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Abstract

Kondrath, Andrew. Ph.D., Engineering Ph.D. Program, Wright State University,
2012. Frequency Modulated Continuous Wave Radar and Video Fusion for Simulta-
neous Localization and Mapping.

There has been a push recently to develop technology to enable the use of UAVs

in GPS-denied environments. As UAVs become smaller, there is a need to reduce

the number and sizes of sensor systems on board. A video camera on a UAV can

serve multiple purposes. It can return imagery for processing by human users. The

highly accurate bearing information provided by video makes it a useful tool to be

incorporated into a navigation and tracking system. Radars can provide information

about the types of objects in a scene and can operate in adverse weather conditions.

The range and velocity measurements provided by the radar make it a good tool for

navigation.

FMCW radar and color video were fused to perform SLAM in an outdoor en-

vironment. A radar SLAM solution provided the basis for the fusion. Correlations

between radar returns were used to estimate dead-reckoning parameters to obtain an

estimate of the platform location. A new constraint was added in the radar detection

process to prevent detecting poorly observable reflectors while maintaining a large

number of measurements on highly observable reflectors. The radar measurements

were mapped as landmarks, further improving the platform location estimates. As

images were received from the video camera, changes in platform orientation were

estimated, further improving the platform orientation estimates. The expected lo-

cations of radar measurements, whose uncertainty was modeled as Gaussian, were

projected onto the images and used to estimate the location of the radar reflector in

the image. The colors of the most likely reflector were saved and used to detect the

reflector in subsequent images. The azimuth angles obtained from the image detec-

iii



tions were used to improve the estimates of the landmarks in the SLAM map over

previous estimates where only the radar was used.
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1

1 Introduction

1.1 Motivation

The Chief Scientist of the United State Air Force released a report on Technology

Horizons in 2010 outlining the future direction of the Air Force over the next 20

years [39]. In this report research focus areas were listed. A recurring theme within the

list of focus areas was increased autonomy. A call for research in improved precision

navigation and timing in GPS-denied environments was also included in the list.

Simultaneous Localization and Mapping (SLAM) provides a way to estimate the

location of a platform as it moves through a scene while providing information about

the location and descriptions of landmarks in the scene. The landmark information

from a scene is retained in a map for later use, when that location is revisited. The

map can take on different forms. As a probabilistic grid map, a scene is divided into

sections, each of which contains the probability that a location contains a landmark.

A map could also consist of a list of locations of landmarks in a scene. The list could

be treated as a set or an algebraic vector, influencing the way information about each

landmark is treated and understood.

SLAM has been performed by mounting a variety of sensors on moving platforms

and fusing information from all of the sensors. Fusing a large number of different

sensors is not always feasible. Size and power constraints can limit the number

and types of sensors available. It is prudent to use sensors that have multiple uses

under such conditions. For example, surveillance drones typically record some form of

imagery of a scene to be relayed for humans to analyze. Performing navigation with

imagery would be an ideal way to use the same information from the same sensor for

multiple purposes.
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1.2 Sensors

The variety of sensors that have been used in SLAM and tracking include electro-

optic (EO) and radar in the electromagnetic spectrum. Within the realm of EO

sensors are ladar, infrared, visible light, and hyperspectral sensors. Acoustic arrays

and sonar have been proven useful under certain conditions. For the operating con-

ditions of this problem, electromagnetic sensors are preferred.

Radar is an active sensor that can be used day or night. The returns from radar

provide absolute measurements. Information about the range or the range rate be-

tween the radar and an object are easily obtained from the return signal the radar

receives. Depending on the sensor configuration and processing, azimuth and ele-

vation information about reflectors in a scene may be also obtained, but with high

uncertainty. A radar can interrogate the scene very often. Depending on the type of

information being extracted, processing can be done very quickly. The form in which

the information comes from each interrogation, however, is complex. In urban areas,

it can suffer from multi-bounce effects. The signal frequency, frequency bandwidth,

pulse length, pulse repetition frequency, and transmit power affect how much of a

scene can be observed and to what detail it can be observed. When radar is used

for SLAM, a scanning millimeter wave radar is usually used. For this type of radar,

the radar is pointed at a particular direction and the return signal tells the ranges to

reflectors along that particular direction. It is common for scanning radars to sample

a full 360◦ at about 1 Hz.

EO sensors can be either active or passive. Ladar, for example, is an active

sensor. Visible light and hyperspectral sensors are passive. The best illumination

source, the sun, limits their use to daytime. Mid-wavelength Infrared (MWIR) and

Long-wavelength Infrared (LWIR) sensors do not require sunlight, but they measure

heat. Obtaining scene geometry reliably from those sensors can be difficult. Despite
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their limitations due to weather and lighting conditions, visible and hyperspectral EO

sensors are still useful in many applications. They are lightweight and require low

power. There is a tradeoff between the sampling rate and image size. Using color over

panchromatic imagery offers more features at the cost of sampling rate for a given

image size. The information these sensors provide is particularly useful to humans

because of the quick and limited amount of processing necessary for use by humans.

They provide good information about the bearing to observable features in the scene.

Ladar provides good 3D information about objects it senses. It is not very good

at observing large areas very quickly. As in the radar case, it does not provide

good feature information about the objects in the scene without a large amount

of processing and integration of information obtained over multiple interrogations.

Many implementations of SLAM use a laser scanning radar. Most implementations

only sweep through a plane, however, which is limiting to ground vehicles.

Time-of-flight cameras are a type of ladar that does not require scanning. A pulse

of light is transmitted to the world and the return is collected by a pixel array similar

to a camera. The depth of objects in the scene can be estimated from the time the

returns of each pulse take to reach the array. Measurements can be obtained from this

sensor up to the order of 100 Hz. This type of sensor is limited by external lighting

and weather conditions. It also is limited to measuring depths less than 100 m.

The large spectral response from hyperspectral imaging provides a lot of infor-

mation to distinguish features. A large number of electromagnetic wavelengths are

sampled in hyperspectral imagery, typically ranging from infrared through the visible

spectrum. It is very slow when compared to the other sensors being discussed. De-

pending on the method for generating observations, it either cannot sense the entire

scene very fast or it can only provide limited spectral information about the scene

over a short time frame.

Both infrared and EO sensors give good bearing information about objects in
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a scene. Windows around specific points in the images are typically used to obtain

features in the image. When a target is a different temperature from its surroundings,

infrared can be more reliable for making detections. There is a large body of mature

work done in EO. Using a monocular camera for SLAM has been around for almost

a decade. The problem with monocular SLAM is the lack of range information from

video. The map and camera locations can only be known up to a scale factor.

1.3 Sensor Fusion

Sensor fusion has become an ubiquitous tool for automating vehicle navigation. Radar

and video have been fused in the past two decades in the automotive industry for

automatic cruise control and collision avoidance. Jia et al. pointed out that only

within the past decade has the industry begun to incorporate SLAM systems for

navigation [45]. An excellent review of SLAM is given in [60, 59]. Multi-modal SLAM

systems typically consist of more than two modes for fusion. Often, multiple sensors

of the same type are used to observe more of the scene around a vehicle. Systems

used in the DARPA Grand Challenge and the DARPA Urban Challenge provide an

example of the power of this type of fusion for navigation [43, 42, 44, 41, 40].

There are various levels of fusion within the sensor fusion framework. In high-

level fusion, detections from each sensor are tracked independently of other sensors.

Tracks from different sensors are then associated to form a fused tracking solution.

In low-level or feature-level fusion, information from each sensor is associated before

the information is input to the tracking filter.

A high level fusion scheme wherein range features are tracked separately from

image features produces better estimates than can be made by either sensor alone.

Passing the processed track information between sensors is more feasible than passing

raw data when communications between sensors is limited. The major difficulty then

becomes associating which track from one sensor corresponds to which track from the
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other sensor.

Feature level fusion schemes use raw data from each sensor to aid in signal pro-

cessing. The ability to obtain detections in weak signals is increased. The data

association problem can be mitigated by the detection process at this level of fusion

as well.

A large portion of the SLAM body of work has been concerned with ground-based

platforms. Airborne platforms introduce additional challenges that will affect sensor

choice. Ground-based platforms can limit landmark and platform positions to lie in

a 2D plane. Scanning sensors work well under this constraint. The platform effec-

tively only has 3 Degrees of Freedom (DoF). There are 6 DoF for airborne platforms.

This leads to an expected increase in the amount of jitter the platform undergoes.

Registration between scans in this type of a 3D environment becomes difficult.

When choosing which sensors to fuse, it is desirable that the sensors provide

complementary, or orthogonal, information about the platform and/or landmarks.

Weaknesses of one sensor should be overcome by strengths in another sensor. For

better map and location estimates, this is especially true when a minimal number of

sensors is used.

Two sensors that appear to complement each other well are Monopulse FMCW

radar and color video. The radar provides range information to objects in the scene.

It works in a variety of weather conditions. Phase-comparison monopulse provides a

measure of the direction to detections which can provide a link to the video. Color

video was chosen because its more accurate bearing information complements the

radar well. It is also more likely to have an alternative use on the platform. By

identifying the reflectors that cause the radar detection in the video, more accu-

rate estimates of reflector and platform locations can be made. A low-level fusion

scheme can accomplish this goal, while reducing the computational cost of perform-

ing detection and tracking in each individual sensor separately. An illustration of
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Figure 1.1: The complementary information of radar and camera sensors.

how measurements of the same landmark from each sensor can reduce uncertainty is

shown in Fig. 1.1.

SLAM will be performed by mounting the sensors in the forward looking direction

of a ground-based platform. These sensors have not been fused for SLAM in any

capacity previously. By limiting the platform to a ground vehicle, and keeping the

map 2D, an assessment can be made of the feasibility of using these sensors on an

airborne platform.

Radar SLAM will provide the foundation for the low-level fusion solution. Video

information will be added as it becomes available to improve the estimates. This

method is chosen for a number of reasons:

• The radar is all-weather. In the event that video data is unavailable (cloudiness,

darkness, etc.), the radar should still maintain some navigation capability.

• The radar can make many more observations per second than the video. It

will be shown that those observations can provide direct information about the
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motion of the platform, without relying on triangulation with landmarks. The

radar can provide odometry information at a rate compatible to an Inertial

Measurement Unit (IMU).

• There are expected to be much fewer feature detections in the radar to track.

Much work in the SLAM domain has dealt with the problem of map man-

agement and computational costs in updating. Adding landmarks to the map

helps improve estimates to a point, but also increases processing requirements

quadratically. Adding a dimension and tracking landmarks in 3D exacerbates

the problem.

• The amount of data to process per radar observation is much smaller than

the amount of data to process per video observation. Image processing is a

computational bottleneck. Focusing on finding reflectors in specific regions of

the images can reduce the burden.

1.4 Problem Statement

Multiple challenges need to be overcome when fusing FMCW radar and color video.

• There needs to be a solution to the monopulse radar SLAM problem. To the

author’s knowledge, monopulse radar SLAM has not been performed before. In

some cases, landmarks might not be detectable. During these times, some form

of navigation will be necessary.

• Improvements in the detection methods for monopulse radar are necessary for

use in SLAM. A unique challenge with this type of radar is the instability in

angle of arrival measurements. Strong reflectors in a scene should be detectable

over a consecutive set of observations. There should be some continuity in the

angle-of arrival (AoA) associated with those detections. Adding a constraint on
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the AoA might also allow the classic detection constraints to be relaxed, making

more detections possible overall.

• A way of linking the AoA measurements from the radar with features in the

video needs to be improved. A strong reflector does not have to have a specific

color or take a specific shape in the image. It is expected that the reflector will

be discernible from its surroundings in the image.

1.5 Approach

The approach taken herein is to use the radar as a foundation for a low-level SLAM

fusion algorithm. Radar observations are used to perform a dead-reckoning prediction

of the platform location. This is done before landmark detections are obtained from

the radar. It can be performed in the absence of detectable reflectors, though it is

assumed that there is some structure in the return related to the scene. Individual

landmark detections from the radar observations are then found and used to improve

the platform location estimate and map landmarks in the scene. Angle-of-arrival

information will be used to improve the detection process. Associations will be made

as part of the detection process where possible in order to reduce processing. The

electro-magnetic reflectivity requirement will keep the number of landmarks small,

reducing the search space necessary both in the image domain as well as for map loop

closing.

As observations arrive from the video, at a slower rate from the radar, a mea-

surement of the platform orientation change based on the video is used to update

the platform estimate. An optical flow method will estimate the orientation change

between the current video frame and the previous. This method will efficiently take

advantage of the bearing information that the video provides. It will directly com-

plement the range measurements provided by the radar for landmarks.

A radar-driven segmentation for association with color video is applied. It is
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Figure 1.2: Block diagram of the FMCW radar and color video fusion SLAM system.

assumed that some objects in the scene will have high electromagnetic reflectivity.

Without this criteria, the radar will not provide detections and the algorithm will not

have a reflector for which to search. The radar-driven segmentation allows for direct

association between radar detections and objects in the video.

The measurements collected from the radar detections are projected onto the

image. The likely color of the reflector that generated the radar measurements is

then estimated. An estimate of the radar reflector is then segmented from the image.

The colors contained in that segmented object are stored as a feature describing

the landmark. Once a landmark is found in the video, a color filter is applied to

subsequent video observations to track the landmark. Limiting the tracked features

to reflectors can reduce the search space for detections while taking advantage of the

rich features provided by video.

A block diagram of the fusion approach is provided in Fig. 1.2.
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1.5.1 Contributions

The methods described in this work provide two solutions for fusing information

from phase-comparison FMCW radar with color video. In order to navigate in scene

without the presence of strong reflectors, a method for estimating dead-reckoning

parameters from phase-comparison FMCW radar return waveforms is provided. A

method is provided for improving reflector detections, such that the detected reflectors

are more likely to be observed frequently while in the radar field of view. This work

also describes a method of identifying the source of radar detections in color video.

1.6 Outline

The rest of this dissertation is outlined as follows. Chapter 2 covers background

information related to previous methods of performing SLAM as well as methods for

radar and video fusion. In chapter 3, the sensor system used for fusion is described.

