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ABSTRACT 

Monahan, Jennifer Lynn. M.S., Department of Chemistry, Wright State University, 2010 

Micro-Raman spectroscopy in diagnosing skeletal pathology in chick embryo tibiotarsi 

exposed to platinum group metals. 

 

 

 

Platinum group metals (PGMs) have been shown to accumulate in various tissues of 

organisms but their toxicity is not well-known.  Raman spectroscopy is a powerful 

analytical technique that enables direct and non-destructive chemical characterization of 

bone tissues.  PGMs were injected into chick embryos in the following concentrations: 

0.1, 1.0, 5.0, or 10.0 ppm solutions of Pt
 (IV)

, Rh
 (III)

, Pd
 (II)

 or PGMs mixtures (0.1 ppm or 

1.0 ppm of each metal).  The micro-Raman maps recorded on the paraffin embedded 

tibiotarsus cross-sections showed significant changes in the chemical composition and 

structure of the bone tissue as a result of PGMs exposure of 1 ppm (i.e., anomalous 

calcium inclusions impeding circulation in cartilage matrix).  The following bone 

properties were analyzed and quantified via micro-Raman spectroscopy: a) age of 

mineral crystals and carbonate content, b) degree of mineralization of the collagen matrix 

and possible losses in the organic/inorganic bone components and c) mineral crystallinity.  

X-Ray fluorescence showed significant changes in the distribution and quantity of 

calcium and phosphorus due to the PGM treatments.  Flame atomic absorption 

spectroscopy also revealed changes in the amount of calcium found in the tibiotarsi.  All 

three analytical techniques correlated well with each other showing the calcium 

inclusions negatively affecting the bone structure of the chick embryo tibiotarsi. 
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1. INTRODUCTION 

I. BACKGROUND INFORMATION ON PLATINUM GROUP METALS 

The platinum group metals (PGMs) class includes the relatively light triad of ruthenium 

(Ru), rhodium (Rh), and palladium (Pd), and the heavier elements osmium (Os), iridium (Ir), and 

platinum (Pt).  Metallic Os and Ir are not considered biologically important.
1
  These metals are 

found together in sparsely distributed mineral deposits or as by-products when refining other 

metals. 

The development and expansion of vehicles has raised environmental concerns 

over the past decade.  Carbon monoxide, hydrocarbon and nitrogen monoxide emissions 

from vehicles have been regulated since the 1970s by the use of catalytic converters.
2
  

Catalytic converters use PGMs to oxidize and reduce these emissions.
3
  Pt and Rh reduce 

nitrous oxides to N2 and O2, while Pt and Pd oxidize carbon monixide and hydrocarbons 

to carbon dioxide.
3
  While these metals do aid in reducing the greenhouse gas emissions, 

they are now at an increased concentration in the environment.
2
 

These PGMs are emitted as particulate matter that is considered to be nontoxic.
3
  

However, PGMs can form complex salts with other compounds (i.e., halogens, cyanides, 

sulfur, hydroxides) and become biologically active.
2
  Therefore, when PGMs are emitted 

from vehicles traveling along the road, the particulate matter is deposited on the 

vegetation.
3
  If these emissions were to form complex salts, then they can be easily 

solubilized by rain water and released into various ecosystems.
3
  A recent study of 

automobile emission dust containing Pt, Pd, and Rh particulates found the water soluble 
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fraction of Pd and Rh to be in the 7.9-13.2 % range, while the water soluble fraction of Pt 

was below 10%.  A higher mobility and bioaccumulation are expected for metal elements 

that are oxidized to cations in the environment.  The higher water soluble fraction for Pd 

and Rh suggests that those elements could be more available and thus more toxic than Pt 

to the environment and, subsequently, to human health.
4
  In fact, Pt concentrations in a 

selection of foodstuffs obtained from Australia ranged from 0.13 to 8.1 µg/kg fresh 

weight.
5
  Gagnon et al. reported that plant samples collected along roads with only 

moderate traffic can accumulate high concentrations of PGMs (e.g., an average 

concentration of 14.6 µg of Pt and 0.75 µg of Rh per g of dry weight tissue).
2,3 

 PGMs are introduced into the environment by other means as well, such as from 

industrial and medical activities.  PGMs are used as catalysts in various industrial 

processes (i.e., ammonia oxidation, reforming crude oil, hydrogenation, etc.).  The wastes 

resulting from these uses enter the ecosystem contain the PGMs in both soluble and 

insoluble forms.
6
  Hospitals and pharmaceutical companies are currently using Pt as an 

ingredient in various anti-tumor and anti-cancer drugs.  A series of investigations 

initiated by Rosenberg et al. to study biological responses to transition metal complexes 

found that cisplatinum, cis-[Pt(NH3)2Cl2], has antitumor activity.
7
  Additionally, certain 

Pt complexes are effective antitumor agents by producing severe and persistent inhibition 

of DNA synthesis, as well as the slight inhibition of RNA and protein synthesis.
1 

Once PGMs enter the ecosystems, they have been shown to bioaccumulate in 

various tissues, both plant and animal.  This provides a potential for adverse effects on 

various living organisms, including humans.  In general, the environmental impact, 

toxicity, and bioavailability of these heavy metals in living organisms remain unclear.
6
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PGM accumulation through dietary intake in animal models such as earthworms
8
 

and rats
9
 has also been documented.  The accumulation of PGMs resulted in pathological 

and genotoxic responses in all models.  The consequential exposure to PGMs in animals 

showed changes in adrenal glands, glomeruli of the kidney, and white pulp of the spleen, 

while plants exhibited growth inhibition.  Humans may be exposed to PGMs by ingestion 

through dietary intake or by inhalation of the particulate matter.  However, there have 

only been a few studies to assess this threat to human health.
10

  These few studies showed 

exposures to PGM emissions cause disease-like symptoms including asthma, 

miscarriages, allergic reactions, nausea, loss of hair, and mucous membrane irritations.
3,6

  

Additionally, Pt was found to be the most toxic PGM toward organisms due to its high 

affinity to bind to proteins.  The World Health Organization showed in 2002 that PGM 

compounds might cause severe respiratory conjunctivitis.
11

 

EXPERIMENTAL DESCRIPTION 

 The proposed experiment will inject developing White Leghorn strain chick 

embryos with Pt, Rh, Pd, and a mixture of the three metals as a salt solution.  Injections 

will be made on the 7
th

 and 14
th

 days of incubation and the embryos will be sacrificed on 

the 20
th

 day.  Various organs will be harvested and in particular, the tibiotarus will be 

fixed, embedded, sliced, and placed on a microscope slide.  The tibiotarsus was chosed 

for examination via micro-Raman spectroscopy due to the ease of accessibility of this 

bone for harvesting.  Micro-Raman spectroscopy was utilized in order to study the 

morphology and chemical content within the tibiotarsus cross-section.  Further studies 

using X-Ray fluorescence microscopy and flame atomic absorption spectroscopy were 

used to confirm the information gained from the micro-Raman analysis. 
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PRELIMINARY RESULTS 

Our preliminary experiments exposed developing chick embryos to a single-

element injection of 5.0 ppm Rh.  This exposure revealed the formation of calcium 

deposits in the brain tissues of developing chick embryos (Figure 1.1).  The mechanism 

for this response is unknown.  In addition, all embryos surviving the sub lethal dose of 

5.0 ppm Rh experienced incomplete development of rib cages and/or skulls.  Therefore, 

this project will focus on the skeletal pathology of tibiotarsi, a model for bone 

development, in developing chick embryos exposed to PGMs by micro-Raman 

spectroscopy and other complimentary techniques. 

 

Figure 1.1: Calcium deposits (black spots) observed in the brain tissue of developing 

chick embryos treated with 5.0 ppm of Rh.  The slide was stained using the Von Kossa 

protocol. 

 

HYPOTHESIS 

It is hypothesized that PGMs may penetrate the cartilage tissue in developing chick 

embryos and interfere with calcium metabolism in this tissue. 
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SCIENTIFIC AIMS 

1. To show that abnormal calcium inclusions and/or calcium redistribution occur 

within the cartilage tissue cross-sections when exposed to PGMs above a specific 

threshold level. 

2. To show that PGM exposure levels correlate negatively with calcium content and 

morphology in the tibiotarsi of developing chick embryos. 

II. CHICK EMBRYO CARTILAGE COMPOSITION AND MORPHOLOGY 

 CARTILAGE  

The avian model resembles other amniotes, including mammals, in some characteristics 

of skeletal development.
 12

  The embryonal skeleton is initially formed as cartilage, which 

ultimately becomes ossified.
13

  The cartilage is an essential first step to development and 

growth of long bones.
13

  However, the cartilage growth plates disappear when postnatal 

growth is over.  Cartilage has no capillary blood supply (avascular) of its own so its cells 

must obtain oxygen and nutrients by long-range diffusion.  The cartilaginous matrix is a 

resilient gel-like structure with specific macromolecular organization.  Tissue fluids 

partially trap and bind matrix constituents, and account for 65% to 80% of the wet weight 

of the matrix.  The major volume of tissue fluid in the matrix facilitates long-range 

diffusion of oxygen and nutrients to chondrocytes from capillaries that lie outside the 

cartilage.  The long-range diffusion process is essential in gas exchange and waste 

removal.  Metabolic byproducts of the cartilage tissue follow a reverse diffusion path to 

these outside capillaries.  Dependence on this long diffusion pathway is hazardous, 

especially if matrix proteoglycans become displaced by insoluble calcium salt 

inclusions.
13 
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The embryonic cartilage cells differentiating at the sites of developing cartilages 

are called chondroblasts.  These cells are responsible for secreting the macromolecular 

constituents of the cartilage matrix.  Chondroblasts at the periphery of these sites form a 

fibrous covering known as perichondrium.  The outer perichondric cells differentiate into 

fibroblasts, which produce collagen.  This fibrous outer layer of the perichondrium 

remains in adult life with a few exceptions.  For example, articular cartilages are devoid 

of perichondrium.  The inner part of the perichondric covering is responsible for 

chondrogenesis, i.e., the cartilage development.  The chondrogenic cover continuously 

creates new chondroblasts that built up the collagen matrix.  Chondroblasts buried in the 

cartilage matrix are described as chondrocytes.  Chondrocytes are enclosed in tiny matrix 

compartments known as lacunae.  Each living chondrocyte virtually fills its lacuna.  

