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ABSTRACT

Baine, Nicholas. M.S.Egr., Department of Electrical Engineering, Wright State University, 2012.
Integrity Monitoring Techniques for Vision Navigation Systems.

In aviation applications, navigation integrity is paramount. Integrity of GPS systems
is well established with set standards. Vision based navigation systems have been found
to be an adequate substitute for GPS, when it is unavailable but are unlikely to be utilized
until there is a measure for system integrity. Work has been done to detect the effect of a
single measurement pair being corrupted with a bias; however, the measurement geometry
varies greatly with the environment. The environment could be sparse in visual features
to track, or the environment could be rich with features. With more features, there is a
greater probability of having multiple corrupted measurements. It is essential that multiple
corrupt measurements are detected and excluded to assure the integrity and reliability of
the system. This thesis focuses on understanding the existing integrity monitoring methods
and using them for the detection of multiple errors in vision-based navigation systems. The
current techniques are found to have the ability to detect single and multiple errors, but they
cannot isolate them. This thesis develops an algorithm with the ability to isolate multiple
erroneous measurements adding to the capabilities of existing integrity monitoring fault

detection and isolation techniques.
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Introduction

Modern aerospace operations require accurate navigation systems. These operations in-
clude the basic navigation needs for civilian aircraft for approach, departure, and en route
navigation. Additional military operations requiring navigation include precision bombing,
aerial refueling, formation flying, and unmanned operations. The creation and development
of GPS has brought remarkable levels of precision and accuracy for both civilian and mil-
itary navigation users. With the installation of additional Global Navigation Satellite Sys-
tems (GNSS), the performance level will likely continue to improve. The accuracy that can
be achieved by this or any other system is based on the ability of the system to estimate the
true position given the current operating conditions and the quality of the sensor measure-
ments. Regardless of the system, modeling errors, environmental factors, and equipment

limitations prevent a perfect estimation of the true position.

An Inertial Navigation System (INS) uses specific forces and angular rate measure-
ments to estimate the position, velocity, and orientation of a vehicle. The measurements
for an INS are produced by an Inertial Measurement Unit (IMU), which consists of ac-
celerometers and gyroscopes. This type of navigation has the benefit of being independent
of external signals, hence making it impossible to jam or spoof. Consequently, it is a very
useful system for military applications and for critical civilian systems. Unfortunately, this
system is also very dependent on the quality of the sensors and is influenced by sensor mis-

alignments, drifts, and biases resulting from limitations in materials and design of sensors.



In addition, the specific forces measured by the accelerometers are dependent on gravity.
Errors in the gravity model used to convert the specific forces into accelerations also result

in system errors.

An INS works through integrating measurements of acceleration over time to obtain
position. This integration process causes errors in the measurements to accumulate and
grow quadratically over time, resulting in a system accuracy that degrades with time. Be-
cause of this limitation, a stand-alone INS is used primarily for short term navigation. For
long term navigation, an INS is coupled with another navigation system such as GPS. By
fusing the two systems together, the INS is able to operate with its error bounded and the
combined result is better than either system can produce operating on their own. This still
leaves the navigation system vulnerable because of dependance upon external signals to
operate the GPS. These external RF signals can be either jammed or spoofed, rendering the

system inoperative or resulting in false navigation solutions.

It is this vulnerability relating to external signals that has led to the research in alter-
natives to an otherwise excellent system for navigation. One such alternative that is being
explored to remove the dependance upon GNSS is the fusion of an INS and a vision system
[5,6,8,12, 13,24, 25,31, 33, 38,44, 42,43, 41, 46, 45]. Such a system is not reliant upon
external signals and is completely passive, emitting no RF emissions. Not emitting signals
is a benefit for stealth applications and ensures that there will be no problems regarding
spectrum allocation if such a system is used on a large scale. Such a system can also be
very small, inexpensive, and require little power to operate relative to their GPS counter-

parts [31].

The cited research shows the feasibility of a vision-aided navigation system in many

different configurations. These proposed systems are shown to provide reasonable accu-



racy on the level needed for aviation applications. The accuracy available is dependent on
the camera system used, the INS measurement errors mentioned above, the feature tracking

algorithm, vehicle trajectory, and the image scene [5].

With vision-aided inertial navigation systems quickly developing into viable alterna-
tives to GPS, there has been some research done in developing integrity monitoring for
vision based navigation systems [16, 18, 17]. In the cited research, an important first step
was taken; the methods used in GPS integrity monitoring are redefined and used for vision
systems. However, in these methods, it is assumed that there is only one bad measurement.
This was a good assumption with GPS, but in vision systems, the probability of multiple

errors goes up as the number of features tracked goes up.

This thesis focuses on understanding the existing integrity monitoring methods and

using them for the detection of multiple errors in vision-based navigation systems.

1.1 Mathematical Notation

For clarity, the following is a description of the mathematical notation that will be used in

this proposal:

Scalars: Scalars are represented by italic characters such as a or b.

Vectors: Vectors are represented by bold lower case letters, shown as a or b, and are

usually in column form.

Matrices: Matrices are represented by bold upper case letters, such as A or B and the
scalar values of a matrix can be referenced as A;; with the i row and j* column

element.



Transpose: A vector or matrix transpose is denoted by a superscript 7', as in a’ .

Estimated Variables: Estimates of random variables are denoted by adding a ’hat” sym-

bol, such as a.

Calculated and Measured Variables: Variables that contain errors due to their being mea-

sured are distinguished by a tilde symbol, as in a.

Reference Frame: Navigation vectors are defined with respect to reference frames; a su-

perscript letter is used to denote the current frame of reference, as in x°.

