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ABSTRACT 
 

Leger, Timothy James, Ph.D., Department of Mechanical and Material Engineering, 

Wright State University, 2010.  Development of an Unsteady Aeroelastic Solver for the 

Analysis of Modern Turbomachinery Designs 

 

 

 

Developers of aircraft gas turbine engines continually strive for greater efficiency 

and higher thrust-to-weight ratio designs.  To meet these goals, advanced designs 

generally feature thin, low aspect airfoils, which offer increased performance but are 

highly susceptible to flow-induced vibrations.  As a result, High Cycle Fatigue (HCF) has 

become a universal problem throughout the gas turbine industry and unsteady aeroelastic 

computational models are needed to predict and prevent these problems in modern 

turbomachinery designs.  This research presents the development of a 3D unsteady 

aeroelastic solver for turbomachinery applications.  To accomplish this, a well 

established turbomachinery Computational Fluid Dynamics (CFD) code called Corsair is 

loosely coupled to the commercial Computational Structural Solver (CSD) Ansys
®

 

through the use of a Fluid Structure Interaction (FSI) module. 

Significant modifications are made to Corsair to handle the integration of the FSI 

module and improve overall performance.  To properly account for fluid grid 

deformations dictated by the FSI module, temporal based coordinate transformation 

metrics are incorporated into Corsair.  Wall functions with user specified surface 

roughness are also added to reduce fluid grid density requirements near solid surfaces.  

To increase overall performance and ease of future modifications to the source code, 

Corsair is rewritten in Fortran 90 with an emphasis on reducing memory usage and 
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improving source code readability and structure.  As part of this effort, the shared 

memory data structure of Corsair is replaced with a distributed model.  Domain 

decomposition of individual grids in the radial direction is also incorporated into Corsair 

for additional parallelization, along with a utility to automate this process in an optimal 

manner based on user input.  This additional parallelization helps offset the inability to 

use the fine grain mp-threads parallelization in the original code on non-distributed 

memory architectures such as the PC Beowulf cluster used for this research.  Conversion 

routines and utilities are created to handle differences in grid formats between Corsair 

and the FSI module. 

The resulting aeroelastic solver is tested using two simplified configurations.  

First, the well understood case of a flexible cylinder in cross flow is studied with the 

natural frequency of the cylinder set to the shedding frequency of the Von Karman 

streets.  The cylinder is self excited and thus demonstrates the correct exchange of energy 

between the fluid and structural models.  The second test case is based on the fourth 

standard configuration and demonstrates the ability of the solver to predict the dominant 

vibrational modes of an aeroelastic turbomachinery blade.  For this case, a single blade 

from the fourth standard configuration is subjected to a step function from zero loading to 

the converged flow solution loading in order to excite the structural modes of the blade.  

These modes are then compared to those obtained from an in vacuo Ansys
®
 analysis with 

good agreement between the two.  
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1. INTRODUCTION 

 

Developers of aircraft gas turbine engines continually strive for greater efficiency 

and higher thrust-to-weight ratio designs.  To meet this goal, the trend in gas turbine 

designs has been to reduce size and weight of engines by decreasing the number of 

compressor stages, the number of blades per row, and the axial spacing between 

vane/blade rows [1].  However, these reductions result in significantly increased 

aerodynamic loading of the blades and unsteady interaction between blade rows.  In 

addition, advanced compressor designs generally feature thin, low aspect airfoils, which 

offer increased performance but are highly susceptible to flow-induced vibrations [2].  As 

a result, High Cycle Fatigue (HCF) has become a universal problem throughout the gas 

turbine industry.  In response to these HCF problems, a considerable portion of recent 

research in compressor and turbine design has involved the investigation of unsteady 

aeroelastic phenomena, namely flutter and forced response [3]. 

Flutter is defined as an unstable and self-excited vibration of a body in an 

airstream and results from a continuous interaction between the aerodynamics and the 

structural mechanics, both of which tend to be nonlinear in modern turbomachinery 

designs [4].  In turbomachinery blade rows, the mass ratio (structure to fluid) tends to be 

high resulting in a single-mode phenomenon.  This is because the aerodynamic forces, 

which remain much smaller than the inertial and stiffness forces, do not usually cause 

modal coupling.  However, this also means that the aeroelastic mode can be significantly 
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different from the structural mode in both frequency and modal shape.  Flutter is a 

particularly difficult problem in turbomachinery since there are many additional features 

with consequences that are currently not fully understood.  These include flow distortions 

due to up and down stream blade-rows and the loss of spatial periodicity of vibration due 

to aerodynamic effects and blade-to-blade differences (commonly known as structural 

and aerodynamic mistuning) [5]. 

 

Figure 1-1. Sources of unsteady flow in rotating turbomachinery 

 

When rotating blades pass through flow defects created by the interaction of 

upstream and downstream blade rows, the ensuing large unsteady aerodynamic forces can 

cause excessive vibration levels.  This interaction between blade rows is known as forced 

response [4] and becomes a major problem when the excitation frequency coincides with 

a natural frequency of the blade.  Of particular interest to designers is the prediction of 

vibration amplitude under unsteady aerodynamic loading which can be due to wake 

passing from upstream blade-rows (wake-rotor interaction), the potential field of 

upstream and downstream blade rows (potential-rotor interaction), or to fluctuating back 
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pressures [6].  Because of the numerous unknown factors such as structural damping, 

nonlinear damping in the blade roots, and the forcing itself, forced response analyses 

usually aim at ranking potential designs rather than predicting actual vibration levels. 

Current designers typically address HCF and unsteady aeroelastic phenomena 

using a Computational Fluid Dynamics (CFD) analysis of a single blade row with the 

unsteady forcing applied through specified inflow/outflow boundary conditions or the 

predicted blade motion itself [4].  The resulting blade row unsteady loading is utilized 

with a Computational Structural Dynamics (CSD) model to determine the unsteady 

stresses and the predicted blade fatigue life.  While these two steps may be iterated upon 

several times, they are usually performed by different groups with an associated loss in 

accuracy and efficiency.  In addition, the CFD models used are generally inviscid and 

time-linearized, resulting in a model that is invalid at off design operating conditions 

where serious unsteady aeroelastic problems generally exist in modern turbomachinery 

designs [7].  This situation coupled with the inadequate modeling of blade row 

interaction, is believed to be the cause for a number of unexpected HCF failures [8,9].  

Thus, a computational model which precisely accounts for Fluid Structure Interaction 

(FSI), inviscid-viscid interaction, and multi-blade row interaction is needed by designers 

to predict HCF and unsteady aeroelastic phenomena of current and future turbomachinery 

designs. 

 

1.1 Research Objectives 

The goal of this research is to develop an aeroelastic solver for the design of 

advanced turbomachinery.  However, this lofty goal implies several objectives which 
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need to be met in order to achieve such a design tool.  First, in order to obtain usable 

results, the fluid solver must be capable of handling the deforming fluid grids which arise 

from the deformation of the blade.  This entails implementing coordinate transformation 

metrics (both spatial and temporal) that do not violate the conservation of both surfaces 

and volumes under deformation. 

Another important objective, in order for this tool to be utilized in the time limited 

design environment, is the reduction of solution runtime.  This objective is limited to 

three main areas in this research for which it can be effectively achieved.  The first is to 

incorporate a wall function into the chosen flow solver, Corsair [10], to reduce the grid 

density required near surfaces for the calculation of shear stresses.  By reducing the grid 

density near surfaces, the total number of grid points in the computational domain and 

thus the simulation runtime is significantly reduced.  A second area of focus is to 

incorporate additional parallelization via domain decomposition of individual fluid grids 

in the radial direction.  By dividing the computational domain into pieces and solving 

these on separate cores/nodes simultaneously, the simulation runtime is again reduced.  

Lastly, a third area involves optimization of the flow solver code itself.  While labor and 

time intensive, the rewriting/restructuring of older codes (such as Corsair) is often 

rewarded with impressive performance improvements, mainly due to the correction of 

unobserved bugs/flaws which arise over time via modification of the original source 

code. 

The final objective for the development of any computational tool is thorough 

testing and results.  For this research effort, testing against the well understood flexible 

cylinder in cross flow is utilized.  In addition, the resulting aeroelastic solver is used to 
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predict the major vibrational modes of a turbine blade from the fourth standard 

configuration. 

   

1.2 Literature Review 

 A key development in the early understanding of aeroelasticity was made by Lane 

who introduced the concept of the interblade phase angle [11].  In this concept, the 

individual blades in a cascade are assumed to vibrate with the same amplitude but the 

maximum is reached with a constant phase lag, i.e. the interblade phase angle.  Armed 

with this assumption, the structure and the fluid are decoupled so that a free vibration 

problem (taking no account of the aerodynamic loads) can first be solved.  The predicted 

mode-shapes are then utilized with arbitrary amplitudes to produce prescribed blade 

motion.  The unsteady fluid problem is then solved with this prescribed blade motion and 

the resulting unsteady aerodynamic forces on the blade calculated.  These unsteady 

aerodynamic forces are then used to measure the stability of the system.  This is often 

referred to as the classical method and became popular early in computational aerelastic 

research for two main reasons [12].  First, assumptions had to be made in order to solve 

the complicated differential equations of motions with the limited computing power 

available.  Second, there has been a tendency to use existing aerodynamic and structural 

codes separately with a minimum of changes to either one in order to accommodate the 

other. 

Although several methods have been developed to measure the stability from the 

unsteady aerodynamic forces, the most popular by far has been the aeroelastic 

eigensolution method [13].  This method is based on expressing the resulting unsteady 
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aerodynamic forces in the frequency domain, either directly if analytical theories are used 

or by Fourier analysis if the forces are calculated in the time domain.  The resulting 

aeroelastic equations of motion are very similar to the structural equations, with the 

aerodynamic contributions being added to the mass and/or stiffness matrices.  The 

stability of the system is then assessed by determining the amount of damping required 

for each aeroelastic mode.  The main advantage of this method lies in its simplified 

representation of the structural dynamics, which allows parametric studies to be 

conducted with a minimum of computational effort.  Various cascades have been studied 

using this technique over the last 30 years, with various simplifications and 

improvements to the flow solvers used [14,15,16,17,18]. 

Integrated aeroelastic methods do not uncouple the fluid motion from that of the 

structure, but instead treat the problem of aeroelasticity in one continuous medium.  The 

need for such an approach arises from the nonlinear response of the fluid flow to the 

motion of solid boundaries, especially in the transonic regime where flutter often occurs.  

Hence, the resulting mathematical formulation must allow the fluid to modify the 

structural motion and vice-versa, as such phenomena occur in nature.  It then becomes 

possible to include nonlinear effects for both the fluid and the structure and take into 

account various interactions that can take place between them.  The most striking 

difference between the classical method and the integrated method is that the former can 

only predict the onset of flutter as a sudden change from a stable to an unstable region 

while the latter is capable of predicting limit-cycle behavior.  The engineering value of 

such prediction methods is evident since there is enough experimental evidence to 

suggest that flutter occurs in pockets of the limit cycle with varying amplitude levels [4].  
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This observation has a crucial implication on flutter analyses.  The prediction of flutter 

onset may not be as important as predicting the actual vibration amplitude, since limit 

cycles can be tolerated if their amplitude is small. 

Early integrated aeroelastic models typically incorporated an inviscid 2D Euler 

solver with an extremely simplified linear structural model consisting of springs, masses, 

and dampeners [14,19,20,21,22].  While the airfoil was allowed to move in response to 

aerodynamic forces and moments, the airfoil shape was kept rigid.  In addition, many of 

these early models were restricted to a two-degrees-of-freedom structural model (pitch 

and plunge).  These models have been extensively used in past research to determine the 

so-called flutter bucket or the reduced speed at which flutter occurs.  However, due the 

extremely simplified structural models used, these early efforts are also commonly 

referred to as a classical method [4]. 

While studies using both these classical methods have provided important first 

steps in the prediction of unsteady aeroelastic phenomena, they lack the nonlinear 

response of the structure and thus the complete flow physics resulting from FSI [7].  

Thus, recent efforts in the area of aeroelastic CFD research has involved the coupling of 

fluid and structural solvers, where both solvers are capable of handling full nonlinear 

effects, such as those that occur in transonic turbomachinery.  Different strategies can be 

used to obtain a solution of the coupled fluid structure system.  The first possibility is to 

use a strong coupling, sometimes referred to as a fully integrated method, where the 

structural and fluid dynamics equations are solved together at each time step using the 

same integrator.  This is done by discretizing the two domains into one Arbitrary 

Lagrangian-Eulerian (ALE) space, the result of which is that the motion of the grid 
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becomes an integral part of the equations of motion and does not have to be handled 

separately [23].   

Bendiksen [24] applied a direct version of this method to both wing and 

turbomachinery blade flutter.  His method used an explicit temporal discretization which 

is integrated using a five-stage Runge-Kutta scheme, with upwind differencing used for 

the spatial discretization of the arbitrary Lagrangian-Eulerian formulation.  The structural 

equations are formulated on a local node level which enables them to be discretized using 

the same five-stage Runge-Kutta integrator.  This model is claimed to calculate the 

energy transfer between the structure and fluid more accurately than similar schemes.  

For the flutter analysis, a typical isolated wing section was modeled, with the section 

allowed to have camber bending.  This chord wise flexibility was modeled using plate-

type finite elements of unit width.  Results from this case were compared to those from 

classical methods showing excellent agreement.  In addition, the results suggest that 

camber bending plays an important role in transonic flutter, possibly due to the mixed 

subsonic-supersonic flow field being sensitive to the airfoil boundary condition in the 

supersonic region of the flow.  Calculations were also made on a cascade with solid 

titanium blades.  This case demonstrated that camber bending can reach significant 

amplitudes during transonic flutter of thin compressor blades. 

Masud [25] developed a space-time finite element formulation of the Navier-

Stokes equations that was stabilized using the Galerkin/least-squares approach.  The 

variational equation was based on the time discontinuous Galerkin method and was 

written in terms of physical entropy variables over the moving and deforming space time 

slabs.  This formulation thus becomes analogous to the ALE formulation discussed 
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previously including viscous effects.  To demonstrate the versatility of this method, 

numerical simulations of a projectile moving in a stationary flow field were presented.   

Gottfried and Fleeter [23,26] extended ALE3D, a 3D finite element Euler solver, 

to model the unsteady aerodynamics of stator-rotor interaction in turbomachinery.  

Simulations of a transonic compressor at Purdue University with the code, renamed 

TAM-ALE3D, showed good prediction of both subsonic and transonic steady state 

conditions.  However, the simulation over-predicted the unsteady IGV lift magnitude by 

100% for the subsonic case.  In the transonic case, the simulated IGV lift lacked the 

higher harmonic content of the experimental data.  The discrepancies between 

experimental and simulated results were attributed to scaling of the geometry and the lack 

of viscous effects. 

Sadeghi and Liu [27] investigated the effects of frequency mistuning on cascade 

flutter using a similar ALE formulation.  The unsteady structural and Euler equations 

were simultaneously integrated in time.  A second order accurate implicit finite-volume 

scheme was used to solve both the flow equations and structural model.  Using this 

model, simulations were performed for a turbine cascade with flutter in the bending mode 

and with alternate mistuning of the structural eigen frequency.  An important finding of 

this study was that the fluid-structure interaction tended to decrease the effective amount 

of mistuning.  Along similar lines, it was discovered that a minimum amount of 

mistuning was required to stabilize the cascade.  Similar behavior was demonstrated for a 

compressor cascade.  

While closely-coupled methods show promise, the approach requires an enormous 

amount of computational power along with almost a complete rewrite of the solver.  
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Additionally, the matrix system for the coupled problem is in general ill-conditioned as a 

result of the difference in stiffness of the fluid and the solid.  A more reasonable approach 

is to use a loosely coupled method.  In this method, the fluid and solid variables are 

updated alternatively by independent CFD and CSD codes which exchange boundary 

information at each time step in a time accurate manner.  The most attractive feature of 

this approach is that the CFD and CSD solvers are largely independent of one another.  

This allows efficient re-use of codes that have been developed over several years and 

have been extensively tested.  In addition, different fluid and structural models can be 

interchanged according to the requirements of a particular application.  For example, 

CFD solvers for modeling transonic flow are very different from those used for the 

hypersonic regime.  Likewise, different CSD models exist for types of structures, ranging 

from metal matrices to composites and even nanostructures [28]. 

Srivastava et al. [29] developed an efficient three-dimensional hybrid scheme by 

loosely coupling an ADI Euler solver with the commercial CSD package NASTRAN to 

analyze two advanced propeller designs.  Their scheme treated the spanwise direction 

semi-explicitly and the other two directions implicitly.  They noted that accuracy when 

compared to a fully implicit scheme was not affected, while providing advantages of 

reduced computational requirements in both memory and time.  The calculated power 

coefficients for the advanced designs at various operating conditions showed good 

correlation with experimental data and varied up to 40% from CFD simulations run 

without aeroelastic deformation.  Spanwise distribution of elemental power coefficients 

and steady pressure coefficient differences were in good agreement with experimental 

data.  However, their study also uncovered that adjustments to the setting angle by rigid-
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body rotation did not simulate the correct blade shape.  A follow up study by Yamamoto 

et al. [30] of the effect of structural flexibility on the performance of these propeller 

designs showed that structural deformation due to centrifugal and steady aerodynamic 

loading were important for improved correlation to experimental data.  In addition, it was 

noted that structural deformation from unsteady aerodynamic forces played a key role in 

the performance of the designs. 

 Sayma et al. [31] developed a model for forced response prediction in 

turbomachinery blades.  Their three-dimensional multi-passage, multi-blade-row 

calculations coupled both the fluid and the structure through an exchange of boundary 

conditions at every time step.  The structure was represented by a linear modal model 

obtained from a standard FEA formulation, while the flow analysis was performed using 

a three-dimensional time-accurate viscous model using unstructured grids.  Variables 

were interpolated at the sliding boundaries between the rotor and the stator in a 

conservative manner in order to allow a free movement of discontinuities.  This model 

was used to study an intermediate pressure turbine in order to rank the magnitude of the 

fluid forcing resulting from two types of nozzle guide vanes.  A sector of one stator and 

five rotor blades was analyzed for both types of nozzle guide vanes and the results 

obtained showed good agreement with available experimental data. 

 Vahdati et al. [32] used the same model to predict both the blade passing and low 

engine order forced response of a low pressure turbine.  The predicted force response 

vibration amplitudes for a 24 nodal diameter resonance were found to be in good 

agreement with measured data but one of the main uncertainties was identified as the 

determination of the inherent mechanical damping.  In addition, use of a whole-annulus 
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2-row model showed that non-uniform spacing of the stator blades gave rise to low 

engine order excitation.  Breard et al. [33] also used this same model to perform a flutter 

analysis of a complete civil aero-engine fan assembly for three different configurations: 

no intake, symmetric intake, and non-symmetric flight intake.  The blade’s dynamic 

behavior was found to be different for each of these configurations, demonstrating the 

influence of intake ducts on flutter stability. 

 Servera et al. [34] investigated the use of a loose coupling between a CSD model 

for the analysis of helicopter rotor blades called HOST, and an Euler solver for 

computing the trim of flexible rotors in steady forward flight called WAVES.  This 

coupling was used to analyze two advanced helicopter rotor designs and showed that a 

simultaneous coupling of the lift, pitching moment, and drag parameters is required in 

order to obtain a converged solution independent of simplified aerodynamic models.  In 

addition, the coupled model showed significant improvements on the pitching moment 

and torsion predictions. 

Carstens et al. [35] compared results from a loosely-coupled algorithm of a low 

pressure compressor at design conditions to those from a classical analysis using LIN3D. 

to those from a classical analysis using LIN3D of a low pressure compressor at design 

conditions  The structural model consisted of an FEA model time-integrated using the 

Newmark algorithm, while the unsteady aerodynamics were computed using a Navier-

Stokes code.  An automatic grid generator was used to dynamically deform the mesh and 

couple the two codes together.  This model was then used to analyze an assembly of 

highly loaded compressor blades in transonic flow.  They found that the loosely-coupled 

algorithm yielded lower aerodynamic damping over the full range of interblade phase 



13 

angles, unlike the classical LIN3D analysis.  A striking result of the coupled algorithm 

was the negative damping for an interblade phase angle of 0, which might cause self-

excited vibrations if no structural damping were present to keep the system stable. 

 

1.3 Technical Approach 

An aeroelastic computational model is built from an existing, well-developed 

ideal-gas, compressible, turbomachinery flow solver called Corsair.  To account for the 

deformations from unsteady aerodynamic loadings, Corsair is loosely coupled to the 

commercial CSD code Ansys
®
 through the use of a general FSI module [36].  This 

general FSI module handles the calling and setup of the CSD model, conversion of 

surface fluid stresses to structural forces, time stepping of the CSD model, and morphing 

of the fluid grid to match deformations predicted by the CSD model.  By using this 

general FSI module, the resulting CFD – CSD coupling remains flexible and can take 

advantage of utilizing different CSD models. 

To accomplish the CFD – CSD coupling, significant modifications to Corsair 

were required.  Improved methods for numerical evaluation of the coordinate 

transformation metrics to handle grid deformations introduced by the FSI module are 

studied.  The optimal methods for the spatial and temporal metrics from this study are 

then used in Corsair for the remaining research.  A wall function with user specified 

surface roughness is also implemented into Corsair, allowing a significant reduction in 

grid density requirements for accurate prediction of shear stresses along solid surfaces.  

Following the implementation and verification of the wall function, an investigation is 

performed comparing the wall function against the finite difference approach used in the 
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current release of Corsair to gauge performance differences and accuracy.  To reduce 

simulation runtimes on non-SMP super-computers such as PC Beowulf clusters[37], the 

common data model used in Corsair is converted to a distributed data model resulting in a 

much smaller per nodal memory footprint.  This change lead to a complete rewriting and 

restructuring of the source code, the result of which is called Thunder.  To increase 

parallelization, radial decomposition of individual grids is also implemented into solver.  

