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ABSTRACT 

Saracoglu, Bayindir Huseyin. Ph.D., Engineering Ph.D Program, Wright State 
University, 2012. Turbine Base Pressure Active Control Through Trailing Edge Blowing. 
 

 

The desire for high performance and low fuel consumption aero-engines has been 

pushing the limits of the turbomachinery and leading cutting-edge engine designs to 

fulfill the demand. The number of stages is reduced to achieve the same pressure ratios 

over lighter turbines. The extreme expansion requirements result in transonic-supersonic 

flow fields. Transonic and supersonic turbines are exposed to the shock waves that appear 

at the trailing edge of the airfoils, generating substantial efficiency deduction due to the 

interaction with the boundary layer. Furthermore, pressure fluctuations created by the 

shocks result in unsteady forcing on downstream components and eventually cause high 

cycle fatigue. Component failure may lead reduced service life and further damage on the 

engine. A novel proposal to control the resulting fish tail shock waves consists on, 

pulsating coolant blowing through the trailing edge of the airfoils. The changes in the 

base region topology and fish tail shock wave were numerically investigated for a wide 

range of purge flow at simplified blunt and circular trailing edge geometries. An optimum 

purge rate which increases the base pressure and significantly reduces the trailing edge 

shock wave intensity was found. The effects of pulsating base pressure on the shock 

properties and the base region was investigated in detail to understand the mechanisms 

driving the flow field under unsteady bleed.  

A linear cascade representative of modern turbine bladings was specifically designed 

and constructed. The test matrix comprised four Mach numbers, from subsonic to 

supersonic regimes (0.8, 0.95, 1.1 and 1.2) together with two engine representative 

Reynolds numbers (4 and 6 x 106) at various blowing rates. The blade loading, the 

downstream pressure distributions and the unsteady wall temperature measurements 

allowed understanding the effects on each leg of the shock structure. Minimum shock 

intensities were achieved using pulsating cooling. A substantial increase in base pressure 

and significant reduction in trailing edge loss were observed for low coolant blowing rate. 
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Analysis of the high frequency Schlieren pictures revealed the modulation of the shock 

waves with the coolant pulsation. The Strouhal number of the vortex shedding was 

analyzed for all of the conditions. Finally, the statistical analyses of the results showed 

that the effects of the state of cooling and free stream conditions were statistically 

significant on the flow properties. 
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1 

Introduction 

1.1 Background 

The need for high performance and compact aero engines is driving the industry. The 

internal flow field through the passages of modern turbomachinery suffers harsh 

conditions. Extreme temperatures, well above the metal melting point, are reached at the 

combustion chamber outlet. Intensive cooling methods are exploited to preserve the 

material integrity. Shock waves appear at the trailing edge of transonic turbine airfoils. 

The shock wave interaction in turbines lead shock induced flow separation and fatigue 

problems. The performance penalties induced by aforementioned interactions caused by 

the severe flow conditions are often mitigated by various flow control techniques. 

Flow control, in general terms, can be defined as the methods employed to change the 

global flow pattern without acting in a comparable scale.  Those methods can be divided 

into two main groups: active and passive flow control. Active flow control makes use of 

flow bleed, steady and unsteady injection, synthetic jets, plasma discharge, moving 

surfaces etc. to modify the flow field. Whereas, passive flow control techniques include 

minor geometrical modifications or utilize the pressure gradients inherently existing in 

the flow field to apply suction or purge.  

The geometrical passive control has generally been achieved by placement of dimples 

on the surfaces and minor modifications on the base line geometries. Otmanns et al. [1] 

and Hergt et al. [2-4] applied vortex generators on the lateral surfaces of compressor 

cascades to control the secondary flows and eventually inhibit the corner separation over 
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the blade surface. Santner et al. [5] and Lengani et al. [6] suppressed the boundary layer 

separation in turbine transition ducts by low profile vortex generator wedges. On the 

other hand, Carroll et al. [7] tested various surface dimples downstream of a leading edge 

cooling hole to reduce the unsteadiness of the jet and thus an expected increase in the 

adiabatic effectiveness. Lake et al. [8] investigated dimples and grooves over a low 

pressure turbine (LPT) airfoil suction surfaces to prevent separation. Similarly, Bohl and 

Volino [9] reduced boundary layer separation by using arrays of cylindrical elements 

with various heights on the suction side of LPT blade. Rodriguez [10] and Gai and 

Sharma [11] investigated several spanwise protrusion geometries at the trailing edge of 

airfoils to control vortex shedding and consequently reduce the base drag. Three 

dimensional trailing edge configurations were observed to increase the base pressure.  

Flow suction or purge through ducts and cavities owing to pressure gradient are 

another practice in passive flow control. Zhou et al. [12] successfully reduced the flow 

separation by bleeding the pressure side flow to suction side in a compressor cascade. El-

Gendi et al. [13] numerically simulated pressure side bleed and suction side purge 

immediate upstream of a turbine vane trailing edge. The wake unsteadiness was 

significantly reduced and base pressure was increased by the method. Lin et al. [14] 

investigated passive control of shock wave/boundary layer interaction through surface 

cavity suction and blowing derived by shock wave pressure gradient.  

Active bleed and injection have been applied over various locations on the cascade 

surfaces to enhance the flow characteristics. Trailing edge blowing in turbine airfoil has 

been studied to reduce the losses [15-23]. Substantial base pressure increase along with 

reduction in the losses was observed for moderate blowing rates. Base bleed was also 

utilized to modulate the trailing edge vortex shedding [23-25]. Existence and the 

frequency of the coherent structures were showed to be highly dependent on the ejection 

rate. Steady blowing near the end wall of compressor cascades diminished the secondary 

flow losses and suction side separation [26]. Zhou et al. [27] considerably minimized 

flow separation by simultaneous blowing near the leading edge and suction close to 

trailing edge of a compressor blade. Vortex generator jets with steady blowing on the 

suction surface were also used to reduce separation on compressor [28], high pressure 
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[29] and low pressure turbine cascades [30, 31]. However, the impact of pulsed vortex 

generators was found superior relative to the steady jets by various studies in the 

literature [32-37]. Experimental and numerical studies performed on LPT cascades 

showed that the separation on blades equipped with pulsed vortex generators on the 

suction side was almost completely disappeared [38-43]. 

Synthetic jets, as an active control method, have been frequently utilized to prevent 

the boundary layer separation in compressor and LPT cascades. Synthetic jets create a 

pulsating discharge with no net mass flow. Low momentum boundary layer flow is 

sucked during intake phase and injected back to enhance mixing. Several research groups 

[44-48] studied the synthetic jets located on the casing surfaces of compressor cascades. 

Performance improvements were observed through weakening the secondary flows and 

preventing blade suction side separation. The results obtained in LPT blades were 

analogous. Arrays of synthetic jets, located on the suction surface of high lift blades, 

mitigated flow separation by periodic suction and blowing to the boundary layer [49-54]. 

Dielectric plasma discharge (DBD) actuators have recently been implemented to 

turbomachinery applications for flow control purposes. The induced plasma locally 

energizes the flow and suppresses separation in both compressors and LPTs [55-58]. 

Secondary flows effects were also alleviated by end wall attached DBDs [59, 60]. The 

experiments on LPT blades were pointed 15% reduction in the tip gap losses with plasma 

actuator mounted at the blade tip [61]. Besides, the trailing edge located DBDs induced 

wake filling effect and mitigated the trailing edge losses in a LPT cascade [62]. 

1.2 Objectives of the work 

The current manuscript describes the investigation on the control of trailing edge 

shock waves by altering the base pressure. This technology should play a major role in 

reducing the detrimental effects of the shock waves in supersonic flows in a wide range 

of applications. Transonic turbine vanes experience fish tail shocks due to the 

recompression of the supersonic flow with the wake. Trailing edge shock interaction 

generates pressure fluctuations that may result in low and high cycle fatigue problems. 

The current research proposes an unprecedented shock control strategy making use of 
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unsteady trailing edge purge flow. Understanding the trailing edge cooling-shock 

interactions requires fundamental knowledge of the base flows. Construction of a detailed 

base pressure correlation in conjunction with the shock wave characterization is of utmost 

importance to predict the response of the shock system at different levels of cooling rate. 

Consequently, an optimum purge rate is to be sought for pulsating coolant that reduces 

the impact of the shocks, while providing enough injection to cool the vane.  

The interaction of the periodically oscillating coolant with the base region and 

subsequently shock waves entails fundamental comprehension on the pulsating flows 

which can only be achieved by a meticulous experimental survey. Therefore, 

development of advanced measurement techniques and sophisticated processing tools 

bear ultimate importance on interpreting the major flow features.  

1.3 Methodology of the research 

In order to achieve the objectives previously stated, the research was divided into 

three major activities.  

 

1. The first activity starts with identifying the simplest geometry similar to a turbine 

trailing edge to analyze the interaction of the continuous cooling with trailing edge 

attributes. Initially a blunt trailing edge was studied by Reynolds Averaged Navier-

Stokes (RANS) simulations to understand the effect of continuous cooling. 

Pulsating cooling was then simulated over the same geometry by URANS 

computations. Finally the effects of pulsating cooling over a rounded trailing edge 

were investigated.  

2. Secondly, the activities involved in the design of the experiment were accomplished 

in four steps. The relevant non-dimensional parameters for the experiments were 

selected. The test article, which shall show high performance with the range of test 

conditions, was designed by making use of RANS simulations and the in-house 

experimental knowhow. Following the selection of pulsating mechanism, the 

experimental analysis and modeling were completed to characterize the complete 

pulsating cooling system. 
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3. In the final stage of activities, the experiments aspiring to study the main flow 

features of interest, the base pressure, shock strength and vortex shedding, were 

accomplished. Unsteady characterization of the shock wave orientation was carried 

out by high speed Schlieren imaging. Finally, the impact of the trailing edge shock 

wave was quantified through heat transfer measurements.  

1.4 Organization of dissertation 

The thesis is composed of five chapters. Following this introductory Chapter 1, 

Chapter 2 reviews the experimental and numerical tools utilized to obtain and analyze the 

data. The comprehensive description of experimental setup and measurement techniques 

together with the explanation of the numerical tools used are presented in this section. 

The data reduction techniques used to process the measurements and CFD results are also 

in the scope of this chapter.  

Chapter 3 provides the outcomes of the steady and unsteady numerical simulations 

performed on simplified blunt and circular trailing edge geometries exposed to 

supersonic flows. The changes in downstream flow features (base pressure, shock 

properties and vortex shedding) were tabulated for steady and unsteady coolant blowing. 

The relationship between the trailing edge purge and the shock wave attributes are 

explained to find the optimum cooling parameters. 

Chapter 4 describes the experimental and numerical results obtained over a linear 

cascade test section with steady and unsteady coolant ejection exposed to a range of 

Mach and Reynolds numbers. The airfoil loadings together with downstream pressure 

distributions were extracted for all test conditions to identify the changes on the strength 

of trailing edge shocks by cooling. The unsteady change in shock wave orientation was 

quantified from the Schlieren images. A base pressure and Strouhal number correlations 

are provided to characterize the steady and unsteady features of the base flows affected 

from the coolant blowing. 

Chapter 5 finally outlines the results and states the main conclusion of the research. 
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2 

Experimental and Numerical Tools 

2.1 Isentropic compression tube test rig 

2.1.1 Description of the facility 

An isentropic compression tube facility at the von Karman Institute has been used to 

perform all experiments in this work (Fig. 2.1). Optical access permitted Schlieren and oil 

flow visualizations. The facility provides 100 to 800 ms of testing time [63-65]. The test 

duration varies exponentially with the test Reynolds number (Fig. 2.2). 

 

  

Fig. 2.1. The schematic of the experimental facility 

 

The air inside the cylindrical vessel is compressed by a free piston driven by high 

pressure dry air (300 bars) until the desired upstream conditions are attained. 
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Subsequently, a shutter valve releases the air into the test section. The flow is vented 

axially to the atmosphere.  

The test section accommodates two flow passages separated by an airfoil. The model 

and two contoured end-wall sections are staggered at 66 degrees. Transonic flow 

adaptation is achieved by a sudden expansion downstream of the trailing edge. 

 
Fig. 2.2. Testing time changing for different test conditions (Reynolds and Mach 

number)  

2.1.2 Similarity parameters to design the experiments  

Achieving the similarity between the investigated flow field and the experimental-

numerical simulations is crucial to attain valid conclusions. At subsonic, transonic, and 

low supersonic velocities, for the same test model, the dynamic similarity of the flow 

field is determined by two similarity parameters: Reynolds and Mach numbers. 

In state of the art turbomachinery, single stage high pressure turbine nozzle guide 

vanes experience supersonic-transonic flows with Mach and Reynolds numbers (based 

on blade chord length) varying between 0.9 – 1.5 and 1 x106-10 x106, respectively, 

depending on the type and the application of the engine. Therefore, the experimental and 

numerical test campaigns were designed to match Mach and Reynolds numbers. Four 

Mach numbers (0.8, 0.95, 1.1 and 1.2) were tested along with two Reynolds numbers 

(4x106 and 6x106). High pressure stages of the gas turbines are cooled by high pressure 

air extracted from the compressor where the pressure is at a comparable level with the 

high pressure turbine stage. In order to understand the aerodynamic interactions between 
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the coolant stream and the main flow, their total pressure ratios should be considered as a 

similarity parameter. The range of coolant to inlet total pressures ratios changing between 

0.5-1.25 were obtained during the experimental and numerical simulations. 

2.2 Test section and blade model design 

The airfoil model reproduces the velocity distribution encountered in a modern 

cooled turbine airfoil. The trailing edge diameter was maximized to increase the spatial 

and temporal resolution of the vortex shedding phenomena in the Schlieren flow 

visualizations. The rear part of the suction side was identical to the airfoil documented by 

Sieverding et al. [17], as shown in Fig. 2.3. The rest of the profile was fitted by high-

order Bézier curves to ensure the continuity of the curvature and passage width, resulting 

in a smooth velocity evolution. The chord length of the final model geometry was 192 

mm and span (the width of the test section) was 100mm. 

 
Fig. 2.3. a)The construction of the airfoil geometry b) Internally cooled airfoil 

 

The aerodynamic performance of the cascade passage was tested for various 

downstream isentropic Mach numbers, ranging from 0.8 to 1.2. The flow field around the 

airfoil leading edge was investigated in detail to analyze incidence effects. No sign of 

separation was observed for the incidence angles of ±2 degrees.  

The blade was manufactured by using selective laser sintering to have the cooling 

channel and the complex network of pneumatic pressure pipes and cabling lines in a 

single piece model with high precision.  
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Fig. 2.4. The airfoil analysis for various incidences and flow conditions. 

2.3 Unsteady cooling system 

Pulsation in the coolant stream was provided by a perforated rotating disc. When the 

holes on the disc are facing the inlet and outlet ducts a flow pulse is generated. Detailed 

characterization of the rotating valve cooling system was performed upstream and 

downstream of the airfoil [66].  