Chondrocytes are metabolically very active and essential in the synthesis of numerous 

matrix components.
8
  Mature chondrocytes are large secretary cells with a spherical 

nucleus and a prominent nucleolus.  Initially their cytoplasm is basophilic, but later it 

contains numerous fat droplets and appears vacuolated.
13 

The cartilage tissue may grow simultaneously in two different ways: interstitial 

and appositional.  Interstitial growth is characteristic to the cartilage alone and cannot 

occur in bone.  According to this growth mechanism, the cartilage expands because of the 

increase in the population of proliferative chondrocytes and accompanying 

supplementary matrix production.  Appositional growth may be observed in both 

cartilages and bones.  According to this growth mechanism, the cartilage expands due to 

the increase in the number of chondroblasts from the perichondrium and the 
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incorporation of new supplementary matrix constituents that they produce at the outer 

layer of the cartilage.
13 

Collagen accounts for 40% to 70% of the dry weight of the cartilage matrix and is 

constituted by abundant type I and type II collagen fibers.  Conspicuous parallel bundles 

of type I collagen fibers form the fibrocartilage, which resist stretching under extreme 

tension.  Fibrocartilage is avascular.
8
  Fine type II collagen fibers together with 

acidophilic elastic fibers make up the elastic cartilage, which is adapted to withstand 

repetitive bending.
13 

BONE 

Cartilage that undergoes endochondral ossification (i.e., an ossification process 

characteristic to long bones) is replaced by bone.  In embryonal development, the 

tibiotarus is completely formed by day five and ossification occurs shortly thereafter.  

The ossification process is completed eleven weeks after hatching.  Similar to formation 

of the limb skeleton, the skull begins to ossify by day nine of incubation.  By the 

forteenth day of incubation, most of the skull bones have undergone ossification.  During 

the later stages of development, the embryo obtains its calcium from the egg shell.
13 

 Four bone cell types: osteogenic stem cells (osteoprogenitors), bone matrix 

producers (osteoblasts), bone matrix maintaining cells (osteocytes), and bone matrix-

resorbing cells (osteoclasts) are present in the chick embryo.  Osteoprogenitor cells, 

which are stimulated to proliferate, create osteoblasts in regions that are well 

vascularized.  Osteoblasts are specialized nondiving cells that synthesize and secrete the 

organic constituents of the bone matrix.  These cells are also implicated in the process of 

matrix calcification and have an additional role of mediating the bone resorption.  The 
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development of osteocytes represent the final stage of maturation of the bone cell lineage 

and their function is to maintain the bone matrix in good repair.  Osteoclasts are large 

nondividing motile cells that help remodeling the bone by resorbing surplus or inferior 

bone matrix.
13 

Similar to the cartilage tissue, the bone tissue contains living cells embedded in an 

extracellular matrix that is reinforced by collagen fibrilis.  Like chondrocytes, the cells 

embedded in the bone matrix, known as osteocytes, occupy lacunae.  Another similar 

feature is the presence of a fibrous connective tissue covering called periosteum, which is 

the counterpart of perichondrium.
13 

However, in contrast to the cartilage matrix, the bone matrix is heavily calcified 

and is constantly replaced throughout the bone remodeling or turnover process.
 14

  This 

makes the bone harder and less supple than the cartilage.  Bone matrix withstands 

bending, twisting, compression, and stretch.  These mechanical properties provide the 

structural support and mobility of the avian body and offers protection of vital organs.  

Additionally, osteocytes differentiate in regions close to capillaries (i.e., 0.2 mm radius 

of a capillary), while chondrocytes are essentially devoid of blood vessels.  Therefore, a 

clear difference is expected in the way the two types of cells nourish since the high bone 

mineral content severely limits the long-range diffusion through the tissue.
13 

Osteocytes survive in the hostile stone-like bone matrix due to the presence of 

canaliculi and the highly vascularized tissue.  These canals interconnect the lacunae with 

one another and link them to the bone surfaces that are bathed by tissue fluid.  Canaliculi 

bring tissue fluid, oxygen, and nutrients to all osteocytes.  Additionally, the tissue fluid 
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produced by blood capillaries reaches the surrounding osteocyte cells by way of the 

canaliculi.
13 

 Almost 70% of the wet weight of the bone matrix is bone mineral, primarily 

represented by hydroxyapatite.  The insoluble calcium salts make the bone rock-hard. 

  Only 25 % of the bone tissue is water.  More than 90% of the organic content of the 

bone matrix is given by type I collagen together with small amounts of type V collagen 

(i.e., a higher percentage than in the cartilage matrix).  Due to higher abundance of 

collagen fibrils, the bone matrix is highly resistant to tensile stresses.  Other organic 

constituents of the bone matrix are glycosaminoglycans, glycoproteins, osteonectin (i.e., 

a protein that anchors bone mineral to collagen), osteocalcin (i.e., a calcium-binding 

protein), and other matrix proteins that have the capacity to induce bone formation.
13

 

III. CHICK EMBRYO MODEL 

The chick embryo model has been embraced due to its notable history in various 

biological studies (i.e., immunology, genetics, cell biology, embryology, virology, and 

developmental biology).
15,16

  This model has been studied since the time of the ancient 

Egyptians and Aristotle in order to understand the development of the chick embryo.
16

  

By the end of the 19
th

 century, scientists began manipulating the chick embryos in order 

to understand the developmental potential of the cells.
16

  This led to detailed fate maps, 

formal definition of important concepts, and to the general conclusion that development 

depends on the flow of instructive signals between the different cells.
16

  During the mid 

20
th

 century, scientists became more interested in the human, fly, frog, and mouse 

genome due to the discovery of gene expression, and the chick embryo model lost 

momentum.
16

  In the late 20
th

 century, another resurgence of the chick embryo model 
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arose due to many technological advances in stem cells and genomics research.
16

  By 

2005, the chicken genome sequence was complete and became a popular model system.
15

  

The National Institute of Health (NIH) has recently recognized the chick embryo as a 

readily available and well-developed biological model for pharmaceutical and 

toxicological studies.
17

 

The chick embryo model was employed in this study due to the well-established and 

inexpensive experimental methods associated with it in comparison to other animal 

models.
17

  During chick development, the permeability of the blood-brain barrier changes 

during the 21-day gestation cycle.
18

  Figure 1.2 shows Hamburger and Hamilton’s (HH) 

stage 30 and 40
19

 of the developing chick embryo. At stage 30, the segments of the wings 

are clearly seen and bent at the elbow joint.
19

  The legs are bent and the webs between the 

toes are slightly curved.
19

  The mandibular process is beginning to approach the beak but 

the gap is still noticeable.
19

  The neck has also lengthened drastically between the collar 

and the madible.
19

  The beak may also be seen but is not fully developed.
19

  At stage 40, 

the length of the beak is  4.0 mm and the length of the third toe is 12.7 ± 0.5 mm, which 

are important characteristics for the chick to begin hatching.
19

  The formations of scales 

on the inferior and superior surfaces of the legs are also noticeable.  The foot is also 

covered with well-developed papillae.
19

  In this study, embryos were injected with 

various PGM treatment solutions during these stages.  This allowed the chick embryos to 

mature with a new treatment medium in place.  Chick embryos develop rapidly and are 

easily accessible at all stages.
11

  Lastly, the embryos are not considered vertebrate 

animals before hatching.  Therefore, no special animal license is required.
11
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Figure 1.2: Stage 30 and 40 of the developing chick embryo as observed by Hamburger 

and Hamilton.  Reprinted from Viktor Hamburger and Howard Hamilton: A Series of 

Normal Stages in the Development of the Chick Embryo.  Copyright © 2005 John Wiley 

and Sons.  Used by permission of the publisher, John Wiley and Sons 

(www.interscience.wiley.com).
19 

 

IV. RAMAN SPECTROSCOPY 

 Spectroscopy is a very wide topic, which uses electromagnetic radiation to study 

matter.  In particular, Raman spectroscopy is a powerful analytical tool, which uses a 

monochromatic laser to excite vibrations and rotations in molecules.  Therefore, Raman 

spectra provide a molecular fingerprint, in which various molecules will lead to different 

spectral profiles.
20 

The Raman effect is an inelastic scattering process that occurs due to the 

interaction between the analyte molecules and the photons.  By definition, scattering is 

the collision of the photon with the molecule in which energy and momentum are 

transferred between the photon and the molecule.  This scattering process may be elastic 
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(Rayleigh) or inelastic (Stokes and anti-Stokes) according to the change in energy 

experienced by the photons.
20 

 

Figure 1.3: Shows a typical Raman energy diagram.
20 

As seen in Figure 1.3, during the interaction of the molecules with the excitation 

laser light, the potential energy of the molecules is raised to a virtual state (R) above the 

ground electronic state.  Most of the molecules will immediately return to the ground 

state by emitting a photon of the same energy (0) as the incident laser line.  This is 

denoted as the Rayleigh scattering contribution.  However, a very small fraction of the 

incident photons (1 in 10
12

) will experience an inelastic scattering effect, the Raman 

Stokes (Stokes) and anti-Stokes (Anti-Stokes) contributions.  The Stokes portion of the 

Raman spectrum is produced when the molecules return to an excited vibrational/ 

rotational state.  As a result, the scattered photon will have less energy than the incident 

one.  Molecules that are already in an excited state will undergo similar effects in which 

the inelastically scattered photon will have more energy.
20

 

 The Raman effect arises due to the change in polarizability (α) of a molecule as a 

result of the interaction of molecules with the electric field vector (E) of the laser 

radiation (i.e., electromagnetic field), which induces a dipole moment change (µ):  

              (1.1) 
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Therefore, a change in the polarizibility of the molecule must be present during a 

vibration or a rotation in order for the mode to be Raman active.  Thus, the symmetry of 

the molecule determines the activity of vibrational and rotational modes.
20

 

 During vibrations or rotations of a molecule, the polarizability is not constant and 

will change with the rotation or vibration frequency, k, and time, t, according to equation 

(1.2). 

                           (1.2) 

where α0 is the equilibrium polarizability and α is its maximum variation.  The incident 

electric field varies with time according to equation (1.3).
20

 

                       (1.3) 

Therefore, the induced dipole moment of the molecule is given by 

                       
               (1.4) 

        
            

 

 
                                         

The classical explanation for Rayleigh scattering (0), anti-Stokes lines (0 + k), 

and Stokes lines (0 - k) is illustrated by equation (1.4).
20

  This classical treatment 

implies that the intensities of the Stokes and anti-Stokes lines are equal; however, they 

depend on the relative number of molecules (n) in the original states.
20

  Because of this 

dependence, the Boltzmann distribution is used to calculate the intensities (I) of the 

Stokes and anti-Stokes peaks, shown in Equation (1.5); where h is Planck’s constant, k is 

the Boltzmann constant, and T is the temperature.
21
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Infrared (IR) radiation causes an induced dipole change in the molecule.  

Therefore, IR spectroscopy is considered a complementary analytical tool to Raman.  If a 

molecule has a center of symmetry, the mutual exclusion rule is then applied.  This states 

that if one normal mode is Raman active, then it will be forbidden in the IR and the 

opposite condition applies as well.  The symmetry group may be used to determine if a 

normal mode vibration will be Raman or IR active.
20 

 The normal modes whose 

symmetry is the same as the function x, y, or z, will be IR active, while the Raman active 

modes will have x
2
, y

2
, or z

2
 function.

