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ABSTRACT 

 

       Das Avik. M.S., Department of Pharmacology & Toxicology, Wright State University, 2009. 
Ischemic Stroke in Type 2 Diabetic Mice: Deregulation of SDF-1a/CXCR4 axis1.  

      

 

 1Type 2 diabetes mellitus is a major risk factor for ischemic stroke. Also diabetes is 

associated with poor outcome after stroke. Underlying mechanisms are however not fully 

understood. Alteration in the expression of the SDF-1a/CXCR4 axis, which is important 

for ischemic tissue repair, can be a probable cause.  In this study, we have determined the 

expression of SDF-1a/CXCR4 in the brains of type II diabetic mice at basal and in 

response to ischemic stroke and have investigated a method for overexpression of SDF-

1a in the brains of the diabetic mice. Adult male C57BLKS/J mice (db/db) of age 8 

weeks were used as the murine model for type II diabetes and their age matched lean 

littermates served as controls (db/+). Microvascular density was first determined in the 

cerebral cortex of db/db diabetic mice by immunohistochemical analysis. Focal cerebral 

ischemia was induced by middle cerebral artery occlusion surgery (MCAO) in type 2 

diabetic db/db mice and their controls. 48 hours after surgery, volume of ischemic 

damage was determined by TTC staining. The expression of SDF-1a and CXCR4 in the 

ischemic and non ischemic sides of brains of both the groups were determined using 

western blot and real time RT PCR. The db/db diabetic mice were injected with the 
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vector, adeno associated virus 9 (AAV-SDF-1a) in the brain striatum and the 

overexpression of SDF-1a was determined by immunohistochemical analysis. Double 

immunohistochemistry was used to determine the localization of SDF-1a in brain after 

injection of the vector. The microvascular density in the cerebral cortex was reduced in 

db/db mice as compared with db/+ mice (p<0.05). Volume of ischemic damage was 

significantly increased in db/db mice after focal cerebral ischemia (p< 0.01). The levels 

of SDF-1a expression in both ischemic and non ischemic side of brain were reduced in 

db/db mice as compared with those in db/+ mice at mRNA (p< 0.01) and protein level 

(p< 0.01). The amount of CXCR4 expression was significantly reduced only in the 

ischemic side of the brains of db/db mice at protein level (p=0.001) and at m-RNA level 

(p=0.001). But in the non ischemic side, the expression of CXCR4 did not show any 

significant difference between the two groups. Immunohistochemical analysis showed 

overexpression of SDF-1a in the striatum receiving the microinjection of AAV-SDF-1a 

and double immunohistochemistry showed SDF-1a to be localized in the glial cells of the 

cerebral striatum after microinjection. The results indicate that microvascular density is 

reduced and ischemia induced cerebral damage is enlarged in diabetes which may be 

linked to the impaired expression of hypoxia regulated SDF-1a/CXCR4 axis after 

ischemic stroke in diabetes and vector mediated over expression of SDF-1a in the brain 

can be a novel therapeutic technique for treating ischemic stroke in diabetics.  
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INTRODUCTION AND PURPOSE:   

 Type II diabetes mellitus affects a huge number of patients worldwide (Wang et al., 

2006a). It is a metabolic disorder characterized by insulin resistance and the increase in 

blood glucose level. It is associated with serious cardiovascular and cerebrovascular 

complications (Kumari et al., 2007). A serious cerebrovascular complication which is 

commonly associated with diabetes, is the ischemic stroke, which is considered as one of 

the leading cause of death and disability all over the globe. The outcomes of ischemic 

stroke in diabetics are poor with greater mortality and morbidity seen in such patients 

(Bonow and Gheorghiade, 2004). Successful neovascularization, which is a key step in 

the repair of any ischemic tissue, has been reported to be impaired in diabetes (Tamarat et 

al., 2004). This may be a possible reason for the greater severity of ischemic stroke seen 

in such patients. The angiogenic deficiency in diabetics is attributable to many factors 

like reduction in number of endothelial progenitor cells (EPCs) (Fadini et al., 2005) and 

their dysfunctionality (Fadini et al., 2006b) together with the reduced expression of some 

chemokines responsible for homing and engraftment of the EPCs to the ischemic site 

(Gallagher et al., 2007). But the exact pathophysiology of this deficiency, causing 

impairment of tissue repair in diabetics after an ischemic stroke, still remains largely 

unknown.  
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Ischemic Stroke and Diabetes: 

 Ischemic stroke is a neurological deficit of vascular origin lasting 24 hours or longer or 

until death. In this condition, the supply of blood to the brain is diminished due to a 

blockade in the cerebral vasculature. Clinical trials like MRFIT and ARIC have shown 

the increased risk of ischemic stroke in diabetics (Idris et al., 2006). The Baltimore 

Washington Cooperative Young Stroke Study (1996) has also shown the risk of ischemic 

stroke to be increased by ten fold in young people (< 44 years) with diabetes compared to 

normal subjects (Rohr et al., 1996). Outcomes after ischemic stroke are also worse in 

diabetics as evidenced by higher morbidity and mortality rates and more severe residual 

neurological deficits, in such patients  compared to the normal subjects (Haheim et al., 

1995;Oppenheimer et al., 1985;Toni et al., 1992). Conditions associated with diabetes, 

like obesity, insulin resistance, impaired glucose tolerance (Idris et al., 2006), and also 

presence of silent cerebral infarcts (Baliga and Weinberger, 2006) collectively constitute 

important risk factors for stroke. However, the pathophysiology of the worse outcome 

after ischemic stroke in diabetics is still not well understood.   