2.3.1 Experimental setup 

A drawing of the blade model geometry is presented in Fig. 2.3-b. The cooling 

channel is carved inside, starting from a lateral inlet up to a 1.5 mm slot at the trailing 

edge. As stated before, the main interest here is to study the performance of a turbine 

blade with pulsating coolant stream ejected through the trailing edge. This investigation 
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consequently requires a pulsating source to supply the coolant stream. A pulsating valve 

is proposed to fulfill such requirement. The pulsating valve is a device capable of 

creating a pulsating mass flow from a continuous one. The device works in such a way 

that a perforated disk attached to an engine rotates between two lids, each of which is 

connected to a pipe, an inlet upstream of the disk supplies compressed air and an outlet 

after it delivers the pulsating stream. The holes drilled in the disk connect inlet and outlet 

pipes periodically and create the pulses. The frequency of the pulsation depends on the 

number of holes and the rotational speed of the disk, according to Eq. (2.1). The main 

elements and pictures of the valve are presented in Fig. 2.5. 

= ×disk
c holes
ωf N
60

    (2.1) 

where ωdisk is the rotational speed of the disk in rpm and Nholes is the number of holes 

perforated on the disk. In this case a disk with 4 holes and an engine rotating up to 3000 

rpm is being used, i.e. 200 Hz pulsation frequency. In order to test the ability of the valve 

to produce pulsating flow, a campaign of measurements was carried out. The valve was 

separately examined, simply connecting its inlet to a source of compressed air and 

keeping its outlet open. This kind of setup allows measuring directly the jet ejected to the 

atmosphere. One of the most important limitations when measuring pulsating flow is the 

frequency response of the instrumentation. For the frequency ranges considered here 

(around 200 Hz), hot-wires provide sufficient band-width but they lack the ability to 

detect backflow, a phenomenon that could occur in this case due to the unsteady nature 

of the problem. On the other hand, pneumatic pressure probes could not reach the 

required frequency range, depending on the selected configuration. Furthermore, due to 

the non-linear relationship between pressure and flow rate they will likely lead to non-

negligible errors even for the average value of a pulsating flow [67]. To avoid this pitfall, 

pressure measurements at all locations were also recorded with high-frequency response 

probes, based on piezo-resistive technology. 

Finally, for the study of the complete trailing edge pulsating flow system, the blade 

model was attached to the valve outlet. For this purpose, an adaptor was designed to 

procure a smooth transition between the circular shape of the valve outlet pipe and the 
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rectangular inlet of the blade’s cooling channel. A picture of the adaptor together with the 

blade model is presented on the top right part of Fig. 2.5. Due to the small height of the 

coolant channel at the trailing edge, only hot-wire was considered well suited at this 

location. An L-shaped hot-wire probe was used, to ensure minimum flow obstruction and 

avoid vibration when the probe is exposed to pulsating flow. 

 
Fig. 2.5. Pictures and schematic view of the pulsating valve. 

2.3.2 System modeling 

Taking advantage of the extensive set of experimental data obtained to characterize 

the pulsating device and the complete trailing edge pulsating system allowed to propose 

and validate simple models for each component and for the complete system. Validated 

models permit to gain a better understanding of the investigated phenomena, extending 

the experimental conditions beyond the practical and physical limits imposed by the 

testing itself and at a fraction of its cost. A one-dimensional unsteady gas-dynamic model 

was used to calculate the flow in the pipes and inside the blade cavity. This code was 

developed to allow internal combustion engine research, subjected to the same unsteady 

pulsating conditions considered for the present application. The one-dimensional 
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assumption is valid when the length to diameter (L=D) ratio of the pipe is large enough 

to consider fully developed flow. If the viscosity is neglected, the one dimensional 

governing equations for unsteady flow form a nonhomoentropic hyperbolic system, 

according to Eq. (2.2). 

∂W
∂t

+
∂F
∂t

+C = 0      (2.2) 

where W is the array of field variable, F is the flux array, C is the source array, x is the 

spatial coordinate and t is the time. The system of equations is formed with mass, 

momentum and energy conservation. The model assumes that the boundaries behave like 

a quasi steady manner, and respond instantaneously to changes in incident conditions. 

The duct ends are solved, as proposed by Benson [68] using the method of 

characteristics. The method of characteristics uses the following Riemman invariants to 

solve the properties of the gas at the end of the ducts. 

− −
= − ⋅ = + ⋅inlet outlet

γ 1 γ 1λ A U λ A U
2 2

   (2.3) 

where A = a/aref and U = u/aref. When nonhomentropic flow is considered, an energy 

equation in addition to the wave characteristics given by Eq. (2.3) is required. This extra 

equation introduces an additional characteristic, called path line, as follows: 

−⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

2γ
γ 1

ref A ref

P A
P a / a

    (2.4) 

Finally, Eq. (2.2) is solved using finite-difference schemes. Further details about the 

model can be found in Galindo et al. [69]. The modeling of the cooling system has been 

divided in different subsystems. The ultimate intent is to simulate the complete 

experimental setup, including piping; pulsating valve and blade cavity (see Fig. 2.6 for a 

detailed list of the elements and parameters considered). This model will be used to 

extend the experimental investigation beyond the limits of the current setup, mainly the 

upper frequency provided by the valve.  

A validation model is required to tune valve and blade ejection losses, which depend 

on the actual characteristics of the setup and cannot be known a priori. A different 

approach was needed to model of the blade cavity due to the lack of experimental results 
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at its inlet. In this case, the tuning was carried out in the frequency domain. The 

procedure consists of using two different pressure input signals, a step and a sinusoidal, 

and recording the responses of the model. With the first one the frequency response of 

the cavity (or its transfer function) is directly calculated first by numerical derivation of 

the temporal signals to transform the step into an impulse and then, moving to the 

frequency domain by applying the FFT of both input and output signals and dividing 

them. With the sinusoidal input a discharge coefficient for the trailing edge is adjusted, 

until the gain of the model calculated for the sinusoidal input and the respective gain 

calculated from the transfer function are equal. This process is detailed in Fig. 2.7. Fig. 

2.7-a and Fig. 2.7-b show the input step and impulse, obtained by numerical derivation, 

used to calculate the transfer function, together with the corresponding model responses. 

The magnitude of the transfer function calculated is shown in Fig. 2.7-c.  

 
Fig. 2.6. Model used to study the complete trailing edge pulsating system. 

 
Fig. 2.7. Procedure to obtain the transfer function of the blade cavity. 
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Finally, Fig. 2.7-d shows one sample sinusoidal signal and the corresponding 

response after the tuning process. It is worth noting from the transfer function that no 

attenuation can be directly related to the blade cavity itself at frequencies higher than 600 

Hz. 

2.3.3 Characteristics of the rotating valve 

A comprehensive characterization of the device selected to create pulsating flow was 

conducted. It was first analyzed in a separated setup to test its own performance and then 

connected to the blade model, in order to provide information about the complete trailing 

edge pulsating flow system. 

The setup proposed for the pulsating flow experiments provides control over the 

frequency and amplitude of the pulses generated by changing the rotational speed of the 

valve and the upstream total pressure independently. The rotational speed can vary 

between 0 and 3000 rpm simply increasing the voltage of the DC power supply from 0 to 

24 V. This simple method was found appropriate for the valve characterization because it 

produces low electric noise compared to more sophisticated electronic motor control 

circuits. This kind of systems relies on high frequency semiconductors and generally 

become significant sources of noise, which might deteriorate the quality of the 

measurements. Voltage motor control has, however, an important disadvantage: it does 

not provide feedback control of the velocity and hence it is not able to detect or 

compensate the effects of external perturbations. Even the change in the upstream total 

pressure is a perturbation (the higher the pressure the stronger the fluid pushes the disk in 

the axial direction), it has been proved that it does not act as a source of perturbation for 

the pressure range used during the experiments. 

The upstream total pressure determines the amplitude of the pulses. Its value can be 

modified by connecting to a compressed air source which is manually operated by a 

butterfly valve.  

2.3.4 Experimental results – Pulsating valve characterization 

For the pulsating valve characterization, the combinations of rotational speed and 

upstream pressure were selected. Four different rotational speeds and ten upstream 
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pressures were used. Four samples of the mass flow obtained at increasing rotational 

speed and upstream total pressure are presented in Fig. 2.8. 

 
Fig. 2.8. Pulsating valve mass flow experimentally obtained at different conditions. 

 

These plots reveal a clear pulsating jet at valve outlet, the amplitude of the pulses 

increasing with increasing upstream total pressure (P0). The shape of the signals 

corresponds to the diamond-shaped holes passing in front of the circular inlet and outlet 

pipes, yielding a sharp triangular waveform. Mass flow spectra clearly show a 
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fundamental frequency corresponding to the hole passing frequency and its harmonics 

but in most plots lower frequencies are also observable. These frequency content is 

noticeable with different magnitudes at 1/4, 1/2 and 3/4 of the fundamental frequency. 

To get a better understanding of the influence of rotational speed and upstream total 

pressure, peak-to-peak mass flow values are shown in Fig. 2.9. The plot contains an 

average of each value for at least 125 periods, taking into account that the sampling time 

was 3.27 seconds for all measurements and the maximum period (and hence minimum 

frequency) was around 25 ms as a result of 600 rpm. Peak-to-peak values were computed 

subtracting maxima and minima. They show an increasing trend, even when the curves 

do not fall in one line, differences are not significant taking into account the averaging 

process used to obtain this plot.  

 
Fig. 2.9. Peak to peak mass flow at valve outlet vs. upstream total pressure. 

 

Owing to the rpm counter, it was easy to explain the origin of fractional frequencies, 

which were related to mechanical imperfections in the machining of the holes. Little 

differences in the shape or size of the holes and misalignment of the disk create a unique 

fingerprint for each hole, generating a periodic disturbance at their passing frequencies, 

one fourth, one half and three quarters of the fundamental one. The signal provided by 

the rpm counter yields a high voltage level when a hole is facing the sensor (which is a 

ferromagnetic detector) and a low level when the sensor sees the metallic disk. Counting 

the number of pulses during a determined period of time gives the hole passing frequency 

and the rotational speed of the engine. Fig. 2.10 shows an example, comparing the jet 
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mass flow and the corresponding rpm signal. A theoretical square wave, which would be 

the one provided by the sensor if a perfectly machined disk could be used, is also 

presented. Even though both signals seem quite similar in a time plot their frequency 

content reveals important differences. The presence of such mechanical imperfections 

affect the flow and it is also distinguishable in the mass flow FFT plots. 

2.3.4 Experimental results – Blade model trailing edge ejection 

The outlet of the pulsating generator was connected to the coolant channel of the 

blade for the wind tunnel tests. The coolant channel geometry is limited by its trailing 

edge thickness, which has been scaled up to the maximum to ensure an adequate spatial 

and temporal resolution. As it was mentioned before, this value was found to be 1.5mm, 

the greatest which fitted inside the wind tunnel maintaining similarity with the 

representative turbine airfoil. 

 
Fig. 2.10. Temporal and frequency analysis of mass flow and disk rotation signals. 
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Fig. 2.11. Blade ejection mass flow experimentally obtained at different conditions. 

 

An investigation of the trailing edge pulsating flow was therefore convenient before 

proceeding to the wind tunnel tests, where the coolant flow will be ejected into the main 

stream making more difficult the access to the trailing edge region with hot-wires or any 

other intrusive measurement techniques. Outside the wind tunnel, on the contrary, it was 

easy to obtain detailed velocity measurements. Due to the small dimensions of the 
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trailing edge only hot-wire was considered to be sufficiently non-intrusive. To ensure that 

the ejected flow was little disturbed by the presence of the probe, an L-shaped single wire 

was used. With this arrangement the probe stem was completely out of the flow, only the 

prongs and wire were exposed. 

Results for similar conditions to the ones used before for the pulsating valve 

characterization are presented in Fig. 2.11. As predicted with the modeled transfer 

function, the smaller dimensions of the coolant channel had a great impact on the shape 

of the pulsating flow for the frequencies considered in the experiments, creating a 

smoothening effect which reduces their amplitude. Note how higher frequency harmonics 

(over 600 Hz) were, in fact, amplified, resulting in noisy signals. 

A comprehensive summary of the peak-to-peak values obtained is presented in Fig. 

2.12. It is interesting to remark that the lowest rotational speeds were the only ones 

providing an increasing peak-to-peak mass flow value with increasing upstream total 

pressure. The blade ejection results present an increasing trend for the maximum values, 

separated in two groups, the smaller values of maximum mass flow corresponding to the 

higher rotational speeds (Fig. 2.13).  

 
Fig. 2.12. Peak-to-peak mass flow at blade trailing edge outlet vs. upstream total pressure 

 

This phenomenon was thought to be related to different sources. First, it was 

attributed to the filtering process. After the signals were acquired, a low-pass filter was 

applied to remove noise. If the cut-off frequency of the filter was fixed the filtered signal 

contained a limited number of harmonics, which depended on the fundamental frequency 
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of each signal. In this case, fundamental frequencies changed from less than 20Hz up to 

200Hz, and consequently for a cut-off frequency of 1kHz, the number of harmonics 

captured changed from 5 up to 50. To avoid such inconvenience, a dynamic filter was 

implemented. This kind of filter first calculates the fundamental frequency of the signal 

and then defines the cut-off frequency accordingly, allowing a fixed number of 

harmonics to be represented. After using the dynamic filtering, no significant change was 

observed in the location of the maxima. It was also realized how the uncertainty of the 

measurements played an important role in achieving accurate distributions of the mass 

flow characteristics. But the uncertainty analysis carried out revealed no major 

contributions to explain differences among low and high rotational speeds. The way in 

which the plots were created was also a source of uncertainty since all signals record a 

fixed period of time and hence the number of points used to compute the average maxima 

and minima depends on the frequency, being higher for higher frequencies. After 

changing the averaging routine, however, no change was detected. 

 
Fig. 2.13. Maximum mass flow at blade trailing edge outlet vs. upstream total pressure. 

Error bars represent repeatability estimations based on ensemble average. 

 

At this point, it was decided to use phase-locked averaging (PLA) to investigate the 

periodicity of the mass flow waves. PLA or ensemble average took advantage of the 

availability of an accurate record of the angular position of the disk at any moment 

provided by the rpm counter to compute an average period using a determined number of 
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periods from the original signals. After applying PLA the signals were reduced to just 

one period (either a complete disk rotation or a hole-passing event) which was used to 

compute maximum, minimum, average and peak-to-peak values. Using one complete 

disk rotation as a period led to a high level of periodicity. Fig. 2.14, for instance, presents 

the original mass flow signal for one case compared to the ensemble average of eight 

disk rotations. In the bottom plot the original signal has been split in 8 rotations and 

superimposed to the ensemble average period calculated with those rotations. If the 

sections of the signal to be used for the ensemble average were plotted, like in this case, 

for a fixed time, a direct estimation of the degree of repeatability is obtained. With the 

complete set of results after the averaging procedure it was possible to obtain new plots. 

Maxima and mean values were presented in Fig. 2.13, including error bars indicating the 

resulting repeatability calculated for eight disk rotations. From this plot, it is clear that 

even considering repeatability, there is still difference between high and low velocities. 

 
Fig. 2.14. Mass flow sample signal and superimposition of 8 rotations and PLA based on 

those rotations 

2.3.4 Flow modeling of pulsating valve blade assembly 

The pulsating valve model was tuned by means of the extensive set of experimental 

data recorded. The tuning process relied on adjusting the value of the discharge 
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coefficient of the valve. Fig. 2.15 compares experimental data and results from the 

adjusted model, in terms of velocity at outlet and total pressure at inlet.  