20 

The selection rules for the Raman active vibrational modes are  = ±1 and J = 

0, ±2 for linear molecules or J = 0, ±2, K = 0 and J = 0, ±2, K ≠ 0 for symmetric 

top molecules, where K is the component of the angular momentum J.  The rotational (R) 

Raman spectrum give anti-Stokes (J = 2) frequencies for linear molecules according to 

equation (1.6)  

                      ,     (1.6) 

where J’ is the final quantum state and J” is the initial state.  While substituting       

  , the equation becomes 

                     (1.7)  

These lines will appear at higher frequencies than the exciting laser frequency and 

therefore are denoted as the S branch.  Hence, the intensities of these lines are directly 

determined by the populations of the initial state.  The Stokes (J = -2) frequencies are 

given by Equation (1.8). 

                      (1.8) 
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These lines are denoted as the O branch lines because they appear at lower frequencies 

than the laser excitation line.  The Q branch is then given by J = 0.
20

 

The interpretation of Raman spectrum is based upon the law of conservation of 

energy as illustrated by Equation (1.9). 

                       (1.9) 

This states that the frequency (0) of the incident photon is scattered by a molecule in a 

quantum state i of energy Ei.  Thus, the frequency of the outgoing photon (f) will end in 

a quantum state f of energy Ef.  In the Raman effect, the energy of the incident photon 

does not need to coincide with a quantized energy difference in the molecule.  Therefore, 

any laser light frequency (e.g., visible, ultra violet) may be utilized.
21 

RAMAN DATA 

Micro-Raman spectroscopy is a powerful, laser-based analytical technique that 

enables direct and non-destructive chemical characterization of molecules in a sample.  

Therefore, a Raman spectrum obtained from cells and tissues is an intrinsic molecular 

fingerprint of the sample, revealing detailed information about their chemical 

composition.  Chemical composition of a location of interest may be investigated with 

micro-level spatial resolution by coupling the Raman spectrometer with a confocal 

microscope.  Assessment of bone chemical composition is complicated because of tissue 

heterogeneity.  In contrast with other well-established techniques for bone analysis such 

as X-Ray Diffraction (XRD) and Dual Energy X-Ray Absorptiometry (DEXA), micro-

Raman spectroscopy may address the heterogeneity issue. 

Raman peak position, intensity, full width at half maximum (FWHM), and 

integrated peak area are known to provide information on the cartilage/bone chemical 
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composition and structure.  Micro-Raman maps may be used to determine, analyze, and 

quantify the following cartilage/bone properties: 

a) age of mineral crystals and carbonate content in cartilage/bone 

As mentioned above, cartilage/bone tissue is a composite of an organic matrix and an 

inorganic mineralized component.  The mineral fraction of cartilage/bone is carbonated 

calcium phosphate [Ca5(PO4, CO3(OH)], commonly described as hydroxyapatite (HAP).  

Ions such as fluoride, chloride, and magnesium may also be incorporated into the crystal 

lattice of the mineralized matrix, depending on the chemical environment and tissue 

history.  For example, carbonated ions (CO3
2-

) substitute for two anionic sites in the HAP 

structure: monovalent OH
-
 sites and trivalent phosphate PO4

3-
.  They are known as type-B 

(ν1(CO3
2-

) mode at 1070 cm
-1

) and type-A (ν1(CO3
2-

) mode at 1103 cm
-1

) substitutions.  

In contrast to cartilage, mature bone generally contains more carbonate, and the type-B 

carbonate represents the major species.
22,23

  The ratio of the amount of type-B carbonate 

and the amount of phosphate will allow estimating the age of mineral crystals and the 

carbonate content in the samples (by calculating the intensities ratio and the integrated 

areas ratio: I(CO3
2-

 band at 1070 cm
-1

) / I(PO4
3-

band at 960 cm
-1

).
23,24 

b) inorganic to organic cartilage/bone components ratio (i.e., degree of 

mineralization of the collagen matrix) and possible losses in any of the two 

cartilage/bone components. 

The inorganic component (i.e., the mineral) is usually represented by the strong PO4
3-

 

vibrational modes in the 920-980 cm
-1

 spectral range, while the organic component of the 

bone (i.e., the collagen matrix) corresponds to the amide I vibrational modes in the 1600-

1700 cm
-1

 region.
24

  In contrast, cartilage tissue contains both type I and type II (1200-
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1300 cm
-1

 and 1600-1700 cm
-1

) collagen fibers.  The integrated area of the peaks 

corresponding to the inorganic components may be compared with the ones 

corresponding to the organic components and the ones determined for the control samples 

to estimate the mineral to matrix ratio. 

Possible changes in the spectral profile of the vibrational modes of  

 the PO4
3-

 group: ν1(960 cm
-1
), ν2(430-450 cm

-1
), ν3(1030-1040 cm

-1
), ν4(580-590 

cm
-1

)
24,25

 

 the CO3
2-

 group : ν1(1070 cm
-1

)
24,25,26

 

 the collagen amide I: 1600-1700 cm
-1

 
24,25

, 1400-1470 cm
-1

 
24,25,26

 

 the collagen CH groups: stretching modes at 2800-3100 cm
-1

 
24,25

 

 the collagen amide III: 1200-1300 cm
-1

 
24,25

 

may also be examined to determine if there are any losses in the inorganic and organic 

components of cartilage/bone when compared to the control. The Raman spectrum of the 

embedding material may be recorded separately and used as a reference to ensure the 

correct assignment of the observed bands.
26,27 

c) mineral crystallinity 

The bandwidth of the ν1(PO4
3-

) symmetric stretching mode at about 960 cm
-1

 may be 

correlated with crystal size.  The FWHM of this peak was observed to steadily increase 

with decreasing crystal size and smaller crystallinity, i.e. less ordered crystal.
28,29

  Akkus 

et al. showed that the mineral crystallinity of normal rat cortical bone could be 

approximated as ≈ 1/bandwidth of the 960 cm
-1

 peak.
29
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V. X-RAY FLUORESCENCE  MICROSCOPY 

X-ray fluorescence spectroscopy is a non-destructive, analytical technique that 

allows for mapping of the elemental composition of a sample.
30

  High-energy X-rays 

bombard the sample causing the removal of an electron (photoelectric effect) located in 

the inner orbitals of the atom.  The atom becomes unstable upon the loss of this inner 

electron.  As a result, an electron from a higher energy level fills the empty orbital.  Due 

to the energy difference between the two orbitals, a photon is released causing an X-ray 

fluorescence emission characteristic to the specific atom.  Morphological features of the 

sample may be simultaneously identified by attaching an optical microscope to the X-ray 

fluorescence system.
30 

VI. FLAME ATOMIC ABSORPTION SPECTROSCOPY 

The flame atomic absorption spectroscopy technique (Figure 1.4) is credited to Sir 

Alan Walsh in 1955.
31

  This technique makes use of atomic absorption in order to 

determine the concentration of a specific metal in a sample.  A chemically digested liquid 

sample introduced into the nebulizer to be first aerosolized and then atomized (i.e., free, 

unexcited ground state atoms) during the combustion processes sustained by the 

acetylene-air gas mixture.  The electrons absorb the energy emitted from a hollow 

cathode lamp (i.e., light of a given wavelength), in which the radiation is specific to the 

electronic transition of the metal; therefore, allowing for metal selectivity.  The Beer-

Lambert Law is applied in order to determine the metal concentration due to the 

reduction in light intensity.  A photonmultiplier detects the amount of light transmitted 

through the sample. 
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As in most analytical instrumentation, the flame atomic absorption spectrometer 

must be calibrated and set to specific conditions for the element of interest.  A calibration 

curve is prepared by analyzing known concentrations of the metal analyte and plotting 

their absorption values against the known concentration.  The unknown samples 

concentrations are then extrapolated from the resultant calibration curve. 

 
Figure 1.4:  Flame atomic absorption spectrometer owned by the Department of 

Chemistry at Wright State University.  (photo courtesy of Garrett VanNess) 
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2. EXPERIMENTAL 

I. WHITE LEGHORN STRAIN CHICK EMBRYO MODEL 

Six-day old fertile-specific and pathogen free (SPAFAS) white leghorn strain 

chick embryos were purchased from Charles River Laboratories International, Inc.  Upon 

arrival, the air sac poles of the eggs were disinfected by wiping the egg surfaces with 

70% isopropanol.  The location of the air sac was determined by candling using an 

external light source.  Holes (1 mm
2
) were drilled in the external shell only to leave the 

internal membranes intact.  Tape sealed the holes to prevent air and contaminants from 

entering. 

The chick embryos were incubated for 20 days at 38 ± 1C with the relative 

humidity levels at 50-55%.  A drip pan filled with sterile water controlled the humidity 

level.  The incubator was equipped with an automatic turner , which changed the embryo 

position every 4 hours to ensure an even exposure to temperature and humidity.  The 

developmental phase and vasculature development of the embryos were evaluated by 

candling, every 48 hours.  Chick embryos without observed developing capillaries were 

removed from the incubator and were not used for any further evaluation. 

IN OVA INJECTIONS 

Injection solutions were prepared as solutions with single metal concentrations (Pt
 

(IV)
 in the form of H2[PtCl6]•6H2O, Rh

 (III) 
in the form of RhCl3, and Pd

 (II)
 in the form of 

PdCl2 salt solutions (SPEX-CertiPrep) or as PGM mixture (an equal portion of all three 
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PGMs).  Solutions for the single metal injections (Pt
 (IV)

, Rh
 (III)

,
 
 Pd

 (II)
) were prepared at 

the following concentrations: 0.1, 1.0, 5.0, or 10.0 ppm and were diluted with phosphate 

buffer saline (PBS) solution.  The PGM mixture injection solutions (0.1 ppm and 1.0 

ppm) were prepared by combining each metal at a concentration of 0.1 and 1.0 ppm and 

diluting with PBS solution.  All solutions were adjusted to a pH of 7.2 with 0.1 N HCl 

and 0.1 N NaOH. The PGM treatment solutions were filtered through a 0.2 m filter 

(Whatman GD/X) to remove particulate matter and bacteria. 

  The injection solutions were administered on the 7
th

 and 14
th

 day of gestation 

period according to the developmental stages determined by the HH guide.
19

  The doses 

(1 mL) were injected with a hypodermic needle through the previously prepared 1 mm
2 

 

hole into the air sac.  The experimental design included ten replicates for each treatment 

including two control sets (i.e., no injection and PBS solution treatment at the same pH 

value).   

SAMPLE COLLECTION 

The National Institute of Health Guidelines for the Care and Use of Laboratory 

Animals were followed to harvest the chick embryos.  The embryos were sacrificed on 

the 20
th

 day of incubation by decapitation upon egg removal from incubator.  Tibiotarsus 

samples were immediately collected and segregated for different analysis:  histology, 

flame atomic absorption spectroscopy, X-Ray fluorescence spectroscopy, and micro-

Raman spectroscopy. 

