                       qEeF                                                    (1)   

and a counteracting frictional force  frF  described mathematically by Stokes Law as:  

                                                        r6Ffr                                              (2) 

where η is the viscosity of the background electrolyte,   is the migration velocity, 

and r is the Stokes’ radius of the solute. During electrophoretic separation these 

forces are equal in magnitude setting up a steady state in which ionic species travel at 

a constant velocity. 

The velocity is a product of the electrophoretic mobility an  and the applied electric 

field 

                                                     Ean                                                  (3) 

The electrophoretic mobility for a charged species is approximated as  

                                                      r
q

 6an                                            (4) 

The mobility can be experimentally determined from the migration time (t) of the 

solute using the following equation:  

                                                       Et
l                                                   (5) 
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From equation 4, larger solutes with smaller charges will have a lower mobility than 

smaller solutes with greater charge.  Adjustments to the BGE’s pH can affect the 

overall charge of the ionic species causing their mobility to increase or decrease 

accordingly. Along with this, the addition of buffer additives or change in separation 

temperature will affect the viscosity of the BGE resulting in changes to 

electrophoretic mobility.   

1.2.2.  Electroosmotic flow 

 Movement of solutes within the capillary is not limited to charged molecules. 

Neutral solutes migrate within the capillary as the result of the electroosmotic flow. 

When the capillary is filled with BGE, a charge develops on the inside wall of the 

capillary. By electrostatic attraction, counterions in the BGE absorb on the wall 

setting up a double electric layer at the capillary wall-BGE interface.  According to a 

model proposed by Stern, the double layer is composed of a compact layer of tightly 

held ions and a diffuse layer (Giddings, 1969). 
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Figure 3:  Simplistic model of a double electric layer. 
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 The electrical potential decreases with increasing distance from the capillary wall. 

The potential in the diffuse layer is referred to as the zeta potential (ζ).  An imaginary 

boundary is present between these layers called the plane of shear Figure 3. As a 

result of viscous drag, when an electric field is applied, ions in the diffuse layer break 

away at the plane of shear, dragging with them the bulk liquid producing an 

electroosmotic flow.  It is by EOF that neutral molecules are able to migrate. The 

mobility of the EOF is described by: 

                                                 




4

E
EOF                                                   (6) 

where EOF mobility is directly proportional to the dielectric constant of the solution 

(ε), the applied electrical field (E), and the zeta potential (ζ)  and inversely 

proportional to the viscosity of the BGE (η).  If this parameter is not controlled it can 

lead to a decrease in separation (Bullock & Yuan, 1991). The apparent mobility of a 

charged solute is the sum of the EOF mobility (Eq. 6) and its ionic mobility (Eq. 4). 

The EOF mobility is measured experimentally using an uncharged solute. 

1.2.3. Selectivity and efficiency 

 Since the EOF affects the amount of time a solute spends in the capillary, 

separation efficiency, selectivity, and resolution are related to the direction and 

velocity of the EOF.   Unlike laminar flow in liquid chromatography, the 

electroosmotic flow has minimal effect on resistance to mass transfer. Therefore, the 

theoretical plate count in a capillary is much larger than that of a chromatography 

column of the same length. 
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 Diffusion occurs during the time t, it takes for a sample zone to travel from the 

point of injection to the point of detection.  The spatial variance  L2  of the zone is 

given by:  

                              V/DL2L 22                                                               (7) 

where D is the diffusion coefficient of the solute, L is the total length of the capillary, 

V is the applied voltage, and μ is the apparent electrophoretic mobility of the solute. 

The efficiency is expressed by the theoretical plate number (N),  

                                 
L

LN 2

2


                                                                   (8) 

By substituting Eq. (7) into Eq. (8)  

                                  D2
VN                                                                    (9) 

 It can be observed from Eq. (9), that: a) The efficiency can be improved by applying 

high voltages; b) Solutes with higher mobilities and low diffusion coefficients will 

produce higher plate counts.   

 The efficiency may be experimentally determined by: 

                                     2
2/1w/t54.5N                                                     (10) 

where t is the migration time and w1/2 the peak at half height. Equation (10) is correct 

only for Gaussian peaks. Selectivity is the thermodynamic measure of the differences 

in affinity of two ligands for binding to a substrate. The selectivity is given by: 

             )(
)(2

21

21

average 


                                             (11) 

where μ1  and μ2  are the observed electrophoretic mobilities of each ligand. 

Differences in physiochemical properties between solutes determine differences in 
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selectivity. The most important parameter for optimizing the selectivity of charged 

solutes is pH (Guan et al., 2012). 

1.2.4. Resolution 

 Resolution is a function of the selectivity (α), migration time (t), and the 

separation efficiency (N) (Jones et al., 1990). Resolution is defined according to 

selectivity and efficiency by: 

                        2/12/1

average
s N4

1N4
1R 









                                 (12) 

 In CE there are many sources that can have adverse effects on resolution.  

Electrodispersion occurs when the electric field strength is non-linear along the length 

of the capillary.  When the voltage drop along the capillary is not linear, samples 

travel along the capillary at different velocities causing peak dispersion to occur. A 

measurement for the extent of this dispersion is given by the baseline peak width 

( basew ),  

                                            4w base                                                         (13) 

where σ is the standard deviation. The resolution can be determined from the 

migration time (t) by: 

                                  








4

tt

ww

)tt(2
R 12

21

12
s                                            (14) 

where w is the baseline width in time. Conductivity differences between the sample 

zone and surrounding buffer zones, lead to peak shape distortion.  The effects of 

electrodispersion are addressed by adjusting the BGE’s ionic strength, sample plug 

injection length, and sample concentration. 
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1.3. Capillary Electrophoresis for enantioselective analysis 

 In the experimental set-up chiral separation is induced by the addition of chiral 

selectors to the background electrolyte. Upon the application of voltage, enantiomers, 

D and L migrate within the capillary interacting with a chiral selector P, forming 

drug- selector complexes with equilibrium constants KD  and KL : 

DPPD DK               and            LPPL LK                                (15)         

Two enantiomers of a given chiral compound have identical electrophoretic 

mobilities in free solution.  The resolution of enantiomers is based upon interaction 

with the chiral selector. The “three-point interaction model” states that three points of 

interaction between the chiral selector and one of the enantiomers is required before 

discrimination by the selector is achieved as illustrated in Figure 4 (Davankov, 1998; 

Kitawaga & Otsuka, 2011). The molecular interaction between the selector and 

enantiomer involves coulomb forces, hydrogen bonding, steric hindrance, π-π 

interaction, ion-dipole, dipole-dipole, London dispersion, and dipole-induced dipole 

forces.  The strongest interaction occurs with the Coulomb force (Kitawaga & 

Otsuka, 2011). For separation to be achieved, there are conditions that must be 

satisfied: (1) The equilibrium constants for selector-solute binding must be different 

for the two enantiomers; (2) There must be significant amounts of both chiral selector 

and solute; (3) Equilibration of the enantiomer in and out of the selector, must be 

faster than the time scale of separation; (4) Mobilities of complexed and free drug 

must be different. The enantiomer in complex with the selector will migrate at a 

velocity different from the free enantiomer. This results in measurable differences in 

electrophoretic mobility between free and complexed drugs. 
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Figure 4: The three point interaction model.  Enantiomer (a) can interact only with 

two sites on the chiral selector, while its mirror image enantiomer (b) presents three 

groups that match three sites of the selector. 
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1.3.1. Common chiral selectors 
 
 The further development and use of novel chiral selectors are based upon cost, 

availability, solvent compatibility, and performance compared to established 

selectors.  Selectors commonly used in CE chiral separations include cyclodextrins, 

micelles, macrocylic antibiotics, and proteins.   

1.3.1.1. Cyclodextrins 

 The majority of chiral CE separations make use of cyclodextrins.  Cyclodextrins 

are nonreducing oligosaccharides obtained from enzymatic digestion of starch.  They 

are commonly found in the α-, β-, and γ-conformations, composed of 6, 7, and 8 α- 

(1-4)- linked glucopyranose units, respectively. The α- structure is represented 

schematically in Figure 5.  Cyclodextrins have hydrophobic internal cavities and 

polar groups are on the outside.  Drug molecules fit into these cavities forming 

inclusion complexes (Schmitt et al., 2002). Formation of inclusion complexes is 

influenced by the geometry and size of the drug molecules. 

 While hydrophobic interactions predominate in the formation of inclusion 

complexes, polar interactions also can occur along with hydrogen bonding and Van 

der Waals forces.  The advantages associated with the use of cyclodextrins are their 

water solubility, ionizability, UV transparency, and stability in solution (Ilisz et al., 

2009; Zhang et al., 2012).  UV transparency of cyclodextrins is advantageous for 

development of CE methods. 
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1.3.1.2. Micelles 

 Micelles are formed when amphiphilic molecules containing both strongly polar 

and strongly nonpolar groups, aggregate in aqueous solutions above their critical 

micellar concentration. Amphiphilic molecules are frequently composed of a long 

nonpolar alkyl chain as the hydrophobic group and a polar head group (charged or 

neutral) as schematically represented in Figure 6 for sodium dodecyl sulfate (SDS).  

The ionic function of the surfactant hydrates readily, whereas the hydrophobic tail is 

intrinsically insoluble.  In polar solvents, it is assumed that micelles are spherical in 

shape and oriented such that the polar groups are located on the outer zone and the 

alkyl groups constitute a hydrophobic core (Masci et al., 2012).  The separation 

principle in micellar CE represents a hybrid technique based upon both a partitioning 

mechanism and electrokinetic migration.  It is analogous to chromatography in that 

enantiomers are separated based upon residence time differences in the mobile 

(aqueous) phase and more stationary (micellar) phase. 

 Mostly anionic surface-active compounds like SDS have been used for the 

analysis of ionic and nonionic compounds (Lin et al., 2004).  Cationic surfactants 

have been employed for anionic and neutral compounds (Wu et al., 2001).  One 

important aspect to consider when using a cationic surfactant at high concentration is 

the direction of the electroosmotic flow is reversed. Since resolution is improved 

when chiral selector and EOF move in opposite directions, separation efficiency may 

be adversely affected if experimental methods are not modified to address changes in 

EOF. 
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Figure 5: Structure of α- cyclodextrin. 
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Figure 6: Schematic representation of the amphipathic molecule sodium dodecyl 

sulfate (SDS). 
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1.3.1.3. Macrocylic antibiotics 

 Macrocyclic antibiotics are a class of antibiotics used in therapy against infections 

caused by gram-negative and gram-positive bacteria.  Natural and semisynthetic 

macrocyclic antibiotics comprise a variety of structural types, which include peptides, 

glycopeptides, ansa compounds, and peptide-heterocycle conjugates.  A schematic of 

an ansa compound is represented in Figure 7. There are acidic, basic, and neutral 

types of antibiotics that differ in a number of physicochemical properties that 

determine their usefulness for chiral selection.  Macrocyclic antibiotics contain 

functionalities such as ester, hydroxyl, amide, primary amine and aromatic groups 

which are involved in intermolecular interactions with chiral molecules (Armstrong et 

al., 1994).  The chiral recognition in intermolecular interactions is maintained by 

stereogenic centers.   The numbers of stereogenic centers in the antibiotics vary, 

allowing them to have multiple interactions with chiral molecules. 