Descriptions of the map and platform are also given. The algorithms necessary to

carry out the radar SLAM are described in chapter 4. The radar and video fusion

algorithms are provided in chapter 5. In chapter 6, the an experiment is described and

the results from the experiment are shown. The dissertation is concluded in chapter

7.
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2 Background

2.1 SLAM

As its name suggests, SLAM is used to estimate the location of a sensor while estimat-

ing the locations of features in a scene. An excellent review of the SLAM process and

algorithms is provided in [60] and [59]. The scene is usually static while the sensor

moves through the scene, though there has been some work in which scene objects do

move. Recursive updates of the current sensor location and scene map are applied as

information arrives. The nonlinear measurement process of most sensors usually calls

for the use of the Extended Kalman Filter (EKF) or the Unscented Kalman Filter

(UKF).

An important development for SLAM was made when it was shown that as more

observations are made, correlations between landmarks are built, and the map con-

verges [22]. This causes the map to become rigid, as the locations of landmarks are

known relative to each other. Much of the work over the past decade has focused on

loop-closing, processing, and map management. Loop-closing occurs when a platform

leaves an area of a scene, returns later, and correctly associates new measurements

with landmarks observed during the previous visit. Loop-closing is an important issue

because it reduces the errors that build over time as the platform moves through the

scene. Ramos et al. showed that using location and appearance to associate land-

marks improves the likelihood of loop closure [9]. Map management is necessary to

deal with the large number of landmarks and landmark covariances that build over

time. In order to reduce processing, it can be beneficial to only operate on certain

landmarks or to break the map up into sections which are treated semi-independently.

Processing is an issue in SLAM because as the size of the map grows,the amount

of processing necessary increases. Some processing in the propagation stage can

be reduced by taking advantage of the fact that only the platform and platform
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covariances are changed during this step. The update stage is still a problem however,

as it grows quadratically in the case of the EKF and cubically in the case of the UKF.

Square-root implementations of of the UKF have been able to reduce the number of

computations necessary, but it is still more costly than the EKF [32].

A further improvement in alternate direction in SLAM processing came with the

introduction of FasSLAM [21]. A particle filter was used in the propagation stage of

the filter to estimate the platform state. The way the particle filter is used, it repre-

sents the history of the platform. It takes advantage of the fact that the landmarks

are correlated over the platform history. That means that individual intra-landmark

correlations do not have to be maintained and updated, and the landmarks can be

updated individually by an EKF, or some other efficient filter.

These are important issues that will likely have to be addressed in future work

as the scene area grows and the map sizes are increased. A benefit, and a possible

problem, of the fusion method described herein is that by limiting the landmarks to

radar reflectors, the map size does not grow as quickly as if video landmarks are used.

Also, by keeping the map to 2D, the processing requirements are reduced.

2.2 Radar SLAM

Scanning radar has been a popular tool for SLAM. This can be done either mechan-

ically or by beam forming. It works by transmitting an electromagnetic signal with

a narrow beam width along a direction and measuring the return signal. By this

method, each detection has range and an angle measurement associated with it. De-

tections are usually made using a Constant False Alarm Rate (CFAR) detector, or

some variant thereof.

An early attempt at radar SLAM was made by Clark and Durrant-Whyte [23],

using the scanning radar system described in [24]. The system was mounted on a

truck and driven around a scene with reflectors placed around the path. The reflector



13

returns were polarized in 2 directions which was used to improve their detection

likelihood and prevent false alarms from other objects in the scene. Encoders mounted

on the vehicle drive shaft provided dead-reckoning measurements which were used in

the EKF as control inputs when propagating the filter. Although the truck location

uncertainty grew without any radar measurements, the control inputs provided a way

to estimate how much and in what direction the vehicle moved whether or not radar

measurements were obtained.

Clark and Dissanayake removed the polarized reflectors to perform SLAM with

the same system in [24]. They were able to track natural features in the scene by

only adding landmarks whose radar returns had polarization in two directions.

Chandran and Newman minimized a spatio-temporal cost function to estimate

the platform trajectory and landmark map [13]. A weight applied to the distance

between a detection obtained from the 360◦ scanning radar and a map landmark was

increased according to the amount of time since the landmark was last observed.

A scanning radar was used to create map images by Roureure et al. Correla-

tions between sequential images were used to estimate the platform motion between

scans [8, 15, 17]. Instead of storing landmarks, an occupancy grid representation of

the map was stored. The same radar and similar approach was used by Checchin

et al. [11]. Correlations between images were estimated in the Fourier domain by

applying the Fourier-Mellin Transform.

Mullane et al. used a Rao-Blackwellised Probability Hypothesis Density (PHD)

filter to perform radar SLAM [25]. The PHD filter was used to avoid direct association

between radar measurements and landmarks. In order to do this, it treated the

landmarks and measurements as sets, as opposed to algebraic vectors. The radar

scanned 360◦ and had a range of 5 km. Even though the a full scan took 0.5 seconds,

the platform moved so little relative to the size of the scene being mapped, registration

was ignored.
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Lundquist et al. tested 3 methods for using a radar to estimate the free space

in front of a vehicle [27]. The solutions involve tracking the location of the vehicle

in the scene and identifying the locations of other objects in the scene. A mechan-

ically scanning radar was used to measure the distances to objects in front of the

vehicle at specific angles. The first method used an occupancy grid representation

to estimate the likelihood that regions in the scene contained a reflector. The sec-

ond method modeled the shape of the road borders using a polynomial. A quadratic

constraint over the polynomial was used to smooth the estimates obtained from the

measurements. The third method was to track points and lines in front of the vehicle.

Extended objects such as guard rails were better modeled as lines on the 2D map.

In this method, focus was placed on the appropriate way to associate measurements

with the points and lines in the map.

Yokoo et al. fused 2 radars mounted on a vehicle in concert with a gyro sensor

to perform navigation [28]. Velocity measurements were obtained from each radar.

The average of the velocities was taken as the platform velocity. The difference in the

velocities provided a measure of the platform angular velocity. They identified that

incorporating AoA measurements in estimating the velocities improved the results.

Their method of velocity estimation used a phase derivation technique, which was

possible when 2 or more reflectors were observed by the radar.

Using the phase-comparison monopulse radar avoids the registration errors with

which scanning radars must contend. Each observation occurs over the entire FOV of

the radar. When a reflector is detected, it can be measured in the next observation,

without waiting for the radar to scan through individual angles. Associations are

made when possible during the detection process, reducing the burden on costly

association methods later in the filter process.

The phase-comparison radar enables an additional constraint on obtaining radar

detections. In the radar SLAM work described above, variations of CFAR that oper-
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ated on the magnitude or phase response of the returned radar signal were used. The

AoA measurements from phase-comparison radar provide an additional constraint

that can improve the quality of detections.

The method used to estimate the velocity and platform orientation change only re-

quires the single monopulse radar. There is not a requirement for detectable reflectors

to be present in the scene.

2.3 Video SLAM

Video SLAM was first done by Davison [58] using an EKF. A large number of land-

marks, with rich feature descriptors, can be obtained using imagery. Because video

only provides bearing information, the need for an increased number of landmarks

is greater. The Scale Invariant Feature Transform (SIFT) [35] and a more efficient

variant, Speeded Up Robust Features (SURF) [34], have recently become common

tools to find features in the images. Initially, the Shi and Tomasi feature detector [36]

was used to find features and correlation methods were used to track those features.

A key requirement in video SLAM was the use of an inverse depth representation

of each landmark. It increased the state size, but allowed landmarks more mobility

to correct as their ranges were more accurately estimated. Feature initialization has

been an issue with monocular SLAM. Bearing measurements for a single landmark

typically have to be observed multiple times before they can be added to the filter.

Since then, improvements have been made to reduce the state size and for quick

initialization [38, 37]. Performing video SLAM requires obtaining features in an image

and tracking them in subsequent frames. Whether the images are monochrome or

color, video processing is computationally intensive. As stated before, monocular

video can only map the scene up to a scale factor.

The EKF has been a common tool in video SLAM due to the large number of

landmarks and the increased state size necessary for inverse depth representation.
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The nonlinearities of the motion and measurement models can allow bias to enter

the map and platform location estimates. Sunderhauf et al. showed the feasibility of

applying the UKF to monocular SLAM [33]. An obstacle they had to overcome was

determining how to handle negative inverse depth sigma points. The Square-Root

Unsceneted Kalman Fitler (SRUKF) was applied to monocular SLAM by Holmes

et al. [32]. The state was aligned to reduce computational costs in addition to the

reduction afforded by the SRUKF alone.

Airborne video SLAM has been attempted by fusion with IMU information. The

IMU provides a measure of scale in the scene. Kim and Sukkarieh used an EKF

to perform fusion [10]. An experiment was carried out where white markers were

placed on the ground to be easily identified in monochrome video by thresholding

intensity. IMU data was input to the filter as rotation and acceleration information.

They also described an indirect fusion method where the IMU data was integrated to

provide position, orientation, and velocity measurements separately from the filter.

The purpose was to maintain an up-to-date estimate of the platform parameters

as information arrived. The method provided by Sjanic et al. used Square-root

Smoothing and Mapping (SAM) [29]. The objective of SAM is to minimize a quadratic

cost function based on the error in the platform trajectory and the measurements. An

EKF was used to provide initial estimates of the map and trajectory. After enough

observations were made, SAM was applied, improving the estimates.

The methods previously used to perform video SLAM relied on searching the

images for possible features. The approach taken here is to reduce the amount of

image processing necessary. Estimating the platform orientation change through the

video takes advantage of the much finer bearing resolution that the video provides

over the radar. By searching for radar reflectors, the range uncertainty problem can

be avoided. The video can improve the landmark estimates while knowing the range

can keep the necessary state size lower. Initialization issues encountered in video can
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also be avoided, as the landmarks have already been initialized in the filter by the

time they are found in the images.

2.4 Fusion Methods

There has been a great deal of work in data fusion. For relevance purposes, schemes

involving track-to-track fusion are avoided and the following section is limited to work

wherein AoA and bearing information are used to fuse a range-based modality with

an image.

Heisele et al. did early work in automatic cruise control [52]. Information from a

millimeter-wave (MMW) radar and color video sensing the scene in front of the vehicle

were fused. The images were segmented using a fast color connected component

algorithm. Voxels of interest were obtained from the radar. Regions of interest were

projected onto the images from 3D radar detections. Color segments with a minimum

amount of overlap with a region of interest were associated with that radar detection.

Different color segments were grouped if they belonged to the same radar detection.

Haselhoff et al. fused information from three radars and a monochrome cam-

era [51]. The radars produced regions-of-interest (ROI) that were projected onto the

images. The size of each ROI was set to approximately 5 m by 4 m. The AdaBoost

algorithm was run on sub windows of each ROI in the image to detect rear views of

cars [53]. In order to perform the detection, images of car rear views were used to

train the algorithm.

Mahlisch et al. fused video with a lidar for detecting obstacles in front of a vehi-

cle [49]. The 16-channel multi-beam lidar measured distances to objects at set angles.

Ellipses were projected onto the images corresponding to the regions where objects

were expected to be. The ellipse size associated with each beam was dependent on

the range estimated from that beam, i.e. larger distances had larger ellipses. Objects

were detected in the image using a cascaded AdaBoost detector. The object search
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space in the image was limited to regions near the lidar projections. Detected objects

were clustered and associated with the lidar measurements. Further processing was

carried out to classify detections as either clutter or cars.

Gern et al. used a radar with AoA measurements and video [50]. The objective of

this work was to track cars in front of the platform. A search area was set for template

matching by finding areas with high vertical and horizontal symmetry. Templates and

symmetry were useful because, typically, only the rears of preceding vehicles were

visible. Rears of cars tend to have a box shape. Symmetry was found by looking

at gradients in the intensity of the image. Matches close to radar projections were

associated with those detections.

Bombini et al. fused a scanned radar with a grayscale camera [48]. Vertical

symmetry was used again to detect the rears of vehicles. A search for horizontal

symmetry was also performed, but the focus was on finding the more stable, dark

undersides of vehicles. This approach was also used by Alessandretti et al. in [47].

Roy et al. fused radar and video for surveillance [46]. In that work, the radar

and camera system was stationary. Radar reflectors were assumed to be moving cars.

The cars were segmented by using change detection on the images. Radar detections

that were found to be close to image detections were associated.

The approach described herein uses the detections from a radar with 2 receivers

to drive image segmentation in a color video. Estimated locations of radar detections

are projected onto the image. The algorithm searches for colors that appear often

near those projections, but not often in areas of the image more distant from radar

detection projections.

Apart from providing range measurements between the platform and landmarks,

the radar provides odometry information similar to what might be provided by an

IMU. The orientation change measurements provided by the video provide a higher-

level fusion specific to SLAM that was previously provided by IMUs or wheel mea-
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surements in previous fusion algorithms.
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Figure 3.3: Camera and radar used in the experiment.

3 System

3.1 Radar

The system under consideration consists of a Phase Comparison Monopulse Frequency

Modulated Continuous Wave (FMCW) radar and a color video camera. The system

is shown in Fig. 3.3. The radar has 2 adjacent receivers which allows for angle-of-

arrival estimation to a reflector. For a unit direction vector, r, describing the direction

between the radar and a reflector and another unit direction vector, d, describing the

direction of the displacement between the two radar receivers, the angle of arrival, α

is given by

α =
π

2
− arccos(rTd). (3.1)

Fig. 3.4 describes the radar geometry.

The displacement between the radar receiver is assumed to be parallel to the

image plane of the camera and also parallel to the x axis of the image plane. These

constraints make a majority of the effective field of view of the radar overlap with the
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Figure 3.4: Radar Geometry: The reflector and the vectors are assumed to lie in the
x-y plane.

field of view of the camera. For a sensor separation of less than 10 cm and a minimum

distance to any reflector of 10 m, the sensors can be treated as if they are coincident,

and α can then be treated as an azimuth measurement in the image domain.