   After an ischemic stroke, the neurons generally die by two processes. They are necrosis 

and apoptosis(Wang et al., 2001). Necrosis occurs in the core region and is characterized 

by permanent inflammation of cytoplasm and organelles leading to the destruction of 

membrane integrity and cell lysis. The area surrounding the core region of necrotic cell 

death is termed as penumbra which undergoes destruction by apoptosis (Astrup et al., 

1981;Li et al., 2004). The penumbra can be termed as an area of incomplete infarction, 

which with a constrained blood supply, remains metabolically viable for about 48 hours 
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after onset of stroke and thereafter undergoes progressive derangement (Heiss et al., 

1992). Thus, penumbra is a region encompassing the ischemic core which is not only 

dying after an ischemic event, but also is viable to recover by regeneration of the lost 

neurons, a process known as neurogenesis (Paciaroni et al., 2009).  

   The process of neurogenesis can be causally linked to cerebral neovascularization after 

ischemic stroke (Ohab and Carmichael, 2008;Wang et al., 2006b). The newly formed 

blood vessels supply nutrition and oxygen to the infarct area, and also secrete factors like 

angiopoietin-1 which can stimulate neuroblast migration into the peri infarct area (Zhang 

and Chopp, 2009). Also after stroke, the migration of neuroblasts, expressing phenotype 

of the mature neurons, to the peri infarct area have been shown to be associated with 

cerebral vessels (Jiang et al., 2005;Ohab et al., 2006). Besides guiding the migration of 

neuroblasts, the activated endothelial cells of the blood vessels also secrete vascular 

endothelial growth factor (VEGF) which helps in neurogenesis (Zhang and Chopp, 

2009). The importance of blood vessels in the repair of ischemic brain is further indicated 

by the correlation of cerebral vascular density and survival time in patients after stroke 

(Krupinski et al., 1993;Slevin et al., 2000). 

  Studies indicate that the association between diabetes mellitus and stroke is related to 

the pathology of cerebral blood vessels, which is prominent in diabetics (Abbott et al., 

1987;ALEX et al., 1962;Davis et al., 1987) because cerebral vasculature, as shown 

earlier, plays an important part in neurogenesis. Diabetes is associated with capillary 

rarefaction and reduced collateral formation in response to  ischemia (Waltenberger, 

2001). These can be a probable cause for the increased infarct size seen in type two 
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diabetic mice after stroke compared to non-diabetic animals (Vannucci et al., 2001). 

Neovascularization of the adult brain after cerebral ischemia has been shown in 

experimental stroke and human studies (Krupinski et al., 1993;Zhang et al., 2000). 

However diabetes reportedly is associated with increased apoptosis of endothelial cells 

and reduced neovascularization in response to ischemia (Ergul et al., 2009;Fadini et al., 

2005;Tamarat et al., 2004).  

   Neovascularization of adult ischemic tissue can take place in two different ways. They 

are (i) angiogenesis and (ii) vasculogenesis. In angiogenesis, there is sprouting of mature 

endothelial cells from the pre-existing vascular network which give rise to new blood 

vessels in response to hypoxia. In vasculogenesis, bone marrow-derived endothelial 

progenitor cells in circulation accumulate in the ischemic tissue in response to hypoxic 

stimulus and take part in new vessel formation (Ceradini and Gurtner, 2005;Tamarat et 

al., 2004). The bone marrow-derived endothelial progenitor cells (EPCs) are circulating 

immature cells with the ability to differentiate into mature endothelium, which actively 

take part in neovascularization (Asahara et al., 1999). During osteogenesis, a periosteal 

bud composed of capillaries, osteogenic cells and mesenchymal cells penetrate into the 

cartilage prototype of the future bone. These mesenchymal cells give rise to the fixed 

tissue elements known as stromal cells (Dorshkind, 1990). These stromal cells, which 

represent a mixed cell population of various tissue committed stem cells including 

endothelial progenitor cells (EPCs) are harbored in the hypoxic niche of bone marrow (Li 

and Chopp, 2009;Suda et al., 2005).  Studies suggest that bone marrow derived EPCs 

make significant contribution to angiogenic growth factor- induced angiogenesis and can 

also participate in vasculogenesis after cerebral ischemia (Murayama et al., 2002;Zhang 
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et al., 2002a). Moreover, the EPCs have also been suggested to be involved in 

neurogenesis of the damaged brain by secretion of neurogenic factors like brain derived 

neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF)(Leventhal et 

al., 1999;Palmer et al., 2000). Sobrino et al in 2007 also reported the increase in the level 

of circulating EPCs to be associated with good outcome after acute ischemic stroke, 

which may be due to the increased neurogenesis induced by the EPCs (Sobrino et al., 

2007). 