  Macrocyclic antibodies interact with chiral molecules by hydrogen bonding, π-π 

interactions, hydrophobic interaction, dipole-dipole, and ionic interactions 

(Armstrong& Nair, 1997; Ward & Oswald, 1997).  The selectivity of macrocyclic 

antibiotics is specific to the charge of the analyte and especially useful for the 

separation of acidic chiral analytes. Macrocyclic antibiotics use for the determination 

of trace levels of chiral compounds can be hindered by their high UV absorbance. 
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Figure. 7:  Schematic of an ansa compound.  (n ≥ 5)*  Where n denotes the number of 

atoms bridging the para positions on the molecule. 
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1.3.1.4. Proteins  

 Proteins are high molecular weight biopolymers which consist of L-amino acids. 

Many uniquely bind a single enantiomer of chiral molecules. Protein chiral 

recognition is affected by both charge and hydrophobic interactions.  This mode of 

CE, utilizing protein as the chiral selector is referred to as affinity capillary 

electrophoresis (ACE).  There are a number of proteins that have been used to carry 

out chiral CE separations.  Examples include glycoproteins, enzymes such as 

lysozyme, fungal cellulase, as well as cytochrome c (Tanaka & Terabe, 2001). Alpha 

(1) acid glycoprotein is one of many glycoproteins found in plasma that is responsible 

for the binding of cationic drugs (Li & Lloyd, 1993; Tanaka & Terabe, 1997; Amini 

et al., 1997).  The enantioselective binding of drugs is influenced by sugar moities 

and sialic acid residues.  In the case of enzymes, the enzymatically active core is the 

dominating site for drug binding (Marle et al., 1993).  Although a number of proteins 

have been employed, the most extensively studied in chiral CE are bovine serum 

albumin and human serum albumin.   

1.3.1.4.1. Drug-serum albumin binding 

 The first study aimed at examining the suitability of CE applications for 

measuring drug-plasma protein binding was reported in 1992 (Kraak et al., 1992). 

Serum albumin is the most abundant protein in plasma (Fanali, et al., 2012).  Bovine 

serum albumin (BSA) consists of a single polypeptide chain of 581 amino acid 

residues that are folded in a series of α-helices, and further organized into three 

domains.  The tertiary structure of BSA is stabilized by 17 disulfide bridges. The 

warafin-azapropazone site (site I) and the indol-benzodiazepine site (site II) are the 
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two major sites in serum albumin for binding drugs (Sudlow, et al., 1976).  Figure 8 

shows the structure of albumin with different binding sites based upon Protein Data 

Bank file, 2BXG.  Although both site I and II have been reported to bind aromatic 

and heterocyclic ligands site I tends to bind bulky heterocyclic anions (Peters, 1996; 

Carter & Ho, 1994). As a result of its ability to accommodate more than one ligand at 

a time, site I is described as a large and flexible region (Peters, 1996).  By contrast 

site II, is smaller, less flexible and more stereospecific binding occurs at this location. 
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Figure 8:   Albumin binding sites.  The structure of albumin is shown with the major 

drug binding sites labeled (PDB ID: 2BXG). 



 32

 

 
 
 
Figure 8.  
 
 
 
 
 
 
 

 



 33

1.4. Factors that reduce tryptophan-serum albumin binding  

 It is accepted that the pharmacokinetic properties of drugs are influenced by 

reversible interactions with serum proteins (McMenamy & Oncley, 1958: Sudlow et 

al., 1975). Thus, the enantioselective binding of drugs by serum proteins is of great 

importance in the drug development process.  Drug enantiomers tend to have 

different binding affinities for proteins.  Drug binding constants provide quantitative 

measures by which drug binding and drug-drug displacement are determined and 

possible side effects are checked during preclinical trials (Betts et al., 2010, Rudnev 

et al., 2006).   

 In the presence of competing molecules, the extent of drug binding to serum 

proteins is reduced.  Site II in serum albumin, is the high affinity binding site for both 

L-tryptophan and the non-steroidal anti-inflammatory drug ibuprofen (Sun & Wang, 

2012). Ibuprofen and tryptophan are administered in the treatment of migraines.  As a 

result of limited binding sites for these drugs, if administered concurrently, 

competition will exist between ibuprofen and L-tryptophan for binding 

(Berezhkovskiy, 2006). Inhibition of binding by one drug to another is a function of 

the relative concentrations of each drug, and specificity of binding (Langlois et al., 

2012).  There are a number of secondary drug binding sites on serum proteins that 

make drug-drug displacement difficult to predict. Strategies to investigate the effects 

of ibuprofen on interactions of tryptophan with serum albumin prove vital for 

providing insight into the usefulness of certain drug combinations.  The displacement 

of L-tryptophan from serum albumin by ibuprofen has been studied by ultrafiltration 

and other in vitro assays (Basken et al., 2009).   
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 The ability of proteins to select between optical isomers is attributed to their three 

dimensional structure. When protein modification induced by physiological changes 

occurs, an alteration of the protein’s native binding efficiency is expected (Oettl & 

Stauber, 2007). Non-enzymatic glycation is a major in vivo mechanism that 

contributes to structural alteration of albumin.  Glycation occurs most often at the N-

terminal amino group and the side chains of the lysine residues. It also has been 

reported to occur at arginine, cysteine, histidine, and tryptophan residues (Munch et 

al., 1999).  Glycation of a lysine side chain occurs through the Maillard reaction as 

shown in Figure 9.  In the initial step of glycation, glucose attaches to free amine 

groups of albumin, forming a reversible Schiff base. Through an Amadori 

rearrangement a stable fructosamine product is formed. Schiff base and fructosamine 

products are the early glycation adducts which can be further modified by 

rearrangement, oxidation, polymerization, and cleavage to form irreversible 

conjugates called advanced glycation end products (Thornalley, 1999). 

 The extent of glycation is a function of glucose concentration and protein reaction 

time.  Associated with the extent of glycation is a change in protein mass and charge.  

Knowledge about how glycation effects drug binding may lead to advancement in 

both treatment and diagnosis of diseases such as diabetes.  Clinical implications of 

albumin glycation include drug binding may be altered for example at various stages 

of diabetes. In one study the binding of tryptophan by albumin, was found not to be 

affected by glycation, while in a different study low levels of glucose were reported 

to lower the affinity of albumin to bind (Bohney et al., 1992; Barzegar et al., 2007). 
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Figure 9:  Formation of glycated albumin. 
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 Studies to investigate the binding capacity of glycated albumin have been done 

using equilibrium dialysis, ultrafiltration, and high-performance liquid 

chromatography (Bohney & Feldhoff, 1991; Koizumi et al., 1998; Mikulikova et al., 

2005).  Disadvantages to using equilibrium dialysis are volume shifts, nonspecific 

adsorption to the dialysis apparatus, and Donan effects (Oravcova et al., 1996).  A 

pitfall to ultrafiltration is the necessity for a large number of data points. The 

problematic aspect of high pressure liquid chromatography is the high sample 

consumption rate. Contradictory reports have given impetus to further develop 

simplistic methods that can provide accurate information for characterizing the effects 

of serum albumin glycation on drug binding.   

 The use of CE as an analytical tool for addressing biochemical questions of 

interest is demonstrated in this dissertation by developing methods to characterize the 

effects of ibuprofen and glycation of BSA on the enantioselection of chiral drugs. 

 

1.5. HYPOTHESIS  

I hypothesize that capillary electrophoresis can be systematically optimized to 

develop experimental protocols and associated fundamental models for examining 

protein-drug binding and modulation of those interactions through drug-drug 

displacement and subtle changes in protein structure.  

 

 

 

 



 38

 
 
 

Chapter 2 
 

Materials and Methods 
 
2.1. Chemicals 
 
 Bovine serum albumin (cat. No. BP671-1), sodium phosphate dibasic (cat. No. 

5374-500), phosphoric acid (85%) (cat. No. 7664-38-2), methanol (cat. No. A452SK-

4), and sodium hydroxide (NaOH) (cat. No. 1310-73-2) were purchased from Fisher 

Scientific (Fair Lawn, NJ, USA); D,L-tryptophan (CAS: 54-12-6) was purchased 

from ACRŌS Organics (Fair Lawn, NJ, USA); Ibuprofen (cat. No. I-1892), 5-fluoro-

D,L-tryptophan (cat. No. 154-08-5), deuterium oxide (D2O) (cat. No. 7789-20-0), and 

5-hydroxy-D,L-tryptophan (cat. No. 114-03-4) were purchased from Sigma Aldrich 

(St. Louis, MO, USA). Sodium phosphate monobasic (cat. No. 4011-1) was 

purchased from J.T. Baker, Inc. (Phillipsburg, NJ, USA). D- (+)-glucose (cat. 

No.194672) was purchased from MP Biomedicals, LLC (Solon, OH, USA). Solutions 

were prepared in deionized water treated using a Water PRO Plus system by 

LABCONCO (LABCONCO Corp, Kansas City, MO, USA).    

2.2. Instrumentation  
 
2.2.1. Capillary electrophoresis (CE) 
 
 An Agilent G1600 HP3D Core CE system (Santa Clara, CA, USA) was employed 

for separations. Data acquisition and instrument control were by ChemStation 
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software (Agilent, Waldbronn, Germany). Data were exported to Excel (Microsoft, 

Redmond, WA, USA) and then further mathematically processed using SigmaPlot 12 

 (Systat Software, Inc., San Jose, CA, USA) and BOMEM GRAMS/386 software 

(ABB Bomem Inc., Québec, Canada) for curve fitting.  The separations were 

performed in bare fused-silica capillaries (cat. No. G1600-60311) purchased from 

Agilent with 48.5 cm total lengths, effective lengths of 40 cm, and internal diameters 

of 75µm.  New capillaries were rinsed with NaOH (0.3 M) for 30 min, and deionized 

water for 30 min, then background electrolyte for 60 min at 920 mbar. When not in 

use, capillaries were rinsed with 0.1 M NaOH for 10 minutes, water for 10 minutes, 

air for 20 minutes, and stored dry. The capillary temperature was maintained at 

C25 throughout separations. Samples were injected hydrodynamically using 20 mbar 

pressure for 5 seconds. 

2.2.2. Mass Spectrometer 

 Mass spectra were acquired on a Bio-TOF III high resolution mass spectrometer 

(Bruker Daltonics, Billerica, MA, USA).  Data was acquired by DataAnalysis 3.2 

software (Bruker Daltonics, Billerica, MA, USA).  Samples were injected into the 

mass spectrometer using a Cole Palmer syringe pump (cat. No.74900-05, Vernon 

Hill, IL, USA).  

2.2.3. Proton Nuclear magnetic resonance 

 A Varian INOVA 600 NMR spectrometer (Palo Alto, CA, USA)  equipped with : 

(1) a triple resonance inverse probe (1H/13C/X), (2) a broadband observe probe with 

a 13C/1Hdecouple channel (X/13C/1H), (3) an inverse nanoprobe for 1H MAS 

spectroscopy in small volumes (40 μl), (4) a variable temperature unit (FTS Systems, 
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XR401 air-jet crystal cooler, C40 to + C100 , and (5) a Zymark XP robotics 

sample changer. 

