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Abstract

Kotecha, Ramchandra. M.S.Egr., Department of Electrical Engineering, Wright
State
University, 2010. Analysis and Comparison of Popular Models for Current-Mode
Control of SMPS

Current-mode control is the most popular scheme used for the operation of SMPS

(Switch Mode Power Supplies). Current-mode control, also known as current-programmed

mode or current-injected control is a multi-loop control scheme that has an inner loop

and an outer voltage loop. The current loop controls the inductor peak current while

the voltage loop controls the output voltage. The inner loop follows a set program

by the outer loop. Some of the most popular small-signal models that predict the

small-signal characteristics of current-mode control scheme have been analyzed and

compared in this thesis. A PWM dc-dc buck converter in CCM(Continuous Conduc-

tion Mode) has been chosen to explain the phenomenon of current-mode control in

all these models. Small-signal characteristics are generated in MATLAB using the

simplified analytical transfer functions. Some of the important small-signal charac-

teristics include the current loop gain, control-to-output gain with the current-loop

closed and outer loop open, audio susceptibility, and output impedance. The two

most important models in consideration are: 1) Continuous-Time Model and 2) Peak

Current-Mode control Model. Despite the fact that both these models predict the

instability of current-mode control at a duty ratio of 0.5, these models differ signifi-

cantly in deriving the expression for the sampling gain. As a result, their small-signal

characteristics differ over a wide frequency range. Also, a very less explored average

currentmode control is compared with the peak-current mode control based on the

similar small-signal characteristics.
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1 Introduction

1.1 Background

The controller design for SMPS has always been a complicated issue and a unique

topology that can be optimum for all power supply technology is yet to be developed

[2]. There are two fundamental approaches for designing the control circuit for the

power converters. They are:

1) Voltage-mode control Scheme

2) Current-mode control Scheme

Previously, it was believed that current mode control was the most superior approach

to design the control circuit for the PWM dc-dc power converters until the introduc-

tion of UCC3570 (a voltage mode controller) by Unitrode IC corporation. After the

introduction of this controller, it became clear that there is no unique scheme that

can render optimum results for all power supply applications. However, current-mode

control scheme is still a widely used approach to design the control circuits for SMPS

[2]. A brief review of both the approaches is explained as follows:

1.1.1 Voltage-Mode Control Scheme

The circuit diagram for this scheme is shown in Fig. 1.1. The major advantage of this

circuit is its single voltage feedback path wherein the duty ratio is controlled by com-

paring the waveform obtained from the resulting error voltage from the operational

amplifier with an external ramp which is fixed citekazpwm. Owing to this single loop,

the circuit topology becomes easier to design and analyze. The modulation is stable

in voltage-mode control because of high amplitude ramp. Cross-regulation is better

compared to current-mode control because of low-impedance at the output [2].

However, there are certain disadvantages of this method that limits its use to

certain applications only and they are listed as follows:

1



Figure 1.1: Voltage-mode control of a boost converter [1].

• Voltage-mode control has slow response compared to current-mode control be-

cause any change in input voltage or load resistance will be first required to be

sensed by the change in output voltage. The voltage feedback loop will then

correct any changes in the input voltage and load resistance [1] and [2].

• The RC-circuit at the output adds an extra pole in the feedback loop. Therefore,

a zero will be required to be added by the controller [2] and [1].

• The open loop gain of the circuit changes with the change in line voltage [2]

and [1].

1.1.2 Current-Mode Control Scheme

The disadvantages of the voltage-mode control are significant in most power supply

topologies and most of these were effectively alleviated by this scheme. Consequently,

current-mode control scheme became popular for designing the control circuits com-

pared to other schemes of control. The circuit diagram for the current-mode control

scheme is shown in the Fig. 1.2 [2].

This scheme is a multi-loop control scheme as shown in Fig. 1.2. The inner loop

controls the peak value of the inductor current, while the outer voltage loop con-

trols output voltage. Modelling of current-mode control is slightly complicated and

2



requires sampled-data modelling. This scheme provides short-circuit protection and

over-current protection in PWM converters [1] and [2]. The output response of the

this scheme is fast and wide-band [1].Having said that, current mode control provides

certain disadvantages that are detailed as follows:

• The circuit analysis becomes difficult with two current loops in this method [2]

and [1].

• The control loop has inherent instability at the duty ratio of 0.5. For higher

duty cycles, slope compensation is required which makes the analysis even more

complicated [2] and [1].

• When the ripple due to inductor current is small, it may well introduce noise

in the loop [2] and [1].

• The capacitance in the transformer winding sometimes creates resonance in the

current loop, which is also one of the sources for the noise [2].

• Load regulation is significantly affected since the control loop is forcing a current

drive [2].

From above disadvantages, it is clear that even though this scheme alleviates the

limitations by the voltage-mode control, it is still not the optimum mode of control

for the operation of PWM converters. In fact, the recent developments in the Power

Control Technology indicate that the shortcomings of voltage-mode control can be

overcome. Hence, even though, current mode control was believed to be the best ap-

proach, there is possibility of the revival of the voltage mode control. This possibility

has resulted in the invention of UCC3570 with an effort to correct the flaws in volt-

age mode control. This controller significantly improved the design of voltage-mode

control by providing feed-forward voltages to the changes in the input voltage and by

3



using BicMOS processing resulting in smaller parasitics [2]. If the compensating ramp

is made proportional to the input voltage, then voltage feed-forward can be achieved

[2] and [1]. The control modulation is accomplished without providing voltage feed-

back. This eventually results in a fixed loop gain and fast response to the changes

in line voltage. Therefore, the problem of slow response is eliminated. These design

changes results in high frequency capabilities and a higher bandwidth for RC-circuit

at the output [2] and [1]. Therefore, many of the problems of the earlier topologies

in voltage mode have been alleviated in UCC3570 [2].

1.2 Motivation for Thesis

The current-mode control scheme is still the most widely used scheme for the control

of PWM converters. The most commonly used model in the industry these days

is the ”Continuous Time Model” proposed by Ridley. The model approximated for

small-signal characteristics has a sampling gain with more zeros than poles. However,

the model has been purposefully approximated such that it is accurate upto half the

frequency of interest beyond which the system is unstable unless compensated exter-

nally. Hence, this model is widely used in the industry for the control of switch mode

power supplies. As a result, this model is slightly difficult to understand owing to its

complexities in the derivations and expressions. Also, there is an unbelievable mess in

the current mode control theory with several conflicting theories prevailing. Another

popular model for the educational purpose is the peak current-mode control model

proposed by Kazimierczuk. This model overcomes the anomaly of the improper trans-

fer function unlike the continuous time model. There was a motivation to compare

the two models which have not been compared so far in any research publication.

However, the small-signal characteristics are substantially different in the two models

owing to these fundamental differences. Another application of this scheme is average

current-mode control scheme which is very less explored. There was a motivation to

4



explore an alternate method as well so that another alternate model can be developed

in future which overcomes the limitations of the current-mode control [1] and [3].

1.3 Thesis Objectives

• To explore different methods used so far for control of SMPS.

• To compare and analyze the two main types of control schemes for SMPS.

• To analyze current-mode control in depth and understand the limitations of

this method.

• To study average current-mode control method of for PWM dc-dc converters as

an application of current-mode control scheme.

• To generate the small signal characteristics using the simulation results obtained

from the MATLAB.

• To compare and analyze the models based on the small signal characteristics.

• To propose a recommendation for the future work.

1.4 Choice Between the Two Main Types of Control Schemes

All of the above discussions clearly indicate that both modes of control are viable

choices in today’s environment. The choice between the two topologies actually de-

pends on the application and hence there is no single control scheme which can be

considered optimum for all the applications [2].

1.4.1 Applications suitable for Current-Mode Control

• When the output of SMPS is desired to be a current source as in case of buck

converters [2].

• When at a given frequency, a fast dynamic response is needed [2].
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• More suitable for a PWM dc-dc converters changes in the line voltage are rela-

tively lesser [2].

• When pulse by pulse modulation is needed and when load sharing with parallel

multiple power units is required [2].

• In low-cost applications where fewest components are required [2].

1.4.2 Applications Suitable for Voltage-Mode Control

• When there are a large line or load variations possible [2], [1].

• When the current ramp is too small for stable PWM operation particularly with

low line and light load conditions [2] and [1].

• When noise due to the resonance in the current loop would very high, particu-

larly with high power and noisy applications [2] and [1].

• When relatively good cross regulation is needed compared to current mode

control [2] and [1].

• Where less complexities in design are needed and multi-loops are to be avoided

[2] .

Even-though, current-mode control is still most widely used method till now,

there are several other methods developed recently in an effort to try and overcome

the limitations of this control scheme. Average current-mode control is one of those

promising methods which can overcome many of the demerits of the previously derived

models that were based on controlling the current. The motivation behind this thesis

is to understand the complexities and several contradictory ideas prevailing in the

control schemes [4], [3] and [5].

6



In this thesis, first the peak current mode control is studied in detail so that

the disadvantages offered by this method can be understood in detail. Two popular

models for current-mode control topology are studied and compared in detail. This

will provide the platform for a similar kind of approach for the controller design but

will overcome the limitations of the peak current mode control to a substantial extent.

After that, the average current mode control will be studied in detail [4] and [5].

1.5 Current-Mode Control Scheme

This control scheme is a multi-loop control scheme as explained in brief in the earlier

section. Some other popular names of this method are ‘current programmed mode’ or

‘current injected control’ [2] and [1]. The inner loop follows a set program to control

the peak value of inductor current whereas the outer loop is copensates any changes

in the load voltage [1] and [24]. The inductor peak current is directly controlled

whereas the output voltage is controlled indirectly by the current loop [2] and [1].

The relationships between the inductor average current, inductor peak current and the

load current are different for different type of converters [2] and [1]. In buck and buck-

derived converters, the inductor is on the output side. Therefore, the actual current

flowing on the load-side is average inductor current. In case of a boost converter,

the average inductor current represents the actual current flowing into the converter

system[1]. The inner current loop dynamically changes the duty ratio during the

initial stages in response to the disturbances in the line current [1]. The outer loop

produces a reference voltage for the inner loop in response to the changes in the

converter output voltage [1]. The duty ratio is calculated based on time instants at

which the inductor or switch current reaches a maximum level determined by the outer

loop program. This inductor current is fed into the inner loop. Thus the inductor

is changed into a voltage dependent current source at frequencies lower than those

beyond the threshold level [1] and [2]. There are two fundamental types of current
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Figure 1.2: Circuit of a PWM dc-dc buck converter operating under current-mode
control scheme [1].

mode control: Fixed frequency control and variable frequency control methods [1].