Direction Cosine Matrix: Direction Cosine Matrices are matrices that rotate vectors from
one frame of reference to another, as in C? which, when premultiplied to a vector,

converts the vector from the a-frame to the b-frame.
Identity Matrix: Identity mateices are denoted by a bold capital letter I, as in I

Relative Position or Motion: When a vector represents relative position or motion, sub-
scripts are combined, as in pg, is the position of the a-frame with respect to the

b-frame expressed in c-frame coordinates.

1.2 Thesis Layout

In section 2, relevant background needed to understand this work in introduced. In section
2.5, an overview of the current methods used in GPS integrity monitoring are discussed.
Section 2.7, reviews the current literature on integrity monitoring of vision navigation sys-
tems. In section 3, a method is introduced to detect and isolate multiple errors and the
results of this method are shown in section 4. This thesis is concluded with a discussion in

section 5.



Background

2.1 Kalman Filtering

A Kalman filter is an effective means of combining various types of sensor information and
system knowledge in the form of a model and generate an optimal estimate of the states
of the system. The name filter is often used when something is being purified (rid of un-
wanted contaminants). In essence, the Kalman Filter is a filter for measurements, filtering

out unwanted uncertainty (measurement noise and model noise).[9]

The Kalman filter has two distinct steps that are repeated in discrete time at each in-
stance. The first step is the prediction/extrapolation, which utilizes a model of the system
to predict the states of the system after one time interval. The second step is the obser-
vation/update, during which measurements are used in combination with the prediction to

estimate the states of the system at that time interval.

A linear system is often modeled using state-space representation, as seen in equations
(2.1) and (2.2) for a continuous time system, and equations (2.3) and (2.4) for a discrete

time system.



Continuous Time System:

z(t) = Fa(t) + w(t) 2.1
y(t) = Cz(t) + v(t) (2.2)
Discrete Time System:
x(k+1) = Fa(k) + w(k) (2.3)
z(k) = ¢px(k) + v(k) (2.4

System Model and Measurement Noise / Uncertainty:

E{w(k)} = 0 (2.5)
B{w(k)w"(k)} = Q(k) (2.6)
E{v(k)} = 0 (2.7)
E{v(k)"(k)} = R(k) (2.8)
(2.9)

* Prediction / Extrapolation: This step of the Kalman filter extrapolates the state
estimate and error covariance matrix, using equations (2.10) and (2.11). Equation
(2.10) predicts the states of the system by using a rough state space model F. The
error covariance matrix is then updated with equation (2.11) using the model F and

Q, which describes the uncertainty of the model in terms of variance.



Observation Observation

rediction Prediction ~ “k+1
Tr_1(+) Tp(— )ZEk(+) azkH(—) Tpogr (4)

Pr_1(+) Py (=) Pe(+) Pry1(=)| Prya(+)

k—1 k k41
Figure 2.1: Nomenclature and the Steps of the Kalman Filter.

State Estimate Extrapolation:

ipar(—) = Fiy(+) (2.10)

Error Covariance Extrapolation:

Pii(=) = FR(+)F" + Qy @.11)

Observation / Update: This step of the Kalman filter uses equations (2.12), (2.13)
and (2.14) to update the state estimate, Zj.1, with a measurement/observation zj 1,
the error covariance matrix, Py, and the Kalman gain matrix K. The combining of
the observation and the prediction is done using a special gain, known as the kalman

gain, K. The Kalman gain is based on the knowledge of the uncertainties

State Estimate Update:

Tr1(+) = Trg1 (=) + K1 [2o41 — He1 241 (—)] (2.12)



Error Covariance Update:

Pryi(+) = [ = Kip1 Hia ] Peya (—) (2.13)

Kalman Gain:

Ky = Po(—)HI [H Po(—)HE + Ry (2.14)

2.2 Extended Kalman Filter

The original Kalman filter is an excellent method for state estimation of linear systems.
Unfortunately, not all systems are linear. For those cases, there is the extended Kalman
filter. The extended Kalman filter (EKF) works by using the non-linear model to predict the
states and measurements, and linearizes the model about the state-estimate for computing
the covariance P. [9]

The discrete extended kalman filter is implemented using the following equations:

* Computing the predicted state estimate:

(=) = Pp-1(Zr-1(+)) (2.15)

* Computing the predicted measurement:

2k = hi(Tp(—)) (2.16)
* Linear approximation:
1 bk
‘Pgﬁ}q ~ %|x:£k(+) 2.17)



Conditioning the predicted estimate on the measurement:

Tp(+) = Tn(—) + Ki(zr — 21), (2.18)
* Linear approximation:
oh
1 k
Hl[cll ~ a_$|x::?:k(—) (2.19)

Computing a priori covariance matrix:

P(—) =&)L Py (1) + Qi (2.20)

Computing the Kalman Gain:

Ky = P(—)HMY HY P(—) HY + Ry (2.21)

Computing the a posteriori covariance matrix:

Pu(+) = {I — K H"Y Py (—) (2.22)

2.3 Attitude/Orientation Representation

There are two different ways that a vehicle’s attitude will be represented in this thesis.
There are the Euler angles and the rotation matrix (C}'). On the frame of a vehicle, a
strapdown IMU will be used. The data from it will be in terms of the body frame and will
need to be transformed into the navigation frame. That is exactly what the matrix C}’ does.

It rotates vectors from the the body frame (b) to the navigation frame (n). This rotation is



Zn,l Y
down

Figure 2.2: Yaw/Heading rotation following right hand rule.

yl

done with three angles called Euler angles (roll ¢, pitch 6, and yaw ) and are performed

relative to the body frame.