2.3. Determine relevant parameters for improving enantioselection         
 and migration time reproducibility 
 
 Consecutive runs were made of D,L tryptophan (0.5 mg/ml), chosen arbitrarily for 

simplicity, in the presence of 30 μM BSA. Previous studies aimed at assessing 

enantioselection of tryptophan enantiomers reported optimized resolution occurs 

when there is a concentration of 30 μM BSA in the background electrolyte (Hödl et 

al., 2006). Buffer concentration and temperature listed as optimal for BSA binding 

employed in HPLC separations were 25 mM sodium phosphate, pH 7.4 at 25°C 

(Gilpin et al., 1991). As a result of these findings, initial experiments were carried out 

under these conditions. The tryptophan-BSA model was used in this study.  Four 

separate preconditioning experiments were carried out to investigate the effects of 

protein adsorption on enantioselection.  

2.3.1. Ohm’s Law plot  

 To assure joule heating would be minimized, an Ohm’s Law plot was constructed 

to determine the buffering capacities of 25 mM, 50 mM, 75mM, and 100 mM sodium 

phosphate buffer systems before serum protein addition.   

Solution preparation 

 A concentrated 0.1 M sodium phosphate buffer was prepared by placing 2.62 g of 

sodium phosphate monobasic, and 14.42 g sodium phosphate dibasic into a 1L 

volumetric flask.  To the flask 800 ml of water was added, pH of solution was 
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adjusted to 7.4 using phosphoric acid (85%), then additional water was added to bring 

final volume to 1 L.  The 25 mM, 50 mM, and 75 mM sodium phosphate buffers were 

prepared by pipeting 3.75 ml, 7.5 ml, and 11.25 ml of the 0.1 M buffer into separate 

volumetric flask, respectively. Each solution was brought to a final volume of 15 ml 

with deionized water. Prior to use, buffers were degassed by mixing with a magnetic 

stir bar while under vacuum. They were also filtered through a Fisherbrand 0.20 μm 

pore size, PTFE filter (Fisher Scientific, Fair Lawn, NJ, USA).  Sodium hydroxide 

(0.1M) was prepared in deionized water. It was also degassed by stirring and vacuum 

suction.  

CE instrumental set-up 

 The instrument settings were as follows:  CE MODE, CE; INJECTION BY, No 

Injection; Lift Offset: 4 mm, Cassette Temperature, 25°C; CE Conditioning: 

Replenish (none), Postconditioning (none), Preconditioning (Use Table);  Diode 

Array Detector (DAD) Signals: A- 200, B-240, C-260, D- 270, E- 280, and spectrum 

store- All in peak, with a threshold of 2.00 mAu; Time Table tab checked voltage, 

current, and temperature with a stoptime of 0.20 min; Switch Electric was set to on 

with a positive polarity and a voltage ramp of 0 to 30 kV was applied.  At the 

capillary inlet were vials containing 1 ml of NaOH (0.1M), deionized water, and 

sodium phosphate buffer (25 mM - 100 mM). At the capillary outlet were vials 

containing 1 ml of sodium phosphate buffers (25 mM -100 mM), deionized water, 

and an empty vial for waste. 
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Separation method and data acquisition  

 The following steps were used for constructing the Ohm’s plot for each buffer 

system tested: 1) Rinsed capillary 1 minute with NaOH (0.1M) with an applied 

pressure of 50.0 mbar; 2) Waited 4 minutes; 3) Rinsed capillary 1 minute with water  

with an applied pressure of 50.0 mbar; 4) Rinsed the capillary 1 minute with sodium 

phosphate buffer with an applied pressure of 50.0 mbar; 5) Switched on voltage for 

2.5 minutes with a ramping time of 1 minute; 6) Recorded the current and voltage.  

Data processing 

 Current and voltage signals were exported as CSV files to Excel (Microsoft, 

Redmond, WA, USA).   The buffering capacity was evaluated by plotting the current 

as a function of applied voltage.   

2.3.2. Applied voltage effects on peak shape   

Solution preparation 

 The background electrolyte, 25 mM sodium phosphate containing 30 μM BSA, 

pH 7.4, was prepared from a 0.1 M concentrated solution. The 0.1 M concentrated 

sodium phosphate solution and 0.1M NaOH were prepared as described in section 

2.3.1. The BGE was prepared as follows: 1) Added 0.1188 g of BSA to 15 ml of  

0.1 M sodium phosphate buffer, pH 7.4; 2) Removed 3.75 ml of the BSA solution and 

placed it into a volumetric flask. 3) Diluted the solution to a final volume of 15 ml 

with deionized water.  Samples were prepared by dissolving D,L-tryptophan in 

deionized water (0.5 mg/ml). The sample plug volume in the capillary was 17.97 nl. 

The total capillary volume was 2143 nl.  The mole ratio of drug:BSA in the capillary 

interacting was 1:2. Prior to use, buffers and samples were degassed by mixing with a 
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magnetic stir bar while under vacuum. Buffers and samples were filtered through a 

Fisherbrand 0.20 μm pore size, PTFE filter (Fisher Scientific, Fair Lawn, NJ, USA).  

CE instrumental set-up 

 The instrument settings were as follows:  CE MODE, CE; INJECTION BY, 

Pressure 20 mbar for 5 seconds; Lift Offset: 4 mm, Cassette Temperature, 25°C;  

CE Conditioning: Replenish (none), Postconditioning (none), Preconditioning (Use 

Table) table set-up is described in the next section below ;  DAD Signals: A- 191, B-

200, C-254, D- 270, E- 280, and spectrum store- All in peak, with a threshold of 2.00 

mAu; Time Table tab checked voltage, current, and temperature with a stop time of 

30.0 min; Switch Electric was set to on with a positive polarity, constant voltages of 

10 kV  to 30 kV were applied.   

Separation method and data acquisition 

 To test applied voltage, the CE preconditioning table was configured as follows: 

1. FLUSH 3.00 min with NaOH (0.1 M); 2. FLUSH 3.00 min with water; 3. FLUSH 

8 min with BGE.  The outlet vials for all flushing steps were empty waste vials.  

Following preconditioning of the capillaries surface, a constant separation voltage of 

10 kV to 30 kV was applied over a 30 minute separation. The migration time of 

enantiomers was recorded at each voltage. 

Data processing 

 The 280 nm signal was exported as a CSV file to Excel (Microsoft, Redmond, 

WA, USA).   The mobility determined from enantiomer migration time and applied 

voltage, as described in equation 5. The mobility of analyte was determined first in 

BGE void of BSA. The viscosity of the BGE changed upon the addition of BSA. To 
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account for changes in BGE viscosity associated with the addition of protein, a 

corrected migration time, EOFdrug tt  , where  drugt  and EOFt  is the migration time of 

the enantiomer and EOF, respectively, was used to create the plot. 

To redraw electropharograms, corrected data were saved as text delimited files and 

exported to BOMEM GRAMS/386 program for curve fitting. The selectivity was 

measured for both enantiomers at each applied voltage. The difference in selectivity 

as a function of voltage was plotted.  

2.3.3. Sodium hydroxide and water rinse effects on migration time   
 
Solution preparations 

 The BGE was prepared as described in 2.3.2.  The sodium hydroxide was 

prepared as described in 2.3.1. 

CE instrumental set-up 

 The CE instrumental set-up was as described in 2.3.2. with the following 

modifications: 1) Switch electric was set to on with a positive polarity voltage of 15 

kV; 2) preconditioning table set-up is described in the next section below.  

Separation method and data acquisition 

 To test sodium hydroxide -water rinse times, the CE preconditioning table was 

initially  configured as follows: 1) FLUSH 3.00 min with NaOH (0.1 M); 2) FLUSH 

3.00 min with deionized water; 3) FLUSH 8 min with BGE.  Flush times with NaOH 

(0.1 M) and water were increased by an increment of 3 min every fourth injection, to 

a final rinse time of 15 min. The outlet vials for all flushing steps were empty waste 

vials.  Following preconditioning of the capillaries surface, a separation voltage of  
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15 kV was applied for 30 minutes. The migration times of enantiomers and acetone (n 

= 4) were recorded.  

Data processing 

 The 280 nm signal was exported as a CSV file to Excel (Microsoft, Redmond, 

WA, USA).   Fluctuation in migration time associated with change in BGE viscosity 

was corrected by subtracting the migration time of acetone. The difference in 

migration time of acetone as a function of NaOH/water rinse time between 

consecutive injections (n =4) was measured.  

2.3.4. Evaluating the selectivity as a function of BGE rinse time  

Solution preparations 

 The BGE and samples were prepared as described in 2.3.2.  The sodium 

hydroxide was prepared as described in 2.3.1. 

CE instrumental set-up 

 The CE instrumental set-up was as described in 2.3.2. with the following 

modifications: 1)Switch electric was set to on with a positive polarity voltage of 15 

kV; 2)preconditioning table set-up is described in the next section below.  

Separation method and data acquisition 

 To test BGE rinse times, the CE Preconditioning table was initially configured as 

follows: 1) FLUSH 3.00 min with NaOH (0.1 M); 2) FLUSH 3.00 min with 

deionized water; 3) FLUSH 8 min with BGE.  Flush times with BGE were increased 

by an increment of 8 min every fourth injection, to a final rinse time of 32 min. The 

outlet vials for all flushing steps were empty waste vials.  Following preconditioning 
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of the capillaries surface, a separation voltage of 15 kV was applied for 30 minutes. 

The migration times of enantiomers and acetone (n = 4) were recorded.  

Data processing 

 Data was processed as described in 2.3.2. with the following modification: The 

change in the selectivity as a function of BGE rinse time was measured. 

2.3.5. Evaluating the selectivity as a function of wait time  

Solution preparations 

 The BGE and samples were prepared as described in 2.3.2.  The sodium 

hydroxide was prepared as described in 2.3.1.  

CE instrumental set-up 

 As described in 2.3.2. With the following modifications: Switch electric was set 

to on with a positive polarity voltage of 15 kV; preconditioning table set-up is 

described in the next section below. 

 Separation method and data acquisition 

 To test wait times, the CE Preconditioning table was initially configured as 

follows: 1) FLUSH 3.00 min with NaOH (0.1 M); 2) FLUSH 3.00 min with water; 3) 

FLUSH 8 min with BGE; 4) WAIT 10 min.  Wait times prior to separation voltage 

application were increased by an increment of 10 min every fourth injection, to a final 

wait time of 60 min. The outlet vials for all flushing steps were empty waste vials.  

Following preconditioning of the capillaries surface, a separation voltage of  

15 kV was applied for 30 minutes. The migration times of enantiomers and acetone (n 

= 4) were recorded.  

 



 47

Data processing 

 Data was processed as described in 2.3.2. with the following modification: The 

change in selectivity as a function of wait time was measured. 

2.3.6. Evaluating the selectivity as a function of sample buffer ionic strength  

Solution preparations 

 The BGE was prepared as described in 2.3.2.  The sodium hydroxide was 

prepared as described in 2.3.1.  Samples were prepared by dissolving tryptophan (0.5 

mg/ml) in sodium phosphate buffer, pH 7.4, of ionic strengths 5 mM to 25 mM. All 

buffers were prepared from 0.1 M concentrated buffer. Prior to use, buffers and 

samples were degassed by mixing with a magnetic stir bar while under vacuum. 

Buffers and samples were filtered through a Fisherbrand 0.20 μm pore size, PTFE 

filter (Fisher Scientific, Fair Lawn, NJ, USA).   