In the first type, the switching frequency is constant and synchronized to a clock

signal i.e. fs = fclk [1]. This type contains peak-current-mode control scheme, valley

current-mode control scheme, PWM conductance control scheme with triangle-wave

compensation and average-current-mode control scheme [1]. The second type contains

either with a fixed on-time or off-time and hysteric methods [1]. Even-though it has

a lot of limitations, the fixed frequency peak current mode control with fixed slope

compensation ramp is still most widely method. As mentioned earlier, current-mode

control scheme is the most widely used method and so is mentioned in detail [1].

1.5.1 Current-Mode Control

The circuit for PWM dc-dc buck converter with fixed-frequency current-mode control

is shown in Fig 1.2.

As mentioned earlier, the circuit has two loops making it a multi-loop control

scheme. The inner loop contains a comparator, a set-reset latch, a frequency signal,

and a current sensor which could be a current transformer or a non-inductive sense

resistor RS, which senses the inductor current iL or the switch current iS [1]. Thus, RS
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is the transfer function with voltage across the sensor as the output and the inductor

or switch current as the input [1]. It could be the transfer function of a current

transformer which has corner frequencies in the dc and high frequency ranges. The

latch performs set and reset operation for the Q. The peak current-modulation is

achieved by the comparator, SR latch and the frequency signal from the clock. Vc

is applied to the comparator inverting terminal and the RsiL is applied to the non-

inverting terminal [1]. The controlled switching operation is carried out by a set

current which is due to the control voltage and a non-inductive resistance in the path

of the inverting input and ground of the voltage comparator [1]. The principle of

operation of the buck converter with current-mode control scheme can be explained

with the waveforms shown in Fig 1.3.

The clock generates voltage pulses at a constant clock frequency fCLK equal to the

switching frequency fS = 1/TS. When the clock output voltage vCLK = vS goes high,

the latch Q output sets to 1. Therefore, the gate to source voltage vGS also goes high

turning the switch on. This event initiates the transistor on-time and starts the cycle

TS of the switching frequency fS. This is an example of constant frequency current-

mode control since the turn-on times are periodically clocked. While the switch is on,

the inductor current and the switch current increase linearly. The inductor current

iL is sensed by a probe which flows through the resistor RS and develops a voltage

RSiL [1]. When this voltage is less than the control voltage, the comparator output

voltage vR is low since the control voltage is negative and higher. And once this

voltage reaches a level set by the program, the comparator output voltage vR goes

high, and the latch resets resulting in the switch to turn off. In short, the switching

operation follows the current program, where the peak current follows the current set

by the program [1]. The inductor average current is given by

IL ≈ ILpk −
∆iL
2

. (1.1)
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Figure 1.3: Voltage and current waveforms for dc-dc buck converter with constant
frequency pulse-width modulation [1]

.

Thus, this current program controls the inductor peak current directly. The inner

loop, in this scheme, is responsible for fast response to any changes in input and load

side [1].

The control scheme here, belongs to the category of fixed-frequency type and the

modulation is of the trailing-edge type since the amplitude of the inductor current

follows a set program. The peak value here is nothing but the sum of average value and

peak-to-peak current ripple which results in indirect control of the inductor average

current. The current in the inner loop follows the set program given by the outer loop.

The negative feedback path is created by a non-inductive resistance for the inductor

current. And the negative feedback for the load voltage is provided through a voltage
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divider network which is compared with a reference voltage through a comparator.

The control voltage is set/reset based on that [1]. The corresponding values of output

voltage and inductor current are determined by the duty ratio. Thus, the inductor

now becomes a voltage-dependent current source because of this inner current loop [1].

Even-though, with many disadvantages, the peak current mode control has several

problems which have still left the quest for a better mode of control open. Some of

the important problems with the current mode control have been listed as below.

1.6 Problems with Peak Current-Mode Control

1.6.1 Poor Noise Immunity

As shown in the Fig. 1.2, in this method, the rising slope of the inductor current

waveform is compared with the control current. The switching operation is controlled

by this control current. The current ramp is usually quite small compared to the

control current set by the outer loop and hence this method is less immune to noise

compared to voltage-mode control. Thus, every time the switch is turned on, there

is spike generated due to above reason. Since the control current is higher than the

current ramp, even a fraction of the voltage coupled to the outer loop will cause

the switch to turn off resulting in sub-harmonic oscillations with large magnitudes

of ripple. For the stable operation of this scheme, the circuit topology and current

bypassing are very important [1] and [4].

1.6.2 Necessity of Slope Compensation

From the above, it is quite clear that current-mode control becomes unstable half the

switching frequency resulting in sustained oscillations. An external ramp is therefore

required to be added to the comparator input for stable converter operation. In a buck

converter, the inductor current down-slope equals VO

L
and thus varies considerably as

the input voltage follows the rectified sine waveform. However, a fixed external ramp
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in most cases, overcompensates the inductor current, which will eventually result in

performance degradation and increased distortion [1] and [4].

1.6.3 Peak to Average Current Error

In case of buck converters, this isn’t a major problem because the average value of

inductor is much higher than the noise ripple. Also, the voltage feedback loop com-

pensates for this error by compensation [1], [4]. However, in case of boost converters,

this is a major issue. The peak inductor current is controlled by the modulator wave-

form while the average current is not. In discontinuous conduction mode, this error is

even higher as the sine wave of the modulator approaches zero half cycle. This error

must be made small as possible to achieve low distortion levels. To make the noise

ripple small, the size of the inductor has to be large. However, this further reduces

the noise immunity as the inductor ripple gets smaller [1] and [4].

1.6.4 Topology Related Problems

Conventional current-mode control scheme controls the peak value of inductor current.

Inductor current is on the load-side of the buck converter and hence this scheme is

most effective in case buck-derived converters. But for the boost or the fly-back

converter schemes, the inductor is not at the output. Average current needs to be

controlled in these schemes. Hence much of the benefits of this scheme are lost with

this kind of topology where the inductor is on the load-side. Therefore, the input

current control is more suitable for the boost and the flyback kind of topology [1] and

[4].
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2 Comparison Between UMT and NCT Models

2.1 Introduction

There are several models proposed so far for the Current-Mode control scheme for

power converters. The state space averaging technique is a very popular technique

for the modelling of current-mode control scheme for power converters. However, im-

portant research work has been made in modifying this traditional approach towards

small-signal modelling. This kind of approach takes into consideration the fact that

current-mode control modelling requires discrete-time analysis. Two of the popular

approaches in this direction are considered here for the comparison:

1)The Unified modelling technique.

2)New continuous time technique.

These two techniques have been combined and the resultant small signal charac-

teristics can be obtained. Average modelling techniques have been used to derive

approximate small-signal transfer functions of modular DC-DC switching converters.

All these small-signal characteristics will be derived based on a buck-derived converter

[8].

The two approaches, namely UMT(Unified Modelling Technique) and NCT(New

continuous time technique) are compared using a two-module buck-derived converter.

Two peak current mode control schemes considered for this converter are:

1) the double current-mode control scheme(DCMC) as shown in Fig 2.1 and

2) Single current-mode control(SCMC) scheme as shown in Fig 2.2. In DCMC scheme,

a separate feedback is applied from the output inductor current and the capacitor volt-

age of each module[8].

Whereas in the SCMS scheme, a single current loop and a single voltage loop is used to

track the behavior of the peak current and the control voltages. The converter boxes

in these figures are the constant frequency Pulse Width Modulated buck-derived DC-
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Figure 2.1: Circuit diagram of a two-module buck converter using DCMC scheme [8].

DC converters. Pulse-width modulation is provided by the use of these converters

to the passive components of the circuit [8]. The approximate small-signal transfer

functions can be compared for both the techniques. The comparison between the

models will be based upon the design equations for determining the size of the exter-

nal ramp signal. This compensation is required for providing necessary damping to

the control-to-output response with the outer loop closed at 50 percent duty ratio.

The two techniques are also compared based on their predictions for the current-loop

gain characteristics and control-to-output response. Small-signal models are helpful
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Figure 2.2: Circuit diagram of a two-module buck converter using SCMC scheme [8].

in determining the behavior of a system upto the frequency range of interest. In this

case, the range of frequency of interest is upto half the switching frequency [8].

2.2 Small-signal Modelling of DCMC Scheme

The small-signal modelling of the current-mode control scheme was carried out based

on the following assumptions.

• The two converter modules are identical.

• The transistor and the diode are ideal.
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• Parasitic elements are linear,time-invariant, frequency-dependent.

• Only the continuous conduction mode of inductor current is considered.

• The diode in the on-state is modelled by a linear battery source and with a linear

forward resistance; therefore, the input voltage is ripple-free. The switching

components have infinite resistance during the turn-off period [8].

To derive the small-signal modelling of the Double Current-Mode Control Scheme(DCMC),

each of the converter modules can be treated as the single-stage peak CMC converter

with a fixed frequency. The inductor current is sensed by the resistor Ri which devel-

ops a voltage RiiL. The on-time slope of its waveform is given by M1 (or Sn according

to some other publishers). The duty cycle D is determined when the voltage RiiL

reaches the values set by Vc. An external ramp with a slope Mc (or Se according to

some other publishers) is added to the sensed waveform to stabilize the inner current

loop. Fig. 2.3 shows the circuit of a single-stage current-mode controlled buck con-

verter. The waveform of the inductor current, control voltage and the external ramp

required for stabilizing the inner current loop is shown in the Fig 2.4 [6],[7],[12], and

[8].

Based on the Unified Modelling Technique, the small-signal duty cycle is deter-

mined based on the geometry of the steady-state inductor current waveform. Refer-

ring to the geometry of the inductor current waveform, the equation for the steady-

state waveform is given by

IC = IL +
M1DT

2
+McDT, (2.1)

IL = IC − M1DT

2
−McDT, (2.2)

ILRi = Vc −McDT − 0.5M1DT. (2.3)

For a buck-converter, the upward slope of the inductor current waveform is given by

M1 = Sn =
RiVgD

′

L
, (2.4)
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Figure 2.3: Circuit of a single-stage CMC buck converter [8].