For the modeling of the complete trailing edge pulsating system, the coefficients 

previously found for the individual models of valve and blade were first tried. The blade 

presented no major problems in the complete system. The valve coefficient, on the 

contrary, had to be readjusted to fit the experimental data. This fact was obviously due to 

the change in pressure downstream of the valve. When the flow was not constricted by 

the blade coolant cavity, the downstream section of the valve was subjected to 

atmospheric conditions. The blade coolant cavity increases the pressure directly 

downstream of the valve, affecting its performance, particularly regarding leakage. The 

discharge coefficient needs to be adjusted to take into account these new working 

conditions. After the tuning process, modeled data fitted quite well with the experiments, 

as shown in Fig. 2.16. 

 
Fig. 2.15. Measured and modeled values of the pulsating valve, flow velocity at outlet 

(top) and total pressure at inlet (bottom). 
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Fig. 2.16. Measured and modeled values of the complete trailing edge pulsating system, 

flow velocity at the trailing edge (top) and total pressure upstream of the pulsating 

generator (bottom). 

2.4 Measurement techniques 

2.4.1 Steady and unsteady pressure measurements 

Measurements were performed at several locations along the test section. The inlet 

total pressure was measured with a Pitot probe located one chord upstream of the airfoil 

leading edge. The probe head was at 30% of the inlet channel height. 

The model and the adjacent suction and pressure sides are equipped with pneumatic 

lines at mid-span. The first passage (in Fig. 2.17-b) contains 13 taps on the lower wall 

(pressure side) as well as 13 taps on the model suction side. Similarly, the second passage 

has 6 taps on the airfoil (pressure side) and 14 taps on the upper wall (suction side). 

Additionally, 5 piezoresistive sensors are installed on the model. The trailing edge was 

instrumented with two piezoresistive sensors and two pneumatic lines located at each 

side of the cooling slot. 

The outlet pitch-wise pressure distribution was monitored by a row of pneumatic taps 

located at 25% of the chord downstream of the trailing edge plane, consisting of 12 taps 
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over 80% of the pitch. All pneumatic lines were sampled with 1.1 bar ScaniValve sensors 

at a sampling rate of 300 Hz, whereas the piezoresistive sensors were recorded at 500 

kHz. The measurements were averaged for a constant time interval when the stable 

operating conditions were achieved to attain the time-averaged quantities. Fig. 2.17-a 

displays the Mach number evolution in a typical experiment. 

 
Fig. 2.17. a) Variation of downstream isentropic Mach number during a test; b) 

Schematic view of the test section with pressure measurement locations; c) Schlieren 

picture together with pressure sensor taps; d) Manufactured test set-up  

2.4.2 Thermal measurement 

Inlet fluctuations on the incoming stream were measured at one chord upstream of the 

cascade by a micro thermocouple with 25 µm junction thickness. Steady and unsteady 

surface temperature measurements were performed on the suction side contoured top 
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wall of the test section to assess the disturbances on the boundary layer by using 11 

nickel based thin film sensors fabricated by Tao Systems. The entire unsteady data 

acquisition was done at sampling frequency of 1 MHz. The part of the sampled data 

which falls into the constant main flow condition time interval was used for processing. 

The wall temperature signals acquired by thin film sensors were decomposed into 

mean and fluctuating components. The mean value was used to calculate the heat flux by 

solving 1D heat conduction equation while substrate of the sensors considered as semi-

infinite medium. Following this procedure, the heat transfer coefficient h was calculated 

by using the wall and the gas temperatures. Finally, Nusselt numbers for each sensor 

were calculated. The root mean square (RMS) of the temperature was extracted from the 

fluctuating component of signal to measure the level of unsteadiness in wall temperature 

on each gauge locations. 

 
Fig. 2.18. Pressure and temperature measurement locations 

2.4.3  Schlieren flow visualizations 

High speed Schlieren flow visualizations were performed with the Z-type Schlieren 

setup [70]. The 800x600 pixel resolution pictures were acquired at a rate of 3200 Hz by a 

Phantom V9 high-speed camera. A digital image processing algorithm was developed in 
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Matlab® to analyze the images. Each single image was automatically rotated and cropped 

around the area of interest. A local background was created and subtracted from the 

image to compensate for illumination variations. The algorithm converted this image 

portion into a binary image, i.e. a logical array, and tagged its connected components 

providing a label matrix, where each object was identified with a positive integer 

number. The geometrical properties of the detected objects were obtained by measuring 

the characteristics of each labeled component in the label matrix. Eccentricity was used 

as criterion to select the one that corresponds to the compression wave among the 

detected items. The center and the orientation of the wave were then stored for further 

investigation. Spectral analysis of the Schlieren images allowed identifying the shock 

displacement frequency and angle variation amplitude. The impingement location of the 

shock wave on the adjacent suction surface was also extracted as complementary 

information for the blade loading measurements. 

 

Fig. 2.19. Schematic of Schlieren setup and test section 

2.4.3.1. Quantitative procession of Schlieren pictures 

In order to correctly analyze Schlieren images, it is necessary to suppress the 

vibration-induced image shift by re-centering them. A devoted algorithm has been 

developed (Fig. 2.20) to bring every image to the same alignment with highest precision. 
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Fig. 2.20. Vibration suppression algorithm flowchart 
 

In order to re-center each image read from the Schlieren video, an object that 

preserves its shape and size despites vibrations and illumination inhomogeneity needs to 

be chosen and used as reference target. In this study, two objects were suitable: the 

trailing edge cooling channel and the optical window. The latter was selected since its 

results were found to be more reliable and stable. The image is cropped around the 

bottom left optical window quadrant, which is the less sensitive image portion to light 

variation.  
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The image was then binarized with a modified global image threshold based on 

Otsu's method [71]. The threshold was in fact halved respect to the default value, so that 

the optical window was emphasized. The holes inside the binary image were filled, in 

order to obtain a unique continuous circle corresponding to the window itself.  

The exterior boundary (Fig. 2.21-a) of the window is traced in the binary image via 

the bwboundaries function. A subset of points is selected for the fitting. These points 

correspond to the bottom left quadrant of the circle and are automatically found by the 

program. 

 

Fig. 2.21. (a) Binary image boundary selection, (b) Circle fit and centre identification 

 

The points belonging to the circle boundary were fitted with Bucher’s circle-fit 

function [72], which is based on the minimization of the sum of squared radial 

deviations. The method provides the center coordinate and the radius of the circle (Fig. 

2.21-b). The program stores both the center coordinates (xc,yc) and the radius of the circle 

for further analysis. A crop-rectangle is built around the circle center. The original image 

is cropped by the width and height of the rectangle which are set at about 1.5 times the 

mean optical window diameter. Thus the new image is centered in (xc,yc), and saved. 

The vibration suppression algorithm was validated by re-running the program on the 

new re-centered images (no initial crop applied) and comparing the center dispersions 

(xc-xm,yc-xm). Fig. 2.22-a and Fig. 2.22-b show the center coordinates dispersion and the 

center distance distribution, respectively. Both in the x and y direction the shift is 



 

 29 

reduced of about six times, from an average mean-center distance Δ of 2.5 pixels to a 

mean distance of 0.45 pixels. 

 

Fig. 2.22. (a)Image centre coordinate dispersion plot, (b) Mean centre distance 

distribution 
 

Shock wave identification algorithm 

Decision making algorithms find their application in variety of fields from cancer 

diagnosis [73] to airbag control [74]. These programs are typically tailored ad hoc on the 

specific problem, since the creation of a “computer-aided” decision procedure requires 

the transformation of the properties, belonging a particular phenomenon, into measurable 

quantities.  

It is known in fact that even if an image may look confused, many objects are 

intersecting each other or small branches are interfering with the main path, an 

experienced person can still identify the principal target among the others. The main goal 

of this work was to translate the human brain “natural” correlations into mathematical 

operations in case of shock wave identification. When more scenarios were possible, 

mathematical, geometrical or logical criteria were found to allow the program to take the 

correct decision. A Digital Image Processing algorithm was therefore developed with 

Matlab® to automatically analyze the Schlieren images. The flow chart of the program is 

shown in Fig. 2.23 and detailed hereafter. 

1. Each single image is read and cropped around the area of interest.  
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2. A local background is created and subtracted from the image to compensate for 

illumination variations which is computed row by row, by computing the average 

columns intensity. Then, the algorithm converts this image portion into a binary 

image, i.e. a logical array.  

3. The program labels (bwlabel) the connected components providing a label matrix 

L, where each object is identified with a positive integer number, following the 

general procedure outlined in [75]: 

a) Run-length encode the input image. 

b) Scan the runs, assigning preliminary labels and recording label equivalences 

in a local equivalence table. 

c) Resolve the equivalence classes. 

d) Re-label the runs based on the resolved equivalence classes. 

4. The properties of the detected objects are collected in the label matrix by 

measuring the characteristics of each labeled component. Both shape properties 

(e.g. area, centroid, eccentricity, equivalent diameter…) and pixel value 

measurements (e.g. maximum intensity, pixel values…) are provided by Matlab® 

built-in function regionprops. 

5. In order to eliminate small bifurcations, minor waves or reflections, only the 

subset of pixels with the higher intensity is selected among those belonging to the 

identified objects (Fig. 2.24-a). Since per each row xi, more columns yi,j* may 

respect this condition, a mean bifurcation line is computed: 
n

* *
m,i i , j

j 1

1y y
n =

= ∑     (2.5) 

and, to exclude outliers, only the points yi,j# that lie within a distance ε from y*m,j 

are chosen. The correct mean line is finally re-built row by row: 
* *
i , j m,i m,iif y y ε y− ≤ →     (2.6) 
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Fig. 2.23. Shock wave detection algorithm flow chart 
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Fig. 2.24. Intensity based main bifurcation identification: the image as a matrix (a), 

outliers exclusion (b), solution continuity evaluation: Yup and Ydw (c), their difference 

ΔY (d), piecewise derivative of Yup and Ydw (10 points per piece) (e), shock boundary 

identification (f) and final shock direction (g) 

 
Per each coordinate xi the upstream and downstream border coordinates (Yup and Ydw, 

Fig. 2.24-c) are selected from the intensity-identified cloud of points (xi, yi,j
#). The 

continuity of the bifurcation line ym is verified by evaluating the normalized difference 

between the two border lines (Fig. 2.24-d): 
up dw

i i iΔY Y Y= −     (2.7) 
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( ) bdΔY max( ΔY ) min( ΔY ) / mean( ΔY ) ε= − <   (2.8) 

a) If the normalized distance difference dΔY is lower than a threshold value (e.g. 

1.5 pixels), the coordinates cloud (xi, yi,j#) is passed to the main program, 

where it is transformed into a binary image, identified as an object and 

measured. 

b) If dΔY>εb the orientation-based path identification module is called. 

6. The two lines Yup and Ydw are filtered with a low pass filter in order to exclude the 

higher and sharper peaks. Their piecewise derivative is then computed (Fig. 2.24-

e) by solving the least square problem: 

( ) 1k k k , jm V y
−

=     (2.9) 

where k indicates the kth piece of points.  

The line with the minimal derivative variation (absolute value difference and number 

of sign inversions) is indicated as the correct shock wave outer border. In the example 

of Fig. 2.24-e, the upstream line Yup is therefore the one that represents the wave 

border YSout. Finally the inner border of the bifurcation is computed (Fig. 2.24-f) as it 

follows: 

a) per each row xi, starting from the selected outer border YS,iout and going 

toward the image centre, the difference between two successive points among 

yi,j# is computed: 

# #
i i , j i , j 1Δy y y −= −     (2.10) 

b) the last point that separates from the previous one of less than 1.5 pixels is 

selected as the inner border of the shock YS,iin. 

The coordinate of the points lying within YSin and YSout are passed to the main 

program, where they are transformed into a binary image, identified as an object and 

measured. 

7. Eccentricity is used as ultimate criterion to select, among the detected items, the 

one that corresponds to the compression wave or to verify that the selected object 

is compatible with a shock wave. If the eccentricity is bigger than the threshold 
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imposed, the centre and orientation of the wave are computed and stored for 

further analysis, otherwise no data are saved.  

8. The program loops over all the Schlieren images, providing the time-resolved 

shock wave angle and centre coordinate. 

2.6 Numerical modeling of simplified geometry for parametrical 

study 

2.6.1 Numerical tools and computational domain for steady state analysis 

Numerous applications of Reynolds-averaged Navier-Stokes equations (RANS) with 

k-ε turbulence models for predicting high Reynolds number turbulent flows and viscous-

inviscid interactions have been documented in the literature [76-78]. The flow field 

around a trailing edge section with a set of different cooling ejections can be reproduced 

using a validated computational solver and a computational domain appropriately 

meshed. In this section, the solver validation and the grid selection are described.  

2.6.1.1 Solver validation 
The numerical validation has been performed on a backward facing step due to the 

similarity with the trailing edge flow. The topology of the Prandtl-Meyer expansion fan, 

boundary layer detachment forming a shear layer between the supersonic flow and the 

subsonic recirculation region, wake lip and reattachment shock waves are analogous for 

both geometries. The experimental results obtained by Smith [79] on M=2.5 stream 

flowing over a supersonic rearward facing step were used for the validation of RANS 

solver. The geometry used in Smith’s experiments had a 0.0113 m step, and 0.1016 m 

upstream section for the incoming boundary layer to develop. The downstream part was 

kept 0.3048 m long to capture well the supersonic flow features. The domain was 

enclosed with a slip wall 0.1588 m above the step. The pressure inlet and outlet boundary 

conditions were set to 127553 Pa and 7750 Pa respectively to match the experimental 

conditions at  M=2.5 and Re=78.74x106/m.  The inlet total temperature was 344 K. In the 

calculation, the fluid domain was meshed using triangles with a non uniform rectangular 

boundary layer mesh close to the wall. To solve the laminar sublayer, y+<1 was kept for 
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the incoming turbulent boundary layer. The resulting 2D mesh consisted of 30,000 grid 

points.  

The methodology validation was performed using the commercial CFD package 

ANSYS 14 (Fluent). The fluid was considered as an ideal gas and the equation was 

solved explicitly using the density based solver due to the high compressibility effects. A 

second order upwind differencing was used in the space domain. The turbulence of this 

high Reynolds number flow is modeled using two equation realizable k-ε model. The 

enhanced wall treatment with pressure gradient effects was selected to account for 

compressibility and pressure gradient. Pressure inlet and non-reflective outlet boundary 

conditions were imposed. The walls were considered adiabatic with the non-slip velocity 

condition. Convergence was assumed when the absolute residual for all variables became 

less than 0.001. Fig. 2.25 shows the good agreement between the experimental and 

numerical traces of the shadowgraph images. All the relevant flow patterns were 

reproduced in the numerical calculations with accuracy, namely the expansion fan, shear 

layer, separation shock and reattachment shock. 

 
Fig. 2.25. Comparison of main flow features extracted from shadowgraph images of the 

experimental results of Smith (dashed) and FLUENT solver (solid) for M=2.5. 

2.6.1.2 Computational grid and operating conditions 
The test model consists of a flat plate with a blunt trailing edge with a cooling slot 

placed at the center of the trailing edge. Fig. 2.26 displays the computational domain and 

enlarged view of the grid around the cooling channel. The grid is highly resolved on the 

boundaries, corners and the wake.  
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Fig. 2.26. Computational domain of mesh at trailing edge and cooling slot region. 