CE instrumental set-up 

 The CE instrumental set-up was as described in 2.3.2. with the following 

modifications: 1) Switch electric was set to on with a positive polarity voltage of 15 

kV; 2) preconditioning table set-up is described in the next section below.  

 Separation method and data acquisition  

 The CE Preconditioning table was configured as follows: 1. FLUSH 3.00 min to  

with NaOH (0.1 M); 2. FLUSH 3.00 min with water; 3. FLUSH 8 min with BGE; 4. 

WAIT 10 min.  The outlet vials for all flushing steps were empty waste vials.  

Following preconditioning of the capillaries surface, a separation voltage of 15 kV 

was applied for 30 minutes. The migration times of enantiomers and acetone (n = 4) 

were recorded.  
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Data processing 

 Data were processed as described in 2.3.2. With the following modification: The 

difference in selectivity as a function of sample buffer ionic strength was measured. 

2.4. Capillary electrophoresis applications for studying  
        competitive binding. 
 
 The displacement of L-tryptophan by ibuprofen can be determined by using 

ibuprofen as an additive to the BGE (Berezhkovskiy, 2006).  The influence of 

ibuprofen on the enantioselection of 5-fluoro-D,L-tryptophan and D,L-tryptophan by 

BSA was studied. The tryptophan-BSA model was employed. 

Solution preparations 
 
 For binding constant measurements BGEs containing 0, 10 μM, 15 μM , 20 μM, 

30 μM, and 35 μM  BSA were employed. The sodium phosphate 0.1M buffer was 

prepared as described in 2.3.1. To obtain the desired BSA molar concentrations, 

protein was added to 15 ml of 0.1M sodium phosphate, pH 7.4 as following: 10 μM, 

0.0396 g; 15 μM, 0.0594 g; 20 μM, 0.0792 g; 30 μM, 0.1188 g; and 35 μM, 0.1386 g. 

For competitive binding studies, ibuprofen solution was added to BGE (35 μM) at a 

concentration ranging from 0 to 55.3 μM.  Samples of D,L-tryptophan and 5-fluoro-

D,L-tryptophan (0.0225 to 0.54 (mg/ml)) in 8 mM sodium phosphate, pH 7.4. Prior to 

use, samples and buffers were degassed and filtered through a Fisherbrand 0.20 μm 

pore size, PTFE filter (cat. No. 09-720-7) (Fisher Scientific, Fair Lawn, NJ, USA).  
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CE instrumental set-up 

 The CE instrumental set-up was as described in 2.3.2. with the following 

modifications: 1) Switch electric was set to on with a positive polarity voltage of 15 

kV; 2) preconditioning table set-up is described in the next section below. 

Separation method and data acquisition 

 The CE Preconditioning table was configured as follows: 1) FLUSH 3.00 min 

with NaOH (0.1 M); 2) FLUSH 3.00 min with deionized water; 3) FLUSH 8 min 

with BGE; 4) WAIT 10 min.  The outlet vials for all flushing steps were empty waste 

vials.  Following preconditioning of the capillaries surface, a separation voltage of 15 

kV was applied for 30 minutes. The migration times of enantiomers and acetone (n = 

4) were recorded. 

Data processing 

 Data were processed as described in 2.3.2. with the following modification: The 

difference in selectivity as a function of ibuprofen concentration was measured.  

2.5. Capillary electrophoresis applications for studying binding  
       of glycated serum proteins. 
 
Solution preparations 
 
 The BGE for control and test experiments were prepared in both deionized water 

(H2O) and deuterium oxide (D2O) as described in 2.3.2. D-glucose (14.5 mM) was 

added to the test BGE. Samples were prepared as described in 2.3.2. The sodium 

hydroxide was prepared as described in 2.3.1.  A 50 ml methanol/water (80/20) 

solution containing 0.1% trifluoroacetic acid  (TFA) was prepared by placing 39.96 

ml methanol,  9.99 ml deionized water, and 50 μl TFA in a 50 ml volumetric flask. 
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The BGE employed for mass spectral analysis, was prepared as follows: 0.25 ml of 

BGE (H2O) was placed into a microcentrifuge tube and diluted with methanol/water 

solution to a final volume of 1.0 ml. 

Instrumental set-up 

Capillary Electrophoresis 

 The CE instrumental set-up was as described in 2.4.2.  

NMR  

 The instrument was set at the following: 1 H resonance frequency = 600 MHz; 

CPMG spin echo pulse sequence (Echo Time, TE = 30 msec). Measurements were 

taken at 25°C.  

Mass Spectrometry 

 The instrument settings were as follows:  ESI Ionization; Positive Polarity; 

Drying Gas Temperature 250°C; sample rate 2 GS/ s; delay time, 25 μs; Capillary, 4 

kV; End Plate, 3.5 kV; Cylinder, 2 kV; Digitizer Summing, 500 spectra. 

Separation method and data acquisition  

Capillary Electrophoresis 

Data were acquired as described in 2.4.3.  

NMR 

 Data were acquired over 8 hours using: 1.0 s Relax. Delay; pulse of 34.6 degrees; 

Acq. Time 4.0 sec; Width 8,000 Hz.   

Mass spectrometry 

 Mass spectra were recorded using 0.5 ml of BGE (H2O) injected from a 0.5 ml 

Gastight syringe (cat. No. 1750, Hamilton Co., Reno, NV, USA) using a flow rate of 
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100 μl/hr.   Mass spectrum was acquired by setting the Deconvoluted  parameters tab 

in the DataAnalysis 3.2 software (Bruker Daltonics, Billerica, MA, USA) to the 

following: Proteins/Large Molecules; Adduct ions (+H, -H); low mass, 1000 (m/z) 

and high mass, 100,000 (m/z); abundance cutoff, 10%; maximum charge, +75.   

Data processing 

Capillary Electrophoresis 

 Data were processed as described in 2.3.2. with the following modifications: The 

difference in selectivity as a function of glycation extent was measured.  

 NMR 

 Data were processed by the following parameters: Line broadening 0.3 Hz; FT 

size 65536. 

Mass Spectrometry 

 The number of glucose molecules was determined by the following steps: 1) A 

detailed deconvoluted mass was measured for unmodified BSA. Results were 

exported to Excel (Microsoft, Redmond, WA, USA) and externally calibrated by 

dividing the calculated mass by the literature reported mass for BSA (66.4 kD).  The 

quotient was used as the calibration constant. 2) The corrected deconvoluted masses 

for weeks 1 -3 were determined by dividing the experimentally determined masses for 

each by the calibration constant. 3) The mass difference between control BSA and 

that for weeks 1-3 was measured. An observed change in BSA mass was used as a 

marker for extent of glycation. 
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Chapter 3  

Results and Discussion 

3.1. Determine relevant parameters for improving enantioselection     
   and migration time reproducibility 
 
 Early work focused on elucidating the enantiomeric selectivity of serum albumins 

for D- and L- tryptophan, found that the L-enantiomer of tryptophan binds to site II 

with an affinity approximately 100 times higher than that of the D-enantiomer 

(McMenamy & Oncley, 1958).  Investigations by Yang and Hage found that the D-

enantiomer interacts with site I indirectly, but has no interaction with site II (Yang & 

Hage, 1993).  The pH and ionic strength of the BGE used in this study is similar to 

that approximated under physiological conditions. The native state of the protein and 

its molecular function are preserved (Yang & Hage, 1993). Under these conditions 

optimum binding of D- and L-tryptophan to bovine serum albumin was found to 

occur (Gilpin et al., 1991). Therefore it is of importance to determine the relevant 

experimental parameters that are required for optimum enantioselectivity prior to 

carrying out further protein-drug binding investigations. 

 There is little information regarding the exact experimental conditions that are 

most relevant for improving chiral recognition by serum proteins in CE applications.  

Several factors affect the precision of measurement such as buffer viscosity, sample 
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plug length, and applied voltage.  The major challenge is the change in EOF over 

time caused by protein interactions with the inner surface of the capillary.   A 

protein’s tendency to adsorb is determined by its primary structure, structural 

stability, charge, and size (Nakanishi et al., 2001).   Protein adsorption to the capillary 

inner surface can be reduced by developing rinsing strategies. Adverse effects from 

conductivity can be minimized by using multivalent ions to prepare BGE. Phosphate 

buffers, similar to that employed in this study, have been reported to decelerate 

adsorption by stabilizing the native structure of the protein (Kurrat et al., 1997). The 

aim of this section was to determine the relevant parameters that improve 

enantioselection of D- and L-tryptophan by BSA.   

3.1.1. Ohm’s Law Plot 

 Band broadening at higher voltages is caused by Joule heating.  This heat is 

generated by collisions that occur between solute ions and electrolyte ions.  The 

extent of heating is based on the conductivity of the BGE and the voltage applied.  

Higher ionic strength buffers usually are employed to minimize ion-exchange effects 

between charged solute and ionized silanol groups on the capillary wall.  High ionic 

strength buffers can yield increased heating at constant voltage. The amount of heat 

generated using high currents may be beyond the thermostat capabilities of the CE 

instrument employed. 
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Figure 10: Ohm’s law plots showing the optimum voltage for sodium phosphate 

buffers, pH 7.4 (25- 100 mM). ACE conditions: capillary temperature 25°C. 
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 Although capillaries are cooled on the outer surface, a significant temperature 

difference between the BGE in the center and the inner capillary wall can occur 

leading to nonuniform temperature gradients within the capillary as well as localized 

changes in BGE viscosity.  The generation of heat can evaporate BGE solution.  

Therefore heat dissipation should be efficient to avoid these adverse effects.  Thermal 

effects can be circumvented by adjusting the ionic strength of the BGE.   

 In order to determine the maximum voltage that could be applied without 

exceeding the heat removal capacity of sodium phosphate buffers ranging in 

concentration from 25 – 100 mM, an Ohm’s law plot was constructed, as illustrated in 

Figure 10. Each set of data was fitted by linear regression as represented by the 

dashed lines.  The regression coefficients for the 25 mM, 50 mM, 75 mM, and 100 

mM buffers were 0.996, 0.987, 0.970, and 0.951, respectively.  Linearity in the plot 

was an indication that the generated heat was being adequately dissipated and 

capillary temperature was maintained. Deviation from linearity was an indication that 

the thermostatting capability of the system had been exceeded.   Linearity was lost for 

both the 75 mM and 100 mM buffers at lower applied voltages, in comparison to 

those observed for the 25 mM and 50 mM concentrations. In contrast, the 25 mM 

buffer exhibited a linear relationship between current and the applied voltage across 

the entire range of voltages studied (0- 30 kV), indicating its ability to maintain 

capillary temperature at the maximum applied voltage allowed by the instrument.   

Subsequently, the 25 mM buffer system was employed for the remaining studies. 
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3.1.2. Applied voltage effects on peak shape  

 Human serum albumin adsorption to capillary walls decreases in the presence of 

an electric field (Yang & Hage, 1994).   Mechanisms involved in separating D- and 

L- tryptophan depend upon the concentration of protein that is free floating in BGE.  

Therefore application of a separation voltage, which minimizes adsorption of protein 

to the inner walls of the capillary, will result in improved enantioselection, while 

those that do not will cause a loss in enantioselection.   

 This idea was studied by initially applying separation voltages of 10- 30 kV. 