Figure 2.4: The sensed inductor current waveforms in steady state [8].

where D′ = 1−D and Vg is the input voltage. Using M1 in the expression for ILRi,

which gives [6], [7], [3], [12], [10], and [8]

ILRi = Vc −McDT − 0.5DD′TVgRi

L
. (2.5)

The small-signal control law for duty cycle can be derived by introducing perturba-

tions into the above equation. The perturbation of the above equation leads to the
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following expression:

(IL + îL)Ri = Vc + v̂c −Mc(D + d̂)T − 0.5(D + d̂)(1−D − d̂)TVgRi

L
. (2.6)

The above equation is expanded to derive the low-frequency duty law.

ILRi + îLRi = Vc + v̂c −McDT −Mcd̂T − 0.5DD′TVgRi

L
, (2.7)

which gives

ILRi + îLRi = Vc+ v̂c−McDT −Mcd̂T − 0.5(DD′ −Dd̂+ d̂D′)(Vg + v̂g)RiT

L
. (2.8)

The small-signal component from the above expression is given by

îLRi = v̂c −Mcd̂T +
0.5Dd̂VgRiT

L
− 0.5Dd̂D′VgRiT

L
− 0.5DD′v̂gRiT

L
. (2.9)

Solving the above expression for d̂, gives

d̂

(

McT +
0.5DVgT

L
+

0.5D′VgRiT

L

)

= −îLRi + Vc −
0.5DD′v̂gRiT

L
. (2.10)

If

kg =
−0.5DD′TRi

L
, (2.11)

than

d̂ =
îLRi + Vc + K̂gv̂g

McT − 0.5DVgRiT

L
+ D′VgRiT

L

. (2.12)

Now, we simplify only the denominator for the above expression, which gives

1

McT + 0.5D′VgRiT

L
− 0.5DVgRiT

L

=
L

McTL+ 0.5D′VgRiT − 0.5DVgRiT
, whichimplies

(2.13)

= L

RiVgT
(

McLD′

D′RiVg
+0.5D′

−0.5D
) = L

RiVgT
(

McD′

M1
+0.5D′

−0.5+0.5D′

) ,

which gives

1

McT + 0.5D′VgRiT

L
− 0.5DVgRiT

L

=
L

RiVgT
(

D′

(

1 + Mc

M1

)

− 0.5
) . (2.14)
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Let

L

RiVgT
(

D′

(

1 + Mc

M1

)

− 0.5
) = Fmu, (2.15)

where Fmu is the low-frequency modulator gain. Thus, the low frequency control law

is given by

d̂ = Fmu

(

−îLRi + v̂c +Kgv̂g

)

. (2.16)

From the above expression, the minimum value for D′ required to maintain a finite

positive value for Fmu can be given by [6], [7], [3], [12], and [10]

D′

min =
0.5

(1 + λ)
, (2.17)

where λ is the slope ratio Sn

Se
.

In the above derivation, the the discrete nature of the inner loop is neglected, but for

the prediction of high frequency small-signal behavior up to the frequency of interest,

the sampling effect of the loop gain is taken into consideration[11]. The sampling

effect is represented by the addition of a pole in the inner current loop. Therefore,

the high-frequency modulator gain becomes

Fmu (s) =
Fmu

1 + s
ωp

, (2.18)

where

ωp =
π2

T
[D′(1 + λ)− 0.5]. (2.19)

The duty ratio law for the high-frequency small-signal model can be given by [6], [7],

[3], [12], [10], [11], and [8]

d̂ = Fmu (s)
[

−îLRi + v̂c +Kg v̂g

]

. (2.20)

Based on these derivations, the small-signal model for this control scheme can be as

shown in the Fig. 2.5. This model is based on the UMT technique.
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Figure 2.5: Small-signal model of DCMC scheme using unified modelling technique
[8].

The similar kind of model can be derived based on the NCT technique. In this

technique, the sensed inductor current of the CMC scheme is treated as the sawtooth

modulator waveform similar to the voltage-mode control scheme [3] and [8]. The

modulator gain for the single stage converter can therefore be written as [17], [6], and

[16]

Fmn =
1

(Sn + Se)T
. (2.21)

The same expression holds true with the perturbation as well. Substituting the value

of Sn for buck converters, the above expression is modified to

Fmn =
L

RiVgD′T (1 + λ)
, (2.22)

where Fmn is the modulator gain for the NCT technique, in which, λ is the slope ratio

Se

Sn
. Comparing the expression for the modulator gain for the NCT model with that for
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Figure 2.6: Small-signal model of DCMC scheme using the new continuous time
modelling technique [8].

the UMT model, one can figure out the major difference between the two techniques.

The sampling gain for the NCT technique is approximated using certain mathematical

steps which is also one of the major differences between the two techniques [12], [6],

and [7]. The sampling gain is is represented by two complex conjugate RHP zeros,

which is given by the expression [3]

d̂ = Fmn[−îLRiHe(s) + vc +Kf v̂on +Kr ˆvoff ]. (2.23)

He (s) ' 1 +
s

ωnQz

+
s2

ω2
n

. (2.24)

Another difference between the two techniques is that in the NCT approach, the feed-

forward of the voltages is provided by the two feed-forward blocks kf and kr with the

inner current loop closed [3], [8] and [6]. The values for Kf and Kr for the single
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stage buck converter are given by

Kf =
−DTRs(1− 1

2
)

L
[8], (2.25)

and

Kr =
D′2TRs

2L
[8]. (2.26)

where Qz = − 2
π
and ωn = π

T
[8]. Fig. 2.6 shows the small-signal model for the two

stage buck converter with Current-mode control scheme using the NCT technique.

The small-signal duty ratio law for the buck converter module using this technique

is given by [8] and [3] Here, v̂on and ˆvoff are the partial changes in the voltages after

introducing perturbations in the model.

22



3 Current-Mode Control Scheme Using Discrete-

Time Analysis

3.1 Introduction

As mentioned previously, Current-Mode Control has been the most popular approach

for the control design of power converters. Several models have been proposed so far

to characterize the current-mode control scheme with small-signal models. Most of

these models had limited degrees of accuracy and a lot of inconsistencies. Some of

these models provided the low-frequency model for the system but failed to deal with

the current-loop instability [6]. Predictions have been made in the past to explain

the sub-harmonic oscillations at a duty ratio of 0.5. But these predictions were never

confirmed by the hardware measurements. Another approach was presented to predict

the high-frequency behavior with a low-frequency model in which the duty cycle ratio

was derived by perturbing the inductor average current in steady state [3] and [6].

The power stage model was derived using the averaging techniques of state-space.

The entire model of the control scheme is derived after interfacing the duty-ratio

control law model with the power stages. This leads the cross-over frequency of the

inner current-loop in general to be wide-band. This implies that a low-frequency

model would possibly degrade in performance. Another model, that deals with the

potential deficiencies, also predicts the instability, which occurs when the duty ratio

is greater than 50 percent and the external compensation is not used. In this model,

a discrete-time model for the current loop is designed and it is shown that the sub-

harmonic oscillations occur at one-third of the switching frequency. However, this

estimate is too conservative and many models later on have shown that the peaking

actually occurs at half the switching frequency [3], [6], [10], [19], [7], and [12].

The two most significant models derived during the 90’s decade were:

1) Current-mode control with discrete-time analysis by Ray Ridley [3].
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Figure 3.1: Invariant Switch Model [6].

2) Current-mode control with unified modelling scheme by Middlebrook [7].

3.2 Ridley’s Model

Here, the small-signal model is derived using the power stages and a modulator

scheme. The power stage model replaces the non-linear operation of the circuit with

a linearized circuit. The invariant PWM three-terminal switching model is used to

develop the power stage model as shown in Fig. 3.1 [11]. In this model, the steady

state dc voltage across the terminals, and the duty ratio of the power stages determine

the voltage source [3]. The dc current coming out of the common end determines the

current source [6].

Power stage model is obtained by substituting the switch model in the modulator

[6]. Fig. 3.2 shows the power stage model for the buck converter.

The modulation scheme used for the current-mode control scheme is shown in Fig.

3.3. The switch is turned on by a constant- frequency clock. The inductor current is

sensed which generates the modulator ramp. The switch is turned off based on the

control current set by the modulator. Since the modulator ramp is not enough for

stability, current compensation is required by use of a compensating ramp [6].
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Figure 3.2: Power stage model for buck converter [6].

Figure 3.3: Current-mode control modulator [6].

The modulator gain for this circuit is given by

Fm =
1

(Sn + Se)Ts

=
1

mcSnTs

[3], [16], and[17], (3.1)

where

mc = 1 +
Se

Sn

, (3.2)

in which Sn is the upward slope or the rising slope of the sensed current [6].

The power stage model shown before is used for designing the complete small-
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Figure 3.4: Current-mode control scheme after combining power stages with modu-
lator [6]

.

signal model for the buck converter. The power stage model remains unaffected

regardless of the control circuit. The current-mode control totally depends on the

gain blocks which model the control circuit. The complete small-signal model for the

current-mode control scheme of a buck converter is shown in Fig. 3.4. In this fig.,

He(s) represents the current-sampling function. The current feedback path is closed

and the two gain blocks k′

f and k′

r are created in different paths. When the switch is

turned on, k′

f block provides the fee-forward gain; while the switch is turned off, k′

r

provides the feed-forward gains [3]. Fm is the modulator gain block and is affected only

by the external ramp. The model described here is different from the other models
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described previously, by the fact that the feed-forward blocks were directly given

from the line and load sides in the previous models. This would however, render the

same results for a buck converter but would give different results for different types of

converters. However, the model described here is invariant of the converter topology

[6] and [3].

Another significant aspect of this model is that this model is invariant of the

control scheme. With zero current compensation, Ri = 0, resulting in the inner

current loop gains to be 0. This makes it advantageous over many other control

schemes. This model is not just invariant of the converter topology, but it’s also the

same regardless of the control scheme [3].

