
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2010

Development of an Unsteady Aeroelastic Solver for the Analysis Development of an Unsteady Aeroelastic Solver for the Analysis

of Modern Turbomachinery Designs of Modern Turbomachinery Designs

Timothy James Leger
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Engineering Commons

Repository Citation Repository Citation
Leger, Timothy James, "Development of an Unsteady Aeroelastic Solver for the Analysis of Modern
Turbomachinery Designs" (2010). Browse all Theses and Dissertations. 1006.
https://corescholar.libraries.wright.edu/etd_all/1006

This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It
has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1006&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1006&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/1006?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1006&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

Development of an Unsteady

Aeroelastic Solver for the Analysis of

Modern Turbomachinery Designs

A dissertation submitted in partial fulfillment of the

 requirements for the degree of

Doctor of Philosophy

By

Timothy James Leger

M.S. Wright State University, 2000

2010

Wright State University

WRIGHT STATE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

August 18, 2010

I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY

SUPERVISION BY Timothy James Leger ENTITLED Development of an Unsteady

Aeroelastic Solver for the Analysis of Modern Turbomachinery Designs BE ACCEPTED

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy.

Mitch Wolff, Ph.D.

Dissertation Director

Ramana V. Grandhi, Ph.D.

Director, Ph.D. in Engineering Program

Andrew T. Hsu, Ph.D.

Dean, Graduate Studies

Committee on

Final Examination

Mitch Wolff, Ph.D.

Scott Thomas, Ph.D.

Joseph Shang, Ph.D.

Gary Lamont, Ph.D.

David A. Johnston, Ph.D.

ii

ABSTRACT

Leger, Timothy James, Ph.D., Department of Mechanical and Material Engineering,

Wright State University, 2010. Development of an Unsteady Aeroelastic Solver for the

Analysis of Modern Turbomachinery Designs

Developers of aircraft gas turbine engines continually strive for greater efficiency

and higher thrust-to-weight ratio designs. To meet these goals, advanced designs

generally feature thin, low aspect airfoils, which offer increased performance but are

highly susceptible to flow-induced vibrations. As a result, High Cycle Fatigue (HCF) has

become a universal problem throughout the gas turbine industry and unsteady aeroelastic

computational models are needed to predict and prevent these problems in modern

turbomachinery designs. This research presents the development of a 3D unsteady

aeroelastic solver for turbomachinery applications. To accomplish this, a well

established turbomachinery Computational Fluid Dynamics (CFD) code called Corsair is

loosely coupled to the commercial Computational Structural Solver (CSD) Ansys
®

through the use of a Fluid Structure Interaction (FSI) module.

Significant modifications are made to Corsair to handle the integration of the FSI

module and improve overall performance. To properly account for fluid grid

deformations dictated by the FSI module, temporal based coordinate transformation

metrics are incorporated into Corsair. Wall functions with user specified surface

roughness are also added to reduce fluid grid density requirements near solid surfaces.

To increase overall performance and ease of future modifications to the source code,

Corsair is rewritten in Fortran 90 with an emphasis on reducing memory usage and

iii

improving source code readability and structure. As part of this effort, the shared

memory data structure of Corsair is replaced with a distributed model. Domain

decomposition of individual grids in the radial direction is also incorporated into Corsair

for additional parallelization, along with a utility to automate this process in an optimal

manner based on user input. This additional parallelization helps offset the inability to

use the fine grain mp-threads parallelization in the original code on non-distributed

memory architectures such as the PC Beowulf cluster used for this research. Conversion

routines and utilities are created to handle differences in grid formats between Corsair

and the FSI module.

The resulting aeroelastic solver is tested using two simplified configurations.

First, the well understood case of a flexible cylinder in cross flow is studied with the

natural frequency of the cylinder set to the shedding frequency of the Von Karman

streets. The cylinder is self excited and thus demonstrates the correct exchange of energy

between the fluid and structural models. The second test case is based on the fourth

standard configuration and demonstrates the ability of the solver to predict the dominant

vibrational modes of an aeroelastic turbomachinery blade. For this case, a single blade

from the fourth standard configuration is subjected to a step function from zero loading to

the converged flow solution loading in order to excite the structural modes of the blade.

These modes are then compared to those obtained from an in vacuo Ansys
®
 analysis with

good agreement between the two.

iv

Table of Contents

Page

ABSTRACT…………………………………………………………………..………...

Table of Contents……………………………………………………………..………...

List of Figures………………………………………………………………..…………

List of Tables………………………………………………………………..………….

List of Symbols..

ii

iv

vi

ix

xi

1. INTRODUCTION…………………………………………………………...………

1.1 Research Objectives……………………………………………..………....

1.2 Literature Review………………………………………………….….…....

1.3 Technical Approach…………………………………………….…….........

1

3

5

13

2. CFD MODEL – CORSAIR…………………………………………….….………...

2.1 Grid Generation…………………………………………………..…………

2.2 Numerical Model……………………………………………….….……….

2.3 Boundary Conditions……………………………………………..………...

15

15

18

38

3. NUMERICAL EVALUATION OF COORDINATE TRANSFORMATION

 METRICS………………………………………………………………..…………..

3.1 Recasting in Conservative Form………………………………..…………..

3.2 The Finite Volume Concept……………………………………..………….

3.3 Performance Investigation………………………………………..………...

52

53

55

62

4. WALL FUNCTION...

4.1 Background Boundary Layer Theory..

4.2 Algebraic Model…………………………………………………..………..

69

70

71

v

4.3 Wall Function Model...

4.4 Surface Roughness...

4.5 Test Case..

75

77

81

5. ADDITIONAL PARALLELIZATION…………………………………………..….

5.1 Existing Parallelization in Corsair...

5.2 Target Computational Platform…………………………………………….

5.3 Code Restructuring…………………………………………………………

5.4 Increased Parallelization……………………………………………………

5.5 Parallel Performance……………………………………………………….

86

86

87

90

95

102

6. FLUID STRUCTURE INTERACTION MODULE…………………………………

6.1 Structural Model Generation...

6.2 Mapping…………………………………………………………………….

6.3 Displacement and Load Transfer………………………………….……….

6.4 Information Flow and Time Stepping…………………………….………..

6.5 Conversion of O-grids to Sheared H-grid………………………..…………

116

116

117

119

127

131

7. RESULTS..

7.1 Rigid Cylinder………………………………………………………………

7.2 Flexible Cylinder with FSI………………………………………………….

7.3 Fourth Standard Modal Analysis…………………………………………...

135

136

141

148

8. SUMMARY AND CONCLUSIONS………………………………………………..

8-1. Suggested Additional Tests & Case Studies..

8-2. Further Development & Improvements...

153

155

157

9. REFERENCES.......……………….………………………………………………… 158

vi

Appendix A. Block Tridiagonal Systems………………………………..……………..

Appendix B. Quick Search using Shape Functions…………………………………….

167

169

vii

List of Figures

Figure Page

1-1. Sources of unsteady flow in rotating turbomachinery.. 2

2-1.

2-2.

2-3.

2-4.

2-5.

2-6

2-7

2-8.

2-9.

Overlaid O-H grid topography..

Generation of grid extensions for slip boundary condition.................................

Post iterative update for slip boundary condition…………….………………...

Illustration of circumferential periodic condition and ghost points…..………..

Post iterative update of circumferential periodic boundary…………..………..

Section of overlap region between an O-grid and H-grid……………..……….

Simplified view of overlap region between O-grid and H-grid………...……...

Illustration of overlap between an O-grid and clearance grid………………….

Post iterative update of clearance grid collapsing centerline………….……….

18

44

44

46

46

47

48

50

51

3-1.

3-2.

3-3.

Geometry of a finite volume hexahedron cell……………………………….....

Volume swept by a surface………………………………………..…....

Three-dimensional wavy grid……………………………………………..…....

57

59

63

4-1.

4-2.

4-3.

4-4.

Skin friction coefficient as a function of local Reynolds number……………...

Local Reynolds number as a function of surface roughness to grid

height ratio..…

STCF4 flow domain………………………………………………………..….

STCF4 pressure coefficients at mid-span……………………………………...

79

79

83

84

5-1.

5-2.

5-3.

Taylor cluster compute node rack...

Taylor cluster network configuration..

Illustration of three radial overlap points..

89

89

98

viii

5-4.

5-5.

5-6.

5-7.

5-8.

Speedup performance..

Parallel efficiency..

Average idle times...

Calculation to communication time ratios..

Maximum nodal memory footprint...

110

110

112

112

113

6-1.

6-2.

6-3.

6-4.

6-5.

6-6.

6-7.

6-8

6-9.

6-10.

6-11.

Example mapping at the interface...

Area for Gauss quadrature...

Conservative transfer of forces...

Interpolative transfer of displacements...

Algebraic deformation of fluid grid points...

Illustration of anchor points in O-grid topography...

Conventional serial time-staggered algorithm..

Flow of information in FSI module...

Socket communication..

Turbo sheared H-grid topography...

Conversion from O- to sheared H-grids..

119

123

124

124

125

126

127

130

131

132

133

7-1.

7-2.

7-3.

7-4.

7-5.

7-6.

7-7.

2D midspan slice of channel and cylinder grids...

Close-up of O-grid around the cylinder..

Convergence history for rigid cylinder simulation...

Time trace of transverse forces on cylinder at midspan......................................

FFT of transverse forces on cylinder at midspan..

First three mode shapes for the clamped-clamped cylinder................................

Cylinder displacement at midspan..

138

139

140

141

141

143

145

ix

7-8.

7-9.

7-10.

7-11.

7-12.

FFT of transverse and axial displacements at midspan.......................................

Structural mesh for the flexible cylinder...

Structural mesh for STCF4...

Time trace of axial displacement at TE tip...

FFT of axial displacement at TE tip..

146

148

149

150

150

B-1.

B-2.

One dimensional linear element..

Portion of overlaid O- and H-grid...

169

172

x

List of Tables

Table Page

2-2.

2-1.

List of axial inlet boundary conditions..

List of difference schemes for inviscid numerical fluxes....................................

26

39

3-1.

3-2.

Free-stream preservation errors for stationary 3D wavy grid..............................

Free-stream preservation errors for deforming 3D wavy grid.............................

64

65

5-1.

5-2.

5-3.

5-4.

5-5.

Some global information generated by thsplit for each node..............................

Decomposition indexes of example STCF4 grid domain....................................

Runtime and memory usage comparison between Thunder and Corsair............

Parallel performance for split_type of one..

Parallel performance for split_type of two..

93

101

103

109

109

7-1. Main vibrational frequencies for STCF4... 151

xi

List of Symbols

Symbol Description

A area

A�,B�,C� flux jacobians

c speed of sound

cp constant pressure specific heat

cv constant volume specific heat

chmp number of Chimera grid points

C Courant number

Cf skin friction coefficient

Ckleb Klebanoff constant

e energy

E efficiency, Young’s modulus

E,F,G flux vectors

f force, frequency (Hz)

flops floating point operations

F force

G serial runtime multiplier

GB gigabyte

h enthalpy

i,j,k,n grid and time indices

in inch

I identity matrix, mass moment of inertia

J Jacobian of coordinate transformation

k thermal conductivity

ks sand roughness height

KB kilobytes

K parallel efficiency constant

l mixing length

lbf pounds-force

L characteristic length

LHS left hand side

m mass

MB megabyte

n normal vector

N shape function

NMF nodal memory footprint

ovlp grid overlap

P pressure, number of processors

P
+

nondimensional boundary layer pressure gradient

Pr Prandtl number

q heat flux

Q solution vector

r radius from hub, surface vector

R gas constant, Riemann invariant

xii

Re Reynolds number

RHS right hand side

s, sec seconds

S entropy, control volume surface, speedup

St Strouhal number

STCF4 fourth standard configuration

t time

T temperature

TO parallel overhead time

T eigen vectors

u,v,w velocities in the x, y, z directions

u
+
 normalized boundary layer velocity

U wheel speed

U,V,W contravariant velocities

V volume

W work

�	 isoefficiency

x,y,z spatial coordinates

yz arc length from at fixed radius

y
+
 normalized boundary layer height

α pitch, Clauser constant

β compressibility factor, yaw

βn weighted natural frequency

γ ratio of specific heats

ρ density

ξ,η,ζ curvilinear coordinate directions

µ dynamic viscisity

λ second coefficient of viscosity, eigenvalue

τ shear stress, curvilinear time coordinate

 numerical flux coefficients

Θ order of magnitude

φ flow variables at shape function

Λ eigenvalue matrix

ε error

σ stress tensor

σn mode shape

κ Von Karman constant

ω frequency (rad/s), vorticity

δ normal distance, displacement

δ� admissible virtual displacement

Γ wetted surface

ΩS
� wetted structural element

xiii

Subscripts

comm communication

F fluid

IM,JM,KM grid index limits

LD long diagonal

P parallel

S serial, structure

t total

TH tetrakis hexahedron

v viscid

wall value at the wall

xcalc calculation of solution

∞ inlet free-stream

Superscripts

‘ pseudo term

+ normalized

~ physical flux

^ numerical flux

 total

* non-dimensional term
�

,
��

 intermediate ADI solutions

F fluid

S structure

xiv

ACKNOWLEDGEMENTS

 I would like to express my sincere appreciation to my adviser, Dr. Mitch Wolff,

for introducing me to the field of turbomachinery and for the encouragement he has given

me throughout my graduate studies. I feel fortunate and privileged to have worked with

such a dedicated and talented professor. I extend my utmost gratitude and respect to him.

A great deal of thanks also goes to Dr. David Johnston for his insight and help

with this research, especially with regards to the Fluid Structure Interaction module. I

would also like to gratefully acknowledge Dr. Joseph Shang, Dr. Gary Lamont, and Dr.

Scott Thomas for serving on my dissertation committee and providing excellent

classroom instruction.

I am fortunate to have interacted with many bright, talented, and motivated

individuals at Wright State. Special thanks go to Greg Wilt, Sean Mortara, Jonathan

Blair, Dr. Jim Menart, Dr. Ken Cornelius, Dr. George Huang, Dr. Haibo Dong, and all

my instructors, you helped me more than you will ever know.

 Finally, I would like to thank my parents, Jim and Verna, for their unwavering

support through times when it looked like I might never graduate. They have been the

greatest influence in my life and I owe all my success to them. Their moral and financial

support throughout my life has given me the ability to be where I am today. I dedicate

this dissertation to them.

1

1. INTRODUCTION

Developers of aircraft gas turbine engines continually strive for greater efficiency

and higher thrust-to-weight ratio designs. To meet this goal, the trend in gas turbine

designs has been to reduce size and weight of engines by decreasing the number of

compressor stages, the number of blades per row, and the axial spacing between

vane/blade rows [1]. However, these reductions result in significantly increased

aerodynamic loading of the blades and unsteady interaction between blade rows. In

addition, advanced compressor designs generally feature thin, low aspect airfoils, which

offer increased performance but are highly susceptible to flow-induced vibrations [2]. As

a result, High Cycle Fatigue (HCF) has become a universal problem throughout the gas

turbine industry. In response to these HCF problems, a considerable portion of recent

research in compressor and turbine design has involved the investigation of unsteady

aeroelastic phenomena, namely flutter and forced response [3].

Flutter is defined as an unstable and self-excited vibration of a body in an

airstream and results from a continuous interaction between the aerodynamics and the

structural mechanics, both of which tend to be nonlinear in modern turbomachinery

designs [4]. In turbomachinery blade rows, the mass ratio (structure to fluid) tends to be

high resulting in a single-mode phenomenon. This is because the aerodynamic forces,

which remain much smaller than the inertial and stiffness forces, do not usually cause

modal coupling. However, this also means that the aeroelastic mode can be significantly

2

different from the structural mode in both frequency and modal shape. Flutter is a

particularly difficult problem in turbomachinery since there are many additional features

with consequences that are currently not fully understood. These include flow distortions

due to up and down stream blade-rows and the loss of spatial periodicity of vibration due

to aerodynamic effects and blade-to-blade differences (commonly known as structural

and aerodynamic mistuning) [5].

Figure 1-1. Sources of unsteady flow in rotating turbomachinery

When rotating blades pass through flow defects created by the interaction of

upstream and downstream blade rows, the ensuing large unsteady aerodynamic forces can

cause excessive vibration levels. This interaction between blade rows is known as forced

response [4] and becomes a major problem when the excitation frequency coincides with

a natural frequency of the blade. Of particular interest to designers is the prediction of

vibration amplitude under unsteady aerodynamic loading which can be due to wake

passing from upstream blade-rows (wake-rotor interaction), the potential field of

upstream and downstream blade rows (potential-rotor interaction), or to fluctuating back

3

pressures [6]. Because of the numerous unknown factors such as structural damping,

nonlinear damping in the blade roots, and the forcing itself, forced response analyses

usually aim at ranking potential designs rather than predicting actual vibration levels.

Current designers typically address HCF and unsteady aeroelastic phenomena

using a Computational Fluid Dynamics (CFD) analysis of a single blade row with the

unsteady forcing applied through specified inflow/outflow boundary conditions or the

predicted blade motion itself [4]. The resulting blade row unsteady loading is utilized

with a Computational Structural Dynamics (CSD) model to determine the unsteady

stresses and the predicted blade fatigue life. While these two steps may be iterated upon

several times, they are usually performed by different groups with an associated loss in

accuracy and efficiency. In addition, the CFD models used are generally inviscid and

time-linearized, resulting in a model that is invalid at off design operating conditions

where serious unsteady aeroelastic problems generally exist in modern turbomachinery

designs [7]. This situation coupled with the inadequate modeling of blade row

interaction, is believed to be the cause for a number of unexpected HCF failures [8,9].

Thus, a computational model which precisely accounts for Fluid Structure Interaction

(FSI), inviscid-viscid interaction, and multi-blade row interaction is needed by designers

to predict HCF and unsteady aeroelastic phenomena of current and future turbomachinery

designs.

1.1 Research Objectives

The goal of this research is to develop an aeroelastic solver for the design of

advanced turbomachinery. However, this lofty goal implies several objectives which

4

need to be met in order to achieve such a design tool. First, in order to obtain usable

results, the fluid solver must be capable of handling the deforming fluid grids which arise

from the deformation of the blade. This entails implementing coordinate transformation

metrics (both spatial and temporal) that do not violate the conservation of both surfaces

and volumes under deformation.

Another important objective, in order for this tool to be utilized in the time limited

design environment, is the reduction of solution runtime. This objective is limited to

three main areas in this research for which it can be effectively achieved. The first is to

incorporate a wall function into the chosen flow solver, Corsair [10], to reduce the grid

density required near surfaces for the calculation of shear stresses. By reducing the grid

density near surfaces, the total number of grid points in the computational domain and

thus the simulation runtime is significantly reduced. A second area of focus is to

incorporate additional parallelization via domain decomposition of individual fluid grids

in the radial direction. By dividing the computational domain into pieces and solving

these on separate cores/nodes simultaneously, the simulation runtime is again reduced.

Lastly, a third area involves optimization of the flow solver code itself. While labor and

time intensive, the rewriting/restructuring of older codes (such as Corsair) is often

rewarded with impressive performance improvements, mainly due to the correction of

unobserved bugs/flaws which arise over time via modification of the original source

code.

The final objective for the development of any computational tool is thorough

testing and results. For this research effort, testing against the well understood flexible

cylinder in cross flow is utilized. In addition, the resulting aeroelastic solver is used to

5

predict the major vibrational modes of a turbine blade from the fourth standard

configuration.

1.2 Literature Review

 A key development in the early understanding of aeroelasticity was made by Lane

who introduced the concept of the interblade phase angle [11]. In this concept, the

individual blades in a cascade are assumed to vibrate with the same amplitude but the

maximum is reached with a constant phase lag, i.e. the interblade phase angle. Armed

with this assumption, the structure and the fluid are decoupled so that a free vibration

problem (taking no account of the aerodynamic loads) can first be solved. The predicted

mode-shapes are then utilized with arbitrary amplitudes to produce prescribed blade

motion. The unsteady fluid problem is then solved with this prescribed blade motion and

the resulting unsteady aerodynamic forces on the blade calculated. These unsteady

aerodynamic forces are then used to measure the stability of the system. This is often

referred to as the classical method and became popular early in computational aerelastic

research for two main reasons [12]. First, assumptions had to be made in order to solve

the complicated differential equations of motions with the limited computing power

available. Second, there has been a tendency to use existing aerodynamic and structural

codes separately with a minimum of changes to either one in order to accommodate the

other.

Although several methods have been developed to measure the stability from the

unsteady aerodynamic forces, the most popular by far has been the aeroelastic

eigensolution method [13]. This method is based on expressing the resulting unsteady

6

aerodynamic forces in the frequency domain, either directly if analytical theories are used

or by Fourier analysis if the forces are calculated in the time domain. The resulting

aeroelastic equations of motion are very similar to the structural equations, with the

aerodynamic contributions being added to the mass and/or stiffness matrices. The

stability of the system is then assessed by determining the amount of damping required

for each aeroelastic mode. The main advantage of this method lies in its simplified

representation of the structural dynamics, which allows parametric studies to be

conducted with a minimum of computational effort. Various cascades have been studied

using this technique over the last 30 years, with various simplifications and

improvements to the flow solvers used [14,15,16,17,18].

Integrated aeroelastic methods do not uncouple the fluid motion from that of the

structure, but instead treat the problem of aeroelasticity in one continuous medium. The

need for such an approach arises from the nonlinear response of the fluid flow to the

motion of solid boundaries, especially in the transonic regime where flutter often occurs.

Hence, the resulting mathematical formulation must allow the fluid to modify the

structural motion and vice-versa, as such phenomena occur in nature. It then becomes

possible to include nonlinear effects for both the fluid and the structure and take into

account various interactions that can take place between them. The most striking

difference between the classical method and the integrated method is that the former can

only predict the onset of flutter as a sudden change from a stable to an unstable region

while the latter is capable of predicting limit-cycle behavior. The engineering value of

such prediction methods is evident since there is enough experimental evidence to

suggest that flutter occurs in pockets of the limit cycle with varying amplitude levels [4].

7

This observation has a crucial implication on flutter analyses. The prediction of flutter

onset may not be as important as predicting the actual vibration amplitude, since limit

cycles can be tolerated if their amplitude is small.

Early integrated aeroelastic models typically incorporated an inviscid 2D Euler

solver with an extremely simplified linear structural model consisting of springs, masses,

and dampeners [14,19,20,21,22]. While the airfoil was allowed to move in response to

aerodynamic forces and moments, the airfoil shape was kept rigid. In addition, many of

these early models were restricted to a two-degrees-of-freedom structural model (pitch

and plunge). These models have been extensively used in past research to determine the

so-called flutter bucket or the reduced speed at which flutter occurs. However, due the

extremely simplified structural models used, these early efforts are also commonly

referred to as a classical method [4].

While studies using both these classical methods have provided important first

steps in the prediction of unsteady aeroelastic phenomena, they lack the nonlinear

response of the structure and thus the complete flow physics resulting from FSI [7].

Thus, recent efforts in the area of aeroelastic CFD research has involved the coupling of

fluid and structural solvers, where both solvers are capable of handling full nonlinear

effects, such as those that occur in transonic turbomachinery. Different strategies can be

used to obtain a solution of the coupled fluid structure system. The first possibility is to

use a strong coupling, sometimes referred to as a fully integrated method, where the

structural and fluid dynamics equations are solved together at each time step using the

same integrator. This is done by discretizing the two domains into one Arbitrary

Lagrangian-Eulerian (ALE) space, the result of which is that the motion of the grid

8

becomes an integral part of the equations of motion and does not have to be handled

separately [23].

Bendiksen [24] applied a direct version of this method to both wing and

turbomachinery blade flutter. His method used an explicit temporal discretization which

is integrated using a five-stage Runge-Kutta scheme, with upwind differencing used for

the spatial discretization of the arbitrary Lagrangian-Eulerian formulation. The structural

equations are formulated on a local node level which enables them to be discretized using

the same five-stage Runge-Kutta integrator. This model is claimed to calculate the

energy transfer between the structure and fluid more accurately than similar schemes.

For the flutter analysis, a typical isolated wing section was modeled, with the section

allowed to have camber bending. This chord wise flexibility was modeled using plate-

type finite elements of unit width. Results from this case were compared to those from

classical methods showing excellent agreement. In addition, the results suggest that

camber bending plays an important role in transonic flutter, possibly due to the mixed

subsonic-supersonic flow field being sensitive to the airfoil boundary condition in the

supersonic region of the flow. Calculations were also made on a cascade with solid

titanium blades. This case demonstrated that camber bending can reach significant

amplitudes during transonic flutter of thin compressor blades.

Masud [25] developed a space-time finite element formulation of the Navier-

Stokes equations that was stabilized using the Galerkin/least-squares approach. The

variational equation was based on the time discontinuous Galerkin method and was

written in terms of physical entropy variables over the moving and deforming space time

slabs. This formulation thus becomes analogous to the ALE formulation discussed

9

previously including viscous effects. To demonstrate the versatility of this method,

numerical simulations of a projectile moving in a stationary flow field were presented.

Gottfried and Fleeter [23,26] extended ALE3D, a 3D finite element Euler solver,

to model the unsteady aerodynamics of stator-rotor interaction in turbomachinery.

Simulations of a transonic compressor at Purdue University with the code, renamed

TAM-ALE3D, showed good prediction of both subsonic and transonic steady state

conditions. However, the simulation over-predicted the unsteady IGV lift magnitude by

100% for the subsonic case. In the transonic case, the simulated IGV lift lacked the

higher harmonic content of the experimental data. The discrepancies between

experimental and simulated results were attributed to scaling of the geometry and the lack

of viscous effects.

Sadeghi and Liu [27] investigated the effects of frequency mistuning on cascade

flutter using a similar ALE formulation. The unsteady structural and Euler equations

were simultaneously integrated in time. A second order accurate implicit finite-volume

scheme was used to solve both the flow equations and structural model. Using this

model, simulations were performed for a turbine cascade with flutter in the bending mode

and with alternate mistuning of the structural eigen frequency. An important finding of

this study was that the fluid-structure interaction tended to decrease the effective amount

of mistuning. Along similar lines, it was discovered that a minimum amount of

mistuning was required to stabilize the cascade. Similar behavior was demonstrated for a

compressor cascade.

While closely-coupled methods show promise, the approach requires an enormous

amount of computational power along with almost a complete rewrite of the solver.

10

Additionally, the matrix system for the coupled problem is in general ill-conditioned as a

result of the difference in stiffness of the fluid and the solid. A more reasonable approach

is to use a loosely coupled method. In this method, the fluid and solid variables are

updated alternatively by independent CFD and CSD codes which exchange boundary

information at each time step in a time accurate manner. The most attractive feature of

this approach is that the CFD and CSD solvers are largely independent of one another.

This allows efficient re-use of codes that have been developed over several years and

have been extensively tested. In addition, different fluid and structural models can be

interchanged according to the requirements of a particular application. For example,

CFD solvers for modeling transonic flow are very different from those used for the

hypersonic regime. Likewise, different CSD models exist for types of structures, ranging

from metal matrices to composites and even nanostructures [28].

Srivastava et al. [29] developed an efficient three-dimensional hybrid scheme by

loosely coupling an ADI Euler solver with the commercial CSD package NASTRAN to

analyze two advanced propeller designs. Their scheme treated the spanwise direction

semi-explicitly and the other two directions implicitly. They noted that accuracy when

compared to a fully implicit scheme was not affected, while providing advantages of

reduced computational requirements in both memory and time. The calculated power

coefficients for the advanced designs at various operating conditions showed good

correlation with experimental data and varied up to 40% from CFD simulations run

without aeroelastic deformation. Spanwise distribution of elemental power coefficients

and steady pressure coefficient differences were in good agreement with experimental

data. However, their study also uncovered that adjustments to the setting angle by rigid-

11

body rotation did not simulate the correct blade shape. A follow up study by Yamamoto

et al. [30] of the effect of structural flexibility on the performance of these propeller

designs showed that structural deformation due to centrifugal and steady aerodynamic

loading were important for improved correlation to experimental data. In addition, it was

noted that structural deformation from unsteady aerodynamic forces played a key role in

the performance of the designs.

 Sayma et al. [31] developed a model for forced response prediction in

turbomachinery blades. Their three-dimensional multi-passage, multi-blade-row

calculations coupled both the fluid and the structure through an exchange of boundary

conditions at every time step. The structure was represented by a linear modal model

obtained from a standard FEA formulation, while the flow analysis was performed using

a three-dimensional time-accurate viscous model using unstructured grids. Variables

were interpolated at the sliding boundaries between the rotor and the stator in a

conservative manner in order to allow a free movement of discontinuities. This model

was used to study an intermediate pressure turbine in order to rank the magnitude of the

fluid forcing resulting from two types of nozzle guide vanes. A sector of one stator and

five rotor blades was analyzed for both types of nozzle guide vanes and the results

obtained showed good agreement with available experimental data.

 Vahdati et al. [32] used the same model to predict both the blade passing and low

engine order forced response of a low pressure turbine. The predicted force response

vibration amplitudes for a 24 nodal diameter resonance were found to be in good

agreement with measured data but one of the main uncertainties was identified as the

determination of the inherent mechanical damping. In addition, use of a whole-annulus

12

2-row model showed that non-uniform spacing of the stator blades gave rise to low

engine order excitation. Breard et al. [33] also used this same model to perform a flutter

analysis of a complete civil aero-engine fan assembly for three different configurations:

no intake, symmetric intake, and non-symmetric flight intake. The blade’s dynamic

behavior was found to be different for each of these configurations, demonstrating the

influence of intake ducts on flutter stability.

 Servera et al. [34] investigated the use of a loose coupling between a CSD model

for the analysis of helicopter rotor blades called HOST, and an Euler solver for

computing the trim of flexible rotors in steady forward flight called WAVES. This

coupling was used to analyze two advanced helicopter rotor designs and showed that a

simultaneous coupling of the lift, pitching moment, and drag parameters is required in

order to obtain a converged solution independent of simplified aerodynamic models. In

addition, the coupled model showed significant improvements on the pitching moment

and torsion predictions.