A utility to optimize the decomposition of each grid is created, requiring only the number 

of pieces each grid is to be broken into to be specified by the user.  Comparisons are then 

made between the original version of Corsair and the improved model called Thunder to 

demonstrate parallel scalability, performance, and reduction in nodal memory 

requirements.       

To test the FSI model, two simplified configurations are utilized.  First, the well 

understood case of a flexible cylinder in cross flow is studied with the natural frequency 

of the cylinder set to the shedding frequency of the Von Karman Streets.  The cylinder is 

self excited, demonstrating the exchange of energy between the fluid and structural 

models.  The second test case is based on the fourth standard configuration and 

demonstrates the ability of the FSI model to predict the dominant vibrational modes of an 

aeroelastic turbomachinery blade.  For this case, a single blade from the fourth standard 

configuration is subjected to a step function from zero loading to the converged flow 

solution loading in order to excite the structural modes of the blade.  These modes are 

then compared to those obtained from an in vacuo analysis using Ansys
®
. 
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2. CFD MODEL – CORSAIR 

 

 Before any of the required modifications to the flow solver chosen for this 

research could be made, especially to the structure of the code itself, a somewhat detailed 

understanding of the solution methods employed in Corsair was first required.  Since no 

other publications or sources for Corsair exist with the needed level of detail, the source 

code itself was painstakingly analyzed and documented.  This chapter is the result of that 

effort and provides a detailed look at the solution method employed by Corsair, including 

grid generation, numerical formulation, and boundary conditions.  

The unsteady aeroelastic solver developed in this research is based on a well 

established turbomachinery CFD code called Corsair [10], distributed by the NASA 

Marshal Space Flight Center.  Corsair is a three-dimensional Reynolds Averaged Navier 

Stokes (RANS) flow solver for axial turbomachinery geometries.  It uses an overset 

structured grid topography consisting of O-grids around blades and H-grids for passages.  

In addition, a clearance grid composed of an O-grid with a collapsed centerline, can be 

used in the outer tip of an O-grid to include tip clearance flows in simulations.   

 

2.1 Grid Generation 

 The first step in using any CFD model is to generate a set of grids over which the 

solution will be solved.  Corgrid is a three-dimensional structured zonal-grid generator 

specifically designed for use with Corsair.  A set of overlaid O- and H-grids are generated 
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for each blade being modeled at constant radial span-wise locations.  Algebraically 

generated H-grids are used in the regions upstream of the leading edge, downstream of 

the trailing edge, and in the inter-blade region.  O-grids, which are body fitted to the 

surface of the blade airfoil, are used to properly resolve the viscous flow in the blade 

passages and are generated using an elliptic equation solver.  As with most grid 

generation packages, grids can be clustered around areas of high curvature and near the 

hub, shroud, and blade surfaces.  For blades with a tip clearance, a second O-grid is 

generated using a collapsed center-line to fill in the gap. 

 Construction of the algebraically generated H-grids begins with the calculation of 

the airfoil mean camber line.  The mean camber line is extended upstream of the airfoil 

leading edge and downstream of the airfoil trailing edge using decay functions to control 

the incremental changes in the axial and circumferential spacing.  Half the blade pitch is 

added to and subtracted from every computational grid point along the extended camber 

line to form the first and last grid lines in the blade-to-blade direction.  Computational 

grid lines are then added at equal spatial increments between the first and last grid lines in 

the blade-to-blade direction.  In addition, grid lines can be clustered in both the axial and 

circumferential directions upstream of the airfoil leading edge and downstream of the 

airfoil trailing edge. 

 Generation of the O-grids begins with the specification of four points on the H-

grid which define a box that delineates the outer boundary of the O-grid.  This outer 

boundary is smoothed to eliminate discontinuities in the slope of the grid lines at the 

corners of the box.  The inner boundary of the O-grid is simply the surface of the airfoil.  
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An elliptical solution procedure is then used to produce a nearly orthogonal grid [38].  

The elliptic equations are: 

( )ηξηηξηξξ γβα QxPxJxxx +−=+− 22  (2-1) 

( )ηξηηξηξξ γβα QyPyJyyy +−=+− 22  (2-2) 

where 

22

ηξα yx +=  (2-3) 

ηξηξβ yyxx +=  (2-4) 

22

ξξγ yx +=  (2-5) 

Here, x, y, and z are the Cartesian coordinates and subscripts ξ, η, and ζ are the 

curvilinear (or body fitted) coordinates in the axial, radial, and circumferential directions 

respectively and represent derivatives in those directions, J is the Jacobian matrix of 

curvilinear coordinate transformation, P and Q are forcing functions used to control the 

computational point clustering and orthogonality near solid walls.  Equations 2-1 and 2-2 

are solved using a successive line over-relaxation technique. 

 To define the overlap region between the O- and H-grids, a second set of four 

points on the H-grid are specified which form a box inside the outer boundary of the O-

grid and define the inner boundary of the H-grid.  The points inside the inner boundary of 

the H-grid are treated as i-blanked points, i.e. the equations of motion are not solved at 

these points.  However, in the overlap region between the two boxes, the equations of 

motion are solved on both the O- and H-grids.  Increasing the amount of overlap between 

the O- and H-grids enhances the stability and accuracy of the flow solution, but also 
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increases the computational time by increasing the number of redundant grid points in the 

calculation.  A typical overlaid O-H grid is illustrated in Figure 2-1. 

 

 
Figure 2-1. Overlaid O-H grid topography 

 

2.1 Numerical Model 

 Corsair is a three-dimensional, implicit, multi blade row flow solver designed for 

time accurate simulations of turbomachinery [39].  It utilizes a dual-time-step to solve the 

full, unsteady, Navier-Stokes equations in a time accurate manner by means of a 

linearized, approximately factored, upwind finite-difference scheme.  The resulting 

solution is third order spatial and second order temporal accurate.  The integration 

scheme begins with the three-dimensional unsteady Navier-Stokes equations in strong-

conservation dual-time-step form: 
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where t represents the physical time step and t’ represents the pseudo-time step for 

subiterations.   
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and the stress tensor is defined by: 
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with Stokes hypothesis and the perfect gas law completing the equations of motion: 
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By defining the Prandtl number as 

k

c pµ
=Pr  

(2-10) 

the heat flux terms in the conservation of energy equation are rewritten as 

zzyyxx eqeqeq 111 PrPrPr −−− === γµγµγµ  (2-11) 

In Corsair, the equations of motion are non-dimensionalized so that certain 

parameters, such as the Reynolds number, can be varied independently.  The non-

dimensional variables used are as follows: 
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(2-12) 

where x is a distance, L is the mid-span length in the first blade row, t is time, v is a 

velocity component, c is the free stream speed of sound, γ is the ratio of specific heats, µ 

is the viscosity, U is the wheel velocity, P is the static pressure, ρ is the density, T is 

temperature (in degrees Rankine), and the subscript ∞ refers to free stream conditions.  

Applying this to Equation 2.6, the equations of motion are rewritten as: 
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(2-13) 

 

where the non-dimensionalized Reynolds number is given by: 
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For the analysis of arbitrary geometries it is useful to generalize the equations of 

motion by expressing them in terms of body-fitted, curvilinear coordinates.  The 

following independent variable transformation introduces body-fitted coordinates which 

allow accurate implementation of surface boundary conditions, since the geometric 

surface lies along a boundary of the computational domain: 

( ) ( ) ( )tzyxtzyxtzyxt ,,,,,,,,, ςςηηξξτ ====  

 

(2-15) 

 

Applying these to Equation 2-13, the equations of motion now take the following form: 
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and the metrics of transformation are: 
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Application of a second order central approximation for physical time and a first 

order backward approximation for pseudo time to Equation 2-16 gives the general 

implicit formulation used in Corsair to solve the equations of motion: 
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(2-19) 

 

 

In Equation 2-19, n denotes a physical time step and k denotes a pseudo time step.  While 

a second order accurate difference is required for the physical time in order for the 

method to be time accurate, a first order difference is sufficient for pseudo time steps, 

since the solution is iterated in pseudo time to convergence at each physical time step. 

 Note that Equation 2-19 is non-linear.  To solve the equations of motion in an 

efficient computational manner, linearization in the form of a Taylor series expansion 

with use of the pseudo time step, τ’, is utilized:  
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where as before, a first order backward difference is used for the pseudo time step: 
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In Equation 2-20, the quantities ,
~

,
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,
~

,
~

,
~ vv BACBA  and v

C
~

are referred as flux jacobians, 

while the quantities ,ˆ,ˆ,ˆ,ˆ,ˆ vv FEGFE  and v
Ĝ , are referred to as numerical fluxes and are 

consistent with the physical fluxes ,
~

,
~

,
~

,
~

,
~ vv FEGFE  and v

G
~

.  Since the solution is 

iterated to convergence at each physical time step, error introduced by the linearization 

process is eliminated.  However, the resulting formulation does require the storage of the 

solution at three previous time steps, two at a previously converged physical time step 

and one at the previous pseudo time step.  Substituting Equations 2-20 into Equation 2-19 

and rearranging terms results in: 
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(2-22) 

 The implicit formulation of a 3-D equation, such as those in Equation 2-22, would 

normally result in a system of equation with a hepta-diagonal coefficient matrix.  The 

solution of such a system, even with re-ordering techniques, is very time consuming and 

computationally expensive.  To overcome this difficulty, Approximate Factorization (AF) 

along with the Alternating Direction Implicit (ADI) algorithm is used in Corsair.  The AF 

reduces the hepta-diagonal coefficient matrix system to three tri-diagonal systems which 

are then sequentially solved using the ADI algorithm.  The resulting solution method 

requires considerably less computational expense and is unconditionally stable.  Since AF 

is applied to the LHS of Equation 2-22, the use of pseudo time steps to converge the 

solution at each physical time step reduces error caused by both the linearization and AF 

techniques together.  In practice, three pseudo iterations are sufficient to reduce these 

errors down to machine zero.  Different factorizations can be used in the AF technique, 

resulting in various orders of accuracy and computational expense.  The most important 

rule of AF is to keep the factorization error (generation of extra terms) below the order of 

truncation for the desired solution while preserving existing terms.  In Corsair, a fairly 

straight forward AF is used: 
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(2-23) 

 

 In Equation 2-23, all the fluxes are evaluated explicitly using the solution vector 

at the current pseudo time step, knQ ,1~ + .  For the inviscid numerical fluxes on the RHS, 

Roe’s approximate Reiman solver scheme is utilized.  This method accelerates the 

solution by taking advantage of the characteristics (propagation direction of information) 

of the equations of motion.  In Corsair, Roe’s scheme is given by: 
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for the interior points and by: 
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(2-25) 

 

 

 

for the second and imax-1 points.  Note that Equation 2-25 is a modified second order 

accurate formulation of Roe’s scheme.  In Equations 2-24 and 2-25, the + and – indicate 

contributions from downstream and upstream traveling characteristic waves respectively, 

where E represents the total flux given by: 
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(2-26) 

 

 

Additionally, the order of accuracy for the inviscid fluxes is controlled by ,, 21 φφ  and 3φ  

according to Table 2-1.  During the initial few blade passes of a new solution, the 1
st
 

order scheme is utilized to help progress the solution past start-up transients, thus saving 

the computational expense of resolving transients and accelerating the solution. 

 

Scheme 
0φ  1φ  2φ  3φ  

1
st
 order accurate upwind 9 0 0 0 

2
nd

 order accurate central 1 ½ ½ 0 

2
nd

 order accurate upwind -1 0 -½ ½ 

Fromm’s 0 1/4 0 1/4 

3
rd

 order accurate upwind 1/3 1/3 1/6 1/6 

  

Table 2-1. List of difference schemes for inviscid numerical fluxes 

 

The characteristic fluxes 
±∆E in Equations 2-24 and 2-25 are calculated according to: 

  ( ) +
−

−−++ ∆−−=∆∇ΧΛΧ=∆ EEEEQE iiROE 1

1

ξξ  
(2-27) 

 

Where 
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and the positive eigenvalue matrix is defined as: 
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(2-31) 

Since Roe’s scheme may encounter difficulties in stability and convergence near sonic 

lines and expansion waves, the following correction for the eigenvalues is used in 

Corsair: 
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(2-32) 

 Additionally, flux limiter can be added to Roe’s scheme in corsair to increase 

accuracy and reduce oscillations near large gradients.  To do this, Equation 2-24 is 

rewritten as: 
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(2-34) 

and the compression factor β and the minmod function are defined as: 
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(2-35) 

The terms ηη F̂∂ and ςςĜ∂ are obtained from Equations 2-24 through 2-35 by simply 

replacing ξ, i, j, k with η, j,i,k or ς, k, i, j respectively. 

 The viscid numerical flux terms in Equation 2-23 are calculated using a simple 

central difference scheme: 
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and 
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As with the inviscid numerical flux terms, the terms 
v

Fηη
ˆ∂  and 

v
Gςς
ˆ∂  are obtained from 

Equations 2-36 through 2-38 by simply replacing ξ, i, j, k with η, j,i,k or ς, k, i, j 

respectively. 

 Ideally, fastest convergence is obtained when the same method of differencing is 

used on both the RHS and LHS of Equation 2-23.  While this is possible for low-order 

schemes since the block tridiagonal structure of the equations can be maintained, higher 

order schemes require larger difference stencils and would preclude the use of a block 

tridiagonal solver if used on the LHS.  Hence Steger-Warming flux vector splitting is 

used on the LHS to evaluate the inviscid flux jacobians as defined by: 
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The + and – superscripts in Equation 2-39 indicate contributions from downstream and 

upstream traveling characteristic waves (also referred to as fluxes) respectively and are 

given by: 

  
1~ −±± Λ= ξξξ TTA  (2-40) 

 In Equation 2-40, ξT  and 
1−

ξT are the left and right eigenvectors respectively and are 

defined as: 
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where 
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(2-43) 

and ±Λξ is the Jacobian matrix of the corresponding eigenvalues: 
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where the eigenvalues are: 

wvu zyxt ξξξξλ +++=3,2,1  
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(2-45) 

To obtain the downstream (+) and upstream (-) traveling characteristic fluxes from the 

eigenvalues given in Equation 2-45, the following formulation for splitting the fluxes is 

used in order to handle sonic lines, where the eigenvalues switch signs: 

2

22 ελλ
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(2-46) 

The other two inviscid flux jacobians, B
~

η∂  and C
~

ς∂ , are calculated by simply replacing 

ξ, i, j, k in Equations 2-39 through 2-46 with η, j,i,k or ς, k, i, j respectively. 

For the viscid jacobian fluxes on the LHS, a simple second order central 

difference is applied: 
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where the individual viscid terms are represented with a Taylor series linearization: 
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and 
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As with the inviscid flux jacobians, 
v

B
~

 and v
C
~

 are obtained by replacing ξ, i, j, k in 

Equations 2-47 through 2-49 by η, j,i,k or ς, k, i, j respectively.  

 Returning to Equation 2-23, the AF form of the Navier-Stokes equations is solved 

in a three stage ADI algorithm.  The first of these stages is solved in the ξ direction (ξ 

sweep) for an intermediate solution
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The second stage is solved in the η direction (η sweep) for a second intermediate solution
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Finally, the third stage is solved in the ς direction (ς sweep):  
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where the desired solution 1,1~ ++ knQ is obtained via: 
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(2-54) 
 

Equations 2-50 through 2-53 form a block tridiagonal coefficient matrix system, which is 

symmetric positive definite.  To obtain this form, Equations 2-50 through 2-53 are first 

rearranged in terms of the grid index: 
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Redefining the terms in Equations 2-55 through 2-57 as: 
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Equations 2-55 through 2-57 become: 
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Now putting these in a block tridiagonal format, the following is obtained for the ξ 

sweep: 
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then for the η sweep: 
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and finally for the ς sweep:   
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In Equations 2-64 through 2-66, IM, JM, KM represent the last i, j, and k index in the 

computational grid.  For each sweep, the block tridiagonal system is solved using a LU 

decomposition method, which is outlined in Appendix A. 

Unlike many other CFD models, Corsair is a fully unsteady flow solver and does 

not have a steady state capability for multi blade row simulations.  This has the 

disadvantage of requiring the use of very small initial time steps in order to handle start-

up transients.  Solutions are started by ramping up to this small time step and thus wheel 

speed over a user specified number of iterations.  Once the ramping is complete, the time 

step is gradually increased by decreasing the number of iterations per cycle.  To facilitate 

this tricky procedure, Corsair re-reads the input deck every time a number of pre-

specified iterations have been completed.  The number of iterations per cycle is adjusted 

according to the residual dumped in the output file after each iteration. 
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2.3 Boundary Conditions 

 One of the most important factors determining the success or failure of a 

numerical simulation is the boundary conditions.  The boundary conditions used in 

Corsair can be broadly classified as either natural boundaries or zonal boundaries [40,41].  

Both types of boundaries are handled in a two step method, comprised of an implicit 

formulation during pseudo time steps followed by enforcement of the boundary condition 

via a post iterative update after each physical time step.  The natural boundaries include 

the axial inlet and exit along with the hub, outer casing, and airfoil surfaces.  Zonal 

boundaries comprise the patch and overlay boundaries, including the slip boundary 

between adjacent blade rows, the circumferential periodic boundary between adjacent 

passages in the same blade row, the Chimera boundary between O-grids and H-grids, and 

the continuity condition between the O-grid and clearance grid.  A brief description of 

each boundary condition is now given along with its numerical implementation in 

Corsair. 

 To apply the implicit portion of the axial inlet boundary condition, the first row of 

blocks from equation 2-64 are set as: 
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Where C is the Courant number (specified in the input deck and allows control of 

stability vs. convergence speed), I is the identity matrix, and J is the Jacobian matrix of 

coordinate transformation.  The post iterative update depends on whether the axial inlet 
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flow is subsonic or supersonic.  If supersonic, then all flow quantities are set to their free 

stream values.  If the axial inlet flow is subsonic, however, four quantities are specified 

with the fifth being the Riemann invariant.  A few different combinations are available 

for these four quantities as given in Table 2-2. 
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Table 2-2. List of axial inlet boundary conditions 

 

Where S is entropy; u, v, and w the axial, circumferential, and radial velocities 

respectively; R the Riemann invariants; Pt and Tt the total pressure and total temperature; 

c the local speed of sound; γ the ratio of specific heats; α and β the flow pitch and yaw 

angles respectively; and the subscript ∞ refers to the inlet free stream values. 

   Similarly, the implicit portion of the axial exit boundary condition involves 

setting the last row of blocks from Equation 2-64 as: 
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As with the axial inlet boundary, the post iterative update depends on whether the axial 

exit flow is subsonic or supersonic.  If it’s supersonic, then all flow quantities are 
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extrapolated from the interior domain.  If the axial exit flow is subsonic however, a 

constant pressure is imposed at midspan with the pressure at other spans prescribed by 

the radial equilibrium condition: 

r

v

r

P t

2ρ
=

∂

∂
 

 
(2-70) 

 
 

This results in quasi-2d equilibrium flow, where P is the spanwise pressure, vt is the 

tangential or axial velocity, and r is the radius from the center of the hub.  To obtain the 

remaining quantities, the circumferential and radial velocities, along with entropy and the 

Riemann invariant are extrapolated from upstream. 

 For surfaces, including the hub, outer casing, and airfoil, three different types of 

boundary conditions exist; slip (Euler condition), no slip with specified heat flux, or no 

slip with specified surface temperature.  The implicit portion of the slip condition 

involves setting the associated RHS and off-diagonal block to zero and the associated 

diagonal block to the identity matrix.  As an example, consider the hub surface which 

becomes a boundary in the zeta sweep: 

0**

1,, =∆ jiQ  

 

01,, =jiCC  

 

ICCP ji =1,,  
 

(2-71) 

 The post iterative update enforces the tangency condition along the surface by setting the 

normal contravariant velocity to zero.  For reference, the contravariant velocities are 

simply those defined in the curvilinear coordinate system and may be written using the 

coordinate transformation metrics: 
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wvuU zyxt ξξξξ +++=  

 

wvuV zyxt ηηηη +++=  

 

wvuW zyxt ζζζζ +++=  

(2-72) 

Continuing along with the example of the post iterative update at the hub, the contra-

variant velocity normal to the hub, W, is set to zero and the Cartesian velocities u, v, and 

w are solved using: 
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The pressure and density at the surface are taken to be the same as at the first grid point 

above the surface, from which the remaining conservative variables are easily calculated. 

 As stated earlier, the viscous no slip boundary conditions come in two forms, one 

involves specifying a heat flux at the surface while the other requires specifying the 

temperature of the surface.  The implicit portions of these boundary conditions are very 

similar and will be discussed together.  To begin, the RHS block of the associated 

boundary is set to zero and the associated diagonal block is defined as: 
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Where C is the courant number and uwall, vwall, and wwall are the velocities at the surface in 

Cartesian coordinates.  For a specified temperature at the surface, α is simply set to the 

courant number, while for a specified heat flux at the surface it is defined as: 
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))/(1(* kTTC wall ⋅∂+=α  (2-75) 

 

Where ∂T is the specified heat flux at the surface, Twall is the surface temperature, and k is 

the thermal conductivity of the flow over the surface.  The associate off diagonal block is 

defined as: 
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For the case of a specified heat flux, β1 = 1 and β2 = β3 = β4 = β5 =0.  If the temperature at 

the surface is specified instead: 
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Where the subscript wall+1 denotes values at the grid point just above the surface, cv is 

the specific heat at constant volume, and Twall is the specified temperature of the surface.  

The post iterative update involves calculating density at the surface based on the 

temperature at the surface: 
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(2-78) 
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The pressure at the surface is taken to be the same as the grid point just above the surface, 

thus allowing total energy at the surface to be easily calculated.  For the case where heat 

flux at the surface is specified, the temperature at the wall is approximated as: 

( )kTdsTT wallwall /1 ∂⋅+= +  

 

(2-79) 
 

Where ds is the distance between the surface and the first grid point above the surface. 