  The EPCs, which are thus seen to be important for the repair of the damaged brain after 

cerebral ischemia, have been reported to be reduced in number and also become 

dysfunctional in diabetic patients, compared to that in age-matched healthy subjects 

(Fadini et al., 2005). Glucose tolerance has been shown to be negatively associated with 

the level of circulating progenitor cells (Fadini et al., 2007a). In vitro study suggests that 

a high glucose level can induce apoptosis of endothelial cells (Baumgartner-Parzer et al., 

1995). Owing to their endothelial phenotype, EPCs may undergo apoptosis when exposed 

to high glucose, and this may explain in part their decrease in diabetic patients (Fadini et 

al., 2005). Moreover diabetic EPCs have also been reported to display functional 

impairments, such as reduced proliferation, adhesion, migration and incorporation into 

tubular structures (Fadini et al., 2007b;Gallagher et al., 2007;Tepper et al., 2002).  

  The mechanisms underlying reduction in number and functional impairment of diabetic 

EPCs, though not clear, may include reduced mobilization and shortened survival of 

these cells into peripheral blood in diabetes (Fadini et al., 2006a;Fadini et al., 2006b). 

While the latter has been shown to be dependent on intracellular pathways, triggered by 
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hyperglycemic stress (Krankel et al., 2005;Seeger et al., 2005), the proper explanation for 

the former still remains largely unexplored. A recent report shows that mobilization of 

the EPCs, in response to ischemia is defective in diabetes (Capla et al., 2007). The same 

report also showed that local injection of normal endothelial cells to the diabetic ischemic 

tissue failed to restore new blood vessel formation. Reduced mobilization together with 

the functional impairment of EPCs, as mentioned, may be due to the weakened release of 

bone marrow stimulating factors like SDF-1a and VEGF in diabetes (Gallagher et al., 

2007;Waltenberger, 2001).  

 These studies suggest that the reduced number of EPCs together with the reduction in 

factors essential for their proper functioning contributes largely to the impairment of 

ischemic neoangiogeneis in diabetics, which may be responsible for the worse outcome 

of these patients after ischemic stroke. 

The SDF-1a/CXCR4 axis: 

   The tissue committed stem cells of the bone marrow including the EPCs have been 

reported to express Cysteine-X-Cysteine Receptor 4 (CXCR4) on their surface 

constitutively (Kucia et al., 2005). This CXCR4 is a seven membrane spanning G-protein 

coupled receptor, originally called LESTR/fusin (Bleul et al., 1996), and got its present 

designation due to its exclusive binding affinity towards the CXC chemokine, stromal 

cell derived factor-1 (Li and Ransohoff, 2008). The CXC chemokines represent a 

subfamily of small chemo attractant proteins that contain four conserved cysteine 

residues at their amino terminus, of which the first two are separated by a non conserved 

amino acid (X) (Mehrad et al., 2007). The CXC chemokine, stromal cell derived factor-1 
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(SDF-1) or CXCL12 was originally isolated from the murine bone marrow in 1993 

(Tashiro et al., 1993). The gene for this protein is located in chromosome 10 and is 

highly conserved across species, maintaining about 99% homology between mouse and 

man which indicates its fundamental biological significance (Ceradini and Gurtner, 

2005). SDF-1 contains two isoforms - alpha (a) and beta (b) - formed by alternative 

splicing (Stumm et al., 2002) of which the alpha or a is the dominant one. This 

chemokine is constitutively expressed in high level in the ischemic niche of  bone 

marrow, lymph node and muscle derived fibroblasts (Kucia et al., 2004) and also in 

tissues like brain and heart in response to ischemia (Chen et al., 2008;Hill et al., 2004) 

   SDF-1a binds exclusively to its cognate receptor CXCR4 and like any other chemokine, 

gives rise to downstream pathways which lead to the directional movement of different 

kinds of cells to the target organ or tissue (Li and Ransohoff, 2008), a process defined as 

chemotaxis. When SDF-1a binds to the extracellular part of CXCR4, it causes a 

modification of the tertiary structure of the receptor protein, which in turn triggers the 

activation of the intracellular part of the heterotrimeric G protein (Rot and von Andrian, 

2004). Exchange of guanosine diphosphate (GDP) for guanosine triphosphate (GTP) by 

the activated heterotrimeric G protein leads to its dissociation into α and βγ sub units (al-

Aoukaty et al., 1996;Kuang et al., 1996). The α subunit causes activation of 

phospholipase C which generates diacyl glycerol (DAG) and inositol 1,4,5 triphosphate 

(IP3) triggering intracellular release of Ca++ ions from endoplasmic reticulum (Li and 

Ransohoff, 2008). The βγ subunit on the other hand activates phosphoinositide-3 kinase 

(PI3K) which in turn triggers downstream pathways mediated by serine/threonine kinase 

AKT, PyK2 and nuclear transcriptional factor (NFκB) (Rot and von Andrian, 2004). The 
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SDF-1a/CXCR4 interaction has also been suggested to activate signaling pathways like 

P38 MAPKs and JAK/STAT (Vila-Coro et al., 1999). 