The radar transmits a series electromagnetic wave pulses. The pulses can consist

of a variety of modulation schemes. The basic signals take the form

s(t) = A cos
(
ω(t)t

)
(3.2)

where ω(t) is a linear function of t of the form

ω(t) = αt+ β (3.3)

where α is 0 for a constant frequency, positive for an increasing frequency chirp, and

negative for a decreasing frequency chirp. The signal is typically periodic, and could

consist of the same increasing frequency chirp (sawtooth), an increasing chirp followed

by a decreasing chirp (triangle), etc. When the signal comes into contact with the

ith reflector, a time delayed version of the signal is returned to the radar as

ri(t) = Ai cos
(

(α(t− ti) + β)t+ νit
)
, (3.4)

where Ai is an attenuation factor, νi is a Doppler shift due to the relative velocity

between the reflector and radar, and ti is the time delay of propagation, and i is the
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reflector index. When multiple reflectors are in the scene, the received signal is a

combination of the returns from each of the reflectors as

r(t) =
∑
i

ri(t)

=
∑
i

Ai cos
(
ωi(t)(t− ti) + νit

)
.

(3.5)

The ωi(t) term is a delayed version of the original chirp. It is shifted by ti. The

received signal is mixed with a copy of the transmitted signal and filtered, bringing

the result from radio frequencies down to intermediate frequencies. The mixing and

filtering creates a signal of the form

m(t) =
A

2

∑
i

Ai cos
(
− ω(t)ti + νit

)
. (3.6)

Because the chirps are linear, each cosine term in Eq. 3.6 has a constant frequency.

Taking the Fourier Transform (FT) of Eq. 3.6 should result in a set of shifted delta

functions. Because of time-windowing in the received signal, the energy from each

reflector is spread around the peak. Non-linearities in the chirp will also cause spread-

ing.

For explanation purposes, only a decreasing frequency chirp is described further.

The received signal is broken into segments corresponding to each of the waveform

types of each transmitted signal pulse, i.e. only the time portion of the received

signal period pertaining to the decreasing chirp is considered. A FT is performed on

each segment of the mixed and filtered signal. A reflector, s, in the scene induces a

response, Ase
−jφs , at a frequency, fs. This frequency shift, fs, is described by

fs =
2

c

(βρ
τ

+ fcv
)
, (3.7)

where ρ is the range to the reflector, c is the speed of light, fc is the baseband of the

transmitted chirp frequency, β is the chirp bandwidth, τ is the chirp period, and v is

the magnitude of the velocity along the line of sight direction between the radar and
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the reflector. For the case where the platform and reflector are stationary, Eq. 3.7

would simplify to

fs =
2

c

βρ

τ
. (3.8)

Frequency bins with large magnitudes in the FT then can be said to correspond to

reflectors. By using the frequencies corresponding to bins with large magnitudes, the

ranges to the reflectors can then be found according to Eq. 3.8. It may be necessary

to filter the resulting FT to limit the number of false detections. A Constant False

Alarm Rate (CFAR) filter can be effective for this purpose.

For a phase-comparison monopulse system, the phase angles at corresponding

frequency bins from both sets of return signals are used to estimate the angle-of-

arrival. The difference in range between the reflector and each receiver causes a

difference in the amount of time required for the return signal to reach each receiver.

This time difference causes a difference in the phases between the received signals.

For a corresponding pair of detections (one from each receiver), the angle of arrival

may be calculated using the difference in phase at each detection frequency as

αs = arcsin
(c(φs1 − φs2)

2πfc ‖ d ‖2

)
, (3.9)

where φs1 is the phase at fs from receiver 1, φs2 is the phase at fs from receiver 2,

and ‖ · ‖2 represents the `2 norm operation.

Examples of the log magnitude and AoA responses are shown in Figs. 3.6 and 3.7,

respectively. The frequencies of large magnitude responses decrease over time as the

radar moves closer to the reflectors. One peak stands out as decreasing faster than

the others. That peak is due to a person who was walking towards the radar.

3.2 Video Camera

The video camera is a color camera with approximately the same field of view (FOV)

as the radar. Each frame consists of an m × n × 3 array of 8-bit integers. The
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Figure 3.5: The geometry for estimating the angle of arrival. The difference can be
approximated as d sin(αs) because R >> d.
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value of each array element can range from 0 to 255. Each subarray along the third

dimension of the array corresponds to a component of color in the RGB color space.

The values in the first subarray correspond to the amount of red in the image. The

color components of the second and third subarrays are green and blue, respectively.

3.3 Platform and Landmark Descriptions

3.3.1 State Variables

For 2D SLAM, there are 3 variables for representing the state. The platform location

is marked in Cartesian coordinates as xp and yp. The orientation, or viewing direction,

of the platform is denoted by θp. The orientation is also assumed to be the direction

of platform motion. Each landmark has an x and a y coordinate associated with it.

The coordinates of the ith landmark are denoted by xi and yi. The state vector, x,
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Figure 3.7: Example of the Angles-of-Arrival received over time by the radar.
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at instance k is then arranged as

xk =



xpk
ypk
θpk
x1k
y1k

...
xNk
yNk


, (3.10)

where there are N landmarks. The portion of the state vector corresponding to the

platform is denoted as xpk and consists of xkp, ypk, and θpk. Note that xpk refers

to a vector describing the platform whereas xpk is a scalar and refers to a Cartesian

coordinate. The portion of the state vector belonging to the ith landmark is denoted

by xik. The state vector can then be written as

xk =


xpk
x1k
...

xNk

 , (3.11)

where

xik =

[
xik
yik

]
. (3.12)

Again, the underline represents a vector, whereas the no underline refers to a scalar

Cartesian coordinate of a landmark. The state covariance is given by

Pk|k =


Ppp Pp1 Pp2 . . . PpN

PT
p1 P11 P12 . . . P1N

PT
p2 PT

12 P22 . . . P2N
...

...
...

. . .
...

PT
pN PT

1N PT
2N . . . PNN

 , (3.13)

where Ppp is the platform covariance, Ppi is the covariance between the platform and

the ith landmark, and Pij is the covariance between the ith and jth landmarks.
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3.3.2 Motion Models

The platform motion is modeled by

xpk = xpk−1 +


(vk−1+nvk−1)t

(γk−1+nγk−1)

(
sin(θpk−1 + (γk−1 + nγk−1))− sin(θpk−1)

)
(vk−1+nvk−1)t

(γk−1+nγk−1)

(
cos(θpk−1)− cos(θpk−1 + (γk−1 + nγk−1))

)
θpk−1 + γk−1 + nγk−1

 (3.14)

where t is the time between propagation instances, vk−1 is the velocity of the platform

at instance k − 1, nvk−1) is noise in the velocity estimate, γk−1 is the change in

orientation of the platform from instance k−1 to k, and nγk−1 is noise in the platform

orientation change estimate. The variables to be estimated for performing dead-

reckoning are vk−1 and γk−1.

Note that the velocity and orientation change of the platform are estimated inde-

pendently. In the UKF implementation, the additive noise is obtained from uncer-

tainties in the platform velocity and orientation change estimation process.

As stated above, it is assumed that the sensor viewing direction is the same as

the platform motion direction θpk. A problem arises for the UKF as the platform

orientation approaches π. Some of the sigma points can be broken down as π − ε or

−π+ ε, where ε is a small, positive number. For the later case, with a measured value

of π, the innovation error would be 2π+ ε. The true innovation error should really be

ε. Because the Kalman gain is a function of this innovation error, the estimate will

be considerably altered. Therefore, when the orientation is close to π, a correction

should be done on the sigma points to make sure they all have the same sign.

The landmark positions are stationary and do not change over time. Therefore,

the landmarks do not need an uncertainty term during propagation. The location of

the ith landmark is then described by

xik = xik−1 = xi (3.15)
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3.4 Radar and Video Calibration

In order to accurately track objects in space and associate measurements between

sensors, the sensors must be calibrated. Calibration is performed by first estimating

the intrinsic camera parameters. The intrinsic parameter estimation can be done with

a checkerboard and an open source calibration implementation such as OpenCV. The

radar is then calibrated to the camera.

3.4.1 Radar Calibration

A set of trihedrals is placed in a scene and recorded using the camera and radar. The

trihedrals should be placed at different, known, ranges from the system. The trihe-

drals and their AoAs are clearly distinguishable in the measurements. The relative

range between each trihedral and the radar is constant, since all are stationary.

The frequency bin corresponding to the magnitude response of each trihedral is

found by a person. The AoAs from each of those frequency bins are collected. The

reflectors are also identified by a person in the images. To account for any possible

wind or shaking of the system and trihedrals, multiple frames are used. The x-pixel

measurements are converted to AoAs using

αcamera = arctan(
x− px
sx

), (3.16)

where x is the pixel coordinate, px is the x-direction principle point, and sx is the

focal length of the camera along the x-direction.

The linear mapping between raw radar AoA measurements and camera AoA mea-

surements is given by

αcamera = aαradar + b. (3.17)

In the above equation, a should be close to 1 and b should be close to 0. The

parameters should be constant for all trihedrals over all time.
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Once the measurements are collected, the radar measurements associated with

the image measurements based on their proximity in time. The measurements are

arranged as 
αcamera11

...
αcameraik

...
αcameraLM

 =


αradar111 1

...
...

αradarikj 1
...

...
αradarLMN 1


[
a
b

]
, (3.18)

where there are L reflectors, M images, and N radar measurements per image for the

collection. A least-squares approach is then used to solve for a and b.
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4 Radar SLAM

4.1 Filters

4.1.1 Kalman Filter

The Kalman filter is a commonly used tool in tracking and navigation. For a linear

system with additive Gaussian noise, it provides the optimal estimate in a minimum

mean squared error sense. The system undergoes changes according to the form

xk = Fkxk−1 + Bkuk + nwk, (4.19)

where xk is the state to be estimated, Fk is the process the state undergoes from

instance k − 1 to instance k, uk is a control input for the state process, Bk is a

linear process on the control input, and nwk is additive Gaussian noise. The subscript

k denotes the instance and signifies that the variable may change from instance to

instance. Measurements of the state are obtained as

zk = Hkxk + nvk, (4.20)

where zk is the measurement, Hk is the measurement process, and nvk is the additive

Gaussian noise associated with the measurement process.

The Kalman filter is generally treated as a 2-step process: a propagation step,

followed by an update step. The propagation step attempts to predict the next state.

The update step corrects the predicted estimate based on information obtained from

a measurement of the state. For a state, xk, the state estimate covariance is given by

Pk|k, and the Kalman filter equations for the propagation step are

x̂k|k−1 = Fkxk−1|k−1, (4.21)

and

Pk|k−1 = FkPk−1|k−1F
T
k + Qk, (4.22)
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where Qk is the covariance of the additive noise, nwk. The ·̂ is neglected further for

notation convenience. The update step is described by

xk|k = xk|k−1 + K(zk −Hkxk|k−1), (4.23)

and

Pk|k =
(
I−KkHk

)
Pk|k−1, (4.24)

where I is the identity matrix with the same size as Pk|k−1. The Kalman gain can be

calculated as

Kk = Pk|k−1H
T
kP−1

zz , (4.25)

where

Pzz = HkPk|k−1H
T
k + Rk, (4.26)

and Rk is the covariance of nvk.

Note that Eqs. 4.24 and 4.25 can be calculated independent of the measurement,

and could therefore be done during the propagation step. They are put together

with the update step because, in practice, the systems are non-linear and variations

of the Kalman filter must be used instead. In the alternate filter types, such as

the Extended Kalman filter (EKF) and the Unscented Kalman filter (UKF), those

equations become dependent on the measurement.

4.1.2 Unscented Kalman Filter

The UKF is preferable in this instance because of the large amount of non-linearities

in the system. The quasi-linearity requirement of the EKF makes it less likely to be

adequate. In using the EKF, a solution to an approximation of the problem is found.

The UKF attempts to approximate the solution [56, 55]. It is also known as the

Sigma Point Kalman Filter (SPKF) because during processing, the state is composed

of a set of sigma points, whose average is the state estimate of the filter.



32

(a) Sigma points are generated
from state estimate and covari-
ance.

(b) Sigma points are propagated
through the non-linear process.

(c) New state estimate and co-
variance are obtained from sigma
points.

Figure 4.8: Illustration of the unscented transform process.

The Unscented Transform (UT) is used in the UKF where a process is non-linear.

For the models used in this work, both the propagation and measurement processes

are non-linear, so it is used in both the propagation step and update step. The UT

process consists of generating a set of sigma points based on the state estimate and

its covariance. The sigma points are processed through the non-linear function. A

new estimate of the state and its covariance can then be made by taking the weighted

average of the sigma points and their covariance.

The UKF attempts to estimate the state, xk of a system which undergoes a prop-

agation of the form

xk = f(xk−1, nwk) (4.27)

and measurement of the form

zk = h(xk, nvk). (4.28)
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In the above equations, f(·) is a propagation function which alters the state from one

iteration to the next. nwk is noise that represent the uncertainty in the state propaga-

tion. The measurement, zk, is obtained by passing the state through the measurement

function, h(·). The uncertainty associated with the measurement process is given by

nvk.

When implementing the UKF, it is common to augment the state and state co-

variance with the expected noise values (should be 0) and the noise covariances as

xak =


xk
0
...
0

 (4.29)

and

Pa
k|k =

Pk|k 0 0
0 Qk 0
0 0 Rk

 (4.30)

For notational convenience, it is assumed from this point that references to the state

and state covariance in this section refer to the augmented state and the augmented

state covariance.

To implement the filter, the state covariance, Pk|k, is decomposed to obtain a

matrix, C, such that (κ+N)Pk|k = CCT . N is the number of elements in the state and

κ determines the weight for the sigma point corresponding to the true state estimate.

Possible decomposition methods include Cholesky, LDL, and Eigendecomposition.

Sigma points are generated as

χk−1|k−1 =
[
χ

1
χ

2
. . . χ

2N+1

]
=

[
x x+ σ1 . . . x+ σN xk−1|k−1 − σ1 . . . x− σN

] (4.31)

where

C =
[
σ1 . . . σN

]
. (4.32)

Each of the sigma points is propagated through the filter such that

χk|k−1 =
[
f(χ

1
) f(χ

2
) . . . f(χ

2N+1
)
]
. (4.33)
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The propagated state estimate and its covariance can then be obtained by

xk|k−1 = χk|k−1w (4.34)

and

Pk|k−1 = εk|k−1 diag(w) εTk|k−1 (4.35)

where w =
[
κ/d 1/d . . . 1/d

]
is a weighting vector and ε is made by subtracting

xk|k−1 from each column of χk|k−1.