2.3.1 Euler Angles

* Yaw/Heading ¢/: The rotation about the z-axis is known as the heading and yaw of a
vehicle. The z-axis is pointing down through the bottom of the vehicle and to rotate
around it would change the direction of travel in the navigation frame. Heading and
yaw are usually the same unless the vehicle is in a sideslip, which can be caused by

wind or dynamics of the airframe[32].

cos(v) sin(yp) 0
R(Y) = |—sin(y)) cos(y) 0| =CT (2.23)

 Pitch 0: The rotation about the y-axis of the body attached frame (frame-1 in this

case) is referred to as the pitch angle in avionics. This is because the y-axis typically

10



Figure 2.3: Pitch rotation following right hand rule.

points down the wings of an aircraft. To rotate about the y-axis would "pitch” the

nose of the vehicle up or down relative to the horizon[32].

cos(f) 0 —sin(0)
RO)=1] o0 1 0 =C} (2.24)

sin(@) 0 cos(f)

* Roll ¢: The rotation about the x-axis of the body attached frame (frame-2 in this
case) is known as the roll when referring to avionics. This is because the x-axis goes
from an origin at the center of mass of a vehicle through the front of the vehicle in
the direction the vehicle usually travels. For aircraft, this rotation would be about the
center-line of the airframe. Since this a right hand coordinate system, a clockwise

rotation would be a positive roll angle[32].

11



2,b 2

down
¢

Figure 2.4: Roll rotation following right hand rule.

1 0 0
R(¢)= |0 cos(¢) sin(¢)| =Ci (2.25)
0 —sin(¢) cos(¢)

2.3.2 Direction Cosine Matrix C;

In this representation, the rotations are maintained in a matrix form. The matrix can be
calculated using the Euler angles and vice-versa. To get a direction cosine matrix, the
Euler angle rotations need to be put in a sequence, which will create a rotation matrix that
rotates a vector from the navigation frame to the body frame. One such sequence and the

one used in this thesis can be seen in equation (2.26) [32].

C11 Ci12 (13

C, =R(OROR(V) = o 0 €3 (2.26)
C31 C32 (33

The direction cosine matrix (C}) is a 3x3 orthonormal matrix; therefore the matrix

has the following properties:

cycyt =1 (2.27)

12



det(CP) =1 (2.28)

Equation (2.27) represents a very useful property of orthogonal matrices, the transpose
of the direction cosine matrix is equivalent to its inverse. Equation (2.28) represents the
normality of the direction cosine matrix, which ensures that when multiplied by a vector,

the result will only be rotated and not scaled. [37]

cos(f) cos(v) sin(¢) sin(f) cos(v) — sin(y)) cos(¢) cos(¢) sin(f) cos(v)) + sin(¢) sin(v))
Cy = |cos(f) sin(v)) cos(¢)sin(f) sin(vp) — cos(v)) cos(¢) cos(¢) sin(f) sin(¢)) — sin(¢) cos(v))

— sin(0) sin(¢) cos(0) cos(¢) cos(6)
(2.29)

2.3.3 C; matrix with small angles

For small angles, the first order Taylor series expansion can be used for the trigonometric
functions in equation (2.29) (i.e. cos(/3) ~ 1 and sin(3) ~ (). Applying this to equation

(2.29) yields a skew symmetric rotation matrix as seen in equation (2.30).[37]

L=y 0 ¢
Crmly 1 —¢| =P+ x |g (2.30)
-0 ¢ 1 ¥

2.4 Global Positioning System

The Global Positioning System is a space-based navigation system comprised of satellites
in medium-earth orbit. It provides accurate three-dimensional position and timing infor-
mation globally. The GPS system has excellent long-term accuracy, but has low short term

precision due to high frequency noise errors, which effect short-term performance. This is

13



one reason why it is often coupled with an INS, which has excellent short term accuracy,
but suffers from drift caused by sensor errors. Coupling the systems provides a better so-
lution than either could produce separately and can result in a reduction in performance

requirements for the independent systems while operating.

GPS utilizes time-of-arrival measurements made from signals sent by satellites. Since
users only receive signals, they operate passively, allowing for an unlimited number of
users simultaneously [23]. The signals are received by the user from the satellites, which
are at known locations. The time difference between when the signal was sent and received
is multiplied by the speed of light to determine the range to a given satellite. The time is
known precisely on the satellite by use of redundant atomic clocks. However, the receiver
is not equipped with an accurate clock. This results in the receive time not being known
precisely. Therefore, time is one of the variables which is solved for in addition to position.
Since the time is not precisely known, the measurement made by the receiver is called a

pseudorange, because it is not the true range due to the receiver time being unknown.

Since this research is not focused on GPS, the actual signal is not described here,
but for details on the GPS signal, see [11, 14, 23, 34]. There are four different measure-
ments that can be made from the signal from the satellites. They are pseudorange, doppler,
carrier-phase, and carrier-to-noise density. These measurements are raw and should not
be confused with the computed outputs of position and velocity generated by the receiver.
Access to the raw measurements from a receiver are required for most GPS aided INS
methods. The most commonly used measurement is the pseudorange and is often the only

measurement used.

The pseudorange is the true range between a user and a satellite plus a bias caused by

the uncertainty in time along with other error sources. The main source of the bias is the

14



receiver clock, but the other contributors are the satellite clock, atmospheric effects, and

multipath interference. The pseudorange equation is given by

p =1+ c(0t, — dts) + Otiropo + Ciono + COtmy + v (2.31)

where, p is the GPS pseudorange (meters), r is the true range from the user to the
satellite (meters), c is the speed of light (meters/second), dt, is the receiver clock error
(seconds), dt, is the satellite clock error (seconds), 0,0y, is the error due to tropospheric
delay (seconds), d%;0n, is the error due to ionospheric delay (seconds), is the dt,,,, is the er-

ror due to multipath interference (seconds), and v is the error due to receiver noise (meters).

The range, r, is the true line-of-sight (LOS) range between the satellite and the re-
ceiver. As the signal travels through the atmosphere, the path of the signal is often distorted
resulting in the errors from the ionosphere, dt;,,,,, and the troposphere, d;,0p,. Atmospheric
modeling and forecasting can be used to mitigate the impact of 0¢;0,,, and 6¢4y0p,. When the
signal is reflected off objects and the ground, it results in multiple copies of the same signal
being received. Receiver and antenna design are used to reduce the impact of multipath and
block all signals that are not the true LOS signal. By reducing these errors, the dominate
term left is from the receiver clock. This error can be modeled as a clock bias term and
solved for when computing the position solution. The other remaining errors are assumed

to be noise-like.