 The slip boundary between adjacent blade rows begins with the generation of the 

H-grids for the blade rows themselves.  When initially generated, the downstream 

boundary of the upstream row grid corresponds to the upstream boundary of the 

downstream row grid.  The upstream row grid is then extended downstream by two axial 

grid locations such that they match the first two upstream axial grid locations from the 

downstream row grid.  Finally, the downstream row grid is extended upstream by two 

axial grid locations in the same fashion.  This process is illustrated for a 2D radial slice in 

Figure 2-2. 
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Figure 2-2. Generation of grid extensions for slip boundary condition 
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Figure 2-3. Post iterative update for slip boundary condition 
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The implicit portion of the slip boundary is applied as a dirichlet condition by setting the 

associated RHS and off diagonal blocks to zero and the diagonal block to the identity 

matrix.  The post iterative update consists of setting values on the boundary to those of 

the associated overlap grid locations as illustrated in Figure 2-3.  The reason for 

extending the grid overlap between adjacent blade rows by two grid locations rather than 

by a single location is to ensure the boundary conditions do not interfere with one another 

and produce spurious numerical oscillations.  When the number of circumferential 

locations is different between the upstream and downstream H-grids (as shown in the 

illustrations), simple linear interpolation is used to obtain the value from the closest two 

circumferential grid locations.  This same linear interpolation with simple periodicity is 

also used for cases when blade rows are rotating relative to one other.  For such cases, the 

circumferential and radial Cartesian velocities are first transformed into tangential and 

normal velocities which are used for the interpolation, after which the circumferential and 

radial Cartesian velocities are recovered based on the circumferential angle of the point 

being interpolated.  

 The circumferential periodic boundary condition between adjacent passages in the 

same blade row employs an integrated implicit portion.  This results in no modification of 

the RHS or coefficient matrix blocks.  Instead, all values calculated on the boundary use 

quantities from ghost points created by the periodic condition, including the metrics of 

coordinate transformation.  Figure 2-4 illustrates the periodic condition along with the 

ghost points for a 2D radial slice.  In Figure 2-4, dashed lines show the cells formed by 

the ghost points and the arrows indicate where values for the ghost points are taken from.  
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Similarly, the post iterative update is based on the periodic condition as well, but is 

enforced at the boundary instead of the ghost points, as illustrated in Figure 2-5. 
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Figure 2-4. Illustration of circumferential periodic condition and ghost points 
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Figure 2-5. Post iterative update of circumferential periodic boundary 
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 The Chimera patch boundary condition between an O-grid and H-grid on which it 

is overlaid, uses a dirichlet condition for the implicit portion.  This is similar to what is 

done for the axial slip boundary, except in addition to points on the boundary, points cut 

from the interior of the H-grid to accommodate the O-grid are also “zeroed out” by 

setting their associated RHS and off diagonal blocks to zero along with their diagonal 

block to the identity matrix.  To apply the post iterative update, values at the boundary 

are interpolated from the overlapping grid using shape functions.  The shape functions are 

not only used for weighting the surrounding values for the interpolation, but also serve to 

determine if a point being interpolated lies in the triangle formed by three points from the 

overlapping grid.  As an example, take the small section of the overlap between an H-grid 

and O-grid for a 2D radial slice as illustrated in Figure 2-6. 

   P 

  1    2 

   3   4 

 

Figure 2-6. Section of overlap region between an O-grid and H-grid 

 

In Figure 2-6, point P is on the boundary of the O-grid and for the post iteration update 

the conservative variables at point P are interpolated from the portion of the H-grid which 

encloses it, namely points 1 – 4.  Figure 2-7 is a simplified illustration of this and 
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includes the location of the shape functions (N1-N6) which will be calculated, first to 

determine which triangular half encloses point P and second to interpolate the values at 

point P by weighting the contribution from each of the points in the triangular half 

determined to enclosed point P.  The reason for splitting the box which encloses point P 

into two triangles is because the shape functions for a triangle can be calculated using 

global coordinates.  By contrast, the shape functions for a box require the use of local 

coordinates based about the centroid of the box.   

     

P 

 1  2 

 3 4 
N4 

 N5 

  N6 

  N3 

  N2  N1 

 

Figure 2-7. Simplified view of overlap region between O-grid and H-grid 

 

The shape functions for the case illustrated in Figure 2-7 are as follows: 
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Where A1 and A2 are the areas of the two triangles formed by points 1 2 4 and 2 3 4 

respectively, and yz is the equivalent arc length at a fixed radius.  All three shape 

functions for the triangle which contains point P will have a value between 1 and 0.  If 

the triangle doesn’t enclose point P, at least one of the shape functions will have a value 

outside this range.  In Corsair, a simple brute force search is used to determine the 

triangle to use for interpolating the values at each of the boundary points.  However, the 

shape functions give more information than just whether a point lies in or outside the 

triangle formed by them, it also indicates which direction point P lies if it’s outside the 

triangle.  This idea is elaborated in Appendix B and used to speed up the search of 

interpolation points, particularly when the O-grid and H-grid are moving relative to one 

another.  Given the three shape functions for the triangle in which point P lies (N1 N2 N3 

in this case), the values at point P are interpolated via: 

442211 ϕϕϕϕ ⋅+⋅+⋅= NNNp  

 

(2-81) 
 

Where φ represents the five conservative flow variables and the subscripts denote the 

point location of the variable. 

 When a clearance grid is used, boundary conditions are not only needed to 

enforce continuity between the O-grid and clearance grid but also at the collapsed 

centerline of the clearance grid.  Both of these conditions arise in the eta sweep of the 

clearance grid, with no modifications required to the solution of the O-grid.  These 

boundary conditions begin with the generation of the clearance grid, which is extended 

by one constant eta “ring” such that the outer two rings of the clearance grid coincide 

with the two inner most rings of the O-grid.  Figure 2-8 illustrates this overlap of the 

constant eta “rings” between the O-grid and clearance grid. 
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Figure 2-8. Illustration of overlap between an O-grid and clearance grid 

 

The implicit portion of these boundary conditions involves using 10 ghost points in the 

eta direction from the O-grid to extend the calculation of the clearance grid well into the 

O-grid region.  The primary reason for this is stability, since the number of constant eta 

“rings” is often very small, especially for thin airfoils.  Next the RHS and off diagonal 

blocks for the first and last locations (i.e. j=1 and j=JM+10) are set to zero while the 

associated diagonal block for these two locations is set to the identity matrix.  After 

solving the block tri-diagonal matrix, only values for the original clearance grid are 

updated.  Due to the eta extension into the O-grid, no post iterative update is needed at 

the O-grid clearance grid interface.  However, a post iterative update is required at the 

collapsing centerline of the clearance grid to maintain continuity of the flow.  This post 

iterative update involves interpolating values at the collapsed centerline from the opposite 
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j=2 constant eta “ring”, as illustrated in Figure 2-9.  The interpolation is a simple linear 

one based on axial locations. 

   j=2 “ring” 

j=1 collapsed 

centerline 

   j=2 “ring” 

Interpolate using these two 

values to axial location of 

opposite j=1 point. 

Axial direction 

 

Figure 2-9. Post iterative update of clearance grid collapsing centerline 

 

 In this chapter, a detailed discussion of the solution method employed by Corsair 

has been covered.  An overset O-H grid topology based on curvilinear coordinates is used 

upon which to solve the equations of motion on.  The equations of motion are derived 

from the three dimensional Navier-Stokes equations with a dual (or pseudo) time step to 

improve convergence.  After non-dimensionalization, the three dimensionally coupled 

equations of motion are split into three one dimensional equations using an Approximate 

Factorization.  This results in a set of one dimensional equations with an explicit RHS 

and an implicit LHS, which are then solved in succession along each curvilinear 

coordinate using an Alternating Diagonal Implicit algorithm.  In addition, a brief 

discussion of the boundary conditions available in Corsair was given.  
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3. NUMERICAL EVALUATION OF  

COORDINATE TRANSFORMATION METRICS 

 

 As covered in the previous chapter, Corsair uses a body-fitted curvilinear 

coordinate system to help generalize the equations of motion.  To convert between these 

curvilinear coordinates and actual spatial coordinates, a mapping in the form of 

coordinate transformation metrics is used.  While mathematical formula for these metrics 

was given in the previous chapter, the actual numerical evaluation of these 

transformations is a bit different and, as will be shown, more than one method for their 

evaluation exists in the open literature.  Additionally, the numerical evaluation of the 

temporal metrics in the version of Corsair distributed by NASA is incomplete; it is based 

on an assumption of only rigid fluid grid rotation about the axial centerline.  The 

deforming fluid grids ultimately arising from the FSI module require a complete 

implementation of the temporal metrics.  Thus, this chapter explores several methods in 

the open literature for the numerical evaluation of both spatial and temporal metrics, 

including comparisons of their performance when implemented in Corsair, with the best 

method being used for the remainder of this research. 

  The use of higher order finite difference schemes to solve non-trivial 3D 

geometries demands that issues of free-stream preservation and metric cancellation be 

carefully addressed.  Such errors, which arise in the finite difference discretization of the 

governing equations when written in the conservative form, can catastrophically degrade 
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the fidelity of second and higher order approaches [42,43].  By deriving the equations of 

motion in conservative form, the following identities have been implicitly invoked: 

( ) ( ) ( ) 0///1 =++= ζηξ ζηξ JJJI xxx  

 

( ) ( ) ( ) 0///2 =++=
ζηξ

ζηξ JJJI yyy  

 

( ) ( ) ( ) 0///1 =++= ζηξ ζηξ JJJI zzz  

 

( ) ( ) ( ) ( ) 0////14 =+++= ζηξτ ζηξ JJJJI ttt  

(3-1) 

 
(3-2) 

 
(3-3) 

 
(3-4) 

 

 

The first three identities constitute a differential statement of surface conservation for a 

closed cell, while the fourth identity expresses volume conservation and is often referred 

to in the literature as the Geometric Conservation Law (GCL).  While the definitions for 

the coordinate transformation metrics given in Equation 2-18 were sufficient to derive the 

equations of motions for body fitted curvilinear coordinates, they fail to satisfy these 

metric identities due to the lack of metric cancellation, resulting in grid induced errors for 

regions of large variation and near singularities.  Two main methods have been 

introduced in the CFD community for enforcing these metric identities for higher order 

finite difference schemes. 

 

3.1 Recasting in Conservative Form 

Thomas and Lombard [44] proposed recasting the coordinate transformation 

metric equations in a “conservative” form prior to discretization: 
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[ ] [ ] [ ]ηζζηηζζηηζζη ξξξ )()()()()()( yxyxJxzxzJzyzyJ zyx −=−=−=
 

[ ] [ ] [ ]ζξξζζξξζζξξζ ηηη )()()()()()( yxyxJxzxzJzyzyJ zyx −=−=−=
 

[ ] [ ] [ ]ξηηξξηηξξηηξ ζζζ )()()()()()( yxyxJxzxzJzyzyJ zyx −=−=−=
 

(3-5) 

 

When the transformation metrics are recast in this manner and the derivatives are 

evaluated with the same high-order formulas employed for the fluxes, free-stream 

preservation is recovered in general time-invariant 3D curvilinear geometries [45]. 

 For deforming and moving grids, identity I4 must also be satisfied to eliminate 

metric cancellation errors and to ensure free-stream preservation.  As distributed, Corsair 

does not take this into account since the only rigid grid motion around the axial centerline 

of the geometry is used and thus there is no grid deformation.  However, since the FSI 

module being linked to Corsair will introduce both grid deformation and grid motion 

other than around the axial centerline, the physical time step derivative in Equation 2-16 

is split using the chain rule of differentiation as follows: 

( ) ( ) ( )ττττ JQQJJQQ 11
~

⋅+⋅==  

 

(3-6) 
 

The reason for applying this only to the physical time step is that all grid point locations 

are held fixed during the pseudo time step.  To incorporate this modification into Corsair, 

the time derivative of the inverse Jacobian is calculated at the beginning of each physical 

time step and simply combined with the RHS.  Instead of attempting to compute the time 

derivative of the inverse Jacobian directly from the grid coordinates at various time levels 

(either analytically or numerically), the GCL identity I4 is invoked to evaluate ( )τJ1 : 
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( ) ( ) ( ) ( )[ ]
ζηξτ ζηξ JJJJ ttt ++=1

 

 

(3-7) 

Where the time metrics are defined as: 
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(3-8) 

In many practical applications involving deforming grids (such as the dynamic 

aeroelastic FSI model developed), the grid speeds are not known a priori and must 

therefore be approximated to the desired degree of accuracy using the evolving 

coordinates at several time levels.  Higher order finite difference schemes retain their 

superior accuracy on rapidly distorting grids when this procedure is used to determine the 

time metrics [46].  

 

3.2 Finite Volume Concept 

 An alternate approach to enforcing the metric identities and thus preserving free-

stream capturing in high order finite difference schemes is the finite volume to finite 

difference concept proposed by Vinokur [47].  In this approach, the coordinate 

transformation metrics represent normal surfaces and the Jacobian becomes the inverse of 

the volume formed by these surfaces.  This approach begins with the derivation of the 

finite volume formulation, which is then adapted to the finite difference grid.  The 

integral form of the metric identities can be written as:  

∫ =
S

dSn 0  (3-9) 
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(3-10) 

 

 

where S represents the cell surface, n is the normal to the surface, V is the volume of the 

cell, and vc represents the surface velocity relative to the non-inertial frame but expressed 

in the inertial frame.  The first identity is a mathematical expression for a closed cell 

while the second identity represents the conservation of volume for a time-varying cell 

from time t1 to time t2.  By applying the same curvilinear coordinate transformation as 

used with the governing equation of motion, these two expressions take the following 

differential form for a finite volume: 
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(3-12) 

 Where the surfaces and volume are related to the metric derivatives and Jacobian by: 
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(3-13) 

Figure 3-1 shows a regular hexahedral cell for a finite volume, where all the edges are 

assumed to be straight lines.   
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Figure 3-1. Geometry of a finite volume hexahedral cell 

 

From Figure 3-1, the surface vectors are given by: 
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(3-14) 

Note that the surface vectors are taken in the positive coordinate direction so as to satisfy 

the geometric identities on the hexahedron.  The surface vector evaluations in Equation 3-

14 can be regarded as the evaluation of the free-stream capturing metrics for a stationary 

grid.  

Next the standard time metrics are considered using finite volume notation: 
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(3-15) 



58 

Unfortunately, it has been shown that time metrics in equation 3-15 will not maintain the 

free-stream even with the use of free-stream capturing metrics [48].  Even worse, such 

inconsistent time metrics do not satisfy the GCL.  To demonstrate this, consider Equation 

3-12, which represents the GCL in finite volume.  Now let the grid move in the rigid 

rotation, that is Vτ = 0 and rτ = U x r.  Then the left hand side of Equation 3-12 is zero, 

but the right hand side results in ( ) ( ) ( ) 0≠×+×+× ζ
ζ

η
η

ξ
ξ SrSrSr .  This indicates that 

the use of the GCL condition (Equation 3-12) for computing Vτ can be erroneous.  In 

other words, the GCL condition is necessary to preserve the free-stream, but not 

sufficient to construct consistent metrics in space and time.  Fortunately, this can be 

overcome by redefining the time metrics as the time averaged volume swept by the 

surface [47]: 
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(3-16) 

To demonstrate this, let S(t1) = S1562 and S(t2) = S1’5’6’2’ as illustrated in Figure 3-2.  The 

volume swept by the xi surface vector between time t1 and time t2 becomes: 

( ) ( )1'61562'1'1225'5'113
1

'5'566'1'122 rrSSSVV
S

−⋅++==ξ  (3-17) 
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Figure 3-2. Volume swept by a surface 

 

It is worth noting that the time metrics defined by Equation 3-16 contain all information 

about the movement of a cell surface, including translation, rotation, and deformation.  

By contrast, the time metrics in Equation 3-15 are a simple product of the surface area 

and velocity of the cell centroid, thus they can only represent translational motion.  As 

with the previous discussion of the Thomas and Lombard approach, the physical time 

step derivative in Equation 2-16 is split using the chain rule of differentiation as per 

Equation 3-6.  However, the time derivative of the inverse Jacobian now takes the 

following form using the metric identity Equation 3-12 with the modified time metrics 

just discussed: 
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To apply the previous discussion to a finite difference grid, the edges of the 

hexahedron in Figure 3-1 are redefined as a double sized cell in the finite difference grid 
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(i.e. 1,1,181,1,131,1,121,1,11 ,,,, +−+++−−+−−−− ==== kjikjikjikji rrrrrrrr L ).  Since the 

surfaces are now effectively quad sized, the surface vectors defined in Equation 3-14 

must now be divided by a factor of four and the volume of the cell by a factor of 8.  In 

order to obtain higher accuracy, the surfaces are evaluated at the center of the hexahedron 

as described in reference[48]: 
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This helps obtain higher accuracy by relaxing the “straight line edge” requirement for the 

hexahedron mentioned earlier, since the line between any three successive points on a 

finite difference grid will mostly likely not be straight.  For convenience of comparison 

with the standard definition, the spatial metric derivatives at point (i, j, k) are evaluated 

as: 
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  From Equations 3-13, the volume of the hexahedron cell must be calculated in 

order to obtain the Jacobian.  While numerous formulas exist for this calculation, the two 

most efficient numerical algorithms are the Long Diagonal (LD) method and the Tetrakis 

Hexahedron (TH) method [49].  The LD method splits the hexahedron into six tetrahedra, 

but introduces directional preferences along the diagonals selected for triangulation, 

resulting in a broken symmetry which is undesirable from a physics standpoint.  The TH 

method preserves the diagonal symmetry by defining an additional vertex at the 

barycenter of each face, but as a result requires more floating point operations or flops, 

72 compared to 60 for the LD method.  The formulas for these methods using the double 

sized cell edges are given in Equations 3-21 and 3-22.    
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Taking special note of Equation 3-15 with reference to Equation 3-19, the number of 

flops for the LD method can be considerably reduced by reusing the calculated surfaces 

of the spatial derivatives of the metrics.  In addition, the LD and TH methods for 

computing the volume of a cell can also be used for calculating the volume swept by each 
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surface vector to obtain the time metrics.  In comparison with the Thomas and Lombard 

approach of recasting the metrics in conservative form, the finite volume concept has the 

advantage of not being dependent on the differencing scheme used for the fluxes. 

 

3.3 Performance Investigation 

 As distributed by NASA, Corsair uses the finite volume concept for the spatial 

derivative metrics along with Equation 3-15 for the evaluation of time metrics.  However 

as shown in reference [48], the resulting time metrics are then inconsistent.  In addition, 

since grids are not allowed to deform in the version of Corsair distributed by NASA, the 

time derivative of the Jacobian is not included in the time derivative of the solution 

vector Q. 

 An investigation of the two methods just discussed for evaluating both the spatial 

and temporal metrics was performed using the procedure in reference [50], the results of 

which were then used to determine the best method to implement in Corsair to correct the 

metric calculation deficiencies.  For these test, all boundary conditions were turned off 

and Corsair was compiled with double precision (15 digits) floating point accuracy.  To 

ensure all boundary conditions had been turned off, an uniform flow field (u=1, v=w=0) 

was marched in time on a 21x21x21 uniform grid with unity spacing between adjacent 

points (which effectively sets the metrics to unity) for 200 time steps with a ∆t of 0.05.  

As expected, there was no variation in the v and w velocities from their initial values of 

zero.  The procedure in reference [50] involves reproducing this same free-stream flow, 

but on a heavily distorted or wavy 3D grid.  Error is measured as maximum variation in 
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the v and w velocities from zero.  The wavy 3D grid used for these tests is defined by the 

following formulae: 
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 (3-23) 

To begin with, a stationary 3D wavy grid as shown in Figure 3-3 was generated from 

Equation 3-23 by setting the parameters IL=JL=KL=21, Ax=Ay=Az=1, Lx=Ly=Lz=4, 

nxy=nyz=…=nzy=4, ω=1, and τ=0.25 (the time at which maximum displacement occurs).   

 

Figure 3-3. Three-dimension wavy grid 
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This grid was then used to evaluate the performance of the spatial derivative metrics.  An 

initial solution of uniform flow (u=1, v=w=0) was then marched in time for 50 time steps 

with a ∆τ=0.05 using first, second, and third order spatial accuracy with three Newton 

sub-iterations.  The resulting maximum deviations of the v and w velocities from zero for 

the various methods and spatial accuracy are displayed in Table 3-1. 

 

 1
st
 Order 2

nd
 Order 3

rd
 Order 

Standard Definition 7.271E-2 1.011E-1 1.162E-1 

Conservative Recasting 7.463E-14 1.085E-14 1.140E-14 

FV Concept w/ LD 5.859E-16 6.320E-16 6.358E-16 

FV Concept w/ TH 5.122E-16 6.154E-16 5.215E-16 

 

Table 3-1. Free-stream preservation errors for stationary 3D wavy grid 

 

As expected, the largest error occurs for the standard definition of the metrics given in 

Equation 2-18.  While the conservatively recast metrics of Thomas and Lombard show 

significant improvement compared to the standard definition, they are not quite as 

accurate as the finite volume concept.  This may be due to the accumulation of numerical 

or round off error, as the conservative recasting method does entail significantly more 

numerical operations than the finite volume concept.  There is little to no difference 

between the long diagonal (LD) and tetrakis hexahedron (TH) methods used to calculated 

volumes in the finite volume concept method.  However, the long diagonal does have the 

advantage of requiring significantly fewer flops since the surface vectors can be reused in 

calculating the volume of the cell. 
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 Next, the ability of each method to preserve the free-stream on a dynamically 

deforming curvilinear grid was tested.  Again, the wavy 3D grid described by Equation 3-

23 was used but with the following parameters: IL=JL=KL=31, Ax=Ay=Az=1.5, 

Lx=Ly=Lz=12, nxy=nyz=…=nzy=4, and ω=1.  An initial uniform flow solution was 

marched in time with a ∆τ=0.005 for 50 time steps with the grid deformed at each time 

step according to Equation 3-23.  Thus, the 3D grid begins with a uniform spacing of 0.4 

between adjacent points but ends up with the maximum deformation similar to Figure 3-3 

after 50 time steps.  As with testing of the spatial metric derivatives, this simulation was 

run for first, second, and third order spatial accuracy with different combinations of 

temporal and spatial metric derivative calculation methods.  The resulting maximum 

deviation of v and w from their initial value of zero for each combination is shown in 

Table 3-2 and is used to gauge their performance.    