Enantiomer peaks were not observed at applied voltages below 10 kV. Applied 

voltages >15 kV produced currents that were above 100 μA. To avoid diffusion 

caused by joule heating associated with high currents, voltages above 15 kV were not 

used in all later experiments. Electropharograms for D,L-tryptophan at separation 

voltages of 10 kV and 15 kV are illustrated in Figure 11 and Figure 12, respectively. 

Peak shape distortion was evident at voltages below 15 kV. By using a separation 

voltage of 15 kV, peak shape distortion was no longer observed and enantioselectivity 

was improved. These results indicated that the stability of absorbed BSA was highest 

in the presence of lower applied voltage.  This is the same type of behavior seen in 

earlier studies (Yang & Hage, 1994). 
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Figure 11:  Effect of applied voltage on D- and L- tryptophan separation as 

represented by peak distortion.  BSA concentration in BGE was kept at 30 μM and 

D,L-tryptophan amount used was 0.54 mg/ml. ACE conditions: 25°C, 20 mbar 

injection for 5s, detection at 280 nm,10 kV separation voltage. 
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Figure 12:  Effect of applied voltage on D- and L-tryptophan separation as 

represented by peak distortion.  BSA concentration in BGE was kept at 30 μM and 

D,L-tryptophan amount used was 0.54 mg/ml. ACE conditions: 25°C, 20 mbar 

injection for 5s, detection at 280 nm, 15 kV separation voltage. 
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3.1.3. Sodium hydroxide and water rinse effects on migration time  

 At physiological pH, both the inner capillary wall and BSA are negatively 

charged.  Protein-wall interactions primarily are due to H-bonding that occurs 

between the carbonyl and amino groups on the protein and the silanol groups on the 

capillary wall (van der Veen et al., 2004; Gray, 2004).   In albumin the average 

density of amino groups that possess H-binding capability is 0.25/nm2 (Kurrat et.al, 

1997).  Protein adsorption modifies the surface charge of the capillary, contributing to 

changes in the mobility of the EOF.  This allows for the EOF migration time to serve 

as a marker for protein adsorption (Graf et al., 2005).  Rinsing the capillary with 

additives that cleave H-bonds promotes protein desorption (Docoslis et al., 2001).   

 Capillary surface regeneration was investigated by rinsing the capillary with  

0.1 M NaOH and deionized water at variable times, followed by BGE.    

It was found that NaOH rinsing for 3 min at 920 mbar, followed by deionized water 

for 3 min at 920 mbar was most effective at controlling shifts in EOF mobility, RSD 

0.19%, (n = 4) (Figure 13). The repeatability drastically diminished as the rinse time 

increased.   

 Rinsing the capillary with excessive amounts of sodium hydroxide has been 

reported to permit successive saturation of available adsorption sites with protein 

residues (Ermakov et al., 1995), permitting protein clusters to pile up within 

consecutive runs.  Decrease in the EOF migration time repeatability was substantial 

for the 9 min rinsing protocol, RSD 12.4%, (n = 4). There was a 3 minute difference 

in the EOF migration time between the first and second injections.  The rinse time 

was increased to 12 minutes and there was an improvement in repeatability,  
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RSD 2.4% ( n=4), but repeatability remained lower than that for the 3 min rinsing 

protocol.  A 3 min rinsing protocol was used in subsequent studies.  

 The NaOH and water regime was further investigated by rinsing for 3 min with 

and without 0.1M NaOH and deionized water between consecutive injections.  Each 

run included a rinse with BGE only.  It was found that the RSD improved from 24.7% 

without NaOH- water rinse to 1.84% ( n = 4) with NaOH-water rinse, indicating an 

improvement in precision due to the removal of protein from the capillary wall. 

Omission of NaOH-water rinsing, led to inverted peaks in the electropharogram 

indicating the protein had a higher absorbance at the detection window than D, L-

tryptophan (Figure 14).  These results indicated that the implementation of a 3 min 

rinsing protocol was best for stabilizing the EOF of successive separations. 



 64

 

 

 

 

 

 

 

 

 

 

Figure 13: The effect of sodium hydroxide/water rinse time on the repeatability of 

acetone (neutral marker) migration time in the presence of 30 μM BSA. ACE 

conditions: 25°C, 20 mbar injection for 5s, detection at 280 nm, 15 kV separation 

voltage. 
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Figure 14: D,L-tryptophan  (0.54 mg/ml). ACE conditions: 25 mM sodium 

phosphate, pH 7.4, 30 µM  BSA,  25°C, 20 mbar injection for 5s, 15 kV, detection at 

280 nm. 0 min NaOH-water rinse between injections. Electropharogram obtained 

directly from ChemStation software (Agilent, Waldbronn, Germany) without further 

data processing.  
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3.1.4. Evaluating selectivity as a function of BGE rinse time 

 To examine how the inherent tendency of proteins to absorb onto the capillary 

wall affects enantioselectivity of tryptophan by BSA, the capillary was rinsed with 

BGE for 6 – 32 minutes using 920 mbar pressure. Representative electropharograms 

are shown in Figures 15 – 18, for 8, 16, 24, and 32 minute rinse protocols, 

respectively.  Selectivity, α, was calculated as a function of BGE rinse time for four 

separate injections.  Subsequently, a plot of the average selectivity versus BGE rinse 

time was made (Figure 19) and fitted using a fourth-order polynomial, which yielded 

a regression coefficient of 1.  The first-derivative curve of the selectivity with respect 

to BGE rinse time was plotted and appears in Figure 20.   

 The average selectivity (n = 4) for the 6 min, 8 min, 16 min, 24 min, and 32 min 

rinse times were 2100.1  , 2102.1  ,  3103.8  , 3104.1  , and 0, respectively. 

Based upon the amount of protein adsorbed, a non-uniform distribution of the ζ-

potential along the capillary occurred (Ren & Li, 2001).  Differences in the ζ-

potential led to changes in the EOF mobility thereby diminishing selectivity.  To 

determine if the EOF mobility increased between rinsing protocols, the mobility of 

acetone (neutral marker) was measured at each rinse time. Increase in the EOF 

mobility was observed (Figure 21). These results were consistent with changes in the 

charge density on the surface of the capillary. Dissolved ions in the diffuse layer 

moved at a different velocity between each rinsing protocol (refer to Figure 3). 
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Figure 15: Electropharogram of D, L- tryptophan (0.54 mg/ml) separation after 

rinsing the capillary for 8 min with BGE prior to applying the voltage. ACE 

conditions: 25 mM sodium phosphate, pH 7.4, 30 µM  BSA,  25°C, 20 mbar injection 

for 5s, 15 kV, detection at 280 nm. 
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Figure 16: Electropharogram of D, L- tryptophan (0.54 mg/ml) separation after 

rinsing the capillary for 16 min with BGE prior to applying the voltage. ACE 

conditions: 25 mM sodium phosphate, pH 7.4, 30 µM  BSA,  25°C, 20 mbar injection 

for 5s, 15 kV, detection at 280 nm. 
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Figure 17: Electropharogram of D, L- tryptophan (0.54mg/ml) after rinsing the 

capillary for 24 min with BGE prior to applying the voltage. ACE conditions: 25 mM 

sodium phosphate, pH 7.4, 30 µM  BSA,  25°C, 20 mbar injection for 5s, 15 kV, 

detection at 280 nm. 
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Figure 18:  Electropharogram of D, L- tryptophan (0.54mg/ml) after rinsing the 

capillary for 32 min with BGE prior to applying the voltage. ACE conditions: 25 mM 

sodium phosphate, pH 7.4, 30 µM  BSA,  25°C, 20 mbar injection for 5s, 15 kV, 

detection at 280 nm. 
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Figure 19: Selectivity versus BGE rinse time. ACE conditions: 25 mM sodium 

phosphate, pH 7.4, 30 µM BSA,  25°C, 20 mbar injection for 5s, 15 kV, detection at 

280 nm. Equation of the 4th order polynomial fitting (solid line): y = -1.6044E-07x4 + 

1.5587E-05x3 - 5.1466E-04x2 + 6.1121E-03x - 1.1095E-02, R2 = 1.
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Figure 20: First derivative of selectivity as a function of BGE rinse time. 
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Figure 21:  Electroosmotic flow rate as a function of BGE rinse time, measured by 

the mobility of acetone. 
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 Resolution diminished in cases where the EOF was too fast, due to the solute’s 

inability to stack into uniformed zones within the capillary (Towns & Regnier, 1992; 

Tran et al., 2005).  Increased concentrations of protein in the capillary promote 

environments for protein aggregation, thus leading to dispersion within the sample 

plug (Malmsten, 1998; Ding et al., 2005; Herr et al., 2000).  The effects of rinsing the 

capillary with the BGE for a duration less than or equal to 8 minutes were negligible 

on selectivity.  Subsequently, remaining experiments were carried out rinsing the 

capillary for 8 minutes. 

3.1.5. Evaluating selectivity as a function of wait time  

 Prior to adsorption, proteins approach solvent regions directly adjacent to the 

inner surface of the capillary (Towns & Regnier, 1992). Based upon theory, the 

selectivity is expected to diminish with increased BGE rinsing time.  However, the 8 

min rinsing protocol gave the maximum selectivity not the 6 min rinsing protocol. To 

gather an understanding of this process and determine the effects of protein diffusion 

on selectivity, following the 8 minute capillary flush with BGE, a wait step was 

inserted into the rinsing protocol.  During this wait step, the BGE was left at a 

standstill in the capillary for 10- 60 minutes prior to the application of voltage. 

Representative electropharograms are shown in Figures 22– 24, for 10, 40, and 60 

minute wait periods, respectively.   

 Selectivity was calculated as a function of wait time for four separate injections.  

Subsequently, a plot of the average selectivity versus wait time was made (Figure 25) 

and fitted using a fourth-order polynomial, which yielded a regression coefficient of 

1.  The first-derivative curve of the selectivity with respect to wait time was plotted 
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and appears in Figure 26.  The average selectivity (n = 4) for the 10 min, 20 min, 30 

min, 40 min, and 60 min wait times were 2108.2  , 2104.2  , 2109.1  , 2101.1  , 

and 2100.1  , respectively.  

 It is assumed that upon initial filling of the capillary, the concentration of charged 

ions in the BGE (i.e. protein) is much higher in the center of the capillary, than near 

the wall. During the wait step, charged ions in the BGE diffuse from the region of 

high concentration in the center of the capillary, to regions of lower concentration 

towards the wall.  Since the chiral recognition of tryptophan decreases as the 

concentration of serum protein at the wall increases, enantioselection changes can 

serve as a marker for protein diffusion (Yang & Hage, 1994).  

 A pronounced decrease in selectivity was observed as a function of wait time.  

The effects of protein diffusing away from the central portion of the capillary further 

supported that observed with BGE rinse time. Differences in the ζ-potential along the 

capillary that occurred as the concentration of protein at the wall increased led to 

changes in the EOF mobility that diminished selectivity.   