Since range 7 is a non-linear measurement of position, the receivers calculate the
position by linearizing about an initial approximated guess of the position and then solving
iteratively. A full description of this method of solving for position is given in [23]. The

pseudorange can be expressed in simplified form as seen in equation (2.32).

p = @m; — )2+ Yy — Y1)2 + (Zn, — 20)2 + D+ € (2.32)

15



where (T, Y, , 2m; ) is the Location of the i'" satellite (meters), (¢, ¥, 2¢) is the true lo-
cation of the receiver (meters), b is the receiver clock bias (meters), and ¢ is the error in

measurement (meters).

If the true position, x;, and bias term are expressed as x; = X + 0x and b = by + b,
the error terms 0x and 0b represent the correction to be applied to the initial estimates X
and by. If p. is a pseudorange with the corrections 6x and db applied, then the linearized

equation is created using a first order Taylor Series approximation [4, 23, 27, 28] as

op = pe—po (2.33)
= ||x¢ —x0 — 0x|| — [|x¢ — xo|| + (b —bg) + € (2.34)
G ) P N (2.35)

1% = x|

Equation (2.35) is written in the matrix form z = Hx + v, as

_(@my—z0) _ (Wmy;—yo) _ (2m;—20)
Oy R T
5 o (xmg —p) _ (me —Y0) _ (ng —20) 1 (SX
5/) — 2 — ||Xt—x0|| ||Xt—x0|| ||Xt—x0|| + e (236)
: : : : : Sb
5 _ @Emn—=r0)  _ Wmp—v0) _ (Zmp—20)
L] L Ilxt—xol| [Ix:—xol| [lx:—xol| i

The solution of equation 2.36 can now be found using linear numerical methods such

as least-squares. The least-squares solution for the overdetermined system is given by [23]

0x
= (H"H) 'H"6p (2.37)
sb

16



where

. (-Z’ml _330) o (ym1 —yo) o (zml _ZO)
[Ixe—xol| llx¢—xol| [Ixe—xol|
_ (wmz —0) _ (me —Y0) _ (zmz —20)
H = [Ix¢—xol| llxt—xol| [lx¢—xol| (2 38)
_ (xmn _-770) _ (ymn —yo) _ (Z’"Ln _ZO) 1
[Ix¢—xol| llx¢—xol| [Ix¢—xol| i

These equations are solved iteratively in a method called iterative least-squares. The

process is repeated until the correction is below a desired threshold.

2.5 GPS Integrity Monitoring

This section provides an overview of integrity monitoring methods used in GNSS systems.
It begins with a discussion on Receiver Autonomous Integrity Monitoring (RAIM). That
is followed by the parity vector, and the least square residual methods for obtaining a test
statistic. Lastly slope is discussed, which is the relationship between the test statistic used

and the error limits for the navigation solution.

2.5.1 Receiver Autonomous Integrity Monitoring

The GPS system has become the system of choice for navigation due to its performance
and reliability. Even though it is a fairly reliable system, its use in safety critical sys-
tems required that the reliability be guaranteed. This resulted in a considerable amount of
research and development of integrity monitoring algorithms, the foremost of which is Re-
ceiver Autonomous Integrity Monitoring (RAIM) [36]. RAIM is the most useful method
developed to date in that it is passive and localized to the GPS receiver without a large and
complicated infrastructure of additional sensors. RAIM algorithms are not standardized
among receivers, but they primarily rely on least squares residuals from a particular instant

of data or similar method using a parity vector [28]. These methods have their limitations

17



in availability of being able to detect and exclude bad measurements, and they make the
assumption that there is a single measurement error, which is a valid assumption for GPS

[2, 4, 27].

2.5.2 Parity Vector

The parity vector method for integrity monitoring was first presented by Potter in [30] for
monitoring inertial navigation systems. It was then reintroduces as a method of integrity
monitoring for GPS by Sturza [36]. The following is a derivation that mirrors the one pre-

sented in mathematical detail by Sturza.

The parity vector method is dependent upon the presence of redundant measurements.
In other words, the number of measurements m, must exceed the number of states n being

estimated, such that m — n > 1. A linearized measurement model is given by:

z=Hx+w+Db (2.39)

where z is the (m x 1) measurement vector that results from the product of the (m x n)
measurement matrix H and the (nx 1) state vector x plus the (m x 1) vector of measurement
noise w with diagonal covariance of oI and the (m x 1) bias vector b that represents faults
in the measurements. Assuming the existence of redundant measurements, H is not square.

Therefore the Moore-Penrose pseudo-inverse of H is given by:

H=HH'H" (2.40)

Using the pseudo inverse to solve for the least-square estimate of x yields:

% =Hz=H"H)'H' (Hx+w+b) =x+H(w+b) (2.41)
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The measurement matrix H is assumed to consist of independent column vectors, so
that it can be successfully decomposed using QR decomposition, where Q! = QT and R

is an upper triangular matrix.

Q'z =Rx (2.42)

The resulting Q will have dimensions m x m, and R will have dimensions m x n with
the last m — n rows containing only zeros. The Q” and R matrices can be subdivided into
Q" and U representing the first n rows of Q” and R respectively, and QpT representing
the last m — n rows of Q”.