It should be noted that the size of the augmented state vector gets reduced after

being run through f(·), since the process noise components are used and drop out

of the state during propagation. The sigma points are then propagated through the

measurement function as

Zk =
[
h(χ

1
) h(χ

2
) . . . h(χ

2N+1
)
]
, (4.36)

which can be combined to make the estimated measurement and estimated measure-

ment covariance by

ζ
k

= Zkw (4.37)

and

Pzz = ϑk|k−1 diag(w) ϑTk|k−1 (4.38)

where ϑk is obtained by subtracting ζ
k

from each column of Zk.

Once the measurement, zk, arrives, the state and state covariance estimates may

then be updated by

xk|k = xk|k−1 + K(zk − ζk) (4.39)

and

Pk|k = Pk|k−1 −KPT
xz, (4.40)

where

K = PxzP
−1
zz (4.41)
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and

Pxz = ε diag(w) ϑT . (4.42)

4.1.3 Linear Regression Kalman Filter

It was shown that the UKF is a special case of the Linear Regression Kalman Filter

(LRKF) [54].

The linear approximations of the propagation function, F̂, and the control input,

B̂, can be found by [
F̂ B̂

]
= PyxP

−1
k−1|k−1, (4.43)

where

Pyx = εk|k−1 diag(w) ϕk−1|k−1, (4.44)

with ϕk−1|k−1 obtained by subtracting the state from χk−1|k−1.

Likewise, estimates of the linearized measurement, Ĥ can be made by

Ĥ = A−1
n

[
Ax I

]
, (4.45)

where
A =

[
Ax An

]
= PT

xzP
−1
k|k−1

(4.46)

4.1.4 Consistency Test

As it was stated above, the UKF is preferable to the EKF. The EKF allows bias

into the state estimates over time, while the UKF is designed to prevent it. A way

of identifying when bias is entering into the state estimates is through a consistency

test. A consistency test provides a way to measure the performance of the filter.

The covariance associated with each state estimate provides a measure of the

uncertainty in the estimate. The Mahalanobis distance provides a normalized error

metric based on the state estimate and its covariance. It is given by

dm = (x− x̂)TP−1(x− x̂), (4.47)
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where x is the true state and x̂ is the estimated state. To perform a consistency

test, the experiment would be run N times and the Mahalanobis distances for each

estimate would be calculated and summed for that instance as

κk =
N∑
n=1

dmnk, (4.48)

where n is the test number and k is the instance variable over which the filter propa-

gates. The sum of the Mahalanobis distances is a Chi-squared variable. The consis-

tency test is done by comparing κk to the Chi-squared test thresholds.

When the true state values are known, the consistency test can still be performed.

The Mahalanobis distance between the measurement and the predicted measurement

still behaves as a Chi-squared variable when normalized by the innovation covariance.

In this case, the Mahalanobis distance is given by

dm = (z − ẑ)TS−1(z − ẑ), (4.49)

where z is the measurement, ẑ is the predicted measurement, and S is the innovation

covariance. The term z − ẑ is called the innovation residual.

The design of the UKF makes it such that the consistency test using Eq. 4.49

always passes. Even though a system may be non-linear and non-Gaussian, the

estimated covariance should still match the true covariance of the state estimate.

This property of the estimate covariance provides a way to estimate the uncertainty

of the system. The trace of the covariance matrix is a measure of the uncertainty in

the system.

It has been shown that when using either the EKF or the UKF, the state estimate

covariance can become over-confident [31, 30]. The effect of this will be that the trace

of the covariance matrix will be smaller than it should truly be. This occurs because

the observability matrix for SLAM should always be singular. As observations are

made and the estimates are updated, the null-space of the observability matrix is
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lost. The over-confidence is a result of information being added to the filter that is

not really there. It was shown by Huang et al. that for the type of model being used

in this work, the extra information comes in the form of a translation and rotation

of the entire map. This is important to note because of the effect it has on the filter.

For the implementation provided, inconsistency is unavoidable. By showing that the

maps generated do not exhibit obvious signs of the effects of the inconsistency, it can

be assumed that the inconsistency is minor. This allows that observations made on

the state estimate covariance are still valid.

4.2 Orientation Change Estimation

The change in estimation can be estimated by comparing the angles-of-arrival (AoA)

between successive up-chirps and down-chirps. This is done to avoid possible align-

ment errors between up and down-chirps. Even after an alignment is found during the

velocity estimation process, the differences in frequency mapping due to the velocity

and AoA make the estimation of the combined change in AoA difficult. Up-chirp

and down-chirp angle biases could also cause problems in estimating the change in

AoA (though this has not been definitively shown to be a problem). Because the

change in range between chirps of the same type is small, responses from reflectors

tend to get mapped to the same frequencies between adjacent pulses. As an example,

consider a platform moving at 10 m/s and a pulse repetition frequency of 100 Hz.

Between adjacent up-chirps, the platform will only move 0.1 m. If the radar has a

range resolution as low as 0.2 m, the reflector is still likely to be mapped to the same

bin in the frequency response. In the experiment, the platform is moving at no more

than 2.5 m/s, and the range resolution is not better than 0.8 m.

The change in orientation is estimated by finding the likely locations of reflectors

in adjacent chirps. The AoAs at corresponding frequency bins which are likely to

contain reflectors are subtracted from each other. The average difference is taken as
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the change in orientation.

4.2.1 Frequency Bins of Likely Reflectors

A frequency bin is said to be likely to contain a reflector response if it meets 2 criteria:

1) the magnitude response at that bin has to be detected by a constant false alarm

rate (CFAR) detector, and 2) the AoAs in that bin and the surrounding bins have to

be similar. Because of the 2nd condition, the probability of false alarm for the CFAR

detector can be kept higher, at around 10%.

The similarity, s(i), of the AoA in a frequency bin to the AoAs of neighboring

frequency bins is given by

s(i) =

√√√√ j=i+3∑
j=i−3,j 6=i

w(j)
(
A(i)− A(j)

)2

, (4.50)

where A(j) is the AoA at bin, j, and w is a smoothing function.

A threshold, τ , is placed on the similarity such that bins less than the threshold

are considered to contain the AoAs of reflectors. The bins are further refined by

applying a logical AND to corresponding bins from the current measurement and the

previous measurement as

ak(i) = (sk(i) < τ) ∧ (sk−1(i) < τ) (4.51)

where ak(i) is the proposition that the AoA measurement in bin i at instance k

contains a reflector.

A logical AND is then applied between the CFAR result, ck, and ak to determine

which frequency bins are likely to contain reflectors with consistent angle measure-

ments. Let Ik be the set of bins containing measurements, described by

Ik = {i : (ck(i) ∧ ak(i)) = TRUE} (4.52)
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4.2.2 Orientation Estimation

The orientation change is estimated by take the average difference in AoA between

measurements as

δγpk−1 =
1

|Ik|
∑
i∈Ik

Ak(i)− Ak−1(i) (4.53)

where | · | represents cardinality.

4.3 Velocity Estimation

4.3.1 Down-Chirp Frequency Relation to Up-Chirp Frequency

For the following derivation, platform rotation is ignored. The terms down-chirp and

decreasing frequency chirp are synonymous, as are the terms up-chirp and increasing

frequency chirp. The frequency shift induced by a reflector at a range, r, angle, α,

moving at a velocity, v, with respect to the radar is

fup =
2

c

(B
T
r − fcv cos(α)

)
, (4.54)

for an up-chirp and

fdown =
2

c

(B
T
r + fcv cos(α)

)
, (4.55)

for a down-chirp. In the above equations, c is the speed of light, B is the chirp

bandwidth, T is the time of the chirp, and fc is the base-band frequency. It is

assumed that the platform motion is aligned with the angle-of-arrival axis, i.e. it is

looking straight ahead and moving straight ahead. An example of the log magnitude

responses of an up-chirp and a down-chirp are shown in Fig. 4.9. Notice that the

magnitude responses, the main peaks in particular, are nearly identical, except for a

shift in frequency.
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Figure 4.9: The the normalized log magnitude response from a pulse. The up-chirp
is blue and the down-chirp is red.

4.3.2 Range Over Time

The range to the object at time, t, is given by

r(t) = ((x− xp(t))2 + (y − yp(t))2)
1
2

= (x(t)2 + y(t)2)
1
2 ,

(4.56)

where (x, y) is the location of a reflector, and (xp(t), yp(t)) is the sensor position at

time t. As the platform moves according to the motion described above, the range to

an object changes as

r(t+ τ) = ((x(t)− τv)2 + y(t)2)
1
2

= [(r(t) cos(α)− τv)2 + (r(t) sin(α))2]
1
2

= (r(t)2 − 2τvr(t) cos(α) + τ 2v2)
1
2 .

(4.57)

A first order approximation of this square root is

r(t+ τ) ≈ r(t)− τv cos(α) + τ2v2

r(t)

≈ r(t)− τv cos(α).

(4.58)
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The last term was dropped because τ is expected to be on the order of 1e−2 while

r(t) is expected to be > 1, making its contribution to r(t+ τ) insignificant.

4.3.3 Down-Chirp Relation to Up-Chirp with Range Change

When accounting for the change in range, the down-chirp then becomes

fdown = 2
c

(
B
T

(r − τv cos(α)) + fcv cos(α)
)

= fup − 2
c
B
T
τv cos(α) + 4

c
fcv cos(α)

= fup − (2
c
(B
T
τ − 2fc) cos(α)v).

(4.59)

4.3.4 Magnitude and Angle of Arrival Response Descriptions

The up-chirp and down-chirp provide the magnitude responses, Mup(f) and Mdown(f),

respectively, where f is a frequency. Using the relationship between the up-chirp

and down-chirp and noting that the shift, τ , is equal to the chirp duration, T , the

magnitude responses can be related as

Mup(f) = Mdown(f +
2

c
(B − 2fc) cos(α)v). (4.60)

Using the first order Taylor Series approximation, this can also be described as

Mdown(f + 2
c
(B − 2fc) cos(α)v) ≈ Mdown(f) + ∂M

∂v
v

= Mdown(f) + 2
c
(B − 2fc) cos(α)∂M

∂f
v.

(4.61)

Likewise, there are angle-of-arrival responses, Aup and Adown, with the same rela-

tionship

Aup(f) = Adown(f +
2

c
(B − 2fc) cos(α)v). (4.62)

These angles of arrival are estimates of α corresponding to each frequency.

4.3.5 Estimating Velocity

The goal is to estimate the v which minimizes the cost function

J =
∑
i

[
Mdown(fi +

2

c
(B − 2fc) cos(α)v)−Mup(fi)

]2

. (4.63)
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This function represents the sum-of-squared errors between the magnitudes of the

signals. When the correct velocity is applied, in combination with the AoA effects,

the signals should be identical, in the absence of noise.

The cost function is minimized using the Gauss-Newton method. By taking the

derivative of the cost function with respect to v, one obtains

∂J

∂v
= 2

∑
i

2

c
(B−2fc) cos(α)

∂M

∂fi

[
Mdown(fi+

2

c
(B−2fc cos(α))v)−Mup(fi)

]
. (4.64)

Substituting the approximation from Eq. 4.61, one obtains

∂J

∂v
= 2

∑
i

2

c
(B−2fc) cos(α)

∂M

∂fi

[
Mdown(fi)+

2

c
(B−2fc) cos(α)v)−Mup(fi)

]
. (4.65)

By setting Eq. 4.65 to 0 and rearranging, the incremental change in v, δv, can be

estimated from∑
i

(2

c
(B−2fc) cos(α)

∂M

∂fi

)2

δv =
∑
i

2

c
(B−2fc) cos(α)

∂M

∂fi

[
Mup(fi)−Mdown(fi, v

∗)
]

(4.66)

at each iteration, where Mdown(f, v∗) is the shifted version of Mdown, and v∗ is the

estimated velocity. The update from iteration k − 1 to k is then

v∗k = v∗k−1 + δv (4.67)

4.3.6 Alternative Velocity Estimation

An alternative cost function can be used to estimate the velocity, when AOA mea-

surements are not available. It is expected that not accounting for the AoA would

lead to an underestimate of the velocity. It also means that the shift between signals

can be treated as constant for all points in the signal. The linear shift should enable

a reduction in processing. The cost function can be approximated as

J =
∑
i

[
Mdown(fi +

2

c
(B − 2fc)v)−Mup(fi)

]2

. (4.68)

The velocity estimation could then be made using the simplified search equation∑
i

(2

c
(B − 2fc)

∂M

∂fi

)2

v =
∑
i

2

c
(B − 2fc)

∂M

∂fi

[
Mup(fi)−Mdown(fi)

]
. (4.69)
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4.4 State Propagation With Radar Dead-Reckoning

The platform variables are the only variables that change during propagation. The

platform state and state covariance are augmented with the dead-reckoning variables

as

xap =

xpv
γ

 (4.70)

and

Pa =

Ppp 0 0
0T Pvv 0
0T 0 Pγγ

 , (4.71)

where Ppp is the platform estimate covariance, Pvv is the variance of the velocity

estimate, and Pγγ is the orientation change estimate variance.

After the platform is propagated, Pk|k−1 can be found. The propagated platform

covariance can be found according to Eq. 4.35. The covariances between the land-

marks remain unchanged, with only the covariances between the platform and each

of the landmarks left to be calculated. For the ith landmark, the covariance between

the platform and the landmark is updated as

Ppik|k−1 = Ppik−1|k−1F̂, (4.72)

where F̂ is estimated from Eq. 4.43.

4.5 Landmark Detection

4.5.1 Quality Landmarks

A few criteria make a landmark useful for SLAM purposes. At the very least, it should

be stationary and repeatedly observable. In order to be observed by the radar, the

landmark should be metal. It is not expected that all landmarks should be identifiable

in the video, but it is preferred. In order to meet this criteria, it should have a unique

color from the background and have a cross-sectional area that occupies a minimum

number of pixels in the images. The size requirement is determined by the camera

and radar range limits.
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There are cases where it is preferable not to incorporate a reflector into the filter.