Carstens et al. [35] compared results from a loosely-coupled algorithm of a low

pressure compressor at design conditions to those from a classical analysis using LIN3D.

to those from a classical analysis using LIN3D of a low pressure compressor at design

conditions The structural model consisted of an FEA model time-integrated using the

Newmark algorithm, while the unsteady aerodynamics were computed using a Navier-

Stokes code. An automatic grid generator was used to dynamically deform the mesh and

couple the two codes together. This model was then used to analyze an assembly of

highly loaded compressor blades in transonic flow. They found that the loosely-coupled

algorithm yielded lower aerodynamic damping over the full range of interblade phase

13

angles, unlike the classical LIN3D analysis. A striking result of the coupled algorithm

was the negative damping for an interblade phase angle of 0, which might cause self-

excited vibrations if no structural damping were present to keep the system stable.

1.3 Technical Approach

An aeroelastic computational model is built from an existing, well-developed

ideal-gas, compressible, turbomachinery flow solver called Corsair. To account for the

deformations from unsteady aerodynamic loadings, Corsair is loosely coupled to the

commercial CSD code Ansys
®
 through the use of a general FSI module [36]. This

general FSI module handles the calling and setup of the CSD model, conversion of

surface fluid stresses to structural forces, time stepping of the CSD model, and morphing

of the fluid grid to match deformations predicted by the CSD model. By using this

general FSI module, the resulting CFD – CSD coupling remains flexible and can take

advantage of utilizing different CSD models.

To accomplish the CFD – CSD coupling, significant modifications to Corsair

were required. Improved methods for numerical evaluation of the coordinate

transformation metrics to handle grid deformations introduced by the FSI module are

studied. The optimal methods for the spatial and temporal metrics from this study are

then used in Corsair for the remaining research. A wall function with user specified

surface roughness is also implemented into Corsair, allowing a significant reduction in

grid density requirements for accurate prediction of shear stresses along solid surfaces.

Following the implementation and verification of the wall function, an investigation is

performed comparing the wall function against the finite difference approach used in the

14

current release of Corsair to gauge performance differences and accuracy. To reduce

simulation runtimes on non-SMP super-computers such as PC Beowulf clusters[37], the

common data model used in Corsair is converted to a distributed data model resulting in a

much smaller per nodal memory footprint. This change lead to a complete rewriting and

restructuring of the source code, the result of which is called Thunder. To increase

parallelization, radial decomposition of individual grids is also implemented into solver.

A utility to optimize the decomposition of each grid is created, requiring only the number

of pieces each grid is to be broken into to be specified by the user. Comparisons are then

made between the original version of Corsair and the improved model called Thunder to

demonstrate parallel scalability, performance, and reduction in nodal memory

requirements.

To test the FSI model, two simplified configurations are utilized. First, the well

understood case of a flexible cylinder in cross flow is studied with the natural frequency

of the cylinder set to the shedding frequency of the Von Karman Streets. The cylinder is

self excited, demonstrating the exchange of energy between the fluid and structural

models. The second test case is based on the fourth standard configuration and

demonstrates the ability of the FSI model to predict the dominant vibrational modes of an

aeroelastic turbomachinery blade. For this case, a single blade from the fourth standard

configuration is subjected to a step function from zero loading to the converged flow

solution loading in order to excite the structural modes of the blade. These modes are

then compared to those obtained from an in vacuo analysis using Ansys
®
.

15

2. CFD MODEL – CORSAIR

 Before any of the required modifications to the flow solver chosen for this

research could be made, especially to the structure of the code itself, a somewhat detailed

understanding of the solution methods employed in Corsair was first required. Since no

other publications or sources for Corsair exist with the needed level of detail, the source

code itself was painstakingly analyzed and documented. This chapter is the result of that

effort and provides a detailed look at the solution method employed by Corsair, including

grid generation, numerical formulation, and boundary conditions.

The unsteady aeroelastic solver developed in this research is based on a well

established turbomachinery CFD code called Corsair [10], distributed by the NASA

Marshal Space Flight Center. Corsair is a three-dimensional Reynolds Averaged Navier

Stokes (RANS) flow solver for axial turbomachinery geometries. It uses an overset

structured grid topography consisting of O-grids around blades and H-grids for passages.

In addition, a clearance grid composed of an O-grid with a collapsed centerline, can be

used in the outer tip of an O-grid to include tip clearance flows in simulations.

2.1 Grid Generation

 The first step in using any CFD model is to generate a set of grids over which the

solution will be solved. Corgrid is a three-dimensional structured zonal-grid generator

specifically designed for use with Corsair. A set of overlaid O- and H-grids are generated

16

for each blade being modeled at constant radial span-wise locations. Algebraically

generated H-grids are used in the regions upstream of the leading edge, downstream of

the trailing edge, and in the inter-blade region. O-grids, which are body fitted to the

surface of the blade airfoil, are used to properly resolve the viscous flow in the blade

passages and are generated using an elliptic equation solver. As with most grid

generation packages, grids can be clustered around areas of high curvature and near the

hub, shroud, and blade surfaces. For blades with a tip clearance, a second O-grid is

generated using a collapsed center-line to fill in the gap.

 Construction of the algebraically generated H-grids begins with the calculation of

the airfoil mean camber line. The mean camber line is extended upstream of the airfoil

leading edge and downstream of the airfoil trailing edge using decay functions to control

the incremental changes in the axial and circumferential spacing. Half the blade pitch is

added to and subtracted from every computational grid point along the extended camber

line to form the first and last grid lines in the blade-to-blade direction. Computational

grid lines are then added at equal spatial increments between the first and last grid lines in

the blade-to-blade direction. In addition, grid lines can be clustered in both the axial and

circumferential directions upstream of the airfoil leading edge and downstream of the

airfoil trailing edge.

 Generation of the O-grids begins with the specification of four points on the H-

grid which define a box that delineates the outer boundary of the O-grid. This outer

boundary is smoothed to eliminate discontinuities in the slope of the grid lines at the

corners of the box. The inner boundary of the O-grid is simply the surface of the airfoil.

17

An elliptical solution procedure is then used to produce a nearly orthogonal grid [38].

The elliptic equations are:

()ηξηηξηξξ γβα QxPxJxxx +−=+− 22 (2-1)

()ηξηηξηξξ γβα QyPyJyyy +−=+− 22 (2-2)

where

22

ηξα yx += (2-3)

ηξηξβ yyxx += (2-4)

22

ξξγ yx += (2-5)

Here, x, y, and z are the Cartesian coordinates and subscripts ξ, η, and ζ are the

curvilinear (or body fitted) coordinates in the axial, radial, and circumferential directions

respectively and represent derivatives in those directions, J is the Jacobian matrix of

curvilinear coordinate transformation, P and Q are forcing functions used to control the

computational point clustering and orthogonality near solid walls. Equations 2-1 and 2-2

are solved using a successive line over-relaxation technique.

 To define the overlap region between the O- and H-grids, a second set of four

points on the H-grid are specified which form a box inside the outer boundary of the O-

grid and define the inner boundary of the H-grid. The points inside the inner boundary of

the H-grid are treated as i-blanked points, i.e. the equations of motion are not solved at

these points. However, in the overlap region between the two boxes, the equations of

motion are solved on both the O- and H-grids. Increasing the amount of overlap between

the O- and H-grids enhances the stability and accuracy of the flow solution, but also

18

increases the computational time by increasing the number of redundant grid points in the

calculation. A typical overlaid O-H grid is illustrated in Figure 2-1.

Figure 2-1. Overlaid O-H grid topography

2.1 Numerical Model

 Corsair is a three-dimensional, implicit, multi blade row flow solver designed for

time accurate simulations of turbomachinery [39]. It utilizes a dual-time-step to solve the

full, unsteady, Navier-Stokes equations in a time accurate manner by means of a

linearized, approximately factored, upwind finite-difference scheme. The resulting

solution is third order spatial and second order temporal accurate. The integration

scheme begins with the three-dimensional unsteady Navier-Stokes equations in strong-

conservation dual-time-step form:

19

v

z

v

y

v

xzyxtt GFEGFEQQ ++=++++ ' (2-6)

where t represents the physical time step and t’ represents the pseudo-time step for

subiterations.

The vector of conservative variables Q, the inviscid flux vectors E F G, and the

viscid flux vectors E
v
 F

v
 G

v
, are given by:

() () () 





















+

+

=























+

+=























+

+

=























=

wpe

wP

vw

uw

w

G

vpe

uw

vP

uv

v

F

upe

uw

uv

up

u

E

e

w

v

u

Q

tttt

2

2

2

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

(2-7)























=























=























=

z

zz

zy

zx

v

y

yz

yy

yx

v

x

xz

xy

xx

v GFE

β

τ

τ

τ

β

τ

τ

τ

β

τ

τ

τ

000

and the stress tensor is defined by:

() ()
() ()

() ()

zzyyxx

zzzzyzxz

yyzyyyxy

xxzxyxxx

yzzyyzyzzyxzzz

xzzxxzxzzyxyyy

xyyxxyxyzyxxxx

kTqkTqkTq

qwvu

qwvu

qwvu

wvwvuw

wuwvuv

vuwvuu

===

+++=

+++=

+++=

=+=+++=

=+=+++=

=+=+++=

τττβ

τττβ

τττβ

ττµτλµτ

ττµτλµτ

ττµτλµτ

2

2

2

(2-8)

with Stokes hypothesis and the perfect gas law completing the equations of motion:

20

()
()

vp

v

p

t

ccR
c

c

Pe
h

R

P
T

P
e

wvu
ee

−==

+
==

−
=

++
+=

−=

γ

ρργρ

ρ
ρ

µλ

12

3
2

222

(2-9)

By defining the Prandtl number as

k

c pµ
=Pr

(2-10)

the heat flux terms in the conservation of energy equation are rewritten as

zzyyxx eqeqeq 111 PrPrPr −−− === γµγµγµ (2-11)

In Corsair, the equations of motion are non-dimensionalized so that certain

parameters, such as the Reynolds number, can be varied independently. The non-

dimensional variables used are as follows:

()

() TT
P

P
P

c

U
U

P

v
v

cL

t
t

L

x
x

====

=









===

∞∞

∞

∞

∞

ρ

ρ
ρ

γ

µ

µ
µ

ρ
γ

(2-12)

where x is a distance, L is the mid-span length in the first blade row, t is time, v is a

velocity component, c is the free stream speed of sound, γ is the ratio of specific heats, µ

is the viscosity, U is the wheel velocity, P is the static pressure, ρ is the density, T is

temperature (in degrees Rankine), and the subscript ∞ refers to free stream conditions.

Applying this to Equation 2.6, the equations of motion are rewritten as:

()

()v

z

v

y

v

xzyxtt
GFEGFEQQ ********

1

'
Re ++=++++ −

(2-13)

where the non-dimensionalized Reynolds number is given by:

21

γµ

ρ

∞

∞=
Lc

Re

(2-14)

For the analysis of arbitrary geometries it is useful to generalize the equations of

motion by expressing them in terms of body-fitted, curvilinear coordinates. The

following independent variable transformation introduces body-fitted coordinates which

allow accurate implementation of surface boundary conditions, since the geometric

surface lies along a boundary of the computational domain:

() () ()tzyxtzyxtzyxt ,,,,,,,,, ςςηηξξτ ====

(2-15)

Applying these to Equation 2-13, the equations of motion now take the following form:

()vvv
GFEGFEQQ ςηξςηξττ ++=++++ −1

' Re
~~~~~

 

 

(2-16) 

 

where 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( ) JGFEG

JGFEF

JGFEE

JGFEQQG

JGFEQQF

JGFEQQE

JQQ

v

z

v

y

v

x

v

v

z

v

y

v

x

v

v

z

v

y

v

x

v

zyxt

zyxt

zyxt

/
~

/
~

/
~

,
~

,
~

,
~

~

***

***

***

****

****

****

ςςςς

ηηηη

ξξξξ

ςςςςς

ηηηηη

ξξξξξ

++=

++=

++=

+++=

+++=

+++=

=

 

 

 

(2-17) 

and the metrics of transformation are: 



22 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )[ ]
( ) ( ) ( )[ ]
( ) ( ) ( )[ ]

( ) ( ) ( )ξηηξςξςςξηηςςηξ

ηξξητξηηξτηξξητ

ξςςξτςξξςτξςςξτ

ςηηςτηςςητςηηςτ

ξηηξηξξηξηηξ

ςξξςξςςξςξξς

ηςςηςηηςηςςη

ς

η

ξ

ςςς

ηηη

ξξξ

zyzyxzyzyxzyzyxJ

yxyxzzxzxyzyzyxJ

yxyxzzxzxyzyzyxJ

yxyxzzxzxyzyzyxJ

yxyxJzxzxJzyzyJ

yxyxJzxzxJzyzyJ

yxyxJzxzxJzyzyJ

t

t

t

zyx

zyx

zyx

−+−−−=

−+−+−=

−+−+−=

−+−+−=

−=−=−=

−=−=−=

−=−=−=

−1

 

 

 

 

 

 

 

 

(2-18) 

 

 

 

 

 

 

 

Application of a second order central approximation for physical time and a first 

order backward approximation for pseudo time to Equation 2-16 gives the general 

implicit formulation used in Corsair to solve the equations of motion: 

( ) ( )
( ) ( ) ( )[ ]1111

111,11,1

'
11

2
1,1

2
31

~~~
Re

~~~~~~~
2

~

+++−

++++++

∆

−+

∆

++=

+++−++−

nvnvnv

nnnknknnnkn

GFE

GFEQQQQQ

ςηξ

ςηξττ
 

 

 

(2-19) 

 

 

In Equation 2-19, n denotes a physical time step and k denotes a pseudo time step.  While 

a second order accurate difference is required for the physical time in order for the 

method to be time accurate, a first order difference is sufficient for pseudo time steps, 

since the solution is iterated in pseudo time to convergence at each physical time step. 

 Note that Equation 2-19 is non-linear.  To solve the equations of motion in an 

efficient computational manner, linearization in the form of a Taylor series expansion 

with use of the pseudo time step, τ’, is utilized:  



23 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) '

1

'

1

'

1

'

1

'

1

'

1

~~ˆ~
~

~
ˆ~

~~ˆ~
~

~
ˆ~

~~ˆ~
~

~
ˆ~

~~ˆ~
~

~
ˆ~

~~ˆ~
~

~
ˆ~

~~ˆ~
~

~
ˆ~

τςςςςς

τηηηηη

τξξξξξ

τςςςςς

τηηηηη

τξξξξξ

QCGQ
Q

G
GG

QBFQ
Q

F
FF

QAEQ
Q

E
EE

QCGQ
Q

G
GG

QBFQ
Q

F
FF

QAEQ
Q

E
EE

nv
n

v
v

n
vnv

nvnv
v

nvnv

nv
n

v
v

n
vnv

nnnn

nnnn

nnnn

∂+∂≈∆










∂

∂
∂+∂≈

∂+∂≈∆










∂

∂
∂+∂≈

∂+∂≈∆










∂

∂
∂+∂≈

∂+∂≈∆










∂

∂
∂+∂≈

∂+∂≈∆










∂

∂
∂+∂≈

∂+∂≈∆










∂

∂
∂+∂≈

+

+

+

+

+

+

 

 

 

(2-20) 

where as before, a first order backward difference is used for the pseudo time step: 

( )knkn QQQ ,11,1

'

1
'

~~~ +++

∆
−=

ττ

(2-21)

In Equation 2-20, the quantities ,
~

,
~

,
~

,
~

,
~ vv BACBA and v

C
~

are referred as flux jacobians,

while the quantities ,ˆ,ˆ,ˆ,ˆ,ˆ vv FEGFE and v
Ĝ , are referred to as numerical fluxes and are

consistent with the physical fluxes ,
~

,
~

,
~

,
~

,
~ vv FEGFE and v

G
~

. Since the solution is

iterated to convergence at each physical time step, error introduced by the linearization

process is eliminated. However, the resulting formulation does require the storage of the

solution at three previous time steps, two at a previously converged physical time step

and one at the previous pseudo time step. Substituting Equations 2-20 into Equation 2-19

and rearranging terms results in:

24

() () ()[]
() (){

() () ()







 ∂+∂+∂−∂+∂+∂+

+−−=−

∂−∂+∂−∂+∂−∂+

−

−+

∆
∆+++

−−−

n
v

n
v

n
vnnn

nnknknkn

vnnvnnvn

GFEGFE

QQQQQ

CCBBAAI

ςςηηξξςηξ

τ
τ

ςςηηξξ

ˆˆˆReˆˆˆ

~~
2

~~~

~
Re

~~
Re

~~
Re

~

1

1

2
1,1

2
3',11,1

111

 

 

(2-22) 

 The implicit formulation of a 3-D equation, such as those in Equation 2-22, would 

normally result in a system of equation with a hepta-diagonal coefficient matrix.  The 

solution of such a system, even with re-ordering techniques, is very time consuming and 

computationally expensive.  To overcome this difficulty, Approximate Factorization (AF) 

along with the Alternating Direction Implicit (ADI) algorithm is used in Corsair.  The AF 

reduces the hepta-diagonal coefficient matrix system to three tri-diagonal systems which 

are then sequentially solved using the ADI algorithm.  The resulting solution method 

requires considerably less computational expense and is unconditionally stable.  Since AF 

is applied to the LHS of Equation 2-22, the use of pseudo time steps to converge the 

solution at each physical time step reduces error caused by both the linearization and AF 

techniques together.  In practice, three pseudo iterations are sufficient to reduce these 

errors down to machine zero.  Different factorizations can be used in the AF technique, 

resulting in various orders of accuracy and computational expense.  The most important 

rule of AF is to keep the factorization error (generation of extra terms) below the order of 

truncation for the desired solution while preserving existing terms.  In Corsair, a fairly 

straight forward AF is used: 



25 

  

( )[ ] ( )[ ] ( )[ ]
( ) ( ){

( ) ( ) ( )







 ∂+∂+∂−∂+∂+∂+

+−−=−

∂−∂+∂−∂+∂−∂+

−

−+

∆
∆+++

−−−

n
v

n
v

n
vnnn

nnknknkn

nvnnvnnvn

GFEGFE

QQQQQ

CCIBBIAAI

ςςηηξξςηξ

τ
τ

ςςηηξξ

ˆˆˆReˆˆˆ

~~
2

~~~

~
Re

~~
Re

~~
Re

~

1

1

2
1,1

2
3',11,1

111

(2-23)

 In Equation 2-23, all the fluxes are evaluated explicitly using the solution vector

at the current pseudo time step, knQ ,1~ + . For the inviscid numerical fluxes on the RHS,

Roe’s approximate Reiman solver scheme is utilized. This method accelerates the

solution by taking advantage of the characteristics (propagation direction of information)

of the equations of motion. In Corsair, Roe’s scheme is given by:

()[

]−
+

−
+

−

+
−

++
+

++
++∆

∆−∆−∆+

∆−∆−∆+

∆−∆−−=∂

kjikjikji

kjikjikji

kjikjikjikjikji

EEE

EEE

EEEEE

,,23,,12,,1

,,13,,2,,11

,,,,1,,,,1
1

,,
ˆ

φφφ

φφφ

ξξ

(2-24)

for the interior points and by:

(){
()[][]}−−

+
++

+

++
++∆

∆+∆−∆−∆−+

∆−∆−−=∂

iiii

kjikjikjikjikji

EEEE

EEEEE

110

,,,,1,,,,1
1

,,

5,max91125.0

ˆ

φ

ξξ

(2-25)

for the second and imax-1 points. Note that Equation 2-25 is a modified second order

accurate formulation of Roe’s scheme. In Equations 2-24 and 2-25, the + and – indicate

contributions from downstream and upstream traveling characteristic waves respectively,

where E represents the total flux given by:

26

()
()
()
()

()() 





















−++++

++++

++++

++++

+++

=

PPewvu

Pwvuw

Pwvuv

Pwvuu

wvu

E

tzyxt

zzyxt

yzyxt

xzyxt

zyxt

ξξξξξ

ξξξξξρ

ξξξξξρ

ξξξξξρ

ξξξξρ

(2-26)

Additionally, the order of accuracy for the inviscid fluxes is controlled by ,, 21 φφ and 3φ

according to Table 2-1. During the initial few blade passes of a new solution, the 1
st

order scheme is utilized to help progress the solution past start-up transients, thus saving

the computational expense of resolving transients and accelerating the solution.

Scheme
0φ 1φ 2φ 3φ

1
st
 order accurate upwind 9 0 0 0

2
nd

 order accurate central 1 ½ ½ 0

2
nd

 order accurate upwind -1 0 -½ ½

Fromm’s 0 1/4 0 1/4

3
rd

 order accurate upwind 1/3 1/3 1/6 1/6

Table 2-1. List of difference schemes for inviscid numerical fluxes

The characteristic fluxes
±∆E in Equations 2-24 and 2-25 are calculated according to:

 () +
−

−−++ ∆−−=∆∇ΧΛΧ=∆ EEEEQE iiROE 1

1

ξξ
(2-27)

Where

27

() () ()















































−−−

−
+

+++

−
+

+

−

+

−

+

−

−++−

−+−+

−++−

=Χ

zyxzyx
z

xy

y

zxyz

zzzxyyx

yyxzyzx

xxyzzyx

zyx

wvu

c

c

U

wvu

c

c

U

U

vu

U

uw

U

wv

c

w

c

w
www

c

v

c

v
vvv

c

u

c

u
uuu

cc

ξξξ

γ

ξξξ

γ
ξ

ξξ

ξ

ξξ

ξ

ξξ

ξξξξξξξ

ξξξξξξξ

ξξξξξξξ

ξξξ

ξ

1212
222

22222

22222

22222

11
222

(2-28)

() ()

() ()

() ()

() () ()

() () ()



































−

−

−

−

−

=











































−−−

−−

−−

−−

=

−

−

−

−

−

−−−

−−−

−−

−−

−−

−

∇

Χ

1

1

1

1

1

111

111

11

11

11

1

1
0

1
0

1
0

1
0

1
0

ii

ii

ii

ii

ii

ROE

iiziiyiix

iiziiyiix

ziixiiyz

yiixiizy

xiiyiizx

PP

ww

vv

uu

c

c

c

c

c

Q

ρρ

ρρξρρξρρξ

ρρξρρξρρξ

ξρρξρρξξ

ξρρξρρξξ

ξρρξρρξξ

ξ

(2-29)

(2-30)

()()UhcwvuU
hh

h

ww
w

vv
v

uu
u

ii

iiii

ii

iiii

ii

iiii

ii

iiii

zyx

z
z

zyx

y

y

zyx

x
x

2
1222

1

11

1

11

1

11

1

11

222222222

1 −−=++=
+

+
=

+

+
=

+

+
=

+

+
=

++
=

++
=

++
=

−

−−

−

−−

−

−−

−

−−

γ
ρρ

ρρ

ρρ

ρρ

ρρ

ρρ

ρρ

ρρ

ξξξ

ξ
ξ

ξξξ

ξ
ξ

ξξξ

ξ
ξ

and the positive eigenvalue matrix is defined as:

28























=Λ+

5

4

3

2

1

0000

0000

0000

0000

0000

λ

λ

λ

λ

λ

222

15

222

14

321

zyx

zyx

zyxt

c

c

wvu

ξξξλλ

ξξξλλ

ξξξξλλλ

++−=

+++=

+++===

(2-31)

Since Roe’s scheme may encounter difficulties in stability and convergence near sonic

lines and expansion waves, the following correction for the eigenvalues is used in

Corsair:



























 +
+=→<

=→≥

++=

ε

λε
λλελ

λλε

ξξξε

2

2

1

2

1

222

2

1

2if

if

i

iii

iii

zyx

λ

c

(2-32)

 Additionally, flux limiter can be added to Roe’s scheme in corsair to increase

accuracy and reduce oscillations near large gradients. To do this, Equation 2-24 is

rewritten as:

()
() ()
() ()−−−−

++++

++
++

∆−∆+∆−∆+

∆−∆+∆−∆+

∆−∆−−=∂

133241

133241

,,,,1,,,,1,,
ˆ

EEEE

EEEE

EEEEE
kjikjikjikjikji

φφ

φφ

ξ

(2-33)

where

() ()
() ()
() ()
() ()−

+
−−++

+
+

−−
+

−+
+

++

−
+

−
+

−+
−

++

−
+

−
+

−++
−

+

∆∆=∆∆∆=∆

∆∆=∆∆∆=∆

∆∆=∆∆∆=∆

∆∆=∆∆∆=∆

1414

1313

21212

12111

,modmin ,modmin

,modmin ,modmin

,modmin ,modmin

 ,modmin ,modmin

iiii

iiii

iiii

iiii

EEEEEE

EEEEEE

EEEEEE

EEEEEE

ββ

ββ

ββ

ββ

(2-34)

and the compression factor β and the minmod function are defined as:

29

()
































=

−

−
=

a

a
ba

a

a
ba ,min,0max,modmin

1

3

0

0

φ

φ
β

(2-35)

The terms ηη F̂∂ and ςςĜ∂ are obtained from Equations 2-24 through 2-35 by simply

replacing ξ, i, j, k with η, j,i,k or ς, k, i, j respectively.

 The viscid numerical flux terms in Equation 2-23 are calculated using a simple

central difference scheme:

 []v

kji

v

kji

v

kji EEE ,,,,1
1

,,
ˆ −=∂ +∆ξξ

(2-36)

where























++

++

++

++

=

zzyyxx

zzzyzyxzx

yzzyyyxyx

xzzxyyxxx

vE

βξβξβξ

τξτξτξ

τξτξτξ

τξτξτξ

0

(2-37)

and

30

()[] ()
()[] ()

()[] ()

()

()

()

()

() () ()

() ()222

2
1

12
1

12
1

12
1

1

1

1

1

1

1

1

3
2

3
2

3
2

Pr

Pr

Pr

2

2

2

iii

i

it

i

iiiiii

zzyyxxii

zzyyxxii

zzyyxxii

zzyyxxii

zzzyzxzz

yyzyyxyy

xxzxyxxx

yzyzzyxzzz

xzxzzyxyyy

xyxyzyxxxx

wvu
e

e

wwwvvvuuu

eeeeeeeee

wwwwwwwww

vvvvvvvvv

uuuuuuuuu

ewvu

ewvu

ewvu

wvwvuw

wuwvuv

vuwvuu

++−=

+=+=+=

===−=

===−=

===−=

===−=

+++=

+++=

+++=

+=++−=

+=++−=

+=++−=

−−−

−

−

−

−

−

−

−

ρ

ξξξ

ξξξ

ξξξ

ξξξ

γµτττβ

γµτττβ

γµτττβ

µτµτ

µτµτ

µτµτ

ξξξξ

ξξξξ

ξξξξ

ξξξξ

(2-38)

As with the inviscid numerical flux terms, the terms
v

Fηη
ˆ∂ and

v
Gςς
ˆ∂ are obtained from

Equations 2-36 through 2-38 by simply replacing ξ, i, j, k with η, j,i,k or ς, k, i, j

respectively.