The SDF-1a/CXCR4 interaction is transient and shuts down rapidly. The G alpha 

subunits show intrinsic GTPase activity and hydrolysis of GTP reunites the subunits, 

again, forming the original inactive heterotrimers (Rot and von Andrian, 2004). Also the 

binding of SDF-1a to its receptor CXCR4, stimulates phosphorylation of the intracellular 

part of the CXCR4 receptor by G receptor kinase (GRK) which facilitates its binding to β 

arrestin (Aragay et al., 1998;Barlic et al., 1999;Fan et al., 2001). This causes 

internalization of the receptor in the cell (Huttenrauch et al., 2002). Within the cell the 

receptor is either degraded or resensitized  again and transported to the cell surface by a 

group of enzymes called Rab GTPases (Li and Ransohoff, 2008;Rot and von Andrian, 

2004).   

Study by Hyduk et al. in 2007 has shown, that increased phospholipase C and 

intracellular calcium levels, induced by SDF-1a/CXCR4 interaction, greatly enhanced the 

arrest of transplanted human endothelial progenitor cells to the ischemic myocardium of 

mice (Hyduk et al., 2007). Also Zhao et al in 2008 has shown the dependence of SDF-1a 

mediated chemotaxis of human breast cancer cells on activation of PI3K/AKT pathways 

(Zhao et al., 2008). Massa et al in 2006 has shown that the increase of intracellular 

calcium and activation of PyK 2 signalling pathway by SDF-1a in CXCR4+ pituitary cells 

led to the proliferation of these cells in vitro (Massa et al., 2006). The JAK/STAT 

pathway triggered by SDF-1a/CXCR4 interaction (Vila-Coro et al., 1999) has also been 

shown to be important for migratory and angiogenic responses of CXCR4+ progenitor 
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cells (Valdembri et al., 2002;Zhang et al., 2001).  So these studies indicate that the 

interaction of SDF-1a with its cognate receptor CXCR4, may give rise to important 

intracellular pathways which can play a highly significant role in the proliferation and 

chemotaxis of CXCR4+ progenitor cells to the region of ischemia, thus facilitating repair. 

SDF-1a/CXCR4 axis mediated ischemic tissue repair : 

  Restoration of vascular supply to the region of ischemic injury is important for their 

repair (Goligorsky et al., 2009). Endothelial progenitor cells (EPCs) have been suggested 

to induce reendothelialization in the ischemic area and thus facilitate repair (Asahara et 

al., 1999;Hristov et al., 2003). But migration and subsequent engraftment of these 

circulating stem cells in the ischemic tissues are indispensible for the functional recovery 

after an ischemic injury (Orlic et al., 2001). SDF-1a, a chemokine expressed in a wide 

variety of tissues under low oxygen tension (Kucia et al., 2004;Shirozu et al., 1995), is a 

strong chemoattractant for the CXCR4+ haematopoeitic stem cells and helps their 

successful migration from fetal liver to the bone marrow (Zou et al., 1998). The EPCs are 

thought to be originated from hematopoietic stem cells of the bone marrow (Goligorsky 

et al., 2009) and also express CXCR4 receptor on their surface (Kucia et al., 2005). This 

together with the fact that SDF-1a is upregulated in tissues after an ischemic attack (Chen 

et al., 2008;Hill et al., 2004) indicates that SDF-1a/CXCR4 pathway may be involved in 

attraction of the CXCR4+ EPCs to the ischemic tissue and thus facilitate repair.  

Under normal physiological conditions, SDF-1a is highly expressed in the hypoxic niche 

of bone marrow than in any other tissue (Chang et al., 2007). Expression of SDF-1a in 

hypoxic environment has been attributed to the expression of another transcription factor 
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called hypoxia inducible factor-1alpha (HIF-1a) because the binding domain of the latter 

has been shown to be present on the promoter region of SDF-1a gene (Ceradini and 

Gurtner, 2005). The expressed SDF-1a remains attached to the endothelial cells of the 

bone marrow via heparin sulphate proteoglycan on the luminal surface of these cells 

(Middleton et al., 2002). The CXCR4 receptor, present on the EPCs of the bone marrow 

(Kucia et al., 2005), interacts with the SDF-1a, and this interaction leads to the activation 

of the integrin molecule, very late antigen-4 (VLA-4) on the surface of EPCs, resulting in 

the firm adhesion of these cells to the hypoxic niche of bone marrow (Lataillade et al., 

2004).  