3.3 Discrete-Time Modelling

The power stage model shown previously would not require sampled-data modelling

and would still render reasonably accurate transfer functions. However, in case

of current-mode controlled converters, discrete-time modelling is necessary. Power

stages do not involve sampled signals. The inner loop however, needs to be modelled

with discrete-time analysis in order to combine with the power stages. So, in order to

combine this with the other blocks of the system, it is necessary to find the sampling

gain of the system [11], [3], [15], and [14].

It is necessary to find out the small signal value of the inductor current to derive

the transfer function from the control voltage to inductor current. The small-signal

inductor current is actually the sum of natural response of inductor current to a

perturbation and the forced response of the inductor current to a unit step change in

the control voltage [3], [1], [24], [25] and [10].
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Figure 3.5: Invariant small-signal model for all types of converters [6].

3.3.1 Natural Response of Inductor Current to Small Perturbation in

Closed-Current Loop

A small perturbation is introduced in the inductor current at the instant t = kTs with

all other perturbations being zero. The sampling occurs at the instants when the two
28



Figure 3.6: Natural response of the inductor in the closed-current loop [1].

voltages RsiL and vC−vA are equal. The subtraction of the perturbed waveform from

the steady-state waveform would give the small-signal inductor current as shown in

Fig. 3.6. This waveform can be approximated to the waveform shown in Fig. 3.7,

where the finite slope after the sampling is replaced by an infinite slope. There is

barely any difference between the two waveforms and hence can be ignored. This

waveform is the sample-and-hold system. The time instants between the sampling

instants are not constant but can be considered constant since the differences between

them are too small. From the geometry of the Fig. 3.6, and the enlarged waveforms

shown in Fig. 3.7 [1], [3], [24], [25] and [10],
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Figure 3.7: Enlarged waveform for the natural response [1].

M1 = tanα =
BC

∆tk
(3.3)

and

M3 = tan γ =
AB

∆tk
, (3.4)

Now, the small-signal component of the inductor current at the time of the pertur-

bation t = kTs is given by

Rsiln(k) = −(AB +BC) = −(M1 +M3)∆tk. (3.5)

Similarly,

M2 = tanβ =
AC

∆tk
, (3.6)

So, the small-signal component at the instant (k + 1)Ts is given by

Rsiln(k + 1) = AC − AB = (M2 −M3)∆tk. (3.7)
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So, using the sampling theory, the small-signal component at the instant t = (k+1)Ts

is divided by the one at the instant t = kTs, which gives

Rsiln(k + 1)

Rsiln(k)
= −(M2 −M3)∆tk

(M1 +M3)∆tk
= −(M2 −M3)

(M1 +M3)
= −a, (3.8)

where

a =
M2 −M3

M1 +M3
. (3.9)

Therefore, the discrete-time natural response of the small-signal inductor current from

one sampling instant to another is given by [1], [24], [25], [10], and [3]

iln(k + 1) = −ailn(k). (3.10)

The variable M1, M2, and M3 are equivalent to Sn, Sf , and Se in the continuous-

time model [1], [10], and [3].

3.3.2 Forced Response of Inductor Current to Step Change in Vc in

Closed-Current Loop

Fig. 3.8 shows the forced response of the inductor current to a unit step change in

the control voltage in the closed current loop. At the instant t = kTs, there is a small

change in the control voltage vC from VC to VC + vc to introduce a perturbation in

the in the inner loop. Since there is no change in line or load, the rising slope Sn and

the falling slope Sf of the inductor current waveform remain constant. The sampling

occurs when the control voltage reaches the value of the reference voltage. Fig. 3.9

shows the enlarged forced response [1], [24], [25], [10], and [3].

From the geometry of Fig. 3.9,

Sn = tanα =
AB

∆tk
, (3.11)

and

Se = tan γ =
BC

∆tk
. (3.12)
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Figure 3.8: Forced response of the inductor current in the closed-current loop [1].

From the geometry of the figure, the step change in control voltage is given by

vc(k + 1) = AB +BC = (M1 +M3)∆tk. (3.13)

The falling slope is given by

Sf = tanβ =
BD

∆tk
, (3.14)

which gives the small-signal inductor current at the instant t = (k + 1)Ts. This is

given by

Rsilf (k + 1) = AB +BD = (M1 +M2)∆tk. (3.15)

Now using the sampling theory, the discrete time forced response can be derived as,

Rsilf (k + 1)

vc(k + 1)
=

(Sn + Sf)∆tk+1

(Sn + Se)∆tk+1
=

(Sn + Sf)

(Sn + Se)
= 1 +

(M2 −M3)

(M1 +M3)
= 1 + a. (3.16)
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Figure 3.9: Enlarged waveform for the forced response of inductor current [1].

Therefore, the discrete-time forced response for the inductor current is given by [3]

ilf(k + 1) =
1 + a

Rs

vc(k + 1). (3.17)

The total discrete-time response for the inductor is the sum of the natural response

and the forced response, which is given by [1], [3], [24], [25], and [10]

il(k + 1) = iln(k + 1) + ilf (k + 1) = −ail(k) +
1 + a

Rs

vc(k + 1). (3.18)
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3.3.3 Transfer Function of Closed-Current Loop

Using the definition of z-transform, the discrete-time inductor current in the z-domain

is given by [1]

Z{il(k)} = il(z) =

∞
∑

k=0

il(k)z
−k = il(0)+il(1)z

−1+il(2)z
−2+....+il(k)z

−k+...., (3.19)

using the shifting theorem [1],

Z{il(k + 1)} = zil(z) (3.20)

and

Z{vc(k + 1)} = zvc(z) (3.21)

Therefore, the z-transform of the total discrete-time response is given by [1]

zil(z) = −ail(z) +
1 + a

Rs

zvc(z). (3.22)

Hence,

(z + a)il(z) =
(1 + a)z

Rs

vc(z). (3.23)

Thus, the discrete-time transfer function from control voltage-to-inductor with inner

loop closed and outer voltage loop open, is given by [1], [3], [24], [25], and [10]

Hicl(z) =
il(z)

vc(z)
=

1 + a

Rs

z

z + a
=

1 + a

Rs

z

z − p
. (3.24)

According to the definition, the transformation from the z-domain representation to

the continuous-time representation of the current-mode control system is given by

[20], [3]

F (s) = H(esTs)
1

sTs

(1− e−sTs). (3.25)

Using the above definition, the transfer function from control voltage to the inductor

current, with the inner loop closed, is given by [1]

F (s) =
îL(s)

v̂s(s)
=

1

Ri

1 + a

sTs

esTs − 1

esTs + a
. (3.26)
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This model is highly complex and hence is never used in this form. Instead, approx-

imate averaged models are often used. The model proposed by Ridley was approxi-

mated such that it is accurate upto half the switching frequency. Since, the closed-

loop, continuous time model has been already found, what is needed is the open loop

model to derive the expression for He(s). The modulator gain Fm is same as the

one derived for voltage-mode control scheme. For current-mode control scheme, the

ramp is formed by the sensed inductor current, and an external ramp, Se, in case of

constant-frequency controlled converter with controlled on-time, the modulator gain

is still derived the same way. The modulator gain for constant-frequency controlled

converter is given by the reciprocal of the height of the ramp that would be obtained

if the modulator signal continued with the slope Sn + Se towards the completion of

one period. The modulator gain is given by [1], [24], [25], [10], and [3]

Fm =
1

Sn + Se)Ts

. (3.27)

The modulator gain for constant-frequency control, with the off-time clock is given

by [1], [10], and [3]

Fm =
1

(Sf + Se)Ts

. (3.28)

The modulator gain for constant-frequency control with a naturally-sampled control

signal is Fc = 1 since there is no frequency dependence of modulator gain. The

transfer function from duty cycle to inductor current can be derived using the same

small-signal [3]. Now, the switch model and the complete model gives [3]

Fi(s) =
îL(s)

d̂(s)
=

Vap

sL
. (3.29)
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And from the figure, we can see that Vap = Vac + Vcp, also Sn = RiVac

L
and Sf = RiVcp

L

[3], this expression can be re-written in terms of the rising and falling slopes as

Fi(s) =
1

Ri

Sn + Sf

s
. (3.30)

The product of the modulator gain Fm and the current gain Fi(s) is now a single

expression for all the converters and is given by

FmFi(s) =
1

Ri

1 + a

sTs

. (3.31)

Using the standard formula for closed-loop expression, the open-loop gain term He(s)

can now be found. The closed-loop expression is given by [3]

1

Ri

1 + a

sTs

esTs − 1

esTs + 1
=

FmFi(s)

1 + FmFi(s)RiHe(s)
. (3.32)

Substituting the value of FmFi(s) from previous expression, the expression for He(s)

is given by [1], [10], [11] and [3]

He(s) =
sTs

esTs − 1
. (3.33)

This expression is not only invariant of the converter-type but also invariant for the

control scheme.

3.4 Continuous-Time Approximation to Discrete-Time Model

The continuous-time model shown before has a current-sampling function that cannot

be bound into finite limits of poles and zeros. This model is inconvenient for analysis of

the current-mode system since it contains an exponential term in s-domain. A second-

order approximation was subsequently been made to the sampling gain to model a

system which is accurate upto half the switching frequency. The approximation is

a second-order polynomial which can help in deriving the transfer function for the

design purpose. Fig. 3.10 shows the location of poles and zeros of the actual transfer

function [3], [6], [11], [12], and [19].
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Figure 3.10: Pole Zero Location of the sampling gain [3].

These poles are derived using the condition,

He(sp) =
spTs

espTs − 1
= ∞. (3.34)

The finite solution for this condition is given by [3] and [11]

espTs = 1. (3.35)

This condition is satisfied at frequencies which are integer multiples of the switching

frequency. The exponential expression above can be approximated to a continuous-

time transfer function with the same poles and zeros in a polynomial form. And then,

the lower frequency poles could be retained to make an approximation for the lower

frequencies. However, this approach is not satisfactory for modelling since it would

result in poor phase characteristics. The main reason why the model needs to be

simplified is that the sampling gain should be close enough to the gain and phase

characteristics of the transfer function upto the frequency of interest. The discrete-

time model requires that the model should be legit upto the Nyquist frequency, which
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is equal to half the switching frequency [3] and [11].