The computational domain had a length of 21.75d (d is the trailing edge thickness 

equal to 0.02m) and 20d wide. The cooling channel duct length and width were 2.5d and 

0.3d respectively. The coolant air was fed by a larger cavity, with a width 3 times larger 

than the cooling channel to ensure low subsonic conditions. The computational domain 

was meshed with 140,539 nodes considering two distinct zones. The structured non 

uniform rectangular mesh close to the solid boundaries, namely the surface of the flat 

plate, the trailing edge, and the cooling channel were refined to resolve the boundary 

layer. The resulting y+ values were lower than 1 on the trailing edge. The outer grid was 

meshed with unstructured triangles with a growth factor rate of 1.1 and keeping a 

maximum size of 0.05d. At the main flow inlet, uniform total and static pressures were 

imposed equal to 368470 and 10000 Pa respectively. A stagnation temperature of 365 K 

was imposed to obtain 1.5 inlet Mach number. The Reynolds number at the inlet was 

9.4×106. The coolant pressure was varied between 17% and 211% of the free stream, 

with the coolant temperature kept at 300 K. 
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2.6.1.3 Grid independence 
A thorough study of the grid sensitivity was carried out to ensure the time averaged 

unsteady Reynolds Averaged Navier Stokes (URANS) solutions were grid-independent 

for a particular meshing scheme. This task was conducted on a configuration with 

subsonic coolant jet where the coolant pressure was 19% of main flow total pressure. 

Three meshes were used (N1, N2, N3), resulting in a refinement ratio 

r=(Ncoarsen/Nrefine)0.5 close to 1.5, where N is the number of cells with same growth rate 

and y+ values with N1>N2>N3. To evaluate the grid sensitivity the base pressure was 

calculated through area weighted average criteria (φ). The difference in the variable φ 

between two grids is denoted by εxy= φx-φy. Using the method proposed by Richardson 

[80], an apparent refinement ratio (p) and an extrapolated parameter of study were 

obtained, 2.66 and 61484 Pa respectively, according to Stern et al. [81]. The grid 

convergence study is summarized in Table 2.1. The base pressure showed a monotonic 

behavior with a negligible uncertainty for the grid N1. According to the results, the grid 

N2 represented a relative error lower than 2 %. Hence, the grid N2 was selected as an 

efficient grid to perform the following numerical simulations. The time step was adapted 

to each condition, ranging from 0.5 to 5x10-6 s. Convergence was achieved after 6 to 20 

thousand time steps which required 180 to 600 computational hours in a 6-core Intel i7 

2.8 GHz with 8 GB RAM. 

Table 2.1. Grid independence and relative error study results. 

Grid 
Number of  

Nodes φ r ε Error (%) 

N1 271,146 61812 
1.39 -650 

0.05 

N2 140,539 61162 1.12 

1.25 -2393 
N3 88,848 58769 4.9 

2.6.1.4 Numerical procedure to analyze shock waves 
Shadowgraphs have been utilized to detect the gradients since the 17th century [70]. 

Schlieren techniques have been powerful experimental tools to detect the supersonic flow 

structures with sharp density gradients, such as shock waves and expansion fans. Other 

methodologies, like background oriented Schlieren or calibrated color schlieren, have 

been applied to provide a quantitative understanding of the flow field [70, 82-84]. The 
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density gradient fields of the numerical results have similarly been post-processed. Fig. 

2.27 depicts the methodology to obtain a comparative evolution of the shock wave 

properties for different cooling conditions. First of all, the density gradient field was split 

into the axial and normal components (∂ρ/∂x and ∂ρ/∂y). Secondly, the gradient data was 

sampled on the horizontal measurement lines to track the flow features. Data along each 

horizontal line (i,…,v,…,x…)was treated by a Matlab routine to determine the maximum 

and minimum values of density gradient components along the horizontal and vertical 

directions. Those maximum and minimum, respectively displayed in step 3, designate the 

location of the trailing edge shocks at each height. The mean level of compression across 

the shock wave was evaluated based on the modulus of the density gradient. On the 

fourth step, the trailing edge shock wave was reconstructed by using the least square fit 

on the coordinates of the extreme gradient values. Hence, the inclination angle, position 

of the shock wave together with the intensity was obtained for each cooling condition.  

 
Fig. 2.27. Post-processing procedure for shock identification. 
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2.6.2 Numerical tools and computational domain for transient analysis 

In order to study the flow behavior at the trailing edge, a simplified two-dimensional 

geometry has been modeled representing the rear part of an airfoil trailing edge. The 

computational domain is illustrated in Fig. 2.28-a and Fig. 2.28-c, with a rectangular 

shape 22.5dx20d, where d is the trailing edge thickness. The length of the flat part from 

the inlet to the trailing edge is 12.65d while the coolant inlet section is 0.9d. The coolant 

channel is made up of a 2.5d long settling chamber and following a contraction 0.3d, on 

each side, a 2.5d long 0.3d wide section up to the coolant exit (Fig. 2.28). The outlet 

section is 20d downstream of coolant exit section. 

 
Fig. 2.28. Meshes used for unsteady simulations: (a) rectangular trailing edge section, (b) 

in detail (c) rounded trailing edge section (d) in detail 

 

A 2D hybrid unstructured grid has been generated: 20 prismatic layers have been 

used for the boundary layer evaluation and a refined mesh has been created in the 

wake/shock region to better represent the shock system and the base region (Fig. 2.28-b 
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and Fig. 2.28-d). The simulations were carried out with University of Florence’s in-house 

HybFlow URANS solver, which was previously validated for steady and unsteady 

applications in transonic turbines [85, 86]. The spatial discretization is performed by 

means of a compressible finite volume method with up-winding for the convective terms 

of the Navier-Stokes equations. The upwind approach is the Roe’s approximated solver 

of the Riemann problem [87], where the solution is reconstructed at cell interfaces by 

means of a least-square method. Turbulence is modeled using the standard k−ω model 

developed by Wilcox [88]. The inlet total temperature was set at 365K and the wall 

temperature at 250K, which has been chosen according to experimental data. Supersonic 

inlet conditions have been implemented in the solver. Inlet Mach numbers of 1.2 and 1.5 

has been considered. Steady calculations on blunt and rounded geometry have been 

performed without coolant and at five different blowing rates. The unsteady analysis has 

been performed considering a time step of 3x10-6s which corresponds to a sampling 

frequency of 333kHz. First, continuous blowing has been tested at six blowing ratios. 

Then sinusoidal boundary condition on mass-flow has been enforced for the rounded 

geometry at coolant inlet section. Two frequencies have been tested, 200 Hz and 1000 

Hz, as well as two amplitudes have been adopted for each frequency, in order to give a 

total mass-flow variation of 40% and 80% of the mean level. The average coolant mass-

flow is maintained unaltered for all the cases. 

2.7 Numerical modelling of the periodic airfoil model 

2.7.1 Description of the solver 

The commercial solver ANSYS FLUENT was used for all the simulations. The 2D 

version solved the governing equations using a co-located grid, i.e. all the flow 

parameters were stored in the cell-centers. Regarding the spatial discretization, a second 

order upwind scheme was selected for the present numerical campaign. A second order 

temporal discretization was used to obtain the time-accurate unsteady solutions. 

Gradients were reconstructed using a second order accurate method based on cell 

volumes. Turbulence was modeled using the two-equation SST model by Menter [89]. 

Calculations were performed using a parallelized approach on multiple computer nodes. 
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2.7.2 Computational domain and parameters of the analysis 

The numerical domain reproduced a single vane passage, as displayed in Fig. 2.29, 

considering periodic boundary conditions on the upper and lower ends of the domain. 

The inlet and outlet sections which were inclined according to the stagger angle of the 

linear cascade were located 0.5 and 0.75 chords away from the profile leading and 

trailing edges respectively. The computational mesh was prepared using the commercial 

tool Centaur. Special attention was paid to the resolution on the wall, the base and the 

wake regions. An O grid of 20 prismatic layers was realized around the blade. The 

resulting y+ value was maintained below 1 around the airfoil profile. The final mesh 

consisted of around 30,000 prismatic and 535,000 triangular elements. The imposed inlet 

total pressures, total temperatures, and flow angles corresponded to the experimental 

values. At the outlet, the measured average static pressure Ps2 was imposed. All the walls 

were assumed to be isothermal at ambient temperature with no-slip boundary condition. 

To model the pulsating coolant, a user-defined function was implemented with a pressure 

shape, similar to the experimental conditions documented by Gonzalez et al. [66], as 

depicted in Fig. 2.11-left. 

 
Fig. 2.29. Computational domain: as cropped from the test section (top) along with 

magnified views of the leading edge (bottom left) and trailing edge (bottom right). 

In order to ensure a frequency resolution of 500 kHz, a time step of 1 µs was used. 

Time averaged data was obtained by calculating the mean of 4 consecutive periods, after 
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verifying that the level of dispersion was below a threshold. The analysis of the data with 

pulsating frequency (200 Hz) was accomplished using a time step ten times larger (10 

µs), because the typical period to resolve is 100 times greater. The computational time 

required to achieve full convergence was 1344 CPU hours in two processors, dual core 

AMD Opteron with 4GB RAM. 

2.8 Numerical modeling of the test section 

2.8.1 Description of the solver 

Unsteady numerical simulations of the test section were performed to understand the 

characteristics of the design by using CRADLE’s SC/Tetra computational thermo-fluid 

analysis system based on finite volume method. The discritization of the governing 

equations was made by cell vertex finite volume formulation in the solver. The 

compressible flow solver made use of segregated pressure based solution algorithms 

[90]. The solver has second order accuracy in space and utilizes second order implicit 

temporal discritization for time derivatives. Further information about the solver is 

provided in the literature [91-93]. For current simulations, turbulence closure is 

maintained by high Reynolds number shear stress transport (SST) k-ω model. Pressure 

inlet and atmospheric pressure outlet boundary conditions are imposed at the inlet and the 

outlet of the test section respectively. The surfaces were treated as adiabatic, no-slip 

walls. The time step for the simulations was set to be 5x10-7 seconds corresponding to 2 

MHz sampling frequency to capture the highest expected frequency of unsteadiness 

(trailing edge vortex shedding) in the test section. 

 

Fig. 2.30. Three-dimensional computational grid 
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A three dimensional computational mesh was created by using the hybrid mesh 

generator program that is included in the software suite. A set of five prismatic layers are 

placed on the solid surfaces to attain y+ values around 1 on the flow passage surfaces. 

The three dimensional computational domain shown in Fig. 2.30 and Fig. 2.31 is 

composed of approximately 16 million computational elements. 

 

Fig. 2.31. Detailed, cross sectional view of the flow passages 
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3 

General Aspects of the Trailing Edge 

Shocks and the Base Bleed 

Interactions in Supersonic Confined 

Flows 
 

3.1. Introduction 

Improvements in lifespan and efficiency of mechanical systems has steered research 

towards limiting detrimental aerostructural interactions and mitigating the losses. Such 

interactions become significantly severe when the internal flow velocities are beyond the 

speed of sound. Shock waves are formed at the trailing edge of the bodies submerged into 

the transonic and supersonic streams. The downstream propagation of trailing edge 

shocks causes undesired perturbations and reflections in the flow field. The subsequent 

unsteady forcing on solid components eventually leads to fatigue problems. The 

modulation of shock waves might alleviate such unfavorable consequences. 

Understanding the trailing edge flow field is essential to reveal the parameters affecting 

shock waves. Fig. 3.1 represents the flow topology at the trailing edge and downstream. 

Owing to Coanda effect, upstream boundary layers remain attached at the trailing edge 

corner, separate immediately downstream and consequently form shear layers. While 

simultaneously, the main flow accelerates through a Prandtl-Meyer expansion fan. The 

shear layers propagating from each side of the trailing edge relign downstream at the 
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point of confluence and merge into the wake. Preceding this point, enclosed by the shear 

layers and the trailing edge, there is a dead air zone, where the low momentum and 

constant pressure flow recirculates. This area is often referred to as the base region, 

whose attributes are predominant on the free stream flow features, such as vortex 

shedding and compression waves. The compression in supersonic trailing edge flows is 

commonly observed in two stages. A weak and local compression wave, called separation 

or lip shock, is formed at the point of flow detachment in order to adapt the pressure 

gradient between the shearing flow and the downstream. Although the properties of the 

lip shock depends on both the trailing edge geometry and free stream flow conditions, it 

is usually embedded into the shear layer and consequently it may not be visible. Further 

on, at the confluence point, the flow changes its direction notably and therefore it is 

forced to compress originating a system of strong trailing edge shocks. The degree of 

compression, hence the strength of the shock waves, highly depend on the base region 

properties.  

 
Fig. 3.1. Schematic representation of supersonic flow on a blunt trailing edge. 

 

Several analytical, numerical and experimental studies have been dedicated to 

understand the characteristics of the base flows in multitude applications. Prior literature 

can be classified into four categories: characterization of the base pressure to reduce the 
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base drag on wing sections and projectiles, the base pressure loss and trailing edge shocks 

in turbomachinery, the shock wave-boundary layer interaction, and the effects of trailing 

edge bleed on the base pressure and trailing edge flow.  

Nash [94] reviewed the experiments on two-dimensional supersonic base flows and 

showed that the base pressure increases with increasing boundary layer momentum 

thickness. Consequently, the base drag force reduces. His later compilation recorded the 

effect of base pressure on the point of vortex street formation, which leads to an 

additional drag in subsonic speeds [95]. Moreover, a methodology was proposed to 

calculate the base pressure for free stream Mach numbers between 1.5 and 3, yet the 

relationship between the base pressure and recompression downstream remained 

unexplained. In conjunction with these studies, an extensive experimental work focusing 

on the base flows for a range of Mach number from 0.4 to 1.1 was conducted on blunt 

and circular trailing edges [96]. An abrupt fall in the base pressure, along with reduction 

in base unsteadiness, was observed as Mach numbers approached to unity. Hence the 

base drag increases rapidly near sonic speeds. The measurements conducted on the 

circular trailing edge showed comparable levels of base pressures beyond the sonic 

speeds. A similar analysis made for high supersonic range also showed that the trailing 

edge shock structure remained unchanged while the corners of a blunt trailing edge was 

gradually smoothened [97]. On the other hand, the point of separation moved upstream 

resulting in higher lip shock angles as the radius of the edge rounding was increased. 

Furthermore, the base pressure reduced monotonically as the Mach number increased 

from 2 to 4.5 for a wide range of Reynolds numbers (105 to 2x106). Kawai and Fujii 

recently showed the same trend for a wider range of Mach numbers (0.5-4) through 

LES/RANS hybrid simulations over a circular cylinder with a blunt trailing edge. The 

study proved the three and two dimensional base flows exhibit similar features [98]. 

Following the sharp decrease in the base pressure at sonic velocities, a monotonic 

reduction was observed from M=1.5 till M=4. Similarly, Sieveding et al. observed 

conforming trends on measurements made on a flat plate with rounded trailing edge at 

Mach 1.0 to 2.3 [99]. 

Base pressure losses, along with the trailing edge flow topology, has been thoroughly 

investigated in turbomachinery applications, since trailing edge losses contribute up to 

33% - 50% of total profile loss [100, 101]. The related losses can be split into: loss due to 
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mixing in the wake, the pressure deficit at the base region, entropy generation across the 

separation shocks, and the trailing edge-shock wave interactions. As widely investigated 

for the drag problem in propulsion, wake mixing creates a significant efficiency reduction 

in thick trailing edge blades. Nonetheless, the most serious consequence of transonic flow 

in turbines is the shock system at the trailing edge [101]. Impingement of the trailing 

edge shock on the neighboring blade and the adjacent blade row perturbs the boundary 

layer, promotes the formation of a separation bubble and eventually flow separation on 

the suction surface [101, 102]. Paniagua et al. [102] numerically and experimentally 

investigated an uncooled transonic high pressure turbine stage, when the mean exit Mach 

number was increased from 1.07 to 1.24 (i.e. stronger trailing edge shocks), the turbine 

efficiency was reduced 5%. The trailing edge shock waves cause performance abatement 

and additionally high-cycle fatigue problems when interacting with downstream 

components.  