  Following injury SDF-1a is upregulated in the ischemic tissue (Hill et al., 2004) and is 

first released in the intravascular compartment. It is then translocated in the plasma and 

ultimately reaches the bone marrow compartment through a process called transcytosis 

(Dar et al., 2005). After entering the bone marrow microenvironment the SDF-1a 

activates several proteases like elastase, cathepsin G and matrix metalloproteinase-9 

(MMP-9) (Lataillade et al., 2004;Petit et al., 2007). The proteases disrupt the interaction 

between SDF-1a and CXCR4+ EPCs in the bone marrow by N-terminus cleavage of 

SDF-1 (McQuibban et al., 2001). This is followed by reduction in the expression of 

VLA-4 on the surface of EPCs (Mohle et al., 1993). These, alongwith the increased 

levels of SDF-1a in the peripheral blood following ischemic injury (De et al., 2004), 

mobilize the EPCs to the systemic circulation (Petit et al., 2007),(Heissig et al., 2002).    

  After entering the systemic circulation the endothelial progenitor cells should get 

directed towards the ischemic site. The migration of CXCR4+ cells towards regions 
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expressing SDF-1a has been suggested to be dose dependent (Fischer et al., 2004). The 

endothelial cells at the site of ischemia highly express SDF-1a (Yao et al., 2003). This 

high gradient of SDF-1a in the ischemic site thus guides the migration of endothelial 

progenitor cells (EPCs) towards the ischemic areas (Yamaguchi et al., 2003).Once they 

reach the site of ischemia the CXCR4+ EPCs interact with SDF-1a expressed by the 

ischemic endothelium. This interaction leads to the activation of integrins like VLA-4 

and VLA-5 on the surface of EPCs (De et al., 2004) and also vascular cell adhesion 

molecule (VCAM-1) on the damaged endothelium (Butler et al., 2005). The expression 

of these integrins and adhesion molecule leads to the adhesion of EPCs to the vascular 

wall (Massberg et al., 2006). The activation of integrins by SDF-1a/CXCR4 interaction 

also stimulates the reorganization of actin which in turn helps the arrested cells to 

undergo transendothelial migration (Nishita et al., 2002;Peled et al., 2000). After 

infiltration, the CXCR4+ EPCs take up their position in the perivascular niche where 

there is a high concentration of SDF-1a (Petit et al., 2007). This high concentration of 

SDF-1a also helps in the retention of these angiogenic cells in the ischemic niche (Jin et 

al., 2006), and stabilization of the newly formed blood vessels (Petit et al., 2007). 

 The SDF-1a/CXCR4 axis can hence be an important pathway for the neovascularization 

of the ischemic tissue and the reduced expression of any of its components can lead to 

impairment of tissue repair after an ischemic attack (Schober et al., 2003;Schober et al., 

2006;Zernecke et al., 2005). 
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Ischemic tissue repair in diabetes: SDF-1a/CXCR4 axis dysfunction :-  

 It has been observed in animal models that diabetes decreases vascular density is reduced 

after hind limb ischemia (Abaci et al., 1999;Yarom et al., 1992). Neovascularization, 

which is important for the repair of ischemic tissue gets severely impaired in diabetes 

(Fadini et al., 2006b;Tamarat et al., 2004). Reduced collateral formation in response to 

ischemia, as is evident from the angiograms of diabetic patients, can lead to circulatory 

deficits which may impair the repair of ischemic tissues in them (Abaci et al., 1999). 

Poor collateral formation in diabetes may be attributed to the reduced mobilization of 

stem cells from the bone marrow (Fadini et al., 2007a;Tamarat et al., 2004). 

 The CXCR4+ endothelial progenitor cells (EPCs), harbored in the hypoxic niche of bone 

marrow, which are important for the neovascularization of the ischemic tissue, are 

reduced in number and display functional impairments like decreased proliferation, 

adhesion, migration and incorporation into vascular structures in diabetes (Fadini et al., 

2007a;Fadini et al., 2006b;Gallagher et al., 2007;Tepper et al., 2002). The defective 

homing and recruitment of diabetic EPCs have also been shown by Capla et al. in an in 

vivo murine model. The same group also found that injection of normal endothelial 

progenitors to the streptozotocin induced diabetic mice could not restore the formation of 

new blood vessels to the baseline (Capla et al., 2007). These results indeed suggest a 

weakened release of certain angiogenic factors like SDF-1a and vascular endothelial 

growth factor (VEGF), can be a probable cause for the functional impairment of EPCs 

seen in diabetes (Ceradini and Gurtner, 2005;Gallagher et al., 2007).  



13 

 

 The EPCs express CXCR4, the cognate receptor for SDF-1a. But the expression of SDF-

1a has been reported to be diminished in the peripheral wounds of  diabetic mice 

(Gallagher et al., 2007). Hypoxia inducible factor-1a (HIF-1a) expressed under ischemia 

has been suggested as the upstream signal for the transcription of SDF-1a, since the 

promoter region of SDF-1a gene shows binding domain for HIF-1a (Ceradini and 

Gurtner, 2005;Schober and Zernecke, 2007). The expression of HIF-1a is in turn up 

regulated by the cytokine called insulin like growth factor-1 (Yu et al., 2007), which has 

been reported to be diminished in the diabetic wounds (Bitar, 2000;Brown et al., 1997). 