Q" U
zZ = X (2.43)
Qp' 0

The matrix QpT is defined as the parity matrix P with rows that are orthogonal to z
and columns that span the parity space of H [2, 39]. This allows for measurements with
unobservable biases to be transformed into the parity space, where they can be observed in

the form of the parity vector:

p=Pz=P(w+b) (2.44)

The resulting elements of the parity vector are normally distributed with mean ;» = Pb
and covariance o*I. The parity vector does make the assumption that p and x are indepen-
dent and that the noise w is of zero mean allowing for p to be of zero mean when no faults

are present.

In addition to the parity vector p, it is possible to map the parity vector back to the
measurement space and represent the information in the form of a fault vector f. A trans-

formation matrix T can be obtained by augmenting the pseudo-inverse H with the parity
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matrix P. The matrix T maps the measurement space into the n dimensional state space
and the m — n dimensional party space. Therefore, T~! is the transformation from the

state-space to the measurement space allowing for the formation of the fault vector f,
0 _ 0
f=T""! = {H PT} = (P'P)z (2.45)
P Pz

where the resulting elements of f are normally distributed with mean ¢ = P?7Pb and
covariance ¥ = o?PTP. The parity vector p and the fault vector f exist in different

spaces, but their inner products yield the same results:

p'p = (Pz)"(Pz) = 2" PPz (2.46)

and

f7'f = (P"Pz)" (P"Pz) = 2’ PTPP' Pz = 2’ P"IPz = 2" PPz (2.47)

This inner product can be used as a test statistic D for fault detection. The decision
variable D has a chi-square distribution based upon the distribution of the elements of the
parity and fault vectors. In the event that there is a fault, the distribution for D will become
a non-central chi-square distribution allowing for a threshold test to be used to indicate

whether or not a fault has occurred.

H0:D<"}/

H12D>’)/
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This decision variable is subjected to a dual hypothesis test where H represents no
fault and H; indicates a fault. This is done by comparing D with a threshold v, which is
based upon a desired probability of false alarm p¢,, number of redundant measurements

n — m, and the covariance of the measurement noise 2.

v =ov2erfc! (—pfa ) (2.48)

m-—-n

Pra = erfc (UL\/Q) (2.49)

2.5.3 Least Square Residuals

Work done by [1, 7, 19, 22, 29] laid the foundation for GPS integrity monitoring using
least-square residuals. Least squares residuals makes the same assumption as parity space
in that there are redundant measurements available making the system overdetermined with
the number of measurements m exceeding the number of states n such that m —n > 1. For
GPS, n = 4 since the states being solved for include the three diminutional position and a
clock bias term. In the original work that developed the least-square residual method, the

measurement equation was given in terms of the pseudorange:

pi = d; — {e; 1} x — ¢ (2.50)

where p; is the pseudorange of the i*” satellite, d; is the distance between the user and the i*"
satellite, e; is the unit vector from the user to the i** satellite, x is the state vector including
position and the clock bias term, and ¢; is normally distributed measurement noise with

mean y; and variance o?. The vector representation of the messurement equation is [29]:
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%

z=d—p=| |x+e=Hx+e (2.51)

T
e, 1

The least-square estimate is expressed as:

%(H"H) 'H'z = Hz (2.52)

with the estimated measurement is given as:

z=Hx = HHz (2.53)

The difference between the actual measurements and the predicted measurements yields

the vector of residual errors:

¢=z—2=(1-HH)z (2.54)

Substituting equation (2.51) for z yields the following:

¢ = (I—HH)Hx +¢) (2.55)
= Hx — HHHx + ¢ — HHe (2.56)
= H(I-HH)x + (I - HH)e (2.57)
= H(I-(H'H)'H"H)x+ (I - HH)e (2.58)
= H(I-I)x+ (I- HH)e (2.59)
— (I—HH)e (2.60)
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The sum of squares error (SSE) is defined as the inner product of ¢7'¢ and makes a
useful test statistic. In the case where the noise has a zero mean (no fault bias), the SSE
has a chi-square distribution just like the decision variable from the parity vector method.

With m — 4 degrees of freedom the test statistic used is:

elée SSE
— — 2.61
" \/m—4 m—4 (2.61)

In the event that the measurements are effected by a non-zero mean in the noise,
the test statistic will come from a non-central chi-square distribution with a non-centrality

parameter \ given as [2]:

\ = (pbias>2 (2.62)

g

The non-central chi-square distribution cannot be expressed in closed form, but can
be approximated using numeric integration [2, 29]. The integrity checking process is per-
formed by comparing the test statistic r to a threshold . The threshold ~y is generated
through Monte Carlo simulation and is selected based on desired false alarm and missed

detection requirements.

2.5.4 Slope Method

The slope method is used in conjunction with either the parity vector or least-squares meth-
ods, and is useful in relating the test statistic to the error in position caused by a biased
measurement. The “slope” is the ratio between the horizontal position error and the test
statistic. For GPS, the “slope” is a linear relationship that approximates the effect of a
growing pseudorange bias and its effect on the horizontal position error. For any given
satellite, the “’slope” is a function between the horizontal position space and the parity

space [47] and is given by
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Slope; =

Hi,; +H3,

where S = PTP. This method assumes that there is no noise and considers the effect of the
bias only; therefore, the parity vector is p = P(b + 0). The resulting horizontal position

error for the i** measurement is [47]:

H.; = Slope;|| P|| (2.64)

The slope of each measurement will be different based upon the measurement geom-
etry. A worst case upper bound can be estimated using the measurement with the largest

slope and is given as [47]:

| Hyias| = max[Slopei]|[pl| (2.65)

Since the process is not truly deterministic, and there is measurement noise in the
system, this estimate does not reflect the true horizontal position error. However, the mea-
surement noise is assumed to be zero-mean additive white gaussian noise (AWGN), making
the deterministic method a reasonable method for approximating the expected value of the
parity vector [36, 39]. The slope method allows for the projection of position error onto the

parity space allowing for easy visualization of thresholds relative to protection levels.