PATHOLOGICAL ANALYSIS 

 The gross pathology and microscopic pathology observations regarding 

abnormalities and deformities of harvested chick embryos were documented.  Gross 
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pathology of each chick embryo before dissection was recorded using an Olympus digital 

camera.  Microscopic pathology was conducted on 4 µm thick cross-sections of the bone 

using a light microscope and images were recorded using a Magnafire SP Digital 

Camera.  The bone slide preparation for histological studies is described below. 

MICROSCOPE SLIDE PREPARATION 

Micro-Raman spectroscopy slide preparation:  The soft tissues were cleaned 

from the tibiotarsi, rinsed in PBS, and immediately placed in 10% phosphate buffered 

formalin.  The phosphate buffered formalin fixed the tissue and hindered post mortem 

conditions, such as petrification and autolysis of cells.  The tissue dehydration used a 

graded series of alcohols:  50% ethanol for 60 minutes, 70% ethanol for 60 minutes, 95% 

ethanol for 30-60 minutes, absolute ethanol for 30-60 minutes, and absolute ethanol for 

30-60 minutes.  Prior to embedding the tissue, a clearing agent removed any remaining 

alcohol (two times for 30-60 minutes each) since the alcohol used for the dehydration and 

the paraffin used for the embedding do not mixture.  A Tissue Tek infiltrator and 

dispenser was used to embed the tissue in paraffin wax.  Next, the embedded tissue was 

placed in an oven at 60C for 60 minutes to permit the wax to fill the empty spaces 

within tissue.  The infiltrated tissue specimen was positioned in the center and towards 

the bottom of the mold to maintain the same position of proximal and distal epiphysis in a 

labeled Peel-Away mold filled with melted paraffin.  After the paraffin mold cooled, a 

Spencer microtome was used to cut the fixed and embedded bone into 4 m slices.  The 

paraffin tissue, sectioned in ribbons, was carefully emerged in a water bath at 40-44C.  

A thin layer of albumen was spread over a microscope slide and the shiny side of the 

paraffin embedded tissue was placed on the microscope slide.  The slides supporting the 



23 

specimens were heated overnight at approximately 50C on a tissue warmer to facilitate 

the coagulation of albumen.  The prepared slides were stored in a clean, dry place for the 

micro-Raman measurements.
32 

Histological slide preparation 

The previously-described micro-Raman spectroscopy slide preparation was  

followed with an additional hemotoxylin staining procedure.  After the tissues were 

embedded, the paraffin wax was removed by using a hydration series of ethanol (95%, 

70%, and 50%) washes followed by a distilled water rinse.  The hemotoxylin stain was 

used in the last step of the hydration series.  The water was removed by using a 

dehydration series process employing ethanol (95%), eosin stain, ethanol (70%), ethanol 

(50%), and tap water until a blue color persisted.  Each of the above ethanol rinses were 

approximately 3 minutes.  The removal of water is necessary in order for the cover slip to 

adhere to the tissue.  The stained slides were then moistened with a clearing agent and 

mounting medium was placed directly on the tissue.  Slowly with gentle pressure, the 

cover slip was lowered to the slide to avoid air bubbles.  The prepared slides were placed 

on a slide warmer in an upright position to dry.  The dried slides were stored for 

histological analysis.
32

 

CHANGES IN CHONDROCYTE LENGTH 

 The bone slices were analyzed for chondrocytes length using Magnafire SP 

Digital Camera software.  The largest diameter across the chondrocyte was measured and 

recorded in triplicate for 50 randomly chosen cells in each slide. 
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STATISTICAL ANALYSIS 

One-Way Analysis of Variance (ANOVA) SPSS (Statistical Package for the 

Social Sciences) statistical package was used to test for relationships between 

concentration of metals in PGM treatments and tibiotarsus chondrocyte size.  

Significance level was determined at p ≤ 0.05 probability by Student-Newman-Keuls 

multiple comparison test. 

II. RAMAN INSTRUMENTATION
33

 

A LabRAM HR800 (Horiba Jobin Yvon, Inc.) instrument coupled with a high 

resolution confocal optical microscope (Olympus, high stability BX41) was used for the 

acquisition of Raman spectra on the bone samples. 

Figure 2.1 shows the Raman instrument with the cover removed.  An internal He-

Ne laser (Horiba Jobin Yvon, Inc.) and the corresponding optical entrance are located on 

the backside of the instrument.  The He-Ne laser is polarized vertically (500:1) and has a 

power output of 22.5 mW for the 632.817 nm wavelength.  The design of the instrument 

also allows for the use of external lasers, which would enter the optical cavity through a 

second laser entrance.  The laser beam is directed into the iris by two mirrors denoted 

here by M1 and M2, which may also be used for the laser alignment.  After passing 

through the iris, the beam enters an interferential pass-band filter that removes the plasma 

lines of the laser and leaves only the 633 nm light.  The laser beam meets a set of density 

filters, which help reduce the laser intensity if necessary.  The density filters are housed 

in a wheel which contains six neutral filters with the following optical densities: 0.3, 0.6, 

1, 2, 3, and 4.  The beam then encounters a second iris and is focused by the lens L1 onto 

a pinhole H1 (spatial filter for point mode) with the help of the M6 mirror.   
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Figure 2.1: The main components of the LabRam HR800 instrument with the cover 

removed.  Reprinted from Horiba Jobin Yvon: HR800 User Manual.  Used by permission 

of the publisher, Horiba Jobin Yvon.
33 

The laser injection rejection system (LIRS) directs the laser beam onto the notch 

filter with aid from the mirror M8.  A spacer allows for the notch angle to be changed, so 

that the beam is completely reflected towards the sample.  Lens L3 converges the beam 

onto mirror M9, which is then directed to the sample via the optical microscope objective.  

The back scattered radiation follows the same pathway up to the notch filter.  The 

Rayleigh scattering is reflected at the notch filter (i.e., the excitation laser line is 

rejected), while the inelastically scattered light passes through.  The image of the Raman 

beam is then formed by lens L3 onto the confocal hole, which functions as an adjustable 
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pinhole.  The confocal hole allows for the separation of the signal from each layer of a 

layered sample as well as for removing any contributions from the surrounding medium. 

The resulting magnification between the sample and the objective can be 

calculated by multiplying the objective magnification used for measurements by 1.4 (e.g., 

100 x 1.4 for the 100x objective).  The 1.4 magnification factor is represented by the 

focal length (250 mm) of lens L3 divided by the tube length (180 mm) of the Olympus 

objectives. 

The image from the confocal hole is then projected by lenses L7 and L8 onto the 

slit S1 of the spectrograph, which reduces the image by a factor of 5.  The shutter, which 

is located behind the slit S1, controls the signal that enters the spectrograph.  Once the 

image enters the S1 slit, the beam is reflected by mirrors M12 and Ms1.  A spherical mirror 

SP1 of a focal length of 800 mm makes the beam parallel and reflects it onto the grating.  

The resultant first order diffraction is collected by mirror SP2 of an 800 mm focal length, 

which then focuses the beam onto an open electrode thermo-electric cooled (CCD 

detector operating at -69C).  Figure 2.2 illustrates the beam pathway through the 

instrument. 
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Figure 2.2: Schematic showing the pathway of the laser through the LabRam HR800. 

Reprinted from Horiba Jobin Yvon: HR800 User Manual.  Used by permission of the 

publisher, Horiba Jobin Yvon.
33 



28 

 

There are two kinematic gratings located on the spectrograph, namely 1800 or 

600 grooves/mm, and mounted onto kinematic interchangeable holders.  When the 1800 

grooves/mm grating is in use, an internal laser diode can be redirected along the optical 

path towards the entrance optics.  This is employed for the alignment of the confocal hole 

and the position of the laser beam on the sample.  A sine bar mechanism is used to cover 

a scanning range determined by the grating.  For the 1800 grooves/mm grating, the 

scanning range is 0 – 950 nm, while for the 600 grooves/mm, the scanning range is 0 – 

2850 nm due to the smaller amount of grooves.  A grating spectrograph will have a 

relatively constant dispersion if measured in nm, but when measuring in cm
-1

, there is a 

strong non-linear 1/
2
 dependence as illustrated in Equation (2.1).  

   cm-1  
   

  (nm)
  (nm)       (2.1) 

Resolution depends on the dispersion, the slit width, and the image dimension on the 

CCD.  The image dimension on the CCD is calculated using Equation (2.2), 

     
     

     
         (2.2) 

in which Wi is the dimension of the image slit on the CCD, Ws is the slit width, i1 is the 

incident angle on the grating, and i2 is the diffracted angle on the grating.  The accuracy 

using the 1800 grooves/mm grating is 1 cm
-1 

in the 450 – 850 nm spectral range.  The 

repeatability under normal operating conditions (temperature: 20-25 with variations of 

±1C and humidity: ≤ 75%) is one pixel with the CCD camera. 

The LabRam HR800 is equipped with a color video camera (UEye, UI-1540-C) 

and a fiber optic white light source (Euromex, EK-1), which are used in conjunction with 

the optical microscope.  The white light source utilizes a halogen bulb and has a 
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continuous brightness control that allows for intensity adjustment to view the sample in 

real time.  A 50/50 beam splitter must be placed between lens L3 and mirror M9 to allow 

for the white light to reach the sample and to send the image of the sample to the video 

camera with the help of lens L5.   

The LabRam HR800 instrument is equipped with a motorized XY mapping stage 

(travel range: 100 x 80 mm
2 

and step size: 0.1 µm) that allows for the use of Raman 

mapping and extended video options.  The optical Raman microscope is equipped with a 

Z motor that can be controlled by either the instrument software or joystick similarly to 

the XY stage. This Z-motion (resolution: 0.1µm) option facilitates the depth profile point 

Raman measurements on a sample and the signal-to-noise ratio optimization of point 

measurements during Raman mapping (through the AutoFocus option: ± 30 µm). 

The Raman mapping feature collects Raman spectra at predetermined points 

along the sample and then compares the relative intensities of the Raman peaks of interest 

to create a color coded image.  The color coded image can then be used to interrogate the 

molecular composition and heterogeneity of a sample.  The Raman maps can be collected 

in various shapes (square, rectangle, line, random points) and sizes with pre-set 

increments.  The AutoFocus option can be employed to account for height differences 

within the sample at each point in the Raman map.  The SWIFT option allows for rapid 

data collection (as fast as 7 ms per point) by moving the stage continuously during 

measurements, while the regular Raman mapping option stops and collects a spectrum at 

each predetermined point.  The extended video option can be used to expand the viewing 

area of the objective by moving the XY stage as permitted by the XY domains.  The 

viewing areas are then spliced together to form the final extended video image. 
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VII. RAMAN MEASUREMENTS 

The Raman system was calibrated before each measurement using the 521 cm
-1

 

optical phonon mode (2 transverse and 1 longitudinal) of the lattice structure of silicon.
34

 

The silicon sample was placed onto a glass microscope slide and positioned on the 

sample stage.  A long working distance 100x objective (Olympus, LMPlanFLN) was 

used to focus the laser beam on the sample and to collect the backscattered Raman signal.  