 Ideally, fastest convergence is obtained when the same method of differencing is

used on both the RHS and LHS of Equation 2-23. While this is possible for low-order

schemes since the block tridiagonal structure of the equations can be maintained, higher

order schemes require larger difference stencils and would preclude the use of a block

tridiagonal solver if used on the LHS. Hence Steger-Warming flux vector splitting is

used on the LHS to evaluate the inviscid flux jacobians as defined by:

 () ()[]−−
+

+
−

+

∆
−+−=∂ kjikjikjikjikji AAAAA ,,,,1,,1,,

1
,,

~~~~~
ξξ  

(2-39) 

 



31 

The + and – superscripts in Equation 2-39 indicate contributions from downstream and 

upstream traveling characteristic waves (also referred to as fluxes) respectively and are 

given by: 

  
1~ −±± Λ= ξξξ TTA  (2-40) 

 In Equation 2-40, ξT  and 
1−

ξT are the left and right eigenvectors respectively and are 

defined as: 

( ) ( )

( ) ( )

( ) ( )















































−+








+++++

−+++

−+−+

−++−

=

7

6

217

6

21524232

11

11

11

11

11
cT

T
TTcT

T
TTTTTTTT

cwTcwTwww

cvTcvTvvv

cuTcuTuuu

TT

T

zyx

zzzxyyx

yyxzyzx

xxyzzyx

zyx

ρξρξρξ

ξξξρξξρξξ

ξξρξξξρξξ

ξξρξξρξξξ

ξξξ

ξ
 

 

 

 

(2-41) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )







































−−−−−+−+

−−−−−

−−+−







−

−+−−







−

−−+−







−

=−

1

1

1

1

1

9696969789

9696969789

6666
5

2

8

6666
4

2

8

6666
3

2

8

1

γξξξ

γξξξ

ξξ
ρ

ξ
ξ

ρ

ξ
ξ

ρ
ξ

ξ
ρ

ξ
ξξ

ρ

ξ
ξ

ρ
ξ

ξ
ρ

ξ
ξ

ρ

ξ
ξξ

ρ
ξ

ξ

TwcTcTvcTcTucTcTcTTT

TwcTcTvcTcTucTcTcTTT

TwTvTuT
T

c

T

TwTvTuT
T

c

T

TwTvTuT
T

c

T

T

zyx

zyx

zz
x

z

y

zz

y
x

yy
z

yy

x

y

x
z

xxx

 

 

 

 

(2-42) 

 

where 



32 

( )222

21
2

1

2
wvuT

c
T ++==

ρ
 

xyzxyz vuTuwTwvT ξξξξξξ −=−=−= 543  

( )
2

1
1

1
928726

c
TTTwvuT

c
T

zyx
ρ

γξξξ
γ

=−=++=
−

=  

 

 

(2-43) 

and ±Λξ is the Jacobian matrix of the corresponding eigenvalues: 























=Λ

±

±

±

±

±

±

5

4

3

2

1

λ

λ

λ

λ

λ

ξ  

 

(2-44) 

where the eigenvalues are: 

wvu zyxt ξξξξλ +++=3,2,1  

222

14 zyxc ξξξλλ +++=  

222

15 zyxc ξξξλλ ++−=  

 

(2-45) 

To obtain the downstream (+) and upstream (-) traveling characteristic fluxes from the 

eigenvalues given in Equation 2-45, the following formulation for splitting the fluxes is 

used in order to handle sonic lines, where the eigenvalues switch signs: 

2

22 ελλ
λ

+±
=±

         2

222

zyx
c ξξξ

ε
++

=  

 

(2-46) 

The other two inviscid flux jacobians, B
~

η∂  and C
~

ς∂ , are calculated by simply replacing 

ξ, i, j, k in Equations 2-39 through 2-46 with η, j,i,k or ς, k, i, j respectively. 

For the viscid jacobian fluxes on the LHS, a simple second order central 

difference is applied: 



33 

  ( )v

kji

v

kji

v

kjikji AAAA ,,1,,,,1
1

,, 2
~

−+∆ +−=∂ ξξ  
(2-47) 

where the individual viscid terms are represented with a Taylor series linearization: 

 









































=
∆

ρ

α

ρ

α

ρ

α

ρ

α

ρ

α

ρ

α

ρ

α

ρ

α

ρ

α

ρ

α

ξ

7
54535251

653
41

542
31

321
21

1

0

0

0

00000

LLLL

L

L

L

A v  

 

 

 

(2-48) 

and 



34 

  zxyxzyx ξµξαξµξαξξξµα
3

1

3

1

3

4
32

222

1 ==







++=  









++==








++= 222

65

222

4
3

4

3

1

3

4
zyxzyzyx ξξξµαξµξαξξξµα  

( )2221

7 Pr zyx ξξξγµα ++= −  









−







−







−=

ρ
α

ρ
α

ρ
α

wvu
L 32121                             








−=

ρ
α

u
LL 72152  









−







−







−=

ρ
α

ρ
α

ρ
α

wvu
L 54231                             








−=

ρ
α

v
LL 73153  









−







−







−=

ρ
α

ρ
α

ρ
α

wvu
L 65341                             








−=

ρ
α

w
LL 74154  








 +++
+









−







−







−
















+







+







−=

ρ
α

ρ
α

ρ
α

ρ
α

ρ
α

ρ
α

ρ
α

ewvu

wvuvwuwuv
L

222

7

2

6

2

4

2

153251 2

 

 

 

 

 

 

(2-49) 

 

 

 

 

 

 

As with the inviscid flux jacobians, 
v

B
~

 and v
C
~

 are obtained by replacing ξ, i, j, k in 

Equations 2-47 through 2-49 by η, j,i,k or ς, k, i, j respectively.  

 Returning to Equation 2-23, the AF form of the Navier-Stokes equations is solved 

in a three stage ADI algorithm.  The first of these stages is solved in the ξ direction (ξ 

sweep) for an intermediate solution
*

Q∆ : 

( ) kjiv

kji

v

kji

v

kji

kjikjikjikji
RHSQ

AAA

AAAA
I ,,

*

,,1,,,,1

1

,,,,1,,1,,
1

2Re

~~~~

=∆


























+−−

−+−
+

−+
−

−−
+

+
−

+

∆ξ

(2-50)

where

35

(){

() () ()







 ∂+∂+∂−∂+∂+∂+

+−−=

−

−+

∆
∆

n
v

n
v

n
vnnn

nnkn

kji

GFEGFE

QQQRHS

ςςηηξξςηξ

τ
τ

ˆˆˆReˆˆˆ

~~
2

~

1

1

2
1,1

2
3'

,,

(2-51)

The second stage is solved in the η direction (η sweep) for a second intermediate solution

**
Q∆ :

()

,1,,,,1,

1

,,,1,,1,,,
1

2Re

~~~~

QQ
BBB

BBBB
I

v

kji

v

kji

v

kji

kjikjikjikji
∆=∆



























+−−

−+−
+

−+
−

−−
+

+
−

+

∆η  

  

(2-52) 
 

 

Finally, the third stage is solved in the ς direction (ς sweep):  

 

( )
**

1,,,,1,,

1

,,1,,1,,,,1
~

2Re

~~~~

QQ
CCC

CCCC
I

v

kji

v

kji

v

kji

kjikjikjikji
∆=∆



























+−−

−+−
+

−+
−

−−
+

+
−

+

∆ς

(2-53)

where the desired solution 1,1~ ++ knQ is obtained via:

() QQQQQQ knknknkn ~~~~~~ ,11,1,11,1 ∆+=⇒−=∆ ++++++

(2-54)

Equations 2-50 through 2-53 form a block tridiagonal coefficient matrix system, which is

symmetric positive definite. To obtain this form, Equations 2-50 through 2-53 are first

rearranged in terms of the grid index:

()[] ()[]
()[]

kjikji

v

kjikji

kji

v

kjikjikjikji

v

kjikji

RHSQAA

QAAAIQAA

,,

*

,,1,,1

1

,,1
1

*

,,,,

1

,,,,
1*

,,1,,1

1

,,1
1

Re
~

Re2
~~

Re
~

=∆−+

∆+−++∆+−

++
−−

+∆

−−+
∆−−

−+
−∆

ξ

ξξ

()[] ()[]
()[] *

,,

**

,1,,1,

1

,1,
1

**

,,,,

1

,,,,
1**

,1,,1,

1

,1,
1

Re
~

Re2
~~

Re
~

kjikji

v

kjikji

kji

v

kjikjikjikji

v

kjikji

QQBB

QBBBIQBB

∆=∆−+

∆+−++∆+−

++
−−

+∆

−−+
∆−−

−+
−∆

η

ηη

()[] ()[]
()[] **

,,11,,1,,

1

1,,
1

,,,,

1

,,,,
1

1,,1,,

1

1,,
1

~
Re

~

~
Re2

~~~
Re

~

kjikji

v

kjikji

kji

v

kjikjikjikji

v

kjikji

QQCC

QCCCIQCC

+++
−−

+∆

−−+
∆−−

−+
−∆

∆=∆−+

∆+−++∆+−

ς

ςς  

(2-55) 

 
 

 
 

(2-56) 
 

 
 

 
(2-57) 



36 

Redefining the terms in Equations 2-55 through 2-57 as: 

( )
( )

( )v

kjikji

v

kjikjikji

v

kjikji

AACAP

AAAICA

AACAM

,,1

1

,,1
1

,,

1

,,,,
1

,,1

1

,,1
1

Re
~

Re2
~~

Re
~

+
−−

+∆

−−+
∆

−
−+

−∆

−=

+−+=

+−=

ξ

ξ

ξ

 

( )
( )

( )v

kjikji

v

kjikjikji

v

kjikji

BBCBP

BBBICB

BBCBM

,1,

1

,1,
1

,,

1

,,,,
1

,1,

1

,1,
1

Re
~

Re2
~~

Re
~

+
−−

+∆

−−+
∆

−
−+

−∆

−=

+−+=

+−=

η

η

η

 

( )
( )

( )v

kjikji

v

kjikjikji

v

kjikji

CCCCP

CCCICC

CCCCM

1,,

1

1,,
1

,,

1

,,,,
1

1,,

1

1,,
1

Re
~

Re2
~~

Re
~

+
−−

+∆

−−+
∆

−
−+

−∆

−=

+−+=

+−=

ς

ς

ς

 

 

 

(2-58) 
 

 
 

 
 

(2-59) 
 

 
 

 
 

(2-60) 
 

 

Equations 2-55 through 2-57 become: 

kjikjikjikjikjikjikji RHSQCAPQCAQCAM ,,

*

,,1,,

*

,,,,

*

,,1,, =∆+∆+∆ +−  

*

,,

**

,1,,,

**

,,,,

**

,1,,, kjikjikjikjikjikjikji QQCBPQCBQCBM ∆=∆+∆+∆ +−

 

**

,,11,,,,,,,,1,,,,

~~~
kjikjikjikjikjikjikji QQCCPQCCQCCM ++− ∆=∆+∆+∆

(2-61)

(2-62)

(2-63)

Now putting these in a block tridiagonal format, the following is obtained for the ξ

sweep:























=























∆

∆

∆

∆























−−−−−

kjIM

kjIM

kj

kj

kjIM

kjIM

kj

kj

kjIMkjIM

kjIMkjIMkjIM

kjkjkj

kjkj

RHS

RHS

RHS

RHS

Q

Q

Q

Q

CACAM

CAPCACAM

CAPCACAM

CAPCA

,,

,,1

,,2

,,1

*

,,

*

,,1

*

,,2

*

,,1

,,,,

,,1,,1,,1

,,2,,2,,2

,,1,,1

MMOOO

(2-64)

37

then for the η sweep:























∆

∆

∆

∆

=























∆

∆

∆

∆























−−−−−

*

,,

*

,1,

*

,2,

*

,1,

**

,,

**

,1,

**

,2,

**

,1,

,,,,

,1,,1,,1,

,2,,2,,2,

,1,,1,

kJMi

kJMi

ki

ki

kJMi

kJMi

ki

ki

kJMikJMi

kJMikJMikJMi

kikiki

kiki

Q

Q

Q

Q

Q

Q

Q

Q

CBCBM

CBPCBCBM

CBPCBCBM

CBPCB

MMOOO

(2-65)

and finally for the ς sweep:























∆

∆

∆

∆

=























∆

∆

∆

∆























−−−−−

**

,,

**

1,,

**

2,,

**

1,,

,,

1,,

2,,

1,,

,,,,

1,,1,,1,,

2,,2,,2,,

1,,1,,

~

~

~

~

KMji

KMji

ji

ji

KMji

KMji

ji

ji

KMjiKMji

KMjiKMjiKMji

jijiji

jiji

Q

Q

Q

Q

Q

Q

Q

Q

CCCCM

CCPCCCCM

CCPCCCCM

CCPCC

MMOOO

(2-66)

In Equations 2-64 through 2-66, IM, JM, KM represent the last i, j, and k index in the

computational grid. For each sweep, the block tridiagonal system is solved using a LU

decomposition method, which is outlined in Appendix A.

Unlike many other CFD models, Corsair is a fully unsteady flow solver and does

not have a steady state capability for multi blade row simulations. This has the

disadvantage of requiring the use of very small initial time steps in order to handle start-

up transients. Solutions are started by ramping up to this small time step and thus wheel

speed over a user specified number of iterations. Once the ramping is complete, the time

step is gradually increased by decreasing the number of iterations per cycle. To facilitate

this tricky procedure, Corsair re-reads the input deck every time a number of pre-

specified iterations have been completed. The number of iterations per cycle is adjusted

according to the residual dumped in the output file after each iteration.

38

2.3 Boundary Conditions

 One of the most important factors determining the success or failure of a

numerical simulation is the boundary conditions. The boundary conditions used in

Corsair can be broadly classified as either natural boundaries or zonal boundaries [40,41].

Both types of boundaries are handled in a two step method, comprised of an implicit

formulation during pseudo time steps followed by enforcement of the boundary condition

via a post iterative update after each physical time step. The natural boundaries include

the axial inlet and exit along with the hub, outer casing, and airfoil surfaces. Zonal

boundaries comprise the patch and overlay boundaries, including the slip boundary

between adjacent blade rows, the circumferential periodic boundary between adjacent

passages in the same blade row, the Chimera boundary between O-grids and H-grids, and

the continuity condition between the O-grid and clearance grid. A brief description of

each boundary condition is now given along with its numerical implementation in

Corsair.

 To apply the implicit portion of the axial inlet boundary condition, the first row of

blocks from equation 2-64 are set as:

0,,1 =kjRHS

ICCA kj ⋅=,,1

I
J

J
CCAP

kj

kj
kj ⋅








−=

,,1

,,2
,,1

(2-68)

Where C is the Courant number (specified in the input deck and allows control of

stability vs. convergence speed), I is the identity matrix, and J is the Jacobian matrix of

coordinate transformation. The post iterative update depends on whether the axial inlet

39

flow is subsonic or supersonic. If supersonic, then all flow quantities are set to their free

stream values. If the axial inlet flow is subsonic, however, four quantities are specified

with the fifth being the Riemann invariant. A few different combinations are available

for these four quantities as given in Table 2-2.

BC 1 BC 2 BC 3 BC 4 BC 5

1
2

1
2

2

1

−
−=

−
+=

=

=

=

∞

∞

∞

γ

γ

cuR

cuR

ww

vv

SS

1
2

1
2

2

1

−
−=

−
+=

=

=

=

∞

∞

∞

γ

γ

cuR

cuR

ww

vv

PP tt

()

1
2

1
2

costan

tan

2

1

−
−=

−
+=

⋅=

⋅=

= ∞

γ

γ

αβ

α

cuR

cuR

uw

uv

SS

()

1
2

1
2

costan

tan

2

1

−
−=

−
+=

⋅=

⋅=

= ∞

γ

γ

αβ

α

cuR

cuR

uw

uv

PP tt

()

1
2

costan

tan

−
−=

⋅=

⋅=

=

=

∞

∞

γ

αβ

α

cuR

uw

uv

TT

PP

tt

tt

Table 2-2. List of axial inlet boundary conditions

Where S is entropy; u, v, and w the axial, circumferential, and radial velocities

respectively; R the Riemann invariants; Pt and Tt the total pressure and total temperature;

c the local speed of sound; γ the ratio of specific heats; α and β the flow pitch and yaw

angles respectively; and the subscript ∞ refers to the inlet free stream values.

 Similarly, the implicit portion of the axial exit boundary condition involves

setting the last row of blocks from Equation 2-64 as:

0,, =kjIMRHS

ICCA kjIM ⋅=,,

I
J

J
CCAM

kjIM

kjIM
kjIM ⋅








−= −

,,

,,1
,,

(2-69)

As with the axial inlet boundary, the post iterative update depends on whether the axial

exit flow is subsonic or supersonic. If it’s supersonic, then all flow quantities are

40

extrapolated from the interior domain. If the axial exit flow is subsonic however, a

constant pressure is imposed at midspan with the pressure at other spans prescribed by

the radial equilibrium condition:

r

v

r

P t

2ρ
=

∂

∂

(2-70)

This results in quasi-2d equilibrium flow, where P is the spanwise pressure, vt is the

tangential or axial velocity, and r is the radius from the center of the hub. To obtain the

remaining quantities, the circumferential and radial velocities, along with entropy and the

Riemann invariant are extrapolated from upstream.

 For surfaces, including the hub, outer casing, and airfoil, three different types of

boundary conditions exist; slip (Euler condition), no slip with specified heat flux, or no

slip with specified surface temperature. The implicit portion of the slip condition

involves setting the associated RHS and off-diagonal block to zero and the associated

diagonal block to the identity matrix. As an example, consider the hub surface which

becomes a boundary in the zeta sweep:

0**

1,, =∆ jiQ

01,, =jiCC

ICCP ji =1,,

(2-71)

 The post iterative update enforces the tangency condition along the surface by setting the

normal contravariant velocity to zero. For reference, the contravariant velocities are

simply those defined in the curvilinear coordinate system and may be written using the

coordinate transformation metrics:

41

wvuU zyxt ξξξξ +++=

wvuV zyxt ηηηη +++=

wvuW zyxt ζζζζ +++=

(2-72)

Continuing along with the example of the post iterative update at the hub, the contra-

variant velocity normal to the hub, W, is set to zero and the Cartesian velocities u, v, and

w are solved using:

















−

−

−

















−−−−

−−−−−

−−−−

=
















−

t

t

t

xyyxxyyxxyyx

xzzxyzzxxzzx

zyzyyzzyyzzx

W

V

U

J

w

v

u

ζ

η

ξ

ηξηξζξζξζηζη

ηξηξζξζξζηζη

ξηηξζξζξζηζη

)()()(

)()()(

)()()(
1

 (2-73)

The pressure and density at the surface are taken to be the same as at the first grid point

above the surface, from which the remaining conservative variables are easily calculated.

 As stated earlier, the viscous no slip boundary conditions come in two forms, one

involves specifying a heat flux at the surface while the other requires specifying the

temperature of the surface. The implicit portions of these boundary conditions are very

similar and will be discussed together. To begin, the RHS block of the associated

boundary is set to zero and the associated diagonal block is defined as:

() 





















⋅−⋅−⋅−++⋅ CwCvCuCwvuC

C

C

C

wallwallwallwallwallwall

222

0000

0000

0000

0000α

 (2-74)

Where C is the courant number and uwall, vwall, and wwall are the velocities at the surface in

Cartesian coordinates. For a specified temperature at the surface, α is simply set to the

courant number, while for a specified heat flux at the surface it is defined as:

42

))/(1(* kTTC wall ⋅∂+=α (2-75)

Where ∂T is the specified heat flux at the surface, Twall is the surface temperature, and k is

the thermal conductivity of the flow over the surface. The associate off diagonal block is

defined as:

() 





















−−−++

+

1

00000

00000

00000

222

54321

1

wallwallwallwallwallwall

wall

wall

wvuwvu

J
J

βββββ

 (2-76)

For the case of a specified heat flux, β1 = 1 and β2 = β3 = β4 = β5 =0. If the temperature at

the surface is specified instead:

)/(1

)/(

)/(

)/(

)/()(

5

14

13

12

2

1

2

1

2

12
1

1

wallv

wallvwall

wallvwall

wallvwall

wallvwallwallwall

Tc

Tcw

Tcv

Tcu

Tcwvu

=

=

=

=

++=

+

+

+

+++

β

β

β

β

β

 (2-77)

Where the subscript wall+1 denotes values at the grid point just above the surface, cv is

the specific heat at constant volume, and Twall is the specified temperature of the surface.

The post iterative update involves calculating density at the surface based on the

temperature at the surface:

wall

wall
wall

TR

P

⋅
= +1ρ

(2-78)

43

The pressure at the surface is taken to be the same as the grid point just above the surface,

thus allowing total energy at the surface to be easily calculated. For the case where heat

flux at the surface is specified, the temperature at the wall is approximated as:

()kTdsTT wallwall /1 ∂⋅+= +

(2-79)

Where ds is the distance between the surface and the first grid point above the surface.

 The slip boundary between adjacent blade rows begins with the generation of the

H-grids for the blade rows themselves. When initially generated, the downstream

boundary of the upstream row grid corresponds to the upstream boundary of the

downstream row grid. The upstream row grid is then extended downstream by two axial

grid locations such that they match the first two upstream axial grid locations from the

downstream row grid. Finally, the downstream row grid is extended upstream by two

axial grid locations in the same fashion. This process is illustrated for a 2D radial slice in

Figure 2-2.

44

Initially generated

downstream H-grid

Downstream extension added

to upstream H-grid

Upstream extension added

to downstream H-grid

Initially generated

upstream H-grid

Common axial location
 Axial

 C
ir

cu
m

fe
re

n
ti

al

Figure 2-2. Generation of grid extensions for slip boundary condition

Post iterative update to upstream boundary of

downstream H-grid from upstream H-grid

Post iterative update to downstream boundary of

upstream H-grid from downstream H-grid Axial

 C
ir

cu
m

fe
re

n
ti

al

Figure 2-3. Post iterative update for slip boundary condition

45

The implicit portion of the slip boundary is applied as a dirichlet condition by setting the

associated RHS and off diagonal blocks to zero and the diagonal block to the identity

matrix. The post iterative update consists of setting values on the boundary to those of

the associated overlap grid locations as illustrated in Figure 2-3. The reason for

extending the grid overlap between adjacent blade rows by two grid locations rather than

by a single location is to ensure the boundary conditions do not interfere with one another

and produce spurious numerical oscillations. When the number of circumferential

locations is different between the upstream and downstream H-grids (as shown in the

illustrations), simple linear interpolation is used to obtain the value from the closest two

circumferential grid locations. This same linear interpolation with simple periodicity is

also used for cases when blade rows are rotating relative to one other. For such cases, the

circumferential and radial Cartesian velocities are first transformed into tangential and

normal velocities which are used for the interpolation, after which the circumferential and

radial Cartesian velocities are recovered based on the circumferential angle of the point

being interpolated.

 The circumferential periodic boundary condition between adjacent passages in the

same blade row employs an integrated implicit portion. This results in no modification of

the RHS or coefficient matrix blocks. Instead, all values calculated on the boundary use

quantities from ghost points created by the periodic condition, including the metrics of

coordinate transformation. Figure 2-4 illustrates the periodic condition along with the

ghost points for a 2D radial slice. In Figure 2-4, dashed lines show the cells formed by

the ghost points and the arrows indicate where values for the ghost points are taken from.

46

Similarly, the post iterative update is based on the periodic condition as well, but is

enforced at the boundary instead of the ghost points, as illustrated in Figure 2-5.

 Axial

 C
ir

cu
m

fe
re

n
ti

al

Figure 2-4. Illustration of circumferential periodic condition and ghost points

 Axial

 C
ir

cu
m

fe
re

n
ti

al

Figure 2-5. Post iterative update of circumferential periodic boundary

47

 The Chimera patch boundary condition between an O-grid and H-grid on which it

is overlaid, uses a dirichlet condition for the implicit portion. This is similar to what is

done for the axial slip boundary, except in addition to points on the boundary, points cut

from the interior of the H-grid to accommodate the O-grid are also “zeroed out” by

setting their associated RHS and off diagonal blocks to zero along with their diagonal

block to the identity matrix. To apply the post iterative update, values at the boundary

are interpolated from the overlapping grid using shape functions. The shape functions are

not only used for weighting the surrounding values for the interpolation, but also serve to

determine if a point being interpolated lies in the triangle formed by three points from the

overlapping grid. As an example, take the small section of the overlap between an H-grid

and O-grid for a 2D radial slice as illustrated in Figure 2-6.

 P

 1 2

 3 4

Figure 2-6. Section of overlap region between an O-grid and H-grid

In Figure 2-6, point P is on the boundary of the O-grid and for the post iteration update

the conservative variables at point P are interpolated from the portion of the H-grid which

encloses it, namely points 1 – 4. Figure 2-7 is a simplified illustration of this and

48

includes the location of the shape functions (N1-N6) which will be calculated, first to

determine which triangular half encloses point P and second to interpolate the values at

point P by weighting the contribution from each of the points in the triangular half

determined to enclosed point P. The reason for splitting the box which encloses point P

into two triangles is because the shape functions for a triangle can be calculated using

global coordinates. By contrast, the shape functions for a box require the use of local

coordinates based about the centroid of the box.

P

 1 2

 3 4
N4

 N5

 N6

 N3

 N2 N1

Figure 2-7. Simplified view of overlap region between O-grid and H-grid

The shape functions for the case illustrated in Figure 2-7 are as follows:

() () ()[]

() () ()[]

() () ()[]

() () ()[]

() () ()[]

() () ()[]

()

()






+=

−−−++=

−−−++=

−+−+−=

−+−+−=

−+−+−=

−+−+−=

−+−+−=

−+−+−=

−

z
y

zyyz

yzxyzxyzxyzxyzxyzxA

yzxyzxyzxyzxyzxyzxA

yzxxxyzyzyzxyzx
A

N

yzxxxyzyzyzxyzx
A

N

yzxxxyzyzyzxyzx
A

N

yzxxxyzyzyzxyzx
A

N

yzxxxyzyzyzxyzx
A

N

yzxxxyzyzyzxyzx
A

N

pp

pp

pp

pp

pp

pp

122

3423422443322

2312311332211

23322332

2

6

42244224

2

5

34433443

2

4

12211221

1

3

41144114

1

2

24422442

1

1

tan

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

(2-80)

49

Where A1 and A2 are the areas of the two triangles formed by points 1 2 4 and 2 3 4

respectively, and yz is the equivalent arc length at a fixed radius. All three shape

functions for the triangle which contains point P will have a value between 1 and 0. If

the triangle doesn’t enclose point P, at least one of the shape functions will have a value

outside this range. In Corsair, a simple brute force search is used to determine the

triangle to use for interpolating the values at each of the boundary points. However, the

shape functions give more information than just whether a point lies in or outside the

triangle formed by them, it also indicates which direction point P lies if it’s outside the

triangle. This idea is elaborated in Appendix B and used to speed up the search of

interpolation points, particularly when the O-grid and H-grid are moving relative to one

another. Given the three shape functions for the triangle in which point P lies (N1 N2 N3

in this case), the values at point P are interpolated via:

442211 ϕϕϕϕ ⋅+⋅+⋅= NNNp

(2-81)

Where φ represents the five conservative flow variables and the subscripts denote the

point location of the variable.

 When a clearance grid is used, boundary conditions are not only needed to

enforce continuity between the O-grid and clearance grid but also at the collapsed

centerline of the clearance grid. Both of these conditions arise in the eta sweep of the

clearance grid, with no modifications required to the solution of the O-grid. These

boundary conditions begin with the generation of the clearance grid, which is extended

by one constant eta “ring” such that the outer two rings of the clearance grid coincide

with the two inner most rings of the O-grid. Figure 2-8 illustrates this overlap of the

constant eta “rings” between the O-grid and clearance grid.

50

Figure 2-8. Illustration of overlap between an O-grid and clearance grid

The implicit portion of these boundary conditions involves using 10 ghost points in the

eta direction from the O-grid to extend the calculation of the clearance grid well into the

O-grid region. The primary reason for this is stability, since the number of constant eta

“rings” is often very small, especially for thin airfoils. Next the RHS and off diagonal

blocks for the first and last locations (i.e. j=1 and j=JM+10) are set to zero while the

associated diagonal block for these two locations is set to the identity matrix. After

solving the block tri-diagonal matrix, only values for the original clearance grid are

updated. Due to the eta extension into the O-grid, no post iterative update is needed at

the O-grid clearance grid interface. However, a post iterative update is required at the

collapsing centerline of the clearance grid to maintain continuity of the flow. This post

iterative update involves interpolating values at the collapsed centerline from the opposite

51

j=2 constant eta “ring”, as illustrated in Figure 2-9. The interpolation is a simple linear

one based on axial locations.

 j=2 “ring”

j=1 collapsed

centerline

 j=2 “ring”

Interpolate using these two

values to axial location of

opposite j=1 point.

Axial direction

Figure 2-9. Post iterative update of clearance grid collapsing centerline

 In this chapter, a detailed discussion of the solution method employed by Corsair

has been covered. An overset O-H grid topology based on curvilinear coordinates is used

upon which to solve the equations of motion on. The equations of motion are derived

from the three dimensional Navier-Stokes equations with a dual (or pseudo) time step to

improve convergence. After non-dimensionalization, the three dimensionally coupled

equations of motion are split into three one dimensional equations using an Approximate

Factorization. This results in a set of one dimensional equations with an explicit RHS

and an implicit LHS, which are then solved in succession along each curvilinear

coordinate using an Alternating Diagonal Implicit algorithm. In addition, a brief

discussion of the boundary conditions available in Corsair was given.

52

3. NUMERICAL EVALUATION OF

COORDINATE TRANSFORMATION METRICS

 As covered in the previous chapter, Corsair uses a body-fitted curvilinear

coordinate system to help generalize the equations of motion. To convert between these

curvilinear coordinates and actual spatial coordinates, a mapping in the form of

coordinate transformation metrics is used. While mathematical formula for these metrics

was given in the previous chapter, the actual numerical evaluation of these

transformations is a bit different and, as will be shown, more than one method for their

evaluation exists in the open literature. Additionally, the numerical evaluation of the

temporal metrics in the version of Corsair distributed by NASA is incomplete; it is based

on an assumption of only rigid fluid grid rotation about the axial centerline. The

deforming fluid grids ultimately arising from the FSI module require a complete

implementation of the temporal metrics. Thus, this chapter explores several methods in

the open literature for the numerical evaluation of both spatial and temporal metrics,

including comparisons of their performance when implemented in Corsair, with the best

method being used for the remainder of this research.

 The use of higher order finite difference schemes to solve non-trivial 3D

geometries demands that issues of free-stream preservation and metric cancellation be

carefully addressed. Such errors, which arise in the finite difference discretization of the

governing equations when written in the conservative form, can catastrophically degrade

53

the fidelity of second and higher order approaches [42,43]. By deriving the equations of

motion in conservative form, the following identities have been implicitly invoked:

() () () 0///1 =++= ζηξ ζηξ JJJI xxx

() () () 0///2 =++=
ζηξ

ζηξ JJJI yyy

() () () 0///1 =++= ζηξ ζηξ JJJI zzz

() () () () 0////14 =+++= ζηξτ ζηξ JJJJI ttt

(3-1)

(3-2)

(3-3)

(3-4)

The first three identities constitute a differential statement of surface conservation for a

closed cell, while the fourth identity expresses volume conservation and is often referred

to in the literature as the Geometric Conservation Law (GCL). While the definitions for

the coordinate transformation metrics given in Equation 2-18 were sufficient to derive the

equations of motions for body fitted curvilinear coordinates, they fail to satisfy these

metric identities due to the lack of metric cancellation, resulting in grid induced errors for

regions of large variation and near singularities. Two main methods have been

introduced in the CFD community for enforcing these metric identities for higher order

finite difference schemes.

3.1 Recasting in Conservative Form

Thomas and Lombard [44] proposed recasting the coordinate transformation

metric equations in a “conservative” form prior to discretization:

54

[] [] []ηζζηηζζηηζζη ξξξ)()()()()()(yxyxJxzxzJzyzyJ zyx −=−=−=

[] [] []ζξξζζξξζζξξζ ηηη)()()()()()(yxyxJxzxzJzyzyJ zyx −=−=−=

[] [] []ξηηξξηηξξηηξ ζζζ)()()()()()(yxyxJxzxzJzyzyJ zyx −=−=−=

(3-5)

When the transformation metrics are recast in this manner and the derivatives are

evaluated with the same high-order formulas employed for the fluxes, free-stream

preservation is recovered in general time-invariant 3D curvilinear geometries [45].

 For deforming and moving grids, identity I4 must also be satisfied to eliminate

metric cancellation errors and to ensure free-stream preservation. As distributed, Corsair

does not take this into account since the only rigid grid motion around the axial centerline

of the geometry is used and thus there is no grid deformation. However, since the FSI

module being linked to Corsair will introduce both grid deformation and grid motion

other than around the axial centerline, the physical time step derivative in Equation 2-16

is split using the chain rule of differentiation as follows:

() () ()ττττ JQQJJQQ 11
~

⋅+⋅==

(3-6)

The reason for applying this only to the physical time step is that all grid point locations

are held fixed during the pseudo time step. To incorporate this modification into Corsair,

the time derivative of the inverse Jacobian is calculated at the beginning of each physical

time step and simply combined with the RHS. Instead of attempting to compute the time

derivative of the inverse Jacobian directly from the grid coordinates at various time levels

(either analytically or numerically), the GCL identity I4 is invoked to evaluate ()τJ1 :

55

() () () ()[]
ζηξτ ζηξ JJJJ ttt ++=1

(3-7)

Where the time metrics are defined as:

() () ()[]

() () ()[]

() () ()[]JzJyJxJ

JzJyJxJ

JzJyJxJ

zyxt

zyxt

zyxt

////

////

////

ζζζζ

ηηηη

ξξξξ

τττ

τττ

τττ

++−=

++−=

++−=

(3-8)

In many practical applications involving deforming grids (such as the dynamic

aeroelastic FSI model developed), the grid speeds are not known a priori and must

therefore be approximated to the desired degree of accuracy using the evolving

coordinates at several time levels. Higher order finite difference schemes retain their

superior accuracy on rapidly distorting grids when this procedure is used to determine the

time metrics [46].