Several approaches can be taken to derive this transfer function. However, there

are some specific requirements related to current-mode control. The transfer function

should match exactly at the DC frequency. Also, current-mode control has inherent

problem of oscillation exactly at a 50 percent duty ratio. So, the approximated

transfer function should be exact at half the switching frequency [3].

He(s) exhibits a change in phase from 0 to -90 at a duty ratio of 50 percent, and

a change in gain of about 4 DB. An approximate expression is chosen such that

He(s) ' 1 +
s

ωnQz

+
s2

ω2
n

. (3.36)

This approximate transfer function is equal to unity at dc frequency, i.e at s = 0,

He = 1. The parameters ωn and Qz can be chosen such that [3], [11], and [6]

Qz =
−2

π
(3.37)

and

ωn =
π

Ts

. (3.38)

These parameters meet the requirements for the buck converter at half the switching

frequency. Fig. 3.11 and 3.12 shows the small-signal characteristics for the approx-

imate second-order model which is accurate upto the frequency range of interest,

which in this case is from dc to the nyquist frequency.

The gain does not deviate from the exact expression by 0.2 dB, and the phase

does not deviate by more than 3 degrees, which is reasonably accurate [6].

3.5 Complete Continuous-Time Model with Feed-forward Gains

The discrete-time model derived previously was for the simple current-mode control

scheme with fixed input and output voltages. A complete continuous time model

can be derived by allowing perturbations in these voltages. As shown previously,
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Figure 3.11: Gain of the sampled data model.
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Figure 3.12: Phase of the sampled data model.

it was seen that perturbations away from the steady-state of the peak current lead

to perturbations which were held constant over the whole switching cycle. It was

not important that the peak current was the controlled quantity. However, when
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deriving the complete model, the fact that the average current is different from the

peak current is significant. The average current in steady-state is equal to the peak

current minus or plus half the ripple current, depending on the control scheme being

used. Ripple current is a function of the duty cycle, line and load voltage of the

current cell. With the changes in line and load voltages, there will be changes in

average current value [3] and [6].

The complete small-signal model shown previously is used to model the effect of

input and output voltages. Feed-forward gains from the line and load sides to the

duty cycle must also be included in the model [3]. Modulator gain has been arbitrarily

included in the feed-forward path for simplifying the expressions for the feed-forward

terms. This choice gives expressions independent of modulator gain parameters. In

this model, the feed-forward gains are introduced from the inductor on-time voltage

and off-time voltage via k′

f and k′

r, respectively. This model is invariant of the con-

verter topology as well as the control scheme. The feed-forward gains can be found

from the steady-state equation that relates the average and peak inductor currents

[3] and [6].

The expression for inductor current containing the control voltage, switching pe-

riod, and the external ramp, for constant off-time, is given by [3]

Ri < iL >= vc − dTsSe −
Sfd

′Ts

2
. (3.39)

For the control during the transistor on-time, the describing function is given by [3]

and [6]

Ri < iL >= vc + d′TsSe +
Sfd

′Ts

2
. (3.40)

Where, < iL > is the inductor average current without any perturbations. Fig.

3.4 shows the small-signal model used for the prediction of characteristics. For the

small-signal model, the expressions for the duty cycle and falling inductor current
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slope is given by [3] and [6]

d =
voff

von + voff
. (3.41)

d′ =
von

von + voff
, (3.42)

and

Sf =
voffRi

L
. (3.43)

For constant-frequency, trailing-edge control [3], [17], and [16],

Fm =
1

(Sn + Se)Ts

, (3.44)

and the feed-forward gain was found to be [3]

k′

f =
−DTsRi

L

[

1− D

2

]

. (3.45)

Using the similar procedure, the feed-forward gain from the off-time voltage is

given by [3]

k′

r =
D′2TsRi

2L
. (3.46)
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4 Predictions of the Complete Small-Signal Model

4.1 Buck Converter for Example

The small-signal characteristics are plotted using the example of a buck converter. A

buck converter with the following values of the circuit elements is used as an example:

Vg = 11 V, V0 = 5 V, L = 37.5 µH, C = 400 µF, R = 1 Ω, Rc = 14 mΩ, Ri = 0.33

Ω, Fs = 50 kHz, and D = 0.45 [3] and [6].

4.2 Open-Loop Characteristics

The loop gain of the system is studied to ensure that the system is stable for all

conditions. Fig. 4.1 shows the model modified from the complete model to derive the

current loop gain. The load current is fed back through the resistor Ri. For the closed

current loop, a feedback block kr is shown in the figure. The effect of this block is

only to be seen at low frequencies. The feed-forward gain kf shown previously is not

shown because the input voltage perturbations are zero when deriving the current

loop gain [3] and [6]. With both of these gains ignored, the approximate expressions

for the current loop gain, Ts, is given by

Ti(s) '
L

RTsmcD′

1 + sCR

∆(s)
He(s). (4.1)

Where ∆(s) is the denominator of the power stage transfer function from the invari-

ant switch model combined with the passive components to form the buck converter.

This is given by [3] and [6]

∆(s) = 1 +
s

ω0Qps

+
s2

ω2
0

, (4.2)

where

ω0 =
1√
LC

, (4.3)
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Figure 4.1: Current loop of buck converter [3].

and

Qps =
1

ω0

[

L
R
+ CRc

] . (4.4)

This model differs from the other averaged models by the dc gain, and the presence

of the sampling gain,He(s). The predictions for the current loop shows that the model

has a zero in the dc frequency range, and a pair of complex conjugate poles at a 50

percent duty cycle. The dc gain of the current loop is inversely proportional to mc.

Fig. 4.2 and 4.3 shows the open loop characteristics with different values of mc at

a given frequency and duty ratio. The sampling gain introduces a pair of complex

complex conjugate zeros in the right half of s-plane, which causes the gain of the loop

to become flat at a 50 percent duty cycle, and the phase to drop an additional ninety

degrees at this point [3] and [6].

With the increase in the duty cycle, the gain also increases. And after a certain

level, the gain increases to a level when the system exhibits oscillations at duty ratio

of 0.5 [3], citeridleypaper, and [1]. This model characterizes the instability of the
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Figure 4.2: Open loop gain of buck converter.
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Figure 4.3: Open loop phase of buck converter.

current-loop at 50 percent duty ratio with a small phase margin as the instability

is approached. Above the peaking frequency of the power stages, the loop gain is

approximated by [3] and [6]
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Ti(s) '
Fs

mcD′
He(s). (4.5)

This high-frequency transfer function is same for all the power stages when a constant

frequency control is used. A proper average model of the current mode system would

produce the same transfer function equation as shown previously, with the sampling

gain He(s) = 1, is given by [3] and [6]

T ave
i ' 1

s

Fs

mcD′
. (4.6)

The slope of this transfer function is -1 and has a crossover frequency of fs =
Fs

2πmcD′
.

The crossover frequency becomes Fs

π
with no external ramp and at a duty ratio of

50 percent. Therefore, the system goes unstable at about one-third the switching

frequency according to the averaged model. No model should predict a crossover

frequency in excess of half the switching frequency, since this would exceed the Nyquist

frequency. The open loop characteristics of the converter show how the external ramp

of the system should be selected based upon the desired phase margin and crossover

frequency. However, many designers find this way of selecting the external ramp as

inconvenient because it is more easier to select the appropriate levels of compensation

using the transfer function from Vc to Vo [3] and [6].

4.3 Control-to-Output Gain

Fig. 4.4 shows the small-signal model for derivation of transfer function from control-

to-output of the control scheme with the inner loop being closed. The input control

parameter is the voltage v̂c for the closed current loop. The stability of the current

loop can be assessed by looking at the characteristics of this transfer function [3] and

[6]. The approximate control-to-output transfer function with inner loop closed and

outer voltage loop open, is given by [3] and [6]
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Figure 4.4: Buck-converter with current-loop closed [3].

v̂0
v̂c

' R

Ri

1

1 + RTs

L
[mcD′ − 0.5]

Fp(s)Fh(s)[3]and[6]. (4.7)

Where

Fp(s) =
1 + sCRc

1 + s
wp

[3]and[6], (4.8)

wp =
1

CR
+

Ts

LC
(mcD

′ − 0.5)[3]and[6], (4.9)

Fh(s) =
1

1 + s
wnQp

+ s2

w2
n

[3]and[6], (4.10)

and

Qp =
1

π(mcD′ − 0.5)
[3]and[6]. (4.11)
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The transfer function Fp(s) gives the low-frequency characteristics of the system.

In most average models, the high-frequency effects are ignored and the closed loop is

characterized by only this expression. However, this model overcomes that drawback

and effectively shows how the low-frequency pole moves to a higher frequency as more

compensation is introduced into the system. Fh(s) gives a pair of complex conjugate

poles at a 50 percent duty ratio, and the quality factor, Qp, of this double pole

depends on the duty ratio of the converter and the external ramp. This pole pair is

produced by the complex RHP zeros in the closed current loop due to the sampling

action on the system [3] and [6].

Fig. 4.5 and 4.6 shows the characteristics of control-to-output transfer function

for different values of mc. Fig. 4.7 and 4.8 shows the pole locations of the system

without any compensation. The poles at half the switching frequency(D = 0.5) are

always complex and located on the imaginary axis. For D = 0, the poles have a

Qp =
2
π
. As the duty cycle increases towards D = 0.5, these poles move towards the

imaginary axis and approaching Qp = ∞. For the duty cycles higher than 0.5, they

move towards the right-half plane [3] and [6].

As more compensation is introduced into the system, the pole starts moving closer

to the real-axis. They eventually split into two poles on the left half of s-plane. One

of them moves out to higher frequency levels upto infinity and the other moves in

towards the frequency where peaking occurs. When sufficient compensation is added

to the system to reduce the current loop gain to a point where the gain at the resonant

frequency is less than 1, this pole combines with the low frequency poles of Fp(s) to

provide the resonant-frequency poles characteristics of voltage-mode control. This

is the limiting case for the accuracy of the control-to-output transfer function. So,

effectively, this model is not only independent of the converter topology, but also it

is independent of the type of control [3] and [6].
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Figure 4.5: Closed-loop gain of buck converter.
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Figure 4.6: Closed-loop phase of buck converter.