The 633 nm output (22.5 mW) of a He-Ne laser was used as the excitation line.  The 

confocal hole was set at 300 m, and the backscattered Raman signal was recorded using 

a 600 grooves/mm holographic grating, a number seven spacer, and an open electrode 

thermo-electric cooled CCD detector.  The Raman signal at 521 cm
-1

 was optimized 

(approximately 52,000 arbitrary units) using the real time spectrum adjustment mode.  

The spectrometer was centered at 730 cm
-1

 during the real time measurements to avoid 

the laser excitation line. 

The microscope slides supporting the bone samples were placed onto the microscope 

stage and imaged using the 100x objective.  Paraffin wax slides were also measured as a 

control.  All Raman spectra were collected in the 100 – 2000 cm
-1 

fingerprint spectral 

area
 
using the 633 nm He-Ne laser.  The laser power at the sample was 15 mW.  All other 

instrument settings were the same as for the silicon standardization procedure.  Point 

measurements were first obtained on each sample to determine suitable acquisition times 

(3 s).  The signal was averaged over two cycles to reduce the noise of the spectra for each 

point measurement.   
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Once the point measurements were completed, a 15 m cross-section was selected for 

Raman mapping measurements on each bone sample.  The Raman map was collected in 

incremental segments to allow the instrument to rest and to prevent loss of data (Figure. 

2.3).  The auto focus feature was employed to account for the difference in height at 

various points on the bone sample and to optimize the signal-to-noise ratio.  This 

experimental setup allowed for the analysis of a bone sample to be completed in five to 

ten days, depending on the width of the bone section.  The Raman maps were collected 

using the LabSpec (v. 5) software and processed with the help of the Origin 8 software 

package.  All spectra were baseline corrected by the user defined option with 20 anchor 

points and interpolated using the spline method. 

 

Figure 2.3:  Optical image of a control bone sample recorded using the extended video 

mode option.  The red areas represent the Raman mapping segments of 15 µm wide 

cross-section.  

 

IV. X-RAY FLUORESCENCE 

 The chick embryo tibiotarsi were cut longitudinally and placed in the X-Ray 

fluorescence sample holders that contained an X-Ray specific film.  The samples were 
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strategically mounted to study both the internal and external sections of the bone as 

shown in Figure 2.4.  A Horiba XGT-7000 X-Ray Analytical Microscope was used to 

collect the X-Ray images and spectra. 

 
Figure 2.4:  Picture showing the placement of the tibiotarsi samples in order to study 

both the internal and external sections. 

 

V. FLAME ATOMIC ABSORPTION SPECTROSCOPY 

 Bone samples which were not fixed and embedded were used to determine the 

total calcium content via flame atomic absorption spectroscopy (FAAS, Varian 

AA240FS).  One bone sample for each single metal dose at 1 ppm and one bone sample 

for the PGM mixture at 1 ppm were prepared for FAAS analysis.  Prior to sample 

preparation, two bone samples for each treatment were preserved in the freezer.  The wet 

weight was recorded and the dry weight was determined by drying in an oven at 80C for 

72 hours.   

All glassware was cleaned by an acid bath, base bath, and finally autoclaving. All 

utensils and work sufaces were sanitized using ethanol to minimize cross-contamination.  

The dried bone samples were ground in a beaker with a glass rod in order to allow the 
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chemical digestion to proceed quickly.  The sample digestion was started with the 

addition of nitric acid (Fisher Scientific, OPTIMA grade) and covered with a watch glass 

for approximately 15 minutes.  The predigested sample and beaker were placed on a hot 

plate and heated to reflux gently for approximatley one hour at 125C.  After the sample 

was removed from the hot plate and allowed to cool to 80C, 3 mL of hydrogen peroxide 

(H2O2, 30%) was added to the solution.  The beaker was returned to the hot plate at a 

temperature of approximately 80C until the digestion was complete when the solution 

became clear.  The watchglass was removed and the heating was continued until almost 

all the liquid has been evaporated.  The sample was immediately removed to prevent 

burning.  Once the sample was near dryness, 8 mL of nitric acid was added while 

swirling.  The digested sample was quantitatively transferred to a 10-mL volumetric flask 

and diluted to volume with nitric acid (OPTIMA, grade). 

 The acidified, digested samples were then analyzed for calcium concentration using a 

Varian Fast Sequential Flame Atomic Absorption Spectrometer (AA240FS), equipped with 

an air-acetylene burner and a calcium hollow cathode lamp (5 mA).  The operating 

conditions were set as recommended by the manufacturer: wavelength (422.7 nm), slit width 

(0.7 nm), air flow rate (2.00 L min
-1

), and acetylene flow rate (13.50 L min
-1

).  Both the 

sample measurement acquisition time and delay time between each measurement were 3 

seconds.  Each sample was measured in triplicate and the absorbance values were averaged 

before extrapolating the calcium concentration from the calibration curve.  A blank solution 

containing 2% nitric acid was introduced between each sample. 

A FAAS reference calcium standard solution of 1.0 x 10
3
 ppm (Fisher Scientific) 

was used for the preparation of seven calcium standards of 0.05, 0.10, 0.50, 1.00, 2.5, 
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5.00, and 10.00 ppm.  Each sample contained 2% nitric acid (Optima grade, Fisher 

Scientific) and 0.05% lanthanum chloride (Fisher Scientific).  Samples were diluted 100x 

(PGMs 1.0 ppm) or 200x (Pt 1.0 ppm, Rh 1.0 ppm, Pd 1.0 ppm).  A sample spiked with 

0.5 ppm calcium (92% recovery) was analyzed to check for matrix interferences and a 

duplicate sample was analyzed (100.1% recovery) to verify accuracy and precision. 
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3. RESULTS 

Exposure to PGMs affected the morphology, calcium distribution, and calcium 

concentrations of the tibiotarsi of chick embryos.  As the dose of the PGMs was 

increased, the affects to the tibiotarsi were also more pronounced.  The correlation 

between metal exposure and bone morphological changes in developing chick was 

verified with Micro-Raman spectroscopy analysis.  In addition, the changes to calcium 

distribution along the internal and external longitudinal sections of the bone were shown 

by the histopathological analysis and X-Ray fluorescence images.  The average calcium 

amount per gram of tibiotarsus weight for each sample was determined by FAAS 

measurements. 

I. HISTOPATHOLOGICAL ANALYSIS 

Gross observations 

Gross pathological observations provided evidence on the significant impact of 

embryonal exposure to PGMs.  The brain was protruding from the underdeveloped skull 

with the 5.0 ppm Pt treatment (Figure 3.1A).  Chick embryos that were exposed to 10.0 

ppm Rh exhibited distinct abnormalities such as development of fully functional pectoral 

and abdominal organs exterior to the body cavity.  The lethal dose (LD100) for all PGM 

treatments was found to be 10.0 ppm, while LD50 was reached for PGMs concentrations 

of 5.00 ppm.  The chick embryos exposed to 10.0 ppm doses of PGMs exhibited a black 

coloration characteristic to tissue necrosis (death). 



36 

 
Figure 3.1 (label A and B):  Abnormally developed chick embryos.  A) Brain tissue 

exposed due to the underdeveloped skull for the 5.0 ppm Pt treatment.  B) Internal organs 

found outside the abdominal and pectoral cavities as a result of bone malformations in 

embryos treated with 10.0 ppm of Rh.  

 

Histological analysis 

Histological analysis of the bone cross-sections was used to determine the size of the 

bone cells in tibiotarsi.  The average chondrocyte lengths decreased in all PGM 

treatments in comparison with the control specimens (Figure 3.2).  The smallest 

chondrocytes were detected for the 1.0 ppm Rh treatment. 
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Figure 3.2:  Length of chondrocyte diameters in the tibiotarsus of chicks embryos 

exposed to PGMs.  The bar graphs represent the chondrocytes diameter ± SD based on 

average diameter of 50 chondrocytes per 3 slides from each of the metals.  Diameters 

with the same letters
abcd

 were not statistically different at p ≤ 0.05 probability level as 

determined by Student-Newman-Keuls multiple comparison test.  

 

II.  RAMAN DATA 

 Raman spectra and optical images were obtained from all bone cross-sections of 

1.0 ppm PGM treatments along with three controls (i.e., no injection.PBS treatment, and 

paraffin wax).  The third control slide supporting a paraffin wax section was measured to 

determine the possible contributions of the embedding material to the Raman spectra of 

the bone samples of interest.  Figure 3.3 and Figure 3.4 show the optical image (100x 

objective) and the Raman spectrum, respectively, obtained from the paraffin wax control 

of the same thickness as the bone cross-section samples.  The peaks occuring at 1420, 

1442, and 1464 cm
-1

 were used to produce the original Raman maps (maps A in the 

following figures).  This allows for a quick determination of the location of the higher 
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phosphate content areas.  Figures 3.5 and 3.6 show the typical micro-Raman spectra of 

the no injection control and the 1.0 ppm PGM mixture treatments when located in an area 

of high phosphate content as noted by the 1(PO4
3-

) vibrational mode.  The assignments 

of all relevant vibrational bands are found in Table 1. 

 

 
Figure 3.3:  Optical image of the paraffin control sample recorded using the 100x 

objective of the confocal Raman microscope. 
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Figure 3.4:  Micro-Raman spectrum of the paraffin wax control along with all peaks of 

interest assigned. 

 

 
Figure 3.5:  Micro-Raman spectrum from the no injection control sample with all the 

peaks of interest assigned (PO3
4-

 at 960 cm
-1

, CO3
2-

 at 1070 cm
-1

, amide I at 1680 cm
-1
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and the paraffin modes).  It should be noted that the CO3
2-

 at 1070 cm
-1

 overlaps with the 

paraffin vibrational mode at 1062 cm
-1

. 

 

 
Figure 3.6:  Micro-Raman spectrum from the 1.0 ppm PGM mixture sample with all the 

peaks of interest assigned. 

 

Table 3.1:  Tentative Raman band assignments for the tibiotarsi samples.  

(Abbreviations: vs, very strong; s, strong; m, medium; w, weak; vw, very weak; sh, 

shoulder; , stretching; , bending; , twisting). 

*Non-referenced assignments were observed in the paraffin control to determine its 

contribution in the treated samples. 