The shock wave-boundary layer interactions and their control has also been another 

relevant area of research. Kornilov [103] worked on the separation length at M=3 for 

various Reynolds numbers, channel widths and shock strengths. The length of the 

separation upstream of the shock impingement location increased with increasing shock 

strength and decreasing Reynolds number. Tindell and Willis [104] tested in a M=2.5 

wind tunnel a variable intensity shock wave and air injection at the point of separation to 

increase supersonic aircraft inlet performance. Separation was inhibited by blowing 

1.5%-2% of the mainstream flow at three to seven boundary layer thicknesses upstream 

of the impingement location. Lin et al. numerically studied three passive control devices, 

at low supersonic flow regime, based on upstream blowing and downstream bleeding of 

the shock impact region. Investigations showed that the devices were ineffective in 

improving boundary layer profile [14]. Young et al. [105] used microjets, as an active 

control mechanism at the fore body of a supersonic UAV engine inlet, and reduced the 

engine inlet distortion by 35% with a 1.5% injection.  

Auxiliary flow purging to main stream is frequently utilized in turbomachinery, as 

well. High pressure turbine blades, suffering from very high temperature flows, are 

internally cooled and substantial amount of coolant is ejected from the trailing edge 

towards the transonic-supersonic main stream. Several researchers [15-19, 24, 106-108] 

investigated the effects of trailing edge blowing on the performance of external 
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aerodynamics. Sieverding performed detailed pressure measurements and Schlieren flow 

visualizations at the rounded trailing edge of a cooled flat plate [20]. The Schlieren 

images revealed that the trailing edge shocks became steeper with increased cooling. 

Cascade tests with high density coolants (CO2 and Freon) resulted in augmented base 

pressure. Raffel and Kost [21], using pressure and PIV measurements, identified a 

significant reduction in the shock wave strength at 0.8% coolant blowing. 

The current numerical research efforts aim to document a detailed analysis of the flow 

field around the isolated blunt trailing edge section with coolant ejection. The 

computational simulations facilitate the analysis of the trailing edge shock waves whose 

properties are significantly distorted by intrusive measurement techniques. An advanced 

analysis tool is proposed to track the variation of fluid properties along the flow path and 

in particular on the base pressure, trailing edge shock strength, orientation and shear 

layers. Various trailing edge flow topologies are summarized. 

3.2. Blunt trailing edge 

3.2.1. Steady approach 

3.2.1.1. Analysis conditions and non-dimensional parameters 

The main stream flow condition has been kept constant for all simulations while the 

coolant inlet total pressure was varied to change the coolant mass flow rate. In such 

analyses a certain number of other relevant non-dimensional parameters can be used to 

characterize the flow field. However, in this study, free stream to coolant density ratio 

(ρc/ρf) was used to parameterize the amount of blowing due to its common utilization in 

the cooling literature. Similarly to Bernsdorf et al. [109] the density value of the coolant 

was computed at the cavity plenum and the main flow density was evaluated at the 

location where coolant is ejected, namely at the base region. Nonetheless, the 

relationships between other cooling parameters, which were used in relevant research, are 

compared in Fig. 3.2. The figure shows the monotonic relationship between cooling 

massflow (mc), cooling inlet pressure (P0c/P01), maximum Mach number at coolant jet 

exit (Mc), and the density ratio. 
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Fig. 3.2. The variation of coolant mass flow rate, coolant to main stream pressure 

ratios, and coolant Mach number with respect to density ratios. 

3.1.1.2. Base pressure 

The effect of trailing edge purge flow on the base pressure level was evaluated for a 

wide range of cooling rates. The base pressure values were calculated by area-weighted 

averaging of the static pressure very close to the trailing edge surface, at the third grid 

line from the surface. The extracted base pressure values were non-dimesionalized by the 

no blowing base pressure and represented in Fig. 3.3 in function of the density ratio.  

In region b of Fig. 3.3, the base pressure levels increased with low coolant mass flows 

also observed previously by Sieverding [20] and Raffel and Kost [21]. Cooling air with 

relatively low momentum content pushed the main recirculating structure downstream, 

diffused into the base region and created a second set of smaller circulation zone on both 

sides of the trailing edge. Consequently, the pressure in the base region was increased by 

the filling effect of the coolant jet. In Fig. 3.3, region c, a further increase in the coolant 

flow resulted in an inflection on base pressure behavior. While the momentum of the 

coolant jet gradually increased, the entrainment of fluid contained in the dead air zone 

was enhanced. Thus, evacuation of the fluid from the base region diminished the 
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pressure. Following the velocities beyond the sonic line in the coolant jet, the dissection 

of the base region into two isolated zones became more apparent. The base pressure 

continued to decrease until the coolant jet Mach number reaches 2.5, corresponding to 

ρc/ρf = 8.3. Along region d in Fig. 3.3, the expansion in the jet was enhanced substantially 

such that the jet shear layer compressed the recirculating region on both sides and 

consequently the base pressure increased.  

 
Fig. 3.3. Base pressure correlation in function of the density ratio. 

 

The current analysis showed that flow properties, similar to the base pressure levels, 

exhibited different absolute values on each half of the domain although the trends for 

both sides were similar. Thus, the properties representing the top and the bottom half 

were designated distinctively. The base pressure values on each side of the trailing edge 

diverged between the density ratios of 1.1 and 7.1 due to the jet deflection, probably 

caused by Coanda effect. Such instability has been previously documented on jet 

discharge and diverging flows in symmetric channel studies in the literature [110-115]. 

Discharging flow deflected on either side beyond a critical Reynolds number (17x103) 

and reestablished symmetry above large jet Reynolds numbers (2x105) as observed by 

Allery et al. [110]. Such phenomena have not been previously observed in 

turbomachinery, because of the existence of a pressure gradient between both sides of the 

trailing edge. 

3.2.1.3. Flow topology 

The trailing edge flow field, similarly to the base pressure, was highly affected by the 

cooling rate. Fig. 3.4 shows the flow streamlines and vorticity in the trailing edge region. 

The undisturbed base flow, without trailing edge blowing (Fig. 3.4-a), contained two 
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counter rotating recirculation bubbles neatly enclosed by shear layers on each side of the 

trailing edge, spanning 1.7d downstream. When little coolant was ejected (Fig. 3.4-b) the 

dead air zone was partially penetrated by the low momentum cooling jet. The main 

recirculating vortex couple was pushed one trailing edge thickness downstream while 

reducing the height. Additionally, a new pair of vortices, which were well disconnected 

from each other by the coolant stream and attached to the trailing edge surface, started to 

grow. The cooling jet was entrained by the new recirculation pair and diffused into the 

base region. Accordingly, the shear layers on both side of the trailing edge were shifted 

outwards.  

The downstream bubbles visible in Fig. 3.4-b disappeared as they are pushed by the 

higher momentum jet shown in Fig. 3.4-c. Moreover, the cooling jet started to entrain 

from the base region towards the wake. The recirculation region was reduced in size 

while being partially captured by the shear layer. This interaction leads to another 

recirculation when the coolant mass flow was further increased and the individualization 

of base regions on both sides of the coolant slot was complete. Consequently, two distinct 

base regions were observed in Fig. 3.4-d, containing a pair of relatively small counter 

rotating recirculating structures, developed on each side. Meanwhile, the coolant jet, 

achieved a supersonic regime and started to push these regions towards the shear layers 

on each side of the trailing edge due to a strong expansion at the jet outlet. The shear 

layers shrunk towards the centerline shortly after the boundary layers separated and thus 

created sharper corners close to the trailing edge. The increasing pressure gradient at the 

coolant ejection, i.e. mass flow rate, led to an overexpansion and thus coolant jet size 

started to grow comparable with the trailing edge thickness. The shear layers containing 

the high Mach number purge started to interact with the main flow shear layers and 

subsequently deformed the shape of the base region by moving them outward. An 

additional compression corner followed by an expansion was created on the main flow. 

Subsequently, the flow deflected once again at the confluence point located more than 

two trailing edges downstream and formed the wake. The base pressure was observed to 

be increasing in this range mainly due to the entrapment of the base flow on a small 

recirculation region and constantly compressed by the coolant jet shear layers.  
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Fig. 3.4. Changes in base region flow topology shown by streamlines (top) and vorticity 

magnitude (bottom) a) no blowing b) ρc/ρf = 1.05 c) ρc/ρf = 1.4 d) ρc/ρf = 13.5  

3.2.1.4. Shock wave properties 

The characteristics of the trailing edge shock systems were investigated for a wide 

range of cooling rates. The shock wave properties obtained during the absence of blowing 

were used as reference case to normalize the trailing edge shock intensity and shock 

angle for all conditions.  

Fig. 3.5 presents the changes in the trailing edge shock properties in function of 

density ratios, Fig. 3.5-I displays the shock intensity while Fig. 3.5-II the shock angle. 

Parallel to the elevation in base pressure levels, the properties of the shock wave were 

observed to be changing significantly for the little coolant mass flows (region b in Fig. 

3.5). The compression across the trailing edge shock was reduced 87% from the no 

blowing value. The flattening of shear layer lowers the deflection of the flow on the wake 

and consequently the degree of compression reduces (as noted in Fig. 3.4-b). Moreover, 

the geometrical orientation changes in such a way that the shock became steeper (2.5 

deg.) and the confluence point, where the shock wave was generated, was displaced 

0.25d downstream.  
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Fig. 3.5. Characterization of trailing edge shock waves: shock intensity (I) and angle 

variation (II) with respect to density ratio 

 

The positive effect of base pressure augmentation was observed for a narrow range of 

low purge rates. The intensity of the shock started to increase following the decline in the 

base pressure (Fig. 3.5-c). Though, the shock intensity was still lower than the no 

blowing level. Flatter shear layer orientation, resulted in lower flow deflection and thus a 

milder compression was observed. Moreover, the location of the shock wave formation 

was displaced 2d and 1.5d upstream on the sides of the trailing edge with lower and 

higher base pressure respectively. The trailing edge shock wave strength exceeded 50% 

of the null blowing level when the density ratio was equal to 7.1. Shear layers were 

observed to be collapsing towards the base region and together with low compression 

corner angle resulted in a more abrupt flow deflection and consequently stronger shock 

waves. Further increase in density ratio, represented in region d of Fig. 3.5 resulted in a 

more normal shock wave (5 deg.) variation. The origin of the shock wave was gradually 

propagated from one trailing edge to 2.3d downstream. Moreover, the shock wave 

intensity was increased as high as 45% for the high coolant blowing regime. 

In absence of coolant ejection or minimum purge, the oblique shock waves, which 

identically appeared on both sides, were observed to be forming at the point of 
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confluence 2d downstream of the trailing edge as depicted in Fig. 3.6–I. Additionally, 

weak lip shocks appeared symmetrically right after the flow separation at the trailing 

edge. Fig. 3.6-III shows the properties of the secondary compression waves. The lip 

shock waves were observed to be 98% weaker and 10 degrees more oblique with respect 

to the main shock for the no blowing case. It originated 0.2d downstream of the trailing 

edge. For the lowest density ratio (ρc/ρf=1.05), a more normal lip shock with slightly 

higher relative intensity was observed. No separation shock was detected for the higher 

density ratios. 

 
Fig. 3.6. I) Schlieren picture at ρc/ρf =1.05; II) Schlieren picture at ρc/ρf =13.5; III) Shock 

angle and intensity variation of secondary shocks in function of density ratio 

 

Coolant jet Mach numbers exceeding the value of 2.5 (ρc/ρf = 8.3) led a distinctive 

trailing edge flow field. The growing coolant jet shear layers started to reshape the 

trailing edge shear layer. As a result, an additional compression corner was created 

shortly after the flow separation symmetrically on both sides of the trailing edge. This 

interaction resulted in a second pair of symmetric shock system, followed by a 

subsequent expansion, at 0.35d downstream of the trailing edge. Fig. 3.6-III reveals the 

strength and angle of the second shock system relative to the main trailing edge shock. 
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The compression across the upstream shock was similar, with limited downstream 

extension, to the main shock for lower density ratio but the strength increased with the 

purge rate. Eventually, the intensity of the secondary shock became higher that the main 

shock for ρc/ρf beyond 12.1. Consequently, the strength of the main shock reduces 

monotonically as most of the compression occurs on the upstream shock wave. 

Furthermore, the inclination of the first shock wave, which is initially 13 degree more 

oblique than the main shock, increases gradually until both shocks became parallel for the 

highest blowing. Whereas, the trailing edge shock keeps the position and inclination more 

or less steady for this range.  

The previous analysis revealed a direct relationship between the shock properties and 

the base pressure. Fig. 3.7 presents the linear function between the shock intensity and 

the nondimensional base pressure. The highest base pressure resulted in the weakest 

trailing edge shock for the tested free stream conditions. Consequently, an active flow 

control technique serving to increase the base pressure will also contribute to reduce the 

trailing edge shock wave’s intensity.  

 
Fig. 3.7. Relative shock intensity variation in function of non-dimensional base pressure 

3.2.2. Unsteady approach 

The unsteady approach was used to extract the time-varying flow features and 

unsteadiness on the shock wave in the presence of the pulsating cooling. The time series 

of flow properties downstream of the trailing edge were extracted to resolve the coherent 

structures in the wake. The unsteady changes in the base pressure and shock wave were 

calculated. The sinusoidal pulsations with +/-40% amplitude were imposed around the 

steady cooling level which results in reduced shock wave intensities. The frequency of 

the pulsations was set to be 10 kHz, which significantly exceeds the vortex shedding 
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frequencies of no cooling case (7292 Hz). Fig. 3.8 shows an instant from the unsteady 

flow field with the vortex shedding and oscillating shock structures. 

 
Fig. 3.8. Flow field of trailing edge exposed to pulsating cooling (density gradients). 

 

It has been observed that the pulsating coolant resulted in reduced the mean base 

pressure, from the continuous blowing value, with 6% oscillations (Fig. 3.9). Fig. 3.10 

shows the unsteady variation of the shocks intensities measured along the lines 2 to 5 

trailing edge thickness above the top surface of the simplified geometry. The strength of 

the shock wave was affected the most in the near vicinity of the trailing edge. Further 

away, the amplitude of oscillations was significantly reduced.  

 
Fig. 3.9. Base pressure variation on blunt trailing edge for pulsating and continuous 

cooling cases along with coolant pulses. 
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Fig. 3.10. Shock intensity variation on blunt trailing edge for pulsating and continuous 

cooling cases along with coolant pulses. 

 

The variation in the shock inclination was also extracted from the numerical schlieren 

on both horizontal and vertical directions (Fig. 3.11). Both of the results showed similar 

trends. The shock was observed to be oscillating between 31 to 36 degrees with a 

fundamental frequency of 2.6kHz, similar to intensity variation. 

 
Fig. 3.11. Shock angle variation on blunt trailing edge for pulsating cooling. 
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The spectral analysis of the flow downstream of the trailing edge was made on the 

pressure signal extracted from 6 different points as depicted in Fig. 3.12. The detected 

frequencies are summarized in Table 3.1.  