4.4 Audio Susceptibility

The same small signal model is chosen to show the audio susceptibility of the con-

verter. Fig. 4.9 shows the diagram used to derive the audio transfer function. The
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Figure 4.7: Movement of poles without any ramp [3].

Figure 4.8: Movement of poles with external ramp [3].
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Figure 4.9: Converter system with current-loop closed and input perturbation [3].

input voltage perturbations can be fed into the power stage by two mechanisms. The

first way is to feed perturbations through the power stage, where the input source, v̂g,

is connected to the small-signal transformer. Another way is into the duty cycle per-

turbation, d̂s, via the feed-forward gain term, kf . The feed-forward term is negative

and the controlled source is in series with the input voltage source in the small-signal

model. And because of that, it is possible to have conditions in the circuit where the

net effect of line variations is nullified on the load side. [3] and [6].

The approximate transfer function for audio-susceptibility of the buck converter

is given by [3] and [6]

v̂0
v̂g

=
D[mcD

′ − (1−D/2)]
L

RTs
+ (mcD′ − 0.5)

Fp(s)Fh(s). (4.12)

Notice that the numerator of the dc gain is a difference of two terms. That

means, voltage perturbations at the input can be nullified with the output voltage

perturbations of the buck converter circuit mc [3]. Figure 4.10 shows the plots of
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Figure 4.10: Audio-susceptibility gain of buck converter.

audio susceptibility for different values of mc. It can be seen from the fig. that with

mc = 32, the characteristics approach the voltage-mode system. Without any external

ramp, the transfer function shows the effect of dominant poles just as the control-

to-output characteristics. These poles approach the imaginary axis as the duty ratio

is increased upto 50 percent. The audio susceptibility of the buck converter lowers

with added compensation to the system. As more compensation is introduced into the

system, damping is provided to the system which prevents the peaking of the complex

conjugate pole-pair at 50 percent duty ratio. Audio susceptibility keeps on reducing

with the added compensation but only until the null value is reached(voltage-mode

control characteristics). This value is reached at Se = Sf/2 [3] and [6].

4.5 Output Impedance Transfer Function

Fig. 4.11 shows the circuit of the buck converter with the inner loop closed to derive

the output impedance. Input voltage perturbation is zero and the disturbances in

the duty cycle are introduced through the current feedback loop and in the output
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Figure 4.11: Converter system with current-loop closed and load current perturbation
[3].

voltage via kr block. There is a small-signal current source applied on the load-side of

the converter which results in input perturbations. The resulting output impedance

transfer function is than given by [3], [6]

Z0(s) '
R

1 + RTs

L
(mcD′ − 0.5)

Fp(s). (4.13)

However, this expression is accurate only when the current loop has a high gain

at the frequency where resonance occurs in the filter circuit. At low frequencies, the

value of the output impedance is approximately the dc load resistance, R, which is

similar with the lines of averaged models. The output impedance has a dominant

pole and a zero due to the ESR corner frequency of the output filter capacitor. The

complex conjugate pole-pair at 50 percent duty ratio do not appear in this transfer
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Figure 4.12: Output impedance of buck converter.

function. Fig. 4.12 shows the bode plot for output impedance [3] and [6].
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5 Peak Current-Mode Control Model

5.1 Introduction

The peak current-mode control scheme proposed by Kazimerczuk results into different

small-signal characteristics mainly due to the following reasons:

• The power stage models used are different.

• Both the models differ significantly in their way of deriving the sampling gain.

• The models also differ in their block diagram representation.

Despite the fact that both the models predict the instability of the current-mode

control at 50 percent duty ratio, their small-signal characteristics differ significantly

over a wide frequency range due to the above stated differences in the two models [1].

5.2 Sampling Gain in Peak Current-Mode Control Scheme

The discrete-time control voltage-to-inductor current transfer function, as shown pre-

viously, is given by [1]

Hicl(z) =
il(z)

vc(z)
=

1 + a

Rs

z

z + a
=

1 + a

Rs

z

z − p
. (5.1)

This transfer function has a pole at p = −a, and hence, for a > 1, the closed-loop

system becomes unstable causing instability at a duty ratio beyond 50 percent and

sometimes even before. For a = 1, the closed-loop system is marginally stable. This

discrete-time transfer function can be transformed into a continuous-time expression

in the s-domain. The continuous-time approximation of the above expression can

be obtained using the definition of z-transform and by multiplying the result by the

zero-order hold transfer function [1] and [10].

HZOH =
1− e−sTs

s
. (5.2)
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The inductor current in the s-domain is given by [1]

il(s) =
1 + a

Rs

esTs

esTs + a

1− e−sTs

s
v∗c (s) =

1 + a

Rss

esTs − 1

esTs + a
v∗c (s). (5.3)

Where the asterisk represents a sampled variable [10] and [1]. The Laplace transform

of the vc(s) and v∗c (s) are related by the expression [1]

v∗c (s) =
1

Ts

∞
∑

n=−∞

vc =
1

Ts

∞
∑

n=−∞

vc

(

s+
j2πn

Ts

)

. (5.4)

The above approximation assumes that the control voltage vc does not contain signifi-

cant components above fs
2
. This approximation assumes that control voltage is tested

by a sinusoidal waveform. The control voltage-to-inductor current transfer function

can be approximated in the s-domain by [10] and [1]

Hicl(s) =
il(s)

vc(s)
=

il(s)

i∗l (s)
× i∗l (s)

v∗c (s)
× v∗c (s)

vc(s)
≈ 1 + a

Rs

esTs − 1

esTs + a
. (5.5)

At this point, there is a major difference between the two models. In the peak-current

mode control scheme, this function has been approximated using the Padé Approxi-

mation for e−sTs which gives the approximated expression for the above as [1]

Hicl(s) =
il(s)

vc(s)
≈ 1

Rs

1

1 + 1−a
1+a

sTs

2
+ (sTs)2

12
s
=

1

Rs

1

1 + 1−a
1+a

s
2fs

+ s2

12f2
s

. (5.6)

Comparing this with the standard expression for a second-order prototype system, we

get the roots of the above equation which are nothing but a pair of complex conjugate

poles given by [1]

pi1, pi2 = −1− a

1 + a
3fs ± j2

√
3fs

√

1− 3

4

(

1− a

1 + a

)2

. (5.7)

At s = 0,

Hicl(0) =
1

Rs

. (5.8)
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Figure 5.1: Magnitude plot of Hicl for a = 0.1, 0.5 and 0.9.
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Figure 5.2: Phase plot of Hicl for a = 0.1, 0.5 and 0.9.

Thus, the sampling gain depends only on fs, a, andRs. The complex conjugate

poles are either on the LHP or RHP. For a < 1, the two poles are in the LHP and

hence the closed-loop system is stable. For a = 1, the system is marginally stable with
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Figure 5.3: Closed-Current Loop of Buck Converter without Slope Compensation [1].

Figure 5.4: Closed-Current Loop of Buck Converter with Slope Compensation [1].

sustained oscillations. For a > 1, the system is unstable, causing growing oscillations.

Fig. 5.1 and 5.2 shows the magnitude and phase plot Hicl. As seen from the diagram,

the magnitude of the sampling gain is 12.4 dB at 50 percent duty ratio, while the

phase is -40.9 degrees at that frequency. Both these values are significantly different

for the same switching frequency of 50 kHz when compared to the Ridley’s model [3].

This is significantly different because of the different ways in which sampling gain is

derived in both the models. For 50 percent duty ratio, the value of a is 1. And the

system is marginally stable with a phase margin of 0 [1].

5.3 Loop Gain of Current Loop

Fig. 5.3 shows the diagram of the closed-current loop without the slope compensation.

Fig. 5.4 shows the diagram for the closed-current loop with the slope compensation.
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This block diagram is significantly different from that of Ridley’s model. The loop

gain of the system can be mathematically written as follows based on the block

diagram representation [1].

Ti(s) =
vfi(s)

vei(s)
= TmsTpiRs ≈

12f 2
s

s
(

s + 1−a
1+a

6fs
) =

12f 2
s

s(s+ wsh)
. (5.9)

From the equation, it is clear that the current loop has two poles. One of the poles is

located at the origin, while the location of the second pole depends on a. For a < 1,

the pole is in the LHP, and the current-loop is stable. For a = 1, the second pole is

at the origin, and the current loop is marginally stable. For a > 1, the second pole is

in the RHP, and the current loop is unstable. Fig. 5.5 and 5.6 shows the small-signal

characteristics for the open-loop gain. For a = 0.82, which is the value obtained for

a duty ratio of 0.45, the gain margin of the system is infinity since the phase never

crosses 180 deg, and the phase margin is 65.6 deg. The gain and the phase at half the

switching are also significantly different. This is because the current loop has 2 poles,

while in the continuous time model, the current loop is characterized by 2 zeros due

to a different approximation for the sampling gain [1].

5.4 Conclusions

Based on the above characteristics of the Current-Mode Control, it is quite clear

why the two models are significantly different. In the continuous time model, the

sampling gain is represented by 2 zeros to show characteristics that are accurate upto

half the switching frequency. This transfer function has more zeros than poles which

is actually a kind of defect according to the fundamentals of the control theory. But

this model is legit upto half the switching frequency which is the main requirement

in modelling the current-mode control theory. This is a specific choice been made to

model a system which is accurate upto the frequency of interest. If the model is to

be extended for the higher frequencies, than more poles will be needed to accurately
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Figure 5.5: Magnitude Plot of Current-Loop Gain for a = 0.1, 0.5 and 0.9.
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Figure 5.6: Phase Plot of Current-Loop Gain for a = 0.1, 0.5 and 0.9.

model the sampling gain. This will result in number of zeros to be either less than

or equal to the number of poles. While in the peak current-mode control model, a

second order Padé approximation is used to model the sampling gain which results
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in more poles than zeros. This model also predicts the instability of the current-

mode control at a duty ratio of 50 percent, which is on the similar lines with the new

continuous time model. Slope Compensation is needed to achieve the stability of the

current mode control beyond 50 percent duty ratio for CCM. External compensation

is required to compensate the actual inductor current waveform which is not enough

for controlled operation. As the external ramp increases, the range for the duty cycle

for stable operation increases beyond 0.5. Also, in this model, for the closed loop

transfer function, the output is considered as the duty cycle as in case with the actual

converters [1] and [3].