If the reflector is only observable for a few measurements, it will not improve much

on the platform estimate and have a large estimate uncertainty. At the same time,

it will increase the computational load of the system. Moving objects that are not

handled as such will also cause problems with the SLAM estimate.

4.5.2 Cell-Averaging Constant False Alarm Rate Detector

A Cell-Averaging Constant False Alarm Rate (CA-CFAR) detector is used on the

magnitude response from each radar chirp as part of the detection process. For this,

the radar chirp magnitude response is convolved with a kernel and thresholded. The

kernel is an even symmetric function. The middle value corresponds to the frequency

bin under test. Guard values in the kernel are set to 0 around the bin under test in

order to prevent neighboring cells from disturbing the hypothesis test in the event that

the reflector is mapped to multiple frequency bins. The kernel is determined by the

expected noise in the radar channel and the desired probability for false alarm. After

the convolution, returned values greater than 0 are taken as detections, and returned

as mbdk(f) for the down-chirp response, and mbuk(f) for the up-chirp response.

An example log magnitude response is given in Fig. 4.10. CA-CFAR was applied

to the magnitude response with a probability of false alarm of 6.5%, 3 guard cells, and

10 averaging cells. The result is shown in Fig. 4.11. Further away from the radar, the

detections are distinct. Close to the radar, there are a lot of false alarms. Specifically,

the set of detections starting near 8 s and at a range around 15 m are undesirable.

An image of the corresponding AoAs over time is shown in Fig. 4.12. In regions

corresponding to large log magnitude responses in Fig. 4.10, the change in AoA re-

sponse appears continuous and smooth. In the noisy regions in Fig. 4.11, the AoA

response changes more rapidly. Notice that the AoA response around the previously

mentioned undesirable detections are rapidly changing over time. The goal is to use
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Figure 4.10: Example log magnitude response.

the smoothness in the AoA to help determine which CA-CFAR detections should pro-

vide good measurements for the SLAM filter. Recall, allowing for a large fluctuation
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Figure 4.11: CFAR result with PFA = 0.065.
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Figure 4.12: Example of the AoA response.

in angle measurement for the same landmark would degrade the platform location

and map estimates.

4.5.3 AoA Smoothness Constraint

The smoothness constraint on the AoA is the same as the one used in Eq. 4.50.

Let the smoothness of the kth down-chirp AoAs be denoted by sdk(f), and for the

up-chirp, suk(f). In order to reduce false alarms, adjacent chirps are averaged such

that

ŝdk(f) =
sdk(f) + sdk−1(f)

2
. (4.73)

A threshold is then applied to ŝdk(f) to determine if the AoA meets the smoothness

constraint as

ŝbdk(f) = (ŝdk(f) > τA) (4.74)

where τA is the threshold on the AoA constraint. The same operation is done on

ŝuk(f) to obtain ŝbuk(f).
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4.5.4 Possible Detections from Single Chirp

Once the CA-CFAR and the AoA smoothness constraint are applied, a logical AND

is applied to mbdk(f) and ŝbdk(f) for the down-chirps to obtain

Bdk(f) = mbdk(f) ∧ ŝbdk(f). (4.75)

The AND is similarly performed on mbuk(f) and ŝbuk(f) for the up-chirps to obtain

Buk(f). Groups of adjacent frequency bins where Bdk is TRUE are collected. It

is expected that responses from reflectors will occupy a minimum number of bins,

therefore, groups comprised of less than a minimum number of bins are removed.

The center bin of each group is taken to be the location of the reflector. The set of

possible reflector bins is described by

Pdk = {pd1k, pd2k, . . . , pdNk}, (4.76)

where pdi is the center bin of the ith group in Bdk and N is the number of groups.

4.5.5 Detections from Adjacent Chirps

In order to be confirmed as a detection, the possible detection must be present for 2

consecutive chirps. Adding this constraint prevents many of the moving targets from

generating false detections. This means that for a detection to be made from the kth

down-chirp, associations must be made between elements from the sets Pdk and Puk.

For the kth up-chirp, associations should be made between elements of Puk and Pdk−1.

Associations are made by comparing the distances between the elements. Note that

the frequency bins for a reflector will be shifted by the velocity of the platform. The

shift due to the platform velocity was already estimated by Eq. 4.66. Twice this shift

amount is subtracted from the distances between the elements. The distance between

the ith detection in Pdk and the jth detection in Puk is given by

dp(pdi, puj) = pdi − puj − 2bv, (4.77)
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where bv is the induced shift in the number of bins by the platform velocity. A global

nearest neighbor algorithm is used to perform the associations. Distances greater

than a maximum threshold are removed as association possibilities. The associations

are made such that the sum of the distances between the detections is minimal.

Every detection is associated with a landmark at some point in the filtering pro-

cess. Detections which are not from a landmark currently in the filter will be retroac-

tively associated with that landmark when it is added to the filter at a later step.

Because of this, the associations between landmarks and elements of Puk can be car-

ried over to the elements of Pdk which are associated with those elements in Puk.

By carrying these associations over in the detection process, the search space for

associating unmatched detections can be greatly reduced.

4.6 Radar Measurement Model

Once detections are found, they are converted to the form given by the radar measure-

ment model. The measurement model for landmarks assumes that each measurement

contains a range and an angle. The angle measurement, αik, of the ith landmark at

instance k is

αik = arctan
yi − ypk
xi − xpk

− θpk. (4.78)

The radar measurement, rik of the same landmark is

rik =
√

(xi − xpk)2 + (yi − ypk)2. (4.79)

The combined measurement is written as

zik =

[
rik
αik

]
(4.80)

4.7 Angle Estimation

For each detection, the AoAs in the group of frequency bins corresponding to that

detection are collected. The median of the AoAs is taken as the AoA of that detection.
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4.8 Range Estimation

The frequency bin, fik of a detection, from the set Pdk (or Puk), is a function of the

range and the platform velocity. The range of the detection is calculated as

rik =
c

2

T

B
(fik − fDopp), (4.81)

where fDopp is the Doppler shift obtained from the estimation in Eq. 4.66.

4.9 Unmatched Detection Association with Unmatched Land-
marks

A global nearest-neighbor association is used on unmatched detections and landmarks

to determine if any of the detections might belong to any landmarks. Since the dead-

reckoning provides a good estimate of the current radar location and orientation, only

landmarks within the FOV of the radar are considered for association.

The measurements for the landmarks within the FOV of the radar are estimated

from the propagated state according to Eqs. 4.78 and 4.79. The Mahalanobis dis-

tances between each of the measurements and the estimated measurements are cal-

culated. The Mahalanobis distance, dM(zi, xj), between the ith measurement and the

jth landmark is given by

dM(zi, xj) = (zi − ẑj)TR−1(zi − ẑj), (4.82)

where R is the radar measurement error covariance and ẑj is the estimated measure-

ment to be obtained from the jth landmark. The associations are made similar to the

method used in subsection 4.5.5.

4.10 Filter Update

The first step of the filter update is to extract only the state estimate and state

estimate covariance matrix corresponding to the platform and the landmarks that
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were detected. For example, if the 2nd and 5th landmarks were detected, the extracted

state and covariance would be

xd =

xpx2

x5

 (4.83)

and

Pd =

Ppp Pp2 Pp5

PT
p2 P22 PT

25

PT
p5 PT

25 P55

 . (4.84)

Sigma points are generated from these and the steps in Eqs. 4.36- 4.38. The lin-

earized measurement matrix, Ĥd, is then estimated for the extracted state according

to Eq. 4.45. From the example above, measurement matrix would have the form

Ĥd =
[
Ĥp Ĥ2 Ĥ5

]
(4.85)

where Ĥp corresponds to the measurement of the platform and Ĥi corresponds to the

measurement of the ith landmark. The linearized measurements matrix for the entire

state, Ĥ, could then be estimated as

Ĥ =
[
Ĥp 0 Ĥ2 0 0 Ĥ5 0 . . . 0

]
, (4.86)

where 0 represents a matrix of zeros corresponding to the measurement matrix of

unobserved landmarks. Ĥ can then be used to update the entire state and state

covariance as in the normal Kalman filter Eqs. 4.23 - 4.25.

An alternative method to update the filter, the filter could be updated one land-

mark at a time, with the process in Eqs. 4.25-4.83 performed each time. The benefit

of this method is a reduction in the size of the Cholesky decomposition, whose compu-

tational costs are generally cubic in the size of the state. A drawback of this method is

that it neglects the correlations between the landmarks in the state when generating

the measurement matrix. Because the expected number of measurements obtained in

each observation is less than 10, the cost of these calculations is relatively small. It

was determined that the computational cost was not detrimental enough to warrant

the separate processing.
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Another alternative method to the state update is to not update the entire state,

but only the landmarks within a maximum distance of the current observations. This

can work because landmarks that are not observed together will not develop high

correlations between each other. This method was not chosen here again because of

the relatively small number of observations. The computational cost to update the

state grows quadratically with the size of the state. When there is a large number of

landmarks observed over time, this can become necessary.

4.11 New Landmark Addition

New landmarks are appended to the filter by estimating the position of the landmarks

in the map. This is done by first extracting the platform portion of the state estimate

covariance and appending the measurement covariance to it to make

Pa =

[
Ppp 0
0 R

]
. (4.87)

A state estimate is formed as

xa =

xp0
0

 (4.88)

Sigma points are formed for this state estimate as in Eq. 4.31. The mapping function

xN+1 = xp + r

[
cos(α− θp)
sin(α− θp)

]
(4.89)

is applied to the sigma points and they are collected as in Eqs. 4.37 and 4.38 to obtain

xN+1 and PN+1,N+1. xN+1 is appended to the state and PN+1,N+1 is appended to the

state estimate covariance.
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5 Radar Video Fusion SLAM

The main benefit of adding video measurements to radar SLAM is the improvement in

angle measurements. A drawback of using imagery is the added computational com-

plexity. For this reason, 2 methods of fusion are employed. The first method is used

to take advantage of the improved bearing estimates for navigation purposes while

attempting to keep computational complexity low. The second method is intended to

improve estimates of landmarks at an added cost of computational complexity. Even

in the second method, however, the search space for features is limited to the few

radar reflectors visible in the images.

5.1 Angle Change Estimation From Video

The first method is to use the video to estimate the change in platform orientation

from one frame to the next. Because the platform is assumed to move on a plane,

rotations are expected to mostly occur about the axis perpendicular to the plane.

A correlation between images could be performed to estimate the change in angle

from frame to frame. In addition, a reduction in processing can be made if the

images are summed before the correlation is performed. This is done for 2 main

reasons. Translations should only occur along 1 axis, so this reduces the number of

computations in the correlation process. Acting on a sum of pixels is more robust to

slight out of plane translations or rotations that may occur which are not along the

axis perpendicular to the plane.

5.1.1 Image Summation

It is assumed the image plane is perpendicular to the x-z plane shown in Fig. 3.4. It

is also assumed that d, shown in Fig. 3.4, is parallel to the image plane. The first step
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in the orientation change estimation is to sum the image along the z-axis to obtain

ιl(x) =
∑
z

Il(x, z), (5.90)

where I(x, z) is an index to the pixel at location (x, z) in the image at instance l.

When comparing 2 images using this method, there will be some errors introduced

by this summation. In particular, these are due to the non-linear effects of the image

process and radial distortion. These errors have not been found to noticeably interfere

with the correlation process, however.

5.1.2 Pixel-Space to Angle-Space Conversion

While each pixel is typically treated as a sample along a Cartesian space, it can also

be treated as a sample in a spherical coordinate space as well. For this method, the

pixel x-coordinates are converted to angle coordinates according to

Θ(i) = arctan(
x(i)− px

αx
), (5.91)

where x(i) is the pixel-space value of x in the ith column of the image, Θ(i) is the

corresponding angle value, px is the location of the principal point along the x-axis,

and αx is the focal length.

After the angles are calculated, ιl(Θ) is resampled such that the new values of

Θ are spaced equally. While the next step could be performed without resampling,

equal spacing simplifies calculations and processing.

5.1.3 Correlation Between Image Summations

By describing the summed images as a functions of angles, a shift between the 2

summed images represents a rotation. The relation between il and il−1 is described

by

ιl(Θ) = ιl−1(Θ + γI). (5.92)
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This was done under the assumption that the translation that the platform undergoes

between image samples is minor. A first order Taylor series approximation yields

ιl(Θ) ≈ ιl−1(Θ) + γI
∂ιl−1

∂Θ
(5.93)

The correlations between angles is estimated using the Gauss-Newton method.

The cost function is

JI =
∑

Θ

(
ιl(Θ)− ιl−1(Θ)− γI

∂ιl−1(Θ)

∂Θ

)2

. (5.94)

Taking the derivative with respect to γI yields

JI
∂γI

= −2
∑

Θ

(
ιl(Θ)− ιl−1(Θ)− γI

∂ιl−1(Θ)

∂Θ

)∂ιl−1(Θ)

∂Θ
. (5.95)

The update to γI at the ith iteration is then

γIi = γIi−1 +
αn
αd
, (5.96)

where

αn =
∑

Θ

(
ιl(Θ)− ιl−1(Θ)

)∂ιl−1(Θ)

∂Θ
(5.97)

and

αd =
∑

Θ

(∂ιl−1(Θ)

∂Θ

)2

. (5.98)

5.2 Angle Change Estimation Update to Filter

Once the orientation change between instances l and l − 1, the platform orientation

can be updated. The measurement rates for the radar and video are different, but

it is assumed that the current frame being processed was observed at the same time

instance as the last radar pulse to be processed. It is also assumed that the measure-

ments from the last radar pulse have been processed. With these assumptions, only

an update needs to be performed, and not a propagation. To account for this, the

change in orientation is adjusted as a change from the current orientation as

θI = γI − θpl + θpl−1. (5.99)
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The measurement is then treated as a direct observation of the current platform

orientation. This is a linear process, so the update process can be performed using

Eqs. 4.24 - 4.26 from the standard Kalman filter, where

H =
[
0 0 1 0 . . . 0

]
. (5.100)

5.3 Reflector Segmentation

It is assumed that the color of the reflector is unique with respect to its surroundings

and the reflector consists of continuous, smooth surfaces. Based on this, a color-based

segmentation and identification scheme is used for finding the reflector.