2.6 Vision Based Navigation

The objective of the proposed research is to further investigate integrity monitoring tech-
niques in vision aided/based navigation systems. The emphasis is therefore on the mea-
surements made by vision systems in the form of pixel coordinates in an image of a known

feature. The following includes essential background relating a real world target/feature
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and the measurement from the vision system. The focus of this research is on the measure-
ment provided by the imaging system and not the process that created it. Therefore, the

following assumptions are being made.

* A feature tracker generates measurements in the form of pixel coordinates of known

features at a suitable rate.

* The vision system is calibrated in a manner that allows for the relationship between
pixel coordinates and position in the camera frame to be known with any lens distor-

tion already corrected for.

* The relationship between the camera frame and vehicle body frame is known.

The use of GPS integrated with an INS has been well established. The two systems
compliment each other well, but there are environments and conditions that can result in
GPS signals being unavailable. This led to research into the use of optical systems to aid in
navigation [40, 44, 43, 25, 5, 13, 38, 46]. Vision-based navigation can be done without the
use of an INS, but the vision system performance is based on the quality of measurements
that can be made given the environment and availability of features for tracking. The vision
system can be used in a similar manner to GPS when tightly coupled with an INS to bound
the errors that grow with time [44]. Together, an INS and vision system have the potential

to reliably provide accuracy on the level of GPS.

Optical navigation can be used in many environments including those, which are un-
known [10]. When the environment is unknown without features at known locations, a
process called Simultaneous Location and Mapping (SLAM) is used to estimate the loca-
tion of trackable features at the same time, solving for the navigation states of the vehicle.

The research proposed here focuses on navigation in environments with known features
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at known locations. These will be tracked by a vision system that is passive, taking in a

three-dimensional (3-D) scene and projecting it onto a two-dimensional (2-D) image plane.

2.6.1 Projection Model

Figure 2.6: Pinhole Camera Model.

The optical properties of a camera govern the relationship between a scene and its

26



projection onto an image. Optics seldom exhibit ideal properties allowing for a simple
model. However, many calibration and correction techniques exist to reduce and correct for
non-linear optical effects [8, 15, 20, 26, 44, 48]. These corrections allow for the projection
to be modeled interns of an ideal thin lens. For an ideal thin lens, the projection onto the
image plane is a function of the focal length and the distance to the lens as shown in Figure
2.6.1. The thin lens directs the parallel light rays toward the focus resulting in an inverted
image beyond the focus. This is expressed as the fundamental equation for a thin lens

equation as

(2.66)

where Z is the distance from an object in the scene to the lens, z is the distance from the
lens to the image plane, and f is the focal length of the lens [21]. If the aperture of the
lens is decreased, it can be modeled as a pinhole camera. Given the pinhole camera model
depicted in Figure 2.6, all light must pass through the aperture and projects an image on a

plane located at the focal length f from the aperture [21].

Scene
SC

Image Plane

Figure 2.7: Camera projection model.
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If the image plane is placed in front of the optical center, the model is further simplified
as seen in Figure 2.7. This results in a non-inverted image. Given a point source location,

s¢ relative to the optical center the resulting location on the image plane is given by

Gproi _ (i) o (2.67)

S
with s{ as the distance from the optical center of the camera in the z. direction [44]. This
camera projection is then converted into a digital image. The image plane coordinates need
to be mapped to a coordinate system based on pixels. Assuming a rectangular (M x N)
pixel grid with a height H and a width W, the transformation from projection coordinates

to pixel coordinates is given by

M+

M+1
2
N+1
2

SIS

o
S= <

DIT Sproj +

0
(2.68)

0

Combining equations (2.67) and (2.68) yields the transformation from the camera frame to

the pixel frame :

[0
i 8—2 0 f% % s¢ (2.69)
0 0 1
1 .
= —Trs (2.70)

where TP is the homogeneous transformation matrix from camera to pixel frame [44].
To convert pixel coordinates back to camera coordinates, the inverse transformation can be

used as
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TS, = (Tr=)! (2.71)

iz

_H H(M+1)

M 2fM
¢ — w W(N+1)
Tpix 0 f_N — 2N (272)
0 0 1

n Y
Navigation Frame

X

Figure 2.8: Target to image transformation geometry.

The coordinates are still in terms of a camera model and need to be related to the
navigation frame as seen in Figure 2.8. The relationship between navigation frame and the

camera frame are given by

s"=t"—p" (2.73)
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s¢ = CiCPs" (2.74)

where s and s° are the line-of-sight vectors from the camera to the target in the navigation
and camera frames respectively, p™ is the position of the camera in the navigation frame,

and t” is the location of the target in the navigation frame [44].

2.6.2 Measurement Model

Before measurements can be used or analyzed, it is necessary to have a linearlized mea-
surement model. This research makes use of the model created by Veth [43]. For this
model, a minimal error state vector for a vision aided inertial system is used, as given by

5 n
0x = P (2.75)

0th

where 0x is the error state vector, p” is the 3-dimensional error vector in position of the

platform, and 1) are the tilt error states[44, 43].

The measurement model for the i image feature is given by

z; = s = TP"s; (2.76)

)

where z; is the measurement vector from the i*" feature, ng“f is the homogeneous transfor-
mation matrix from the camera frame to the pixel frame, and s is the line-of-sight vector
from the camera to the i feature target. This is a non-linear relationship and is expressed

as a non-linear measurement equation i (x) as

h(z) = TF*“sS (2.77)
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The measurement model matrix is found by taking the first order Taylor series expan-

sion of A(x)[16]. The measurement matrix is by with u = 1/s¢and 5 =1[0 (0 1]

— Oh(x) N )
H = x|, = {W o (2.78)
oh PiT [ oC cb cb
oo pT? (s;C;Ch — C;CY) (2.79)
Oh [ Os¢ 0s¢
" pr [ 771 ¢ ?
9 J74 Wi (37# 51681#) (2.80)
s
g = GG l(E" —p") x| (2.81)

withp=1/sSand 5=1[0 0 1]

2.7 Current Vision Integrity Monitoring

The area of vision navigation can be subdivided into two categories: methods based on
tracking known features and methods based on tracking unknown features. Consequently,
the measurements need to be treated differently when performing integrity monitoring.
Figure 2.9 shows a break down of the areas for integrity monitoring of vision systems.
There has been little research done in the area of integrity monitoring for vision nav-
igation systems. The beginning framework was laid out by Larson in [18], [16], and [17].
In these works, GPS integrity monitoring methods using parity vectors and slope were in-
troduced to vision navigation systems. This work focuses on detecting a single pixel pair
error relating to a known feature as seen in Figure 2.9. The following is a summary of that

work.
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Systemic Random
Figure 2.9: Chart showing the areas of Vision Integrity Monitoring.