Band Position (cm
-1

) Tentative Band Assignment 

271 paraffin 

418 paraffin 

430
35 

2 (PO4
3-

) – symmetric P-O stretch 

528 paraffin 

583
25 

 (PO4
3-

) – symmetric P-O stretch

590
25 

4 (PO4
3-

) – symmetric P-O stretch

609
25 

4 (PO4
3-

) – symmetric P-O stretch

645 paraffin 

673
25 

(CCH);  (CCO) 

715 paraffin 

808 paraffin 

815
25 

C-O-O);  (C-C) of backbone skeletal vibrations 
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855
25 

(C-C) of hydroxyproline ring 

876
25 

(C-C) of proline ring 

891 paraffin 

921
25 

(C-C) of proline ring

961
25 

1 (PO4
3-

) – symmetric P-O stretch

1004
25 

Phenylalanine, paraffin 

1032
25 

Phenylalanine, paraffin

1045
25 

3 (PO4
3-

) – antisymmetric P-O stretch 

1063
26 

(CC) skeletal stretch, paraffin 

1071
25 

 (CO3
2-

) – type B 

1103
19,20 ν1(CO3

2-
)

1133
26 

(CC) stretch, paraffin 

1172
26 

 (CC) stretch, paraffin 

1175
25 

 (CCC) – out of phase, paraffin

1205
25 

Tyrosine 

1245
25 

amide III) 

1270
25 

(NH) – amide III 

1296
26 

CH2 deformation, paraffin 

1318
25 

(CH2) 

1340
25 

(CH2) 

1380
25

 (CH2), paraffin 

1418
26 

C deformation 

1418
25 

(COO
-
) 

1426
25

 (CH2), paraffin 

1441
26 

CH2 deformation 

1451
25

 (NH2) 

1463 paraffin 

1613 paraffin 

1658
 20,25

 (C=O) amid I (-helix) 

1667
 20,25

 Amid I ( sheet) 

 

 The optical image (10x objective) of the no injection control bone sample is 

shown in Figure 3.7.  The bone tissue section marked in red delimits the area studied 

using the Raman mapping feature.  The Raman mapped areas were determined by finding 

an area of phosphate within the cross-section.  The Raman maps used for this study are 

depicted in Figure 3.8.  The maps are generated by comparing a) the paraffin wax 

characteristic mode at 1400-1515 cm
-1

 (red color code) to the 1(PO4
-3

) stretching  at 960 

cm
-1

 (green color code), b) the type-B carbonate stretching peak at 1070 cm
-1

 (red color 
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code) to the 1(PO4
-3

) vibrational mode (green color code), and c) the collagen amide I 

band at 1667 cm
-1

 (red color code) to the 1(PO4
-3

) vibrational mode (green color code).  

These maps indicate a small amount of phosphate in the periosteum of the tibiotarsi and 

none in the bone marrow cavity. 

 
Figure 3.7:  Optical image of the no injection control bone sample recorded using the 

10x objective of the confocal Raman microscope.  The outlined area in red indicates 

where the Raman mapping was performed. 

 

 
Figure 3.8:  Raman mapping images generated for the no injection control bone  sample 

by comparing  A) the paraffin deformations (1400-1515 cm
-1

, red) to the 1(PO4
3-

) 

stretching band (960 cm
-1

, green), B) the type B carbonate stretching mode (1070 cm
-1

, 

red) to the 1(PO4
3-

) vibrational mode (960 cm
-1

, green), and C) the collagen amide I peak 

(1667 cm
-1

, red) to the 1(PO4
3-

) (960 cm
-1

, green) vibrational mode. 

 

 Figure 3.9 shows the optical image (100x objective) of the PBS control bone 

sample.  The red rectangle indicates the Raman mapped area.  The Raman maps of the 
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PBS control sample are illustrated in Figure 3.10.  These maps are created by comparing 

a) the paraffin wax deformations at 1400-1515 cm
-1

( red color code) to the 1(PO4
-3

) 

vibrational mode at 960 cm
-1

 (green color code), b) the type-B carbonate stretching mode 

at 1070 cm
-1

 (red color code) to the 1(PO4
-3

) stretching band (green color code), and c) 

the collagen amide I peak at 1667 cm
-1

 (red color code) to 1(PO4
-3

) vibrational mode 

(green color code).  The Raman maps indicate increased amount of phosphate within the 

periosteum and bone marrow cavity. 

 
Figure 3.9:  Optical image of the phosphate buffer solution control bone sample recorded 

using the 10x objective of the confocal Raman microscope.  The outlined area in red 

indicates tha area of Raman mapping. 
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Figure 3.10:  Raman mapping images generated for the phosphate buffer solution control 

bone sample by comparing A) the paraffin deformations (1400-1515 cm
-1

, red) to the 

1(PO4
3-

) stretching band (960 cm
-1

, green), B) the type B carbonate stretching mode  

(1070 cm
-1

, red) to the 1(PO4
3-

) vibrational mode (960 cm
-1

, green), and C) the collagen 

amide I peak (1667 cm
-1

, red) to the 1(PO4
3-

) (960 cm
-1

, green) vibrational mode. 

 

Figure 3.11 shows the optical image (100x objective) of the 1.00 ppm Pt treatment bone 

sample. The red inset delimits the Raman mapped area.  The corresponding Raman maps 

are inserted in Figure 3.12.  The Raman maps are created by comparing a) the paraffin 

wax deformations at 1400-1515 cm
-1

( red color code) to the 1(PO4
-3

) vibrational mode at 

960 cm
-1

 (green color code), b) the type-B carbonate stretching mode at 1070 cm
-1

 (red 

color code) to the 1(PO4
-3

) stretching band (green color code), and c) the collagen amide 

I peak at 1667 cm
-1

 (red color code) to 1(PO4
-3

) vibrational mode (green color code).  

The Raman maps indicate an increased amount of phosphate in only the periosteum. 
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Figure 3.11:  Optical image of the 1.0 ppm Pt treatment bone sample recorded using the 

10x objective of the confocal Raman microscope.  The area outlined in red indicates the 

area of Raman mapping. 

 

 
Figure 3.12:  Raman mapping images generated for the 1.00 ppm Pt treatment bone  

sample by comparing A) the paraffin deformations (1400-1515 cm
-1

, red) to the 1(PO4
3-

) 

stretching band (960 cm
-1

, green), B) the type B carbonate stretching mode (1070 cm
-1

, 

red) to the 1(PO4
3-

) vibrational mode (960 cm
-1

, green), and C) the collagen amide I peak 

(1667 cm
-1

, red) to the 1(PO4
3-

) (960 cm
-1

, green) vibrational mode. 

 

Figure 3.13 shows the optical image (100x objective) of the 1 ppm Rh treatment 

bone sample and the Raman mapped area (marked with a red rectangle).  A closer 

examination of the optical image reveals an unclean cut of the sample and confirms the 

softness of the bone tissue that was experienced during the microtome cutting process.  
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The corresponding Raman maps are inserted in Figure 3.14.  The Raman maps are 

created by comparing a) the paraffin wax deformations at 1400-1515 cm
-1

( red color 

code) to the 1(PO4
-3

) vibrational mode at 960 cm
-1

 (green color code), b) the type-B 

carbonate stretching mode at 1070 cm
-1

 (red color code) to the 1(PO4
-3

) stretching band 

(green color code), and c) the collagen amide I peak at 1667 cm
-1

 (red color code) to 

1(PO4
-3

) vibrational mode (green color code).  The Raman maps indicate an increased 

amount of phosphate only within the periosteum. 

 

 
Figure 3.13:  Optical image of the 1.0 ppm Rh treatment bone sample recorded using the 

10x objective of the confocal Raman microscope.  The outlined area in red indicates the 

area of Raman mapping. 
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Figure 3.14:  Raman mapping images generated for the 1.00 ppm Rh treatment bone 

sample by comparing A) the paraffin deformations (1400-1515 cm
-1

, red) to the 1(PO4
3-

) 

stretching band (960 cm
-1

, green), B) the type B carbonate stretching mode (1070 cm
-1

, 

red) to the 1(PO4
3-

) vibrational mode (960 cm
-1

, green), and C) the collagen amide I peak 

(1667 cm
-1

, red) to the 1(PO4
3-

) (960 cm
-1

, green) vibrational mode. 

 

Figure 3.15 demonstrates the presence of an area of high mineral content in the 1 ppm Rh 

treatment bone sample. The optical image A) of this area shows abnormal morphology 

for the Rh treated tissue in comparison to the control sample.  The Raman map B) 

confirms the existence of an abnormal highly crystallized area in the same location.  The 

Raman spectrum C) demonstrates the “green” region of the Raman map has an unusually 

high content of calcium phosphate.  The Raman spectrum D) shows that the red section 

of the Raman map is mainly made off paraffin wax. 
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Figure 3.15:  An area of an unusually high phosphate content found in the 1 ppm Rh 

treatment bone sample.  A) Optical image recorded using the 100x objective of the 

confocal Raman microscope, B) Raman map (paraffin deformations are marked with red 

and the 1(PO4
3-

) band is color coded in green), and C) the Raman spectrum of the high 

phosphate area D) the Raman spectrum of the paraffin area. 

 

Figure 3.16 shows the optical image (100x objective) of the 1 ppm Pd treatment 

bone sample.  The bone tissue section marked in red delimits the area studied using the 

Raman mapping feature.  The corresponding Raman maps are inserted in Figure 3.17.  

The Raman maps are created by comparing a) the paraffin wax deformations at 1400-

1515 cm
-1

 (red color code) to the 1(PO4
-3

) vibrational mode at 960 cm
-1

 (green color 

code), b) the type-B carbonate stretching mode at 1070 cm
-1

 (red color code) to the 

1(PO4
-3

) stretching band (green color code), and c) the collagen amide I peak at 1667 

cm
-1

 (red color code) to 1(PO4
-3

) vibrational mode (green color code).  The Raman maps 

indicate an increased amount of phosphate within the periosteum. 
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Figure 3.16:  Optical image of the 1.0 ppm Pd treatment bone sample recorded using the 

10x objective of the confocal Raman microscope.  The outlined area in red indicates the 

area of Raman mapping. 

 

 
Figure 3.17:  Raman mapping images generated for the 1.0 ppm Pd treatment bone 

sample by comparing A) the paraffin deformations (1400-1515 cm
-1

, red) to the 1(PO4
3-

) 

stretching band (960 cm
-1

, green), B) the type B carbonate stretching mode (1070 cm
-1

, 

red) to the 1(PO4
3-

) vibrational mode (960 cm
-1

, green), and C) the collagen amide I peak 

(1667 cm
-1

, red) to the 1(PO4
3-

) (960 cm
-1

, green) vibrational mode. 