This can thus decrease HIF-1a in diabetic wounds which can in turn be a probable reason 

for the decreased secretion of SDF-1a in diabetes (Ceradini and Gurtner, 2005). Also the 

activity of the enzyme, dipeptidyl peptidase IV has been shown to be enhanced in 

diabetes compared to those obtained from normal subjects (Segal et al., 2006). This is an 

enzyme that cleaves off and inactivates SDF-1a (Ohtsuki et al., 1998;Perrault et al., 

2004). The increased activity of this enzyme in diabetes indicates another possible reason 

for the functional impairment of SDF-1a chemokine in diabetes. Beside this, the level of 

CXCR4+ progenitor cells have also been reported to be diminished in the peripheral 

blood of patients with diabetic complications (Egan et al., 2008). 

 So these studies collectively suggest that there may be multiple defects in the intrinsic 

expression of SDF-1a/CXCR4 axis in diabetes which may be an important factor for the 

diabetic impairment of wound healing after ischemic injury. 
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Regenerative therapy of stroke in diabetes : Significance of SDF-1a/CXCR4 axis :- 

  Diabetes is associated with poor outcome after ischemic stroke as is evident from the 

greater mortality and morbidity seen in type two diabetic patients after stroke (Ho et al., 

2003;Kurukulasuriya et al., 2006;Spratt et al., 2003) . Studies with diabetic patients and 

rodent models have shown increased cellular death and impaired recovery of the ischemic 

tissue after stroke (Folbergrova et al., 1992;Siesjo, 1988). Restoration of the lost blood 

vessels to the ischemic area is important for the recovery after an ischemic stroke because 

the newly formed blood vessels can supply oxygen and nutrients required for the repair 

(Zhang and Chopp, 2009) . The newly formed blood vessels also supply neurogenic 

factors, guide the migration of neuroblasts from the sub ventricular zone of brain to the 

ischemic area and  helps in their proliferation and maturation (Zhang et al., 2000;Zhang 

et al., 2002b;Zhang and Chopp, 2009). Thus the process of neovascularization in the 

ischemic brain can be causally linked to neurogenesis (Ohab et al., 2006;Wang et al., 

2006b) which is associated with better functional outcome after stroke (Bliss et al., 

2007;Zhang and Chopp, 2009).  

  Evidence that intravenous administration of bone marrow derived stromal cells, can 

induce angiogenesis in the ischemic boundary after stroke (Chen et al., 2001a), has 

fostered active investigation for using these cells in the cell transplantation therapy of 

ischemic stroke. Intrastriatal transplantation of non hematopoietic stem cells from the 

bone marrow, has been reported to improve functional recovery after stroke in a murine 

model (Li et al., 2000). Transplantation of EPCs, a member of the family of bone marrow 

derived stem cells, has improved blood flow and vascular density in ischemic hind limb 
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of mice (Kalka et al., 2000). In addition to neovascularization, EPCs have also been 

shown to improve nerve conduction (Naruse et al., 2005) and the level of circulating 

EPCs has been associated with better outcome after ischemic stroke (Sobrino et al., 

2007).  

  Expression of the CXCR4 receptor on the surface of EPCs (Kucia et al., 2005;Mohle et 

al., 1998) and upregulation of its specific ligand, SDF-1a, in the brain after focal cerebral 

ischemia (Hill et al., 2004;Stumm et al., 2002), makes SDF-1a/CXCR4 an attracting 

therapeutic target for ischemic stroke. SDF-1a has been shown to be involved in 

mobilizing of CXCR4+ progenitor cells (Sweeney et al., 2002) from the bone marrow and 

the subsequent homing of these cells to the site of ischemic injury (Ceradini and Gurtner, 

2005;Sweeney et al., 2002). Also, local delivery of SDF-1a gene in the ischemic 

hindlimb of mice has been shown to promote angiogenesis (Hiasa et al., 2004;Yamaguchi 

et al., 2003) because apart from being a strong chemoattractant for CXCR4+ EPCs (Aiuti 

et al., 1997;Hattori et al., 2001;Peled et al., 1999), the SDF-1a, itself has been shown to 

induce VEGF expression which promotes angiogenesis in vivo (Salcedo et al., 1999). 

Also SDF-1a has been reported to be involved in the attraction of CXCR4+ neuroblasts 

from the sub ventricular zone (SVZ) in the ischemic boundary of adult rodent brains after 

cerebral ischemia (Zhang and Chopp, 2009) which indicates its role in neurogenesis. 