3.2 Finite Volume Concept

 An alternate approach to enforcing the metric identities and thus preserving free-

stream capturing in high order finite difference schemes is the finite volume to finite

difference concept proposed by Vinokur [47]. In this approach, the coordinate

transformation metrics represent normal surfaces and the Jacobian becomes the inverse of

the volume formed by these surfaces. This approach begins with the derivation of the

finite volume formulation, which is then adapted to the finite difference grid. The

integral form of the metric identities can be written as:

∫ =
S

dSn 0 (3-9)

56

dtdSvntVtV c

t

t
tS

⋅=− ∫ ∫
2

1

)(
12)()(

(3-10)

where S represents the cell surface, n is the normal to the surface, V is the volume of the

cell, and vc represents the surface velocity relative to the non-inertial frame but expressed

in the inertial frame. The first identity is a mathematical expression for a closed cell

while the second identity represents the conservation of volume for a time-varying cell

from time t1 to time t2. By applying the same curvilinear coordinate transformation as

used with the governing equation of motion, these two expressions take the following

differential form for a finite volume:

() () ()

() () ()ζτ
ζ

ητ
η

ξτ
ξ

τ

ζ
ζ

η
η

ξ
ξ

rSrSrSV

SSS

⋅+⋅+⋅=

=++ 0

(3-11)

(3-12)

 Where the surfaces and volume are related to the metric derivatives and Jacobian by:

[]

[]

[]

[]

J
rrrV

J
rrS

J
rrS

J
rrS

zyxr

T

zyx

T

zyx

T

zyx

T

1

1

1

1

=×⋅=

=×=

=×=

=×=

=

ζηξ

ηξ
ζ

ξζ
η

ζη
ξ

ζζζ

ηηη

ξξξ

(3-13)

Figure 3-1 shows a regular hexahedral cell for a finite volume, where all the edges are

assumed to be straight lines.

57

 ξ

 η
 ζ

 Sξ

1

 5

6 7

8

4

2 3

Figure 3-1. Geometry of a finite volume hexahedral cell

From Figure 3-1, the surface vectors are given by:

() ()

() ()

() ()42132
1

18452
1

25162
1

rrrrS

rrrrS

rrrrS

−×−=

−×−=

−×−=

ζ

η

ξ

(3-14)

Note that the surface vectors are taken in the positive coordinate direction so as to satisfy

the geometric identities on the hexahedron. The surface vector evaluations in Equation 3-

14 can be regarded as the evaluation of the free-stream capturing metrics for a stationary

grid.

Next the standard time metrics are considered using finite volume notation:

τ
ζ

τ
η

τ
ξ

ζ

η

ξ

rS
J

rS
J

rS
J

t

t

t

⋅−=

⋅−=

⋅−=

(3-15)

58

Unfortunately, it has been shown that time metrics in equation 3-15 will not maintain the

free-stream even with the use of free-stream capturing metrics [48]. Even worse, such

inconsistent time metrics do not satisfy the GCL. To demonstrate this, consider Equation

3-12, which represents the GCL in finite volume. Now let the grid move in the rigid

rotation, that is Vτ = 0 and rτ = U x r. Then the left hand side of Equation 3-12 is zero,

but the right hand side results in () () () 0≠×+×+× ζ
ζ

η
η

ξ
ξ SrSrSr . This indicates that

the use of the GCL condition (Equation 3-12) for computing Vτ can be erroneous. In

other words, the GCL condition is necessary to preserve the free-stream, but not

sufficient to construct consistent metrics in space and time. Fortunately, this can be

overcome by redefining the time metrics as the time averaged volume swept by the

surface [47]:

t

V
dtrS

tJ

t

V
dtrS

tJ

t

V
dtrS

tJ

S
t

t

t

S
t

t

t

S
t

t

t

∆
−=⋅

∆
−=

∆
−=⋅

∆
−=

∆
−=⋅

∆
−=

∫

∫

∫

ζ

η

ξ

τ
ζ

τ
η

τ
ξ

ζ

η

ξ

2

1

2

1

2

1

1

1

1

(3-16)

To demonstrate this, let S(t1) = S1562 and S(t2) = S1’5’6’2’ as illustrated in Figure 3-2. The

volume swept by the xi surface vector between time t1 and time t2 becomes:

() ()1'61562'1'1225'5'113
1

'5'566'1'122 rrSSSVV
S

−⋅++==ξ (3-17)

59

 1

 2

 6

 5
 2’

 1’

 5’

 6’

 S(t1)

 S(t2)

Figure 3-2. Volume swept by a surface

It is worth noting that the time metrics defined by Equation 3-16 contain all information

about the movement of a cell surface, including translation, rotation, and deformation.

By contrast, the time metrics in Equation 3-15 are a simple product of the surface area

and velocity of the cell centroid, thus they can only represent translational motion. As

with the previous discussion of the Thomas and Lombard approach, the physical time

step derivative in Equation 2-16 is split using the chain rule of differentiation as per

Equation 3-6. However, the time derivative of the inverse Jacobian now takes the

following form using the metric identity Equation 3-12 with the modified time metrics

just discussed:






















∆
+









∆
+









∆
−==









ζηξ

τ

τ

ζηξ

t

V

t

V

t

V
V

J

SSS
1

 (3-18)

To apply the previous discussion to a finite difference grid, the edges of the

hexahedron in Figure 3-1 are redefined as a double sized cell in the finite difference grid

60

(i.e. 1,1,181,1,131,1,121,1,11 ,,,, +−+++−−+−−−− ==== kjikjikjikji rrrrrrrr L). Since the

surfaces are now effectively quad sized, the surface vectors defined in Equation 3-14

must now be divided by a factor of four and the volume of the cell by a factor of 8. In

order to obtain higher accuracy, the surfaces are evaluated at the center of the hexahedron

as described in reference[48]:

() ()

() ()

() ()
kjikjikjikjikji

kjikjikjikjikji

kjikjikjikjikji

rrrrS

rrrrS

rrrrS

,1,1,1,1,1,1,1,18
1

,,

1,,11,,11,,11,,18
1

,,

1,1,1,1,1,1,1,1,8
1

,,

−++−−−++

−−++−++−

−++−−−++

−×−=

−×−=

−×−=

ζ

η

ξ

(3-19)

This helps obtain higher accuracy by relaxing the “straight line edge” requirement for the

hexahedron mentioned earlier, since the line between any three successive points on a

finite difference grid will mostly likely not be straight. For convenience of comparison

with the standard definition, the spatial metric derivatives at point (i, j, k) are evaluated

as:

()[] ()[]
()[] ()[]
()[] ()[]
()[] ()[]
()[]

kjikjikjikjikjikji

kjikjikjikjikjikji

kjikjikjikjikjikji

kjikjikjikjikjikji

kjikjikjikjikjikji

kjikjikjikjikjikji

z

yx

zy

xz

yx

zzdzyydyxxdx

zzdzyydyxxdx

zzdzyydyxxdx

zzdzyydyxxdx

zzdzyydyxxdx

zzdzyydyxxdx

dxdydydxJ

dzdxdxdzJdydzdzdyJ

dxdydydxJdzdxdxdzJ

dydzdzdyJdxdydydxJ

dzdxdxdzJdydzdzdyJ

,1,1,1,16,1,1,1,16,1,1,1,16

,1,1,1,15,1,1,1,15,1,1,1,15

1,,11,,141,,11,,141,,11,,14

1,,11,,131,,11,,131,,11,,13

1,1,1,1,21,1,1,1,21,1,1,1,2

1,1,1,1,11,1,1,1,11,1,1,1,1

65658
1

65658
1

65658
1

43438
1

43438
1

43438
1

21218
1

21218
1

21218
1

−++−−++−−++−

−−++−−++−−++

+−−++−−++−−+

−−++−−++−−++

−++−−++−−++−

−−++−−++−−++

−=−=−=

−=−=−=

−=−=−=

−=−=−=

−=−=−=

−=−=−=

−=

−=−=

−=−=

−=−=

−=−=

ζ

ζζ

ηη

ηξ

ξξ

(3-20)

61

 From Equations 3-13, the volume of the hexahedron cell must be calculated in

order to obtain the Jacobian. While numerous formulas exist for this calculation, the two

most efficient numerical algorithms are the Long Diagonal (LD) method and the Tetrakis

Hexahedron (TH) method [49]. The LD method splits the hexahedron into six tetrahedra,

but introduces directional preferences along the diagonals selected for triangulation,

resulting in a broken symmetry which is undesirable from a physics standpoint. The TH

method preserves the diagonal symmetry by defining an additional vertex at the

barycenter of each face, but as a result requires more floating point operations or flops,

72 compared to 60 for the LD method. The formulas for these methods using the double

sized cell edges are given in Equations 3-21 and 3-22.

() (){ ()}
(){ () ()}
(){ () ()}1,1,11,1,11,1,11,1,11,1,11,1,1

1,1,11,1,11,1,11,1,11,1,11,1,1

1,1,11,1,11,1,11,1,11,1,11,1,18
3

−−−+++−−+−+−−−−−++

−−−+++−−−+−+−−++−−

−−−+++−+−+−−−−−++−

−⋅−×−+

−⋅−×−+

−⋅−×−=

kjikjikjikjikjikji

kjikjikjikjikjikji

kjikjikjikjikjikjiLD

rrrrrr

rrrrrr

rrrrrrV

(3-21)

() ()[]{ []
[]}
[]{ ()[()]
[]}
[]{ []
() ()[]}1,1,11,1,11,1,11,1,1

1,1,11,1,11,1,11,1,1

1,1,11,1,1

1,1,11,1,11,1,11,1,11,1,11,1,1

1,1,11,1,1

1,1,11,1,11,1,11,1,11,1,11,1,18
12

−−−−++−−−+++

−−−+−+−−++++

+−−+++

−−−+−+−+−+++−−−++−

−−−−++

−+−+++−−−++−−−++++

−+−⋅

−×−+

−⋅

−+−×−+

−⋅

−×−+−=

kjikjikjikji

kjikjikjikji

kjikji

kjikjikjikjikjikji

kjikji

kjikjikjikjikjikjiTH

rrrr

rrrr

rr

rrrrrr

rr

rrrrrrV

(3-22)

Taking special note of Equation 3-15 with reference to Equation 3-19, the number of

flops for the LD method can be considerably reduced by reusing the calculated surfaces

of the spatial derivatives of the metrics. In addition, the LD and TH methods for

computing the volume of a cell can also be used for calculating the volume swept by each

62

surface vector to obtain the time metrics. In comparison with the Thomas and Lombard

approach of recasting the metrics in conservative form, the finite volume concept has the

advantage of not being dependent on the differencing scheme used for the fluxes.

3.3 Performance Investigation

 As distributed by NASA, Corsair uses the finite volume concept for the spatial

derivative metrics along with Equation 3-15 for the evaluation of time metrics. However

as shown in reference [48], the resulting time metrics are then inconsistent. In addition,

since grids are not allowed to deform in the version of Corsair distributed by NASA, the

time derivative of the Jacobian is not included in the time derivative of the solution

vector Q.

 An investigation of the two methods just discussed for evaluating both the spatial

and temporal metrics was performed using the procedure in reference [50], the results of

which were then used to determine the best method to implement in Corsair to correct the

metric calculation deficiencies. For these test, all boundary conditions were turned off

and Corsair was compiled with double precision (15 digits) floating point accuracy. To

ensure all boundary conditions had been turned off, an uniform flow field (u=1, v=w=0)

was marched in time on a 21x21x21 uniform grid with unity spacing between adjacent

points (which effectively sets the metrics to unity) for 200 time steps with a ∆t of 0.05.

As expected, there was no variation in the v and w velocities from their initial values of

zero. The procedure in reference [50] involves reproducing this same free-stream flow,

but on a heavily distorted or wavy 3D grid. Error is measured as maximum variation in

63

the v and w velocities from zero. The wavy 3D grid used for these tests is defined by the

following formulae:

() () ()

1
;

1
;

1
;1;1;1

)1(
sin

)1(
sin)2sin()1()(

)1(
sin

)1(
sin)2sin()1()(

)1(
sin

)1(
sin2sin1

000

00
0min,,

00

0min,,

00

0min,,

−
=∆

−
=∆

−
=∆===

























 ∆−







 ∆−
+−∆+=
















 ∆−







 ∆−
+−∆+=



















 ∆−












 ∆−
+−∆+=

KL

L
z

JL

L
y

IL

L
xKLkJLjILi

L

yjn

L

xin
Akzzz

L

zkn

L

xin
Ajyyy

L

zkn

L

yjn
Aixxx

zyx

y

zy

x

zx
zkji

z

yz

x

yx

ykji

z

xz

y

xy

xkji

KKK

ππ
πωττ

ππ
πωττ

ππ
πωττ

 (3-23)

To begin with, a stationary 3D wavy grid as shown in Figure 3-3 was generated from

Equation 3-23 by setting the parameters IL=JL=KL=21, Ax=Ay=Az=1, Lx=Ly=Lz=4,

nxy=nyz=…=nzy=4, ω=1, and τ=0.25 (the time at which maximum displacement occurs).

Figure 3-3. Three-dimension wavy grid

64

This grid was then used to evaluate the performance of the spatial derivative metrics. An

initial solution of uniform flow (u=1, v=w=0) was then marched in time for 50 time steps

with a ∆τ=0.05 using first, second, and third order spatial accuracy with three Newton

sub-iterations. The resulting maximum deviations of the v and w velocities from zero for

the various methods and spatial accuracy are displayed in Table 3-1.

 1
st
 Order 2

nd
 Order 3

rd
 Order

Standard Definition 7.271E-2 1.011E-1 1.162E-1

Conservative Recasting 7.463E-14 1.085E-14 1.140E-14

FV Concept w/ LD 5.859E-16 6.320E-16 6.358E-16

FV Concept w/ TH 5.122E-16 6.154E-16 5.215E-16

Table 3-1. Free-stream preservation errors for stationary 3D wavy grid

As expected, the largest error occurs for the standard definition of the metrics given in

Equation 2-18. While the conservatively recast metrics of Thomas and Lombard show

significant improvement compared to the standard definition, they are not quite as

accurate as the finite volume concept. This may be due to the accumulation of numerical

or round off error, as the conservative recasting method does entail significantly more

numerical operations than the finite volume concept. There is little to no difference

between the long diagonal (LD) and tetrakis hexahedron (TH) methods used to calculated

volumes in the finite volume concept method. However, the long diagonal does have the

advantage of requiring significantly fewer flops since the surface vectors can be reused in

calculating the volume of the cell.

65

 Next, the ability of each method to preserve the free-stream on a dynamically

deforming curvilinear grid was tested. Again, the wavy 3D grid described by Equation 3-

23 was used but with the following parameters: IL=JL=KL=31, Ax=Ay=Az=1.5,

Lx=Ly=Lz=12, nxy=nyz=…=nzy=4, and ω=1. An initial uniform flow solution was

marched in time with a ∆τ=0.005 for 50 time steps with the grid deformed at each time

step according to Equation 3-23. Thus, the 3D grid begins with a uniform spacing of 0.4

between adjacent points but ends up with the maximum deformation similar to Figure 3-3

after 50 time steps. As with testing of the spatial metric derivatives, this simulation was

run for first, second, and third order spatial accuracy with different combinations of

temporal and spatial metric derivative calculation methods. The resulting maximum

deviation of v and w from their initial value of zero for each combination is shown in

Table 3-2 and is used to gauge their performance.

Spatial Method Temporal Method 1
st
 Order 2

nd
 Order 3

rd
 Order

Corsair (No Jτ Correction)

FV Concept (LD) & Std. Def.

6.865E-2 8.552E-2 8.813E-2

Std. Def. Std. Def. 4.396E-3 4.783E-3 4.718E-3

Std. Def. VS(LD) 3.945E-3 4.541E-3 4.489E-3

Conserv. Recast Std. Def. 6.506E-8 3.944E-13 2.613E-13

Conserv. Recast VS(LD) 2.321E-9 1.283E-13 1.022E-13

FV Concept (LD) Std. Def. 6.020E-9 1.461E-14 2.613E-14

FV Concept (LD) VS(LD) 7.052E-11 2.928E-15 1.385E-16

FV Concept (TH) VS(TH) 5.625E-11 2.344E-15 1.254E-16

Table 3-2. Free-stream preservation errors for deforming 3D wavy grid

In Table 3-2, the first method tested is the unmodified version of Corsair in which the

Jacobian is assumed not to change with time. The remainder of Table 3-2 is split up into

66

combinations of methods for evaluating the spatial and temporal metric derivatives. For

spatial methods, Std. Def. is the standard definition given by Equation 2-18, Conserv.

Recast is the conservatively recast form of the spatial metrics given by Equation 3-5, and

FV Concept (LD) & FV Concept (TH) are the finite volume concept given in Equation

3-19 with the volume of the hexahedron calculated using the long diagonal and tetrakis

hexahedron methods, respectively. For the temporal methods, Std. Def. is the standard

definition given in Equation 3-8, and VS(LD) & VS(TH) are the finite volume concept of

a volume swept by the surface vectors given in Equation 3-16 using the Long Diagonal

and Tetrakis Hexahedron formulae respectively.

Results for the unmodified version of Corsair illustrate the importance of

including the temporal derivative of the Jacobian in the temporal derivative of the

solution vector Q, even with a high order spatial metric derivative method. Along similar

lines, the results using the standard definition for the spatial metric derivatives show large

errors, regardless of the spatial metric derivative method used. The conservative

recasting method for the spatial metric derivatives shows marked improvement over the

standard definition, but still has a larger error than the finite volume concept method. A

slight improvement gain for the conservative recasting method is shown when paired

with the swept volume idea from the finite volume concept method for calculating the

temporal metric derivatives. Most likely, this improvement is the result of accounting for

deformation of the spatial metrics between time steps. When paired with the standard

definition for the temporal metric derivatives, the finite volume concept using long

diagonals results in error similar to that for the conservatively recast metrics method.

However, when the finite volume method for spatial metric derivatives is paired with the

67

swept volume method for the temporal metric derivatives, the error is noticeably reduced.

Lastly, there appears to be very little difference in terms of error between using the long

diagonal or tetrakis hexahedron methods for calculating volumes when the finite volume

concept is used for both spatial and temporal metric derivatives.

In this chapter, three numerical methods for the evaluation of the coordinate

transformation metrics were investigated for use in Corsair. These methods included the

standard analytical form, the conservatively recast form, and the finite volume to finite

difference concept. Each method was examined using a highly distorted static and

dynamically deforming, wavy grid for spatial and temporal metrics respectively. The

error associated with each method was quantified as the maximum deviation of non-axial

velocities from zero when performing a uniform axial free-stream reproduction test. In

addition, combinations of spatial and temporal methods were compared, including use of

long diagonals and tetrakis hexahedrons for the calculations of volumes in the finite

volume to finite difference method. Results clearly show that the standard analytical

form produces significant free-stream errors when deformed three dimensional grids are

used with a finite difference solver. Hence the standard analytical form of the metrics

should be avoided when using a finite difference solver with a deformed curvilinear grid.

While the conservatively recast method significantly reduced these errors, the finite

volume to finite difference concept was able to reduce them even further and with fewer

floating point operations. Although the tetrakis hexahedron method showed slightly

better results, it requires significantly more floating point operations than the long

diagonal method when reusing the surface vectors (spatial metric derivatives) in

computing the temporal metric derivatives (swept volumes). Thus, the finite volume

68

concept with long diagonals was chosen to correct the metric calculation deficiencies in

Corsair.

69

4. WALL FUNCTION

As outlined in Section 1.1, one of the main objectives required in order for the

resulting aeroelastic solver to be used as a design tool is reduction of the time required to

run a simulation. One of the most direct ways of achieving this is simply to reduce the

total number of grid points used in the simulation, since the runtime is directly

proportional. In a typical Corsair simulation, the grid density near solid surfaces is

intentionally high in order to accurately calculate the shear stress using a finite difference

approach, a technique commonly known as gridding to the wall. Accurate calculation of

the shear stress is critical, as it is used for calculation of turbulence in the flow and

additionally will be utilized by the FSI module to determine the aerodynamic forces on

the blade surface. By replacing the finite difference calculation of the shear stress with

one based on empirical data (i.e. a wall function), the number of grid points near solid

surfaces and thus the total number of grid points can be substantially reduced while still

obtaining accurate shear stresses. This chapter covers the wall function added to Corsair

for the current research, including the use of the shear stress in the turbulence model, and

a comparison of the two shear stress methods using a fourth standard configuration

turbine blade.

70

4.1 Background Boundary Layer Theory

In the 1930s, Prandtl and Von Karman deduced that turbulence consists of three

separate layers: a very small inner layer next to the surface where viscous (molecular)

shear is dominant termed the laminar sub-layer, an outer layer where turbulent (eddy)

shear is dominant called the fully turbulent zone, and a transition layer called the buffer

zone [51]. It is common in turbulence modeling to regroup these three layers into just

two regions, an inner region which includes the laminar sublayer, the buffer layer, and

part of the fully turbulent zone, and an outer region which consists of the remaining part

of the fully turbulent zone [52]. To delineate between these two regions, a non-

dimensional coordinate y
+
 of approximately 400 is taken to be the upper limit of the inner

region, where y
+
 is defined as

wall

wallwally
y

µ

τρ
=+

(4-1)

Here, y is the normal distance from the wall, ρwall is the density at the wall, τwall is the

shear stress at the wall, and µwall is the laminar viscosity at the wall.

The unsteady Navier-Stokes equations fully describe the fluid flow field including

turbulence, but require resolving very small spatial and temporal details in order to

correctly model turbulence. A common approach used in order to obtain meaningful

results with reasonable grid densities is to average the equations of motion over relatively

small time periods [52]. This results in the Reynolds Averaged Navier-Stokes (RANS)

form of the equations of motion with apparent stresses due to the time unsteadiness.

Boussinesq introduced a hypothesis, commonly referred to as the Boussinesq assumption,

which simply states that the apparent stress can be related to the strain multiplied by the

turbulent viscosity [52]. Thus, to include the effects of turbulence, the molecular

71

viscosity µ in the stress terms of the Navier-Stokes Equations is replaced by (µl + µt) and

the term (µ / Pr) in the heat conduction term is replaced by (µl / Prl + µt / Prt), where the l

and t subscripts denote laminar and turbulent quantities respectively. By using this

approach, the Navier-Stokes equations remain unchanged in form. For air, the turbulent

Prandtl number, Prt, and the laminar Prandtl number, Prl, are generally taken to be 0.9

and 0.74 respectively. The laminar viscosity is generally modeled by Sutherland’s law,

where µl is a function of the local static temperature [51]. However, the turbulent

viscosity, µt, is not so easily determined and as a result, several turbulence models have

been developed over the years to solve for this term in order to close the RANS

formulation of the equations of motion.

4.2 Algebraic Model

Zero-equation turbulence models use equations where the turbulent fluctuating

correlations are related to the mean flow field quantities by algebraic relationships. The

underlying assumption in such models is that the local rate of turbulence production is

approximately equal to the rate of turbulence dissipation. Furthermore, they do not

include convection of turbulence. Obviously, this is contrary to the physics of most flow

fields, since the past history of flow must be accounted for. However, these models are

mathematically simple and their incorporation into a numerical code is relatively easy to

accomplish. One of the most commonly used zero-equation turbulence models is the

Baldwin-Lomax model [53]. In this two-layer model, the turbulent viscosity µt is

described by

72









>

≤
=

−

−

crossoveroutert

crossoverinnert

t
ss

ss

µ

µ
µ

(4-2)

Where s is the distance normal to the surface and scrossover is the smallest value at which

µt-inner equals µt-outer. In the inner region, the turbulent viscosity is calculated using the

Prandtl-Van Driest formulation

ωρµ 2lt = (4-3)

where ω is the vorticity defined as

y

u

x

v

∂

∂
−

∂

∂
=ω

(4-4)

and the mixing length l is given by














−=









− +

+

A

y

eyl 1κ

(4-5)

Here, κ is the Von Karman constant (~0.41) and A
+
 is a parameter which depends on the

streamwise pressure gradient and has a value of 26 for zero-pressure gradient flows.

However, Granville [54] has provided a review of alternative formulae which may

be used in order to account for the presence of pressure gradients and surface roughness.

He proposed the following formula for the mixing length to most closely match

experimental data
















−=













 +−
++

26
1

*
1

bPy

eyl τκ

(4-6)

where b is set to 14.0 for P
+
 < 0 (favorable pressure gradient) and to 16.4 for P

+
 > 0

(adverse pressure gradient). The parameter P
+
 represents the pressure gradient and is

defined as

73

() x

P

u
P

wall
∂

∂













=+

3*ττρ

ν

(4-7)

Here, ν is the kinematic viscosity and τ
*
 represents the non-dimensional total shear stress

close to the wall and is given by

+++= yP1*τ (4-8)

The turbulent viscosity in the outer region is approximated by

KlebwakeCPt
FFCαρµ = (4-9)

where α is the Clauser constant and usually assigned a value of 0.0168 for flows in which

the momentum thickness Reynolds number is greater than 5000, and

()







 ∆
=

max

2

maxmaxmax ,min
G

V
yCGyF

wakewake

(4-10)

Typically, Cwake is given a value of 0.25 and the term ymax is the value of y corresponding

to the maximum value of G, denoted Gmax, across the layer where

()













−==









− +

+

A

y

ey
l

yG 1ωω
κ

(4-11)

 The difference between the absolute values of the maximum and minimum velocities

within the viscous region is denoted by ∆V. For wall bounded flows, the minimum

velocity occurs at the surface where the velocity is zero, thus

() 2
1

222 wvuV ++=∆
(4-12)

For shear layer flows, ∆V is defined as the difference between the maximum velocity and

the velocity at the ymax location, hence

() () 2
1

2222
1

max

222

maxy
wvuwvuV ++−++=∆

(4-13)

74

FKleb is an intermittency factor which provides additional smoothing and is defined as

1
6

max

5.51

−























+=

y

yC
F Kleb

Kleb

(4-14)

and as before, ymax is the y location where Gmax occurs. Typical values for the Klebanoff

constant CKleb and CCP are 0.3 and 1.6, respectively, for zero to mild pressure gradients.

However, according to Granville [55], these “constants” should really be variable and

suggest a fit to known properties of Cole’s wake law and equilibrium pressure gradients

*1724.0

01312.0

3

2

β−
−=

Kleb
C

(4-15)

where

x

V

u

y

t ∂

∂
= max*β

(4-16)

and ut is the friction velocity. The velocity gradient in β
*
 is calculated outside the viscous

region. Once the Klebanoff constant has been evaluated, CCP is calculated using

()3322

43

KlebKlebKleb

Kleb

CP
CCC

C
C

+−

−
=

(4-17)

This modification is believed to give the Bawin-Lomax model accuracy comparable to

the mixing-length and Clauser iterative models.

Corsair uses the modified version of the Baldwin-Lomax turbulence model just

discussed. Additional modifications, based on the developers’ experience with

compressor and turbine geometries, are also employed in Corsair [56]. First, the

equations are applied along grid lines rather than normals to the surface. This avoids the

calculation of all the normal distances and the interpolation of flow variables. Second,

the switchover location between the inner and outer models is not allowed to move more

75

than a specified number of grid points between adjacent streamwise locations. In

addition, a second derivative smoothing function is used on the turbulent viscosity field

in separated flow regions. This eliminates non-physical gradients in the turbulent

viscosity near separation points. Thirdly, a cutoff value is imposed on the turbulent

viscosity (nominally 1200 times the free-stream laminar viscosity). Finally, a limit is

imposed on scrossover in order for it not to occur too far beyond the wall.

4.3 Wall Function Model

Implementation of the Baldwin-Lomax turbulence model requires the wall shear

stress. In the original form of Corsair distributed by the NASA Marshal Space Flight

Center, the wall shear stress is calculated using a finite difference approach. This

requires a very fine grid spacing, or clustering, to be used near solid surfaces such as the

hub, shroud, and blade, in order to resolve the entire boundary layer (y
+
 ~ 2) and obtain

the correct shear stress. In addition, this fine grid spacing requires a significantly small

time step in order to maintain stability via the CFL law [52]. To overcome these

limitations, wall functions have been implemented in Corsair. Wall functions make use

of empirical data to determine the wall shear stress based on the Reynolds number at a

normalized distance away from the wall. By using this empirical relationship, the grid

needs only to be fine enough near the surface to ensure the log-linear correlation is valid.

According to turbulent boundary layer theory, the inner layer obeys the following

relationship at the wall:

++= uyRe (4-18)

76

where y
+
 is the inner region normalized distance, u

+
 is the inner region normalized

velocity, and Re is the local Reynolds number just above the surface. The relationship

between u
+
 and y

+
 is well known from experimental work of turbulent water flow in

smooth pipes [51]. Additionally, Spalding devised a single composite formula which

describes this relationship for the entire wall-related region [57]:

() ()












−−−−+=

++
+−++ +

62
1

32

uu
ueeuy ub κκ

κκκ
(4-19)

In the Equation 4-19, κ is the Von Karman constant and assigned the value of 0.41 while

b is the logarithmic friction law constant and is typically given a value of 5.5 for

hydraulically smooth surfaces. The first part of Equation 4-19 represents the viscous

sublayer (y
+
 = u

+
), while the second half represents the buffer and logarithmic layers.

This formula blends the three regions in a smooth fashion, which shows excellent

agreement with experimental data up to a y
+
 of ~500, where a slight wake occurs [51].