 

Figure 3.18 shows the optical image (100x objective) of the PGM mixture 

treatment bone sample and the Raman mapped area (marked with a red rectangle).  A 

closer examination of the optical image shows irregularities at the outer edges of the bone 

which were not detected in the control sample without an injection.  Furthermore, this 

particular bone sample does not seem to have a bone marrow cavity.  The corresponding 

Raman maps are inserted in Figure 3.19.  The Raman maps are created by comparing a) 
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the paraffin wax deformations at 1400-1515 cm
-1

( red color code) to the 1(PO4
-3

) 

vibrational mode at 960 cm
-1

 (green color code), b) the type-B carbonate stretching mode 

at 1070 cm
-1

 (red color code) to the 1(PO4
-3

) stretching band (green color code), and c) 

the collagen amide I peak at 1667 cm
-1

 (red color code) to 1(PO4
-3

) vibrational mode 

(green color code).  The Raman maps indicate an increased amount of phosphate within 

the periosteum and the bone marrow cavity. 

 

 
Figure 3.18:  Optical image of the 1.0 PGM mixture treatment bone sample recorded 

using the 10x objective of the confocal Raman microscope.  The outlined area in red 

indicates the area of Raman mapping. 

 
Figure 3.19:  Optical image of the 1.0 ppm PGM mixture treatment bone sample 

recorded using the 10x objective of the confocal Raman microscope.  The outlined area 

in red indicates where the Raman mapping was performed. 
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The Raman data also revealed information about: a) the age of mineral crystals 

(carbonate content), b) degree of mineralization of the collagen matrix, and c) mineral 

crystallinity.  The age of the mineral crystals was determined from the ratio of relative 

intensities of the 1(CO3
2-

) band at 1070 cm
-1

 compared to the 1(PO4
3-

) band at 960 cm
-1

.  

This value decreases when exposed to the 1.0 ppm Pd and Rh treatments, increases with 

the 1.0 PGMs treatment, and stays the same with the 1.0 ppm Pt and PBS treatments 

when compared to the control.  The degree of mineralization of the collagen matrix 

values were calculated from the integrated areas of the 1(PO4
3-

) band at 960 cm
-1

 to the 

-amide I vibrational mode at 1670 cm
-1

.  This value decreases with the 1.0 ppm Pt, and 

stays the same (due to very large uncertainties) for all other treatments when compared to 

the control.  The last value that was determined was the mineral crystallinity which is 

directly related to the full width at half maximum (FWHM) of the 1(PO4
3-

) band at 960 

cm
-1

.  This value statistically does not change due to the metal treatments.  These 

caluclated values are found in Table 3.2 

Table 3.2:  Calculated values for the age of mineral crystals, degree of mineralization of 

the collagen matrix, and mineral crystallinity from eight micro-Raman spectra collected 

in areas of interest for each treatment. 

 *Age of Mineral 

Crystals* 

Degree of Mineralization 

of the Collagen Matrix 

Mineral 

Crystallinity (cm
-1

) 

Control 0.52 ± 0.28 3.4 ± 1.0 12.0 ±0.9 

PBS 1.7 ± 1.4 4.7 ± 2.2 13.7 ± 1.8 

Pt 1.8 ± 0.9 1.0 ± 0.7 12.3 ± 0.8 

Rh 0.06 ± 0.03 2.3 ± 1.3 12.1 ± 0.7 

Pd 0.005 ± 0.001 6.4 ± 5.0 12.4 ± 0.59 

PGMs 2.3 ± 0.9 4. 5 ± 2.1 13.5 ± 1.4 
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III.  X-RAY FLUORESCENCE DATA 

 

The following gross observations were made in relation to the mechanical 

properties of the tibiotarsi during longitudinal sectioning for X-Ray fluorescence 

measurements: 

a) For all Pt treatments of 0.1 ppm, the tibiotarsus length was longer in comparison with 

the control sample.  The following values represent the percent increase in length 

compared to the no injection sample: 0.1 ppm – 25.56%, 1.0 ppm – 11.28%, 5.0 ppm 

– 9.78%, and 10.0 ppm – 4.17%.  The exception to this trend was the 10.0 ppm Pt 

(dead) sample, which decreased in length compared to the control (7.78% decrease).  

For Pt treatments higher than 0.1 ppm, the tissue specimens were noticeably softer 

and a clean cut was difficult to obtain. 

b) For all Rh treatments, tibiotarsi were longer than the corresponding control 

specimens.  The following values represent the percent increase in length compared 

to the no injection sample: 0.1 ppm – 26.50%, 1.0 ppm – 23.33%, 5.0 ppm – 9.83%, 

and 10.0 ppm – 18.33%.    For Rh exposures of 0.1 ppm and 1.0 ppm, tibiotarsi could 

be easily sectioned, while for Rh exposures of 5.0 and 10.0 ppm, it was difficult to 

obtain a clean cut due to softer bone tissue. 

c) For the 1.0 ppm Pd treatment, the tibiotarsi had approximately the same length as in 

the control sample, whereas the 5.0 ppm Pd treatment caused a 13.50% increase in 

tibiotarsus length.  The two bone samples were harder, which allowed for easier 

sectioning. 

d) For the PGM mixture concentrations, tibiotarsi were longer (0.1 ppm – 22.94% and 

1.0 ppm – 19.72%) and thinner in comparison to the control. 
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Tibiotarsus lengths are found in Table 3.3.  These lengths were determined from the X-

Ray fluorescence optical images by using a ruler and the provided scale bar.  It should be 

noted that the high standard deviation for the 5.0 ppm Pt treatment was due to inaccurate 

measurements caused by the light reflecting on the X-Ray film. 

Table 3.3:  Lengths of the chick embryo tibiotarsi 

 

 

 

 

 

 

 

 

 

Calcium, one of the major elements in bone, was examined in relation to the PGM 

exposure level.  The X-Ray fluorescence data obtained on the longitudinal sections 

revealed that the distribution of calcium in developing chick tibiotarsus was influenced 

by the PGM exposure. 

a) For the Pt treatment (Figure 3.20), calcium content seems to decline steadily with 

increasing metal concentration except for the 5.0 ppm Pt treatment, where the calcium 

deposition increased.  The most dramatic changes were observed for the bone marrow 

cavities where almost no calcium was detected.  The chick embryo marked as “dead” 

in Figure 3.21 was found to be undeveloped at the time of harvesting.  It can be easily 

Treatment Length (mm) % Difference from 

no injection 

No injection 18.00 ± 0.48 - 

0.1 ppm Pt 22.60 ± 0.53 25.56 ± 2.35 

1.0 ppm Pt 20.03 ± 0.53 11.28 ± 2.65 

5.0 ppm Pt 19.76 ± 1.46 9.78 ± 7.39 

10.0 ppm Pt 18.75 ± 0.36 4.17 ± 1.92 

10.0 ppm Pt (dead) 16.60 ± 0.44 7.78 ± 2.65 

0.1 ppm Rh 22.77 ± 0.61 26.50 ± 2.68 

1.0 ppm Rh 22.20 ± 0.17 23.33 ± 0.77 

5.0 ppm Rh 19.77 ± 0.12 9.83 ± 0.61 

10.0 ppm Rh 21.30 ± 0.10 18.33 ± 0.47 

1.0 ppm Pd 17.68 ± 0.33 2.06 ± 1.87 

5.0 ppm Pd 20.43 ± 0.21 13.50 ± 1.03 

0.1 ppm PGMs 22.13 ± 0.06 22.94 ± 0.27 

1.0 ppm PGMs 21.55 ± 0.51 19.72 ± 2.37 



54 

noticed that calcium content is increased in the distal end of the tibiotarsus outer and 

inner sections. 

b) For the Rh treatments (Figure 3.21), onset of calcification was detected at an 

exposure level of 0.1 ppm, in particular at the distal end of the periosteum (i.e., the 

external dense membrane composed of fibrous connective tissue closely wrapping the 

bone marrow).  Small calcium depositions were also found in the bone marrow 

cavities for the 0.1 ppm treatment.  For Rh treatments of 1.0 ppm and higher, the 

calcium content steadily decreased in the inner and outer tibiotarsus portions with the 

increase in Rh concentration.  The most significant changes were observed within the 

bone marrow cavities, which were depleted of calcium. 

c) For the Pd treatment of 1.0 ppm (Figure 3.22), larger calcium deposits were recorded 

in periosteum in comparison with the control tibiotarsus sections.  Bone marrow 

cavities seemed to have a slightly higher content of calcium than the control sample. 

For the Pd treatment of 5.0 ppm, a similar slight decrease in the calcium content was 

noticed in comparison with the control sections.  Unfortunately, for the 0.1 and 10.0 

ppm Pd treatments there were not enough samples to be analyzed via X-ray 

fluorescence.  This was due to the smaller amount of viable chick embryo eggs for 

these treatments. 

d) For the PGM mixture treatment of 0.1 ppm (Figure 3.23), a larger calcium deposition 

was detected in the distal periosteum and central bone marrow cavities of the 

tibiotarsus in comparison with the control sample. A similar calcium distribution 

pattern was noticed for the PGM mixture treatment of 1.0 ppm, but of lower intensity. 
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Figure 3.20  X-Ray fluorescence image of the entire Pt treated bone samples showing the 

amount of calcium present.  The magnitudes of the scale bar were increased ten-fold in 

comparison to the following figures.  This accounts for the differences seen in the control 

sample.  These measurements will be repeated.  The inner portion of the tibiotarsi is 

located on the left side for each treatment. 

 

 
Figure 3.21:  X-Ray fluorescence image of the entire Rh treated bone samples showing 

the amount of calcium present.  The inner portion of the tibiotarsi is located on the right 

side for each treatment. 
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Figure 3.22:  X-Ray fluorescence image of 1.0 ppm Pd, 5.0 ppm Pd, 0.1 ppm PGMs, and 

1.0 ppm PGMs treated bone samples showing the amount of calcium present.  The inner 

portion of the tibiotarsi is located on the right side for each treatment. 

 

IV.  ATOMIC ABSORPTION DATA 
 

 The average amount of calcium in the cartilage/bone samples was determined via 

FAAS.  The instrument was calibrated using seven known standards of 0.1, 0.2, 0.5, 1.0, 

2.0, and 4 ppm of calcium (Figure 3.23).  One no injection control tibiotarsi was analyzed 

and two metal treatment samples were analyzed.  Equation 3.3 was used to determine the 

average calcium content (µg/g) within the sample, where C is the raw average calcium 

content (mg/L), V is the volume (mL) of the undiluted original sample, dnfn is the dilution 

factor (put the signal from the sample on scale and within the calibration curve 

produced), and W is the weight of the original dry sample in grams. 

 
  

 
 

      

 
         (3.3) 

This value is converted to percent calcium.  The percent calcium determined for the 

control sample was16.1%.  Table 3.4 shows the percent calcium calculations for the PGM 

treatments.  The percent calcium values were significantly decreased for the 1.0 ppm Pt 

and PGMs mixture treatment samples whereas the 1.0 ppm Pd treatment showed a drastic 



57 

increase in comparison to the no injection control.  The 1.0 ppm Rh treatment only 

increased by 1.2%. 

 
Figure 3.23:  Flame atomic absorption spectroscopy calibration curve constructed using 

seven calcium standards of 0.1, 0.2, 0.5, 1.0, 2.0, and 4 ppm. 