5.5 Comparison between the two models

As already seen in the previous discussion, the two models have a different way of

deriving the sampling gain, as a result the small-signal analytical transfer functions

are vastly different for the two models. The expression for the parameter, a, has the

rising slope of the inductor current as well as the external ramp required for slope

compensation, in the model proposed by Kazimierczuk [1]. The similar parameter

with a different expression is given by, mc, in Ridley’s model for current mode control

[3]. A comparison between the two models is carries out by deriving a relationship

between a and mc. The parameter,a, in kazimierczuk’s model, is given by [1]

a =
M2 −M3

M1 +M3

. (5.10)

Where, M1 is the rising slope of the inductor current waveform, M2 is the falling slope

of the current waveform, andM3 is the external ramp required for slope compensation.

Similar parameter, mc, in the continuous-time model is given by [3]

mc = 1 +
Se

Sn

. (5.11)
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In this equation, Se is equivalent to M3 and Sn is equivalent to M1 in the peak

current-mode control model. So, the above equation can be re-written as

mc = 1 +
M3

M1
, (5.12)

which gives

M3 = M1(mc − 1). (5.13)

Substituting the value of M3 in equation for a, we get

a =
M2 −M1(mc − 1)

M1 +M1(mc − 1)
. (5.14)

Dividing the numerator and denominator by M1, we get

a =
M2

M1

− (mc − 1)

mc

. (5.15)

But, M2

M1

= D
1−D

. Substituting the value for M2

M1

in the above equation gives [1], [3]

a =
D

1−D
− (mc − 1)

mc

. (5.16)

Therefore, a =
D

1−D
−(mc−1)

mc
is the relationship between the two parameters. Based on

this relationship, a comparison can be drawn between the two models. For particular

values of mc, corresponding values of a are used based on the above relationship to

determine the small-signal characteristics. However, the values for a are restricted by

the choice of external ramp M3 and duty cycle D. This restriction is based on the

expression [1], [24], [25] and [3]

M3

M1
=

D − 0.5

1−D
. (5.17)

The value for D obtained from this is the limiting value for duty cycle, beyond which

the system is unstable. For a value of mc = 1, M3

M1

+ 1 = 1. Which gives M3 = 0, and

the corresponding value for D is 0.5 based on the above expression. Substituting the
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values for mc and D in the expression relating a and mc, gives the value for a as 1 [1]

and [3]. Similarly, for the value of mc = 2 and mc = 4, the limiting values for D are

0.75 and 0.875, respectively. The system will be marginally stable for these values

of D. i.e a = 1 for these values of duty cycle. Any values of D chosen below this

range will give a stable system with a < 1. The values for D are chosen as 2
3
and 4

5

corresponding to mc = 2 and mc = 4, respectively [1], [24], [25] and [3].

Again, buck converter is chosen as an example for comparing the two models.

The parameters are the same as those being used previously in the continuous-time

model. The values for a are chosen corresponding to mc based on the relationship

derived previously.

5.5.1 Comparison of Current-Sampling Function

As already discussed previously, modelling of current-loop involves the sampled-data

modelling. The sampling gain expression in the continuous-time model is given by

He(s) ' 1 +
s

ωnQz

+
s2

ω2
n

[3]and[8], (5.18)

where [3]

Qz =
−2

π
, (5.19)

and

ωn =
π

Ts

. (5.20)

The current-sampling function in kazimierczuk’s model is given by [1]

Hicl(s) =
1

Rs

12f 2
s

s2 + 1−a
1+a

6fss+ 12f 2
s

. (5.21)

Evidently, from the two transfer functions that the sampling gain in Ridley’s model

is same regardless of the external ramp and depends only on the switching frequency.

62



10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

2

4

6

8

10

12

 f(Hz)

 |H
e| /

  |
H

ic
l| (

dB
 A

 / 
V

)

 

 

  |H
e
|

  |H
icl

|

Figure 5.7: Magnitude curves of sampling function.
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Figure 5.8: Phase curves of sampling function.

While in case of the Kazimierczuk’s model, it depends on the external ramp as well

as the switching frequency. As seen from from Fig. 5.7 and 5.8, the bode plots for

the sampling gain of the two models shows differences across wide frequency range
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Figure 5.9: Root locus for He(s).

[1] and [3].

Also, from the two functions, it can be seen that the sampling function has two

complex RHP zeros in the continuous-time model while it has two complex conjugate

poles in the kazimierczuk’s model. The root locus plots for both these models are

shown below. Since the continuous-time model is invariant, it’s root locus does not

change with the duty cycle or external ramp. While in case of kazimierczuk’s model,

it depends on the parameter a, which in turn depends on the duty cycle as well as

the external ramp [1] and [3].

Fig. 5.9 and 5.10 shows the root locus plots for Hicl and a. Evidently, from the

root locus plot for Hicl function, that as a changes from 0 to 2, the complex conjugate

poles start moving towards the right half of the s-plane. At a = 1, the poles are on

the imaginary axis, beyond which they are on the right half of s-plane.
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Figure 5.10: Root locus for Hicl with a changing from 0 to 2.

5.5.2 Comparison of Loop Gain

The loop gain transfer function for Ridley’s model is given by [3]

Ti(s) '
L

RD′Tsmc

1 + sCR

4(s)
He(s). (5.22)

The bode plot for the loop gain is shown in Fig. 5.11. The open-loop character-

istics are plotted for mc = 1, 2, and 4. Evidently, with mc = 1, i.e. with no external

ramp, the system is close to instability. By increasing the duty ratio, additional gain

can be provided to the system. But the system becomes unstable at 50 percent duty

ratio. With added compensation, gain and phase margin increases in the system.

Therefore, the range of duty cycle in which the system is stable increases beyond 0.5

as more ramp is added [3].

Now, the open loop gain for the inner loop in Kazimierczuk’s model is given by

[1]
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Figure 5.11: Loop gain for Ridley’s model with mc = 1, 2, and 4.

Ti(s) '
12f 2

s

s(s+ ωsh)
, (5.23)

where [1]

ωsh =
1− a

1 + a
6fs. (5.24)

Using the relationship derived before,for the given values of mc the corresponding

values for a are, a = 1, 0.5, and 0.25. Using these values of a, the open-loop char-

acteristics are plotted as shown in the figure 5.12. The vast differences between the

two characteristics can be seen evidently from their open loop characteristics. Also,

the bode plots for a = 0.25 and mc = 4 are superimposed on the same plot to show

he differences between the two models based on the corresponding values of a for

different values of mc [1].

The stability of the two models are compared based on the nyquist stability cri-
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Figure 5.12: Loop gain for kazimierczuk’s model with a = 0.25, 0.5, and 1.
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Figure 5.13: Respective loop gains for both the models mc = 1 and a = 1.

terion for the open loop transfer function of the two models for different values of mc

and corresponding values of a. The nyquist diagrams for both the models are shown

below. From the nyquist plots of Kazimierczuk’s model, for 0 < a < 1, the system
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Figure 5.14: Nyquist plots for loop gain of kazimierczuk’s model.

is stable, while for a = 1, the system is marginally stable and the contour touches

the point −1 + j0. For a > 1, the nyquist contour encircles the −1 + j0 point. Since

the second order system has infinite gain margin, it is assumed that the contour will

encircle the −1 + j0 point at some point [1], [3].

For the continuous-time model, it can be seen that without any external ramp,

i.e. mc = 1, the open loop system is stable for the duty cycle below 0.5. While for a

duty ratio of more than 0.5, the nyquist contour encircles the −1 + j0 point [1] and

[3].
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Figure 5.15: Nyquist plots for loop gain of ridley’s model.

5.5.3 Comparison of Control-to-Output Transfer Function

The approximate transfer function from control-to-output gain with inner current

loop closed, for buck converter is given by [3]

v̂0
v̂c

' R

Ri

1

1 + RTs

L
[mcD′ − 0.5]

Fp(s)Fh(s), (5.25)

where [3]

Fp(s) =
1 + sCRc

1 + s
wp

, (5.26)

wp =
1

CR
+

Ts

LC
(mcD

′ − 0.5), (5.27)

Fh(s) =
1

1 + s
wnQp

+ s2

w2
n

, (5.28)

and

Qp =
1

π(mcD′ − 0.5)
. (5.29)

The values chosen for mc are 1,2 and 4. The magnitude plot for control voltage-

to-output voltage gain is shown in the Fig. 5.16.
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Figure 5.16: Control-to-output gain for continuous-time model with mc = 1, 2 and 4.

The transfer function from control-to-output for Kazimierczuk’s model described

previously is given by [1]

Tco(s) =
RLrcω

2
h

Rs(RL + rc)

s+ ωzn

(s2 + ωshs+ ω2
h)(s+ ωzi)

, (5.30)

where [1]

ωh =
√
12fs, (5.31)

ωsh = 6
1− a

1 + a
fs, (5.32)

ωzn =
1

Crc
, (5.33)

and

ωzi =
1

C(RL + rc)
. (5.34)

The magnitude plot for the control-to-output gain is plotted for a = 1, 0.5, and

0.25. These values of a are the corresponding values for mc in the continuous-time

model.
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Figure 5.17: Control-to-output gain for continuous-time model with a = 1, 0.5 and
0.25.
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Figure 5.18: Control-to-output gain for Both Models with mc = 2 and a = 0.5.

The magnitude plot for the two models are superimposed in Fig. 5.18, clearly,

two curves are very close and are within the same frequency range.
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6 Average Current-Mode Control Scheme, an Ap-

plication of Current-Mode Control Scheme

6.1 Introduction

This scheme is an application of the current-mode control scheme, the only differ-

ence in this case is that here, the average inductor current is controlled instead of

the peak current and the average current ramp is compensated dynamically by the

external ramp as well as an RC circuit compensating network. While in conventional

control schemes, the inductor peak current follows set program that provides a fixed

compensation. PWM dc-dc converter behaves as an ideal current source, which is

an advantage in this scheme when compared with other schemes of control [5]. This

model also exhibits sustained oscillations at a duty ratio of 50 percent. This model is

also suitable for power-factor improvement in boost converters because of a different

kind of topology in which the input current represents the inductor current. Similar

to the previous schemes, a small-signal model was developed after using the discrete-

time analysis. The difference here is that the sensed average current in this case is

further compensated by a RC circuit network. This compensation network further

complicates the small-signal analysis. Fig. 6.1 shows the circuit diagram for average

current-mode control scheme [4], [5], and [3].