  The physiological expression of SDF-1a in response to ischemia is however transient 

(Hill et al., 2004) and often insufficient for ischemic repair in disorders like diabetes 

(Gallagher et al., 2007). Transplantation of bone marrow derived stromal cells, has been 

shown to increase the concentration of SDF-1a, and cause subsequent migration of 
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neuroblasts to the peri infarct area after stroke in animal models (Chen et al., 2003a;Shen 

et al., 2007). Specially engineered human bone marrow derived stem cells, when 

transplanted intravenously, have been shown to overexpress neurotrophic factors which 

have reduced cerebral ischemic damage in rat model, following focal cerebral ischemia 

(Kurozumi et al., 2005). However, functional recovery with the cell transplantation 

therapy after stroke, is associated with the number of transplanted cells homing to the 

ischemic part, and even after intracerebral transplantation very few cells have been found 

to integrate in the ischemic brain (Bliss et al., 2007). Thus increasing the factors, 

responsible for the homing of the transplanted cells to the ischemic site can largely 

contribute to the success of cell transplantation therapy after ischemic stroke.  

 SDF-1a, a main homing factor for endogenous as well as transplanted progenitor cells, 

has been reported to be diminished in diabetic wounds (Gallagher et al., 2007) alongwith 

the reduction in CXCR4+ progenitor cells (Egan et al., 2008). Thus investigating the 

expression of the SDF-1a/CXCR4 pathway in the diabetic brain after ischemic stroke can 

be useful in making the cell transplantation therapy in such patients more successful.  
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Hypothesis: We hypothesize that SDF-1a/CXCR4 axis is impaired in type II diabetic 

(db/db) mice, and this dysfunction is responsible for enlarged damage and poor outcome 

after ischemic stroke in diabetic mice. 

 

Specific Aim-1:  To determine the expression of SDF-1a/CXCR4 and cerebrovascular 

density in db/db diabetic mice and its control db/+ mice. 

 

Specific Aim-2: To determine the infarct volume and the expression of SDF-1a/CXCR4 

in db/db diabetic mice and its control db/+ mice in response to ischemic stroke induced 

by middle cerebral artery occlusion surgery (MCAO). 

 

Specific Aim-3:    To determine the over expression of SDF-1a and its localization in the 

brains of db/db mice, injected with AAV-SDF-1a vector.      
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Experimental Design. 

Specific Aim 1: Male db/db diabetic mice of age 8 weeks and age matched non-diabetic 

db/+ mice (n = 4/group) were used for the experiment. Mouse were transcardially 

perfused with PBS and 4% paraformaldehyde under anaesthesia and brains were 

collected. Microvascular density in the frontal cortex were determined by 

immunohistochemical analysis in both groups and the results were quantitatified by 

Image-J software (NIH). 

 

Specific Aim 2: Male db/db diabetic mice of age 8 weeks and age matched non-diabetic 

db/+ mice (n = 12/group) were used for the experiments. Focal cerebral ischemia was 

induced in both groups by middle cerebral artery occlusion surgery (MCAO). 48 hours 

after surgery the mice from each group were divided into two subgroups (n = 6/group). 

One subgroup containing both db/db and db/+ mice were perfused under anesthesia and 

brains were collected and sectioned using cryostat (1 mm thickness). Images of the 

sections were taken by confocal microscope (Leica TCS SP2) and volume of infarction 

was quantified with Image J software (NIH). The other sub group containing both db/db 

and db/+ mice (n = 6/group) were sacrificed and both the ischemic and non ischemic 

sides of the brains were divided into two halves. One half was collected in RNA later and 

the other half was collected in dry ice. Western blot was done for determining the 
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expression of proteins, SDF-1a and CXCR4 with half of brains collected in dry ice for 

both the ischemic and non ischemic sides. Real time RT PCR was done with half of 

brains collected in RNA later for determining the expression of m-RNA for SDF-1a and 

CXCR4.   

 

Specific Aim 3: Male db/db diabetic mice of age 8 weeks (n = 6) were used for the 

experiment. Mice were anesthetized and received microinjection of Adeno associated 

virus, AAV-null and AAV-SDF-1a, into left and right side of the striatum respectively. 

Brains were harvested for 14 days after injection and the expression of SDF-1a was 

determined by immunohistochemical analysis. The localization of SDF-1a in brain was 

determined by double immunohistochemical analysis with antibodies for SDF-1a and 

glial fibrillary acidic protein (GFAP). Images were obtained by confocal microscopy 

(Leica TCS SP2).  
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Materials and Methods: 

Animals. C57BL/6 strain of mice have been widely used as animal models for ischemic 

stroke (Tamaki et al., 2006). C57BLKS/J strain of mice has 70% homology to the 

C57BL/6 strain. Adult male C57BLKS/J Cgm+/+Leprdb/J mice (Jackson Labs, USA) of age 

8 weeks served as our murine model for type-2 diabetes (db/db) and their lean littermates 

(db/+) served as controls. Mice were fed with standard chow (Harlan) and water ad 

libitum. All procedures were approved by the Wright State University Laboratory Animal 

Care and Use Committee (LACUC) and were in accordance with the Guide for the Care 

and Use of Laboratory Animals issued by the National Institute of Health. 