 

Table 3.4:  Percent calcium content found in all 1.0 ppm PGM treatments. 
Sample Description Average % Calcium 

Control 

Pt 1.0 ppm 

16.1 ± 0.2 

8.88 ± 0.29 

Rh 1.0 ppm 17.8 ± 0.3 

Pd 1.0 ppm 24.3 ± 0.4 

PGMs 1.0 ppm 13.9 ± 0.1 
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4. DISCUSSION 
 

I. HISTOPATHOLOGY 

Gross Pathology 

Initial gross pathological observations of developing chick embryos exposed to 

PGMs were devastating.  Striking abnormalities such as brain protrusion from the skull 

(figure 3.1A) and formation of abdominal organs outside of the body cavity (figure 3.1B) 

were witnessed for all PGM treatments higher than 1.0 ppm.  These deformities are 

clearly the result of severe bone malformations.  A properly formed skull should 

withstand the pressure created by a developing brain and its surrounding fluids.  

However, if the skeleton does not present the expected mechanical properties (i.e., 

hardness, elasticity, roughness, and strength) and morphology (i.e., age of mineral 

crystals, degree of mineralization of the collagen matrix, and mineral crystallinity), it will 

not withstand bending, stretching, twisting, and compression.  Therefore, the brain easily 

splits the top of the skull with little or no resistance.  Similarly, if the development of rib 

cage is hindered due to the PGM exposure, a lack of internalization of abdominal organs 

will be experienced.  Ribs develop normally in the membrane during embryonic 

development at the end of day 6, become cartilaginous by day 7.5, and ossify by day 12.  

The ossification process of the rib cage was not normal or completed in the chick 

embryos exposed to PGMs over 1 ppm. 

 

 



59 

Histology 

Exposure to PGMs had adverse effects upon the development of chondrocyte 

cells in cartilage.  Histological analysis revealed a decrease in the chondrocyte diameters 

in all PGM treatments.  Knowing that chondrocytes have an essential role in the synthesis 

of various matrix constituents, an abnormal cartilage development is expected due to 

these developmental changes.  This histological observation further supports the gross 

pathological observations.  More studies are necessary provide a detailed mechanism for 

the decreased chondrocyte diameters. 

II. RAMAN SPECTROSCOPY 

The micro-Raman spectrum of the paraffin wax control (Figure 3.4) was first 

collected to determine the contributions of the embedding material to the spectra of all 

tibiotarsi.  Two micro-Raman spectra obtained from the no injection control and 1.0 ppm 

PGM mixture sample were inserted in Figure 3.5 and 3.6 for comparison reasons.  A 

detailed vibrational assignment was prepared in Table 3.6 for each significant band in the 

micro-Raman spectra according to literature.  This allowed for the identification of the 

paraffin wax characteristic vibrational modes (271, 418, 528, 645, 715, 808, 1003, 1033, 

1064, 1137, 1174, 1299, 1372, 1420, 1442, 1464, and 1613 cm
-1

).   

During initial measurements, the paraffin embedding material at 1400-1515 cm
-1

 

was compared to the 1(PO4
3-

) band at 960 cm
-1

 to identify the regions of possible higher 

mineral content.  Calcium mineral in hydroxyapetite is indirectly determined in the 

Raman spectrum based on the phosphate vibrational mode.  As expected, regions of 

unusually high calcium inclusions were sporadically found in the tibiotarsus cross-

sections for all PGM treatments.  The no injection control sample (figure 3.8) exhibited a 
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few areas of high crystallization at the outer edges of the bone.  However, this was 

expected because those periosteum regions usually contain ossified bone.  In contrast to 

the no injection control sample, the PBS treatment (figure 3.10) led to the formation of 

abnormal calcium inclusions within the bone marrow cavity.  In all three 1.0 ppm 

individual metal treatments (i.e., Pt, Rh, and Pd), areas of unusual high mineral content 

were found within the outer edges of the bone (figures 3.12, 3.14 and 3.17).  These areas 

were of increased size and quantity in comparison to the no injection control.  The 1.0 

ppm PGM mixture treatment caused an increase in mineral content throughout the whole 

bone cross-section (figure 3.19).  However, the observed abnormal increase in mineral 

content due to the PBS treatment, this may be causing a systematic increase in all the 

metal treatments. 

According to Bellairs and Osmon, the precartilaginous precursors of tibiotarsus 

are formed by day five and ossification begins on day six.
12

  The ossification process is 

completed by the 11
th

 week after hatching.
12

  Because the tibiotarsi are mostly composed 

of cartilage during development, nutrients and waste are transported through long range 

diffusion.
13

  Therefore, the presence of abnormal calcium inclusions may inhibit the 

transport of essential nutrients, oxygen and waste through the matrix, and may cause 

blockages of the vasculatore system during the pre-hatching phase of chick development.  

Ultimately, these effects may lead to the observed skeletal deformities in the growing 

embryo exposed to PGMs.
13 

As shown in the Raman Data section (table 3.2), specific Raman band features are 

used to estimate: A) the age of mineral crystals, B) the degree of mineralization of the 

collagen matrix, and C) the mineral crystallinity. 
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a) The calculations for determining the age of mineral crystallinity revealed a drastic 

decrease in the Rh and Pd exposures but an increase in the PGMs mixture treatment.  It is 

important to realize the age calculated due to the PBS exposure has an abnormally high 

uncertainty value.  Because the PBS sample is another control, no definitive conclusion 

can be determined at this time due to this high uncertainty value. 

b) The signal-to-noise ratio in the 1600-1700 cm
-1

 spectral region, characteristic to 

amide I collagen vibrational modes, was very low for the chosen Raman-mapping 

acquisition time of three seconds.  This resulted in high uncertainties for the calculated 

inorganic versus organic matrix components ratio.  Even with the low signal-to-noise 

ratio and the resulting high uncertainties, a small decrease in the degree of mineralization 

was established for the 1.0 ppm Pt treatment sample.  As it will be shown later in the 

FAAS discussion section, the largest calcium mineral loss was detected for the 1.0 ppm 

Pt treatment.  This calcium loss provides more evidence for the observed skeletal 

pathological changes.  Point Raman measurements of longer acquisition times will be 

performed to re-evaluate the inorganic versus organic matrix ratios for the other metal 

treatments. 

c) The changes estimated in mineral crystallinity for all metal treatments as 

compared to the no injection control sample is inconclusive at this time when accounting 

for the spatial resolution of the micro-Raman instrument for the 600 groove/mm 

holographic grating is 1.1 cm
-1

 and the calculated uncertainties that are within the same 

wavenumber range. 
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III. X-RAY FLUORESCENCE MICROSCOPY 

X-Ray fluorescence images (figures 3.20 – 3.22) showed a significant 

redistribution of calcium within the chick embryo tibiotarsi as compared to the no 

injection control sample.  Specifically, regions of unusual high calcium content were 

identified in the periosteum of tibiotarsi for all 1.0 ppm metal treatments including PGM 

mixture as well as in the bone marrow cavity for PGM mixture alone.  These results 

confirm the calcium redistribution pattern revealed by the Raman-mapping observations 

for all 1.0 ppm treatments and controls (figures 3.8, 3.12, 3.14, 3.17. and 3.19).  

IV.  FLAME ATOMIC ABSORPTION SPECTROSCOPY 

The FAAS measurements of tibiotarsi of chick embryos exposed to PGMs 

revealed a significant decrease in the average percent calcium with respect to the no 

injection control sample for the 1.0 ppm Pt and PGM treatments (Table 3.4).  The largest 

percent calcium difference from the no injection control was determined to be 55.1% for 

the 1.0 ppm Pd treatment.  This was followed by 44.8 % for the 1.0 ppm Pt, 13.7 % for 

the 1.0 ppm PGMs, and 10.6 % for 1.0 Rh treatment.  The observed decrease in average 

calcium content is indicative of an overall loss in bone mineral density making the bone 

much weaker than it should be.  In contrast, the increase in the average calcium content 

reveals older, more brittle bone in comparison to the control.  It is now obvious that the 

presence of PGMs is directly correlated with the enormous loss and redistributions in 

bone mineral density and may explain the observed morphological and pathological 

changes in the chick skeleton (i.e., limb deformities, smaller chondrocyte cells, etc.).  

Unfortunately, an exact mechanism explaining these enormous losses in calcium is not 

known at this time. 
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V. CONCLUSIONS 

The widespread use of PGMs raises concerns for potential adverse health effects 

in living organisms.  It has been documented that PGMs are readily bioaccumulated into 

plant tissue, allowing for these metals to enter the food chain of animals and humans.
36,37

  

In this study, we examined the skeletal pathology of tibiotarsi in chick embryos exposed 

to platinum group metals by micro-Raman spectroscopy, X-ray fluorescence, and flame 

atomic absorption spectroscopy.  This research has shown that exposure to PGMs is 

detrimental to chick embryo skeletal development.  This observation was expected due to 

the small quantity of toxicity studies on PGMs present in literature.
1-10

  Micro-Raman 

spectroscopy revealed the formation of abnormal calcium deposits within the cartilage 

matrix of chick embryo tibiotarsi for all 1.0 ppm metal treatments.  X-ray fluorescence 

measurements confirmed the Raman data and calcium redistribution pattern observed 

within the periosteum and bone marrow cavity of tibiotarsi.  Flame atomic absorption 

spectroscopy showed enormous decreases in the average percent calcium for all platinum 

group metal treatments, which further explains the observed limb deformities and 

decrease in chondrocyte cell diameter.  Micro-Raman spectroscopy in combination with 

X-ray fluorescence spectroscopy and flame atomic absorption spectroscopy were 

successful analytical techniques for the investigation of chick embryo skeletal pathology.  

Because chick embryos are in the family of amniotes, the potential for similar effects to 

other animal species, including pregnant woment, may be possible. 
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VI. FUTURE ENDEAVORS 

 Further analysis should be continued in order to understand the toxicological 

effects of PGMs on the chick embryo animal model.  Some scientific aims that are of 

interest for a future graduate student are: 

1) To complete the micro-Raman spectroscopy and FAAS investigations on 

tibiotarsi for the other PGM exposure levels (0.1 ppm, 5.0 ppm, and 10.0 

ppm), and to correlate these results with the already collected X-Ray 

fluorescence data and observed pathological changes. 

2) To develop a computer software program for the complete analysis of the 

micro-Raman maps. 

3) To observe and measure the PGMs bioaccumulation in the cartilage tissue of 

developing chick embryos. 

4) To examine the effect of part per million versus molarity doses due to the 

differences in weights of the three metals. 

5) To examine the relationship between the PGMs bioaccumulation and the 

induced morphological changes within the entire tibiotarsi. 

6) To explore the possible mechanism(s) explaining the detrimental role of 

PGMs on the chick skeletal development. 
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