 
Fig. 3.12. The spectral analysis of the base and wake flow. 

 

The spectral analysis detected several dominant frequencies on the wake and the 

shock wave property variations, implying a complex shedding pattern with multiple 

modes. However, the frequency of 6510 Hz was detected at various amplitudes in each 

spectrum. Moreover, the spectra lacked the pulsating frequency (10 kHz) which might be 

due to attenuation of high pulsation frequency in the cooling channel and consequently 

affecting the wake at other frequencies. 

Table 3.1. Main frequencies in the flow field of blunt trailing edge with pulsating cooling 
	   1st	  frequency	   2nd	  frequency	   3rd	  frequency	  
	   f[Hz]	   St	   f[Hz]	   St	   f[Hz]	   St	  

Point	  1	   6510	   0.227	   -‐	   -‐	   -‐	   -‐	  
Point	  2	   13280	   0.462	   6510	   0.227	   9375	   0.326	  
Point	  3	   13280	   0.462	   6510	   0.227	   8073	   0.281	  
Point	  4	   13280	   0.462	   2865	   0.100	   6510	   0.227	  
Point	  5	   7812	   0.272	   10940	   0.381	   6510	   0.227	  
Point	  6	   6510	   0.227	   2865	   0.100	   13280	   0.462	  
ΔI	   2604	   0.091	   6771	   0.236	   9375	   0.326	  
Δα	   2604	   0.091	   6771	   0.236	   -‐	   -‐	  
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3.3. Circular trailing edge 

3.3.1. Steady approach 

Following the analysis carried out on the simplest blunt trailing edge geometry, 

circular trailing edge model, which can be resembled with the turbine airfoil trailing 

edge, was numerically tested. For the free stream M=1.5 simulations, the steady analysis 

covered coolant blowing rates in the lower range of density ratios (no blowing, 1.09, 

1.18, 1.39, and 1.76) where the highest reduction in shock intensity was observed for 

blunt trailing edge. To understand the effect of the cooling on the trailing edge shock 

waves formed at different Mach number, the analysis covered the simulations of the no 

blowing and density ratio of 1.6 for M=1.2 which were later tested experimentally. 

The circular trailing edge exhibits very similar flow field to the blunt configuration. 

Fig. 3.13 depicts the main flow features of the trailing edge flow at M=1.5 stream in 

absence of flow discharge. The expansion fan is observed over the circular part of the 

trailing edge followed by shear layers enclosing the base region. The weak lip shocks are 

created right upstream of the flow separation. At the point of confluence where the wake 

is formed, the main trailing edge shock waves are created.  

 
Fig. 3.13. Circular trailing edge flow field exposed M=1.5 flow without blowing. 

 

The introduction of the trailing edge discharge results in certain modifications in the 

base region and downstream flow field (Fig. 3.14 and Fig. 3.15). There is a strong 
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similarity with the blunt trailing edge flow field evolution by increasing discharge rate. 

As the coolant was introduced, the recirculation bubbles moved downstream and reduced 

the shear layer inclination (Fig. 3.14-a). Meanwhile the cooling penetrated into the base 

region and increased the base pressure. Further increase in the purge rate pushed the 

bubbles further downstream, the size of the structures was reduced and a second set of 

recirculation was created close to the trailing edge surfaces on both sides (Fig. 3.14-b). 

The downstream recirculation was completely disappeared with increased cooling (Fig. 

3.14-c and Fig. 3.14-d), similar to the blunt trailing edge (Fig. 3.4-c). The shear layers 

were further flattened leading weaker compression on the wake. Fig. 3.14-d shows 

creation of vortex couples on both sides of the trailing edge with increased discharge as 

observed in blunt trailing edge. 

 
Fig. 3.14. Streamlines on top of the pressure contours (a) ρc/ρf=1.09 (b) ρc/ρf=1.18 (c) 

ρc/ρf=1.39 (d) ρc/ρf=1.76 

 

The numerical Schlieren images revealed the effect of the coolant rate on the shock 

wave structures (Fig. 3.15). For the lower amount of cooling, the shear layers were 
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observed to be flattened and lip shock angle was increased (Fig. 3.15-a and Fig. 3.15-b). 

Moreover, the further increase in cooling mass flow resulted in a significant reduction in 

the shear layer angle (Fig. 3.15-c and Fig. 3.15-d). The trailing edge shock waves moved 

upstream and the lip shocks merged into the main shocks. 

 
Fig. 3.15. Density gradient contours (a) ρc/ρf = 1.09 (b) ρc/ρf = 1.18 (c) ρc/ρf = 1.39  

(d) ρc/ρf = 1.76 

 

Following the analysis on the blunt and circular trailing edge geometries exposed to 

the high free stream Mach number flow, the cooling effects on the shock waves and 

trailing edge flow has been simulated at lower Mach number (M=1.2) for no blowing and 

mild discharge (ρc/ρf=1.6) which felt in the cooling range resulting in significant 

reduction in shock intensity. The same methodology used in other test cases was applied 

to understand the cooling effects at the low Mach number. The purge at low rates also 

resulted in a considerable reduction (86.7%) in shock intensity, as noticed in M=1.5 

cases, with 18.5% increase on base pressure. The summary of the steady characterization 

of the shock intensity variation for all geometries and Mach numbers are given in Fig. 

3.16. The reduction on the shock wave strength has been attained regardless of the 

trailing edge geometry and the Mach number with moderate cooling rates. The base 

pressure augmentation and the shear layer flattening induced by the trailing edge cooling 
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at such rates emanated reduced compression at the trailing edge and hence alleviated the 

impact of the shock waves. 

 
Fig. 3.16. Shock intensity variation on square and circular trailing edge at M=1.5 and 1.2. 

3.3.2. Unsteady approach 

3.3.2.1. Continuous cooling 
The unsteady analysis of the circular simplified trailing edge geometry was performed 

to understand the wake unsteadiness, the effects of continuous and eventually the 

pulsating cooling. The simulations were performed at M=1.2 free stream condition. The 

continuous cooling was provided at the same rate of the steady analysis (ρc/ρf=1.6). The 

unsteady pressure data was extracted at the same locations on the wake to resolve the 

vortex shedding from the trailing edge. The shock wave properties were also unsteadily 

extracted.  

An increase of 18% in base pressure was observed from the no blowing value with less 

than 1% unsteady variation. The increase in the base pressure is resulted in an average 

decrease in the shock intensity by 44%. When the FFT analysis was carried out on the 6 

measurement points, a common frequency of 7292 Hz was found to be the most 

dominant peak in the spectrum. By taking into account the other variables (trailing edge 

thickness and flow velocity), the corresponding Strouhal number was found to be 0.317. 

The same peak was also captured in the shock intensity frequency spectrum, showing that 

the wake unsteadiness induces small amplitude oscillations on the shock waves. A 

snapshot of the flow field is shown in Fig. 3.17. The wake oscillations were created in the 

form of a weak vortical structures which started to appear 2d downstream of the trailing 

edge as depicted. This might be due to the breakdown of the base region and dilatation of 
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the confluence point downstream by the low amount of cooling. The trailing edge shock 

formed 0.5d downstream with lambda structure. 

 
Fig. 3.17. Density gradient contours for M=1.2 main flow with ρc/ρf=1.6 cooling 

 

3.3.2.2. Pulsating cooling 
The sine wave oscillations were added to the mean level of continuous cooling. The 

amplitude of the oscillations was set to be 40% and 80% with a pulsation frequency of 

200 and 1000 Hz around the mean value. The attributes of the flow parameters were 

analyzed for these 4 test conditions to comprehend the consequences of the pulsation 

parameters, i.e. frequency and the amplitude.  



 

 64 

 
Fig. 3.18. Density gradient contours at every quarter of pulsation periods 

 

The detailed trailing edge flow field at every quarter of a pulsation period (T) is 

presented in Fig. 3.18. The first (t/T=0) and the third (t/T=0.5) instants correspond to the 

maximum and minimum mass flow at the cooling channel exit, respectively. On the first 

half of the pulsation period, vortex structures shed from the trailing edge. The patterns of 

shedding were different from von Karman vortex shedding, as observed by Gostelow et 

al. [116]. At the peak blowing, the vortices were shed as symmetric pairs and then they 

started to shed alternately. At this instant, the propagated vortices tended to grow whereas 
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the size of the propagating vortices kept their size on the maximum blowing. The 

decrease phase of the cooling (Fig. 3.18-b) had destabilizing effect on the wake 

unsteadiness whereas the increase phase had a stabilizing effect as observed for both 

pulsation frequencies (Fig. 3.18-c, d, g and h). The vortex shedding tended to disappear 

on the minimum and following increase phase for both frequencies. Therefore, the 

dominant parameter affecting the wake can be said the mass flow variation rather than the 

absolute value of cooling. This behavior was also detected in the unsteady pressure traces 

which were recorded at three locations in the wake along with the coolant outlet mass 

flow, as depicted in Fig. 3.19.  

 
Fig. 3.19. The unsteady pressure at the wake 

 

For the 200Hz blowing the mass-flow oscillations had larger amplitude and the vortex 

shedding was almost suppressed during the minimum coolant ejection. The vortex 

formation was indeed more evident in the lowest frequency case. The simulations 

confirmed that at high frequency the range of variation in mass-flow was attenuated at the 

coolant exit. 

The base pressure and the shock intensity traces were also investigated to figure out 

the impact of coolant pulsations (Fig. 3.20). High amplitude base pressure fluctuations 

observed for the low frequency case (Fig. 3.20-a) were caused by the strong vortex 

shedding arising between t/T ~ 0.75 and t/T ~ 0.3 (Fig. 3.18 – a to d and Fig. 3.19-a). The 
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large variation in coolant mass-flow resulted in a time interval of more stable base 

pressure in the remaining part of the period. Nevertheless, no linear relationship between 

the base pressure and the purge rate has been noticed for the pulsation cooling scheme. 

The base pressure (Fig. 3.20-a) and the shock intensity (Fig. 3.20-c&d) was observed to 

be ahead of the mass flow fluctuations, as in this case base pressure started to increase 

before the coolant mass-flow started to augment. The higher pulsation frequency also 

inhibited the base pressure deviations from the mean value. Only small fluctuations were 

observed which are in accordance to the mild vortex shedding formation (Fig. 3.18 – e to 

h. and Fig. 3.19 – b). The time-averaged base pressure levels showed that higher 

frequencies result in lower base pressures (4.5% of no blowing base pressure). Increase in 

the pulsation amplitude led to 4.5% higher base pressure for both frequencies. Hence, 

pulsating coolant with specific frequency and amplitude could provide a base pressure 

variation similar to the one obtained by continuous cooling at higher mass-flow. Since 

base pressure loss is inversely proportional with the base pressure level, lower pulsating 

frequencies with high amplitudes might result in lower base pressure losses. 

 
Fig. 3.20. The base pressure and the shock intensity variations over a period of pulsation 

 

Fig. 3.20-c&d reveals the dependency of the shock intensity variation in time on 

coolant pulses. Higher pulsation frequency resulted in lower variation in the shock 

intensity. The instantaneous strength of shock was not driven by the instantaneous mass-
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flow as observed in the continuous cooling. For the 200 Hz coolant pulses with 80% 

amplitude (Fig. 3.20-c), the shock intensity has reduced by only about 23% at the instant 

of minimum mass-flow (~ 0.45%). Hence, the shock at this blowing rate was stronger 

than the shock at higher blowing rate. The shock intensity variation with pulsating 

discharge did not follow the correlation between the shock intensity and continuous 

cooling. The steady cooling mass-flow rate of ~ 0.45% resulted in relatively lower shock 

intensity than with higher mass-flow rates. Therefore, the way pulsation affects the shock 

cannot indeed be explained only by the absolute level of coolant ejected rate. The flow 

field was rather dictated by the gradient of coolant mass-flow at the slot exit. For both 

frequencies, the shock intensity reaches its minimum at half of the mass-flow descending 

slope, while it is highest around the position of minimum blowing. Furthermore, time-

averaged analysis of the shock properties showed that the high frequency and high 

amplitude pulsations resulted in lowest average shock intensity (-60%). Yet, the 

minimum time averaged shock wave intensity was observed for the continuous cooling (-

82%). The shock angle variation reduces, from the maximum 13.3o observed for 

pulsations at 200 Hz with 80% amplitude, with increasing pulsation frequency and 

decreasing amplitude. The effect of decreasing frequency is that of exalting shock 

modulation. Notwithstanding this variation, the pulsation always provides an average 

more inclined shock. However, the value of shock reduction with continuous coolant is 

never reached throughout all pulsating cases.  
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4 

Shock Modulation on the Flow 

Passages 

4.1. Introduction 

Trailing edge shock interactions are one of the major sources of losses in supersonic 

airfoils. Additionally, vane shocks cause large pressure fluctuations that may result in low 

and high cycle fatigue problems. Previous research related to the present investigation 

may be classified in four topics: trailing edge shock wave interactions, base pressure 

losses, trailing edge vortex shedding, and effects of the coolant ejection. 

The downstream flow field of nozzle guide vanes in modern high pressure turbines 

suffers fish tail shock structures [117]. The impingement of those compression waves on 

the downstream rotor row and rear suction side of the adjacent vane results in unsteady 

entropy generation. Quantification of unsteady loss and pressure variation in a transonic 

turbine was studied numerically and experimentally in the literature [102]. The increase 

in vane outlet Mach number from 1.07 to 1.24 reduced the overall turbine efficiency 5% 

and increased the unsteady forcing on the rotor crown 3.6%. 

Regarding the base pressure losses, Gostelow et al. [118] analyzed computationally 

and experimentally the trailing edge structure and the related losses on a transonic turbine 

cascade. Substantial increase in the base pressure loss accompanied by an increase in 

wake mixing loss was reported for exit Mach number around unity. For the exit Mach 

number between 0.8 and 1.2, the base pressure coefficient diminished as low as 3.5 times 

of its value out of the transonic range. The wake mixing loses were doubled at sonic 

outlet flow. Uzol et al. [19, 119] documented the performance of different trailing edge 
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geometries. Schobeiri and Pappu [120] found an optimal geometry and blowing ratio that 

minimize the mixing losses of cooled gas turbine blades. Their experimental and 

numerical studies demonstrated that the ejection velocities similar to the main flow 

velocity resulted in the minimum mixing losses regardless of the airfoil geometry. The 

losses were minimized by increasing the slot opening parallel to the demand for cooling 

rate. Sieverding et al. [99] determined an experimental correlation of the base pressure in 

function of the downstream static pressure, which allows accurate predictions of base 

pressure losses.  

Concerning the vortex shedding, Rowe et al. [121] observed that a thick boundary 

layer upstream of the trailing edge reduced the shedding frequency, resulting in decreased 

base pressure losses. Increasing the boundary layer shape factor caused an inverse trend 

on the parameters. Sieverding and Heinemann [122] demonstrated the influence of the 

boundary layer state on both pressure and suction sides on the vortex shedding. They 

observed a change in the boundary layer state on both sides of the trailing edge from 

turbulent to laminar resulted in a reduction of Strouhal number. For the cases with mixed 

boundary layer states on both sides of the trailing edge, intermediate Strouhal numbers 

were observed. In such circumstances, a wider power distribution around the vortex 

shedding frequency was noticed on the spectra. Furthermore, the experiments made on a 

flat plate revealed the 3D behavior of the unsteady base flow and, the vortex street 

exhibited a 2D structure only in the midspan region [123]. Cicatelli and Sieverding [124] 

characterized experimentally the time averaged and unsteady pressure field in the base 

region.  