 The fore mentioned results indicated that protein diffusion should be limited in 

the capillary prior to separation. It was expected that wait times below 10 minutes 

would result in higher selectivity. The 2103.2  (n = 4) average selectivity measured 

without a wait step was 16% lower than the 10 min wait step selectivity. This 

suggested that controlled protein diffusion could improve chiral recognition.  A 10 

minute wait step was incorporated into subsequent rinsing protocols.  
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Figure 22: 10 minute wait. D,L-tryptophan (0.54 mg/ml). ACE conditions: 25 mM 

sodium phosphate, pH 7.4, 30 µM BSA, 25°C, 20 mbar injection for 5s, 15 kV, 

detection at 280 nm. The capillary was rinsed for 8 minutes with background 

electrolyte solution prior to wait period. 
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Figure 23: 40 minute wait. D,L-tryptophan (0.54 mg/ml). ACE conditions: 25 mM 

sodium phosphate, pH 7.4, 30 µM  BSA,  25°C, 20 mbar injection for 5s, 15 kV, 

detection at 280 nm. The capillary was rinsed for 8 minutes with background 

electrolyte solution prior to wait period. 



 88

 

 

 

Figure 23. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 t-teof 
  (min)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

A
bs

or
ba

nc
e 

(A
u)

D

L



 89

 

 

 

 

 

 

 

 

 

 

Figure 24: 60 minute wait. D,L- tryptophan (0.54 mg/ml). ACE conditions: 25 mM 

sodium phosphate, pH 7.4, 30 µM  BSA,  25°C, 20 mbar injection for 5s, 15 kV, 

detection at 280 nm. The capillary was rinsed for 8 minutes with background 

electrolyte solution prior to wait period. 
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Figure 25: Selectivity versus wait time. ACE conditions: 25 mM sodium phosphate, 

pH 7.4, 30 µM  BSA,  25°C, 20 mbar injection for 5s, 15 kV, detection at 280 nm. 

The capillary was rinsed for 8 minutes with background electrolyte solution prior to 

each wait period. The equation of the 4th order polynomial fitting (solid line):  

y = 1.3287E-08x4 - 1.1936E-06x3 + 2.6123E-05x2 - 4.7843E-04x + 3.0905E-02,  

R2 = 1. 
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Figure 25. 
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Figure 26: First derivative of selectivity as a function of wait time. 
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Figure 26. 
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3.1.6. Evaluating selectivity as a function of sample buffer ionic strength 

 The voltage along the capillary is assumed to be constant, when it is filled only 

with BGE.  When solutes of different mobilities are drawn into the capillary, the 

solutes will separate into zones, according to their relative mobilities (Equation 5).  

Each of these solute zones is surrounded by a zone of BGE, and the voltage along the 

capillary is no longer constant.  According to circuit theory, where  

                                   V = IR                                                                          (16) 

and V is the applied voltage, I is the current, and R is the resistance, conductivity 

differences between zones will determine the magnitude of voltage experienced in 

that zone. The voltage will be low in zones of high mobility solute and high in zones 

of low mobility solute.  The local field strength described by: 

 

                                    V/L                                                                              (17) 

where V is the applied voltage and L is the total length of the capillary, will therefore 

be different in the solute zone based upon the mobility.  Changes in the local field 

strength with respect to that of the surrounding BGE can lead to diffusion through 

electromigration dispersion (Swedberg, 1990).  The effects of electrodispersion can 

be minimized by decreasing the mobility difference between that of the solute and the 

BGE ions.  This can be carried out by adjusting the concentration of the BGE, of the 

sample buffer, or both. Increasing the concentration of the BGE can lead to band 

broadening due to Joule heating if the conductivity of the BGE is high. For this 

reason, only the effect of the sample buffer concentration was examined in this 

section. 
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 Tryptophan samples were prepared in sodium phosphate buffer, pH 7.4, at a 

concentration of 5 – 25 mM.   The effects of electrodispersion were assessed by 

measuring the selectivity as a function of sample buffer ionic strength for four 

separate injections.  Representative electropharograms are shown in Figures 27-30, 

for the 5 mM, 8 mM, 15 mM, and 25 mM sample buffer concentrations, respectively.  

Subsequently, a plot of the average selectivity versus sample buffer ionic strength 

was made (Figure 31) and fitted using a third-order polynomial, which yielded a 

regression coefficient of 1.  The first-derivative curve of the selectivity with respect to 

sample buffer ionic strength was plotted and appears in Figure 32. The average 

selectivity (n = 4) for the 5 mM, 8 mM, 15 mM, and 25 mM concentrations were 

31095.9  , 21003.1  , 21003.1  , and 31074.8  , respectively. 

 The slope of the first derivative plot indicated that the enantioselection decreased 

as the sample buffer concentration increased, suggesting the difference in the 

mobilities of tryptophan and the BGE increased with buffer concentration. The 

maximum average selectivity was the same for samples prepared in 8 mM and 15 

mM sodium phosphate. Although these values were the same, the RSD between 

consecutive injections was 0.03 for the samples prepared in the 8 mM buffer and 0.24 

for the samples prepared in the 15 mM buffer. This indicated the variability in 

electrophoretic mobility was higher between consecutive injections for samples 

prepared in the 15 mM buffer. This also suggested higher variability between the 

sample plug mobility and the BGE mobility when samples were prepared in 15 mM 

sodium phosphate.  Therefore the 15 mM buffer was not employed in subsequent 

studies. 
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Figure 27: D,L-tryptophan (0.54mg/ml) prepared in 5 mM sodium phosphate, pH 

7.4.  ACE conditions: 25 mM sodium phosphate, pH 7.4, 30 µM BSA, 25°C, 20 mbar 

injection for 5s, 15 kV, detection at 280 nm. 
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Figure 27. 
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Figure 28: D,L-tryptophan (0.54mg/ml) prepared in 8 mM sodium phosphate, pH 

7.4.  ACE conditions: 25 mM sodium phosphate, pH 7.4, 30 µM BSA, 25°C, 20 mbar 

injection for 5s, 15 kV, detection at 280 nm. 
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Figure 28. 
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Figure 29: D, L-tryptophan (0.54mg/ml) prepared in 15 mM sodium phosphate, pH 

7.4.  ACE conditions: 25 mM sodium phosphate, pH 7.4, 30 µM BSA, 25°C, 20 mbar 

injection for 5s, 15 kV, detection at 280 nm. 
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Figure 29. 
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Figure 30: D,L-tryptophan (0.54mg/ml) prepared in 25 mM sodium phosphate, pH 

7.4.  ACE conditions: 25 mM sodium phosphate, pH 7.4, 30 µM BSA, 25°C, 20 mbar 

injection for 5s, 15 kV, detection at 280 nm. 
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Figure 30. 
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Figure 31: Selectivity versus sample buffer concentration. ACE conditions: 25 mM 

sodium phosphate, pH 7.4, 30 µM BSA, 25°C, 20 mbar injection for 5s, 15 kV, 

detection at 280 nm. The equation of the 3rd order polynomial fitting (solid line):   

y = 9.7225E-08x3 - 1.4028E-05x2 + 2.8471E-04x + 8.8652E-03, R2 = 1. 
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Figure 31. 
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Figure 32: First derivative of selectivity as a function of sample buffer concentration 

(mM). 



 108

 

 

Figure 32. 
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 Electrodispersion caused by mismatched solute and BGE mobility will lead to 

detected peak tailing or fronting as a result of the solute moving slower or faster than 

the bulk liquid, respectively.  The shape of the detected peaks at both the 5 mM and 8 

mM sample concentrations presented peak tailing, which suggested that the 

tryptophan zone was moving slower than the BGE; however the extent of tailing at 8 

mM was less than that observed at 5 mM.  This indicated that the conductivity in the 

sample zone increased with ionic strength, and caused the tryptophan ions to migrate 

faster in the capillary.   

 The effect of electrodispersion on enantioselection was negligible when the 

concentration of the sample buffer was no more than three orders of magnitude lower 

than the BGE 25 mM concentration.  This was in agreement with previously reported 

studies (Bruin et al., 1989). As a result, subsequent studies were carried out using 

samples prepared in 8 mM sodium phosphate, pH 7.4. 
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3.2. Capillary electrophoresis applications for studying 
       competitive binding 
 
3.2.1. Determining sample concentration 

 In CE both the protein and the protein-drug complex are under a voltage current 

that may change their shapes, leading to the generation of new binding sites or 

modification of existing binding sites. As a result, the optimized conditions from 

section 3.1 were retested on a new capillary and a BSA concentration of 35 μM in the 

BGE improved baseline separation. Therefore it was used in subsequent experiments. 

  In studies using CE it is assumed that the solute’s mobility is independent of the 

solute’s initial sample concentration (Bose et al., 1997; Yang et al., 1996; El-Hady, et 

al., 2010).  As shown in Figure 33 for tryptophan (Tryp) and 5- fluoro-tryptophan, the 

mobility shift of the L-enantiomer initially increases as the concentration of drug is 

increased. A noticeable change in mobility occurred at concentrations greater than 0.9 

mg/ml. This suggests that tryptophan concentrations within the range of 0.1 mg/ml 

and 0.9 mg/ml can be used for binding studies.  As a result of the D-enantiomer not 

forming a drug-protein complex with BSA, its mobility shift for both drug molecules 

was essentially unchanged. 
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Figure 33:  Mobility shifts of D,L-tryptophan and 5-fluoro-D,L-tryptophan as a 

function of  tryptophan and 5-fluoro-tryptophan concentrations, respectively. For both 

(a) D ( ), L ( )-tryptophan and (b) 5-fluoro-D( ), L ( )-tryptophan the 

concentration of BSA in the background electrolyte was held constant at 35 µM and 

the sample concentrations employed were 0.1, 0.2, 0.4, 0.9, 1.3, 2.2, and 2.6 (mg/ml). 

ACE conditions: 15 kV, 25°C, injection at 20 mbar for 5 s, and detection at 280 nm. 
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Figure 33. 
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 These observed results can be elucidated by assuming a 1:1 drug-protein complex 

model. In isotropic conditions enantiomers exhibit the same behavior. The key factor 

required for enantiomeric separation is the presence of a protein chiral selector in the 

BGE. Representative electropharograms of D,L-tryptophan and 5-fluoro-D,L-

tryptophan in BGE void of BSA are shown in Figures 34 and 35, respectively. Under 

conditions in which enantiomer-protein interaction is blocked separation will not 

occur.  As the concentration of drug injected into the capillary is increased, the 

number of drug saturated protein molecules also increases occupying all available 

binding sites. Concentrations above optimum range result in non-linear isotherm 

conditions that adversely affect separation efficiency. 

 Separations under nonlinear isotherm condition will produce changes in the 

mobility shift, leading to diminished baseline resolution, and distortion of the binding 

enantiomer peak shape as represented in Figure 36 for D,L-tryptophan.  The D-

enantiomer peak maintains its Gaussian shape, while the L-enantiomer peak tails. To 

maintain continuity between drug samples and utilize drug concentrations that would 

not adversely affect the precision of CE measurements, 0.22 mg/ml (1 mM) was 

employed for subsequent studies. The final molar ratio of tryptophan:BSA in the 

capillary for subsequent studies was 1:4.   
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Figure 34:  D,L-tryptophan, 0.22 mg/ml (1mM),  run in 25 mM sodium phosphate,  

pH 7.4, void of BSA. ACE conditions: 15 kV, 25°C, injection at 20 mbar for 5 s, and 

detection at 280 nm. 