If the reflector for a landmark has not been identified, and the landmark has

been observed by the radar between the last frame and the current frame, a search is

performed for the reflector corresponding to that landmark in the image. This requires

that measurements between the last frame and the current frame be collected and

stored according to which landmark they belong.

5.4 Weight Image Generation

For each reflector to be found, a weight image is generated. The weight image is the

same size as the video image. Each pixel in the weight image represents the likelihood

that the image of reflector is contained in the corresponding pixel in the video image.

The weight image is generated based on the idea that each measurement creates a

potential field, F , of probability in 3D space that the reflector is at some location in

the 3D space.

For a single reflector, an equipotential surface on this field would be in the shape

of a lens. Consider the case where the origin of the field is located at the radar center,

with the radar beam centered along the x-axis, and the radar azimuth measurement

is aligned with the spherical coordinate frame azimuth (centered at x = 0). The

magnitude of the field at a location where ρ, α, and ψ provide the spherical range,
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azimuth, and elevation coordinates, respectively, can be given by

F (ρ, α, ψ) = k exp
(
− (ρ− ρm)2

2σ2
ρ

− (α− αm)2

2σ2
α

− ψ2

2σ2
ψ

)
, (5.101)

where σ2
ρ is the radar range measurement variance, σ2

α is the radar azimuth mea-

surement variance, and σ2
ψ is determined by the radar beam width. The scale factor

is

k = (2π)−
3
2 (σρσασψ)−1.

Assuming the camera and radar are co-located with the same viewing axis and

orientation, a weight image, W(x), is defined as the integral of F (ρ, α, ψ) along the

line joining the world origin with the point x′ on the plane at x = 1. The variable

x represents a pixel location. The intrinsic camera matrix transforms x′ to x. If the

camera were not located at the origin, the integral would be along the line joining

the camera center to the point x′ on the plane orthogonal to the camera optical axis

and located one unit distance from the camera center.

Consider the case of projecting the 3D Gaussian integration onto the unit sphere.

The integral would then be

W(α, ψ) =
∫∞
−∞ F (ρ, α, ψ)∂ρ

= (2πσασψ)−1 exp
(
− (α−αm)2

2σ2
α
− ψ2

2σ2
ψ

)
,

(5.102)

and the result would be a 2D Gaussian. If the unit sphere result were then projected

onto the plane at x = 1, the projection would be approximately Gaussian. This

approximation method will be inadequate when the radar and camera are not co-

located. The projection would not have any symmetry about the mean.

This approximation can be made by treating the projection as a measurement

function and applying Eqs. 4.36-4.38 to the radar measurements. Before Eq. 4.36 can

be applied, the radar measurement must first be projected to 3D space.

For a measurement, m = [r, α, 0], with covariance matrix, M = diag{[σ2
r , σ

2
α, σ

2
ψ]},

the covariance matrix is decomposed as

3M = STS. (5.103)
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Sigma points, ζ
i
, are given by

Z =
[
ζ

0
ζ

1
· · · ζ

6

]
=

[
m m · · · m

]
+
[
0 S −S

]
.

(5.104)

The sigma point are converted from spherical coordinates to Cartesian coordinates

in the platform frame and then projected onto the image plane as

νixi = KX i (5.105)

where K describes the intrinsic camera parameters, X i is the Cartesian coordinate

representation of ζ
i
, and νi is the last element in KX i. Note that this assumes

the radar and camera are collocated and aligned. The mean and covariance of the

projection are then given by

x =
1

7

6∑
i=0

xi (5.106)

and

P =
1

7

6∑
i=0

xix
T
i (5.107)

respectively. In this case, a uniform weight is applied to the sigma points.

When considering multiple detections from one landmark, the projection of the

ith measurement yields a mean image location, p
i
, and covariance, Pi. The weight

image from each measurement is obtained as

Wi(x) =
1

2π
√
|Pi|

exp
{1

2
(x− p

i
)TP−1

i (x− p
i
)
}
. (5.108)

All of the weight images are combined as

W(x) =
1

w

∑
i

Wi(x), (5.109)

where w normalizes the maximum value in W to 1.

An example of the projection of measurements and their covariances onto an image

is shown in Fig. 5.13. It is easier to see the orange trihedral that caused the detections

on the right in Fig. 5.14. Another orange trihedral cause the detections on the left,



58

Figure 5.13: An example of radar measurements projected onto an image. The mea-
surements are green. The radar estimate of the reflector is red.

Figure 5.14: The image without the radar projections. The detections are from orange
trihedrals.
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Figure 5.15: An example weight image generated by combining weight images from
measurements.

but it is out of frame. The weight image generated by combining the weight images

of each of the measurements is shown in Fig. 5.15. Only the measurements from the

reflector on the right were used to generate the image. This is because a weight image

is generated for only one landmark at a time.

5.4.1 Color Space Reduction

In order to simplify the descriptor of the reflector, and simplify computations, the

color space of the image is reduced. An RGB image typically has three 8-bit channels,

one channel each for red, green, and blue.

The colors are first converted from RGB to rgs color space, where r = R/(R +

G+B), g = G/(R+G+B), and s = (R+G+B)/3. The R, G, and B represent the

red, green, and blue components of the color, respectively. Only the r and g elements

are considered for identifying colors as the corresponding s relates to the intensity of
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an (r, g) color. The range of values r and g can take is scaled to make them 4-bit,

taking on values from 0 to 15. The conversions are described by

r =

⌊
48R

R +G+B

⌋
− 1 (5.110)

and

g =

⌊
48G

R +G+B

⌋
− 1. (5.111)

5.4.2 Average Color Likelihood

The set of discrete values that (r, g) can take make up the lattice C. The color of a

pixel, x, in rg space is denoted by C(x). For an observed (r, g) pair, or color, zc, the

probability of zc being a color of the reflector is estimated as

Pr(zc|O) = C(zc)

= 1
nc

∑
i∈xc

W(i) (5.112)

where xc = {x|C(x) = zc}, nc is the cardinality of xc, and O is the set of measurements

of the landmark.

Once the likelihoods of each color are found, a new image, L, is formed wherein the

color of each pixel is replaced by the average likelihood of that color (i.e. if C(x) = zc,

the color, zc, then L(x) = Pr(zc|O)). An example is shown in Fig. 5.16. The small

area of bright pixels on the right corresponds to an area of the image whose colors are

likely to belong to the reflector. In this case, they correspond to the orange trihedral.

There are also a few bright pixels in the middle of the image. They correspond to

another orange reflector.

5.4.3 Possible Reflector Collection

The image L is then thresholded to determine the pixels to which the reflector is

likely mapped as

B(x) = (L(x) > τL) (5.113)
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Figure 5.16: An example reflector likelihood image, L. The original image is shown
in Fig. 5.14.

An image closing operation is performed on B to form Bc. The connected components

in Bc are collected. Let CB be the set of connected components in B (after the closing

operation). Each group in CB consists of the indices to the pixels belonging to that

group.

Size constraints on the expected size of the reflector can be applied at this point.

The maximum and minimum amount of cross-area the reflector is expected to have

are given by amax and amin, respectively. Each pixel occupies an amount of area on

the image plane denoted by ap. An estimate of the range between the camera and

the landmark is known from the radar measurements. An estimate of the cross-area

that each group in CB would occupy is given by

aC(i) = r|CB(i)|ap, (5.114)

where r is the range to the landmark and |CB(i)| represens the cardinality of the ith
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Figure 5.17: A binary image corresponding to possible reflectors after all possible
reflectors are collected.

group in CB. Groups for which aC does not fall between amin and amax are discarded.

In the event that more than one group remains after the size constraint is applied,

the group containing the pixel with the highest weight in W is chosen. This is equiv-

alent to saying the connected component closest to the centroid of the measurement

projections is chosen.

An example is shown in Fig. 5.17. In this case, the bright pixels in the middle of

Fig. 5.16 were eliminated by the size constraints.

5.4.4 Reflector Identification

If a group in CB was found that meets the constraints, the set of pixels which make

that group are assumed to contain the mapping of the reflector. That group is called

C∗B. The rg colors for that reflector are then extracted. Because of the closing

operation, some pixels in that group may contain colors that are not unique to the
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Figure 5.18: Image of the detected reflector.

reflector. In order to keep with the uniqueness assumption, only the pixels in C∗B

that were also TRUE in B are used for reflector color identification. The set of colors

associated with the ith landmark is denoted as Lci.

The image of the reflector detected in the example is shown in Fig. 5.18. Note

that not all of the TRUE pixels in Fig. 5.17 contribute to this image. Only the pixels

that were TRUE in that image and also TRUE after thresholding the image shown in

Fig. 5.16 (before image closing) contribute to the reflector segmentation. A histogram

of the colors corresponding to the detected reflector is shown in Fig. 5.19.

5.5 Reflector Tracking

When a new image is obtained, landmarks that are in the FOV and whose reflectors

have been identified can be tracked. A color feature tracker is employed to find the

AoA to the reflector in the image.
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5.5.1 Color Filtering

The first step is to determine which colors in the image belong to the landmark being

tracked. A binary image, BL, is created whose values are TRUE for pixels whose

colors match those of the reflector. A closing operation is then performed on BL.

The next image in the video sequence from the one shown in Fig. 5.14 is shown in

Fig. 5.20. The result after filtering for the color of the reflector is shown in Fig. 5.21.

After closing, the result is nearly identical to the one shown in Fig. 5.18. The collection

process is nearly identical to the process used in the segmentation. The absence of a

weight image, however, requires that another method is used when multiple objects

are detected.

5.5.2 Possible Detection Collection

Connected components are collected from BL. Size constraints on the connected

components are applied as in Sec. 5.4.3. The set of connected components is denoted

CL. Again, each group in CL is a set of pixel locations corresponding to the connected
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Figure 5.19: 2D color histogram of the segmented reflector.
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Figure 5.20: The next image in the video sequence after the image shown in Fig. 5.14.

Figure 5.21: Pixels in the image whose color matches the reflector color.



66

components that make that group. It is possible that multiple connected components

can meet the size constraints. Generating a weight image can be costly and should

be avoided if possible. Instead, the angle to each connected component is estimated

and used to estimate which connected component should be the landmark. The

angle closest to the expected angle to the landmark is taken as the measurement. It

should be noted that if the difference between the measured angle in the image and

the expected angle is greater than a predetermined threshold, the measurement is

discarded.

5.5.3 Reflector Measurement From Image

For a connected component, CL(i), the x-direction centroid of the pixels is calculated

by

x̄L(i) =
1

|CL(i)|
∑
j

CLxi(j), (5.115)

where CLxi(j) is the x-coordinate of the jth pixel location in CL(i). The angle to that

centroid is then calculated as

αL(i) = arctan

(
x̄L(i)− px

αx

)
, (5.116)

where px and αx are the same as in Eq. 5.91. By obtaining image measurements in

this way, and because of the radar and camera configuration, the measurement model

for landmarks in the images is the same as the AoA measurement model for the radar.

5.6 Video Landmark Measurement Update to Filter

Once all of the measurements of landmarks in the video are taken, the filter can be

updated. As with the orientation change measurement, no platform propagation is

necessary. The latest image in the video sequence is assumed to be observed at the

same time as the latest radar pulse observation.



67

5.6.1 Filter Update

The update process from image measurements is the same as the update process

from radar measurements. The measurement model for the images is the same as in

Eq. 4.78. As in the radar example in Eqs. 4.83 and 4.84, a truncated state and state

estimate covariance consisting of only the platform and the measured landmarks

is used to generate sigma points. The sigma points are propagated through the

measurement model and an estimate of the linearized measurement matrix, Ĥd, is

made. The linearized measurement matrix for the entire state is estimated from Ĥd,

and the update can be completed using Eqs. 4.23 - 4.25.
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6 Experiment

6.1 Description

An experiment was performed in which a radar and camera system was mounted

on a cart and pushed along an outdoor path in the shape of a triangle. A map of

the scene is shown in Fig. 6.22. The path, marked in blue, was traversed in the

clockwise direction. Starting at the upper right vertex and moving to the bottom

vertex, the distances around the path were 18.3 m, 22.9 m, and 26.5 m. Aluminum

trihedrals, approximately 6 in. per side, were placed in the scene. The locations of

the trihedrals are marked with yellow dots on the map. Other reflective objects, such

as light poles and trees, in the scene are marked in red. The trihedrals were used

Figure 6.22: Scene layout for the experiment.
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to guarantee strong reflectors would be detected in the radar domain. Along with

stationary objects, people were observed during the collection process as they walked

through the area. A measurement was not taken, but it was quite windy on that day,

causing many of the reflectors to sway.

Two sets of data were collected and used for the experiment. For the first set, a

12 mm lens was attached to the camera. The field of view for this system was 21.5◦.

The path was traversed approximately 4.5 times over the span of approximately 6.5

minutes. A 6 mm lens was attached to the camera for the second collection. The

field of view for this system was 42◦. The path was traversed approximately 5 times

over the span of approximately 6.5 minutes for that collection. The radar had a field

of view of 50◦. Radar measurements beyond a 40◦ field of view were found, however,

to be unreliable.

The radar and camera were approximately co-boresighted, with the radar placed
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Figure 6.23: The radar waveform.



70

above the camera as they sat on the cart. Recall, a picture of the sensors was shown in

Fig. 3.3. Because the displacement is so small compared to the ranges to landmarks,

the displacement is ignored during calculations. In addition to the sensors used for

this effort, a Continuous Wave (CW) radar was mounted on the platform. The results

from that sensor only provide a visual comparison to the FMCW estimates.

One period of a radar pulse consists of an increasing frequency chirp, followed

by a decreasing frequency chirp. The base frequency of the chirp was 24 GHz. The

bandwidth was 180 MHz. The pulse repetition frequency was 100 Hz. The radar

waveform is shown in Fig. 6.23. An image was taken once every 7 radar pulses. This

made the video frame-rate approximately 14.29 Hz.

6.2 Odometry Results

6.2.1 Velocity Estimation

Three correlation-based velocity estimation methods were tried. The first method

was implemented by finding the shift between adjacent rising and falling chirps. The

second method was the Gauss-Newton optimization method described in Sec. 4.3.6.