Studies on the effect of coolant ejection on the vortex shedding were presented by 

Motallebi and Norbury [23] based on Schlieren images of the vortices shed from a blunt 

trailing edge at subsonic and supersonic conditions. The minimum base pressure levels 

were attained in the transonic range with highest Strouhal numbers. A certain rise in the 

base pressure was noticed corresponding to a moderate coolant flow rate by shifting the 

vortex formation location downstream. The disappearance of the trailing edge vortex 

motion was observed over a range of bleed air mass flows following the value producing 

a maximum level of base pressure. The high discharge rates caused formation of two 

different regimes of vortex formation, exhibited substantially high Strouhal numbers, on 

both sides of the trailing edge with significant reduction in base pressure. Such effect of 
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cooling was more effectively observed for low supersonic range. However, the base 

pressure augmentation outcome of small amount of cooling was attenuated. Sieverding 

[20] experimentally showed that a higher base pressure and a variation in the trailing 

edge shock angle corresponded to a moderate coolant flow rate. The detailed 

measurement on both sides of the cooling slot exhibited a uniform distribution on the 

base pressure. Raffel and Kost [21] gathered similar results at supersonic conditions 

using PIV data over a narrower range of cooling rates. The pressure measurements 

pointed shock wave attenuation for low amount of cooling ejection. Saracoglu et al. [22] 

obtained analogous conclusions using numerical simulations on a blunt trailing edge at an 

outlet Mach equal to 1.5, the shock strength was mitigated 70% at moderate trailing edge 

cooling compared to the no blowing case. 

Pulsating coolant has recently been investigated in turbomachinery to improve film 

cooling performance and control separation. Rutledge et al. [125, 126] experimentally 

investigated the effects of pulsating cooling on the heat transfer characteristic over a 

cylindrical leading edge model with flat after body, which mimics turbine blade leading 

edge. Pulsating cooling at low frequencies was found to be promising to improve the film 

effectiveness. Rutledge et al. [127] performed numerical simulations of a similar test 

setup with pulsating leading edge cooling. A small reduction in heat transfer coefficient 

was observed for lower frequencies. El-Gabry and Rivir [128] compared the continuous 

and pulsating (10 Hz with 50% duty cycle) cooling on a cylindrical leading edge model. 

The film effectiveness was halved for the pulsed flow. Nevertheless, Ekkad et al. [129] 

obtained promising results in their experiments performed on a bluff body equipped with 

leading edge pulse cooling at several frequencies and duty cycles. The film effectiveness 

was improved regardless of pulsating frequency. Whereas, higher cooling effectiveness 

and lower heat transfer coefficients were achieved with reduced duty cycles. No 

difference was detected for the frequencies below 20 Hz mainly due to experimental 

uncertainty.  

Volino and Ibrahim [130] and Volino et al. [36] performed experiments on a LPT 

blade exposed to pulsed suction surface ejection with various duty cycles. The results 

verified superiority of the pulsed cooling on inhibiting separation and increasing the 

performance of the airfoils. Sondergaard et al. [30], Bons et al. [39, 131] and Woods et al. 
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[132] experimentally achieved the effective boundary layer separation control by using 

pulsed jets at various frequencies, duty cycles and orientation.  

Published research has demonstrated that cooling ejection has significant effects on 

the base region and trailing edge shock patterns. The originality of this work lies in the 

use of pulsating coolant to control shocks for the first time in the literature. Experimental 

and numerical research have been performed to understand the base region flow topology 

depending on cooling ejection rates. Several correlations for the base pressure, shock 

angle and vortex shedding are presented. The final goal of the research is to improve 

turbine durability and efficiency in compact supersonic turbomachinery. This study may 

guide aerodynamic designers towards novel concepts to modulate shock waves. 

4.2. Operating conditions 

The tests were made for a range of high subsonic to low supersonic Mach numbers 

(M2,is=0.8-1.2), while 2 Reynolds numbers have been selected (Re=4x106 & 6x106). All 

conditions were tested for no blowing and continuous blowing at 1.1, 1.5 and 1.9 bars of 

coolant total pressures (P0cool). A pulsating coolant stream was introduced for transonic 

and supersonic test cases at an average coolant total pressure of 1.9 bars with a frequency 

of 200 Hz resulting in a 12% fluctuation of the mean coolant mass flow. 

4.3. Airfoil loading 

The analysis of the time-averaged pressure was performed to characterize the flow 

field aerodynamics in the cascade passage and the downstream planes. The pressure 

values are represented in terms of isentropic Mach numbers (

( )( ) ( )( )( )1
is 01 sM 2 1 P P 1γ− γ
= γ − − ). Fig. 4.1 depicts the distributions with respect to 

normalized surface coordinate (S/Smax equals 0 at the leading edge and one at the trailing 

edge) on the upper flow passage for each test condition and for each coolant blowing 

pressure. 
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Fig. 4.1. The variation of velocity distribution of upper channel a) M2,is=0.8, Re=4x106; 

b) M2,is=1.1, Re=4x106; c) M2,is=1.1, Re=6x106; d) M2,is=1.2, Re=6x106 

 

In Fig. 4.1-c we observe a large acceleration along the suction side in the leading 

edge region. From S/Smax 0.05 to 0.3 (throat), there is a constant acceleration. 

Downstream of the throat the flow overaccelerates due to the expansion fan until the 

impact of the right running shock. After the deceleration caused by the shock wave, the 

flow keeps on accelerating downstream. The cooling scheme does not alter the pressure 

distribution around the profile for the cases below sonic speed. For supersonic outlet 

conditions, the coolant affects only the region downstream of the shock impingement. 

The behavior is not visible in the experimental results due to the fact that the 

impingement location of the shock wave statistically lies between two measurement 

locations denoted as 1 and 2 in Fig. 4.1 as revealed from the processing of Schlieren 

pictures. The CFD reveals an upstream displacement of the shock impact with the coolant 

mass flow. The increase of Mach number to 1.2 results in a substantial increase in the 

passage loading. One can also observe that the pulsating cooling results in lower loading 

than the continuous blowing. 
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4.4. Downstream static pressure 

The pressure distributions on downstream measurement plane provided an exact 

location of the left-running shock. Fig. 4.2 represents the downstream isentropic Mach 

numbers for supersonic conditions together with corresponding Schlieren images to 

illustrate the orientation of the left-running shock wave with respect to the measurement 

locations. The effect of the right running shock reflection from the adjacent suction side 

can be seen at pitch-wise locations between g/g*=1.35 and g/g*=1.5. For M2,is=1.1 and 

Re=4x106, the pressure increase downstream of the right running shock reflection is 

reduced when the coolant is introduced. A similar effect is observed for the other cases as 

well. One can also notice that the shock wave is less oblique for M2,is=1.2 and Re=6x106 

when the coolant is introduced. 

 
Fig. 4.2. Pitch-wise pressure distribution downstream of the cascade for all test 

conditions 

4.5. Shock angle fluctuations  

The analysis of the shock angle movement is based on the numerical and 

experimental Schlieren. Regarding the uncooled case, the shock angle varies between 55 

to 60.5 deg. at the vortex shedding frequency (about 20 kHz). The use of pulsating 
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cooling implies variations of about 5 degrees at the pulsating coolant frequency (about 

200 Hz). Fig. 4.3 compares the power spectrum of the unsteady shock wave angle (α) 

with the valve encoder and the pressure sensor in the cooling slot (Pscool). It is clear in 

both figures that the pulsating cooling at 208 Hz is altering the shock angle at exactly the 

same frequency. 

 
Fig. 4.3. Comparison of the experimental power spectrum of the shock wave angle 

variation with: Encoder delivering one pulse per revolution (top); high-frequency 

pressure sensor in the cooling slot (bottom) 

 
Fig. 4.4. Schlieren results: average angles with error bar (RMS) for all conditions 

 

In Fig. 4.4, the average angle variation obtained by the Schlieren image analysis is 

presented together with the corresponding RMS values. The mean angle and the 

variability of the shock waves are reduced by increasing the Mach number. Furthermore, 

increasing Reynolds number provide a stabilizing effect, or reduction of RMS, on the 
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shock angle. The average shock angle and the RMS are observed to be decreased by the 

pulsating cooling. 

4.6. Boundary layer characterization 

4.6.1. Steady wall temperature measurements 

The Nusselt number distributions on the suction surface of the upper flow passage for 

various test conditions were calculated by using the time-averaged Tw, T01, wall heat flux 

and calculated main stream heat conduction coefficient and illustrated by the middle plot 

sequence in Fig. 4.5. A reduction in Nu is observed towards the downstream location of 

geometrical throat regardless of test condition. While laminar boundary layer thickens, it 

isolates the surface from heat penetration coming from free stream flow thus Nu 

decreases. Further downstream an increase in Nu is noticed as an indication of initiation 

of boundary layer transition. Following a finite length of Nu gradient, relatively constant 

region of Nu is observed on the rear suction side where the turbulent boundary layer 

establishes. For low M and Re case, the location of transition is detected on half way of 

the surface which is far downstream of the shock wave impingement point. This indicates 

possible natural transition of the blade surface. Moreover, the transition is delayed by 5% 

Smax when the coolant is blown pulsating. When freestream Mach number is increased, 

transition is moved 5% Smax upstream coinciding with the shock impingement location 

for a longer length. On the other hand, the increase in Re results in delay in transition to a 

location between 46% and 67% Smax for low coolant mass flows. Finally, boundary layer 

of highest Mach number case gets transitional for all cooling cases between 46% and 

51% Smax where the shock wave impinges for all cooling schemes and gets turbulent after 

67% Smax.  
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Fig. 4.5. Blade loading (top) together with suction side Nusselt number (middle) and 

RMS of wall temperature (bottom) distributions on the upper flow passage 

4.6.2. Unsteady wall temperature measurements 

The wall temperature signal can be split into a mean value and random fluctuations. 

The random component can be represented by the root mean square (RMS) of it 

throughout the time span. Consequently, the root mean squared value of the temperature 

represents the level of unsteadiness for each signal. Thus, the procedure was applied and 

resulted RMS distributions are represented in Fig. 4.5 bottom. A sudden increase in wall 

temperature unsteadiness was encountered at same location of the beginning of transition 

depicted on Nu distribution and shock impingement point on blade loading for both free 

stream Reynolds numbers due to the relative increase in unsteadiness by transition from 

laminar to turbulent boundary layer. This behavior not only confirm the consistency of 

the results inferred from different measurements but also indicates lowest RMS values for 

unsteady cooling cases which might be an indication of stabilizing effect of pulsating 

coolant blowing by reducing shock intensity. 

The frequency spectrum of the wall temperature signal has also been analyzed in 

order to characterize unsteady phenomenon occurring in the boundary layer for different 
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test conditions. An example of the low frequency content of the wall temperature signal 

is given in Fig. 4.6 (left). A distinct peak at around 500 Hz with a dispersion of 50 Hz has 

consistently been observed for all of the thin film gauges. Similar frequencies were also 

captured by cooling channel pressure sensor in the absence of trailing edge blowing (Fig. 

4.6. right).  

 
Fig. 4.6. FFT of wall temperature signal (left) edge and cooling channel pressure for no 

blowing case (right) 

The unsteady numerical simulations performed on the complete test section setup 

demonstrated large recirculation bubbles located immediate downstream of top and 

bottom steps of the cascade (Fig. 4.7). The structures spanned as large as half chord 

length. Applying the Strouhal relationship by using the local flow velocity (220 m/s), the 

recirculation size and backward facing step Strouhal number (0.25) documented by 

Mehrez et al. [133], the forcing frequency was found around 550 Hz. Therefore, the 

persistent frequency peak found in the spectrum of wall temperature and the pressure 

gauge signals might the signature of the unsteadiness caused by the large recirculation 

bubbles which were present at all blow downs [134].  

 
Fig. 4.7. Recirculation bubbles behind the steps by 2D (left) and 3D (right) streamlines 
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4.7. Base pressure 

4.7.1. Base pressure, flow topology and vortex shedding 

Trailing edge cooling alters significantly the behavior of the vortex shedding. In the 

uncooled case, the coherent structures of the von Karman vortex street are clearly visible 

for both investigated Reynolds numbers (Fig. 4.8). Gostelow [135] stated that for 

transonic flows the von Karman vortices become unstable and exotic shedding patterns 

may appear. The present numerical results demonstrate that the oblique shocks generated 

near the blade trailing edge oscillate at the same frequency of the vortices. In some cases 

the vortex shedding disappears. Trailing edge continuous cooling changes the vortex 

shedding pattern since the base region is separated into two different zones and two 

separated couples of vortices appear (Fig. 4.8). In both cases, the shedding of a single 

vortex on one side, and a pair of vortices on the other side of the trialing edge described 

by Williamson and Roshko [136] was identified. Frequency analysis of the base region 

demonstrated that both regions are tuned with each other but with a different energy 

distribution within the spectrum. Hence, the vortices have the same harmonics but the 

amplitudes of their fluctuations are different. 

 
Fig. 4.8. Numerical Schlieren of the base region at M2,is=1.1 
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Fig. 4.9 represents the FFT of the trailing edge pressure sensors, which reveal the 

resonance frequencies associated to the shedding frequency. One observes that as the 

flow velocity increases, the shedding frequency is greater. A decrease in the shedding 

frequency is encountered with increasing Reynolds number owing to the reduction in 

total temperature and thus on velocity.  

 
Fig. 4.9. Frequency spectrum of the unsteady base pressure signal for the uncooled case 

 

The fluctuations in the base pressure, caused by the vortex shedding, are of the order 

of 5% in uncooled case and 13% for the pulsating cooling. Cicatelli and Sieverding [124] 

observed a 5% fluctuation in their uncooled geometry. URANS simulations in an 

uncooled transonic turbine stage [102] provided a 5% variability in the stator base 

pressure. Based on the experimental and numerical shedding frequencies let us define the 

Strouhal number: St=fL/v. Fig. 4.10 displays the evolution of the Strouhal number in 

function of the isentropic Mach number. The frequencies obtained from experimental and 

numerical analysis show good agreement with the tabulated data of Motallebi and 
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Norbury [23]. The Strouhal numbers, based on the real dimension of the upper/lower 

metal part of the trailing edge, are 0.23 and 0.18 for the M2,is=1.2 case with continuous 

cooling of P0cool = 1.1 bar and 1.5 bar respectively. At a certain distance from the trailing 

edge the structures coalesce into a single couple of vortices. An increase in Strouhal 

number is observed for low coolant blowing cases throughout the whole Mach number 

range. This is due to the displacement of the vortex formation location downstream when 

the highest base pressure is observed [23]. Augmentation in coolant ejection rates brakes 

down the base region into two separate parts on each side of the trailing edge and, 

consequently, leads formation of two distinct vortex structures with higher frequencies as 

visualized in Fig. 4.8-c. CFD allowed the identification of high Strouhal numbers for the 

case of high cooling rates (St~0.65). 

 
Fig. 4.10. Strouhal number evolution for various test conditions 

4.7.2. Base pressure correlation 

The base pressure values as a function of outlet Mach numbers are tabulated in Fig. 