 115

 

 

Figure 34. 
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Figure 35:  5-fluoro-D,L-tryptophan, 0.22 mg/ml (1mM), run in 25 mM sodium 

phosphate, pH 7.4, void of BSA. ACE conditions: 15 kV, 25°C, injection at 20 mbar 

for 5 s, and detection at 280 nm. 
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Figure 35. 
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Figure 36:  Changes in peak shape due to nonlinear isotherm conditions. BSA 

concentration was held to 35 μM. D,L-tryptophan sample concentrations  used were 

0.1 mg/ml, 0.4 mg/ml, and 0.9 mg/ml. ACE conditions: 15 kV, 25°C, injection at 20 

mbar for 5 s, and detection at 280 nm. 
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3.2.2. Separation selectivity in the presence of ibuprofen 

 
 Differences in enantiomer affinity for a given phase are measured by 

selectivity 






1

2
k

k . The variables k2 and k1 are the retention factors for enantiomer 2 

and enantiomer 1, respectively. The separation selectivity can be well characterized 

with the relative mobility difference between enantiomers by Eq.11 (Chankvetadze, 

1997; Blaschke & Chankvetadze, 2003). 

 In initial experiments selectivity was measured in BGE void ibuprofen. As 

reported in literature, the selectivity of BSA for 5-fluoro-D,L-tryptophan was 

approximately two times greater than that for D,L-tryptophan, 2104.3   (n = 4) 

and 2106.1  (n = 4), respectively (Tittlebach & Gilpin, 1995).  The higher selectivity 

of 5-fluoro-D,L-tryptophan can be ascribed to differences in hydrophobicity between 

derivatives. It was also reported that 5-fluoro-tryptophan has two chemically distinct 

binding sites on serum albumin (Gerig & Klinkenborg, 1980).  The displacement of 

tryptophan was studied by determining the selectivity value for tryptophan derivatives 

in the presence of ibuprofen in the BGE. Ibuprofen was added to the BGE at 

concentrations of 5.5 μM, 22.1 μM , 33.2 μM, 44.2 μM , and 55.3 μM . These 

concentrations resulted in displacer:BSA molar ratios of 1:6, 1:1.6, 1:1, 1.3:1, and 

1.6:1, respectively.  The selectivity decreased initially for both derivatives, until the 

displacer:BSA molar ratio reached 1:1, Figure 37. 
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Figure 37: Separation selectivity of BSA for 5-fluoro-D,L-tryptophan ( ) and  

D,L-tryptophan ( ) as a function of ibuprofen [Ibu] concentration in the background 

electrolyte. Serum protein concentration was held at 35 μM. The concentration of 

ibuprofen added to the background electrolyte was 0, 5.5, 22.1, 33.2, 44.2, and 55.3 

μM, respectively. ACE conditions: 15 kV, 25°C, injection at 20 mbar for 5 s, and 

detection at 280 nm. The standard error in the selectivity is shown for each individual 

concentration of ibuprofen. 



 122

 

 

 

Figure 37. 
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 The change in selectivity, defined as the difference between the highest and 

lowest calculated selectivity value, for D,L-tryptophan was 3102.8   and 5-fluoro-

D,L-tryptophan 3104.6  . At molar ratios in which BSA was in excess, ibuprofen 

appeared to bind mainly to its primary sites on the protein. Diminished selectivity 

under these conditions showed that the presence of ibuprofen blocked BSA from 

binding L-tryptophan. Representative electropharograms are shown in Figures 38 and 

39 for D,L-tryptophan and 5-fluoro-D,L-tryptophan both with 22 μM ibuprofen in the 

BGE.  Baseline separation was still observed for 5-fluoro-D,L-tryptophan. This 

suggested that the affinity of 5-fluoro-D,L-tryptophan binding to BSA was higher 

than that for D,L-tryptophan. The binding constants were measured for each analog. 
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Figure 38:  Electropharogram of  D,L-tryptophan (0.22 mg/ml) at a ibuprofen:BSA 

molar ratio of 1.6:1 (22 μM ibuprofen). The serum protein concentration was held at 

35 μM. ACE conditions: 15 kV, 25°C, injection at 20 mbar for 5 s, and detection at 

280 nm. 
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Figure 38. 
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Figure 39:  Electropharogram of 5-fluoro-D,L-tryptophan at a ibuprofen:BSA molar 

ratio of 1.6:1 (22 μM ibuprofen). The serum protein concentration was held at 35 μM. 

ACE conditions: 15 kV, 25°C, injection at 20 mbar for 5 s, and detection at 280 nm. 
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3.2.3. Measuring the binding constant 

 These observed differences in binding between analogs were elucidated by 

assuming a 1:1 drug-protein complex model, 

                                             E + P 
aK

  EP                                                       (17)                               

                                             
  PE

EPK a                                                     (18)                                   

where aK , [E], [P], and [EP], denote the association constant, and the molar 

concentrations of drug, protein, and drug-protein complex, respectively.  

In this model, the effective mobility of the drug, eff , is described as                     

 
   

 
    





 












 







 EPEEPEPEEeff EPE
EP

EPE
E       (19)                                  

The mobility of free ( E ) and bound ( EP ) drug is weighted by their molar fractions 

)( .   The capacity factor, referred to as the retention factor in some cases, describes 

the ratio of bound to free drug.  The retention factor, k, is mathematically defined by 

(Ostergaard, 2007):  

                            ]P[K]E[
]EP[k a

0E

EEP 
                            (20)                                

where μEP, μE, and μ0, are the mobilities of the bound drug, the free drug, and the drug 

without protein in the BGE.  From Equation 20, the binding constant can be 

experimentally determined.  In this study, the mobilities of the L-enantiomer and the 

D-enantiomer were used to measure μEP and μE, respectively. The retention factors for 

5-fluoro-D,L-tryptophan and D,L-tryptophan were measured in a BSA concentration 

range of 10 – 35 μM. 
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Figure 40: Binding constant estimates for 5-fluoro-D,L-tryptophan and D,L-

tryptophan to BSA (10- 35 μM). (a) Retention factor versus BSA concentration 

binding plot for 5-fluoro-tryptophan. Equation of the linear fitting: y = 523.14x + 

.0013, R2 = 0.95; (b) Retention factor versus BSA concentration binding plot for 

tryptophan. Equation of the linear fitting: y = 198.84x + 0.0019, R2 = 0.93. 
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 The binding constant of 5-fluoro-tryptophan with BSA was 523.14 μM-1  with a 

correlation coefficient of 0.95. The binding constant of tryptophan with BSA was 

198.84 μM-1 with a correlation coefficient of 0.93. Plots are shown in Figure 40. The 

results demonstrated that 5-fluoro-tryptophan had a larger affinity to serum albumin 

than that of tryptophan. Thus the difference in selectivity of BSA for 5-fluoro-D,L- 

tryptophan and D,L-tryptophan in the presence of ibuprofen was due to the higher 

binding affinity of the fluoro-analog.  

 The binding constant determined for L-tryptophan from the CE method agreed 

with the value of a previous NMR study under similar experimental conditions 

reported to be 230 ± 90 μM-1 (Fielding et al., 2005). Differences in buffer ionic 

strength and temperature fluctuation, may have contributed to the wide range of 

values reported across laboratories for tryptophan-BSA binding studies. 

 
3.2.4. Measuring selectivity by preformed displacer-protein binary complexes  
 
 With the protein free floating in solution, drug-protein interaction is variable. 

Such conditions may require higher levels of displacer before effects are observed. 

Separations with preformed displacer-protein complexes provide a direct approach to 

characterize drug-drug displacement (Li et al., 2011). In a separate experiment using 

D,L-tryptophan because of its marked change in selectivity, ibuprofen was 

equilibrated with BSA at a displacer:BSA molar ratio of  1:7 for two hours and 4 .5 

hours before measurements were taken to establish preformed ibuprofen-BSA binary 

complexes in the BGE.  
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3. 3. Capillary electrophoresis applications for studying binding  
          of glycated serum proteins. 
 
3.3.1. Characterization of extent of glycation 

Capillary Electrophoresis 

 Capillary electrophoretic analysis of intact BSA in sodium phosphate buffer, pH 

7.4 offered an incomplete separation of modified proteins. The incomplete separation 

could have been caused by proteins sticking to the capillary wall. At physiological 

pH, protein absorption to the capillary may be pronounced (Graf et al., 2005). 

Modification of BSA by glucose rearranged the separation profile, such that the 

number of peaks increased over time (Figure 41). The presence of these peaks in the 

electropharogram suggested there were a variety of new products forming during the 

modification process. The number of new products formed increased with incubation 

time.   

Mass Spectrometry 

 To test the applicability of the capillary electrophoretic data, the mass was 

evaluated for unmodified and modified BSA.   The molecular weight of the 

unmodified BSA was found to be approximately 66, 438 Da. Consistent with 

previous reports, the masses of modified BSA derived from incubation with glucose 

were found to increase with increasing incubation time (Schmitt, et al., 2005). 
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Figure 41: CE/UV peak profiles of unmodified and modified BSA in 25 mM sodium 

phosphate at pH 7.4.  Unmodified BSA (A), BSA modified by glucose for 1 week 

(B), BSA modified by glucose for 2 weeks (C), BSA modified by glucose for 3 weeks 

(D).  All incubations were carried out at 25°C. ACE conditions: 25°C, 20 mbar 

injection for 5s, 15 kV, detection at 280 nm.  
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 The highest mass of BSA was measured for the 3 week glucose incubation.  The 

data from the electrophoretic characterization earlier were supported by the mass 

spectrometric results.  The increase in molecular weight induced by glycation 

corresponds to the attachment of glucose units to the amino residues of the protein 

(Rondeau & Bourdon, 2011).   The number of glucose units bound to the protein was 

deduced from the mass difference between the unmodified and modified protein.  The 

maximum number of glucose units added after one, two and three weeks of 

incubation were 9, 70, and 76, respectively.  The masses of all protein samples for 

weeks 1 – 3, along with the approximate number of glucose molecules added to each 

newly glycated BSA are given in Tables I- III. 

Nuclear Magnetic Resonance 

 The 1H-NMR spectrum of unmodified BSA showed no peaks in the spectral 

region at ~ 5.0 to 5.55 ppm studied.  The 1H –NMR of modified BSA incubated for 3 

weeks in D-glucose consisted of an envelope of peaks. Notable were the resolved 

doublets at 5.24 ppm and 5.50 ppm.  Based on the available data in the literature  

( Bubb, 2003; Cui et al., 2007),  the resonance at 5.24 ppm was attributed  to proton-

proton (JHH) coupling in free α-glucose.  There was a large amount of free glucose in 

the sample, which resulted in the signal going off scale in the plot.  From this large 

amount of free glucose two Carbon-13 satellite signals on either side of this main 

peak were observed, whose combined intensities were 1.1 % of the main peak. The 

resonance from the 1H-NMR spectrum at 5.50 ppm indicated glucose was linked to 

BSA through a glycosidic bond (Figure 42) (Bao et al., 2012). This verified protein 

structural modification.  