 

Spatial Method Temporal Method 1
st
 Order 2

nd
 Order 3

rd
 Order 

Corsair (No Jτ Correction) 

FV Concept (LD) & Std. Def. 

6.865E-2 8.552E-2 8.813E-2 

Std. Def. Std. Def. 4.396E-3 4.783E-3 4.718E-3 

Std. Def. VS(LD) 3.945E-3 4.541E-3 4.489E-3 

Conserv. Recast Std. Def. 6.506E-8 3.944E-13 2.613E-13 

Conserv. Recast VS(LD) 2.321E-9 1.283E-13 1.022E-13 

FV Concept (LD) Std. Def. 6.020E-9 1.461E-14 2.613E-14 

FV Concept (LD) VS(LD) 7.052E-11 2.928E-15 1.385E-16 

FV Concept (TH) VS(TH) 5.625E-11 2.344E-15 1.254E-16 

 

Table 3-2. Free-stream preservation errors for deforming 3D wavy grid 

 

In Table 3-2, the first method tested is the unmodified version of Corsair in which the 

Jacobian is assumed not to change with time.  The remainder of Table 3-2 is split up into 
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combinations of methods for evaluating the spatial and temporal metric derivatives.  For 

spatial methods, Std. Def. is the standard definition given by Equation 2-18, Conserv. 

Recast is the conservatively recast form of the spatial metrics given by Equation 3-5, and 

FV Concept (LD) & FV Concept (TH)  are the finite volume concept given in Equation 

3-19 with the volume of the hexahedron calculated using the long diagonal and tetrakis 

hexahedron methods, respectively.  For the temporal methods, Std. Def. is the standard 

definition given in Equation 3-8, and VS(LD) & VS(TH) are the finite volume concept of 

a volume swept by the surface vectors given in Equation 3-16 using the Long Diagonal 

and Tetrakis Hexahedron formulae respectively. 

Results for the unmodified version of Corsair illustrate the importance of 

including the temporal derivative of the Jacobian in the temporal derivative of the 

solution vector Q, even with a high order spatial metric derivative method.  Along similar 

lines, the results using the standard definition for the spatial metric derivatives show large 

errors, regardless of the spatial metric derivative method used.  The conservative 

recasting method for the spatial metric derivatives shows marked improvement over the 

standard definition, but still has a larger error than the finite volume concept method.  A 

slight improvement gain for the conservative recasting method is shown when paired 

with the swept volume idea from the finite volume concept method for calculating the 

temporal metric derivatives.  Most likely, this improvement is the result of accounting for 

deformation of the spatial metrics between time steps.  When paired with the standard 

definition for the temporal metric derivatives, the finite volume concept using long 

diagonals results in error similar to that for the conservatively recast metrics method.  

However, when the finite volume method for spatial metric derivatives is paired with the 
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swept volume method for the temporal metric derivatives, the error is noticeably reduced.  

Lastly, there appears to be very little difference in terms of error between using the long 

diagonal or tetrakis hexahedron methods for calculating volumes when the finite volume 

concept is used for both spatial and temporal metric derivatives. 

In this chapter, three numerical methods for the evaluation of the coordinate 

transformation metrics were investigated for use in Corsair.  These methods included the 

standard analytical form, the conservatively recast form, and the finite volume to finite 

difference concept.  Each method was examined using a highly distorted static and 

dynamically deforming, wavy grid for spatial and temporal metrics respectively.  The 

error associated with each method was quantified as the maximum deviation of non-axial 

velocities from zero when performing a uniform axial free-stream reproduction test.  In 

addition, combinations of spatial and temporal methods were compared, including use of 

long diagonals and tetrakis hexahedrons for the calculations of volumes in the finite 

volume to finite difference method.  Results clearly show that the standard analytical 

form produces significant free-stream errors when deformed three dimensional grids are 

used with a finite difference solver.  Hence the standard analytical form of the metrics 

should be avoided when using a finite difference solver with a deformed curvilinear grid.  

While the conservatively recast method significantly reduced these errors, the finite 

volume to finite difference concept was able to reduce them even further and with fewer 

floating point operations.  Although the tetrakis hexahedron method showed slightly 

better results, it requires significantly more floating point operations than the long 

diagonal method when reusing the surface vectors (spatial metric derivatives) in 

computing the temporal metric derivatives (swept volumes).  Thus, the finite volume 



68 

concept with long diagonals was chosen to correct the metric calculation deficiencies in 

Corsair. 
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4. WALL FUNCTION 

 

As outlined in Section 1.1, one of the main objectives required in order for the 

resulting aeroelastic solver to be used as a design tool is reduction of the time required to 

run a simulation.  One of the most direct ways of achieving this is simply to reduce the 

total number of grid points used in the simulation, since the runtime is directly 

proportional.  In a typical Corsair simulation, the grid density near solid surfaces is 

intentionally high in order to accurately calculate the shear stress using a finite difference 

approach, a technique commonly known as gridding to the wall.  Accurate calculation of 

the shear stress is critical, as it is used for calculation of turbulence in the flow and 

additionally will be utilized by the FSI module to determine the aerodynamic forces on 

the blade surface.  By replacing the finite difference calculation of the shear stress with 

one based on empirical data (i.e. a wall function), the number of grid points near solid 

surfaces and thus the total number of grid points can be substantially reduced while still 

obtaining accurate shear stresses.  This chapter covers the wall function added to Corsair 

for the current research, including the use of the shear stress in the turbulence model, and 

a comparison of the two shear stress methods using a fourth standard configuration 

turbine blade. 
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4.1 Background Boundary Layer Theory 

In the 1930s, Prandtl and Von Karman deduced that turbulence consists of three 

separate layers: a very small inner layer next to the surface where viscous (molecular) 

shear is dominant termed the laminar sub-layer, an outer layer where turbulent (eddy) 

shear is dominant called the fully turbulent zone, and a transition layer called the buffer 

zone [51].  It is common in turbulence modeling to regroup these three layers into just 

two regions, an inner region which includes the laminar sublayer, the buffer layer, and 

part of the fully turbulent zone, and an outer region which consists of the remaining part 

of the fully turbulent zone [52].  To delineate between these two regions, a non-

dimensional coordinate y
+
 of approximately 400 is taken to be the upper limit of the inner 

region, where y
+
 is defined as 

wall

wallwally
y

µ

τρ
=+  

(4-1) 

Here, y is the normal distance from the wall, ρwall is the density at the wall, τwall is the 

shear stress at the wall, and µwall is the laminar viscosity at the wall. 

The unsteady Navier-Stokes equations fully describe the fluid flow field including 

turbulence, but require resolving very small spatial and temporal details in order to 

correctly model turbulence.  A common approach used in order to obtain meaningful 

results with reasonable grid densities is to average the equations of motion over relatively 

small time periods [52].  This results in the Reynolds Averaged Navier-Stokes (RANS) 

form of the equations of motion with apparent stresses due to the time unsteadiness.  

Boussinesq introduced a hypothesis, commonly referred to as the Boussinesq assumption, 

which simply states that the apparent stress can be related to the strain multiplied by the 

turbulent viscosity [52].  Thus, to include the effects of turbulence, the molecular 
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viscosity µ in the stress terms of the Navier-Stokes Equations is replaced by (µl + µt) and 

the term (µ / Pr) in the heat conduction term is replaced by (µl / Prl + µt / Prt), where the l 

and t subscripts denote laminar and turbulent quantities respectively.  By using this 

approach, the Navier-Stokes equations remain unchanged in form.  For air, the turbulent 

Prandtl number, Prt, and the laminar Prandtl number, Prl, are generally taken to be 0.9 

and 0.74 respectively.  The laminar viscosity is generally modeled by Sutherland’s law, 

where µl is a function of the local static temperature [51].  However, the turbulent 

viscosity, µt, is not so easily determined and as a result, several turbulence models have 

been developed over the years to solve for this term in order to close the RANS 

formulation of the equations of motion. 

 

4.2 Algebraic Model 

Zero-equation turbulence models use equations where the turbulent fluctuating 

correlations are related to the mean flow field quantities by algebraic relationships.  The 

underlying assumption in such models is that the local rate of turbulence production is 

approximately equal to the rate of turbulence dissipation.  Furthermore, they do not 

include convection of turbulence.  Obviously, this is contrary to the physics of most flow 

fields, since the past history of flow must be accounted for.  However, these models are 

mathematically simple and their incorporation into a numerical code is relatively easy to 

accomplish.  One of the most commonly used zero-equation turbulence models is the 

Baldwin-Lomax model [53].  In this two-layer model, the turbulent viscosity µt is 

described by 
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Where s is the distance normal to the surface and scrossover is the smallest value at which 

µt-inner equals µt-outer.  In the inner region, the turbulent viscosity is calculated using the 

Prandtl-Van Driest formulation 

ωρµ 2lt =  (4-3) 

where ω is the vorticity defined as 
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and the mixing length l is given by 
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Here, κ is the Von Karman constant (~0.41) and A
+
 is a parameter which depends on the 

streamwise pressure gradient and has a value of 26 for zero-pressure gradient flows.   

However, Granville [54] has provided a review of alternative formulae which may 

be used in order to account for the presence of pressure gradients and surface roughness.  

He proposed the following formula for the mixing length to most closely match 

experimental data 
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where b is set to 14.0 for P
+
 < 0 (favorable pressure gradient) and to 16.4 for P

+
 > 0 

(adverse pressure gradient).  The parameter P
+
 represents the pressure gradient and is 

defined as 
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Here, ν is the kinematic viscosity and τ
*
 represents the non-dimensional total shear stress 

close to the wall and is given by 

+++= yP1*τ  (4-8) 

The turbulent viscosity in the outer region is approximated by   

KlebwakeCPt
FFCαρµ =  (4-9) 

where α is the Clauser constant and usually assigned a value of 0.0168 for flows in which 

the momentum thickness Reynolds number is greater than 5000, and 
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Typically, Cwake is given a value of 0.25 and the term ymax is the value of y corresponding 

to the maximum value of G, denoted Gmax, across the layer where 
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 The difference between the absolute values of the maximum and minimum velocities 

within the viscous region is denoted by ∆V.  For wall bounded flows, the minimum 

velocity occurs at the surface where the velocity is zero, thus 

( ) 2
1

222 wvuV ++=∆  
(4-12) 

For shear layer flows, ∆V is defined as the difference between the maximum velocity and 

the velocity at the ymax location, hence 

( ) ( ) 2
1

2222
1

max

222

maxy
wvuwvuV ++−++=∆  

(4-13) 
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FKleb is an intermittency factor which provides additional smoothing and is defined as 
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and as before, ymax is the y location where Gmax occurs.  Typical values for the Klebanoff 

constant CKleb and CCP are 0.3 and 1.6, respectively, for zero to mild pressure gradients.  

However, according to Granville [55], these “constants” should really be variable and 

suggest a fit to known properties of Cole’s wake law and equilibrium pressure gradients 
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and ut is the friction velocity.  The velocity gradient in β
*
 is calculated outside the viscous 

region.  Once the Klebanoff constant has been evaluated, CCP is calculated using 

( )3322

43

KlebKlebKleb

Kleb

CP
CCC

C
C

+−

−
=  

(4-17) 

This modification is believed to give the Bawin-Lomax model accuracy comparable to 

the mixing-length and Clauser iterative models.   

Corsair uses the modified version of the Baldwin-Lomax turbulence model just 

discussed.  Additional modifications, based on the developers’ experience with 

compressor and turbine geometries, are also employed in Corsair [56].  First, the 

equations are applied along grid lines rather than normals to the surface.  This avoids the 

calculation of all the normal distances and the interpolation of flow variables.  Second, 

the switchover location between the inner and outer models is not allowed to move more 
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than a specified number of grid points between adjacent streamwise locations.  In 

addition, a second derivative smoothing function is used on the turbulent viscosity field 

in separated flow regions.  This eliminates non-physical gradients in the turbulent 

viscosity near separation points.  Thirdly, a cutoff value is imposed on the turbulent 

viscosity (nominally 1200 times the free-stream laminar viscosity).  Finally, a limit is 

imposed on scrossover in order for it not to occur too far beyond the wall. 

 

4.3 Wall Function Model 

Implementation of the Baldwin-Lomax turbulence model requires the wall shear 

stress.  In the original form of Corsair distributed by the NASA Marshal Space Flight 

Center, the wall shear stress is calculated using a finite difference approach.  This 

requires a very fine grid spacing, or clustering, to be used near solid surfaces such as the 

hub, shroud, and blade, in order to resolve the entire boundary layer (y
+
 ~ 2) and obtain 

the correct shear stress.  In addition, this fine grid spacing requires a significantly small 

time step in order to maintain stability via the CFL law [52].  To overcome these 

limitations, wall functions have been implemented in Corsair.  Wall functions make use 

of empirical data to determine the wall shear stress based on the Reynolds number at a 

normalized distance away from the wall.  By using this empirical relationship, the grid 

needs only to be fine enough near the surface to ensure the log-linear correlation is valid.  

According to turbulent boundary layer theory, the inner layer obeys the following 

relationship at the wall: 

 
++= uyRe  (4-18) 
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where y
+
 is the inner region normalized distance, u

+
 is the inner region normalized 

velocity, and Re is the local Reynolds number just above the surface.  The relationship 

between u
+
 and y

+
 is well known from experimental work of turbulent water flow in 

smooth pipes [51].  Additionally, Spalding devised a single composite formula which 

describes this relationship for the entire wall-related region [57]: 
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In the Equation 4-19, κ is the Von Karman constant and assigned the value of 0.41 while 

b is the logarithmic friction law constant and is typically given a value of 5.5 for 

hydraulically smooth surfaces.  The first part of Equation 4-19 represents the viscous 

sublayer (y
+
 = u

+
), while the second half represents the buffer and logarithmic layers.  

This formula blends the three regions in a smooth fashion, which shows excellent 

agreement with experimental data up to a y
+
 of ~500, where a slight wake occurs [51].   

 Implementation of wall functions in Corsair starts with a calculation of the local 

Reynolds number at the first grid point away from the surface: 
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where δy is the normal distance from the surface, W is the relative velocity vector, and ρ 

is density.  A curve fit to the u
+
- y

+
 relationship from Spalding’s formula along with 

Equation 4-1, is then used to determine u
+
 and y

+
 from the calculated local Reynolds 

number.  Once u
+
 is known, the shear stress at the wall is given by: 

+
=

u

W
w

2ρ
τ  

(4-21) 

In addition, the local skin friction coefficient can also be calculated according to: 
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In terms of the inner law-of-the-wall distance, y+, a maximum value of ~500 can now be 

used with wall functions versus a maximum of ~2 without. 

 

4.4 Surface Roughness 

 Surface roughness (resulting from deposits, erosion, or finishing) can have a 

significant effect on the aerodynamic performance of turbomachinery [58,59].  This 

effect comes from the break up of the thin viscous sublayer, which increases the wall 

friction and thus changes the location of transition from laminar to turbulent flow.  Since 

surface roughness can greatly change the location of transition, it is important to include 

its effect in the turbulence model.  The simplest way to incorporate surface roughness in 

most turbulence models is through the computation of the wall stress via the wall friction.  

In Corsair, such a method described by Shabbir and Turner is utilized [60]. 

The effect of surface roughness enters Spalding’s formula, Equation 4-19, via the 

logarithmic friction law constant b.  It is important to note that this limits the effect of 

surface roughness to the buffer and logarithmic layers.  However, since the lower buffer 

layer and laminar sublayer have been blended in Spalding’s formula, the effects of 

surface roughness can be applied to the upper part of the buffer layer, at best.  Thus, this 

limits the minimum y
+
 for inclusion of surface roughness effects in the wall function 

using Spalding’s formula to ~20 [60]. 

The sand roughness experiments of Nikuradse characterized the effect of 

roughness on the velocity profile by the equivalent sand roughness Reynolds number 

defined as: 
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where ks is the equivalent sand roughness height [61].  The surface is considered 

hydraulically smooth if 5≤+
sk  and is considered completely rough if 70≥+

sk .  The 

range in between, 705 << +
sk , is the known as the transition range.  Based on the 

measurements of Nikuradse, the logarithmic friction law constant can be expressed as a 

function of surface roughness: 

( )+−= skBb ln5.2  (4-24) 

where the coefficient B has been determined experimentally for a range of surface 

roughness values.  For hydraulically smooth and rough surfaces, B is a function of +
sk , 

but for completely rough surfaces it is a constant with an average value of 8.5. 

 In the work of Shabbir and Turner, families of curves are plotted for the variation 

of the skin friction coefficient as a function of local Reynolds number for various surface 

roughness values, where the coefficient B was obtained from reference [61].  This plot is 

reproduced here as Figure 4-1 and also includes lines of constant ++ yks .  This data was 

used to plot the local Reynolds number as a function of the ration between surface 

roughness to the first grid point height above the surface ( ++ yks ) for different values of 

surface roughness, reproduced here as Figure 4-2.  Given these two plots, the local 

Reynolds number, and the ratio of surface roughness to the first grid point height above 

the surface ( ++ yks ), the skin friction coefficient can be determined explicitly.  To aid in 

programming this method, the plots in Figures 4-1 and 4-2 have been curve fitted using 

polynomials. 
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Figure 4-1. Skin friction coefficient as a function of local Reynolds number 

 

 

Figure 4-2. Local Reynolds number as a function of surface roughness to grid height ratio 
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  For a given grid and surface roughness, the ratio ykyk ss =++  is fixed.  The 

corresponding local Reynolds number then determines one of three possible surface 

conditions and the associated skin friction.  First, a calculation of Resmooth is made from a 

curve fit to Figure 4-2 for +
sk = 5.  If the local Reynolds number is equal to or smaller 

than Resmooth then the surface is hydraulically smooth and a curve fit to the skin friction 

coefficient is made from Figure 4-1.  If the surface is found not to be hydraulically 

smooth, then it is checked to see if it is completely rough.  To determine this, Rerough is 

calculated from the curve fit for +
sk = 70 in Figure 4-2.  if the local Reynolds number is 

equal to or greater than Rerough, then the surface is completely rough and the skin friction 

coefficient is computed from a curve fit for +
sk = 70 in Figure 4-1. 

If the surface is not hydraulically smooth or completely rough, then it is obviously 

in the transition region.  For this case, the skin friction coefficient is calculated in three 

steps.  In the first step,  ++ yks  along with the local Reynolds number Re are used in 

conjunction with Figure 4-2 to determine which two lines (out of the seven) encompass 

the surface under consideration, call these two associated Reynolds numbers Re1 and Re2.  

In the second step, the corresponding lines on Figure 4-1 are identified and the skin 

friction coefficients, call them Cf1 and Cf2, are calculated from their curve fits.  In the 

third step, the desired skin friction coefficient Cf is obtained with a simple linear 

interpolation: 
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4.5 Test Case 

 To test the implementation of these wall functions, an appropriate test case is 

required.  A typical case used to test both the implementation of wall functions and 

turbulence models is a flat plate [62,63].  In such test cases, free-stream conditions such 

as pressure, temperature, and Mach number are specified and the numerical results 

compared to either analytical or experimental data for skin friction at the wall surface.  A 

major drawback to this particular type of test case involves the difficulty of generating an 

O-grid for an infinitely thin flat plate.  In addition, the skin friction coefficients used in 

the wall function are experimentally obtained from tests on flat plates, making such a test 

redundant. 

 Instead, a more realistic turbomachinery test case involving the fourth standard 

configuration (STCF4) is used to test the wall function implementation in Corsair.  The 

fourth standard configuration represents a typical section of a modern free standing 

turbine, with relatively high blade thickness and camber, operating under strong subsonic 

flow conditions.  It is ideally suited for testing since a wealth of experimental results from 

the annular cascade facility at the Lausanne Institute of Technology exists in the public 

domain [64].  The cascade consists of twenty prismatic blades, each with a chord of 

approximately 2.83 inches and a span of just over 1.57 inches, with 45 degree turning and 

a maximum thickness to chord ratio of 0.17.  The stagger angle is 56.6 degrees with a 

blade to blade pitch of 2.2 inches.  For this test, case three of the experimental test series 

is used.  For this case, the inlet and exit flow angles are 45.5 and 71.0 degrees, 

respectively, with inlet and exit Mach number of 0.28 and 0.90, respectively.  For this 

test, the pressure coefficients at mid-span for both the gridding-to-wall and wall functions 
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are compared with experimental measurements.  For the gridding-to-wall simulation, a 

refined O-grid (271x67x51) with a distance to first grid line from the blade surface of 

0.00003 inches was used resulting in a maximum y
+
 of ~1.85.  The wall function 

simulation used a coarser O-grid (241x29x51) with a distance to first grid line from the 

blade surface of 0.0018 inches resulting in a maximum y
+
 of ~48.2.  For both 

simulations, the same H-grid (161x85x51) was used and the simulations were run at third 

order accuracy with a single Newton sub-iteration.  While three Newton sub-iterations 

are generally used to reduce error from the approximate factorization of the governing 

equations, a single Newton sub-iteration is sufficient for these runs since the solution is 

steady state (not time accurate) and quicker results can be obtained.  Both solutions were 

run for the same non-dimensional time.  However, the gridding-to-wall simulation 

required a time step one third the size of the wall function simulation in order to maintain 

stability.  As a result of the time step and grid size differences, the gridding-to-wall run 

took roughly 4.5 times longer than the wall function run.  Figure 4-3 is a contour plot of 

the Mach numbers for the wall function simulation at mid-span, illustrating the fourth 

standard configuration flow domain. 
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Figure 4-3. STCF4 flow domain 

 

Figure 4-4 shows the coefficient of pressure at mid-span for the two runs compared with 

the time averaged experimental measurements. 
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Figure 4-4. STCF4 pressure coefficients at mid-span 

 

As shown in Figure 4-4, there is little to no difference between the results 

obtained using the gridding-to-wall method versus the wall function.  There is a slight 

difference between the two at the trailing edge of the suction side, but this is most likely 

due to the vortex shed by the rounded trailing edge of the fourth standard configuration.  