The estimates by that method should be improved on the first method by allow-

ing for non-integer frequency bin shifts. The third method incorporates the AoA

measurements in the optimization process. It was described in Sec. 4.3.5.

The velocity of the cart was not recorded during the collection, making a direct

comparison of the estimates to the true value impossible. Alternative metrics are

possible, however. All of the methods attempt to find a shift that minimizes the

difference between frequency responses of adjacent chirps. The sum of squared differ-

ences (SSD) between the shifted frequency responses provides a way to measure how

well each method is matching the responses. Another way to measure the accuracy

of the estimates is to estimate the distance travelled over time based on the veloc-

ity measurements. The cart moved in straight lines along the path. The distances
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Method Average SSD ReductionOver
Method 1 (%)

ReductionOver
Method 2 (%)

1 0.6577
2 0.5947 9.71
3 0.5939 9.58 0.14

Table 6.1: Average SSDs for velocity estimation methods.

on each side of the path are known. Integrating the velocities along the path and

multiplying the result by the time travelled can provide another measure of estimate

accuracy.

The SSD results are shown in Table 6.1. Both of the optimization algorithms

provide a nearly 10% reduction in average SSD. The optimization that accounted for

shifts due to the AoA performed negligibly better. A major contributing factor to

the errors were changes in the magnitude response shape. The magnitude response

is a function of many variables. No matter how accurately the velocity and AoA are

estimated, changes in other variables will cause the magnitude responses to differ.

Another factor is the limited range of AoA. For an AoA of 20◦, the Doppler shift

is reduced by less than 7%. A noteworthy improvement might be made for larger

velocities and/or larger AoAs.

Examples of matched log magnitude responses for the 3 methods are shown in

Figs. 6.24-6.26. The original responses were shown in Fig. 4.9. All of the shifted

responses appear much more closely aligned than the original. With the peaks aligned,

the major contributors to the SSD are easily seen.

Examples of the velocity estimates overlaid onto the magnitude response of the

CW radar are shown in Figs. 6.27 and 6.28. Recall that the CW radar data was

collected for visual comparison. The estimates from the 2nd and 3rd methods are

nearly identical. Fig. 6.28 illustrates strengths of the methods. There appears to be

a sinusoid along the main detection in the CW image. That is due to the reflectors

swaying with the wind. The estimates are somewhat affected by this, but because
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the reflectors are not all moving at the same speed, they are not affected by one

particular reflector. As will be seen later, there were many instances where only one

landmark was detected for use in updating the filter. If that reflector happened to

be one of the swaying reflectors, large errors would be introduced in the platform

location and map estimates. A second strength of this method is illustrated in its

ability to estimate the velocity in the presence of moving objects. Recall that the

timing for this corresponds to the log magnitude response over time shown in Fig. 3.6.

The second, more negative, response is from a person moving towards the platform.

The person induces a strong response, but the estimates are not affected.

Tab. 6.2 shows the results of integrating the velocity estimates over each of the sec-

tions of the path. The correlation method consistently underestimated the velocity,

causing the larger errors. The other estimation methods produced much better re-

sults. As expected, there was a tendency to underestimate the true platform velocity,
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Figure 6.24: A matched log magnitude responses from a pulse using the shift with
the maximum correlation. The up-chirp is blue and the down-chirp is red.
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Figure 6.25: A matched log magnitude responses from a pulse using Gauss-Newton
optimization. The up-chirp is blue and the down-chirp is red.
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Figure 6.26: A matched log magnitude responses from a pulse using Gauss-Newton
optimization accounting for AoA . The up-chirp is blue and the down-chirp is red.
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leading to underestimates of the path lengths.

6.2.2 Angle Change Estimation

A plot of the accumulated estimated changes in angle are shown in Fig. 6.29. The

plot shows the radar is estimated to be turning to the right, as it did. The angle

estimates should not change as much, however, during times when the platform was

moving along a straight line.
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Figure 6.27: Example 1 of velocity estimates overlaid on the CW log magnitude
response. Method 2 estimates are blue and method 3 estimates are red.



75

V
e

lo
c
it
y
 (

m
/s

)

Time (s)
104 106 108 110 112 114 116 118 120 122 124

−6

−4

−2

0

2

4

6

Figure 6.28: Example 2 of velocity estimates overlaid on the CW log magnitude
response. Method 2 estimates are blue and method 3 estimates are red.
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Figure 6.29: Example of angle change estimates. The combined estimate is in black.
The up-chirp and down-chirp only estimates are in blue and red, respectively.
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Figure 6.30: The platform trajectory from dead-reckoning estimates.

6.2.3 Platform Trajectory From Dead-Reckoning

Fig. 6.30 shows the estimated radar trajectory using only the velocity and angle

change estimates, accumulated over time. It appears that the angle change estimates

would allow for a loop closing if the velocity estimates were better. That is not

actually the case. There appears to be a drift in the angle estimates in favor of a

right turn. During the actual turns, the change in angle was actually underestimated.

There was one troublesome turn in particular. The reflectors were not spaced closely

enough in angle and, for a brief time, no reflectors are visible to the radar. It was

estimated that there were no changes in orientation while no reflectors were visible.

6.3 Radar SLAM

6.3.1 Detections

Fig. 6.31 shows the application of the angle smoothness constraint. This corresponds

to the section of the AoA response shown in Fig. 4.12. The detections after thresh-



78

olding are shown in Fig. 6.32. Most of the noisy measurements at closer ranges were

removed, compared to what was shown in the CA-CFAR result in Fig. 4.11.

The resulting detection image is shown in Fig. 6.33. The resulting image appears

very similar to the image in Fig. 6.32. The differences arise where the angle response

is smooth even though a reflector is not present.

The corresponding decreasing frequency chirp image is shown in Fig. 6.34. Recall

that in order for a detection to be made, it must be seen in adjacent increasing and

decreasing chirp responses. The actual detections are plotted on the binary image in

Fig. 6.35.

In order to test the quality of the measurements with the detection constraints

presented, the detections from CA-CFAR and CA-CFAR with the AoA constraint

were used to perform SLAM and the results were compared. Because of the landmark

observability issues in the experiment, fusion with video was applied to enable loop
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Figure 6.31: A result after applying the angle smoothness constraint.
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Figure 6.32: Angle smoothness based detections after threshold.
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Figure 6.33: Result from combining CFAR and angle constraint to the increasing
frequency chirp observations.
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Figure 6.34: Result from combining CFAR and angle constraint to the decreasing
frequency chirp observations.

Time (s)

R
a

n
g

e
 (

m
)

0 5 10 15

10

15

20

25

30

35

40

45

50

55

Figure 6.35: Actual detections from decreasing frequency chirp observations.
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closing. The detection process is independent of the SLAM process, so the only effect

the fusion had was to improve the platform orientation estimate and enable loop

closing.

Both of the resulting maps are shown in Fig. 6.36. The angle constrained CA-

CFAR landmarks are magenta and the CA-CFAR landmarks are cyan. The CFAR

probability of false alarm was set to 0.0025 for both cases. Because of the additional

constraints, the CA-CFAR alone returns detections. In this case, there were 39 land-

marks from the CA-CFAR detection process versus 23 for the constrained detection

process. There were a total of 29386 detections from the CA-CFAR method, resulting

in an average of 753.5 measurements per landmark. There were 20881 detections and

an average of 907.8 measurements per landmark when using the constrained detection

method. Of the extra 16 landmarks, 4 of them were repeated landmarks. Of the 12

remaining landmarks, 7 can be identified on the map as belonging to a specific object

in the scene. All of the 23 landmarks from the constraint map are identifiable in the

image of the scene. This means that the additional constraints helped ensure the

selected landmarks were more stable.

Another way of comparing the quality of the measurements by comparing the

quality of the estimates generated by using those measurements. The covariance

associated with each state estimate from the SLAM filter provides a measure of the

uncertainty of each measurement. The trace of the covariance matrix provides a mea-

sure of the uncertainty of the platform and landmark estimates. In the example given

above, the trace of the covariance matrix for the CA-CFAR estimate was 19.19 m2.

The trace of the covariance matrix for the angle constrained estimate was 4.81. This

is not an appropriate comparison, however. The smaller state can reasonably be

expected to yield a smaller estimate uncertainty.

A more appropriate comparison can be made by increasing the number of land-

marks obtained using the angle constrained method. By increasing the probability
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Figure 6.36: Maps for comparison of radar detection methods. The CA-CFAR map
is cyan. The angle constrained CA-CFAR map is magenta.

of false alarm to 0.065, 40 landmarks are tracked. The average number of detections

per landmark was 1076.8. The map showing the measurements from both detectors

is shown in Fig. 6.37. In this case, the trace of the covariance matrix for the system

using the angle-constrained detector was 7.25 m2.

When attempting to map the scene using the regular CA-CFAR with a probability

of false alarm of 0.065, the map size quickly grew, with many incorrect associations,

and became inconsistent.

6.3.2 Filtering

The radar measurements were estimated to have standard deviations of 0.5 m for

the range and 4◦ for the AoA. The standard deviations for the velocity and platform

change estimates were 0.5 m/s and 0.15◦, respectively.

Applying the filter improved the trajectory estimation and provided a map of



83

reflector locations in the scene. The trajectory and the map do have some errors,

however. The lack of observable landmarks on one of the turns was still an issue. The

section of data used for this example started at the beginning of the first collection and

continued for 120 sec. The map for one loop is shown in Fig. 6.38. As a comparison,

the estimated trajectories of the platform using dead-reckoning only and radar SLAM

are shown in Fig. 6.39.

The path is followed much more closely before and after the first turn. Part of the

second turn is unobservable, leading to the divergence from the path. For part of the

second turn, a building is less than 5 m the radar. There is effectively no change in

AoA for the building, and there is nothing else to detect in the scene. A loop closing

does not occur after the third turn, and some of the previous landmarks are detected

as new landmarks. By the end of the experiment, 39 landmarks are mapped.
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Figure 6.37: Maps for comparison of radar detection methods when a similar number
of landmarks are mapped. The CA-CFAR map is cyan. The angle constrained CA-
CFAR map is magenta.
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Figure 6.38: Map and trajectory from radar SLAM.
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Figure 6.39: A comparison of the trajectory between SLAM from radar (black) and
dead-reckoning only (red).
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The first part of Tab 6.3 compares the true and estimated path lengths shown

in Fig. 6.40. The second part compares the distances between mapped landmarks

with measurements of those distances taken by a measuring tape. The distances

measured by the tape are within a decimeter of the true values. Association between

map landmarks and scene elements is not possible after the second turn. Comparison

of distances between landmarks that were mapped before the second turn with any

degree of confidence in the association is not possible.

Figure 6.40: Path section and landmarks used in tables.
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Estimated (m) Actual (m) Error (m)

Section 1 17.97 19.20 1.23

Section 2 20.55 22.86 2.31

Section 3 24.52 25.60 1.04

4-6 17.97 10.73 0.19

4-7 20.55 35.77 0.81

7-8 24.56 12.16 0.44

Table 6.3: Actual and Estimated Path Lengths and Distances Between Landmarks
from Radar SLAM

6.4 Radar Video Angle Change Estimate Fusion SLAM

6.4.1 Angle Change Estimation

An example of the shifts found by correlation between image sums is shown in

Figs. 6.41 and 6.42. The second image used for the correlation is shown in Fig. 6.43.

As the figures illustrate, the correlation algorithm aligns the image sums such that

they nearly overlap. The algorithm could probably be carried out with a smaller

section of the image, but the larger FOV makes the algorithm more robust to errors

from moving objects in the scene.

The orientation estimates obtained over the experiment are shown in Fig. 6.44.

They were made by accumulating the platform angle change estimates over time. The

fused orientation estimate is closely aligned with the orientation estimate from the

image alone. This is a result of the much smaller estimation error from the images.

The estimated path angles and true angles are shown in Tab 6.4.

Adding the angle change estimation from the video greatly improves the platform

orientation estimate over radar alone. The radar observability issues are overcome by

this addition.
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Figure 6.41: Image sums before correlation. The previous image sum is blue. The
current image sum is red.

6.4.2 Filtering

By the end of the experiment, 40 landmarks are mapped. Fig. 6.45 shows the path

of platform and all of the mapped landmarks. A comparison of the SLAM trajectory

with the trajectory from the dead-reckoning parameter estimates is shown in Fig. 6.46.

The reduction in the number of landmarks over the radar only SLAM is due

to the loop closing. Landmarks that were observed during the first pass were

successfully associated with their corresponding measurements in the second pass.

Estimated Actual Error

1st turn 72.59◦ 73.03◦ 0.44◦

2nd turn 47.29◦ 46.43◦ 0.86◦

3rd turn 59.5◦ 60.54◦ 1.04◦

Table 6.4: Actual and Estimated Angles for Each Path Turn From Video
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This attests to the accuracy of the platform position and orientation estimation

over the experiment. The same association parameters were used throughout the

entire process.

Table 6.5 shows the ranges between mapped landmarks compared with measure-

ments of those distances taken with a tape measure. Some of the errors are larger

than occurred for the radar only case. Again, the path sections and landmark pairs

referenced in the table are shown in Fig. 6.40. This is likely due to the loop closing

causing adjustments to the entire set of mapped landmarks. The overall error in esti-

mated path lengths is smaller than in the radar only case. The error in the estimate

of the length of the third leg of the path is larger for the fused estimate, however.
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Figure 6.42: Image sums after correlation. The previous image sum is blue. The
current image sum is red.
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Figure 6.43: Image on which angle change is being estimated.

Estimated (m) Actual (m) Error (m)

Section 1 18.47 19.20 0.73

Section 2 21.30 22.86 1.56

Section 3 24.06 25.60 1.54

4-5 4.41 3.73 0.68

4-6 10.75 10.92 0.17

4-7 36.07 36.58 0.51

4-9 45.71 46.63 0.92

5-6 8.12 9.19 1.07

7-8 12.12 12.60 0.48

7-9 23.83 24.25 0.42

Table 6.5: Actual and Estimated Path Lengths and Distances Between Landmarks
from Radar SLAM and Video Angle Measurement Fusion
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Figure 6.44: Platform orientation estimation using angle estimates from video. The
orientation estimates from the radar, image, and filter are colored red, blue, and
black, respectively.