 136

 

 

 

 

 

 

 

 

 

 

Table I: Data from mass spectrometric analysis of unmodified and modified BSA 

after a 1 week incubation in 14 mM D-glucose at 25°C. The modified BSA with the 

highest number of glucose molecules bound is highlighted.  The concentration of 

BSA was 35 μM. 
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Table I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mass 
BSA 

Mass of 
Glycated 
BSA 

Mass 
Difference

Added 
Glucose 
Molecules 

66438 66755 317 2 

 66888 450 2 

 67674 1236 7 

 67080 642 4 

 67703 1265 7 

 67871 1433 8 

 67399 961 5 

 68094 1656 9 

 67387 949 5 
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Table II: Data from mass spectrometric analysis of unmodified and modified BSA 

after a 2 week incubation in 14 mM D-glucose at 25°C. The modified BSA with the 

highest number of glucose molecules bound is highlighted.  The concentration of 

BSA was 35 μM. 
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Table II. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mass 
BSA 

Mass of 
Glycated 
BSA 

Mass 
Difference 

Added 
Glucose 
Molecules 

66438 66755 317 2 

 78808 12370 69 

 66888 450 2 

 76135 9697 54 

 69294 2856 16 

 79132 12694 70 

 72732 6294 35 

 67674 1236 7 

 78212 11774 65 

 74747 8309 46 
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Table III: Data from mass spectrometric analysis of unmodified BSA and modified 

BSA after a 3 week incubation in 14 mM D-glucose at 25°C. The modified BSA with 

the highest number of glucose molecules bound is highlighted.  The concentration of 

BSA was 35 μM. 
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Table III. 

 

Mass 
BSA 

Mass of 
Glycated 
BSA 

Mass 
Difference 

Added 
Glucose 
Molecules 

66438 66600 162 1 

 80067 13629 76 

 70930 4492 25 

 67760 1322 7 

 71409 4971 28 

 78433 11995 67 

 75313 8875 49 

 80134 13696 76 

 74435 7997 44 

 66755 317 2 
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Figure 42: This is a plot of the spectral region at ~ 5.0 – 5.55 ppm showing signals 

from the H1 proton (shown in red) on α-D-glucose. The red spectrum is that of the 

unmodified BSA (control). The black spectrum is that of modified BSA after a 3 

week incubation in 14 mM D-glucose at 25°C. 
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Figure 42:  
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3.3.2. Chiral recognition of glycated BSA 

 The chiral recognition of tryptophan analogs by BSA was altered by the extent of 

glycation.  Representative electropharograms for D,L-tryptophan, 5-fluoro-D,L-

tryptophan, and 5-hydroxy-D,L-tryptophan are shown in Figures 45- 47, respectively. 

The selectivity was calculated for four separate injections of D,L- tryptophan and 5-

fluoro-D,L-tryptophan.  It was not possible to separate 5-hydroxy-D,L-tryptophan by 

unmodified or modified BSA as previously reported (Hödl et al., 2006).  As a result, 

the changes in the 5-hydroxy-D,L-tryptophan peak area were measured for 

subsequent weeks and used to approximate changes in its chiral recognition by BSA 

as follows: 

                                         100Area
Area

n

1n 




                                            (21) 

where n denotes the week(s) of incubation in D-glucose solution.  

 Glycation of BSA altered the chiral recognition of D,L-tryptophan, 5-fluoro-D,L-

tryptohan, and 5-hydroxy-D,L-tryptophan after one week.  The decline in 

enantioselection was most pronounced for D,L-tryptophan at 0.051 (Figure 45). The 

selectivity for 5-fluoro-D,L-tryptophan declined by 0.032 and the peak area of 5-

hydroxy-D,L-tryptophan decreased by 13.4%  (Figure 47, 49).  The chiral recognition 

continued to decline after week 2 for both D,L-tryptophan and 5-hydroxy-D,L-

tryptophan, however that of 5-fluoro-D,L-tryptophan increased. Although the trend in 

decreased enantioselection reversed for all analogs after three weeks, chiral 

recognition did not return to its starting values, (Figures 46, 48, and 50). 
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Figure 43: D,L-tryptophan (0.22 mg/ml) binding by unmodified BSA (A) and 1 week 

modified BSA (B).  The serum protein concentration was held at 35 μM. ACE 

conditions: 15 kV, 25°C, injection at 20 mbar for 5 s, and detection at 280 nm. 
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Figure 44: D,L-tryptophan (0.22 mg/ml) binding by 2 week modified BSA (A) and 3 

week modified BSA (B).  The serum protein concentration was held at 35 μM. ACE 

conditions: 15 kV, 25°C, injection at 20 mbar for 5 s, and detection at 280 nm. 
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Figure 44. 
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Figure 45: 5-fluoro-D,L-tryptophan (0.22 mg/ml) binding by unmodified BSA (A) 

and 1 week modified BSA (B).  The serum protein concentration was held at 35 μM. 

ACE conditions: 15 kV, 25°C, injection at 20 mbar for 5 s, and detection at 280 nm. 
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Figure 45. 
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Figure 46: 5-fluoro-D,L-tryptophan (0.22 mg/ml) binding by 2 week modified BSA 

(A) and 3 week modified BSA (B).  The serum protein concentration was held at 35 

μM. ACE conditions: 15 kV, 25°C, injection at 20 mbar for 5 s, and detection at 280 

nm. 
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Figure 46.  
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Figure 47: 5-hydroxy-D,L-tryptophan (0.22 mg/ml) binding by unmodified BSA (A) 

and 1 week modified BSA (B).  The serum protein concentration was held at 35 μM. 

ACE conditions: 15 kV, 25°C, injection at 20 mbar for 5 s, and detection at 280 nm. 
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Figure 47. 
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Figure 48: 5-hydroxy-D,L-tryptophan (0.22 mg/ml) binding by 2 week modified 

BSA (A) and 3 week modified BSA (B).  The serum protein concentration was held 

at 35 μM. ACE conditions: 15 kV, 25°C, injection at 20 mbar for 5 s, and detection at 

280 nm. 
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Figure 48. 
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Figure 49:  Effect of glycation extent on BSA selectivity of   

D,L-tryptophan.  The serum protein concentration was held at 35 μM. ACE 

conditions: 15 kV, 25°C, injection at 20 mbar for 5 s, and detection at 280 nm. 
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Figure 49. 
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Figure 50:  Effect of glycation extent on BSA selectivity of 5-fluoro-D,L-tryptophan.  

The serum protein concentration was held at 35 μM. ACE conditions: 15 kV, 25°C, 

injection at 20 mbar for 5 s, and detection at 280 nm. 
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Figure 50. 
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Figure 51:  Effect of glycation extent on BSA selectivity of 5-hydroxy-D,L-

tryptophan.  The serum protein concentration was held at 35 μM. ACE conditions: 15 

kV, 25°C, injection at 20 mbar for 5 s, and detection at 280 nm. 
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 The results indicate that albumin functional properties are impacted by glycation-

induced modifications of its structure.   Some of the main glycation sites are located 

in the vicinity of known drug binding sites (Wa et al., 2007).  The extent of glycation 

depends upon the time of incubation and in periods of less than 10 days, early stage 

glycation products that arise from Schiff base reactions occur in the central body of 

the protein (Cohen, 2003; Schmitt et al., 2005; Coussons et al., 1997).  The latter 

stages of glycation occur on the C- and N- terminal regions causing the body of the 

protein to be effected by glycation first.  The L-tryptophan binding site (site II) is 

located in a hydrophobic cleft between two predominant helical structures in the body 

of the protein (Peyrin et al., 1999; Kragh-Hansen et al., 2001).  Any changes in the 

helical arrangement of BSA induced by the glycation process will alter its binding, 

which correlates to shifts in enantioselection of tryptophan.  

 Based upon this, a postulated explanation for the observed fluctuations in 

enantioselection is that the glycation induced by incubating BSA in D-glucose for two 

weeks, reduced the helical stability of BSA and led to a decreased binding of L-

tryptophan.  An earlier study showed that low levels of glucose partially denatured 

the protein and decreased the degree of L-tryptophan binding (Barzegar et al., 2007) 

supporting the results.  The effects of this structural change on binding, were not 

observed in the case of 5-fluoro-D,L-tryptophan due to its higher binding affinity for 

BSA.  By allowing the BSA to incubate in D-glucose solution for 3 weeks, binding 

affinity of tryptophan recovered, suggesting further glycation enhanced the helical 

stability of BSA.  Previous studies by equilibrium dialysis have shown stabilization of 

the protein’s structure occurs when high concentrations of glucose are present on the 
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protein (Bohney & Feldhoff, 1992). Further support of these results, is BSA 

incubated in high concentrations of glucose have been reported to exhibit similar 

binding properties to unmodified BSA (Bohney & Feldhoff, 1992). The recovery of 

binding by BSA observed after 3 weeks of incubation in D-glucose may be attributed 

to this stabilization. Further structural studies will need to be carried out to verify 

these postulated conclusions. 
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Chapter 4 
 

Conclusion and Future Studies 
 
4.1. Summary  

 In this dissertation a satisfactory capillary electrophoresis method using protein 

CSPs for enantiomer separation was developed. In the first section of this dissertation, 

the influences of separation voltage, surface regeneration protocols using sodium 

hydroxide/water, background electrolyte rinsing time, sample buffer ionic strength, 

and protein diffusion were studied.  In doing this, the tryptophan-albumin system was 

used as a model at a pH, temperature, and ionic strength optimal for BSA binding.  

The results indicate that accurate binding measurements are obtained not only by 

assuring the conditions of the microenvironment are conducive for protein binding, 

but also by optimizing relevant experimental conditions of the capillary 

electrophoresis instrument. Also from this study, it was determined that unlike 

previously proposed, allowing the liquid to stand still in the capillary prior to 

separation, does not adversely effect separation, but can enhance separation.  Future 

protein diffusion studies aimed at characterizing this relationship should be carried 

out to gain a better understanding of the mechanisms involved. 

 In the last two sections of this work, it was demonstrated that CE can be applied 

for studying biochemical processes.  It presents itself as both a means for developing 

serum albumin based selective analysis techniques and a convenient approach for 
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characterizing the molecular interactions of protein with drugs. In its use for studying 

the displacement of tryptophan by ibuprofen, it was found that possible preformed 

ibuprofen-BSA complexes may have altered binding and thereby introduce error in 

binding measurements.  Future studies, that incorporate steps for controlling or 

normalizing for these contributions, would be of value for calculating accurate 

binding constants.  

 In the last section, it was indicated by differences in the chiral recognition of  

non-glycated BSA and BSA glycated at various degrees, that NMR affirmed 

structural change on BSA led to alterations in its binding of tryptophan.  

Conformational and functional changes of BSA depend upon the amount of glycation. 

A better understanding of the differences in binding is possible through more detailed 

structural studies. 
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APPENDIX 

 

List of Abbreviations 

API                                               Active Pharmaceutical Ingredients 

ACE                                             Affinity Capillary Electrophoresis 

CE                                                Capillary Electrophoresis 

NMR                                            Nuclear Magnetic Resonance 

EOF                                             Electroosmotic Flow 

CSPs                                            Chiral Stationary Phases 

HSA                                             Human Serum Albumin 

BSA                                             Bovine Serum Albumin 

AGP                                             α1-acid glycoprotein 

OVM                                            Ovumocoid 

HPLC                                           High Pressure Liquid Chromatography 

BGE                                             Background Electrolyte 

SDS                                              Sodium dodecyl sulfate 

UV                                               Ultra Violet 

NaOH                                          Sodium hydroxide 

pH                                               - log[H]+ 

Trp                                               D,L-Tryptophan 
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List of Abbreviations (Continued) 

5-Flo                                            5-fluoro-D,L-tryptophan 

Ibu                                               Ibuprofen 

Au                                               Absorbance Units 

DAD                                           Diode Array Detector 

R2                                                                       Square of the correlation coefficient 

μan                                                 electrophoretic mobility of solute  
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