Comparison with the experimental data is also quite good.  The difference between 

experimental and computational simulation results in the first 30% of the chord is due to 

uncertainty in the inlet flow angle of the experiment, as described in the Lausanne 

Institute of Technology report. 

 The addition of a wall function to Corsair for the calculation of shear stress at 

solid surfaces was discussed in this chapter.  A background introduction of boundary 

layer theory was presented to show the importance of accurate shear stress calculations 
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and the use of this quantity in the turbulence model employed in Corsair.  The wall 

function replaces the gridding-to-the-wall, finite difference approach, used in the original 

version of Corsair.  Details of the wall function implementation were also covered 

including the ability to account for surface roughness.  More importantly in meeting the 

objectives in section 1.1, the wall function allows for a significant reduction in grid 

cluster near solid surfaces, resulting in overall smaller grids and thus reduced runtimes.  

Finally, a comparison of the two methods was made using the fourth standard 

configuration.  The results not only showed a reduction in runtime due to the reduction in 

grid size, but also from the ability to use larger time steps while still maintaining stability. 
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5. ADDITIONAL PARALLELIZATION 

 

One of the objects for this research as outlined in section 1.1 was to create an 

aeroelastic solver that could be used in the design phase of turbomachinery.  While the 

incorporation of the wall function discussed in the previous chapter significantly reduces 

the runtime for a simulation, even greater reductions are desired.  This chapter covers the 

restructuring/rewriting of the flow solver along with addition domain decomposition 

which was added, in order to further reduce runtimes.  Details of the computer resources 

utilized for this research are also given. 

 

5.1 Existing Parallelization in Corsair 

As distributed by NASA Marshall Space Flight Center, Corsair is parallelized for 

use with MPI and MP-threads [10].  MPI is used for the coarse breakup of the 

computational grid, with each grid being solved on a separate node.  MP-threads is used 

to further break up the calculations of each grid by using multiple Cores/CPUs on each 

node.  While the calculations in Corsair have been parallelized via MPI and open-MP, the 

data structure has been kept serial.  For SMP shared memory architectures such as the 

one Corsair was developed on, this program structure is rather efficient.  Unfortunately, 

this same program structure on distributed memory architectures, such as the Beowulf 

cluster used for this research, have severe parallelization and memory limitations.  For 

example, since the Beowulf cluster used for this research consist of single core nodes, the 
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open-MP feature of Corsair could not be used and thus only the coarse breakup of one 

grid per node via MPI could be used.  Further, the serial data model limits the problem 

size that can be solved since the entire problem domain must fit in the memory of each 

node used in a parallel run.  This serial data model also results in a tremendous amount of 

communication, since the entire flow domain must be updated after each iteration on all 

nodes used for a parallel run.  To overcome these limitations, Corsair was rewritten with 

a focus on distributing the data structure with the calculations.  The resulting flow solver, 

called Thunder, allows for more parallel scalability, a reduced nodal memory footprint, 

and the ability to solve larger problem on distributed memory architectures such as the 

Beowulf cluster used for this research.  In addition, a general clean up of the code is 

achieved, resulting in faster performance and allowing for easier integration of the FSI 

module.  

 

5.2 Target Computational Platform 

 For this research, the target computational platform is the Taylor Beowulf cluster 

which consists of 92 compute nodes, 3 head nodes, and a file server all connected using a 

Gigabit network.  The compute nodes are grouped into two racks each composed of 46 

nodes and a 48 port gigabit network switch (see Figure 5-1), while a third 48 port gigabit 

network switch is used to connect the head nodes and file server together.  To tie the 

network switches together, two ports from each of the compute node group network 

switches are bonded together and connected to the network switch used for the head 

nodes and file server in a tree configuration.  Although bonding two ports together 

effectively doubles the bandwidth between the switches, this does not fully compensate 
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for cases where parallel runs are split between compute node racks.  However, it was 

found during initial setup and testing of the cluster that this tree configuration did provide 

better performance than a ring configuration between the three network switches.  The 

network configuration for the Taylor cluster is shown in Figure 5-2.  Each compute node 

consists of a single core 2.4 GHz AMD Athlon 64 3800+ processor with 1 GB of 

DDR400 RAM along with a 40 GB hard drive providing local scratch space.  While 

multi-core processors were available, their cost/performance at the time of the Taylor 

cluster construction precluded them from being used for the compute nodes.  In addition, 

the ability for the chosen scheduler & queue system to handle multi-core nodes was not 

fully developed yet [65], resulting in the belief that for most users multi-core nodes 

would lead to a waste of computing resources.  DLink 1248T 48 port GigE switches 

along with CaT6 cables are used for the network.  The Taylor cluster uses the 64 bit 

version of cAos 2.0 Linux distribution along with Torque for the queue system and Maui 

for queue management.    
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Figure 5-1. Taylor cluster compute node rack 
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Figure 5-2. Taylor cluster network configuration 
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5.3 Code Restructuring 

 As stated earlier, Corsair uses a parallelized calculation with serial data program 

structure.  While this type of structure can run efficiently on SMP supercomputers with 

shared memory, such a program structure is very inefficient on distributed memory 

architectures, such as the Beowulf cluster used in this research, for two primary reasons 

[66,37].  First, the serial memory model limits the size of problems which can be solved 

to what will fit in the memory of a single node.  For the Taylor Beowulf cluster, this 

limits the size of a problem to ~1 GB of memory, which based on experience roughly 

translates to a problem domain of 1.5 million total grid points when using double 

precision accuracy.  Second, since each node must maintain an up to date copy of the 

entire problem domain (grid points, flow variables, etc.), a tremendous amount of 

communication is required between all the nodes after each iteration. 

 Corsair is written in FORTRAN 77 and thus one of its inconveniences is that the 

source code must be recompiled for each new problem size.  To do this, a parameter file 

containing the index size of several arrays must first be edited to fit the desired target 

problem.  However, since several key index sizes are grouped together, the resulting 

arrays are often much larger than they need to be.  Corsair also uses a somewhat unusual 

vector based storage method.  While large vectors are used to store the solution and grid 

points for the entire problem domain, smaller multi-dimensional arrays are used for 

temporary storage of appropriate portions of the problem domain while they are being 

used in calculations or being solved for.  This storage method makes it easier to update 

the entire flow domain after each iteration, since the data is already in a packed form, but 
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in addition to requiring more memory, it also incurs a heavy time penalty each time a 

large portion of these vectors is written into a multi-dimensional array or vice versa.   

 To overcome these issues, a restructure version of Corsair called Thunder was 

developed using only MPI for parallelization.  The decision to use MPI instead the mixed 

hybrid MPI and openMP model used in Corsair is based on two reasons.  First, 

programming with hybrid parallel models is prone to errors.  Second, modern 

implementations of MPI (such as MPICH, LAM, and openMPI) are optimized to run on 

multi-core/multi-CPU noded systems just as well as single core/CPU noded systems.  

Unlike Corsair, Thunder is written in Fortran 95 and takes advantage of dynamically 

allocated multi-dimensional arrays for storing data, thus removing the need to recompile 

the code for each new problem size.  In addition, each node stores only its portion of the 

flow domain, along with a minimum amount of data required for the ghost points.  This 

significantly reduces the nodal memory footprint, along with the amount of 

communication required after each iteration. 

Unlike most parallel flow solvers [67], the grid and solution files in Thunder are 

not split before or during a run, but rather read and written as whole files by the master 

node.  Since the size of these files for a particular problem might be bigger than the 

amount memory on the master node, it reads only the grid/solution for a single blade at a 

time, passes this information via MPI to the appropriate node(s), and then proceeds to 

read in the grid/solution for the next blade.  For writing grid and solution files, a similar 

process is used in reverse.  Thunder also has the ability for each node to read and/or write 

its solution and/or grid files in a broken up manner.  However, complete grid and solution 

files are often more desired by CFD users for post processing of results and by having 
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Thunder read/create these files as whole, reduces the extra step of splitting/joining 

individual files. 

Early in the development of Thunder, it was noticed that one of the main reasons 

for the serial data structure in Corsair was the need for information during the solution 

process about the global problem domain, such as the number overlap/Chimera points 

between O- and H-grids.  A simple preprocessing utility called thsplit was developed to 

solve this problem.  Some of the information each node receives from the splitup file 

generated by thsplit is given in table 5-1.  In addition to providing this information about 

the global problem domain, thsplit also includes the logic for breaking up individual grids 

and nodal communication information, such as which nodes a particular node must 

exchange information with. 
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num_rows Number of blade rows 

total_num_blades Total number of blades 

my_blade Blade in row this node solves for 

my_blade_master First node assigned to my_blade 

my_row Row this node solves for 

my_row_master First node assigned to my_row 

k_global(4) K indexes in global problem domain (1=first local, 2=last local, 

3=last global, 4=global tip clearance start)  

imx_h, jmx_h, kmx_h Index sizes of problem portion for H-grid solved by this node 

imx_o, jmx_o, kmx_o Index sizes of problem portion for O-grid solved by this node 

imx_c, jmx_c, kmx_c Index sizes of problem portion for clearance grid solved by this 

node 

cutout_idx(4) Beginning and ending Indexes (i and j) for H-grid cutout 

num_chm_pts_o Number of O-grid overlap/Chimera points 

num_chm_pts_h Number of H-grid overlap/Chimera points 

min_rad_in Inlet radius of the hub for my_row 

max_rad_in Inlet radius of shroud for my_row 

tip_rad_in Inlet radius of blade tip for my_row  

num_blades(n) Number of blades in each row n 

num_procs_blade(n) Number of processors used for each blade in row n 

overlap(n) Number of radial overlap points in row n 

split_type(n) 1 if O- and H-grid on same node, 2 otherwise 

ogrid(n) True or false, based on an O-grid being present for row n   

tip_clearance(n) True or false, based on a clearance grid being present for row n 

 

Table 5-1. Some global information generated by thsplit for each node 

 

 While most of the capabilities in Corsair have been duplicated in Thunder, a few 

such as hot streaks and film cooling have not yet been added.  The addition of these 

capabilities to Thunder would be rather straight forward, but they have not been 

implemented yet as they were not needed for this research.  In addition, Corsair has the 

ability to model centrifugal compressors while Thunder does not.  However, unlike the 

hot streaks and film cooling, this capability would require a significant amount of source 

code rework to implement in Thunder.  Fortunately, this research only deals with axial 

flow turbomachinery and thus the capability to model centrifugal compressors was left 

out of Thunder. 
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 In order to give Thunder more parallel flexibility, an option to keep both the O- 

and H-grid of a blade or portion thereof on the same node was added.  This capability is 

specified when running thsplit via split_type.  As shown in Table 5-1, a one indicates 

both O- and H-grid for a blade or blade portion be kept on the same node, thus allowing 

better scalability when these two grids are different sizes and eliminating the 

communication of flow variables for the overlap/Chimera post iterative update.  In 

addition, this feature provides more parallelization by allowing an H-grid with a long 

inlet or exit to be decomposed into separate axial sections.  For example, a passage with a 

long inlet can be broken into two rows, one with the inlet portion of the H-grid and no 

overlaid O-grid and a separate row with the remaining H-grid and overlaid O-grid.  By 

setting split_type to two, the O- and H-grids are split onto separate nodes, reverting to the 

normal decomposition behavior of Corsair.   

 Another significant difference between the structure of Thunder and Corsair is the 

use of separate communicators for O-grids, H-grids, CFD work, and FSI work compared 

to the single mpi_comm_world communicator used in Corsair.  This allows for more 

efficient groups of communications to occur and is very helpful when creating barrier 

calls for which only a particular group of nodes must be synchronized.  Each node in a 

parallel run of Thunder dumps an output deck which in addition to tracking residuals for 

its portion of the flow field also lists the node it is running on, making the debugging 

process on large numbers of nodes much easier.   

Along with the general clean up of code, variables in Thunder are much better 

defined.  In Corsair, common blocks, implicit declarations, equivalent statements, and six 

character variable names make following or adding to the source code a difficult process 
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at best.  In thunder, all global variables are defined in the globaldata module using 

descriptive names, with implicit none used throughout the code to easily trap undeclared 

variables.  Additionally, the precision of real variables in Thunder is specified in the 

globaldata module and in the Makefile.  Thunder can be built for single, double, or quad 

precision via the Makefile and the number of digits used for each type of precision is 

specified in the globaldata module.  When compiling Corsair for double or single 

precision via compiler flags, the source code also has to be modified in numerous 

locations to ensure mpi_real8 or mpi_real respectively is used for sending real data via 

MPI calls.  This simple variable tells MPI how many bits make up a real variable and if 

set incorrectly, scrambles data sent by MPI.  Instead of using the mpi_real or mpi_real8 

defined in the MPI header file, Thunder uses its own declared variable, mpi_real_prec, 

which is set at the beginning of code to the compiled precision using the MPI command 

mpi_type_create_f90_real.  This ensures all real data sent using MPI commands is done 

correctly. 

 

5.4 Increased Parallelization 

 To add more parallelization to Thunder and thus increase turn around time for 

cases involving only a single blade passage, logic was added for splitting individual O- 

and H-grids onto separate nodes.  Numerous different options exist in the literature for 

accomplishing this with CFD codes [67,68,69,70,71].  Since Thunder is based on 

structured grids, the most straight forward method is to break up the grids along one or 

more of the grid indexes.  For both the O- and H-grids, the axial or i index is always the 

largest, followed by the circumferential or j, and lastly the radial or k directions.  From a 
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purely parallel standpoint, the axial direction should thus be the best choice for breaking 

up the grids, since it would allow for more decomposition and the best possibility for 

good load balancing.  However, from a CFD standpoint, breaking up the grids in the axial 

direction involves several problems.  First of which, the axial direction involves the most 

amount of fluid flow changes and thus any error introduced via boundary conditions to 

handle the splitting of the domain in the axial direction will be greatly amplified.  Along 

similar lines, the boundary conditions for such a decomposition of the domain would 

require numerous ghost points and associated communication overhead to ensure 

continuity.  Second, the axial direction for the H-grid is different than that for the O-grid, 

which would make the communication pattern for overlap/Chimera post iterative updates 

very complicated.  Similar issues exist for decomposing the grids in the circumferential 

or j direction. 

 Thus the ideal direction for decomposing both O- and H-grids is in the radial or k 

direction, since the physical translation of this direction is the same for both grid types, 

unlike the axial and circumferential directions.  Also, the least amount of change in the 

3D flow field occurs in the radial direction, thus any error introduced by boundary 

conditions for handling the decomposition is minimized.  Lastly, the radial boundary 

conditions themselves are rather straight forward, as the patch condition between axially 

adjacent H-grids can be easily modified for both the O- and H-grids in the radial 

direction. 

 As previously mentioned, a utility called thsplit was created to handle and 

optimize the decomposition of the grids in the radial direction.  The input deck for thsplit 

requires the following information from the user for each blade row: number of nodes to 
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use for each blade, the splitype, number of radial overlap points to use, and which blade 

to use for calculation of the splitup.  Figure 5-3 illustrates a radial decomposition overlap 

of three points.  While a minimum of two points can theoretically be used, experience has 

shown that three overlap points is optimal, with more overlap points not yielding any 

better convergence.  To accomplish the splitup in an organized fashion, a handful of rules 

are created to control how grids are decomposed in the radial direction.  These rules are 

based on the ideas of keeping the communication between decomposed portions of the 

grid simple and maintaining the best load balancing.  The first rule is that all O- and H-

grids in a row are split along the same radial indexes, keeping communication of the 

overlap/Chimera and radial periodic post iterative updates between single nodes.  This 

rule also implies that if split_type is set to two, the number of nodes per blade must be a 

multiple of two.  For structured grids, load balancing is almost entirely dependent on the 

number of grid points between nodes being as equal as possible.  Thus the second 

decomposition rule is to split the grids in such a manner that the individual portions have 

as close to possible the same number of grid points.  In reality, this can be very difficult 

to accomplish, especially if the O- and H-grids are to be separated.  However, if the grids 

are broken up between a relatively few number of nodes, adding or subtracting a radial 

slice when generating the grids can help balance things, at least in the radial direction.  If 

a clearance grid is present, it is kept with its associated O-grid portion and the O-grid, 

along with the H-grid, can not be split along any radial index where the clearance grid 

resides.  This prevents the massive amount of communication which would be required 

for the continuity condition between the O-grid and clearance grid.  In general, clearance 
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grids significantly reduce the amount of decomposition which can be accomplished while 

obtaining good load balancing. 

 

Figure 5-3. Illustration of three radial overlap points 

 

 The algorithm in thsplit uses these rules as follows.  First the number of 

processors to be used for a blade is checked against split_type.  If split_type is two, then 

the number of processors to be used is checked to make sure it is a multiple of two 

(aborting the run if not) and setting the number of desired blade sections to one half the 

number of processors to be used per blade.  If split_type is one, then the number of 

desired blade sections is simply set to the number of processors per blade.  The number 

of points for both the O-grid, and clearance grid if present, are totaled and the number of 

overlap points between radial sections is multiplied by the number of desired blade 

sections minus one and added to this total, resulting in the total number of grid points.  

This is then divided by the number of desired blade sections to determine the optimal 

number of grid points each section should contain in order to obtain good load balancing.  

However, it rarely works out that the optimal number of grid points correlates to a whole 

number of radial 2D slices.  For such cases, the number of grid points resulting from 
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using a whole numbers of 2D slices is compared to the optimal number of points for a 

blade section.  Whichever number of whole 2D slices comes closest to this value is used.  

Next, the number of points in this section is subtracted from the total number of points 

and the total number of remaining points is divided by the number of desired blade 

sections minus one.  The process then repeats for the remaining number of blade sections.  

To ensure the clearance grid is kept with its associated O-grid and thus satisfy one of the 

decomposition rules mentioned earlier, the decomposition algorithm is carried out 

starting at the shroud and working toward the hub.  If the optimal number of 2D slices for 

the first section is less than that used by the clearance grid, then the first section is 

increased to include the clearance grid.  An example using a clearance grid is now given 

to help illustrate this process. 

 For this example, consider the fourth standard configuration (STCF4) used earlier 

to test the wall functions.  Assume that the H-grid is 161x65x50, the O-grid is 

241x33x50, and a clearance grid of 241x17x5 are used and the number of processors per 

blade is set to ten with split_type set to one (O- and H-grids not separated) and a radial 

overlap of three points.  First the total number of points would be (241 x 33 x 50) + (241 

x 17 x 5) + (3 x (10 – 1) x 241 x 33) = 632,866 points.  It is interesting to note from this 

calculation how many additional grid points are added as ghost points, in this case 241 x 

33 x 9 or a whopping 71,577 points!  Next, this is divided by the desired number of blade 

sections, ten, which results in the optimal block size of 63,286.6 points.  Obviously the 

optimal block size does not result from a whole number of 2D slices.  Since this case also 

includes a tip clearance grid, the first block must include this grid and its associated O-

grid portion.  Quickly calculating the number of grid points involved, 241 x 50 x 5 = 
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60,250 points, the clearance grid and its associate O-grid portion are found to be within 

the block size for this case.  Now to determine the k slice at which to make the first cut, 

the number of points for each additional slice below the clearance grid is added till the 

optimal block size is reached, in this case 241 x 33 = 7,953 points.  Doing this, a cut at k 

of 47 would result in a block size of 60,250 or 3,036.6 points under the optimal block 

size.  A cut at k of 48 however would result in a block size of 68,203 or 4,916.4 points 

over the optimal block size.  Thus the first block is from k of 47 to 51.  The remaining 

total number of grid points is then recalculated as 632,866 – (241 x 33 x 5) – (241 x 17 x 

5) = 572,616 grid points.  Dividing by the remaining nine desired blade sections gives an 

optimal block size of 63,624 points.  Dividing this by the size of each 2D O-grid section, 

63,624 / (241 x 33) = 8, thus the next blade section will contain 8 slices and be from k of 

42 to 49.  The reason the section ends at 49 instead of 47 is because of the three point 

overlap.  Also note that only the number O- and Clearance grid points are used when 

determining the decomposition.  This is because the H-grid, like the O-grid, has the same 

number of points at each radial slice and thus does not change the calculated radial slices.  

Repeating this process, each of the remaining blade sections will contain 8 slices as 

shown in Table 5-2. 



101 

 

Node 

Radial slice 

(k indexes) 

Grid 

types 

Total number 

of grid points 

1 1 – 8 O & H 147,344 

2 6 – 13 O & H 147,344 

3 11 – 18 O & H 147,344 

4 16 – 23 O & H 147,344 

5 21 – 28 O & H 147,344 

6 26 – 33 O & H 147,344 

7 31 – 38 O & H 147,344 

8 36 – 43 O & H 147,344 

9 41 – 48 O & H 147,344 

10 46 – 50 O, H, & 

Clearance 

112,575 

 

Table 5-2. Decomposition indexes of example STCF4 grid domain 

 

 When dealing with multi-blade row configurations, the H-grids between blade 

rows must exchange information along the slip boundary.  Since the number blades 

defining this slip boundary may be different in axially adjacent rows and Thunder uses a 

distributed data model, a communication procedure using sets of master nodes was 

implemented.  This procedure begins with the exchanging of coordinate information at 

the slip boundary between axially adjacent rows.  First, each node sends its portion of the 

slip boundary coordinate information to the master node for the blade (blade master 

node) in that row.  Next, each of these blade master nodes sends its slip boundary 

coordinates to the row master node.  Finally, the row master nodes for axially adjacent 

rows exchange coordinate information.  These coordinates are then stored on the row 

masters for interpolation after each iteration.  A similar process for the flow field 

variables is used for the post iterative update.  Each node sends its flow field variables for 

the adjacent rows slip boundary to the blade master node, the blade master node(s) then 

send this information to the row master node.  The row master nodes then exchange these 
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flow field variables at the slip boundary with each other, from which they interpolate the 

correct flow field values based on circumferential location and periodicity.  Finally, the 

row master node sends the appropriate portions of the interpolated slip boundary values 

to blade master nodes, which then pass the appropriate portions of this information onto 

the individual nodes associated with the same blade.            