 Implementation of wall functions in Corsair starts with a calculation of the local

Reynolds number at the first grid point away from the surface:









=

l

yW

µ

δρ
Re

(4-20)

where δy is the normal distance from the surface, W is the relative velocity vector, and ρ

is density. A curve fit to the u
+
- y

+
 relationship from Spalding’s formula along with

Equation 4-1, is then used to determine u
+
 and y

+
 from the calculated local Reynolds

number. Once u
+
 is known, the shear stress at the wall is given by:

+
=

u

W
w

2ρ
τ

(4-21)

In addition, the local skin friction coefficient can also be calculated according to:

77

()2

2
+

=
u

C f
(4-22)

In terms of the inner law-of-the-wall distance, y+, a maximum value of ~500 can now be

used with wall functions versus a maximum of ~2 without.

4.4 Surface Roughness

 Surface roughness (resulting from deposits, erosion, or finishing) can have a

significant effect on the aerodynamic performance of turbomachinery [58,59]. This

effect comes from the break up of the thin viscous sublayer, which increases the wall

friction and thus changes the location of transition from laminar to turbulent flow. Since

surface roughness can greatly change the location of transition, it is important to include

its effect in the turbulence model. The simplest way to incorporate surface roughness in

most turbulence models is through the computation of the wall stress via the wall friction.

In Corsair, such a method described by Shabbir and Turner is utilized [60].

The effect of surface roughness enters Spalding’s formula, Equation 4-19, via the

logarithmic friction law constant b. It is important to note that this limits the effect of

surface roughness to the buffer and logarithmic layers. However, since the lower buffer

layer and laminar sublayer have been blended in Spalding’s formula, the effects of

surface roughness can be applied to the upper part of the buffer layer, at best. Thus, this

limits the minimum y
+
 for inclusion of surface roughness effects in the wall function

using Spalding’s formula to ~20 [60].

The sand roughness experiments of Nikuradse characterized the effect of

roughness on the velocity profile by the equivalent sand roughness Reynolds number

defined as:

78

w

ws

s

k
k

µ

ρτρ
=+

(4-23)

where ks is the equivalent sand roughness height [61]. The surface is considered

hydraulically smooth if 5≤+
sk and is considered completely rough if 70≥+

sk . The

range in between, 705 << +
sk , is the known as the transition range. Based on the

measurements of Nikuradse, the logarithmic friction law constant can be expressed as a

function of surface roughness:

()+−= skBb ln5.2 (4-24)

where the coefficient B has been determined experimentally for a range of surface

roughness values. For hydraulically smooth and rough surfaces, B is a function of +
sk ,

but for completely rough surfaces it is a constant with an average value of 8.5.

 In the work of Shabbir and Turner, families of curves are plotted for the variation

of the skin friction coefficient as a function of local Reynolds number for various surface

roughness values, where the coefficient B was obtained from reference [61]. This plot is

reproduced here as Figure 4-1 and also includes lines of constant ++ yks . This data was

used to plot the local Reynolds number as a function of the ration between surface

roughness to the first grid point height above the surface (++ yks) for different values of

surface roughness, reproduced here as Figure 4-2. Given these two plots, the local

Reynolds number, and the ratio of surface roughness to the first grid point height above

the surface (++ yks), the skin friction coefficient can be determined explicitly. To aid in

programming this method, the plots in Figures 4-1 and 4-2 have been curve fitted using

polynomials.

79

Figure 4-1. Skin friction coefficient as a function of local Reynolds number

Figure 4-2. Local Reynolds number as a function of surface roughness to grid height ratio

80

 For a given grid and surface roughness, the ratio ykyk ss =++ is fixed. The

corresponding local Reynolds number then determines one of three possible surface

conditions and the associated skin friction. First, a calculation of Resmooth is made from a

curve fit to Figure 4-2 for +
sk = 5. If the local Reynolds number is equal to or smaller

than Resmooth then the surface is hydraulically smooth and a curve fit to the skin friction

coefficient is made from Figure 4-1. If the surface is found not to be hydraulically

smooth, then it is checked to see if it is completely rough. To determine this, Rerough is

calculated from the curve fit for +
sk = 70 in Figure 4-2. if the local Reynolds number is

equal to or greater than Rerough, then the surface is completely rough and the skin friction

coefficient is computed from a curve fit for +
sk = 70 in Figure 4-1.

If the surface is not hydraulically smooth or completely rough, then it is obviously

in the transition region. For this case, the skin friction coefficient is calculated in three

steps. In the first step, ++ yks along with the local Reynolds number Re are used in

conjunction with Figure 4-2 to determine which two lines (out of the seven) encompass

the surface under consideration, call these two associated Reynolds numbers Re1 and Re2.

In the second step, the corresponding lines on Figure 4-1 are identified and the skin

friction coefficients, call them Cf1 and Cf2, are calculated from their curve fits. In the

third step, the desired skin friction coefficient Cf is obtained with a simple linear

interpolation:

()
()

()1

12

12

1 ReRe
ReRe

−
−

−
+= ff

ff

CC
CC

(4-25)

81

4.5 Test Case

 To test the implementation of these wall functions, an appropriate test case is

required. A typical case used to test both the implementation of wall functions and

turbulence models is a flat plate [62,63]. In such test cases, free-stream conditions such

as pressure, temperature, and Mach number are specified and the numerical results

compared to either analytical or experimental data for skin friction at the wall surface. A

major drawback to this particular type of test case involves the difficulty of generating an

O-grid for an infinitely thin flat plate. In addition, the skin friction coefficients used in

the wall function are experimentally obtained from tests on flat plates, making such a test

redundant.

 Instead, a more realistic turbomachinery test case involving the fourth standard

configuration (STCF4) is used to test the wall function implementation in Corsair. The

fourth standard configuration represents a typical section of a modern free standing

turbine, with relatively high blade thickness and camber, operating under strong subsonic

flow conditions. It is ideally suited for testing since a wealth of experimental results from

the annular cascade facility at the Lausanne Institute of Technology exists in the public

domain [64]. The cascade consists of twenty prismatic blades, each with a chord of

approximately 2.83 inches and a span of just over 1.57 inches, with 45 degree turning and

a maximum thickness to chord ratio of 0.17. The stagger angle is 56.6 degrees with a

blade to blade pitch of 2.2 inches. For this test, case three of the experimental test series

is used. For this case, the inlet and exit flow angles are 45.5 and 71.0 degrees,

respectively, with inlet and exit Mach number of 0.28 and 0.90, respectively. For this

test, the pressure coefficients at mid-span for both the gridding-to-wall and wall functions

82

are compared with experimental measurements. For the gridding-to-wall simulation, a

refined O-grid (271x67x51) with a distance to first grid line from the blade surface of

0.00003 inches was used resulting in a maximum y
+
 of ~1.85. The wall function

simulation used a coarser O-grid (241x29x51) with a distance to first grid line from the

blade surface of 0.0018 inches resulting in a maximum y
+
 of ~48.2. For both

simulations, the same H-grid (161x85x51) was used and the simulations were run at third

order accuracy with a single Newton sub-iteration. While three Newton sub-iterations

are generally used to reduce error from the approximate factorization of the governing

equations, a single Newton sub-iteration is sufficient for these runs since the solution is

steady state (not time accurate) and quicker results can be obtained. Both solutions were

run for the same non-dimensional time. However, the gridding-to-wall simulation

required a time step one third the size of the wall function simulation in order to maintain

stability. As a result of the time step and grid size differences, the gridding-to-wall run

took roughly 4.5 times longer than the wall function run. Figure 4-3 is a contour plot of

the Mach numbers for the wall function simulation at mid-span, illustrating the fourth

standard configuration flow domain.

83

Figure 4-3. STCF4 flow domain

Figure 4-4 shows the coefficient of pressure at mid-span for the two runs compared with

the time averaged experimental measurements.

Mach Number

0.9

0.8

0.7

0.6

0.5

0.4

0.25

0.15

0.05

84

Figure 4-4. STCF4 pressure coefficients at mid-span

As shown in Figure 4-4, there is little to no difference between the results

obtained using the gridding-to-wall method versus the wall function. There is a slight

difference between the two at the trailing edge of the suction side, but this is most likely

due to the vortex shed by the rounded trailing edge of the fourth standard configuration.

Comparison with the experimental data is also quite good. The difference between

experimental and computational simulation results in the first 30% of the chord is due to

uncertainty in the inlet flow angle of the experiment, as described in the Lausanne

Institute of Technology report.

 The addition of a wall function to Corsair for the calculation of shear stress at

solid surfaces was discussed in this chapter. A background introduction of boundary

layer theory was presented to show the importance of accurate shear stress calculations

% Chord

S
te

a
d

y
P

re
s
s
u

re
C

o
e

ff
ic

ie
n

t

0 0.2 0.4 0.6 0.8 1

-8

-6

-4

-2

0

Gridding-to-wall
Wall Function
Exp PS
Exp SS

85

and the use of this quantity in the turbulence model employed in Corsair. The wall

function replaces the gridding-to-the-wall, finite difference approach, used in the original

version of Corsair. Details of the wall function implementation were also covered

including the ability to account for surface roughness. More importantly in meeting the

objectives in section 1.1, the wall function allows for a significant reduction in grid

cluster near solid surfaces, resulting in overall smaller grids and thus reduced runtimes.

Finally, a comparison of the two methods was made using the fourth standard

configuration. The results not only showed a reduction in runtime due to the reduction in

grid size, but also from the ability to use larger time steps while still maintaining stability.

86

5. ADDITIONAL PARALLELIZATION

One of the objects for this research as outlined in section 1.1 was to create an

aeroelastic solver that could be used in the design phase of turbomachinery. While the

incorporation of the wall function discussed in the previous chapter significantly reduces

the runtime for a simulation, even greater reductions are desired. This chapter covers the

restructuring/rewriting of the flow solver along with addition domain decomposition

which was added, in order to further reduce runtimes. Details of the computer resources

utilized for this research are also given.

5.1 Existing Parallelization in Corsair

As distributed by NASA Marshall Space Flight Center, Corsair is parallelized for

use with MPI and MP-threads [10]. MPI is used for the coarse breakup of the

computational grid, with each grid being solved on a separate node. MP-threads is used

to further break up the calculations of each grid by using multiple Cores/CPUs on each

node. While the calculations in Corsair have been parallelized via MPI and open-MP, the

data structure has been kept serial. For SMP shared memory architectures such as the

one Corsair was developed on, this program structure is rather efficient. Unfortunately,

this same program structure on distributed memory architectures, such as the Beowulf

cluster used for this research, have severe parallelization and memory limitations. For

example, since the Beowulf cluster used for this research consist of single core nodes, the

87

open-MP feature of Corsair could not be used and thus only the coarse breakup of one

grid per node via MPI could be used. Further, the serial data model limits the problem

size that can be solved since the entire problem domain must fit in the memory of each

node used in a parallel run. This serial data model also results in a tremendous amount of

communication, since the entire flow domain must be updated after each iteration on all

nodes used for a parallel run. To overcome these limitations, Corsair was rewritten with

a focus on distributing the data structure with the calculations. The resulting flow solver,

called Thunder, allows for more parallel scalability, a reduced nodal memory footprint,

and the ability to solve larger problem on distributed memory architectures such as the

Beowulf cluster used for this research. In addition, a general clean up of the code is

achieved, resulting in faster performance and allowing for easier integration of the FSI

module.

5.2 Target Computational Platform

 For this research, the target computational platform is the Taylor Beowulf cluster

which consists of 92 compute nodes, 3 head nodes, and a file server all connected using a

Gigabit network. The compute nodes are grouped into two racks each composed of 46

nodes and a 48 port gigabit network switch (see Figure 5-1), while a third 48 port gigabit

network switch is used to connect the head nodes and file server together. To tie the

network switches together, two ports from each of the compute node group network

switches are bonded together and connected to the network switch used for the head

nodes and file server in a tree configuration. Although bonding two ports together

effectively doubles the bandwidth between the switches, this does not fully compensate

88

for cases where parallel runs are split between compute node racks. However, it was

found during initial setup and testing of the cluster that this tree configuration did provide

better performance than a ring configuration between the three network switches. The

network configuration for the Taylor cluster is shown in Figure 5-2. Each compute node

consists of a single core 2.4 GHz AMD Athlon 64 3800+ processor with 1 GB of

DDR400 RAM along with a 40 GB hard drive providing local scratch space. While

multi-core processors were available, their cost/performance at the time of the Taylor

cluster construction precluded them from being used for the compute nodes. In addition,

the ability for the chosen scheduler & queue system to handle multi-core nodes was not

fully developed yet [65], resulting in the belief that for most users multi-core nodes

would lead to a waste of computing resources. DLink 1248T 48 port GigE switches

along with CaT6 cables are used for the network. The Taylor cluster uses the 64 bit

version of cAos 2.0 Linux distribution along with Torque for the queue system and Maui

for queue management.

89

Figure 5-1. Taylor cluster compute node rack

Dlink 1248T

Building LAN

Taylor03 Taylor02 Taylor01

Dlink 1284T

Compute nodes

n001 – n046

1 Gpbs

2 Gpbs

Dlink 1248T

Compute nodes

n047 – n092

Chanute04

File Server

Rack 1 Rack 2

Figure 5-2. Taylor cluster network configuration

90

5.3 Code Restructuring

 As stated earlier, Corsair uses a parallelized calculation with serial data program

structure. While this type of structure can run efficiently on SMP supercomputers with

shared memory, such a program structure is very inefficient on distributed memory

architectures, such as the Beowulf cluster used in this research, for two primary reasons

[66,37]. First, the serial memory model limits the size of problems which can be solved

to what will fit in the memory of a single node. For the Taylor Beowulf cluster, this

limits the size of a problem to ~1 GB of memory, which based on experience roughly

translates to a problem domain of 1.5 million total grid points when using double

precision accuracy. Second, since each node must maintain an up to date copy of the

entire problem domain (grid points, flow variables, etc.), a tremendous amount of

communication is required between all the nodes after each iteration.

 Corsair is written in FORTRAN 77 and thus one of its inconveniences is that the

source code must be recompiled for each new problem size. To do this, a parameter file

containing the index size of several arrays must first be edited to fit the desired target

problem. However, since several key index sizes are grouped together, the resulting

arrays are often much larger than they need to be. Corsair also uses a somewhat unusual

vector based storage method. While large vectors are used to store the solution and grid

points for the entire problem domain, smaller multi-dimensional arrays are used for

temporary storage of appropriate portions of the problem domain while they are being

used in calculations or being solved for. This storage method makes it easier to update

the entire flow domain after each iteration, since the data is already in a packed form, but

91

in addition to requiring more memory, it also incurs a heavy time penalty each time a

large portion of these vectors is written into a multi-dimensional array or vice versa.

 To overcome these issues, a restructure version of Corsair called Thunder was

developed using only MPI for parallelization. The decision to use MPI instead the mixed

hybrid MPI and openMP model used in Corsair is based on two reasons. First,

programming with hybrid parallel models is prone to errors. Second, modern

implementations of MPI (such as MPICH, LAM, and openMPI) are optimized to run on

multi-core/multi-CPU noded systems just as well as single core/CPU noded systems.

Unlike Corsair, Thunder is written in Fortran 95 and takes advantage of dynamically

allocated multi-dimensional arrays for storing data, thus removing the need to recompile

the code for each new problem size. In addition, each node stores only its portion of the

flow domain, along with a minimum amount of data required for the ghost points. This

significantly reduces the nodal memory footprint, along with the amount of

communication required after each iteration.

Unlike most parallel flow solvers [67], the grid and solution files in Thunder are

not split before or during a run, but rather read and written as whole files by the master

node. Since the size of these files for a particular problem might be bigger than the

amount memory on the master node, it reads only the grid/solution for a single blade at a

time, passes this information via MPI to the appropriate node(s), and then proceeds to

read in the grid/solution for the next blade. For writing grid and solution files, a similar

process is used in reverse. Thunder also has the ability for each node to read and/or write

its solution and/or grid files in a broken up manner. However, complete grid and solution

files are often more desired by CFD users for post processing of results and by having

92

Thunder read/create these files as whole, reduces the extra step of splitting/joining

individual files.

Early in the development of Thunder, it was noticed that one of the main reasons

for the serial data structure in Corsair was the need for information during the solution

process about the global problem domain, such as the number overlap/Chimera points

between O- and H-grids. A simple preprocessing utility called thsplit was developed to

solve this problem. Some of the information each node receives from the splitup file

generated by thsplit is given in table 5-1. In addition to providing this information about

the global problem domain, thsplit also includes the logic for breaking up individual grids

and nodal communication information, such as which nodes a particular node must

exchange information with.

93

num_rows Number of blade rows

total_num_blades Total number of blades

my_blade Blade in row this node solves for

my_blade_master First node assigned to my_blade

my_row Row this node solves for

my_row_master First node assigned to my_row

k_global(4) K indexes in global problem domain (1=first local, 2=last local,

3=last global, 4=global tip clearance start)

imx_h, jmx_h, kmx_h Index sizes of problem portion for H-grid solved by this node

imx_o, jmx_o, kmx_o Index sizes of problem portion for O-grid solved by this node

imx_c, jmx_c, kmx_c Index sizes of problem portion for clearance grid solved by this

node

cutout_idx(4) Beginning and ending Indexes (i and j) for H-grid cutout

num_chm_pts_o Number of O-grid overlap/Chimera points

num_chm_pts_h Number of H-grid overlap/Chimera points

min_rad_in Inlet radius of the hub for my_row

max_rad_in Inlet radius of shroud for my_row

tip_rad_in Inlet radius of blade tip for my_row

num_blades(n) Number of blades in each row n

num_procs_blade(n) Number of processors used for each blade in row n

overlap(n) Number of radial overlap points in row n

split_type(n) 1 if O- and H-grid on same node, 2 otherwise

ogrid(n) True or false, based on an O-grid being present for row n

tip_clearance(n) True or false, based on a clearance grid being present for row n

Table 5-1. Some global information generated by thsplit for each node

 While most of the capabilities in Corsair have been duplicated in Thunder, a few

such as hot streaks and film cooling have not yet been added. The addition of these

capabilities to Thunder would be rather straight forward, but they have not been

implemented yet as they were not needed for this research. In addition, Corsair has the

ability to model centrifugal compressors while Thunder does not. However, unlike the

hot streaks and film cooling, this capability would require a significant amount of source

code rework to implement in Thunder. Fortunately, this research only deals with axial

flow turbomachinery and thus the capability to model centrifugal compressors was left

out of Thunder.

94

 In order to give Thunder more parallel flexibility, an option to keep both the O-

and H-grid of a blade or portion thereof on the same node was added. This capability is

specified when running thsplit via split_type. As shown in Table 5-1, a one indicates

both O- and H-grid for a blade or blade portion be kept on the same node, thus allowing

better scalability when these two grids are different sizes and eliminating the

communication of flow variables for the overlap/Chimera post iterative update. In

addition, this feature provides more parallelization by allowing an H-grid with a long

inlet or exit to be decomposed into separate axial sections. For example, a passage with a

long inlet can be broken into two rows, one with the inlet portion of the H-grid and no

overlaid O-grid and a separate row with the remaining H-grid and overlaid O-grid. By

setting split_type to two, the O- and H-grids are split onto separate nodes, reverting to the

normal decomposition behavior of Corsair.

 Another significant difference between the structure of Thunder and Corsair is the

use of separate communicators for O-grids, H-grids, CFD work, and FSI work compared

to the single mpi_comm_world communicator used in Corsair. This allows for more

efficient groups of communications to occur and is very helpful when creating barrier

calls for which only a particular group of nodes must be synchronized. Each node in a

parallel run of Thunder dumps an output deck which in addition to tracking residuals for

its portion of the flow field also lists the node it is running on, making the debugging

process on large numbers of nodes much easier.

Along with the general clean up of code, variables in Thunder are much better

defined. In Corsair, common blocks, implicit declarations, equivalent statements, and six

character variable names make following or adding to the source code a difficult process

95

at best. In thunder, all global variables are defined in the globaldata module using

descriptive names, with implicit none used throughout the code to easily trap undeclared

variables. Additionally, the precision of real variables in Thunder is specified in the

globaldata module and in the Makefile. Thunder can be built for single, double, or quad

precision via the Makefile and the number of digits used for each type of precision is

specified in the globaldata module. When compiling Corsair for double or single

precision via compiler flags, the source code also has to be modified in numerous

locations to ensure mpi_real8 or mpi_real respectively is used for sending real data via

MPI calls. This simple variable tells MPI how many bits make up a real variable and if

set incorrectly, scrambles data sent by MPI. Instead of using the mpi_real or mpi_real8

defined in the MPI header file, Thunder uses its own declared variable, mpi_real_prec,

which is set at the beginning of code to the compiled precision using the MPI command

mpi_type_create_f90_real. This ensures all real data sent using MPI commands is done

correctly.

5.4 Increased Parallelization

 To add more parallelization to Thunder and thus increase turn around time for

cases involving only a single blade passage, logic was added for splitting individual O-

and H-grids onto separate nodes. Numerous different options exist in the literature for

accomplishing this with CFD codes [67,68,69,70,71]. Since Thunder is based on

structured grids, the most straight forward method is to break up the grids along one or

more of the grid indexes. For both the O- and H-grids, the axial or i index is always the

largest, followed by the circumferential or j, and lastly the radial or k directions. From a

96

purely parallel standpoint, the axial direction should thus be the best choice for breaking

up the grids, since it would allow for more decomposition and the best possibility for

good load balancing. However, from a CFD standpoint, breaking up the grids in the axial

direction involves several problems. First of which, the axial direction involves the most

amount of fluid flow changes and thus any error introduced via boundary conditions to

handle the splitting of the domain in the axial direction will be greatly amplified. Along

similar lines, the boundary conditions for such a decomposition of the domain would

require numerous ghost points and associated communication overhead to ensure

continuity. Second, the axial direction for the H-grid is different than that for the O-grid,

which would make the communication pattern for overlap/Chimera post iterative updates

very complicated. Similar issues exist for decomposing the grids in the circumferential

or j direction.

 Thus the ideal direction for decomposing both O- and H-grids is in the radial or k

direction, since the physical translation of this direction is the same for both grid types,

unlike the axial and circumferential directions. Also, the least amount of change in the

3D flow field occurs in the radial direction, thus any error introduced by boundary

conditions for handling the decomposition is minimized. Lastly, the radial boundary

conditions themselves are rather straight forward, as the patch condition between axially

adjacent H-grids can be easily modified for both the O- and H-grids in the radial

direction.

 As previously mentioned, a utility called thsplit was created to handle and

optimize the decomposition of the grids in the radial direction. The input deck for thsplit

requires the following information from the user for each blade row: number of nodes to

97

use for each blade, the splitype, number of radial overlap points to use, and which blade

to use for calculation of the splitup. Figure 5-3 illustrates a radial decomposition overlap

of three points. While a minimum of two points can theoretically be used, experience has

shown that three overlap points is optimal, with more overlap points not yielding any

better convergence. To accomplish the splitup in an organized fashion, a handful of rules

are created to control how grids are decomposed in the radial direction. These rules are

based on the ideas of keeping the communication between decomposed portions of the

grid simple and maintaining the best load balancing. The first rule is that all O- and H-

grids in a row are split along the same radial indexes, keeping communication of the

overlap/Chimera and radial periodic post iterative updates between single nodes. This

rule also implies that if split_type is set to two, the number of nodes per blade must be a

multiple of two. For structured grids, load balancing is almost entirely dependent on the

number of grid points between nodes being as equal as possible. Thus the second

decomposition rule is to split the grids in such a manner that the individual portions have

as close to possible the same number of grid points. In reality, this can be very difficult

to accomplish, especially if the O- and H-grids are to be separated. However, if the grids

are broken up between a relatively few number of nodes, adding or subtracting a radial

slice when generating the grids can help balance things, at least in the radial direction. If

a clearance grid is present, it is kept with its associated O-grid portion and the O-grid,

along with the H-grid, can not be split along any radial index where the clearance grid

resides. This prevents the massive amount of communication which would be required

for the continuity condition between the O-grid and clearance grid. In general, clearance

98

grids significantly reduce the amount of decomposition which can be accomplished while

obtaining good load balancing.

Figure 5-3. Illustration of three radial overlap points

 The algorithm in thsplit uses these rules as follows. First the number of

processors to be used for a blade is checked against split_type. If split_type is two, then

the number of processors to be used is checked to make sure it is a multiple of two

(aborting the run if not) and setting the number of desired blade sections to one half the

number of processors to be used per blade. If split_type is one, then the number of

desired blade sections is simply set to the number of processors per blade. The number

of points for both the O-grid, and clearance grid if present, are totaled and the number of

overlap points between radial sections is multiplied by the number of desired blade

sections minus one and added to this total, resulting in the total number of grid points.

This is then divided by the number of desired blade sections to determine the optimal

number of grid points each section should contain in order to obtain good load balancing.

However, it rarely works out that the optimal number of grid points correlates to a whole

number of radial 2D slices. For such cases, the number of grid points resulting from

99

using a whole numbers of 2D slices is compared to the optimal number of points for a

blade section. Whichever number of whole 2D slices comes closest to this value is used.

Next, the number of points in this section is subtracted from the total number of points

and the total number of remaining points is divided by the number of desired blade

sections minus one. The process then repeats for the remaining number of blade sections.

To ensure the clearance grid is kept with its associated O-grid and thus satisfy one of the

decomposition rules mentioned earlier, the decomposition algorithm is carried out

starting at the shroud and working toward the hub. If the optimal number of 2D slices for

the first section is less than that used by the clearance grid, then the first section is

increased to include the clearance grid. An example using a clearance grid is now given

to help illustrate this process.

 For this example, consider the fourth standard configuration (STCF4) used earlier

to test the wall functions. Assume that the H-grid is 161x65x50, the O-grid is

241x33x50, and a clearance grid of 241x17x5 are used and the number of processors per

blade is set to ten with split_type set to one (O- and H-grids not separated) and a radial

overlap of three points. First the total number of points would be (241 x 33 x 50) + (241

x 17 x 5) + (3 x (10 – 1) x 241 x 33) = 632,866 points. It is interesting to note from this

calculation how many additional grid points are added as ghost points, in this case 241 x

33 x 9 or a whopping 71,577 points! Next, this is divided by the desired number of blade

sections, ten, which results in the optimal block size of 63,286.6 points. Obviously the

optimal block size does not result from a whole number of 2D slices. Since this case also

includes a tip clearance grid, the first block must include this grid and its associated O-

grid portion. Quickly calculating the number of grid points involved, 241 x 50 x 5 =

100

60,250 points, the clearance grid and its associate O-grid portion are found to be within

the block size for this case. Now to determine the k slice at which to make the first cut,

the number of points for each additional slice below the clearance grid is added till the

optimal block size is reached, in this case 241 x 33 = 7,953 points. Doing this, a cut at k

of 47 would result in a block size of 60,250 or 3,036.6 points under the optimal block

size. A cut at k of 48 however would result in a block size of 68,203 or 4,916.4 points

over the optimal block size. Thus the first block is from k of 47 to 51. The remaining

total number of grid points is then recalculated as 632,866 – (241 x 33 x 5) – (241 x 17 x

5) = 572,616 grid points. Dividing by the remaining nine desired blade sections gives an

optimal block size of 63,624 points. Dividing this by the size of each 2D O-grid section,

63,624 / (241 x 33) = 8, thus the next blade section will contain 8 slices and be from k of

42 to 49. The reason the section ends at 49 instead of 47 is because of the three point

overlap. Also note that only the number O- and Clearance grid points are used when

determining the decomposition. This is because the H-grid, like the O-grid, has the same

number of points at each radial slice and thus does not change the calculated radial slices.

Repeating this process, each of the remaining blade sections will contain 8 slices as

shown in Table 5-2.

101

Node

Radial slice

(k indexes)

Grid

types

Total number

of grid points

1 1 – 8 O & H 147,344

2 6 – 13 O & H 147,344

3 11 – 18 O & H 147,344

4 16 – 23 O & H 147,344

5 21 – 28 O & H 147,344

6 26 – 33 O & H 147,344

7 31 – 38 O & H 147,344

8 36 – 43 O & H 147,344

9 41 – 48 O & H 147,344

10 46 – 50 O, H, &

Clearance

112,575

Table 5-2. Decomposition indexes of example STCF4 grid domain

 When dealing with multi-blade row configurations, the H-grids between blade

rows must exchange information along the slip boundary. Since the number blades

defining this slip boundary may be different in axially adjacent rows and Thunder uses a

distributed data model, a communication procedure using sets of master nodes was

implemented. This procedure begins with the exchanging of coordinate information at

the slip boundary between axially adjacent rows. First, each node sends its portion of the

slip boundary coordinate information to the master node for the blade (blade master

node) in that row. Next, each of these blade master nodes sends its slip boundary

coordinates to the row master node. Finally, the row master nodes for axially adjacent

rows exchange coordinate information. These coordinates are then stored on the row

masters for interpolation after each iteration. A similar process for the flow field

variables is used for the post iterative update. Each node sends its flow field variables for

the adjacent rows slip boundary to the blade master node, the blade master node(s) then

send this information to the row master node. The row master nodes then exchange these

102

flow field variables at the slip boundary with each other, from which they interpolate the

correct flow field values based on circumferential location and periodicity. Finally, the

row master node sends the appropriate portions of the interpolated slip boundary values

to blade master nodes, which then pass the appropriate portions of this information onto

the individual nodes associated with the same blade.

5.5 Parallel Performance

 To gauge the performance of Thunder, a single blade row from the Fourth

Standard Configuration (STCF4) is once again modeled for case 3 of the experimental

test suite [64]. The grids for this case are 241x33x51 for the O-grid and 161x65x51 for

the H-grid. These grid sizes are chosen such that the resulting total number of grid points

for each grid are relatively close, helping obtain reasonable load balancing. Before

investigating the parallel scalability of Thunder, a comparison to Corsair is performed

using two nodes (one for the O-grid and the other for the H-grid) with identical grids and

input decks. For this comparison, both codes were compiled using the Intel compilers

with optimization level 3. Thunder is set for double precision (15 digits) and Corsair

compiled with the –r8 flag, thus building it with 15 digits of precision as well. Both

simulations are run at first order spatial accuracy with single Netwon sub-iterations for

32000 iterations, which allowed for a relatively converged steady state solution. The

runtime and nodal memory usage for each are shown in Table 5-3.