4.11. Lines represent the Sieverding’s correlation [99]. In convergent designs, δ 

represents the trailing edge wedge angle, ε is the suction side curvature downstream of 

the throat. The results of the uncooled measurements fit quite well with the correlation 

belonging to converging-diverging passages. Data obtained with coolant blowing at 1.1 

bars fits the Sieverding’s correlation equivalent to a (ε+δ)/2=8. Coolant blowing results in 

an increase of base pressure. The highest increase in base pressure is achieved when the 

blowing ratio is the lowest. Hence, appropriate use of cooling is similar to morphing the 

airfoil. Slight changes in cooling rate results in base pressures of different airfoil 

geometries that one can predict using Fig. 4.11. Base pressure is observed to be 
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maintained on the same level of the continuous cooling for the pulsating coolant ejection. 

This implies that the order of the accumulated losses is reduced by unsteady cooling. 

 
Fig. 4.11. Base pressure for all test cases together with Sieverding’s correlation [99] 

4.7.3. Trailing edge loss 

Trailing edge loss is one of the most significant contributors to the two-dimensional 

losses in turbines. The mixing of the boundary layers coming from each side of the airfoil 

generates entropy and causes efficiency deduction. Traupel [137] proposed Eq. 4.1 to 

calculate the trailing edge loss in turbine cascades where Cpb is the base pressure 

coefficient, d is the trailing edge thickness, s is the chord of the vane and β2 is the outlet 

flow angle. In order to achieve the level of loss due to the trailing edge, Cpb is obtained 

from Eq. 4.2 by considering the corresponding outlet conditions and the base pressure.  

𝜁!" = 𝐶!"
!

!∙!"#!!
     (4.1) 

𝐶!" =
!!!!!!
!!!!

     (4.2) 

Fig. 4.12 presents the calculated base pressure loss variation with respect to isentropic 

outlet Mach number for all experimental conditions. Trailing edge cooling 

unexceptionally improved the efficiency at all discharge rates. Besides, the highest 

decrease in the loss was observed for the lowest cooling pressure due to substantial 



 

 82 

increase in the base pressure from the null blowing value. Further augmentation in 

cooling results in reduction in efficiency at all flow condition except the highest Mach 

number where the range of variation in loss was the minimum. The drop in trailing edge 

loss was increased from 0.5% to 1.5% with decreasing Mach number. Therefore, the 

highest improvement by continuous cooling was achieved at high subsonic flow 

condition. The levels of loss attained by the pulsating coolant were remained at the 

similar levels, resulted with the steady cooling at the same average rate. Hence, the 

advantageous nature of pulsating cooling on shock control was not penalized by the 

trailing edge loss. 

 
Fig. 4.12. Trailing edge loss vs. outlet Mach number for all test cases.  

4.8. Statistical analysis 

The statistical analysis of the experimental results has been performed to reveal the 

significance of the relationships between the design factors (outlet Mach number, 

Reynolds number and coolant ejection regime) and the response variable (base pressure) 

with adequate sample size for the analysis. In order to accomplish, the tools of the design 
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of experiment were used. Such investigation not only shows the contribution of each 

factor on the variation of the responses but also divulges the interaction effects of 

multiple design factors on the response variable by revealing the statistical importance of 

each individual and cross interactions. Moreover, the model included the linear 

regression analysis, which quantifies the relationship between the responses and the 

design factors.  

The statistical analysis software JMP was used as the tool for the investigation. Base 

pressure to inlet total pressure was selected as response of the system while isentropic 

outlet Mach number, Reynolds number (two levels: 4x106 & 6x106) and state of the 

cooling (five levels: no blowing (1), continuous low (2), mid (3), high blowing (4) and 

pulsating blowing (5)) were used as the design factors. During the analysis, the linear fit 

model of the JMP was used to statistically understand the relationship between the  

response variable and seven possible combinations of the design factors (M2is, Re, 

Cooling, M2,is*Re, M2,is*Cooling, Re*Cooling and M2,is*Re*Cooling). 

The linear regression for the base pressure ratio resulted in the fit with the R2 value of 

0.99353. The effect test showed that the influence of M2is, and the cooling scheme were 

the only significant factors with corresponding p values less than 0.0005 and 0.0001, 

respectively. None of the second or third order interactions between the design factors 

was found to be statistically significant. The analysis also revealed that Reynolds number 

has no significant effect on the level of the base pressure as observed on the scatter plot 

of the data in Fig. 4.11. Following the outcomes of the first analysis, a second linear fit 

analysis was performed for M2is and the cooling. The new fit with R2 value of 0.9629 

emphasized the impact of low blowing on the base pressure by relatively lower p values 

as compared to the other cooling schemes.  
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CONCLUSIONS 

This thesis contains the experimental and numerical efforts devoted to understand the 

utilization of trailing edge cooling as a control tool to modulate the shock waves. 

Attaining such objective requires a methodology that divides the problem to 

subcomponents in increasing complexity from a simplified environment to the realistic 

problem setup to accomplish the research objectives. Therefore, the research was mainly 

divided into two sections according to the complexity of the problem. First, the steady 

and unsteady cooling is numerically studied over simplified geometries. Subsequently an 

experimental and numerical campaign was carried out over a linear cascade test section.  

The first part of the research numerically studied the effects of steady and unsteady 

cooling. The supersonic flow field over simplified blunt and circular trailing edge 

geometries were simulated to obtain a fundamental understanding of the main flow 

parameters being affected from coolant ejection. A blunt trailing edge was initially 

simulated for a large range of blowing to correlate the changes in the shock properties 

with the purge rate. The results of the numerical analysis indicated an optimum level of 

cooling to mitigate the shock waves. The low rate of blowing (ρc/ρf=1.3) effectively 

increased the base pressure and reducing the shock intensity (~80% reduction from the no 

blowing value). The intensive coolant purge resulted in a double shock system at the 

trailing edge. The simulations performed over the circular trailing edge demonstrated 

similar shock modulation and base pressure behavior. Further analysis on a lower free 

stream Mach number (M=1.2) exhibited similar levels of shock intensity reduction. 

Hence, the coolant discharge at small rates resulted in shock attenuation in low 

supersonic range.  

Following the steady purge, pulsating coolant was tested to identify the unsteady 

characterization of the shock properties and the base pressure. Circular trailing edge was 

studied for unsteady cooling at various duty cycles to define the relevant cooling 

parameters used in the experiments. The base region flow field and pressure variations on 

the channel outlet showed that the down stroke of the duty cycle had a delayed stabilizing 

effect on the wake unsteadiness. Moreover, the maximum cooling period in each pulse 

promoted strong vortex shedding. The trends in unsteady base pressure and shock 

intensity also followed an unsteady variation with pulsating cooling. 
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The pulsating cooling effects on trailing edge shock waves were experimentally and 

numerically investigated over a range of free stream Mach and Reynolds numbers on a 

linear cascade in the second part of the research. Novel airfoil geometry was designed to 

provide downstream flow field similar to the vanes of modern high pressure turbines. A 

detailed characterization of the pulsating valve used for the experiments was carried out 

for a wide range of cooling rate and frequencies. The design of the test section allowing 

steady and unsteady pressure and temperature measurements together with Schlieren flow 

visualizations was accomplished. The time-averaged and time-resolved aerodynamic 

features of the flow field were identified. Downstream flow field and complex shock 

wave interactions on the free steam were detected owing to the high speed Schlieren 

images processed with an advanced pattern recognition algorithm developed. The 

numerical simulations provided a deeper insight on the base region flow topology and 

vortex shedding schemes changing with cooling properties. Von Karman shedding 

pattern was altered by coolant introduction. Hybrid modes of shedding were observed. 

Moreover, unsteady cooling prohibited the formation of coherent structures.  

The major findings of the combined experimental and numerical study can be listed 

as follows. The passage loading and pitchwise downstream pressure measurements 

indicated that highest reduction in shock impact was achieved by pulsating cooling. The 

shock wave oscillations were altered by coolant pulsation frequency. Unsteady cooling 

minimized the variation in the shock wave angle. Hence, the shock wave stabilization 

was attained by pulsating purge. Base pressure and Strouhal number correlations for a 

wide range of test conditions and different blowing regimes were established in 

conjunction with the existing correlations in the literature. A significant reduction in 

trailing edge loss was obtained by minimum blowing. Besides, pulsating cooling 

maintained the same level of loss with steady cooling at the same rate while providing 

shock modulation. 

Overall, the research provided a detailed collection of the unique experimental data to 

investigate the feasibility of pulsating trailing edge cooling on controlling the fish tail 

shock structure. New flow passage designs utilizing more sophisticated cooling systems 

might result in more efficient turbines with longer operational life. 
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A 

Uncertainty Analysis 

A.1. Pressure measurements 

The total pressure levels upstream of the cascade, coolant total and static pressure 

measurements were accomplished by using pneumatic pressure transducers with a range 

of ±1100mbar. The sensors provided a voltage level of almost 3 V at the ambient 

pressure (zero relative pressure) and 5 V at the maximum pressure. The voltage range in 

the data acquisition system was set to be ±5 V. For the calibration of the transducer, a 

digital handheld differential pressure indicator was used. The transducers were connected 

to a 12 bit acquisition system to avoid drifts and error in pressure readings which might 

be experienced with the multi-meters. Hence, the uncertainty in the voltage readings on 

±5 V span was δV=2.4x10-3V. The uncertainty of the pressure indicator provided by the 

manufacturer was δP=0.5 mbar. The linear correlation between the membrane of the 

sensor due to the applied pressure and the voltage output is interpreted by Eq. A.1 where 

S is the sensitivity and O is the offset. The sensitivity is the increase of pressure which 

produces a change of 1V in sensor output voltage. At the end of the calibration 

procedure, the sensitivities for inlet total pressure, coolant total and static pressure 

sensors were calculated as S=548.4mbar/V, S=549.3mbar/V, S=547.5mbar/V, 

respectively. 

𝑃 = 𝑆 ∙ 𝑉 + 𝑂     (A.1) 

The uncertainty of pressure measurements can be calculated by using the expression 

given in Eq. A.2. 

δP = !"
!"
δS

!
+ !"

!"
δV

!
+ !"

!"
δO

!
!
!
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    = 𝑉!δS! + S!δV! + δO!
!
!    (A.2) 

The uncertainty of the sensitivity (δS) and the uncertainty of the offset (δO) should be 

estimated in order to calculate the uncertainty in pressure measurements. The uncertainty 

of sensitivity can be calculated by the equation below. 

δS = !
∆!
δ ∆𝑃

!
+ !∆!

∆!!
δ ∆𝑉

!
!
!
   (A.3) 

The corresponding values for the variables for Eq. A.3 in this case are ΔV=2V, 

ΔP=1100mbar for the spans. The uncertainties of the voltage reading in the acquisition 

and the pressure reading from the calibrator are 4.8x10-3V and 1 mbar, respectively. The 

estimated uncertainty of the sensitivity calculated as 1.411 mbar/V. Considering the 

uncertainty of the offset equals to the uncertainty of the pressure indicator and putting the 

maximum voltage of 5V into Eq. A.2, the uncertainty of the upstream total pressure, the 

coolant total and static pressure measurements were found to be δP=7.19mbar in 95% 

confidence interval.  

The static pressure measurements in the test section and downstream were performed 

by using a ScaniValve pressure scanner whose uncertainty is provided as 0.1 mbar by the 

manufacturer. Therefore, the uncertainty of all the other pressure measurements were 

assumed to be δP=1 mbar. 

A.2. Temperature measurements 

The variation in the inlet total temperature was measured by a thermocouple probe 

with 25µm junction size. The calibration of the thermocouples was made in an oil bath. 

The temperature of the bath was controlled by electronic circuit and measured by a 

mercury thermometer whose uncertainty was δTmer=0.1K. As the relationship between 

the thermocouple voltage output and the temperature is also linear, the procedure used to 

calculate the uncertainty of total pressure measurements can be utilized for this analysis. 

The sensitivity was found to be 99.3 K/V by applying the calibration law. 

𝑇 = 𝑆 ∙ 𝑉 + 𝑂     (A.4) 

δT!" =
!"
!"
δS

!
+ !"

!"
δV

!
+ !"

!"
δO

!
!
!
    

          = 𝑉!δS! + S!δV! + δO!
!
!    (A.5) 
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The uncertainty in the sensitivity was calculated in the same fashion of the pressure 

uncertainties. For this case, the variables in the sensitivity equation were taken as 

δ(ΔT)=0.2K and with ±5 V span, δ(ΔV)= 4.8x10-3V. The maximum temperature and 

voltage drifts were ΔT=37K and ΔV=0.372V. 

δS = !
∆!
δ ∆𝑇

!
+ !∆!

∆!!
δ ∆𝑉

!
!
!
= 1.4 !

!
    (A.6) 

The uncertainty of total temperature measurement was found as δT01=0.95K (95% 

confidence interval) by plugging the offset uncertainty of 0.1K (the thermometer 

uncertainty) and the maximum voltage output of 0.59V in to Eq. A.5. 

A.3. Pulsating valve rotational speed drift 

The pulsating coolant generator is driven by a low-voltage DC engine, whose velocity 

is controlled increasing or decreasing the power supply voltage according to the 

requirements for each test. The unavailability of a feedback control unit might have led to 

important fluctuations on the rotational speed, affecting the investigated fluid dynamic 

phenomena. However, taking advantage of the rpm counter signal, it was possible to find 

out the severity of the problem. The rpm counter was provided by a ferromagnetic 

detector located in the front casing of the valve aligned with the holes. Every time a hole 

passes in front of the sensor a high level signal was generated and recorded by the 

acquisition system. The rotational speed was directly derived either counting the number 

of raising pulses of the signal during a determined period of time or calculating the FFT 

and locating the fundamental frequency.  

Once the rpm signal has been recorded, a processing routine was used to compute the 

rotational speed drift in such a way that first, the raising edges of the signal were located 

in time and then the elapsed time between each pair was calculated. In order to separate 

the velocity drift and the error introduced by machining defects of the holes (due to small 

differences in size or shape), only one pulse out of four was considered, ensuring that 

always the same angular position was accounted for. Finally to compute the drift, the 

standard deviation of the resulting signal containing one value of velocity per revolution 

was compared to its mean. Fig. A.1 shows the percentage speed drift at several velocities. 
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The fluctuation was found lower than 0.5%, sufficient to neglect its effects for the present 

application. 

 
Fig. A.1. Rotational speed drift for tested pulsation frequencies 

A.4. Uncertainty propagation 

The measurements performed on the test section were used to calculate other flow 

variable like isentropic Mach numbers or pressure ratios. Under such circumstances, 

when two or more measured variables are used to calculate another derived value, the 

uncertainty of the measured quantities propagates through the calculation and creates a 

new uncertainty on the final value. 

In current research, the uncertainty of the total and static pressure measurements 

propagated in to the uncertainty of isentropic Mach numbers, the base pressure to inlet 

total pressure and outlet static pressure to inlet total pressure ratios. In order to calculate 

the propagated uncertainty, the contribution of the uncertainty of two measured variables 

used to calculate Mach numbers should be considered. As depicted in the equation below, 

the calculation procedure is similar to the uncertainty of pressure and temperature 

measurements. 

δM = !"
!!!

δP!
!
+ !"

!!
δP

!
!
!
    (A.7) 

The uncertainty in the Mach number was calculated over the range of total and static 

pressures observed in the experiments. The maximum calculated value (δM=0.5%) was 

assumed to be the propagated uncertainty in the Mach number. The same exercise was 

repeated to estimate the uncertainties of P2/P01 and Pb/P01. The uncertainties of both 

pressure ratios were found as 0.4%. 
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