 

5.5 Parallel Performance 

 To gauge the performance of Thunder, a single blade row from the Fourth 

Standard Configuration (STCF4) is once again modeled for case 3 of the experimental 

test suite [64].  The grids for this case are 241x33x51 for the O-grid and 161x65x51 for 

the H-grid.  These grid sizes are chosen such that the resulting total number of grid points 

for each grid are relatively close, helping obtain reasonable load balancing.  Before 

investigating the parallel scalability of Thunder, a comparison to Corsair is performed 

using two nodes (one for the O-grid and the other for the H-grid) with identical grids and 

input decks.  For this comparison, both codes were compiled using the Intel compilers 

with optimization level 3.  Thunder is set for double precision (15 digits) and Corsair 

compiled with the –r8 flag, thus building it with 15 digits of precision as well.  Both 

simulations are run at first order spatial accuracy with single Netwon sub-iterations for 

32000 iterations, which allowed for a relatively converged steady state solution.  The 

runtime and nodal memory usage for each are shown in Table 5-3. 
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 Corsair Thunder 

Total Runtime 39.61 hours 30.57 hours 

Nodal memory footprint 

node 1 (node 2) 

712048 KB 

(698128 KB) 

354700 KB 

(285396 KB) 

 

Table 5-3. Runtime and memory usage comparison between Thunder and Corsair 

 

In Table 5-3, the nodal memory footprint is obtained by using the pmap command on 

each node for the process ID of the executable, thus these values are for all memory 

being utilized on a node including shared libraries.  The results demonstrate that Thunder 

is ~23% faster than Corsair and is able to distribute the memory requirements for the 

problem domain between the two nodes, thus reducing the nodal memory footprint by 

roughly one half.  The increase in speed can be contributed to different factors.  First, 

Thunder has fewer memory operations than Corsair, which uses a vector storage model 

with temporary multi-dimensional arrays.  On modern PC platforms, memory operations 

(copying data back and forth between arrays, especially out of order) can be very time 

consuming, with a single memory operation being equal to four floating point operations 

[72].  In addition, loops in Thunder have been optimized by keeping them in column 

majored order, which is not always the case in Corsair.  Lastly, because Thunder uses a 

distributed memory layout, the amount of communication after each iteration is limited to 

only ghost points, compared with Corsair’s need to communicate the entire problem 

domain after each iteration.  When comparing the final solutions between Corsair and 

Thunder, the maximum difference in RMS residuals for the five flow variables is 4.01E-

13.  For reference, the largest RMS residual is 1.33E-10. 

 Before demonstrating the parallel performance of Thunder, a brief discussion 

regarding the theoretical capability of the decomposition method used is presented.  It is 
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safe to assume that the serial run time per iteration in Thunder is on the order of the 

number of grid points used: 

{ }))()(( KMJMIMTS Θ=  (5-1) 

where IM, JM, and KM represent the number of points in each of the three directions.  

For the parallel run time, an assumption is made that the number of grid points can be 

equally divided by the number of processors assigned to that grid, thus resulting in 

sections of equal size or number of grid points.  For the radial decomposition method 

chosen for this research, the ability to accomplish this is based on a combination of the 

original grid size, the number of overlap points, and the number of sections desired.  As 

previously discussed, the number of overlap points is usually kept to three to obtain good 

convergence, leaving the grid size and number of desired sections as the two variables 

one may manipulate in order to obtain equally sized sections of the grid.  Even when a tip 

clearance grid is introduced into this calculation, adding or subtracting one or two radial 

slices from the total number of grids is enough to obtain relatively equal sized grid 

sections.  Using this radial decomposition entails the communication of (IM)(JM) 

solution vectors, each containing 5 flow variables at the overlap region, resulting in 

5(IM)(JM) values.  Thus the parallel run time in order of complexity can be approximated 

as: 
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(5-2) 

In Equation 5-2, ovlp is the number of overlap points, P is the number of processors.  

Although documentation for the Dlink switches used in the Taylor cluster is very brief, it 

does refer to using a spanning tree, which is a method of performing cut through routing.  
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Thus in the order of complexity for the parallel run time given in Equation 5-2, 

communication complexity for a cut through routing of m+l is used, where m is the 

message size and l is the number of links or jumps between processors [73].  The number 

of messages passed is set to 4, since the center blade/grid sections will need to exchange 

information at the overlap boundary with both the section below and above.  For the 

Taylor cluster network configuration, the number of links between processors is 2 when 

the processors communicating are on the same rack, but 4 when the processors are on 

different racks.  While it is obviously desirable to have all processors used in a parallel 

run on the same rack and thus l equal to 2, this can not be guaranteed do to the first 

available assignment method used by the queue system on the Taylor cluster.  Using the 

standard definitions [73], speedup and efficiency in orders of complexity are given as: 
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 (5-3) 

 

 

 

 

(5-4) 

By defining the amount of work done, W, as the serial run time, the overhead time 

(difference between parallel and serial runtimes) can be defined in terms of W and the 
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number of processors, P.  Additionally, the overhead time can be split into extra 

calculations and communication required for the radial decomposition: 
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Using this, the parallel efficiency [61] can be rewritten in terms of work and number of 

processors: 
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(5-6) 

 

 

 

 

(5-7) 

Equations 5-7 give the isoefficiency in terms of overlap points, number of processors, 

and total number of 2D slices for both the extra calculations and communications.  These 

isoefficiencies dictate how large the original problem domain must grow with added 

processors to maintain a given parallel efficiency.  From this it can be seen that the 

driving factor for both extra calculations and communications is the number of radial 2D 

slices, KM.   

The preceding discussion and equation development is for a split_type of one, 

where both the O- and H-grids are on the same processor.  For a split_type of two, where 

the O- and H-grids are on separate processors, a similar model can be derived.  First, the 
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difference in the O- and H-grid sizes must be accounted for.  In practical use, the O-grid 

is generally larger than the H-grid, so for simplicity W is taken as the number of O-grid 

points and the serial run time is redefined using a multiplier G, which is one plus the ratio 

of H-grid to O-grid points.  It is also important to note that the number of radial slices, 

KM, for the O- and H-grids is always the same due to the way these grids are defined and 

generated.  With this assumption, the orders of complexity for the parallel and serial run 

times with split_type of two are derived as: 

{ }

( )

( )( )

( )








+
−+

+Θ+







 −

+Θ=













+
−+

+







+Θ+
















−+

Θ=

⋅Θ=

l
P

chmpPovlpKM

KM

W

PKM

PWovlp

P

W

l
P

chmpPovlpKM
l

KM

W

P

Povlp
KM

WW

T

WGT

P

S

6
)2(5

)(2

)2(

2

2

1
2

2
54

2

1
222

 

(5-8) 

 

(5-9) 

Where chmp is the total number of Chimera points (both O- and H-grid) per 2D radial 

slice.  The speedup and efficiency are: 
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and the overhead time becomes: 
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Finally, the isoefficiencies are: 
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 The parallel scalability of Thunder on the Taylor cluster is investigated next using 

the same grids and input deck as for the comparison with Corsair, but with different 

split_types and numbers of processors per blade.  To gauge load balancing and the ratio 

of communication to calculation, Thunder is profiled using calls to cpu_time.  The 

cpu_time call returns the elapsed time in seconds since the beginning of code execution.  

To gauge load balancing, the time before and after calls to mpi_barrier differenced and 

totaled together as MPI wait time.  Similarly, time spent for communications is obtained 

by differencing cpu_time calls before and after mpi_send, mpi_recv, mpi_sendrecv, and 

mpi_bcast calls.  Since these are blocking calls and only the actual communication time 

is desired, mpi_barrier calls inserted before each of these and the time before and after 

each of these mpi_barrier calls differenced and added to the MPI wait time total.  Lastly, 

calculation time obtained by differencing cpu_time calls before and after the main portion 

of the code, then subtracting MPI wait and communication times.  It is important to note 

time spent on initialization at the beginning of the code and freeing memory at the end of 

the code are not included in this timing.  In order to plot these values against one another, 

the MPI wait, MPI communication, and calculation times averaged among the nodes used 

for the parallel simulation.  For the serial runtime required in calculating speedup, 
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Thunder was run on a single node with both number of processors and split_type set to 

one. 

 Tables 5-4 and 5-5 lists the ratio of total number of ghost points to original 

problem domain, raw run times in seconds, speedup, parallel efficiency, and the 

maximum nodal memory footprint for several number of processors with split_type of 

one and two respectively.  Runs with more than 10 processors for split_type of one, and 

20 for splity_type of two, were not performed since the number of ghost points for such 

cases is more than half the number of points in the original problem domain. 

 

P KM

ptsghost .
 

Twait 

(sec) 

Tcomm 

(sec) 

Tcalc 

(sec) 

Ttotal 

(sec) 

 

S 

 

E (%) 

NMFmax 

(MB) 

1 0 0.0 0.0 213710.1 213710.1 1.00 100.00 528.3 

2 0.06 101.3 8120.5 110285.3 118507.1 1.80 90.17 298.7 

3 0.12 184.1 4259.4 75166.8 79610.4 2.68 89.48 231.8 

4 0.18 347.1 5561.8 58395.9 64304.8 3.32 83.08 199.3 

5 0.24 1705.0 6119.0 48691.0 56515.0 3.78 75.63 181.4 

6 0.29 1219.6 6555.2 42343.3 50118.2 4.26 71.07 164.7 

7 0.35 2007.0 6400.0 37654.2 46061.3 4.64 66.28 156.5 

8 0.41 1044.6 7495.9 34814.1 43354.7 4.93 61.62 153.2 

9 0.47 2818.0 9206.5 31592.7 43617.4 4.90 54.44 148.1 

10 0.53 2257.5 9098.3 29349.3 40705.1 5.25 52.50 139.9 

 
Table 5-4. Parallel performance for split_type of one 

 

 

P KM

ptsghost .
 

Twait 

(sec) 

Tcomm 

(sec) 

Tcalc 

(sec) 

Ttotal 

(sec) 

 

S 

 

E (%) 

NMFmax 

(MB) 

2 0 3081.0 170.3 106803.0 110054.3 1.94 97.09 354.7 

4 0.06 1881.7 4102.3 55338.0 61322.0 3.49 87.13 267.3 

6 0.12 1412.8 2278.4 37816.8 41508.0 5.15 85.81 177.8 

8 0.18 1740.4 2906.1 29211.9 33858.4 6.31 78.90 162.1 

10 0.24 3242.3 3008.9 24303.3 30554.5 6.99 69.94 144.8 

12 0.29 2886.0 3568.8 21204.5 27659.3 7.73 64.39 136.7 

14 0.35 3497.0 3622.7 18886.4 26006.1 8.22 58.70 128.4 

16 0.41 2858.8 4056.4 17462.7 24377.9 8.77 54.79 125.8 

18 0.47 4825.9 4609.8 15882.3 25318.0 8.44 46.89 123.0 

20 0.53 4121.8 4908.3 14726.1 23756.2 9.00 44.98 117.5 

 
Table 5-5. Parallel performance for split_type of two 
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Figure 5-4. Speedup performance 

 
Figure 5-5. Parallel efficiency 
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 Figure 5-4 shows the parallel speedup of Thunder for the test case used with 

various numbers of processors.  From this plot, it is evident that a split_type of two gives 

nearly double the performance as a split_type of one with increased numbers of 

processors.  This is not surprising, as splitting the O- and H-grids up onto separate 

processors does not incur any extra cost of calculations for ghost points.  In addition, this 

case was chosen such that the O- and H-grids were of relatively the same size.  For cases 

when the grids are very different sizes, uneven load balancing between processors 

handling O- versus H-grids would cause a significant drop in the scalability of split_type 

two.  This can also be seen from the equations for speedup developed earlier, i.e. when G 

becomes much larger than two.  In comparison, a split_type of one is not affected by this 

and thus the reason for implementing it in Thunder.  Figure 5-4 also shows that the radial 

decomposition method chosen is capable of maintaining relatively good parallel 

scalability for breaking a blade into four radial sections.  From Table 5-4, this correlates 

to a ratio between total ghost points added and the original problem domain of roughly 

20%.  Beyond this 20% ratio, parallel scalability starts to significantly deviate from linear 

speedup for both split_types.  Lastly, a slight dip in the speedup curves for the case of 9 

blade sections can be seen in Figure 5-4.  This occurs for both split_types and is the result 

of uneven radial blade sections, i.e. (51 + 8*3)/9 = 75/9 ~8.33.  Figure 5-5 gives the 

percent parallel efficiency of Thunder for the chosen test case and various numbers of 

processors.  As with parallel scalability, the same sort of observations between 

split_types can be seen.  It is interesting to note though that for the same number of radial 

blade sections, a split_type of one gives slightly better parallel efficiency, especially 

when comparing the last data point for each, which correlates to ten radial sections.  
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Figure 5-6. Average idle times 

 
Figure 5-7. Calculation to communication times 
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Figure 5-8. Maximum nodal memory footprint 

 

 Figure 5-6 shows the average wait time in seconds per number of processors for 

both split_types.  This wait or idle time is a good indicator of the load balancing between 

nodes.  Note that for a split_type of one, the wait time jumps for 5, 7, and 9 processors.  

These data points correlate to cases where the number of radial slices per blade section is 

not equal.  The same can be seen for a split_type of two, i.e. 10, 14, and 18 processors.  

In addition, the curve for a split_type of two gives an indication of load imbalance 

between the O- and H-grids, even when the number of radial blade slices is equal such as 

the data point for two processors. 

 Figure 5-7 illustrates the ratio of calculation to communication time per number 

of processors.  From these curves, it is easily seen that as more processors are added and 

the number of radial slices solved on each processor goes, the amount of time spent on 
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communication remains relatively constant.  In addition, the curve for a split_type of two 

clearly shows that the radial decomposition method chosen has a relatively large 

overhead, resulting from the exchange of flow variables at the ghost points.  As before, 

splitting the O- and H-grids onto separate processors increases the ratio of calculation to 

communication time.  Once again, this is not surprising since a split_type of two takes 

advantage of dividing the calculation of these two grid portions while not incurring the 

extra communication overhead at ghost points.  Finally, both curves show that the ratio of 

calculation to communication time asymptotically approach a constant, where the number 

of 2D radial slices and load misbalancing begin to offset the communication time which 

is fairly constant regardless the number of processors used. 

 Figure 5-8 demonstrates that the goal of reducing the nodal memory footprint has 

been achieved.  As with the other plots, the improvements are limited to a small number 

of processors or blade sections, in this case six blade sections which correlates to six and 

twelve processors for split_types of one and two respectively.  Again, the curves 

asymptotically approach a constant, in this case roughly 128 MB, with an increase in the 

number of processors. 

 At first glance, the results of this investigation point to limited improvements 

from the implemented radial decomposition.  However, the case used for this 

investigation was for a single blade with relatively equal sized O- and H-grid 

components.  In normal use, multiple blades and blade rows would be simulated for 

which the radial decomposition method could be used for each blade in each blade row.  

Thus the performance gauged from this investigation, even for a limited number of 

processors, should be scalable to larger problems.  Additionally, the reduction in nodal 
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memory footprint allows for these larger problems to be solved on the same cluster, 

which previous to this redesign, could not be used to solve problems of such sizes.  The 

reason such a larger problem was not used in this investigation of the parallel 

performance was simply due to computational resources, both in time and number of 

nodes required for each run.  Still, the cylinder case used to test the Fluid Structure 

Interaction model makes use of a significantly larger problem domain, with larger grids 

and even three blade rows. 

 In conclusion, reductions in simulation runtime were achieved through a 

combination of code restructuring/rewriting and the addition of domain decomposition.  

The restructuring/rewriting of code resulted in an instant 23% overall performance gain.  

While the implemented domain decomposition provides an additional level of 

parallelism, its parallel performance substantially decreases when the ratio of ghost points 

(required for the decomposition) to original domain size exceeds 20%.  In addition, the 

restructuring of the code, combined with the added domain decomposition, demonstrated 

a tremendous reduction in the nodal memory footprint, allowing for much larger problem 

domains to be solved on the same computer cluster system given enough nodes are 

available.   
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6. FLUID STRUCTURE INTERACTION MODULE 

 

 In this chapter, the Fluid Structure Interaction (FSI) module used in the developed 

of the aeroelastic solver is discussed.  Details on the generation of the structural model, 

mapping between the fluid and structural grids, transfer of displacements and loads 

between fluid and structural models, flow of information, and time stepping are covered.  

In addition, differences of indexing and grid topology between the FSI module and 

Thunder/Corsair are given, including the conversion utilities to handle these issues.    

The unsteady aeroelastic solver developed in this research is based on the idea of 

loosely coupling Thunder to a Computational Structural Dynamics (CSD) model.  In 

order to keep this coupling as flexible as possible, a general FSI module [36] developed 

for the United States Air Force is used.  The main purpose of this general FSI module is 

to transfer information between Thunder and the CSD model along the wetted-surface of 

the blade.  While this may sound trivial at first, it is far from the case.  Primary difficulty 

lies in the fundamental differences between CFD and CSD methods, namely grid 

topography and time stepping. 

 

6.1 Structural Model Generation 

 Generation of the structural model for use with the developed aerelastic solver in 

this research begins with generation of the structural grid or mesh.  To generate this 

mesh, the open source 3D finite element mesh generator gmsh [74] is utilized.  The FSI 
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module [36] includes scripts for running gmsh in batch mode, while still allowing user 

control over mesh quality and density.  One of the inputs required by these scripts is 

obviously a set of coordinates to describe the structure.  For simplicity, these coordinates 

are taken from the O-grid, specifically those making up the surface of the structure to be 

modeled.  A utility called thunder_FSI_prep, which also handles numerous conversions 

and will be discussed later in this chapter, performs extraction of these coordinates into a 

file used by the gmsh batch scripts.  The resulting mesh is then used along with another 

FSI module script to generate an Ansys Parametric Design Language or apdl file.  

Structural parameters including Young’s modulus, density, Poisson’s ratio, and boundary 

conditions along with the list of wetted surface nodes are set using this apdl file.  Finally, 

this apdl file is converted into a structural model using Ansys
®
, producing database and 

surface files.   

 

6.2 Mapping 

The methodology used in the general FSI module follows closely to that discussed 

by Farhat [75].  To begin this method, the fluid/structure interface boundary (also termed 

the wet surface) is denoted as Γ and the following two boundary conditions are imposed: 

npnn Fs ⋅+−=⋅ σσ   (6-1) 

Fs δδ =  (6-2) 

where, δ is displacement,  p is pressure, n is the normal vector, σ is the stress tensor, and 

the subscripts S and F denote the structural and fluid models respectively.  Equation 6-1 

states that the tractions on the wet surface of the structure are in equilibrium with those 

on the fluid side of Γ, thus the conservation of load transfer.  Equation 6-2 expresses the 
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compatibility between the displacement fields of the structure and the fluid at the 

fluid/structure interface, or simply the conservation of the deformation transfer.  In 

addition, the structural and deforming fluid mesh motions are also coupled by the 

following continuity conditions imposed at Γ: 

Sx δ=   (6-3) 

tt

x s

∂

∂
=

∂

∂ δ
 

(6-4) 

where x denotes a fluid grid point location and t is time.  It should be noted that the 

formulation presented here is tailored for aeroelastic simulations.  However, it also covers 

hydroelastic and structural acoustics vibrations along with a large class of linear and non-

linear fluid/structure interaction problems.  It is also assumed that the CSD model is 

based on Finite Element Analysis (FEA), since this approximation method has dominated 

the field of CSD since 1975.  Conversely, no such assumptions are made about the CFD 

model. 

 Enforcing these conditions requires that a mapping be performed between the 

fluid grid and the structural grid at the wetted surface Γ.  For this mapping, each fluid 

grid point or node is associated with one and only one structural element for the 

displacement transfer, and each structural element is associated with one or more fluid 

nodes for the load transfer.  In the FSI module, this mapping is achieved in three passes 

[36].  In the first pass, an alternating digital tree search [76] is performed to locate all 

fluid nodes at the wetted surface that are near a given structural element.  This search is 

fast, operating with an order of M log2M time, where M is the total number of fluid nodes 

at the wetted surface.  A second pass comprises a point-in-polygon test which eliminates 

false positives (i.e. fluid nodes that are near the element but not near enough to fall within 
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specified geometric tolerances).  Finally, a third pass is made to resolve any degenerate 

cases of a fluid node associated with more than one structural element (produced by 

concavity of the structure) or associated with no structural elements (produced by 

convexity of the structure).  Figure 6-1 illustrates an example interface between a fluid 

grid and a structural grid.  In this example, the first pass associates fluid nodes B and C 

with the structural element bounded by the large volume.  The second pass retains only 

fluid node B with the structural element bounded by the small shaded volume.  Structural 

concavity and convexity, which produce multi- and zero associations which are resolved 

in the third pass, are illustrated in right portion of Figure 6-1.  This mapping is a 

preprocessing operation which is performed only once for a given set of structural and 

fluid meshes.  