103

 Corsair Thunder

Total Runtime 39.61 hours 30.57 hours

Nodal memory footprint

node 1 (node 2)

712048 KB

(698128 KB)

354700 KB

(285396 KB)

Table 5-3. Runtime and memory usage comparison between Thunder and Corsair

In Table 5-3, the nodal memory footprint is obtained by using the pmap command on

each node for the process ID of the executable, thus these values are for all memory

being utilized on a node including shared libraries. The results demonstrate that Thunder

is ~23% faster than Corsair and is able to distribute the memory requirements for the

problem domain between the two nodes, thus reducing the nodal memory footprint by

roughly one half. The increase in speed can be contributed to different factors. First,

Thunder has fewer memory operations than Corsair, which uses a vector storage model

with temporary multi-dimensional arrays. On modern PC platforms, memory operations

(copying data back and forth between arrays, especially out of order) can be very time

consuming, with a single memory operation being equal to four floating point operations

[72]. In addition, loops in Thunder have been optimized by keeping them in column

majored order, which is not always the case in Corsair. Lastly, because Thunder uses a

distributed memory layout, the amount of communication after each iteration is limited to

only ghost points, compared with Corsair’s need to communicate the entire problem

domain after each iteration. When comparing the final solutions between Corsair and

Thunder, the maximum difference in RMS residuals for the five flow variables is 4.01E-

13. For reference, the largest RMS residual is 1.33E-10.

 Before demonstrating the parallel performance of Thunder, a brief discussion

regarding the theoretical capability of the decomposition method used is presented. It is

104

safe to assume that the serial run time per iteration in Thunder is on the order of the

number of grid points used:

{ }))()((KMJMIMTS Θ= (5-1)

where IM, JM, and KM represent the number of points in each of the three directions.

For the parallel run time, an assumption is made that the number of grid points can be

equally divided by the number of processors assigned to that grid, thus resulting in

sections of equal size or number of grid points. For the radial decomposition method

chosen for this research, the ability to accomplish this is based on a combination of the

original grid size, the number of overlap points, and the number of sections desired. As

previously discussed, the number of overlap points is usually kept to three to obtain good

convergence, leaving the grid size and number of desired sections as the two variables

one may manipulate in order to obtain equally sized sections of the grid. Even when a tip

clearance grid is introduced into this calculation, adding or subtracting one or two radial

slices from the total number of grids is enough to obtain relatively equal sized grid

sections. Using this radial decomposition entails the communication of (IM)(JM)

solution vectors, each containing 5 flow variables at the overlap region, resulting in

5(IM)(JM) values. Thus the parallel run time in order of complexity can be approximated

as:

 (){ }lJMIM
P

PovlpJMIMKMJMIM
TP +Θ+







 −+

Θ=))((54
)1())(())()((

(5-2)

In Equation 5-2, ovlp is the number of overlap points, P is the number of processors.

Although documentation for the Dlink switches used in the Taylor cluster is very brief, it

does refer to using a spanning tree, which is a method of performing cut through routing.

105

Thus in the order of complexity for the parallel run time given in Equation 5-2,

communication complexity for a cut through routing of m+l is used, where m is the

message size and l is the number of links or jumps between processors [73]. The number

of messages passed is set to 4, since the center blade/grid sections will need to exchange

information at the overlap boundary with both the section below and above. For the

Taylor cluster network configuration, the number of links between processors is 2 when

the processors communicating are on the same rack, but 4 when the processors are on

different racks. While it is obviously desirable to have all processors used in a parallel

run on the same rack and thus l equal to 2, this can not be guaranteed do to the first

available assignment method used by the queue system on the Taylor cluster. Using the

standard definitions [73], speedup and efficiency in orders of complexity are given as:

{ }

(){ }

































++−+

Θ=

+Θ+






 −+

Θ

Θ
==

P
JMIM

l
PovlpKM

PKM

lJMIM
P

PovlpJMIMKMJMIM

KMJMIM

T

T
S

P

S

))((

2
10)1(

)(

2))((5
)1())(())()((

)))((

































++−+

Θ==

P
JMIM

l
PovlpKM

KM

P

S
E

))((

2
10)1(

 (5-3)

(5-4)

By defining the amount of work done, W, as the serial run time, the overhead time

(difference between parallel and serial runtimes) can be defined in terms of W and the

106

number of processors, P. Additionally, the overhead time can be split into extra

calculations and communication required for the radial decomposition:

() 







++

−
=+=

=

W

KMl
P

KM

WPovlp
TTPWT

KMJMIMW

commxcalcO

)(2
10

)1(
,

))()((

(5-5)

Using this, the parallel efficiency [61] can be rewritten in terms of work and number of

processors:

() ()

()

() ()

PKMlKW
KM

Povlp
KW

PWTKPWT
E

E
W

E

E

W

PWT

WPWTPWTW

W
E

commxcalc

OO

O

OO

)(2ˆ,
)1(ˆ

,,
1

1,

,1

1

,

=
−

=

=
−

=

−
=

+
=

+
=

(5-6)

(5-7)

Equations 5-7 give the isoefficiency in terms of overlap points, number of processors,

and total number of 2D slices for both the extra calculations and communications. These

isoefficiencies dictate how large the original problem domain must grow with added

processors to maintain a given parallel efficiency. From this it can be seen that the

driving factor for both extra calculations and communications is the number of radial 2D

slices, KM.

The preceding discussion and equation development is for a split_type of one,

where both the O- and H-grids are on the same processor. For a split_type of two, where

the O- and H-grids are on separate processors, a similar model can be derived. First, the

107

difference in the O- and H-grid sizes must be accounted for. In practical use, the O-grid

is generally larger than the H-grid, so for simplicity W is taken as the number of O-grid

points and the serial run time is redefined using a multiplier G, which is one plus the ratio

of H-grid to O-grid points. It is also important to note that the number of radial slices,

KM, for the O- and H-grids is always the same due to the way these grids are defined and

generated. With this assumption, the orders of complexity for the parallel and serial run

times with split_type of two are derived as:

{ }

()

()()

()








+
−+

+Θ+







 −

+Θ=













+
−+

+







+Θ+
















−+

Θ=

⋅Θ=

l
P

chmpPovlpKM

KM

W

PKM

PWovlp

P

W

l
P

chmpPovlpKM
l

KM

W

P

Povlp
KM

WW

T

WGT

P

S

6
)2(5

)(2

)2(

2

2

1
2

2
54

2

1
222

(5-8)

(5-9)

Where chmp is the total number of Chimera points (both O- and H-grid) per 2D radial

slice. The speedup and efficiency are:









+−+++−+

⋅
Θ==

PlKMchmpPovlpKMKMWPovlppWWPKM

PKMWG

T

T
S

P

S

)(12)2)()((210)2()(2

)(2









+−+++−+

⋅
Θ==

PlKMchmpPovlpKMKMWPovlppWWPKM

KMWG

P

S
E

)(12)2)()((210)2()(2

)(2

 (5-10)

(5-11)

and the overhead time becomes:

108

()









+
−+

++
−

=

+=

l
P

chmpPovlpKM

KM

W

PKM

WPovlp

TTPWT commxcalcO

6
)2)((5

)(2

)2(

,

(5-12)

Finally, the isoefficiencies are:

P

chmpovlpKM
W

PKM

Povlp
KW commxcalc

)(2ˆ,
)(2

)2(ˆ +
=

−
=

(5-13)

 The parallel scalability of Thunder on the Taylor cluster is investigated next using

the same grids and input deck as for the comparison with Corsair, but with different

split_types and numbers of processors per blade. To gauge load balancing and the ratio

of communication to calculation, Thunder is profiled using calls to cpu_time. The

cpu_time call returns the elapsed time in seconds since the beginning of code execution.

To gauge load balancing, the time before and after calls to mpi_barrier differenced and

totaled together as MPI wait time. Similarly, time spent for communications is obtained

by differencing cpu_time calls before and after mpi_send, mpi_recv, mpi_sendrecv, and

mpi_bcast calls. Since these are blocking calls and only the actual communication time

is desired, mpi_barrier calls inserted before each of these and the time before and after

each of these mpi_barrier calls differenced and added to the MPI wait time total. Lastly,

calculation time obtained by differencing cpu_time calls before and after the main portion

of the code, then subtracting MPI wait and communication times. It is important to note

time spent on initialization at the beginning of the code and freeing memory at the end of

the code are not included in this timing. In order to plot these values against one another,

the MPI wait, MPI communication, and calculation times averaged among the nodes used

for the parallel simulation. For the serial runtime required in calculating speedup,

109

Thunder was run on a single node with both number of processors and split_type set to

one.

 Tables 5-4 and 5-5 lists the ratio of total number of ghost points to original

problem domain, raw run times in seconds, speedup, parallel efficiency, and the

maximum nodal memory footprint for several number of processors with split_type of

one and two respectively. Runs with more than 10 processors for split_type of one, and

20 for splity_type of two, were not performed since the number of ghost points for such

cases is more than half the number of points in the original problem domain.

P KM

ptsghost .

Twait

(sec)

Tcomm

(sec)

Tcalc

(sec)

Ttotal

(sec)

S

E (%)

NMFmax

(MB)

1 0 0.0 0.0 213710.1 213710.1 1.00 100.00 528.3

2 0.06 101.3 8120.5 110285.3 118507.1 1.80 90.17 298.7

3 0.12 184.1 4259.4 75166.8 79610.4 2.68 89.48 231.8

4 0.18 347.1 5561.8 58395.9 64304.8 3.32 83.08 199.3

5 0.24 1705.0 6119.0 48691.0 56515.0 3.78 75.63 181.4

6 0.29 1219.6 6555.2 42343.3 50118.2 4.26 71.07 164.7

7 0.35 2007.0 6400.0 37654.2 46061.3 4.64 66.28 156.5

8 0.41 1044.6 7495.9 34814.1 43354.7 4.93 61.62 153.2

9 0.47 2818.0 9206.5 31592.7 43617.4 4.90 54.44 148.1

10 0.53 2257.5 9098.3 29349.3 40705.1 5.25 52.50 139.9

Table 5-4. Parallel performance for split_type of one

P KM

ptsghost .

Twait

(sec)

Tcomm

(sec)

Tcalc

(sec)

Ttotal

(sec)

S

E (%)

NMFmax

(MB)

2 0 3081.0 170.3 106803.0 110054.3 1.94 97.09 354.7

4 0.06 1881.7 4102.3 55338.0 61322.0 3.49 87.13 267.3

6 0.12 1412.8 2278.4 37816.8 41508.0 5.15 85.81 177.8

8 0.18 1740.4 2906.1 29211.9 33858.4 6.31 78.90 162.1

10 0.24 3242.3 3008.9 24303.3 30554.5 6.99 69.94 144.8

12 0.29 2886.0 3568.8 21204.5 27659.3 7.73 64.39 136.7

14 0.35 3497.0 3622.7 18886.4 26006.1 8.22 58.70 128.4

16 0.41 2858.8 4056.4 17462.7 24377.9 8.77 54.79 125.8

18 0.47 4825.9 4609.8 15882.3 25318.0 8.44 46.89 123.0

20 0.53 4121.8 4908.3 14726.1 23756.2 9.00 44.98 117.5

Table 5-5. Parallel performance for split_type of two

110

Figure 5-4. Speedup performance

Figure 5-5. Parallel efficiency

Processors, P

P
a

ra
ll
e

l
S

p
e

e
d

u
p

,
S

2 4 6 8 10 12 14 16 18 20

2

4

6

8

Split_type = 1
Split_type = 2

Linear Speedup

Processors, P

%
P

a
ra

ll
e

l
E

ff
ic

ie
n

c
y
,
E

2 4 6 8 10 12 14 16 18 20
40

50

60

70

80

90

100

Split_type = 1

Split_type = 2

111

 Figure 5-4 shows the parallel speedup of Thunder for the test case used with

various numbers of processors. From this plot, it is evident that a split_type of two gives

nearly double the performance as a split_type of one with increased numbers of

processors. This is not surprising, as splitting the O- and H-grids up onto separate

processors does not incur any extra cost of calculations for ghost points. In addition, this

case was chosen such that the O- and H-grids were of relatively the same size. For cases

when the grids are very different sizes, uneven load balancing between processors

handling O- versus H-grids would cause a significant drop in the scalability of split_type

two. This can also be seen from the equations for speedup developed earlier, i.e. when G

becomes much larger than two. In comparison, a split_type of one is not affected by this

and thus the reason for implementing it in Thunder. Figure 5-4 also shows that the radial

decomposition method chosen is capable of maintaining relatively good parallel

scalability for breaking a blade into four radial sections. From Table 5-4, this correlates

to a ratio between total ghost points added and the original problem domain of roughly

20%. Beyond this 20% ratio, parallel scalability starts to significantly deviate from linear

speedup for both split_types. Lastly, a slight dip in the speedup curves for the case of 9

blade sections can be seen in Figure 5-4. This occurs for both split_types and is the result

of uneven radial blade sections, i.e. (51 + 8*3)/9 = 75/9 ~8.33. Figure 5-5 gives the

percent parallel efficiency of Thunder for the chosen test case and various numbers of

processors. As with parallel scalability, the same sort of observations between

split_types can be seen. It is interesting to note though that for the same number of radial

blade sections, a split_type of one gives slightly better parallel efficiency, especially

when comparing the last data point for each, which correlates to ten radial sections.

112

Figure 5-6. Average idle times

Figure 5-7. Calculation to communication times

Processors, P

T
w

a
it

(s
e

c
)

2 4 6 8 10 12 14 16 18 20

1200

2400

3600

4800

Split_type = 1

Split_type = 2

Processors, P

T
c
a

lc
/

T
c
o

m
m

2 4 6 8 10 12 14 16 18 20

10
1

10
2

Split_type = 1
Split_type = 2

113

Figure 5-8. Maximum nodal memory footprint

 Figure 5-6 shows the average wait time in seconds per number of processors for

both split_types. This wait or idle time is a good indicator of the load balancing between

nodes. Note that for a split_type of one, the wait time jumps for 5, 7, and 9 processors.

These data points correlate to cases where the number of radial slices per blade section is

not equal. The same can be seen for a split_type of two, i.e. 10, 14, and 18 processors.

In addition, the curve for a split_type of two gives an indication of load imbalance

between the O- and H-grids, even when the number of radial blade slices is equal such as

the data point for two processors.

 Figure 5-7 illustrates the ratio of calculation to communication time per number

of processors. From these curves, it is easily seen that as more processors are added and

the number of radial slices solved on each processor goes, the amount of time spent on

Processors, P

M
a

x
.
n

o
d

a
l
m

e
m

o
ry

fo
o

tp
ri

n
t

(M
B

)

2 4 6 8 10 12 14 16 18 20
64

128

192

256

320

384

Split_type = 1
Split_type = 2

114

communication remains relatively constant. In addition, the curve for a split_type of two

clearly shows that the radial decomposition method chosen has a relatively large

overhead, resulting from the exchange of flow variables at the ghost points. As before,

splitting the O- and H-grids onto separate processors increases the ratio of calculation to

communication time. Once again, this is not surprising since a split_type of two takes

advantage of dividing the calculation of these two grid portions while not incurring the

extra communication overhead at ghost points. Finally, both curves show that the ratio of

calculation to communication time asymptotically approach a constant, where the number

of 2D radial slices and load misbalancing begin to offset the communication time which

is fairly constant regardless the number of processors used.

 Figure 5-8 demonstrates that the goal of reducing the nodal memory footprint has

been achieved. As with the other plots, the improvements are limited to a small number

of processors or blade sections, in this case six blade sections which correlates to six and

twelve processors for split_types of one and two respectively. Again, the curves

asymptotically approach a constant, in this case roughly 128 MB, with an increase in the

number of processors.

 At first glance, the results of this investigation point to limited improvements

from the implemented radial decomposition. However, the case used for this

investigation was for a single blade with relatively equal sized O- and H-grid

components. In normal use, multiple blades and blade rows would be simulated for

which the radial decomposition method could be used for each blade in each blade row.

Thus the performance gauged from this investigation, even for a limited number of

processors, should be scalable to larger problems. Additionally, the reduction in nodal

115

memory footprint allows for these larger problems to be solved on the same cluster,

which previous to this redesign, could not be used to solve problems of such sizes. The

reason such a larger problem was not used in this investigation of the parallel

performance was simply due to computational resources, both in time and number of

nodes required for each run. Still, the cylinder case used to test the Fluid Structure

Interaction model makes use of a significantly larger problem domain, with larger grids

and even three blade rows.

 In conclusion, reductions in simulation runtime were achieved through a

combination of code restructuring/rewriting and the addition of domain decomposition.

The restructuring/rewriting of code resulted in an instant 23% overall performance gain.

While the implemented domain decomposition provides an additional level of

parallelism, its parallel performance substantially decreases when the ratio of ghost points

(required for the decomposition) to original domain size exceeds 20%. In addition, the

restructuring of the code, combined with the added domain decomposition, demonstrated

a tremendous reduction in the nodal memory footprint, allowing for much larger problem

domains to be solved on the same computer cluster system given enough nodes are

available.

116

6. FLUID STRUCTURE INTERACTION MODULE

 In this chapter, the Fluid Structure Interaction (FSI) module used in the developed

of the aeroelastic solver is discussed. Details on the generation of the structural model,

mapping between the fluid and structural grids, transfer of displacements and loads

between fluid and structural models, flow of information, and time stepping are covered.

In addition, differences of indexing and grid topology between the FSI module and

Thunder/Corsair are given, including the conversion utilities to handle these issues.

The unsteady aeroelastic solver developed in this research is based on the idea of

loosely coupling Thunder to a Computational Structural Dynamics (CSD) model. In

order to keep this coupling as flexible as possible, a general FSI module [36] developed

for the United States Air Force is used. The main purpose of this general FSI module is

to transfer information between Thunder and the CSD model along the wetted-surface of

the blade. While this may sound trivial at first, it is far from the case. Primary difficulty

lies in the fundamental differences between CFD and CSD methods, namely grid

topography and time stepping.

6.1 Structural Model Generation

 Generation of the structural model for use with the developed aerelastic solver in

this research begins with generation of the structural grid or mesh. To generate this

mesh, the open source 3D finite element mesh generator gmsh [74] is utilized. The FSI

117

module [36] includes scripts for running gmsh in batch mode, while still allowing user

control over mesh quality and density. One of the inputs required by these scripts is

obviously a set of coordinates to describe the structure. For simplicity, these coordinates

are taken from the O-grid, specifically those making up the surface of the structure to be

modeled. A utility called thunder_FSI_prep, which also handles numerous conversions

and will be discussed later in this chapter, performs extraction of these coordinates into a

file used by the gmsh batch scripts. The resulting mesh is then used along with another

FSI module script to generate an Ansys Parametric Design Language or apdl file.

Structural parameters including Young’s modulus, density, Poisson’s ratio, and boundary

conditions along with the list of wetted surface nodes are set using this apdl file. Finally,

this apdl file is converted into a structural model using Ansys
®
, producing database and

surface files.

6.2 Mapping

The methodology used in the general FSI module follows closely to that discussed

by Farhat [75]. To begin this method, the fluid/structure interface boundary (also termed

the wet surface) is denoted as Γ and the following two boundary conditions are imposed:

npnn Fs ⋅+−=⋅ σσ (6-1)

Fs δδ = (6-2)

where, δ is displacement, p is pressure, n is the normal vector, σ is the stress tensor, and

the subscripts S and F denote the structural and fluid models respectively. Equation 6-1

states that the tractions on the wet surface of the structure are in equilibrium with those

on the fluid side of Γ, thus the conservation of load transfer. Equation 6-2 expresses the

118

compatibility between the displacement fields of the structure and the fluid at the

fluid/structure interface, or simply the conservation of the deformation transfer. In

addition, the structural and deforming fluid mesh motions are also coupled by the

following continuity conditions imposed at Γ:

Sx δ= (6-3)

tt

x s

∂

∂
=

∂

∂ δ

(6-4)

where x denotes a fluid grid point location and t is time. It should be noted that the

formulation presented here is tailored for aeroelastic simulations. However, it also covers

hydroelastic and structural acoustics vibrations along with a large class of linear and non-

linear fluid/structure interaction problems. It is also assumed that the CSD model is

based on Finite Element Analysis (FEA), since this approximation method has dominated

the field of CSD since 1975. Conversely, no such assumptions are made about the CFD

model.

 Enforcing these conditions requires that a mapping be performed between the

fluid grid and the structural grid at the wetted surface Γ. For this mapping, each fluid

grid point or node is associated with one and only one structural element for the

displacement transfer, and each structural element is associated with one or more fluid

nodes for the load transfer. In the FSI module, this mapping is achieved in three passes

[36]. In the first pass, an alternating digital tree search [76] is performed to locate all

fluid nodes at the wetted surface that are near a given structural element. This search is

fast, operating with an order of M log2M time, where M is the total number of fluid nodes

at the wetted surface. A second pass comprises a point-in-polygon test which eliminates

false positives (i.e. fluid nodes that are near the element but not near enough to fall within

119

specified geometric tolerances). Finally, a third pass is made to resolve any degenerate

cases of a fluid node associated with more than one structural element (produced by

concavity of the structure) or associated with no structural elements (produced by

convexity of the structure). Figure 6-1 illustrates an example interface between a fluid

grid and a structural grid. In this example, the first pass associates fluid nodes B and C

with the structural element bounded by the large volume. The second pass retains only

fluid node B with the structural element bounded by the small shaded volume. Structural

concavity and convexity, which produce multi- and zero associations which are resolved

in the third pass, are illustrated in right portion of Figure 6-1. This mapping is a

preprocessing operation which is performed only once for a given set of structural and

fluid meshes.

A

B

 C

 D Fluid Grid

Structural Grid

x

 y

Structural Concavity

Structural Convexity

Figure 6-1. Example mapping at the interface

6.3 Displacement and Load Transfer

 One means of enforcing the boundary condition in Equation 6-1 exactly is to

compute the tractions on both sides of the fluid/structure interface using the same

discretization method and mesh. For this research, the assumption is made that the fluid

120

grid is finer than the structure mesh along the fluid/structure interface. Hence, the surface

forces and moments induced by the fluid on the structure are calculated using the

discretization method of the fluid and the geometrical support ()SF ΓΓ . This strategy

guarantees that the momentum of all loads acting on the fluid/structure interface will

always be equal to zero. In order to ensure that the total energy of these interface loads

will also be equal to zero at all time steps, the following method is used to evaluate the

forces and moments induced by the fluid on the structure.

Let Fδ̂ and Sδ̂ denote a fluid and structure admissible virtual displacement field

respectively. In this case, admissible means that the traces of Fδ̂ and Sδ̂ on the

fluid/structure interface are equal at the fluid/structure interface boundary. Regardless of

the approximation method chosen for enforcing compatibility on the fluid/structure

interface boundary between the virtual or real displacement fields of the fluid and the

structure, the outcome can be formulated:

SFSi

ii

i

jiFj ijc
S

Γ∈Γ∈=∑
=

=

,ˆˆ

1

δδ
(6-5)

where Fjδ̂ is the discrete value of Fδ̂ at the fluid point j, Siδ̂ is the discrete value of Sδ̂ at

the structure node i, and iS and cji are constants that depend on the chosen method of

approximation. Now consider a virtual displacement field Fδ̂ that is zero on each degree

of freedom in the flow domain except those on the boundary ΓF. Regardless of the

discretization method used for solving the flow problem, Fδ̂ can be expressed as:

F

jj

j

FjjF jD
F

Γ∈= ∑
=

=1

ˆˆ δδ
(6-6)

121

where Dj is a function with a local or global support on ΓF. The virtual work on the fluid

tractions acting on ΓF can then be written as:

() ()∑ ∑∫∫
=

=

=

=
ΓΓ

=⋅+−=⋅+−=
F F

FP

jj

j

jj

j

FjjFjjFFF

F
FdsDnpndsnpnW

1 1

ˆˆˆ δδσδσδ
(6-7)

where Fj has the physical meaning of a numerical pressure flux or nodal fluid force and is

given by:

()∫Γ
⋅+−=

F

dsDnpnF jFj σ (6-8)

Substituting Equation 6-5 into Equation 6-7 leads to:

∑ ∑∑
=

=

=

=

=

=










==

S FF ii

i

Si

jj

j

jij

jj

j

Fjj

F
cFFW

1 11

ˆˆ δδδ
(6-9)

Noting that the virtual work of the finite element structure forces and moments acting on

ΓS can be written as:

∑
=

=

=
Sii

i

Sii

S
fW

1

δ̂δ
(6-10)

and that the energy is conserved at the fluid/structure interface if δW
F

= δW
S
, the

following is obtained:

[][]∑
=

=

=
Fjj

j

jiji cFf
1

(6-11)

Notice that the expression for fi in the above equation does not depend on the

discretization method of the structure. The term in the first bracket of Equation 6-11

depends exclusively on the discretization method of the flow solver, and the term in the

second bracket depends only on the approximation method selected for enforcing the

compatibility of Γ between the displacement fields of the fluid and the structure.

122

 A natural but not necessarily mathematically optimal approximation method for

enforcing Equation 6-2 is a consistent finite element based interpolation method. It’s

natural since the structural problem is assumed to be solved using a FEA model, and

therefore the structural displacement field e

Sδ inside the wet region of an element e is

given by:

∑
=

=

=
iei

i

Sii

e

S N
1

δδ
(6-12)

where ie denotes the total number of wet nodes belonging to element e, and Ni is the finite

element shape function associated with node i of element e. Hence, in the presence of

fluid and structure meshes with non-matching discrete interfaces, Equation 6-2 can be

discretized by;

1. Pairing each fluid grid point Sj on ΓF with the closest wet structural element S

e

S Γ∈Ω .

2. Determining the natural coordinates Xj in e

SΩ of the fluid point Sj.

3. Interpolating δF inside e

SΩ using the same shape functions Ni as in Equation 6-10,

obtaining:

() () ()∑
=

=

Γ=Γ∈===
iei

i

SFSjjijSjFFj ijXNXS
1

,δδδδ
(6-13)

From Equations 6-5 and 6-13, it follows that for a finite element approximation of the

fluid/structure displacement compatibility conditions, cji = Ni(Xj) and therefore:

()∑
=

=

=
Fjj

j

jjii FXNf
1

(6-14)

 In the FSI module the fluid stress tensor is integrated using Gauss quadrature to

determine the aero loading at a given fluid node [36]. Bilinear shape functions from

123

finite element theory are used to evaluate the stress tensor at the Gauss points using a

choice of either full or reduced integration [77]. The lower left portion of Figure 6-2

depicts nine fluid nodes (solid circles) which form four fluid cells (large squares) at the

interface. In this example, the area of integration for the center node is shown bounded

by dotted lines and is formed from four quadrilateral facets. The quadrilateral facets are

formed from vertices located at the fluid cell face centroids, cell wall midpoints, and the

fluid node of interest. By doing this, quadrilateral facets are formed independent of the

polygon shape that forms the fluid cell face, permitting a single algorithm to be utilized

independent of the fluid cell shape. To the upper right of Figure 6-2 is an enlargement of

the upper right facet, shown with four Gauss integration points (crosses).

Figure 6-2. Area for Gauss quadrature

 As discussed earlier, the loading of the interface fluid nodes is conservatively

transferred across the interface to the structural nodes on the interface using shape

functions. The FSI module employs 2-D, isoparametric shape functions based on the

polygon shape of the structural element face at the interface [36]. Figure 6-3 illustrates

124

this transfer from the fluid grid to the structural grid, where the fluid and structural nodal

force vectors are F and f, respectively and is governed by Equation 6-14.

f1 f2

F1 F2 F3

x

Info.

Figure 6-3. Conservative transfer of forces

The same shape functions are again used in the FSI module to transfer the

computed displacements of the structural nodes lying on the interface across to the fluid

nodes lying on the interface. The interpolation process is illustrated in Figure 6-4, where

fluid and structural node displacement vectors δF and δS respectively.

δS1 δS2

δF1

x

Info.

δF2 δF2

Figure 6-4. Interpolative transfer of displacements

 An algebraic method for structural fluid grids is used in the FSI module to project

the interface displacements smoothly into the interior of the fluid grid, deforming it so as

to maintain the original grid quality, yet body-fitted to the new blade position [78].

Anchor points are defined a specified distance away from the blade. The locus of anchor

125

points forms a closed surface within which the mesh deforms. The upper portion of

Figure 6-5 depicts the locus of anchor points forming a rectangular boundary around a

deforming blade shown in two positions. The method operates on lines of constant

computational coordinate, beginning with the point touching the blade (cross-hatched)

and ending at the anchor point. The method steps are schematically presented in the

lower portion of Figure 6-5. The blade displacement is applied to all points on the line,

translating the mesh line from (1) to (2). An arc length based Hermite function blends

lines (1) and (2), forming the final mesh line (3).

Figure 6-5. Algebraic deformation of fluid grid points

(1)
(2)

(3)

126

Figure 6-6. Illustration of anchor points in O-grid topography

Figure 6-6 illustrates these anchor points in terms of the O-grid topography used in

Corsair/ Thunder. For this overlaid grid topography, the H-grid is held rigid along with

the outer-most ring. The remaining O-grid points are then deformed by the FSI module

as just described.

To reduce possible fluid grid shearing, the method was modified for applications

in the blade tip region such that the anchor point is changed to a sliding point that is free

to move along the shroud surface. This is accomplished by spline fitting the hub or case

wall in the meridional space and projecting the displacement along the local unit tangent

vector of the wall, then moving the sliding point arc length distance equal to the projected

displacement. Sliding in the circumferential direction is handled similarly in azimuthal

space.