6.5 Radar Video Landmark Fusion SLAM

6.5.1 Landmark Identification and Tracking

As landmarks were obtained from the radar, identification in the images was at-

tempted. Of the 40 landmarks, 9 were identified in the images. Two of the landmarks

were detected on the first pass and tracked again after loop closing. An image of the

identified landmarks is shown in Fig. 6.47. All of the landmarks identified were tri-

hedrals, except for a misidentified landmark. The object that was misidentified was

identified as a trihedral in the image, however, it was not that particular trihedral.

The other 10 trihedrals were not detected because they either did not fall within the

range boundaries that determined which landmarks should be searched for, or were

only visible for a limited number of frames (during turns). A majority of the other

landmarks were light poles. The light poles were painted brown, making them blend
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Figure 6.45: Map and trajectory from radar and video angle fusion SLAM. The
estimated landmark locations are cyan.

in with the environment. Another reason light poles were not identified was the qual-

ity of the radar measurements obtained from them. Fig. 6.48 shows an example of

radar measurements obtained from a light pole and a tree overlaid onto the image

corresponding to those measurements. Compared to the trihedral overlay shown in

Fig. 5.13, the measurements are fewer and more spread out.

6.5.2 Filtering

By the end of the experiment, 40 landmarks are mapped. This is the same number

of landmarks as the radar and video angle change estimate fusion method. The

estimate of the platform orientation over time is shown in Fig. 6.49. The difference

in orientation estimates shown in Fig 6.49 and Fig. 6.44 is shown in Fig. 6.50. The

estimates differ by a maximum of 1.16◦. Once the landmarks were identified in the

video, the subsequent angle of arrival errors tended to be relatively small, reducing
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the effects of the measurements on the platform orientation estimate.

A plot of the trajectories from the radar and video fusion algorithms is shown in

Fig. 6.51. Along the first leg of the triangle (on the bottom right), the trajectories are

aligned. There is a noticeable difference in the lengths of the paths, as the landmark

tracking algorithm estimates the trajectory to be longer. There appears to be more

trajectory correction during turns for the landmark tracking algorithm, although both

algorithms exhibit corrections. After loop closing, the trajectory for the landmark

tracking algorithm appears to align better with the original path estimate. Both

algorithms appear to be on track to diverge from the original path, however.

Part of the reason for the divergence is that the map changes over time, espe-

cially before the loop closing. Two factors can contribute to this. One is that until

correlations are built between landmarks, they are able to move with respect to each
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Figure 6.46: The trajectories from the radar dead-reckoning and the radar with video
angle fusion SLAM. The dead-reckoning and radar video fusion SLAM trajectories
are red and black, respectively.
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Figure 6.47: Map of the landmarks tracked using the radar and video. The landmarks
identified in the video are cyan.

Figure 6.48: Radar measurements corresponding to the light pole and tree overlaid
on their corresponding image.
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Figure 6.49: Orientation estimates from radar dead-reckoning (red), video (blue), and
video landmark tracking fused result (black).

other. Every time a landmark is observed, some correlation with other landmarks

is built. Stronger correlations, however, are built between two landmarks when they

are observed at the same time. As new landmarks are added to the filter and old

ones cease to be observed, the older landmarks tend to drift a little. This can be a

drawback of having so few landmarks. Only a few are observed at any given time,

preventing a strong scene “shape” from being built initially. Adding in the video mea-

surements helps strengthen the correlations between landmarks, making a stronger

scene “shape” and preventing some of the landmark drift.

The other factor is that the location of the original path was changed due to a shift

between the map frame of reference and the world frame of reference. This was due

to “spurious” information entering the filter. In the SLAM problem, the observability

matrix should always be null. For this particular model, the rank of the null space

should have been 3. The null space for this model corresponds to a translation and
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Figure 6.50: The difference in orientation estimates between the radar and video
fusion algorithms.

rotation of the map with respect to world coordinates. Because the trajectories were

so close, and considering the possible landmark drift, it can be assumed that a small

amount of “spurious” information was introduced.

Table 6.6 shows the ranges between mapped landmarks compared with measure-

ments of those distances taken with a laser range finder. Overall, the errors are

smaller than in the previous cases. The overall error in estimated path lengths is

smaller than in the radar only case. The error in the estimate of the length of the

third leg of the path is larger for the fused estimate, however.

A comparison of all of the path length estimates is shown in Table 6.7. The inter-

landmark distance estimates are compared in Table 6.8. Overall, the tables show that

the first fusion method performs better than the radar SLAM alone, while the second

fusion method performs better than the first fusion method. Note that only the first

three sets of inter-landmark distances are compared for the radar SLAM method. The
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Figure 6.51: The trajectories from the radar video fusion without landmark tracking
(red) and the radar video fusion with landmark tracking (black).

Estimated (m) Actual (m) Error (m)

Section 1 18.73 19.20 0.97

Section 2 21.18 22.86 1.68

Section 3 24.45 25.60 1.15

4-5 4.12 3.73 0.39

4-6 10.66 10.92 0.26

4-7 36.20 36.58 0.38

4-9 45.94 46.63 0.69

5-6 8.33 9.19 0.86

7-8 12.14 12.60 0.46

7-9 24.19 24.25 0.36

Table 6.6: Actual and Estimated Path Lengths and Distances Between Landmarks
from Radar SLAM and Video Fusion
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radar SLAM underestimated the turns, making correct associations between mapped

landmarks and their true reflectors in the scene impossible. In order to make a fair

comparison, reflectors that were observable after the second turn were not used in

the first total error computation. The second total error sum is for comparing the

two fusion methods using all of the measured landmarks.
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7 Conclusion

7.1 Summary

There has been a push recently to develop technology to enable the use of UAVs

in GPS-denied environments. As UAVs become smaller, there is a need to reduce

the number and sizes of sensor systems on board. A video camera on a UAV can

serve multiple purposes. It can return imagery for processing by human users. The

highly accurate bearing information provided by video makes it a useful tool to be

incorporated into a navigation and tracking system. Radars can provide information

about the types of objects in a scene and can operate in adverse weather conditions.

The range and velocity measurements provided by the radar make it a good tool for

navigation.

In this work, FMCW radar and color video were fused to perform SLAM in an

outdoor environment. A radar SLAM solution provided the basis for the fusion.

Correlations between radar returns were used to estimate dead-reckoning parame-

ters to obtain an estimate of the platform location. Radar reflectors were detected

and mapped, further improving the platform location estimates. As images were re-

ceived from the video camera, changes in platform orientation were estimated, further

improving the platform location estimates. The expected locations of radar measure-

ments, whose uncertainty was modeled as Gaussian, were projected onto the images

and used to estimate the location of the radar reflector in the image. The colors of the

most likely reflector were saved and used to detect the reflector in subsequent images.

The azimuth angles obtained from the image detections were used to improve the

estimates of the landmarks in the SLAM map.

7.2 Conclusions

In performing SLAM with a phase-comparison monopulse FMCW radar, there are

a few challenges that must be overcome. One of the challenges considered in this
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work was a way to estimate the motion of the platform independent of the map. The

other challenge was in generating as many detections as possible on stable landmarks

while limiting the number of detections on landmarks that would be more sparsely

observable.

For the first challenge, platform velocity and orientation change estimates were

made based on the returned signal waveforms in order to perform dead-reckoning

estimation. Correlating received pulse waveforms to estimate the velocity of the

platform can have a tendency to underestimate the true velocity. The cosine effect

induced by the angle between the velocity direction and the direction to reflectors

reduces the estimated velocity. The phase-comparison monopulse radar provided an

AOA estimate for each magnitude response bin. Using this information, the velocity

estimates were improved. Differencing the AOA waveforms from one pulse to the next

provided an estimate of the change in orientation. The estimates provided by this

method generally tracked with the radar change in orientation, but were not always

sufficient.

A common method of detecting reflectors in radar signals is CFAR. This method

compares a cell in the magnitude response with neighboring cells to determine if it is

likely to originate from a reflector. The AOA estimates provided by phase-comparison

monopulse radar also contain information about the existence of a reflector in a cell.

Assuming that strong reflectors are represented in a group of neighboring cells, ob-

taining a similar AOA across a group of cells can signify the existence of a reflector.

Further, this smoothness of AOA response should persist over time. Combining esti-

mates from these methods improved the number and quality of results. The CFAR

threshold was raised, so that detections could be made that otherwise would not.The

AOA constraint ensured that the measurements were stable on the map, keeping the

map consistent. Keeping the smoothness constraint also enabled associations between

measurements and landmarks to be made in the detection process, with little extra
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computation, reducing the computations later for associating unmatched measure-

ments with landmarks.

When fusing radar and video for SLAM, it is a challenge to combine complemen-

tary information from both sensors in an efficient way. Using radar SLAM as the

foundation, the need for video processing can be reduced. It was shown that adding

orientation change estimates from the video improved both the trajectory and the

map over radar SLAM alone, enabling loop closure.

Segmenting radar reflectors in a scene is a difficult task. In non-roadway scenarios,

there can be no assumption about the shapes of the reflectors. The method provided

in this work was able to detect reflectors placed in a scene based on estimating the

likely colors of the reflectors. By extracting the colors of the landmarks, they could

be tracked in subsequent frames without the need to account for changes in landmark

size or shape in the images as the viewing location and angle changed. The increased

bearing accuracy improved both the map and the platform location estimates.

7.3 Contributions

The contributions provided in this work are:

• A solution was provided for fusing FMCW radar and video information to per-

form SLAM.

• A method of extracting dead-reckoning variable estimates from FMCW radar

was provided.

• A method of improving detections in FMCW radar signals for the purpose of

SLAM was provided.

• A method of identifying reflectors in an image from FMCW radar measurements

was provided.
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7.4 Future Work

The main objective behind this work was to fuse sensors that could be put on an

aerial platform for SLAM. In moving to an aerial platform, some problems need to

be worked on:

• The detection and dead-reckoning algorithms should be tested on a radar that

provides elevation AoA measurements in addition to azimuth AoA measure-

ments. The smoothness constraint applied to the elevation AoA could further

improve detections. It might be possible that the smoothness constraint on the

AoAs is sufficient and CFAR is unnecessary. In addition, the current method

for estimating azimuth AoA does not account for how different elevations can

affect the receiver phase differences. A system with more receivers can better

approximate the AoA in both directions.

The dead-reckoning orientation change estimation is less likely to work in a 6

degree of freedom environment when only azimuth AoA is available. It is likely

that the solution using both sets of measurements will be much more complex,

as the relative changes in AoA between reflectors will become non-linear.

• Adding an IMU to the sensor system would remove the need for radar odometry.

It would add more weight to the platform and require more power, but it could

reduce the processing necessary.

In order to make the system more robust in the real world, some improvements

need to be made:

• A more robust segmentation algorithm is necessary. In order to work in the real

world, the distinct color requirement will have to be relaxed. It is also important

to keep the size and shape constraints relaxed. A foreground segmentation

algorithm such as Kernel Density Estimation (KDE) might be useful. That
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algorithm initializes with a likelihood image similar to the one used in this work.

A caveat in using the algorithm in its current form is that it tends to be inclusive

and can end up segmenting more than the reflector. It is sensitive to the initial

likelihood and can require many iterations to reach a stable segmentation.

• Incorporating moving object tracking into the solution will be an important

step. It can be expected that ideal reflectors in urban areas will be vehicles.

They have large cross-sections and tend to be painted colors that make them

easily distinguishable from their surroundings. It should be expected that they

will also move. The radar detections can provide information about the ve-

locity of moving objects in the scene. This sensor platform should be able to

successfully track moving objects, once they are identified as such.

• Identifying situations where two reflectors are at a similar range from the plat-

form will also need to be accomplished. There is no accounting for such a case

currently. A detection in the radar signal cannot distinguish between one or

multiple reflectors causing a response at a particular frequency bin.



105

References

[1] M. Monod, P. Faure, and R. Rouveure, “Intertwined linear frequency modulated

radar and simulator for outdoor robotics applications,” in IEEE International

Conference on Radar Systems, October 2009, pp. 06–12.

[2] J. Langelaan and S. Rock, “Passive GPS-free navigation for small uavs,” in IEEE

Aerospace Conference. Ieee, March 2005, pp. 1–9.

[3] F. Gérossier, P. Checchin, C. Blanc, R. Chapuis, and L. Trassoudaine,

“Trajectory-oriented EKF-SLAM using the fourier-mellin transform applied to

microwave radar images,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2009. IEEE, October 2009, pp. 4925–4930.

[4] D. Vivet, P. Checchin, and R. Chapuis, “On the fly localization and mapping

using a 360 field-of-view microwave radar sensor.” St Louis, MO: Citeseer,

October 2009, pp. 23–28.

[5] F. Cheein and R. Carelli, “Analysis of different feature selection criteria based

on a covariance convergence perspective for a SLAM algorithm,” Sensors (Basel,

Switzerland), vol. 11, no. 1, p. 62, 2011.

[6] C. Yang, R. Duraiswami, N. Gumerov, and L. Davis, “Improved fast gauss trans-

form and efficient kernel density estimation,” in Proceedings of IEEE Interna-

tional Conference on Computer Vision. College Park, MD: Ieee, October 2003,

pp. 664–671.

[7] M. I. Skolnik, Radar handbook. New York: McGraw-Hill Professional, 1990.

[8] R. Rouveure, P. Faure, P. Checchin, and M. Monod, “Mobile robot localiza-

tion and mapping in extensive outdoor environment based on radar sensor-first

results,” Proc. of PSIP 2007, Feb 2007.



106

[9] F. Ramos, J. Nieto, and H. Durrant-Whyte, “Recognising and modelling land-

marks to close loops in outdoor SLAM,” in IEEE International Conference on

Robotics and Automation. IEEE, April 2007, pp. 2036–2041.

[10] J. Kim and S. Sukkarieh, “Real-time implementation of airborne inertial-SLAM,”

Robotics and Autonomous Systems, vol. 55, no. 1, pp. 62–71, January 2007.
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