A 

B 

 C 

 D Fluid Grid 

Structural Grid 

x 

  y 

Structural Concavity 

Structural Convexity 

 
Figure 6-1. Example mapping at the interface 

 

6.3 Displacement and Load Transfer 

 One means of enforcing the boundary condition in Equation 6-1 exactly is to 

compute the tractions on both sides of the fluid/structure interface using the same 

discretization method and mesh.  For this research, the assumption is made that the fluid 
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grid is finer than the structure mesh along the fluid/structure interface.  Hence, the surface 

forces and moments induced by the fluid on the structure are calculated using the 

discretization method of the fluid and the geometrical support ( )SF ΓΓ .  This strategy 

guarantees that the momentum of all loads acting on the fluid/structure interface will 

always be equal to zero.  In order to ensure that the total energy of these interface loads 

will also be equal to zero at all time steps, the following method is used to evaluate the 

forces and moments induced by the fluid on the structure. 

Let Fδ̂  and Sδ̂ denote a fluid and structure admissible virtual displacement field 

respectively.  In this case, admissible means that the traces of Fδ̂  and Sδ̂  on the 

fluid/structure interface are equal at the fluid/structure interface boundary.  Regardless of 

the approximation method chosen for enforcing compatibility on the fluid/structure 

interface boundary between the virtual or real displacement fields of the fluid and the 

structure, the outcome can be formulated: 

SFSi

ii
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jiFj ijc
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(6-5) 

where Fjδ̂  is the discrete value of Fδ̂  at the fluid point j, Siδ̂  is the discrete value of Sδ̂  at 

the structure node i, and iS and cji are constants that depend on the chosen method of 

approximation.  Now consider a virtual displacement field Fδ̂  that is zero on each degree 

of freedom in the flow domain except those on the boundary ΓF.  Regardless of the 

discretization method used for solving the flow problem, Fδ̂  can be expressed as: 
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where Dj is a function with a local or global support on ΓF.  The virtual work on the fluid 

tractions acting on ΓF can then be written as: 
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where Fj has the physical meaning of a numerical pressure flux or nodal fluid force and is 

given by: 
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Substituting Equation 6-5 into Equation 6-7 leads to: 
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Noting that the virtual work of the finite element structure forces and moments acting on 

ΓS can be written as: 
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and that the energy is conserved at the fluid/structure interface if δW
F 

= δW
S
, the 

following is obtained: 
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Notice that the expression for fi in the above equation does not depend on the 

discretization method of the structure.  The term in the first bracket of Equation 6-11 

depends exclusively on the discretization method of the flow solver, and the term in the 

second bracket depends only on the approximation method selected for enforcing the 

compatibility of Γ between the displacement fields of the fluid and the structure. 
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 A natural but not necessarily mathematically optimal approximation method for 

enforcing Equation 6-2 is a consistent finite element based interpolation method.  It’s 

natural since the structural problem is assumed to be solved using a FEA model, and 

therefore the structural displacement field e

Sδ  inside the wet region of an element e is 

given by: 

∑
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=

=
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Sii

e

S N
1

δδ   
(6-12) 

where ie denotes the total number of wet nodes belonging to element e, and Ni is the finite 

element shape function associated with node i of element e.  Hence, in the presence of 

fluid and structure meshes with non-matching discrete interfaces, Equation 6-2 can be 

discretized by; 

1. Pairing each fluid grid point Sj on ΓF with the closest wet structural element S

e

S Γ∈Ω . 

2. Determining the natural coordinates Xj in e

SΩ  of the fluid point Sj.  

3. Interpolating δF inside e

SΩ using the same shape functions Ni as in Equation 6-10, 

obtaining: 
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From Equations 6-5 and 6-13, it follows that for a finite element approximation of the 

fluid/structure displacement compatibility conditions, cji = Ni(Xj) and therefore: 
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(6-14) 

 In the FSI module the fluid stress tensor is integrated using Gauss quadrature to 

determine the aero loading at a given fluid node [36].  Bilinear shape functions from 
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finite element theory are used to evaluate the stress tensor at the Gauss points using a 

choice of either full or reduced integration [77].  The lower left portion of Figure 6-2 

depicts nine fluid nodes (solid circles) which form four fluid cells (large squares) at the 

interface.  In this example, the area of integration for the center node is shown bounded 

by dotted lines and is formed from four quadrilateral facets.  The quadrilateral facets are 

formed from vertices located at the fluid cell face centroids, cell wall midpoints, and the 

fluid node of interest.  By doing this, quadrilateral facets are formed independent of the 

polygon shape that forms the fluid cell face, permitting a single algorithm to be utilized 

independent of the fluid cell shape.  To the upper right of Figure 6-2 is an enlargement of 

the upper right facet, shown with four Gauss integration points (crosses). 

 

 

Figure 6-2. Area for Gauss quadrature 

 

 As discussed earlier, the loading of the interface fluid nodes is conservatively 

transferred across the interface to the structural nodes on the interface using shape 

functions.  The FSI module employs 2-D, isoparametric shape functions based on the 

polygon shape of the structural element face at the interface [36].  Figure 6-3 illustrates 
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this transfer from the fluid grid to the structural grid, where the fluid and structural nodal 

force vectors are F and f, respectively and is governed by Equation 6-14. 

 

 

f1 f2 

F1 F2 F3 

x 

Info. 

 

Figure 6-3. Conservative transfer of forces 

 

The same shape functions are again used in the FSI module to transfer the 

computed displacements of the structural nodes lying on the interface across to the fluid 

nodes lying on the interface.  The interpolation process is illustrated in Figure 6-4, where 

fluid and structural node displacement vectors δF and δS respectively.  

 

δS1 δS2 

δF1 
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Info. 

δF2 δF2 

 

Figure 6-4. Interpolative transfer of displacements 

 

 An algebraic method for structural fluid grids is used in the FSI module to project 

the interface displacements smoothly into the interior of the fluid grid, deforming it so as 

to maintain the original grid quality, yet body-fitted to the new blade position [78].  

Anchor points are defined a specified distance away from the blade.  The locus of anchor 
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points forms a closed surface within which the mesh deforms.  The upper portion of 

Figure 6-5 depicts the locus of anchor points forming a rectangular boundary around a 

deforming blade shown in two positions.  The method operates on lines of constant 

computational coordinate, beginning with the point touching the blade (cross-hatched) 

and ending at the anchor point.  The method steps are schematically presented in the 

lower portion of Figure 6-5.  The blade displacement is applied to all points on the line, 

translating the mesh line from (1) to (2).  An arc length based Hermite function blends 

lines (1) and (2), forming the final mesh line (3). 

 

Figure 6-5. Algebraic deformation of fluid grid points 

 

(1)
(2)

(3)
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Figure 6-6. Illustration of anchor points in O-grid topography 

 

Figure 6-6 illustrates these anchor points in terms of the O-grid topography used in 

Corsair/ Thunder.  For this overlaid grid topography, the H-grid is held rigid along with 

the outer-most ring.  The remaining O-grid points are then deformed by the FSI module 

as just described.  

To reduce possible fluid grid shearing, the method was modified for applications 

in the blade tip region such that the anchor point is changed to a sliding point that is free 

to move along the shroud surface.  This is accomplished by spline fitting the hub or case 

wall in the meridional space and projecting the displacement along the local unit tangent 

vector of the wall, then moving the sliding point arc length distance equal to the projected 

displacement. Sliding in the circumferential direction is handled similarly in azimuthal 

space. 

 

= Anchor Points

O-grid

H-grid
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6.4 Information Flow and Time Stepping 

Now that a method has been developed for how to exchange information across 

the fluid/structure boundary, a method must now be developed for when to exchange this 

information.  In many situations, the actual time-step sizes of the fluid and structure are 

quite different.  The result is that many fluid time steps may need to be performed for 

each solid time step or vice versa.  For such cases, the best approach is to use an implicit 

coupling with a time-staggered algorithm.  A conventional serial time-staggered 

algorithm is shown in Figure 6-7 below, where Q  is the flow solution and the arrows 

indicate the direction of information travel and time stepping: 

Fluid 

Structure 

� 

� 

� 

� 
   Pn+1

 

nQ  
1+n

Q  

1+n

S
δ  

n

Sδ  

 

 

1−= n

S

n

F δδ  

n

S

n

F δδ =+1  

Figure 6-7. Conventional serial time-staggered algorithm 

 

This scheme is attractive due to its simplicity.  However, the scheme in Figure 6-7 

is only first order time accurate, even when the underlying flow and structural solvers are 

second order time accurate.  An equally important difficulty arises if the fluid solver uses 

the Geometric Conservation Law (GCL) to deal with moving grids, which Corsair / 

Thunder does.  A sufficient condition for the GCL to be mathematically consistent is that 

it must exactly predict a uniform flow.  It has been shown that for first and second order 

time accurate methods, the velocity of the deforming fluid mesh must be computed as 

follows in order to satisfy the CGL [44,79,80]. 
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The semi-discrete equations describing the motion of the structure are usually 

solved by a second order time accurate scheme in FEA models, where: 
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It follows that if a basic partitioned procedure satisfies the GCL and the first of the 

continuity conditions (Equation 6-3), then it violates the second continuity condition 

(Equation 6-4) at the interface Γ.  If x = δs is enforced at the fluid/structure interface and 

the velocity of deforming fluid mesh at the interface boundary Γ is computed using 

Equation 6-15, then the following holds at the interface Γ if the structural equations of 

motion are time integrated by a second order scheme: 
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 In particular, when the conventional serial time-staggered algorithm of Figure 6-7 is used 

with Equation 6-15 in order to satisfy the GCL and with a second order structural time 

integrator, it violates the continuity of the velocity field across the fluid/structure 

interface Γ.  Thus, under such conditions the algorithm in Figure 6-7 introduces an error 

in the prediction of the exchange of kinetic energy between the fluid and the structure on 

the boundary Γ. 

 To overcome some of this error, the FSI module makes use of sub-iterations to 

improve the synchronization between the fluid and structural grids [36], thus increasing 

accuracy at each time step.  The number of sub-iterations is specified by the user in the 

input decks and in reference to Figure 6-7, would loop through the cycle 1-2-3.  In 

addition, this error is centered about the time step used, thus the smaller the time step, the 
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smaller the error.  For the FSI module, the time step used for both Thunder and Ansys
®
 is 

the same.  Since Thunder requires a much smaller time step than Ansys
®
 for 

convergence, mostly due to the finer grid density, this error is kept to a minimum. 

The flow of information in the general FSI module is shown in Figure 6-8, where 

the completion of one cycle can occur once or several times per time step depending on 

the degree of coupling specified in the input decks [36].  In Figure 6-8, blue sections 

indicate fluid solver tasks (Thunder), red sections indicate tasks performed by structural 

solver (Ansys
®
), and the green sections indicate operations by the FSI module.  The flow 

of information begins with the fluid solver, which provides the fluid stress tensor that is 

integrated over the wetted surface by the FSI module to yield the instantaneous aero load 

acting on the structure.  The structural solver then converges based on these boundary 

conditions to produce the resulting structural displacements.  These displacements at the 

wetted surface are then projected into the fluid mesh, thereby smoothly deforming it.  The 

fluid solver then recalculates the metrics and Jacobian for the deformed grid and is run to 

convergence, thus completing one cycle.   
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Figure 6-8. Flow of information in FSI module 

 

 The FSI module manages the flow of information between Thunder and Ansys
®

 

through the use of an internet domain, connection-oriented, server/client socket as shown 

in Figure 6-9.  For the implementation in Thunder, a separate processor (green) is used to 

establish this socket with the master processor running Ansys
®
.  This separate processor 

serves as a common point for collecting the stress tensors from the numerous processors 

used by Thunder.  Additionally, this processor handles the conversion of the deformed 

sheared H-grid into O- and clearance grids and distributes them to the appropriate 

processors used by Thunder.  In Figure 6-9, Ansys
®
 is shown running on multiple 

processors and although Ansys
®
 does have this capability, it will not be utilized for this 

research due to the limit of computational resources.  In addition, since the fluid grids 

used by Thunder are much finer than the structural grids used by Ansys
®
, the vast 

majority of computational time is spent by Thunder and thus extra available processors 

are better utilized by Thunder than Ansys
®
. 
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Figure 6-9. Socket communication 

 

6.5 Conversion of O-grids to Sheared H-grids 

 The FSI module was specifically designed to work with the CFD solver Turbo 

[81].  There are several differences between the grid topography used by Thunder and 

that used Turbo (see Figure 6-10).  For starters, Turbo uses sheared H-grids while 

Thunder uses an overlaid O- and H-grid topography.  Second, the grids in Thunder are 

centered about the blades while in Turbo, they are centered about the passage between 

blades.  In order to use the FSI module, an algorithm was developed to morph the blade 

centered O-grids from Thunder into passage based sheared H-grids and vice versa.  This 

algorithm also takes into account the associated deformation of the clearance grid, if 

present, based on the inner O-grid deformation.  The major issue in handling the 

clearance grid is that for a sheared H-grid, the number of points in the circumferential 

direction is the same regardless of a tip clearance.  However in Thunder, the clearance 

grid adds a substantial number of points or rings in the circumferential direction.  In 

addition, the FSI module also makes extensive use of GU files from Turbo, which contain 
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information about the grids and their decomposition.  Thus a utility was developed to 

create these GU files, along with files to help in generation of the structural grid via 

gmesh and weighted distances to handle recreation of the clearance grid.  Lastly, Turbo 

uses a somewhat different grid index, where j and k have been flipped when compared 

with Thunder.  This too is handled by the utility program, called thunder_FSI_prep. 
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Figure 6-10. Turbo sheared H-grid topography 

 

 Conversion of the O-grids begins with grid generation.  To ensure that the O-grid 

can be split into an upper and lower passage section, each with an equal number of grid 

points, the O-grid must initially be generated with an odd number of circumferential 

points.  The reason for this is because the first and last grid points in the circumferential 

direction (around the blade surface) overlap.  Since the clearance grid, if present, is 

generated using this same number of circumferential points, no special attention to its 

size is required at this stage.  Next, thunder_FSI_prep is used to transform the O-grids 

into primitive sheared passage H-grids by splitting them about their leading and trailing 

edge points.  The leading edge of the blade is first calculated based on the minimum axial 
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value.  If desired though, the index of the leading edge point can be entered in the input 

deck to thunder_FSI_prep, otherwise it is calculated automatically as just described.  The 

trailing edge is then calculated to be half the circumferential points away from the leading 

edge.  While this trailing edge point is often somewhat off from the real trailing edge due 

to differences in the number of points on the top and bottom of the airfoil surface as a 

result of clustering, it does meet the requirement for splitting the O-grid up evenly.  

Finally, the last upper half is rotated down by the period of blade passages being 

modeled, as illustrated in Figure 6-11.     
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Figure 6-11. Conversion from O- to sheared H-grids 

 

 When a clearance grid is present, a simple modification is required to the previous 

method.  The inner most O-grid “ring” is replaced with the points from the collapsed 

centerline of the clearance grid for radial slices where the tip clearance exists.  In 

addition, an auxiliary file is created with the weighted distances from the collapsed 
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centerline of the clearance grid to the next to inner most O-grid ring.  This is used during 

the simulation to recreate the clearance grid from the deformed sheared H-grid. 

 In Thunder, the sheared H-grids are read from file at the start of an FSI run and 

held in memory after each call to and from the FSI module, while the O-grids, and 

clearance grids if present, are regenerated from the sheared H-grids.  A check to make 

sure the grids are not being folded on top of one another is also made after each “re-

generation” of the O- and clearance grids is performed.  This is done by checking the 

Jacobians, which must be recalculated anyway, to see if any are negative.  A negative 

Jacobian indicates the grid has become folded on top of itself and the execution of 

Thunder is thus aborted after dumping appropriate debugging information to the output 

decks.  The subroutines in Thunder for conversion to sheared H-grids is called mutate, 

while conversion back to O- and clearance grids is called purify.  

In this chapter, the Fluid Structure Interaction (FSI) module used in the developed 

of the aeroelastic solver was discussed.  Details on the generation of the structural model, 

mapping between the fluid and structural grids, transfer of displacements and loads 

between fluid and structural models, flow of information, and time stepping were 

covered.  In addition, differences of indexing and grid topology between the FSI module 

and Thunder/Corsair were given, including conversion utilities to handle these issues.    
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7. RESULTS 

 

 To test the aeroelastic solver developed in this research, two simplified 

geometries are used.  The well understood case of a flexible cylinder is cross flow is 

studied.  However, before performing the full FSI simulation of the flexible cylinder, a 

rigid cylinder is first simulated to ensure the flow solver Thunder is capable of accurately 

predicting the periodic shedding of wakes, also known as Von Karman streets, which are 

known to exist for such a configuration [51].  Once the correct wake shedding frequency 

for the rigid cylinder has been achieved, the FSI module is turned on with the resonate 

frequency of the cylinder set to the alternating wake shedding frequency.  This results in 

the self excited aeroelastic behavior of a flexible cylinder in cross flow being obtained.  

By achieving a self excited and stable oscillation, the exchange of energy between the 

fluid and structure is demonstrated and thus the validity of the aeroelastic solver.  

Another test case studied in this chapter involves the response of a fourth standard 

configuration turbine blade to a step function impulse from zero loading to the converged 

flow solution loading.  This results in the excitation of the major vibrational modes of the 

turbine blade, which are then compared to those obtained from an in vacuo solution using 

Ansys
®
.  
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7.1 Rigid Cylinder   

The simulation of a circular cylinder in cross flow is fundamental in the study of 

both CFD and aeroelasticity [51].  In cross flow of the appropriate Reynolds number, a 

circular cylinder will shed alternating swirling vortexes in a periodic fashion.  This 

phenomenon is known as the Von Karman vortex streets and is responsible for such 

things as the singing of suspended power cables (know as galloping flutter) and even the 

failure of the Tacoma Narrows Bridge [82].  The periodic shedding of swirling vortexes 

induces alternating forces on the cylinder, resulting in Vortex Induced Vibration (VIV).  

For a flexible cylinder, VIV will cause the cylinder to oscillate in a harmonic motion.  

This is one of the primary reasons it has become a fundamental test case for aeroelastic 

solvers.  Such a test case is also applicable to turbomachinery, where vortex shedding can 

lead to flutter and other aeroelastic behavior [83,84].   

For testing the FSI model developed in this research, a rigid cylinder with no FSI 

will first be simulated to verify the CFD model can reproduce the Von Karman vortex 

streets at the proper frequency for the associated Reynolds number.  Once this is 

accomplished, the simulation is continued using FSI for a flexible cylinder with a natural 

frequency equal to the shedding frequency of the Von Karman vortex streets.  This case 

is ideal for testing the FSI model, not only due to the well know nature of the Von 

Karman streets, but because the oscillation of the cylinder is self exciting, thus visually 

proving the interaction between the fluid and structural dynamics.   

 The alternating vortex shedding frequency associated with Von Karman vortex 

streets obeys the following formulae [51]: 
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where f is the frequency in Hz of alternating vortices shed, d is the diameter of the 

cylinder, V is the steady velocity upstream of the cylinder, and Re is the Reynolds 

number relative to the cylinder: 
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with ρ and µ being the density and dynamic viscosity of the fluid respectively.  Equation 

7-1 generally holds true for 150 < Re < 10
5
.  The dimensionless parameter which makes 

up the left half of Equation 7-1 is known as the Strouhal number, abbreviated as St, and is 

used to describe oscillating flow mechanisms [85].  While the Von Karman streets exist 

in flow with a cylinder Reynolds number of up to 10
7
, the shedding becomes less periodic 

after a cylinder Reynolds number of ~200 due to turbulent flow [86]. 

 To model the Von Karman streets, a cylinder 1/8 inch in diameter with a length of 

18 inches was simulated in a channel.  Since thunder is designed for turbomachinery, a 

somewhat large radius annular section from 234.5 inches at the hub to 252.5 inches at the 

shroud, with 720 periodic sections was used to model the channel.  This resulted in a 

channel with relatively flat hub and shroud sections.  Figure 7-1 shows the grid at 

midspan for the channel modeled.  The boundary condition at the hub and shroud were 

set to Euler slip conditions and the left and right boundaries were left as periodic.  The H-

grid is 165x120x51 points, while the O-grid is 301x121x51 points in the i, j, and k 

directions respectively. To initiate shedding, the O-grid around the cylinder was 

deliberately unbalanced using clustering, with roughly 20% more grid points on the upper 

surface than the lower surface.  Since the numerical method in Thunder can be somewhat 
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dissipative, a very fine grid was created around the cylinder, as shown in Figure 7-2.  

While most computational simulations of the Von Karman streets around cylinders 

extend the high grid density for several cylinder diameters downstream [83,86], it was 

not done here for two primary reasons.  First, extending the passage behind the cylinder 

with a high density grid would dramatically increase the simulation runtime, since as 

discussed in chapter 5, the runtime is proportional to the total number of grid points used 

in the simulation.  Second, only the forces on the cylinder are of interest for this test.        

 

Figure 7-1. 2D midspan slice of channel and cylinder grids 
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Figure 7-2. Close-up of O-grid around the cylinder 

 

 A target Reynolds number for the cylinder of 180 was used, resulting in a free-

stream velocity of ~2.73 ft/s.  The remaining free-stream variables were taken as standard 

day conditions.  Using Equations 7-1 and 7-2, the predicted frequency of alternating 

vortices for this case is 46.21 Hz.  Figure 7-3 is a plot of the RMS residuals, which show 

the convergence of the simulation. 
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Figure 7-3. Convergence history for rigid cylinder simulation 

 

Note that the periodic shedding of wakes is evident in the plot and thus demonstrates a 

periodic converged solution has been achieved.  Figure 7-4 shows a time trace of the 

alternating transverse forces on the cylinder at midspan.  To determine the frequency of 

these alternating vortices and the associated Strouhal number, this time trace was run 

through an FFT, the result of which are shown in Figure 7-5.  Closer examination of the 

FFT results shows a frequency spike at 46.17 Hz, which is within the FFT resolution of 

2.88 Hz to the predicted 46.21 Hz.  The associated Strouhal number, calculated using 

Equation 7-1, is 0.176.  
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Figure 7-4. Time trace of transverse forces on cylinder at midspan 

 

 
Figure 7-5. FFT of transverse forces on cylinder at midspan 

 

 

7.2 Flexible Cylinder with FSI 

 To test the aeroelastic solver developed in this research, the previous cylinder 

case is continued from a restart files, but with FSI active and the structural properties of 
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the cylinder set such that the natural (or resonant) frequency of the cylinder is the same as 

the alternating vortex shedding frequency of the Von Karman streets.  Two additional 

important steps were taken with respect to this restart.  First, the unbalanced clustering of 

grid points around the cylinder was removed to eliminate any error or lopped sidedness in 

the forces and displacement.  Second, the simulation was restarted from a time in the 

solution where the forces on the cylinder were as close to zero as possible, to help reduce 

any impulse effects in the structural model which might result from an instant loading.  