2.7.1 Parity Vector and Slope

This section includes a derivation of the work done in [18], [16], and [17]. This derivation

is provided in the same manner as it was in [16]. In that work, four assumptions were made:

Tracked features are known and do not need to be estimated.

An image-based measurement is considered a two element set, consisting of an (x,y)

pair.

The bias is multidimensional in that it is a magnitude times sinusoidal components

of the angle of the error in the x and y directions.

* Noise is assumed to be zero mean additive white gaussian noise.

This derivation makes use of the fact that the x and y elements of a pixel pair are mea-
surements linked by a single observation and hold adjacent positions ¢ and j in the mea-

surement vector. The components of the bias vector b are b; = ||b|| sin # and b;||b|| cos 8,
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where ||b|| is the magnitude of the pixel error and 6 is the angle of the error in the x-y
pixel frame. The slope method described in [2] is a ratio of the square vector norm of
the horizontal position error ||dx||? and the square vector norm of the parity vector ||p||?
or residual vector if the residual method is used. If using the parity vector method, the

resulting relationship is given by

loxp]|?  oxTéx  bTHIH,b

— — 2.82
Ipl> ~ p'p _ BIPTPb (282)

with H = (HTH)~'H7, which is the Moore-Penrose pseudo-inverse of H and P is the
parity matrix described in the previous section. The subscript 4 on 0x;, and Hj, indicates
that it only includes the horizontal position elements of dx and corresponding rows of H.

Equation (2.82) can be simplified using G = H Hj, and S = PTP as

I6x]2  bTGb
[pl>  bTSb

(2.83)

Following the assumption that there is only one error and making the bias vector zero

for all elements except b; and b;, the numerator of the ratio is given by

b"Gb = b7Gy; + bib;(Gij + Gji) + bIGy; (2.84)

Since G is symmetric, i.e. G;; = G;, and substituting the sinusoidal definitions of b;

and b; yields

b"Gb = ||b||*sin®(0)G; + 2||b||* sin(6) cos(0)G; + ||b||* cos®(0)G; (2.85)

Now using the double angle identity for sine, sin(20) = 2sin(#) cos(f), yields the

final form of the numerator as
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[0%5[|> = [|b||* [sin®(0)Gy; + sin(20)Gy; + cos?(0)Gy5] (2.86)

The denominator is found in a similar manner taking advantage of the symmetry of S:

HpH2 = HbH2 [sinQ(H)Sii +sin(260)S;; + cos2((9)Sjj] (2.87)

Canceling the bias term in the numerator and denominator results in the following

expression

.2 N : 3 2 1z
lox|) {sm (0)Gii + sin(20)Gj; + cos <9)Gaa} (2.88)

Ipll | sin(0)Si + sin(260)S;; + cos2(0)S;;

Using the pythagorian identity, cos?() = 1 — sin?(), the expression can be rewritten

in terms of sine only as

o] [sin?(0)(Gis — Gy;) +sin(20)Gy; + G, ]2
ol = w8, = S+ 5t 5| e

Larson showed the use of a slope method, whereby the decision variable D = p’p
is related to error in horizontal position as a ratio. This method is useful in estimating
the effect of a bias in a measurement on the horizontal position for setting up a detection
threshold. This method is also useful in the event that there are multiple measurement

errors, but becomes less accurate as the number of errors increases. Further analysis can be

seen in [16].
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Multiple Errors in Vision Systems

The research summarized in section 2.7 [16], [17], and [18] converted the GPS integrity
monitoring techniques using parity space and slope to vision measurements and provided a
framework common to both navigation systems. However, the assumptions made for GPS
are not applicable for vision systems. In GPS systems, it is highly unlikely that there will
be more than one bad measurement at a time. The GPS constellation is closely monitored
and robust. In the case of vision measurements, there is a much higher likelihood of having
more than one bad measurement. The previous research does not address this possibil-
ity. Section 3.1, summarizes the test statistic discussed in the previous section, which is
designed to detect a bad measurement. This method is then used in section 3.2 as a test
to determine if a subset of data is good and an iterative method is used to isolate the bad

measurements in the data.

3.1 Test Statistic

In [18], [16], and [17], Larson used the slope method from GPS integrity monitoring,
whereby the decision variable D = p”p is related to error in horizontal position as a

ratio of the squared vector norm of both the horizontal position error and the parity vector:

|ox|*  o6x"éx b'Gb
Ipl>  p'P  Db”Sb

(3.1
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with G = HI'H;, S = PP, and H = (HTH) 'H7, which is the Moore-Penrose
pseudo-inverse of H. Assuming that the bias vector b is zero except for the b; and b,
components (corresponding to a bias in a singe set of pixel coordinates with corresponding
error magnitude and direction ), equation (3.1) can be written as (For full details regarding

the derivation see [16]):

(3.2)

16x]2 [sin®(0)(Gyi — Gj;) + sin(20)Gyy + G2
||pH2 o SIHQ(O)(S“ — Sjj) + SIH(QG)SU + Sjj

3.2 Bayes Algorithm for Isolating Corrupt Measurements

The algorithm for isolating faulty measurements is based on Bayes’ Rule given by equation
(3.3) and discussed in many books on probability and statistics [35, 3].
P(B|A;) P(A;)

PIAIB) = S~ 5 B4 P(4,) 6.3

When the complete set of measurements fails the test described by section 3.1, it is
assumed that there is at least one faulty measurement in the set and that each measurement
is equally likely to have the error. Therefore, all the elements of vector P represent the
probability of error in each of the measurements and are initialized as 1/m where m is the

number of measurements.