6.2 Modulation Scheme and RC Circuit Compensation

Fig. 6.2 shows the current compensation network used for the control of averaged

inductor current. The modulator gain in this case is different in this case compared

to other models because of this compensation network. From the fig., it is quite clear

that the shape of inductor current is no longer the same due to this additional RC

circuit network [5]. The modified slope of this waveform can be calculated as [5]:
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Figure 6.1: Circuit diagram for Average current-mode control scheme [5].

Figure 6.2: Current modulator and compensator [5]

S ′

n = ωiS

[

DTs +

(

1

wz

− 1

wp

)

(

1− e−wpDTs
)

]

. (6.1)
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Where, S ′

n is the modified slope of current waveform due to the presence of RC circuit

network, Sn is the upward slope of the inductor current, Se is the slope of the external

ramp required for compensation, and [5]

ωi =
1

Rl(Cfp + Cfz

), (6.2)

ωz =
1

RfCfz

, (6.3)

and

ωp =
Cfz+Cfp

RfCfzCfp

. (6.4)

As shown previously, the modulator gain for this scheme is given by [5]

Fm =
1

(Se + S ′

n)Ts

. (6.5)

Since the compensation network is an RC circuit, it has a filtering action. Due to

this filtering action, S ′

n ≤ Sn. i.e. for the same external ramp, the modulator gain

for this scheme is less than that for previously derived models [5], [3].

The sampling gain in average current mode-control is the same as the peak current-

mode control. Fig. 3 shows the small-signal model for this scheme. The two blocks,

Gs(s) and Gp(s), were derived based on the RC circuit in the current loop. The two

transfer functions are given by [5]

Gs(s) =
wi

(

1 + s
wz

)

s
, (6.6)

and

Gp(s) =
1

(

1 + s
wp

) . (6.7)

From the figure,evidently, the shape of the inductor current waveform is not a

saw-tooth shape. However, by making certain adjustments and by drawing tangents

to the curve, this waveform can be made comparable to the compensating ramp
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mathematically [5]. The resulting current is a function of the RC circuit network

and the line and load voltages. Under steady-state conditions, the duty cycle would

remain constant. The duty cycle would remain constant without any line or load

variations [5]. However, this is rarely the case and hence disturbances in the line and

load voltages have to be taken into consideration. The effect of these disturbances on

the duty cycle can be shown by feed-forward blocks, kr and kf [5].

6.3 Predictions of Model

The model shown in Fig. 6.3 is used to make predictions using MATLAB. A buck

converter in CCM was used to make predictions based on the following parameters

[5].

Vg = 14 V, V0 = 5 V, R = 1 Ω, L = 37.5 µH, C = 380 µF, Rc = 20 mΩ, Fs = 50

kHz [5].

The elements in the inner loop were: Ri = 0.1 Ω Rl = 2.2 kΩ Rf = 30.5 kΩ Cfz =

5.8 nF , and Cfp = 220 pF [5] and [3].

6.3.1 Loop Gain

From fig.6.3, the transfer function for the loop gain of the system is given by

Ti(s) =
FmRiVg

R

(1 + sRC)
[

1 + s
(

L
R
+ CRc

)

+ s2LC
] .He(s)

ωi

(

1 + s
wz

)

s
, (6.8)

where [5]

Vg

R
.

(1 + sRC)
[

1 + s
(

L
R
+ CRc

)

+ s2LC
] (6.9)

is the transfer function for buck converter ignoring the parasitic components. In

this model, the additional RC circuit also affects the loop gain characteristics unlike

the previous models. Fig. 6.4 and 6.5 shows the characteristics of the open loop

gain. By changing ωi and ωz, dc gain and the shape of the curve can be obtained as
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Figure 6.3: Small-signal model to predict the characteristics [5].

required. So, there is more design flexibility compared to the previous schemes where

a fixed ramp is used for compensation. Evidently, the curve from dc to the frequency

range of interest has quite a large region . This implies that this scheme has less low

frequency error compared to the current-mode control scheme [5] and [3].
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Figure 6.4: magnitude plot of current-loop gain.
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Figure 6.5: phase plot of current-loop gain.

6.3.2 Transfer Function for Control-to-Output

The transfer function from control-to-voltage can be derived having inner loop closed

and outer loop open. The approximated expression for that is given by [5]
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Figure 6.6: magnitude plot of current-loop gain varying ωi.
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Figure 6.7: magnitude plot of current-loop gain varying ωz.

v̂0
v̂c

' 1

Ri

(1 + sRcC)

[1 + sR(C + Cx)]
(

1 + s
ω p

)Fh(s), (6.10)
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where

Cx =
1

FmVgωiRi

, (6.11)

Fh(s) =
1

1 + s
ω n

Qp +
s2

ω

2

n

, (6.12)

and

Qp =
1

π
(

LFsωz

FmVgωiRi
− 1

2

) . (6.13)

At low frequency range, one pole cancels the only zero, and thus there remains the

effect of a single pole out of the two poles. At high frequencies, the pair of complex

conjugate poles is responsible for peaking. The peaking of poles at higher frequencies

can be prevented by the use of external compensation and the RC series network [5],

[3].

6.3.3 Audio-susceptibility

The approximate expression for the feed-forward gain is given by [5]

v̂o
v̂g

' R(kfFmVg +D)

FmVgRiωi

(1 + sRcC)

[1 + sR(C + Cx]
.

s
(

1 + s
ωz

)Fh(s). (6.14)

In this scheme, kf has a negative value inherently. As a result, the audio-susceptibility

for this scheme is less than that of previously shown scheme of control. In this

scheme as well, the effect line and load perturbations can be nullified ωz. However,

the modulator gain and the feed-forward gain have a non-linear relationship with

the external ramp and ωi. Consequently, it becomes difficult to set the values for

these parameters, so that response to perturbations is nullified. This is one of the

disadvantages of this scheme compared to that of the current mode control scheme

[5], citeridleyphd.
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7 Conclusions

7.1 Ridley’s Model

The continuous time model uses a three-terminal switch model which is invariant for

all the converters. This model is highly accurate upto half the switching frequency

compared to the averaged models [3].

Current-mode control modelling involves discrete-time signals. Discrete-time mod-

elling, basic to all PWM converters, was used for analysis of the current-mode control

scheme. An approximated second order expression for the sampling gain was used to

analyze the current-mode control scheme which is fairly accurate upto the frequency-

range of interest. However, this approximation results in an improper transfer func-

tion, with the order of the numerator being higher than that of the denominator,

which is usually not seen in control theory [3] and [11].

The transfer function for the inner loop has a pair of complex conjugate zeros in

the right half of s-plane at nyquist frequency [3].

The phase of the inner loop reduces considerably as the duty cycle approaches

to 0.5 [3]. This low phase margin produces a pair complex conjugate poles in the

transfer function from control-to-output at high frequencies [3]. A suitable value for

the external ramp can be chosen to provide necessary damping for these poles [3] and

[6].

Two high-frequency poles are required for accurate modelling unlike the previous

averaged models. The system can do away with one pole only if a sufficiently large

compensation is added [3].

The disturbances in line and load can be nullified by choosing appropriate com-

pensation [3]. The null occurs at the point where the compensation is half the falling

slope of inductor current. This is possible only with a model which has feed-forward

terms from the input voltage [3] and [6].
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7.2 Kazimierczuk’s Model

This model proposed by Kazimierczuk uses a switch model which is not invariant for

all the converters, unlike the model proposed by Ray Ridley. This model also predicts

the instability of the current-mode control at a duty cycle of 50 percent in CCM [1].

Another important difference between the models lies in the modelling of sampling

gain. The discrete-time model, in this case, has been approximated to a continuous

time expression using a second order Padé approximation. This approximation leads

to a transfer function with two imaginary conjugate poles in the LHP or RHP, de-

pending on the value of a. While in the continuous-time model, the sampling gain

has two zeros [1], [10], [1], and [7].

The current-loop gain has a pair of complex conjugate poles at a 50 percent

duty ratio, unlike the continuous-time model, which has zeros due to a different

mathematical approximation for the discrete-time expression [1] and [3].

7.3 Average Current-Mode Control Scheme

In this scheme, it is the inductor average current which is controlled unlike the peak

inductor in previous models. Hence, this method controls the real averaged current

[4] and [5].

When this scheme is applied to a PWM dc-dc buck converter, the output current

is also controlled due to averaging. i.e the converter behaves as an ideal current source

[4] and [5].

In case of a boost converter, the input current represents the inductor average

current due to a different converter topology wherein the inductor is at the input

side. Therefore, this scheme can be used for power factor improvement when applied

to boost topology [4] and [5].

The small-signal characteristics differ significantly from the previously derived
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models due to the presence of the RC circuit in the inner loop [4], [5], and [3].

The inner loop always changes the phase by 180◦ at high frequencies regardless

of the combination of gain chosen from the RC circuit [5]. While designing, if the

positioning of second pole of the RC circuit is done after the nyquist frequency,

necessary damping can be provided to avoid peaking conditions, and the sampling

gain same as that used previously is applicable in this scheme as well[4], [5], and [3].

The control-to-output voltage gain has more phase delay than that of peak current

mode control due to the existence of the second pole in the compensator. The peaking

of the complex conjugate poles can be controlled by selecting a proper combination

of the compensator gain as well as the external ramp. This provides more design

flexibility [4], [5], and [3].

Despite all these advantages, when it was tested with hardware by the researchers,

this model showed more susceptibility to noise. As a result, there is still room for a

better design of average current mode control scheme [5].

7.4 Recommendations for the future work

The exploration of current-mode control scheme in digital controllers is one of the

key potential areas for research. Current-mode control, though immune to over-

current protection and short-circuit protection, it is less immune to noise compared

to voltage current-mode control [2], [1], and [3]. There’s room for creating a model

which can overcome the noise issues. The peak-current mode control uses fixed ramp

for compensation [1]. A model can be created similar to average current-mode control

model [5], which deals with the noise issues as well as provides more design flexibility.

It will also be a challenge to use digital controllers to the performance level for current-

mode control since they have to delay for a full cycle.
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