 The natural frequency of a slender beam in transverse vibration clamped at 

both ends is given by [87]: 

 
A

EI
f nn ρ

βπ 2
2 =   

(7-3) 

where n is the mode shape index, E is the young’s modulus of elasticity, I is the mass 

moment of inertia, ρ is the density, A is the cross sectional area, and βn is the weighted 

natural frequency per mode shape defined as: 
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with l being the length of the beam.  The mode shapes of vibration for the slender beam 

clamped at both ends are given by: 

( )[ ]xxxxAxy
nnnnn

ββσββλ sinsinhcoscosh)( −−−=   (7-5) 

In Equation 7-5, Aλ is the arbitrary magnitude of the eigenvalues, x is the distance from 

the clamped end, and σn is the mode shape coefficient defined as: 
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Figure 7-6 shows the first three mode shapes for the cylinder used in this research with 

both ends clamped. 

 
Figure 7-6. First three mode shapes for the clamped-clamped cylinder 

 

 For a circular cylinder, the cross sectional area and mass moment of inertia are: 

4

4
2 r

IrA
π

π ==   
(7-7) 

Substitution these into Equation 7-3 and rearranging: 
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Note that Equation 7-8 results in a ratio between the Young’s elastic modulus and density 

of the cylinder.  This is fortuitous, as these are two of the three structural property 

parameters required for the CSD model, the third parameter being Poisson’s ratio. 

 To obtain a structural model of the cylinder with the desired resonance, the 

Young’s modulus was taken as 30.0E6 psi (roughly that of steel [88]) and Equation 7-8 

was used to calculate the required density, which for the current case is 1.658E-3 lbf-

s
2
/in

4
.  From experience with the rigid cylinder, a time step of 4.684E-6 seconds was used 

to ensure both the vortex shedding frequency of the cylinder was accurately captured and 

the flow solver remained stable.  It is important to note that while the rigid cylinder 

simulation from the previous section was entirely two dimensional in nature, this 

simulation becomes three dimensional upon deformation of the cylinder, as indicated by 

the mode shapes in Figure 7-6. 

 A time trace of the cylinder displacement at midspan in both axial and 

transverse directions is shown in Figure 7-7.  From this figure, the self excited oscillating 

nature of the cylinder is clearly seen, visually demonstrating the exchange of energy 

between the fluid and structural models. 
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Figure 7-7. Cylinder displacement at midspan 

 

However instead of the Von Karman street frequency, Figure 7-7 shows a beat frequency.  

Further interrogation of the displacement time traces through an FFT (Figure 7-8) 

revealed even more peculiarities.  First, the high frequencies in the axial and transverse 

displacements show a peak at 43.85 Hz with a resolution of 2.3 Hz. 



146 

 

 
Figure 7-8. FFT of transverse and axial displacements at midspan 

 

 These problems were traced back to the structural model after an in vacuo 

modal analysis of the structural model was performed in Ansys
®

.  First, the calculated 

vibrational modes for the axial and transverse directions were discovered to be different, 

specifically 42.6 Hz and 43.74 Hz respectively.  This was further traced to an issue with 

pivot points used in the gmsh script to generate the original structural mesh.  After a 

slight change in the grid index points used for pivots in the gmsh script, the vibrational 

modes for the axial and transverse directions calculated using Ansys
®

 were 43.15 Hz and 
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43.21 Hz respectively.  Further changes in the grid index points used for the pivots did 

not yield any improvement over this. 

 Secondly, it was realized that Equation 7-8, derived for a circular cross section, 

could not be used to calculate the require density for the structural model.  The reason for 

this is because the structural model, due to the brick elements used in the mesh, has an 

octagonal cross section as shown in Figure 7-9.  Thus the mass moment of inertia and 

cross section area are different from those used to simplify Equation 7-8.  Using linear 

interpolation and a bit of trial and error, the correct density for the structural model to 

achieve a resonance frequency of 46.2 Hz is 1.86E-3 lbf-s
2
/in

4
. 

 Using this insight, the beat frequencies observed in Figure 7-7 is the result of 

the resonance frequency being very close to the driving frequency of Von Karman streets 

[87].  In fact a quick calculation of one half the sum of the resonance and driving 

frequency, 44.4 Hz for the axial and 44.97 Hz for the transverse, shows good agreement 

respectively with the high frequencies detected by the FFT.  Similarly, the low 

frequencies evident in the Figure 7-7 can be calculated as one half the difference between 

the driving and resonance frequency, or 1.8 Hz for the axial and 1.23 Hz for the 

transverse.  While a longer time trace is required to verify these frequencies accurately 

using an FFT, visual approximation of Figure 7-7 is in agreement with the general range 

of these values. 
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Figure 7-9. Structural mesh for the flexible cylinder 

 

7.3 Fourth Standard Modal Analysis  

The second test case used is based on the fourth standard configuration and 

demonstrates the ability of the aeroelastic solver to predict the dominant vibrational 

modes of an aeroelastic turbomachinery blade.  For this case, a single blade from the 

fourth standard configuration is subjected to a step function from zero loading to the 

converged flow solution loading in order to excite the structural modes of the blade.  For 

the structural model, a Young’s modulus of 29.0E-6 psi, density of 7.25 lbf-s
2
/in

4
, and 

Poisson’s ratio of 0.3 were used.  Although the blade tested at the Ecole Polytechnique  

Federale de Lausanne was mounted on a spring hub [64], the structural blade modeled 

here is clamped at the hub.  Figure 7-10 shows the structural mesh used for this 

simulation. 
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Figure 7-10. Structural mesh for STCF4 

 

To extract the vibrational frequencies from the simulation, a time trace of the 

displacements at the trailing edge tip of the blade were fed through an FFT.  This location 

was chosen since the displacements were higher at this location than any other location 

on the blade during the simulation.  Figure 7-11 shows a time trace of the axial 

displacements at this location.  Though the axial or circumferential directions could have 

been used for this, the axial direction showed slightly higher displacements; hence it was 

used for the FFT which is shown in Figure 7-12.  Due to the time step size used in the 

simulation and the rather short time trace obtained, the resolution (or increments in the 

scale) of the FFT is 273.6 Hz. 
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Figure 7-11. Time trace of axial displacement at TE tip 

 
Figure 7-12. FFT of axial displacement at TE tip 
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Table 7-13 gives the first 8 vibrational mode frequencies for the fourth standard 

configuration turbine blade.  The Ansys
®
 results are from an in vacuo analysis using the 

Block Lauczos method, while the Thunder/FSI results are from the displacement time 

trace at the trailing edge tip of the blade.  

 

Mode Frequency (Ansys
®
) Frequency (Thunder/FSI) 

1 4796.2 Hz 4924.25 Hz 

2 6145.4 Hz 6292.10 Hz 

3 10,373 Hz 10,395.64 Hz 

4 12,669 Hz 12,857.77 Hz 

5 13,871 Hz 13,952.04 Hz 

6 20,317 Hz 20,244.14 Hz 

7 20,756 Hz 20,791.27 Hz 

8 24,942 Hz 25,168.39 Hz 

 

Table 7-1. STCF4 frequency spectrum 

Table 7-1 shows very good agreement between the modal frequencies predicted by 

Ansys
®
 and those by the unsteady aeroelastic solver, especially considering the resolution 

of the FFT.  By accurately capturing the modal frequencies in the displacement of the 

fluid grid, it is reasoned that the aeroelastic solver is properly orchestrating the interaction 

of the coupled fluid and structure domains, providing a time accurate simulation of the 

aeroelastic system modeled. 

 In this chapter, the developed unsteady aerelastic solver was tested using two 

simplified configurations.  The first configuration, that of a flexible cylinder in cross 

flow, demonstrated the exchange of energy between the fluid and structural models.  

Although the intended resonance of the cylinder was not achieved do to subtle errors in 

creation of the structural model, the cylinder was self excited and reached a periodic beat 

frequency.  The second configuration involved capturing the vibrational modes of a 
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fourth standard configuration turbine blade, through use of a step function from zero 

loading to the converged flow field loading.  The results of this test illustrated the ability 

of the aerelastic solver to accurately predict the vibrational modes of the turbine blade.  

By doing so, the aeroelastic solver has demonstrated it is properly orchestrating the 

interaction between the fluid and structural domains and capable of providing a time 

accurate simulation of a modeled aeroelastic system.  
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8. SUMMARY AND CONCLUSIONS 

 

 In this research, an unsteady aeroelastic solver design tool for turbomachinery 

applications was created by loosely coupling an improved version of the turbomachinery 

CFD solver Corsair, called Thunder, to the structural solver Ansys
®
 through use the of a 

general FSI module.  Several modifications to Corsair were made during this research, 

resulting in the improved flow solver called Thunder. 

 In order to perform the necessary modifications to Corsair required for this 

research, a detailed understanding of the numerical methods used in Corsair was required.  

Since such detailed documentation of Corsair did not exist, the source code was 

painstakingly examined and documented in chapter 2. 

 To properly handle grid deformations, an investigation into different numerical 

methods for evaluation of both spatial and temporal coordinate transformation terms 

known as metrics was performed in chapter 3.  From this investigation, it was determined 

that the Finite Volume method with Long Diagonals produced the least amount of 

numerical error on a three dimensional deforming grid while requiring a reasonable 

number of floating point operations.  Thus the Finite Volume method with Long 

Diagonals was integrated into Corsair/Thunder and used for the remainder of this 

research. 

 Another area of improvement required for use in the targeted, time limited, design 

environment was a reduction in simulation runtime.  This was achieved through three 
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main efforts.  The first involved replacement of the gridding-to-wall feature in Corsair 

with a wall function, as detailed in chapter 4.  To test the implementation of the wall 

function, the high subsonic flow around a fourth standard configuration turbine blade was 

simulated and compared to results from use of the gridding-to-wall method.  In addition 

to a dramatic reduction of the runtime, a noticeable increase in stability and convergence 

was also observed through reduction in the time step required. 

 Still a further reduction in simulation runtime was achieved through the use of 

parallel computing and domain decomposition in the radial direction as outlined in 

chapter 5.  To simplify the use of the domain decomposition, a utility called thsplit was 

created to both automate and optimize the decomposition procedure based on only the 

number of the divisions to make for each grid.  This effort also resulted in a major change 

of Corsair’s data structure and a rewrite of the source code, resulting in Thunder.  

Changes to the data structure were made to reduce the nodal memory footprint and allow 

larger problem domains to be solved.  Runtime improvements from these changes in data 

structure and rewrite of the code alone were demonstrated to be roughly 23%!  Parallel 

efficiency of the added radial decomposition was shown to be effective for modest 

numbers of domain divisions, but beyond a ratio of additional ghost points to original 

domain size of ~20%, efficiency dramatically decreased.  For the single fourth standard 

configuration turbine blade used to evaluate these changes, this translated to a fivefold 

reduction in runtime and a 33% reduction in the nodal memory footprint when six 

processors were used, while obtaining a parallel efficiency of greater than 85%! 

Chapter 6 covered the FSI module and it’s integration with Thunder.  Differences 

in grid indexing between the FSI module and Thunder were overcome through the 
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creation of conversion utilities and algorithms.  The resulting unsteady aerelastic solver 

was tested against two simplified geometries in chapter 7. 

First in section 7.2, the well understood case of a flexible cylinder in cross flow 

was studied with the natural frequency of the cylinder set to the shedding frequency of 

the Von Karman streets.  The cylinder was self excited and thus demonstrates the 

exchange of energy between fluid and structural models.  However, the intended 

resonance frequency was not achieved due to a poor assumption regarding the cross 

sectional properties of the structural model.  This resulted in the displacement of the 

cylinder exhibiting a beat frequency, indicating that the driving force frequency of the 

Von Karman streets is very close to the resonance frequency of the structure. 

In section 7.3, a second test case based on the fourth standard configuration was 

used to demonstrate the ability of the solver to predict the dominant vibrational modes of 

an aeroelastic turbomachinery blade.  For this case, a single blade from the fourth 

standard configuration was subjected to a step function from zero loading to the 

converged flow solution loading in order to excite the structural modes of the blade.  To 

extract these vibrational frequencies, a time trace from the trailing edge tip point of the 

blade was passed through an FFT.  The resulting frequencies were then compared to 

those obtained from an in vacuo analysis using Ansys
®
, with good agreement between the 

two. 

 

8.1 Suggested Additional Tests & Case Studies 

 There is always a need to further test computational tools through additional case 

studies and the unsteady aerelastic solver developed in this research is no exception.  The 
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test cases used in this research were chosen for their simplicity and ability to demonstrate 

the fundamental requirements of this tool. 

 An obvious area of suggested additional cases is experimental studies performed 

on aerelastic phenomena in turbomachinery.  Such experimental studies are desperately 

needed in the public domain to test aeroelastic solvers for turbomachinery application.  

While a small number of such experimental studies have been conducted, the results have 

been deemed proprietary by the investigators and thus are not within the public domain.  

The fourth standard configuration turbine blade used in this research comes close to the 

requirement of experimental data.  Unfortunately, this study relied on mechanical forcing 

of the blades to simulate aeroelastic behavior of the turbine, resulting in nonrealistic data 

for testing of modern computational aerelastic solvers. 

 A second area of suggested test cases and study with this aeroelastic solver is the 

NASA compressor rotor geometry 67 [89].  This geometry has become a popular test 

case for three dimensional viscous flow predictions because of the available detailed 

experimental data obtained using a laser anemometer [90].  Although the structural 

properties for this configuration are not available, the blade is considered to be flexible 

enough for flutter to occur under some flow conditions and a handful of researchers have 

used it to certify the validity of aeroelastic turbomachinery applications [91,92,93]. 

 Finally, additional test cases using simplified but well understood, closed form 

solution models such as the flexible cylinder case used in this research is also 

recommended.  One such configuration is the Onera M6 Wing, for which experimental 

wind tunnel results exist over a range of flow conditions [94]. 
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8.2 Further development & improvements 

 While efforts outlined in this research were taken to enhance the resulting 

unsteady aeroelastic solver (specifically the reduction of simulation runtime), many 

opportunities exist to improve upon the model developed.  Such improvements include 

incorporating additional turbulence models such as k-ε [95,96], k-ω [97], Spalart 

Allmaras [98], or even Detached Eddy Simulation (DES) [99], and capabilities such as 

film cooling and phase lagged boundary conditions. 

 However another area of possible development and improvement is greater 

reduction in simulation runtime through additional parallelism.  This might take several 

forms, from simply adding more domain decomposition to adapting portions of the solver 

for use with General Purpose Graphics Processing Units (GPGPU) [100,101], or even a 

hybrid method using both of these.  In fact, use of such a hybrid system may allow such 

an aeroelastic solver to be more easily used in the design phase of turbomachinery, by 

allowing it to effectively make use of the GPGPU and multi-core technology which is 

becoming prevalent in computer workstations. 
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Appendix A. Block Tridiagonal Systems  

 

When a system of PDEs is approximated by an implicit formulation involving 

three grid points at each level, a block-tridiagonal system is produced.  The resulting 

block-tridiagonal system may be expressed in a general form as: 

RQS =∆  

 

(A-1) 

 

where ∆Q and R are m component vectors.  The coefficient S represents the block 

tridiagonal coefficient expressed by: 
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Where Ai, Bi, Ci are square matrices of order m. 

 To solve this system, an LU factorization is first applied to the S coefficient 

matrix: 
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where I is the identity matrix of order m.  The square matrices αi and βi are determined as: 

22 βα =     and     2

1

22 CB−=β  

 

(A-4) 
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1−−= iiii AB βα    for i = 3, 4, …, IM-1 

iii C1−= αβ            for i = 3, 4, …, IM-2 

(A-5) 
 

(A-6) 
The system given in Equation A-1is now equivalent to 

RLY =  
 

(A-7) 

 
where 

QUY ∆=  

 

(A-8) 

 

Rewritting Equation A-6: 
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from which: 
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Next, Equation A-8 is expressed as: 
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from which 
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Appendix B. Quick Search using Shape Functions 

 

Shape functions are simple weighting values which are used commonly in Finite 

Element Analysis for linear interpolation of values between nodes.  In Corsair they are 

used to obtain a tri-linear interpolation of flow variables between overlaid grids.  

However to accomplish this, the three points from the donating grid which contain the 

recipient grid point must first be determined.  In the distributed version of Corsair, this is 

done with an exhaustive search, but a much faster method was devised which makes use 

of a seldom used properties of shape functions. 

Take the 1D linear element (or line segment) of length L, with two nodes as 

illustrated in Figure B-1: 

  Φj   Φi 

  φ 

  x 

      j   i 

Xi L 

Xj 

φ = a1 + a2x 

 

Figure B-1. One dimensional linear element 
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In figure B-1, the nodes are denoted by i and j while their associated nodal values are 

denoted by Φi and Φj.  The origin of the coordinate system is to the left of node i and the 

value φ varies linear between the two nodes per the following relationship: 

  xaa 21 +=ϕ  

 

(B-1) 
 

where the coefficients a1 and a2 can be determined using the nodal conditions: 

iΦ=ϕ     at x = Xi 

jΦ=ϕ     at x = Xj 

 

(B-2) 
 

 

to develop the pair of equations: 
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which yields a1 and a2 as: 
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Substitution of Equation B-4 into Equation B-1 and rearranging gives: 
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where Xj-Xi has been replaced by the element length L.  Equation B-5 is in standard finite 

element form, where the nodal values are multiplied by linear functions of x called shape 

functions.  Shape functions are commonly denoted by N with a subscript indicating the 

node with which it is associated with.  The shape functions in Equation B-5 are: 
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which allows Equation B-5 to be rewritten as: 
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jjii NN Φ+Φ=ϕ  

 

(B-7) 
 

 
Now for a few observations about shape functions from this simple example.  First, the 

sum of the shape functions is always one.  Second each shape function has a value of one 

at its own node and zero at the other node.  Thus if the value of x falls between the nodes, 

then the value of the shape functions will be between zero and one.  If however, the value 

of x falls to the left of node i, then Ni will be greater than one and Nj will be negative.  If 

the value of x is to the right of node j, then Ni will be negative and Nj will be greater than 

one.  Therefore, if the point to be interpolated at falls outside the range defined by the 

nodes, the shape functions when evaluated at the nodes indicates which direction the 

point to be interpolated at lies. 

 These properties exist for all shape functions, including the ones used for the tri-

linear interpolation in Corsair.  The property of indicating the direction for which an 

interpolating point lies outside the interpolating range was used to replace the exhaustive 

search of donating grid points containing the recipient grid point between overlaid grids 

for all but the first recipient grid point with a quick or smart search algorithm in Corsair.  

To illustrate the logic of this algorithm, take Figure B-2 which represents a portion of the 

overlaid grid region.  For this example, the H-grid (nodes with by i and j notation) is the 

donating grid and the outer boundary of the O-grid (dashed line) contains the recipient 

points (denoted by A though F).  To begin the algorithm, the four points from the H grid 

forming a box which contains point A must first be found using an exhaustive search via 

a do loop through indexes i and j.  For each i and j, the shape functions for the two 

triangles in the box formed by points (i, j), (i+1, j), (i, j+1), (i+1, j+1) are evaluated for 

the recipient point A.  If all three shape function for either of the two triangles are 
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between zero and one, then the triangle of donating points has been found, if not, the 

exhaustive search continues.  Once the triangle of donating points has been found, the 

quick search algorithm can take over.  First the shape functions for the two triangles in 

the box containing the previous recipient point are evaluated using the coordinates of 

next recipient point.  The results of calculating N2 through N5 can then be used to 

determine if this next recipient point lies in the current box of donating points or if it 

doesn’t, which direction to move in to find the correct box of donating points.  Applying 

the properties of shape functions just discussed to shape function N3 in Figure B-2, the 

value will be negative if the point being interpolated for falls beyond the line formed by 

j+1.  This simple principle is used in the quick search algorithm to determine which 

direction to move the search box in.  So if N2 is negative the search box is moved left, if 

N3 is negative the search box is moved up, if N4 is negative the search box is moved 

right, and if N5 is negative the search box is moved down.   

  i 

  j 

  j+1 

  A 

  B 

  j+2 

  N4 

  N1   N2 

 N5 

  N3 

 N6 

  C 

 i+1  i+2 
 

Figure B-2. Portion of overlaid O- and H-grid 
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 For the example here, the shape functions for the upper and lower triangles of the 

box formed by points (i, j), (i+1, j), (i, j+1), (i+1, j+1) would be evaluated using the 

coordinates of point B.  When these shape functions are evaluated, N2 and N4 will be 

between zero and one, N5 will be greater than one, and N3 will be negative.  Thus, the 

search box would be moved up and the shape functions for the two triangles in the box 

formed by points (i, j+1), (i+1, j+1), (i, j+2), (i+1, j+2) would be evaluated. 

In addition, combinations of these moves can be made in a single step, for example if N3 

and N4 are both negative, then the box is moved diagonally up and to the right.  During 

practice, the algorithm normally finds the correct box within 3 moves, even with very 

fine grids, and is much faster than the exhaustive search.  When performing the search on 

successive radial slices (k index), the i and j box indexes for the associated point one slice 

previous are used as a started point for the search.  Likewise, when the grids are moving 

relative to one another, the box indexes from the previous time step are used as an initial 

starting point. 
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