= Anchor Points

O-grid

H-grid

127

6.4 Information Flow and Time Stepping

Now that a method has been developed for how to exchange information across

the fluid/structure boundary, a method must now be developed for when to exchange this

information. In many situations, the actual time-step sizes of the fluid and structure are

quite different. The result is that many fluid time steps may need to be performed for

each solid time step or vice versa. For such cases, the best approach is to use an implicit

coupling with a time-staggered algorithm. A conventional serial time-staggered

algorithm is shown in Figure 6-7 below, where Q is the flow solution and the arrows

indicate the direction of information travel and time stepping:

Fluid

Structure

�

�

�

�
 Pn+1

nQ
1+n

Q

1+n

S
δ

n

Sδ

1−= n

S

n

F δδ

n

S

n

F δδ =+1

Figure 6-7. Conventional serial time-staggered algorithm

This scheme is attractive due to its simplicity. However, the scheme in Figure 6-7

is only first order time accurate, even when the underlying flow and structural solvers are

second order time accurate. An equally important difficulty arises if the fluid solver uses

the Geometric Conservation Law (GCL) to deal with moving grids, which Corsair /

Thunder does. A sufficient condition for the GCL to be mathematically consistent is that

it must exactly predict a uniform flow. It has been shown that for first and second order

time accurate methods, the velocity of the deforming fluid mesh must be computed as

follows in order to satisfy the CGL [44,79,80].

128

t

xx
x nn

∆

−
= +1&

(6-15)

The semi-discrete equations describing the motion of the structure are usually

solved by a second order time accurate scheme in FEA models, where:

t

nn

∆

−
≠ + δδ

δ 1&
(6-16)

It follows that if a basic partitioned procedure satisfies the GCL and the first of the

continuity conditions (Equation 6-3), then it violates the second continuity condition

(Equation 6-4) at the interface Γ. If x = δs is enforced at the fluid/structure interface and

the velocity of deforming fluid mesh at the interface boundary Γ is computed using

Equation 6-15, then the following holds at the interface Γ if the structural equations of

motion are time integrated by a second order scheme:

δ
δδ && ≠

∆

−
=

∆

−
= ++

tt

xx
x nnnn 11

(6-17)

 In particular, when the conventional serial time-staggered algorithm of Figure 6-7 is used

with Equation 6-15 in order to satisfy the GCL and with a second order structural time

integrator, it violates the continuity of the velocity field across the fluid/structure

interface Γ. Thus, under such conditions the algorithm in Figure 6-7 introduces an error

in the prediction of the exchange of kinetic energy between the fluid and the structure on

the boundary Γ.

 To overcome some of this error, the FSI module makes use of sub-iterations to

improve the synchronization between the fluid and structural grids [36], thus increasing

accuracy at each time step. The number of sub-iterations is specified by the user in the

input decks and in reference to Figure 6-7, would loop through the cycle 1-2-3. In

addition, this error is centered about the time step used, thus the smaller the time step, the

129

smaller the error. For the FSI module, the time step used for both Thunder and Ansys
®
 is

the same. Since Thunder requires a much smaller time step than Ansys
®
 for

convergence, mostly due to the finer grid density, this error is kept to a minimum.

The flow of information in the general FSI module is shown in Figure 6-8, where

the completion of one cycle can occur once or several times per time step depending on

the degree of coupling specified in the input decks [36]. In Figure 6-8, blue sections

indicate fluid solver tasks (Thunder), red sections indicate tasks performed by structural

solver (Ansys
®
), and the green sections indicate operations by the FSI module. The flow

of information begins with the fluid solver, which provides the fluid stress tensor that is

integrated over the wetted surface by the FSI module to yield the instantaneous aero load

acting on the structure. The structural solver then converges based on these boundary

conditions to produce the resulting structural displacements. These displacements at the

wetted surface are then projected into the fluid mesh, thereby smoothly deforming it. The

fluid solver then recalculates the metrics and Jacobian for the deformed grid and is run to

convergence, thus completing one cycle.

130

Thunder

Stress

Tensor

Integrate

Aero

Loads
Ansys

©

Structural

Displacements

Deform

Deform

Fluid Grids

Figure 6-8. Flow of information in FSI module

 The FSI module manages the flow of information between Thunder and Ansys
®

through the use of an internet domain, connection-oriented, server/client socket as shown

in Figure 6-9. For the implementation in Thunder, a separate processor (green) is used to

establish this socket with the master processor running Ansys
®
. This separate processor

serves as a common point for collecting the stress tensors from the numerous processors

used by Thunder. Additionally, this processor handles the conversion of the deformed

sheared H-grid into O- and clearance grids and distributes them to the appropriate

processors used by Thunder. In Figure 6-9, Ansys
®
 is shown running on multiple

processors and although Ansys
®
 does have this capability, it will not be utilized for this

research due to the limit of computational resources. In addition, since the fluid grids

used by Thunder are much finer than the structural grids used by Ansys
®
, the vast

majority of computational time is spent by Thunder and thus extra available processors

are better utilized by Thunder than Ansys
®
.

131

socket

server client

Stress tensor / Forces

Displacements

Thunder Ansys©

P4

P1

P2

P3

P5
MPI

P6

P7

Figure 6-9. Socket communication

6.5 Conversion of O-grids to Sheared H-grids

 The FSI module was specifically designed to work with the CFD solver Turbo

[81]. There are several differences between the grid topography used by Thunder and

that used Turbo (see Figure 6-10). For starters, Turbo uses sheared H-grids while

Thunder uses an overlaid O- and H-grid topography. Second, the grids in Thunder are

centered about the blades while in Turbo, they are centered about the passage between

blades. In order to use the FSI module, an algorithm was developed to morph the blade

centered O-grids from Thunder into passage based sheared H-grids and vice versa. This

algorithm also takes into account the associated deformation of the clearance grid, if

present, based on the inner O-grid deformation. The major issue in handling the

clearance grid is that for a sheared H-grid, the number of points in the circumferential

direction is the same regardless of a tip clearance. However in Thunder, the clearance

grid adds a substantial number of points or rings in the circumferential direction. In

addition, the FSI module also makes extensive use of GU files from Turbo, which contain

132

information about the grids and their decomposition. Thus a utility was developed to

create these GU files, along with files to help in generation of the structural grid via

gmesh and weighted distances to handle recreation of the clearance grid. Lastly, Turbo

uses a somewhat different grid index, where j and k have been flipped when compared

with Thunder. This too is handled by the utility program, called thunder_FSI_prep.

Shroud

Hub

Flow

LE

 LE Top

Bottom
TE

 TE

K1

K0

 i

 k

 j

Figure 6-10. Turbo sheared H-grid topography

 Conversion of the O-grids begins with grid generation. To ensure that the O-grid

can be split into an upper and lower passage section, each with an equal number of grid

points, the O-grid must initially be generated with an odd number of circumferential

points. The reason for this is because the first and last grid points in the circumferential

direction (around the blade surface) overlap. Since the clearance grid, if present, is

generated using this same number of circumferential points, no special attention to its

size is required at this stage. Next, thunder_FSI_prep is used to transform the O-grids

into primitive sheared passage H-grids by splitting them about their leading and trailing

edge points. The leading edge of the blade is first calculated based on the minimum axial

133

value. If desired though, the index of the leading edge point can be entered in the input

deck to thunder_FSI_prep, otherwise it is calculated automatically as just described. The

trailing edge is then calculated to be half the circumferential points away from the leading

edge. While this trailing edge point is often somewhat off from the real trailing edge due

to differences in the number of points on the top and bottom of the airfoil surface as a

result of clustering, it does meet the requirement for splitting the O-grid up evenly.

Finally, the last upper half is rotated down by the period of blade passages being

modeled, as illustrated in Figure 6-11.

 2

 1

 3

 4

 5

 6

1

6

2

3

4

5

LE TE

 TE

 TE

LE

LE B3

 B2

 B1

 B1

 B2

 B3

 B3

Figure 6-11. Conversion from O- to sheared H-grids

 When a clearance grid is present, a simple modification is required to the previous

method. The inner most O-grid “ring” is replaced with the points from the collapsed

centerline of the clearance grid for radial slices where the tip clearance exists. In

addition, an auxiliary file is created with the weighted distances from the collapsed

134

centerline of the clearance grid to the next to inner most O-grid ring. This is used during

the simulation to recreate the clearance grid from the deformed sheared H-grid.

 In Thunder, the sheared H-grids are read from file at the start of an FSI run and

held in memory after each call to and from the FSI module, while the O-grids, and

clearance grids if present, are regenerated from the sheared H-grids. A check to make

sure the grids are not being folded on top of one another is also made after each “re-

generation” of the O- and clearance grids is performed. This is done by checking the

Jacobians, which must be recalculated anyway, to see if any are negative. A negative

Jacobian indicates the grid has become folded on top of itself and the execution of

Thunder is thus aborted after dumping appropriate debugging information to the output

decks. The subroutines in Thunder for conversion to sheared H-grids is called mutate,

while conversion back to O- and clearance grids is called purify.

In this chapter, the Fluid Structure Interaction (FSI) module used in the developed

of the aeroelastic solver was discussed. Details on the generation of the structural model,

mapping between the fluid and structural grids, transfer of displacements and loads

between fluid and structural models, flow of information, and time stepping were

covered. In addition, differences of indexing and grid topology between the FSI module

and Thunder/Corsair were given, including conversion utilities to handle these issues.

135

7. RESULTS

 To test the aeroelastic solver developed in this research, two simplified

geometries are used. The well understood case of a flexible cylinder is cross flow is

studied. However, before performing the full FSI simulation of the flexible cylinder, a

rigid cylinder is first simulated to ensure the flow solver Thunder is capable of accurately

predicting the periodic shedding of wakes, also known as Von Karman streets, which are

known to exist for such a configuration [51]. Once the correct wake shedding frequency

for the rigid cylinder has been achieved, the FSI module is turned on with the resonate

frequency of the cylinder set to the alternating wake shedding frequency. This results in

the self excited aeroelastic behavior of a flexible cylinder in cross flow being obtained.

By achieving a self excited and stable oscillation, the exchange of energy between the

fluid and structure is demonstrated and thus the validity of the aeroelastic solver.

Another test case studied in this chapter involves the response of a fourth standard

configuration turbine blade to a step function impulse from zero loading to the converged

flow solution loading. This results in the excitation of the major vibrational modes of the

turbine blade, which are then compared to those obtained from an in vacuo solution using

Ansys
®
.

136

7.1 Rigid Cylinder

The simulation of a circular cylinder in cross flow is fundamental in the study of

both CFD and aeroelasticity [51]. In cross flow of the appropriate Reynolds number, a

circular cylinder will shed alternating swirling vortexes in a periodic fashion. This

phenomenon is known as the Von Karman vortex streets and is responsible for such

things as the singing of suspended power cables (know as galloping flutter) and even the

failure of the Tacoma Narrows Bridge [82]. The periodic shedding of swirling vortexes

induces alternating forces on the cylinder, resulting in Vortex Induced Vibration (VIV).

For a flexible cylinder, VIV will cause the cylinder to oscillate in a harmonic motion.

This is one of the primary reasons it has become a fundamental test case for aeroelastic

solvers. Such a test case is also applicable to turbomachinery, where vortex shedding can

lead to flutter and other aeroelastic behavior [83,84].

For testing the FSI model developed in this research, a rigid cylinder with no FSI

will first be simulated to verify the CFD model can reproduce the Von Karman vortex

streets at the proper frequency for the associated Reynolds number. Once this is

accomplished, the simulation is continued using FSI for a flexible cylinder with a natural

frequency equal to the shedding frequency of the Von Karman vortex streets. This case

is ideal for testing the FSI model, not only due to the well know nature of the Von

Karman streets, but because the oscillation of the cylinder is self exciting, thus visually

proving the interaction between the fluid and structural dynamics.

 The alternating vortex shedding frequency associated with Von Karman vortex

streets obeys the following formulae [51]:

137









−=

Re

7.19
1198.0

V

fd

(7-1)

where f is the frequency in Hz of alternating vortices shed, d is the diameter of the

cylinder, V is the steady velocity upstream of the cylinder, and Re is the Reynolds

number relative to the cylinder:

µ

ρVd
=Re

(7-2)

with ρ and µ being the density and dynamic viscosity of the fluid respectively. Equation

7-1 generally holds true for 150 < Re < 10
5
. The dimensionless parameter which makes

up the left half of Equation 7-1 is known as the Strouhal number, abbreviated as St, and is

used to describe oscillating flow mechanisms [85]. While the Von Karman streets exist

in flow with a cylinder Reynolds number of up to 10
7
, the shedding becomes less periodic

after a cylinder Reynolds number of ~200 due to turbulent flow [86].

 To model the Von Karman streets, a cylinder 1/8 inch in diameter with a length of

18 inches was simulated in a channel. Since thunder is designed for turbomachinery, a

somewhat large radius annular section from 234.5 inches at the hub to 252.5 inches at the

shroud, with 720 periodic sections was used to model the channel. This resulted in a

channel with relatively flat hub and shroud sections. Figure 7-1 shows the grid at

midspan for the channel modeled. The boundary condition at the hub and shroud were

set to Euler slip conditions and the left and right boundaries were left as periodic. The H-

grid is 165x120x51 points, while the O-grid is 301x121x51 points in the i, j, and k

directions respectively. To initiate shedding, the O-grid around the cylinder was

deliberately unbalanced using clustering, with roughly 20% more grid points on the upper

surface than the lower surface. Since the numerical method in Thunder can be somewhat

138

dissipative, a very fine grid was created around the cylinder, as shown in Figure 7-2.

While most computational simulations of the Von Karman streets around cylinders

extend the high grid density for several cylinder diameters downstream [83,86], it was

not done here for two primary reasons. First, extending the passage behind the cylinder

with a high density grid would dramatically increase the simulation runtime, since as

discussed in chapter 5, the runtime is proportional to the total number of grid points used

in the simulation. Second, only the forces on the cylinder are of interest for this test.

Figure 7-1. 2D midspan slice of channel and cylinder grids

139

Figure 7-2. Close-up of O-grid around the cylinder

 A target Reynolds number for the cylinder of 180 was used, resulting in a free-

stream velocity of ~2.73 ft/s. The remaining free-stream variables were taken as standard

day conditions. Using Equations 7-1 and 7-2, the predicted frequency of alternating

vortices for this case is 46.21 Hz. Figure 7-3 is a plot of the RMS residuals, which show

the convergence of the simulation.

140

Figure 7-3. Convergence history for rigid cylinder simulation

Note that the periodic shedding of wakes is evident in the plot and thus demonstrates a

periodic converged solution has been achieved. Figure 7-4 shows a time trace of the

alternating transverse forces on the cylinder at midspan. To determine the frequency of

these alternating vortices and the associated Strouhal number, this time trace was run

through an FFT, the result of which are shown in Figure 7-5. Closer examination of the

FFT results shows a frequency spike at 46.17 Hz, which is within the FFT resolution of

2.88 Hz to the predicted 46.21 Hz. The associated Strouhal number, calculated using

Equation 7-1, is 0.176.

141

Figure 7-4. Time trace of transverse forces on cylinder at midspan

Figure 7-5. FFT of transverse forces on cylinder at midspan

7.2 Flexible Cylinder with FSI

 To test the aeroelastic solver developed in this research, the previous cylinder

case is continued from a restart files, but with FSI active and the structural properties of

142

the cylinder set such that the natural (or resonant) frequency of the cylinder is the same as

the alternating vortex shedding frequency of the Von Karman streets. Two additional

important steps were taken with respect to this restart. First, the unbalanced clustering of

grid points around the cylinder was removed to eliminate any error or lopped sidedness in

the forces and displacement. Second, the simulation was restarted from a time in the

solution where the forces on the cylinder were as close to zero as possible, to help reduce

any impulse effects in the structural model which might result from an instant loading.

 The natural frequency of a slender beam in transverse vibration clamped at

both ends is given by [87]:

A

EI
f nn ρ

βπ 2
2 =

(7-3)

where n is the mode shape index, E is the young’s modulus of elasticity, I is the mass

moment of inertia, ρ is the density, A is the cross sectional area, and βn is the weighted

natural frequency per mode shape defined as:

()
5for

2

12

2787597.17

1371655.14

9956079.10

85320462.7

73004074.4

5

4

3

2

1

>
+

=

=

=

=

=

=

n
n

l

l

l

l

l

l

n

π
β

β

β

β

β

β

(7-4)

with l being the length of the beam. The mode shapes of vibration for the slender beam

clamped at both ends are given by:

()[]xxxxAxy
nnnnn

ββσββλ sinsinhcoscosh)(−−−= (7-5)

In Equation 7-5, Aλ is the arbitrary magnitude of the eigenvalues, x is the distance from

the clamped end, and σn is the mode shape coefficient defined as:

143

ll

ll

nn

nn
n ββ

ββ
σ

sinsinh

coscosh

−

−
=

(7-6)

Figure 7-6 shows the first three mode shapes for the cylinder used in this research with

both ends clamped.

Figure 7-6. First three mode shapes for the clamped-clamped cylinder

 For a circular cylinder, the cross sectional area and mass moment of inertia are:

4

4
2 r

IrA
π

π ==
(7-7)

Substitution these into Equation 7-3 and rearranging:

144

()

42

22

2

4

22

2

2

2

4
22

16

4

4

4

2

4
2

n

n

n

n

n

n

nnn

r

fE

Erf

rEf

r

rE

A

EI
f

β

π

ρ

ρβ

π

ρβ

π

πρ

π
β

ρ
βπ

=⇒

=⇒

=⇒

==

(7-8)

Note that Equation 7-8 results in a ratio between the Young’s elastic modulus and density

of the cylinder. This is fortuitous, as these are two of the three structural property

parameters required for the CSD model, the third parameter being Poisson’s ratio.

 To obtain a structural model of the cylinder with the desired resonance, the

Young’s modulus was taken as 30.0E6 psi (roughly that of steel [88]) and Equation 7-8

was used to calculate the required density, which for the current case is 1.658E-3 lbf-

s
2
/in

4
. From experience with the rigid cylinder, a time step of 4.684E-6 seconds was used

to ensure both the vortex shedding frequency of the cylinder was accurately captured and

the flow solver remained stable. It is important to note that while the rigid cylinder

simulation from the previous section was entirely two dimensional in nature, this

simulation becomes three dimensional upon deformation of the cylinder, as indicated by

the mode shapes in Figure 7-6.

 A time trace of the cylinder displacement at midspan in both axial and

transverse directions is shown in Figure 7-7. From this figure, the self excited oscillating

nature of the cylinder is clearly seen, visually demonstrating the exchange of energy

between the fluid and structural models.

145

Figure 7-7. Cylinder displacement at midspan

However instead of the Von Karman street frequency, Figure 7-7 shows a beat frequency.

Further interrogation of the displacement time traces through an FFT (Figure 7-8)

revealed even more peculiarities. First, the high frequencies in the axial and transverse

displacements show a peak at 43.85 Hz with a resolution of 2.3 Hz.

146

Figure 7-8. FFT of transverse and axial displacements at midspan

 These problems were traced back to the structural model after an in vacuo

modal analysis of the structural model was performed in Ansys
®

. First, the calculated

vibrational modes for the axial and transverse directions were discovered to be different,

specifically 42.6 Hz and 43.74 Hz respectively. This was further traced to an issue with

pivot points used in the gmsh script to generate the original structural mesh. After a

slight change in the grid index points used for pivots in the gmsh script, the vibrational

modes for the axial and transverse directions calculated using Ansys
®

 were 43.15 Hz and

147

43.21 Hz respectively. Further changes in the grid index points used for the pivots did

not yield any improvement over this.

 Secondly, it was realized that Equation 7-8, derived for a circular cross section,

could not be used to calculate the require density for the structural model. The reason for

this is because the structural model, due to the brick elements used in the mesh, has an

octagonal cross section as shown in Figure 7-9. Thus the mass moment of inertia and

cross section area are different from those used to simplify Equation 7-8. Using linear

interpolation and a bit of trial and error, the correct density for the structural model to

achieve a resonance frequency of 46.2 Hz is 1.86E-3 lbf-s
2
/in

4
.

 Using this insight, the beat frequencies observed in Figure 7-7 is the result of

the resonance frequency being very close to the driving frequency of Von Karman streets

[87]. In fact a quick calculation of one half the sum of the resonance and driving

frequency, 44.4 Hz for the axial and 44.97 Hz for the transverse, shows good agreement

respectively with the high frequencies detected by the FFT. Similarly, the low

frequencies evident in the Figure 7-7 can be calculated as one half the difference between

the driving and resonance frequency, or 1.8 Hz for the axial and 1.23 Hz for the

transverse. While a longer time trace is required to verify these frequencies accurately

using an FFT, visual approximation of Figure 7-7 is in agreement with the general range

of these values.

148

Figure 7-9. Structural mesh for the flexible cylinder

7.3 Fourth Standard Modal Analysis

The second test case used is based on the fourth standard configuration and

demonstrates the ability of the aeroelastic solver to predict the dominant vibrational

modes of an aeroelastic turbomachinery blade. For this case, a single blade from the

fourth standard configuration is subjected to a step function from zero loading to the

converged flow solution loading in order to excite the structural modes of the blade. For

the structural model, a Young’s modulus of 29.0E-6 psi, density of 7.25 lbf-s
2
/in

4
, and

Poisson’s ratio of 0.3 were used. Although the blade tested at the Ecole Polytechnique

Federale de Lausanne was mounted on a spring hub [64], the structural blade modeled

here is clamped at the hub. Figure 7-10 shows the structural mesh used for this

simulation.

149

Figure 7-10. Structural mesh for STCF4

To extract the vibrational frequencies from the simulation, a time trace of the

displacements at the trailing edge tip of the blade were fed through an FFT. This location

was chosen since the displacements were higher at this location than any other location

on the blade during the simulation. Figure 7-11 shows a time trace of the axial

displacements at this location. Though the axial or circumferential directions could have

been used for this, the axial direction showed slightly higher displacements; hence it was

used for the FFT which is shown in Figure 7-12. Due to the time step size used in the

simulation and the rather short time trace obtained, the resolution (or increments in the

scale) of the FFT is 273.6 Hz.

150

Figure 7-11. Time trace of axial displacement at TE tip

Figure 7-12. FFT of axial displacement at TE tip

151

Table 7-13 gives the first 8 vibrational mode frequencies for the fourth standard

configuration turbine blade. The Ansys
®
 results are from an in vacuo analysis using the

Block Lauczos method, while the Thunder/FSI results are from the displacement time

trace at the trailing edge tip of the blade.

Mode Frequency (Ansys
®
) Frequency (Thunder/FSI)

1 4796.2 Hz 4924.25 Hz

2 6145.4 Hz 6292.10 Hz

3 10,373 Hz 10,395.64 Hz

4 12,669 Hz 12,857.77 Hz

5 13,871 Hz 13,952.04 Hz

6 20,317 Hz 20,244.14 Hz

7 20,756 Hz 20,791.27 Hz

8 24,942 Hz 25,168.39 Hz

Table 7-1. STCF4 frequency spectrum

Table 7-1 shows very good agreement between the modal frequencies predicted by

Ansys
®
 and those by the unsteady aeroelastic solver, especially considering the resolution

of the FFT. By accurately capturing the modal frequencies in the displacement of the

fluid grid, it is reasoned that the aeroelastic solver is properly orchestrating the interaction

of the coupled fluid and structure domains, providing a time accurate simulation of the

aeroelastic system modeled.

 In this chapter, the developed unsteady aerelastic solver was tested using two

simplified configurations. The first configuration, that of a flexible cylinder in cross

flow, demonstrated the exchange of energy between the fluid and structural models.

Although the intended resonance of the cylinder was not achieved do to subtle errors in

creation of the structural model, the cylinder was self excited and reached a periodic beat

frequency. The second configuration involved capturing the vibrational modes of a

152

fourth standard configuration turbine blade, through use of a step function from zero

loading to the converged flow field loading. The results of this test illustrated the ability

of the aerelastic solver to accurately predict the vibrational modes of the turbine blade.

By doing so, the aeroelastic solver has demonstrated it is properly orchestrating the

interaction between the fluid and structural domains and capable of providing a time

accurate simulation of a modeled aeroelastic system.

153

8. SUMMARY AND CONCLUSIONS

 In this research, an unsteady aeroelastic solver design tool for turbomachinery

applications was created by loosely coupling an improved version of the turbomachinery

CFD solver Corsair, called Thunder, to the structural solver Ansys
®
 through use the of a

general FSI module. Several modifications to Corsair were made during this research,

resulting in the improved flow solver called Thunder.

 In order to perform the necessary modifications to Corsair required for this

research, a detailed understanding of the numerical methods used in Corsair was required.

Since such detailed documentation of Corsair did not exist, the source code was

painstakingly examined and documented in chapter 2.

 To properly handle grid deformations, an investigation into different numerical

methods for evaluation of both spatial and temporal coordinate transformation terms

known as metrics was performed in chapter 3. From this investigation, it was determined

that the Finite Volume method with Long Diagonals produced the least amount of

numerical error on a three dimensional deforming grid while requiring a reasonable

number of floating point operations. Thus the Finite Volume method with Long

Diagonals was integrated into Corsair/Thunder and used for the remainder of this

research.

 Another area of improvement required for use in the targeted, time limited, design

environment was a reduction in simulation runtime. This was achieved through three

154

main efforts. The first involved replacement of the gridding-to-wall feature in Corsair

with a wall function, as detailed in chapter 4. To test the implementation of the wall

function, the high subsonic flow around a fourth standard configuration turbine blade was

simulated and compared to results from use of the gridding-to-wall method. In addition

to a dramatic reduction of the runtime, a noticeable increase in stability and convergence

was also observed through reduction in the time step required.

 Still a further reduction in simulation runtime was achieved through the use of

parallel computing and domain decomposition in the radial direction as outlined in

chapter 5. To simplify the use of the domain decomposition, a utility called thsplit was

created to both automate and optimize the decomposition procedure based on only the

number of the divisions to make for each grid. This effort also resulted in a major change

of Corsair’s data structure and a rewrite of the source code, resulting in Thunder.

Changes to the data structure were made to reduce the nodal memory footprint and allow

larger problem domains to be solved. Runtime improvements from these changes in data

structure and rewrite of the code alone were demonstrated to be roughly 23%! Parallel

efficiency of the added radial decomposition was shown to be effective for modest

numbers of domain divisions, but beyond a ratio of additional ghost points to original

domain size of ~20%, efficiency dramatically decreased. For the single fourth standard

configuration turbine blade used to evaluate these changes, this translated to a fivefold

reduction in runtime and a 33% reduction in the nodal memory footprint when six

processors were used, while obtaining a parallel efficiency of greater than 85%!

Chapter 6 covered the FSI module and it’s integration with Thunder. Differences

in grid indexing between the FSI module and Thunder were overcome through the

155

creation of conversion utilities and algorithms. The resulting unsteady aerelastic solver

was tested against two simplified geometries in chapter 7.

First in section 7.2, the well understood case of a flexible cylinder in cross flow

was studied with the natural frequency of the cylinder set to the shedding frequency of

the Von Karman streets. The cylinder was self excited and thus demonstrates the

exchange of energy between fluid and structural models. However, the intended

resonance frequency was not achieved due to a poor assumption regarding the cross

sectional properties of the structural model. This resulted in the displacement of the

cylinder exhibiting a beat frequency, indicating that the driving force frequency of the

Von Karman streets is very close to the resonance frequency of the structure.

In section 7.3, a second test case based on the fourth standard configuration was

used to demonstrate the ability of the solver to predict the dominant vibrational modes of

an aeroelastic turbomachinery blade. For this case, a single blade from the fourth

standard configuration was subjected to a step function from zero loading to the

converged flow solution loading in order to excite the structural modes of the blade. To

extract these vibrational frequencies, a time trace from the trailing edge tip point of the

blade was passed through an FFT. The resulting frequencies were then compared to

those obtained from an in vacuo analysis using Ansys
®
, with good agreement between the

two.

8.1 Suggested Additional Tests & Case Studies

 There is always a need to further test computational tools through additional case

studies and the unsteady aerelastic solver developed in this research is no exception. The

156

test cases used in this research were chosen for their simplicity and ability to demonstrate

the fundamental requirements of this tool.

 An obvious area of suggested additional cases is experimental studies performed

on aerelastic phenomena in turbomachinery. Such experimental studies are desperately

needed in the public domain to test aeroelastic solvers for turbomachinery application.

While a small number of such experimental studies have been conducted, the results have

been deemed proprietary by the investigators and thus are not within the public domain.

The fourth standard configuration turbine blade used in this research comes close to the

requirement of experimental data. Unfortunately, this study relied on mechanical forcing

of the blades to simulate aeroelastic behavior of the turbine, resulting in nonrealistic data

for testing of modern computational aerelastic solvers.

 A second area of suggested test cases and study with this aeroelastic solver is the

NASA compressor rotor geometry 67 [89]. This geometry has become a popular test

case for three dimensional viscous flow predictions because of the available detailed

experimental data obtained using a laser anemometer [90]. Although the structural

properties for this configuration are not available, the blade is considered to be flexible

enough for flutter to occur under some flow conditions and a handful of researchers have

used it to certify the validity of aeroelastic turbomachinery applications [91,92,93].

 Finally, additional test cases using simplified but well understood, closed form

solution models such as the flexible cylinder case used in this research is also

recommended. One such configuration is the Onera M6 Wing, for which experimental

wind tunnel results exist over a range of flow conditions [94].

157

8.2 Further development & improvements

 While efforts outlined in this research were taken to enhance the resulting

unsteady aeroelastic solver (specifically the reduction of simulation runtime), many

opportunities exist to improve upon the model developed. Such improvements include

incorporating additional turbulence models such as k-ε [95,96], k-ω [97], Spalart

Allmaras [98], or even Detached Eddy Simulation (DES) [99], and capabilities such as

film cooling and phase lagged boundary conditions.

 However another area of possible development and improvement is greater

reduction in simulation runtime through additional parallelism. This might take several

forms, from simply adding more domain decomposition to adapting portions of the solver

for use with General Purpose Graphics Processing Units (GPGPU) [100,101], or even a

hybrid method using both of these. In fact, use of such a hybrid system may allow such

an aeroelastic solver to be more easily used in the design phase of turbomachinery, by

allowing it to effectively make use of the GPGPU and multi-core technology which is

becoming prevalent in computer workstations.

158

9. REFERENCES

1. Lord, W. K., MacMartin, D. G., and Tillman, T. G., "Flow Control Opportunities in

Gas Turbin Engines," AIAA paper no. 2000-2234, Fluids 2000 Conference and
Exhibit, June 19-22, 2000, Denver, CO.