Multiple random subsets of data are created from the original set and tested. If they
pass, equation (3.5) is used to update the corresponding elements of P related to the mea-
surements in the subset. If they fail, equation (3.4) is used to update the corresponding
elements of P. After several tests on different subset combinations of the measurements,

P converges, given a high enough probability of having a passing subset of data.
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P{Error = 1|Alarm}(k + 1) = = = (3.4)
2.(

PaP(k)
PoaP(k)) + PP,

P{Error = 1|Pass}(k +1) = (3.5)

where P, is the probability of a missed detection, P, is the probability of false alarm
for the test and P, is the probability of an error existing in the subset measurements given
the subset of P and a bar over a probability is the reverse, P, = 1 — P..

The probability of obtaining a random subset of data that passes is based on a hyper-

geometric distribution given by

M N-M
x n—x
P(X =z|N,M,n) = (3.6)
N
n

with /V as the total number of measurements, n as the number of samples in a subset
for testing, M as the number of bad measurements, and = as the number of bad measure-
ments in a subset.

Assuming that it only takes one bad measurement to result in a failed test, the proba-

bility of a passing subset is given by
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P(GoodSet) = P(X =0|N,M,n) 3.7)

N-M

= =~ 7/ (3.8)

Figure 4.1 shows a plot of the probability of passing the test relative to the number of

bad measurements given that five measurements are taken at a time for testing.

38



Results

This algorithm is demonstrated using a 50 run Monte Carlo experiment. Each experiment
is performed with a total of 100 measurements and a varying number of bad measurements.
Figure 4.2 shows that the sum of P converges to 4.5 after 100 iterative tests. After conver-
gence, all five erroneous measurements can be isolated without any false positives relating
to other measurements. It should be noted that the algorithm does not need to run to full
convergence to isolate the bad measurements, but it can be run with fewer iterations assum-
ing that every measurement has been included in a test. However, if it has not converged,
the likelihood of isolating good measurements is decreased, but may be acceptable as a

trade off for computation time required for additional tests.

As the number of bad measurements is increased, the sum of P increases as seen in
Figures 4.3 and 4.4 show that ) P converging to 8 and 10.8, with 10 and 15 bad measure-
ments, respectively. If many more experiments are performed and the steady-state value
of > P is plotted relative to the number of bad measurements in Figure 4.5, a non linear
relationship is seen. This relationship is similar to the probability of passing a test vs. the

number of bad measurements as seen in Figure 4.1.
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Probability of a Good Subset of 5 Measurements

I L I I

0 Il Il Il Il
0 10 20 30 40 50 60 70 80 90 100
Number of Bad Measurements

Figure 4.1: Probability of getting a good subset of measurements assuming that there is a
total of 100 measurements and 5 measurements in a given subset.

A linear relationship is found when the steady-state value of » Pis plotted relative
to the probability of selecting a good subset as seen in Figure 4.6. This relationship varies
depending on the total number of measurements /N and the number of measurements in a
testing subset n but remains linear. This provides a simple tool to uncover the number of

bad measurements.
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Algorithm Results with 5 of 100 Measurements Bad
5 T T T T T T T

data 15

4.5

[\ w
o w o

Average Sum of Liklihood of Error

n

05 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Number of Tests on Data

Figure 4.2: Average sum of the error probability vector P vs. test iteration, given a 50 run
Monty Carlo experiment with 5 of 100 measurements bad.
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Algorithm Results with 10 of 100 Measurements Bad
T T T T T

Average Sum of Liklihood of Error

0 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Number of Tests on Data

Figure 4.3: Average sum of the error probability vector P vs. test iteration, given a 50 run
Monty Carlo experiment with 10 of 100 measurements bad.
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Algorithm Results with 15 of 100 Measurements Bad
12 T T T T T

Average Sum of Liklihood of Error

0 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Number of Tests on Data

Figure 4.4: Average sum of the error probability vector P vs. test iteration, given a 50 run
Monty Carlo experiment with 15 of 100 measurements bad.

43



Steady-State Likelihood v. # of Bad Measurements
20 T T T
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Number of Bad Measurements

0 I I

Figure 4.5: Steady-state average sum of the error probability vector P vs. the number of
bad measurements out of 100 total measurements.

Probability of Passing Test v. Steady-State of Likelihood
20 T T T T T T

14} 1
12 1

10F -

Steady-state sum of likelihood

O | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of a Pass

Figure 4.6: Steady-state average sum of the error probability vector P vs. the probability
of getting a good subset of data with 100 total measurements and a varying number of bad
measurements.
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Conclusion

The work in this thesis uncovered a linear relationship between the sum of the error proba-
bility vector » P and the probability of selecting a good subset of measurements. Finding
a convenient equation for that linear relationship given the number of measurements and

size of the subset, among other variables will be investigated.

In summary, vision systems have been shown as good substitutes to GPS for naviga-
tion. However, the number and quality of measurements available varies due to the changes
in the navigation environment. This leads to a high probability of corrupt measurements
and the possibility of multiple corrupt measurements at any instance. The ability to de-
tect and exclude these errors is essential if these systems are to be certified for aviation
applications. This thesis laid out a method that provides more information in the event of
multiple corrupt measurements, allowing for the number and identification of the corrupt

measurements to be determined.
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