2. Sharma, O. P., Pickett, G. F., and Ni, R. H., "Assessment of Unsteady Flows in a
Compressor Rotor," ASME Journal of Turbomachinery, Vol. 114, No. 1, January

1992, pp. 79-90.

3. Boyce, P. M., Gas Turbine Engineering Handbook, 3rd ed., Gulf Professional

Publishing. Boston, MA, 2006.

4. Marshall, J. G., and Imregun, M. , "A Review of Aeroelasticity Methods with
Emphasis on Turbomachinery Applications," Journal of Fluids and Structures, Vol.

10, No. 3, April 1996, pp. 237-267.

5. Petrov, E. P., Mare, L. D., Hennings, H. , and Elliott, R. , "Forced Response of

Mistuned Balded Disks in Gas Flow: A Comparitive Study of Predictions and Full-
Scale Experimental Results," Journal of Engineering for Gas Turbines and Power,

Vol. 132, No. 5, May 2010, pp. 52504-52514.

6. Giacommo, P. , Unsteady Aerodynamic Stator-Rotor Interaction in High Pressure

Turbines, Von Karman Institute for Fluid Dynamics. Rhode-Saint-Gense, Belgium,
2007.

7. Bendikson, O. O., "Aeroelastic Problems in Turbomachines ," Flight-Vehicle

Materials, Structures, and Dynamics - Asseement and Future Directions, Vol. 5,
1993, pp. 241-297.

8. Rao, J. S., "Turbomachinery Blade Vibration," The Shock and Vibration Digest, Vol.
19, 1987, pp. 3-10.

9. Lim, S. H., Castanier, M. P., and Pierre, C. , "Vibration Modeling of Bladed Disks
Subject to Geometric Mistuning and Design Changes," AIAA Paper 2004-1686, 45th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials
Conference, April 19-22, 2004, Palm Springs, CA.

159

10. Rothermel, J. , Dorney, S. M., and Dorney, D. J., "CFD-based Design of Turbopump
Inlet Duct for Reduced Dynamic Loads," 14th Annual Thermal and Fluids Analysis

Workshop, August 18-23, 2003, Hampton, VA.

11. Lane, F. , "System Mode Shapes in the Flutter of Compressor Blade Rows," Journal

of Aeronautical Sciences, Vol. 23, 1956, pp. 54-66.

12. Bartels, R. E., and Sayma, A. I., "Computational Aeroelastic Modeling of Airframes

and Turbomachinery: Progress and Challenges," Philosophical Transactions of the

Royal Society A, Vol. 36, No. 1859, October 2007, pp. 2469-2499.

13. Baik, S. , Castanier, M. P., and Pierre, C. , "Mistuning Sensitivity Prediction of

Bladed Disks Using Eigenvalue Curve Veerings," Proceedings of the 9th National

Turbine Engine High Cycle Fatigue Conference, March 2004.

14. Whitehead, D. S., "Classical Two-Dimensional Methods ," Manual on Aeroelasticity

in Axial-Flow Turbomachinery: Unsteady Turbomachinery Aerodynmamics, Vol. 1,

No. 298, January 1987, pp. 1-30.

15. Gerolymos, G. A., "Numerical Integration of the 3D Unsteady Euler Equations for

Flutter Analysis of Axial Flow Compressors," ASME paper no. 88-GT-255, 1988.

16. Wolff, J. M., and Fleeter, S. , "Euler Analysis of Oscillating Cascade Unsteady
Aerodynamics Using Embedded Composite Grids," AIAA paper no. 94-0077, 1994.

17. Ji, S. , and Liu, F. , "Computation of Unsteady Flows Around Oscillating Blades and
Aeroelasticity Behavior," AIAA paper no. 97-0161, 35th AIAA Aerospace Sciences

Meeting and Exhibit, January 6-9, 1997, Reno, NV.

18. Weber, S. , Gallus, H. E., and Peitsch, D. , "A Numerical Approach to Unstalled and

Stalled Flutter Phenomena in Turbomachinery," ASME paper no. 97-GT-102, 1997.

19. Bendiksen, O. O., and Kousen, K. A., "Transonic Flutter Analysis using the Euler

Equations," AIAA paper no. 87-0911, AIAA Dynamics Specialists Conference, April
9-10, 1987, Moterey, CA.

20. Huff, D. L., and Reddy, T. S. R., "Numerical Analysis of Supersonic Flow Through

Oscillating Cascade Sections by Using a Deforming Grid," AIAA Paper no. 89-2805,
1989.

21. Eick, C. D., and Liu, J. S., "Comparisons of Aeroelastic Computer Code Predictions
Against Measured Rotor Vibratory Response Data," AIAA paper no. 97-2750, 1997.

22. Gao., C. , Luo, S. , and Liu, F. , "Calculation of Airfoil Flutter by an Euler Method
with Approximate Boundary Conditions," AIAA paper no. 2003-3830, 16th AIAA

Computational Fluid Dynamics Conference, June 23-26, 2003, Orlando, FL.

160

23. Gottfried, D. A., and Fleeter, S. , "Prediction of Unsteady Cascade Aerodynamics by
an Arbitrary Lagrangian-Eulerian Finite Element Method," AIAA paper no. 98-0374,

1998.

24. Bendiksen, O. O., "A New Approach to Computational Aeroelasticity," AIAA paper

no. 91-0939, 1991.

25. Masud, A. , "A Space-Time Finite Element Formulation for Fluid-Structure

Interaction," AIAA paper no. 96-4049, 6th AIAA Symposium on Multidisiplinary
Analysis and Optimization, September 4-6, 1996, Bellevue, WA.

26. Gottfried, D. A., and Fleeter, S. , "Turbomachinery Blade Row Interaction

Predictions with a Three-Dimensional Finite Element Method," AIAA paper no.

2000-3226, 2000.

27. Sadeghi, M. , and Liu, F. , "Investigation of Mistuned Effects on Cascade Flutter
Using a Coupled Method," AIAA paper no. 2002-0952, 40th AIAA Aerospace

Sciences Meeting and Exhibit, January 14-17, 2002, Reno, NV.

28. Meira Josete, B. C. et al., "The Suitability of Different FEA Models for Studying

Root Fractures Caused by Wedge Effect," Journal of Biomedical Materials

Research, Vol. 84, No. 2, 2008, pp. 442-446.

29. Srivastava, R. , Sankar, L. N., Reddy, T. S., and Huff, D. L., "Application of an

Efficient Hybrid Scheme for Aeroelastic Analysis of Advanced Propellers," AIAA

Journal of Propulsion and Power, Vol. 7, No. 8, September 1991, pp. 767-775.

30. Yamamoto, O. , and August, R. , "Structural and Aerodynamic Analysis of a Large-
Scale Advanced Propeller Blade," AIAA Journal of Propulsion and Power, Vol. 8,

No. 2, March 1992, pp. 367-373.

31. Sayma, A. I., Vahdati, M. , and Imregun, M. , "Forced Response Analysis of an

Intermediate Pressure Turbine Blade using a Nonlinear Aeroelasticity Model," AIAA

paper no. 98-3718, 34th Joint Propulsion Conference and Exhibit, July 13-15, 1998,

Cleveland, OH.

32. Vahdati, M. , Sayma, A. , and Imregun, M. , "Prediction of High and Low Engine

Order Forced Responses for a Low Pressure Turbine Blade," AIAA paper no. 98-

3719, 34th Joint Propulsion Conference and Exhibit, July 13-15, 1998, Cleveland,

OH.

33. Breard, C. , Imregun, M. , Sayma, A. , and Vahdati, M. , "Flutter Stability Analysis
of a Complete Fan Assembly," AIAA paper no. 99-0238, 37th AIAA Aerospace

Sciences Meeting and Exhibit, January 11-14, 1999, Reno, NV.

161

34. Servera, G. , Beaumier, P. , and Costes, M. , "A Weak Coupling Method Between
the Dynamic Code HOST and the 3D Unsteady Euler Code WAVES," Journal of

Aerospace Science and Technologies, Vol. 5, No. 6, September 2001, pp. 397-408.

35. Carstens, V. , Kemme, R. , and Schmitt, S. , "Coupled Simulation of Flow-Structure

Interaction in Turbomachinery," Journal of Aerospace Science and Technology, Vol.
7, No. 4, June 2003, pp. 298-306.

36. Johnston, D. A., Cross, C. J., and Wolff, J. M., "An Architecture for Fluid/Structure
Interaction Analysis of Turbomachinery Blading," AIAA paper no. 2005-4013, 41st

Joint Propulsion Conference and Exhibit, July 10-13, 2005, Tuscon, AZ.

37. Buyya, R. , High Performance Cluster Computing: Volume 2, Programming and

Applications, Prentice Hall PTR. Upper Sandle River, NJ, 1999.

38. Sorenson, R. L., "A Computer Progam to Generate Two-Dimensional Grids about
Airfoils and Other Shapes by use of Poisson's Equations," NASA TM-81198, May

1980.

39. Sondak, D. L., and Dorney, D. J., "General Equation Set Solver for Compressible

and Incompressible Turbomachinery Flows," AIAA paper no. 2003-4420, 39th Joint
Propulsion Conference and Exhibit, July 20-23, 2003, Huntsville, AL.

40. Pulliam, T. H., and Steger, J. L., "Implicit Finite-Difference Simulation of Three-

Dimensional Compressible Flow," AIAA Journal, Vol. 18, No. 2, February 1980, pp.
159-167.

41. Rai, M. M., "Three-Dimensional Navier-Stokes Simulations of Turbine Rotor-Stator
Interaction: Part I - Methodology," AIAA Journal of Propulsion and Power, Vol. 5,

No. 3, May-June 1989, pp. 305-311.

42. Visbal, M. , and Gaitonde, D. , "High-Order Accurate Methods for Complex

Unsteady Subsonic Flows," AIAA Journal, Vol. 37, No. 10, October 1999, pp. 1222-
1230.

43. Visbal, M. , and Gaitonde, D. , "Very High Order Spatially Implicit Schemes for
Computational Acoustics on Curvilinear Meshes," Journal of Computational

Acoustics, Vol. 9, No. 4, December 2001, pp. 1259-1286.

44. Thomas, P. D., and Lombard, C. K., "Geometric Conservation Law and its
Application to Flow Computations on Moving Grids," AIAA Journal, Vol. 17, No.

10, October 1979, pp. 1030-1037.

45. Gaitonde, D. , and Visbal, M. , "Further Development of a Navier-Stokes Solution

Procedure based on Higher Order Formulas," AIAA Paper 99-0557, 1999.

162

46. Visbal, M. , and Gordnier, R. , "A High Order Flow Solver for Deforming and
Moving Meshes," AIAA Paper 2000-2619, June 2000.

47. Vinokur, M. , "An Analysis of Finite Difference and Finite Volume Formulations of
Conservation Laws," Journal of Computational Physics, Vol. 81, No. 1, March

1989, pp. 1-52.

48. Obayashi, S. , "Free-Stream Capturing in Fluid Conservation Law for Moving

Coordinates in Three Dimensions," NASA-CR-177572, January 1991.

49. Grandy, J. , "Efficient Computation of Volume of Hexahedral Cells," Lawrence

Livermore National Laboratory UCRL-ID-128886, October 1997.

50. Visbal, M. , and Gaitonde, D. , "On the Use of Higher Order Finite Difference
Schemes on Curvilinear and Deforming Meshes," Journal of Computational

Physics, Vol. 181, No. 1, September 2002, pp. 155-185.

51. White, F. M., Viscous Fluid Flow, 2nd ed., McGraw-Hill. New York, NY, 1991.

52. Hoffmann, K. A., and Chiang, S. T., Computational Fluid Dynamics, Engineering

Education System. Wichita, KS, 1998.

53. Baldwin, B. S., and Lomax, H. , "Thin Layer Approximation and Algebraic Model

for Seperated Turbulent Flow," AIAA paper no. 78-0257, 1978.

54. Ganville, P. S., "A Modified Van Driest Formula for the Mixing Length of

Turbulent Boundary Layers in Pressure Gradients," ASME Journal of Fluids

Engineering, Vol. 111, No. 1, March 1989, pp. 94-97.

55. Granville, P. S., "Baldwin-Lomax Factors for Turbulent Boundary Layers in
Pressure Gradiants," AIAA Journal, Vol. 25, No. 12, December 1987, pp. 1624-

1627.

56. Dorney, D. J., Horia, C. F., Ashpis, D. E., and Solomon, W. J., "Effects of Blade
Count on Boundary Layer Development in a Low Pressure Turbine," AIAA paper

no. 2000-0742, 38th Aerospace Sciences Meeting and Exhibit, January 10-13, 2000,
Reno, NV.

57. Spalding, D. B., "A Single Formulae for the Law of the Wall," Journal of Applied

Mechanics, Vol. 28, September 1961, pp. 455-457.

58. Boyle, R. J., and Senyitko, R. G., "Measurements and Predictions of Surface
Roughness Effects on Turbine Vane Aerodynamics," ASME paper no. GT-2003-

38580, ASME Turbo Expo, June 16-19, 2003, Atlanta, GA.

163

59. Bammert, K. , and Milsch, R. , "Boundary Layers on Rough Compressor Blades,"
ASME paper no. 72-GT-48, 1972.

60. Shabbir, A. , and Turner, M. G., "A Wall Function for Calculating the Skin Friction
with Surface Roughness," ASME paper no. GT-2004-53908, ASME Turbo Expo,

June 14-17, 2004, Vienna, Austria.

61. Schlicting, H. , Boundary Layer Theory, 7th ed., McGraw-Hill. New York, NY,

1979.

62. Mani, M. , and Ota, D. , "A Compressible Wall Function for Steady and Unsteady
Flow Applications," AIAA paper no. 99-3216, 1999.

63. Shih, T. H., Povinelli, L. A., and Liu, N. S., "Application of Generalized Wall
Function for Complex Turbulent Flows," Journal of Turbulence, Vol. 4, April 2003,

pp. 15-15.

64. Bolcs, A. , and Fransson, T. H., "Aeroelasticity in Turbomachines Comparision of

Theoretical and Experimental Cascade Results," Communication de Laboratoire de

Thermique Appliquee et de Turbomachines, No. 13, 1986, Ecole Polytechnique

Federale de Lausanne, Switzerland.

65. TORQUE Admin Manual Version 2.1.6, Adaptive Computing Enterprises, Inc.,
2006.

66. Hwang, K. , and Xu, Z. , Scalable Parallel Computing: Technology, Architecture,

Programming, McGraw-Hill. Boston, MA, 1998.

67. Winkelmann, R. , Hauser, J. , and Williams, R. D., "Strategies for Parallel and
Numerical Scalability of CFD Codes," Journal of Computer Methods in Applied

Mechanics and Engineering, Vol. 174, No. 3-4, May 1999, pp. 433-456.

68. Saghi, G. , Siegel, H. J., and Gray, G. L., "Predicting Performance and Selecting

Modes of Parallelism: A Case Study Using Cyclic Reduction on Three Parallel
Machines," Journal of Parallel and Distributed Computing, Vol. 19, No. 3,

November 1993, pp. 219-233.

69. Lin, H. X., "A Unifying Graph Model for Designing Parallel Algorithms for
Tridiagonal Systems," Journal of Parallel Computing, Vol. 27, No. 7, June 2001,

pp. 925-939.

70. Rathe, U. W., Sanders, P. , and Knight, P. L., "A Case Study in Scalability: An ADI

Method for the Two Dimensional Time Dependent Dirac Equation," Journal of

Parallel Computing, Vol. 25, No. 5, May 1999, pp. 525-533.

164

71. Yaldin, Y. , and Caughey, D. A., "Parallel Computing Strategies for Block Multigrid
Implicit Solution of the Euler equations," AIAA Journal, Vol. 30, No. 8, August

1992, pp. 2032-2038.

72. Paaterson, D. , "Computer Architecture is Back: Parallel Computing Lanscape,"

Stanford University Computer System Colloquium, Stanford University, January 31,
2007.

73. Kumar, V. , Grama, A. , Gupta, A. , and Karypis, G. , Introduction to Parallel

Computing Design and Analysis of Algorithms, Benjamin/Cummings. Reddwood

City, CA, 1994.

74. Geuzaine, Christophe , and Remacle, Jean-François , "Gmsh: A 3-D finite element
mesh generator with built-in pre- and post-processing facilities," International

Journal for Numerical Methods in Engineering, Vol. 79, No. 11, September 2009,
pp. 1309–1331.

75. C., Farhat , Lesoinne, M. , and LeTallec, P. , "Load and Motion Transfer Algorithms
for Fluid/Structure Interaction Problems with Non-matching Interfaces: Momentum

and Energy Conservation, Optimal Discretization and Application to Aeroelasticity,"
Journal of Computational Methods in Applied Mechanics and Engineering, Vol.

157, 1998, pp. 95-114.

76. Bonet, Javier , and Peraire, Jamie , "An Alternating Digital Tree (ADT) Algorithm

for 3D Geometric Searching and Intersection Problems," International Journal of

Numerical Methods in Engineering, Vol. 31, 1991, pp. 1-7.

77. Bathe, Klaus-Jurgen , Finite Element Procedures, Prentice Hall. Upper Sadle River,
NJ, 1996.

78. Morton, Scott A., Melville, Reid B., and Visbal, Miguel R., "Accuracy and Coupling

Issues of Aeroelastic Bavier-Stokes Solutions on Deforming Meshes," Journal of

Aircraft, Vol. 35, No. 5, 1998, pp. 798-805.

79. Lesoinne, M , and Farhat, C. , "Geometric Conservation Law for Flow Problems
with Moving Boundaries and Deforming Meshes, and Their Impact on Aeroelastic

Computations," Journal of Computational Methods in Applied Mechanics and

Engineering, Vol. 134, 1996, pp. 71-90.

80. Koobus, B. , and Farhat, C. , "Second-Order Time-Accurate and Geometric
Conservative Implicit Schemes for Flow Computations on Unstructured Dynamic

Meshes," Journal of Computational Methods in Applied Mechanics and

Engineering, Vol. 170, 1999, pp. 103-129.

165

81. Chen, J. P., and Briley, W. R., "A Parallel Flow Solver for Unsteady Multiple Blade
Row Turbomachinery Simulations," ASME paper no. 2001-GT-0348, ASME

TURBO EXPO 2001, June 4-7, 2001, New Orleans, LA.

82. Serway, Raymond A., Physics for Scientist & Engineers, 3rd ed., Saunders College

Publishing. Philadelphia, PA, 1992.

83. Silkowski, P. D., Rhie, C. M., Copeland, G. S., Eley, J. A., and Bleeg, J. M.,

"Computational Fluid Dynamics Investigation of Aeromechanics," AIAA Journal of

Propulsion and Power, Vol. 18, No. 4, July-August 2002, pp. 788-796.

84. Sanders, A. J., "Nonsynchronous Vibration (NSV) due to Flow Induced

Aerodynamic Instability in a Composite Fan Rotor," ASME Journal of

Turbomachinery, Vol. 127, No. 2, April 2005, pp. 412-421.

85. Fox, Robert W., and McDonald, Alan T., Introduction to Fluid Mechanics, 4th ed.,
John Wiley & Sons Inc. New York, NY, 1992.

86. Ponta, F. L., and Aref, H. , "Numerical Experiments on Vortex Shedding from an
Oscillating Cylinder," Journal of Fluids and Structures, Vol. 22, No. 3, April 2006,

pp. 327-344.

87. Inman, Daniel J., Engineering Vibration, Prentice Hall. Upper Sadle River, NJ,
1996.

88. Avallone, Eugene A., and Baumeister III, Theodore , Mark's Standard Handbook for

Mechanical Engineers, 9th ed., McGraw-Hill. New York, NY, 1987.

89. Urasek, D. C., Gorrell, W. T., and S., Cunnan W., "Performance of Two Stage Fan
Having Low-Aspect-Ratio, First-Stage Rotor Blading," NACA Technical Report no.

NACA-TP-1493, August 1979.

90. Strazisar, A. J., Wood, J. R., Hathaway, M. D., and Suder, K. L., "Laser

Anemometer Measurements in a Transonic Axial-Flow Fan Rotor," NASA Technical

Report no. NACA-TP-2879, 1989.

91. Chuang, H. A., and Verdon, J. M., "A Numerical Simulator for Three-Dimensional

Flows Through Vibrating Blade Rows," NASA Technical Report no. NASA-CR-

1998-208511, 1998.

92. He, L. , and Denton, J. D., "Three-Dimensional Time-Marching Inviscid and
Viscous Solutions for Unsteady Flows Around Vibrating Blades," Journal of

Turbomachinery, Vol. 116, No. 3, July 1994, pp. 469–476.

166

93.

Vahdati, M. , and Imregun, M. , Nonlinear Aeroelasticity Analysis Using

Unstructured Dynamics Meshes, Kluwer Academic Publishers, Torsten H. Fransson,
Ed. Norwell, MA, 1995.

94. Schmitt, V. , and Charpin, F. , "Pressure Distributions on the ONERA-M6-Wing at
Transonic Mach Numbers," Experimental Data Base for Computer Program

Assessment, Report of the Fluid Dynamics Panel Working Group 04, AGARD AR
138, May, 1979.

95. Jones, W. P., and Launder, B. E., "The Prediction of Laminarization with a Two-
Equation Model of Turbulence," International Journal of Heat and Mass Transfer,

Vol. 15, 1972, pp. 301-314.

96. Launder, B. E., and Sharma, B. I., "Application of the Energy Dissipation Model of
Turbulence to the Calculation of Flow Near a Spinning Disc," Letters in Heat and

Mass Transfer, Vol. 1, No. 2, November-December 1974, pp. 131-138.

97. Menter, F. R., "Two-Equation Eddy-Viscosity Turbulence Models for Engineering

Applications," AIAA Journal, Vol. 32, No. 8, August 1994, pp. 1598-1605.

98. Spalart, P. R., and Allmaras, S. R., "A One-Equation Turbulence Model for

Aerodynamic Flows," AIAA Paper no. 92-0439, AIAA 30th Aerospace Sciences
Meeting and Exhibit,January 6-9, 1992, Reno, NV.

99. Spalart, P. R., "Comments on the Feasibility of LES for Wing and on a Hybrid
RANS/LES Approach," 1st ASOSR CONERFENCE on DNS/LES, Arlington, TX,

August, 1997.

100. Jespersen, Dennis C., "Acceleration of a CFD Code with a GPU," NAS Technical

Report NAS-09-003, November 2009.

101. Cohen, Jonathan M., and Molemaker, M. Jeroen, "A Fast Double Precision CFD
Code using CUDA," 21st International Conference on Parallel Computational Fluid

Dynamics, May 18-22, 2009, Moffett Field, CA.

167

Appendix A. Block Tridiagonal Systems

When a system of PDEs is approximated by an implicit formulation involving

three grid points at each level, a block-tridiagonal system is produced. The resulting

block-tridiagonal system may be expressed in a general form as:

RQS =∆

(A-1)

where ∆Q and R are m component vectors. The coefficient S represents the block

tridiagonal coefficient expressed by:























=

−−

−−−

11

222

333

22

IMIM

IMIMIM

BA

CBA

CBA

CB

S OOO

(A-2)

Where Ai, Bi, Ci are square matrices of order m.

 To solve this system, an LU factorization is first applied to the S coefficient

matrix:













































==

−

−−

−−

I

I

I

I

A

A

A

LUS

IM

IMIM

IMIM 2

3

2

11

22

33

2

β

β

β

α

α

α

α

OOOO

(A-3)

where I is the identity matrix of order m. The square matrices αi and βi are determined as:

22 βα = and 2

1

22 CB−=β

(A-4)

168

1−−= iiii AB βα for i = 3, 4, …, IM-1

iii C1−= αβ for i = 3, 4, …, IM-2

(A-5)

(A-6)
The system given in Equation A-1is now equivalent to

RLY =

(A-7)

where

QUY ∆=

(A-8)

Rewritting Equation A-6:























=













































−

−

−

−

−−

−−

1

2

3

2

1

2

3

2

11

22

33

2

IM

IM

IM

IM

IMIM

IMIM

R

R

R

R

Y

Y

Y

Y

A

A

A

MMOO

α

α

α

α

(A-9)

from which:

2

1

22 RY −= α

(A-10)

and

()1

1

−
− −= iiiii YARY α for i = 3, 4, …, IM-1

(A-11)

Next, Equation A-8 is expressed as:























=























∆

∆

∆

∆























−

−

−

−−

1

2

3

2

1

2

3

2

2

3

2

IM

IM

IM

IMIM

Y

Y

Y

Y

Q

Q

Q

Q

I

I

I

I

MMOO

β

β

β

(A-12)

from which

11 −− =∆ IMIM YQ

(A-13)

and

1+∆−=∆
iiii

QYQ β for i = IM-1, IM-2, …, 3, 2 (A-14)

169

Appendix B. Quick Search using Shape Functions

Shape functions are simple weighting values which are used commonly in Finite

Element Analysis for linear interpolation of values between nodes. In Corsair they are

used to obtain a tri-linear interpolation of flow variables between overlaid grids.

However to accomplish this, the three points from the donating grid which contain the

recipient grid point must first be determined. In the distributed version of Corsair, this is

done with an exhaustive search, but a much faster method was devised which makes use

of a seldom used properties of shape functions.

Take the 1D linear element (or line segment) of length L, with two nodes as

illustrated in Figure B-1:

 Φj Φi

 φ

 x

 j i

Xi L

Xj

φ = a1 + a2x

Figure B-1. One dimensional linear element

170

In figure B-1, the nodes are denoted by i and j while their associated nodal values are

denoted by Φi and Φj. The origin of the coordinate system is to the left of node i and the

value φ varies linear between the two nodes per the following relationship:

 xaa 21 +=ϕ

(B-1)

where the coefficients a1 and a2 can be determined using the nodal conditions:

iΦ=ϕ at x = Xi

jΦ=ϕ at x = Xj

(B-2)

to develop the pair of equations:

ii Xaa 21 +=Φ

jj Xaa 21 +=Φ

(B-3)

which yields a1 and a2 as:

ij

ijji

XX

XX
a

−

Φ−Φ
=1

ij

ij

XX
a

−

Φ−Φ
=2

(B-4)

Substitution of Equation B-4 into Equation B-1 and rearranging gives:

j
i

i

j

L

Xx

L

xX
Φ






 −
+Φ







 −
=ϕ

(B-5)

where Xj-Xi has been replaced by the element length L. Equation B-5 is in standard finite

element form, where the nodal values are multiplied by linear functions of x called shape

functions. Shape functions are commonly denoted by N with a subscript indicating the

node with which it is associated with. The shape functions in Equation B-5 are:

L

xX
N

j

i

−
= and

L

Xx
N i

j

−
=

(B-6)

which allows Equation B-5 to be rewritten as:

171

jjii NN Φ+Φ=ϕ

(B-7)

Now for a few observations about shape functions from this simple example. First, the

sum of the shape functions is always one. Second each shape function has a value of one

at its own node and zero at the other node. Thus if the value of x falls between the nodes,

then the value of the shape functions will be between zero and one. If however, the value

of x falls to the left of node i, then Ni will be greater than one and Nj will be negative. If

the value of x is to the right of node j, then Ni will be negative and Nj will be greater than

one. Therefore, if the point to be interpolated at falls outside the range defined by the

nodes, the shape functions when evaluated at the nodes indicates which direction the

point to be interpolated at lies.

 These properties exist for all shape functions, including the ones used for the tri-

linear interpolation in Corsair. The property of indicating the direction for which an

interpolating point lies outside the interpolating range was used to replace the exhaustive

search of donating grid points containing the recipient grid point between overlaid grids

for all but the first recipient grid point with a quick or smart search algorithm in Corsair.

To illustrate the logic of this algorithm, take Figure B-2 which represents a portion of the

overlaid grid region. For this example, the H-grid (nodes with by i and j notation) is the

donating grid and the outer boundary of the O-grid (dashed line) contains the recipient

points (denoted by A though F). To begin the algorithm, the four points from the H grid

forming a box which contains point A must first be found using an exhaustive search via

a do loop through indexes i and j. For each i and j, the shape functions for the two

triangles in the box formed by points (i, j), (i+1, j), (i, j+1), (i+1, j+1) are evaluated for

the recipient point A. If all three shape function for either of the two triangles are

172

between zero and one, then the triangle of donating points has been found, if not, the

exhaustive search continues. Once the triangle of donating points has been found, the

quick search algorithm can take over. First the shape functions for the two triangles in

the box containing the previous recipient point are evaluated using the coordinates of

next recipient point. The results of calculating N2 through N5 can then be used to

determine if this next recipient point lies in the current box of donating points or if it

doesn’t, which direction to move in to find the correct box of donating points. Applying

the properties of shape functions just discussed to shape function N3 in Figure B-2, the

value will be negative if the point being interpolated for falls beyond the line formed by

j+1. This simple principle is used in the quick search algorithm to determine which

direction to move the search box in. So if N2 is negative the search box is moved left, if

N3 is negative the search box is moved up, if N4 is negative the search box is moved

right, and if N5 is negative the search box is moved down.

 i

 j

 j+1

 A

 B

 j+2

 N4

 N1 N2

 N5

 N3

 N6

 C

 i+1 i+2

Figure B-2. Portion of overlaid O- and H-grid

173

 For the example here, the shape functions for the upper and lower triangles of the

box formed by points (i, j), (i+1, j), (i, j+1), (i+1, j+1) would be evaluated using the

coordinates of point B. When these shape functions are evaluated, N2 and N4 will be

between zero and one, N5 will be greater than one, and N3 will be negative. Thus, the

search box would be moved up and the shape functions for the two triangles in the box

formed by points (i, j+1), (i+1, j+1), (i, j+2), (i+1, j+2) would be evaluated.

In addition, combinations of these moves can be made in a single step, for example if N3

and N4 are both negative, then the box is moved diagonally up and to the right. During

practice, the algorithm normally finds the correct box within 3 moves, even with very

fine grids, and is much faster than the exhaustive search. When performing the search on

successive radial slices (k index), the i and j box indexes for the associated point one slice

previous are used as a started point for the search. Likewise, when the grids are moving

relative to one another, the box indexes from the previous time step are used as an initial

starting point.

	Development of an Unsteady Aeroelastic Solver for the Analysis of Modern Turbomachinery Designs
	Repository Citation

	Microsoft Word - WorkingCopy3