Methods:  

Determination of microvascular density:   

 Microvascular density in the frontal cortex of brain was measured in both db/db and 

db/con group as per previous reports(Munzenmaier and Greene, 2006;Oyamada et al., 

2008). The db/db (diabetic) and db/+ (control) were injected with Ketamine/xylazine 

mixture (100:8 mg/kg). Mice were perfused transcardially with phosphate buffer saline 

(PBS) to flush away the blood and then with 4% paraformaldehyde to fix the 

microvessels in brain. The brains were then kept in 4% paraformaldehyde overnight at 4 

degree centigrade. The brains were cryo protected with 30% sucrose in PBS for three 

days. After 3 days sections of the frontal cortex (20 μm) from both the groups were cut 
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using cryostat and washed with PBS for 3 times 5 mins each. Free floating sections 

(20μm) were mounted on slides and they were blocked with 5% normal donkey serum 

(Vector Lab) in PBS containing 0.3% Triton-X 100 and 1% BSA (bovine serum albumin, 

Sigma) for 1 hour at room temperature. Sections were then incubated overnight with 

primary anti body for CD31 cells, rat anti CD31 (1:50, BD Biosciences) diluted in PBS 

with 0.3% Triton X-100 and 1% BSA. The sections were washed with PBS for 3 times 10 

mins each and were then incubated for 2 hrs. at room temperature with Alexa Fluor 594- 

conjugated donkey anti rat IgG (1:200, Invitrogen) secondary antibody. After 2 hours the 

slides were washed in PBS for 30 mins and the sections were coverslipped with 

fluorescence mounting medium (Vector Lab, H-1000). Following this the slides were 

visualized with a confocal microscope (Leica TCS SP2). Five adjacent images (1 mm2) 

were taken from each of the three sections in the frontal cortex region and quantified with 

image J software (NIH).  

 

 

Middle Cerebral Artery Occlusion Surgery:  

Middle Cerebral Artery Occlusion (MCAO) is a common method of inducing focal 

ischemic stroke to mice and has been described previously (Hata et al., 1998;Walther et 

al., 2002). Mice were anesthetized with isoflurane (1-5 %) inhalation using precision 

vaporizer. Incision was made along the neck. One drop of buprinorphine (0.25% 

buprinorphine) was applied locally for analgesia. Left common carotid artery was 

exposed and legated. The external carotid artery was legated and cut off to expose the left 

interior carotid artery. A 7-0 nylon monofilament (Ethicon, Somerville, NJ, USA) with 



heat- blunted tip (220 μm), coated with silica was inserted through an incision on 

common carotid artery and advanced into left interior carotid artery to reach the base of 

the left middle cerebral artery (about 10 mm distal to the carotid bifurcation). The suture 

was left in position to induce permanent MCA occlusion (Fig-1). The skin incision was 

rejoined with an uninterrupted suture using 5.0 Dexon II sterile suture with CE-2 cutting 

needle. Immediately after surgery mice were treated with buprinorphine (0.1mg/kg s.c.). 

The same dose of buprinorphine was administered the first and second day after surgery 

for analgesia.  
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Schematic explanation of embolization and the operation 
procedure

C

Schematic explanation of embolization and the operation 
procedure

C

 

Figure 1. An assembled view of (A) brain and neck and an original image with skull in 

normal C57BL/6 mice. (B) ACA; anterior cerebral artery, BA; basilar artery, CCA; 

common carotid artery, ECA; external carotid artery, ICA; internal carotid artery, MCA; 

middle cerebral artery, PCA; posterior cerebral artery, PPA; pterygopalatune artery, 
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SCA; superior cerebellar artery, VA; vertebral artery. (C) The MCAO surgery 

represented schematically by passing a nylon monofilament through an incision on the 

common carotid artery (Tamaki et al., 2006).  

 

Determination of cerebral infarct volume:  

Cerebral infarct volume was determined by staining with 2,3,5 triphenyl tetrazolium 

chloride. TTC staining is an established method for quantifying cerebral infarction 

(Bederson et al., 1986). TTC is a salt which accepts a proton from succinate 

dehydrogenase in the inner membrane of mitochondria and subsequently gets reduced to 

a red insoluble form formazan. Thus the infarct area that is an area of inactive enzymes 

does not get stained and appears pale (Tureyen et al., 2004). Mice that underwent MCAO 

surgery were sacrificed 48 hours after the surgery. Brains were removed and cut into 5-6 

sections with a mouse brain matrix. Each section was of thickness 1 mm. The brain 

sections were stained with 2% solution of TTC (Lundy et al., 1986) for 25 minutes at 37 

degree centigrade in the LC incubator in dark. Sections were checked every 5 mins to 

confirm the stain. The sections were then washed with saline and fixed in 4% 

paraformaldehyde for 30 mins at room temperature. They were stored at 4 degree 

centigrade in 10% formalin before analysis. Images of stained slices were taken using a 

flat bed scanner and were saved in the computer for analysis. The border between infarct 

(unstained) and non-infarct (stained) tissue was outlined with the image-J software 

(NIH), an image analysis system. The infarct area was calculated by subtracting the area 

of non-lesioned ischemic hemisphere from the total area of the slice. The volume of 
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infarction was calculated by integration of lesion areas (area of infarct [mm2] x thickness 

[1mm]) (Lin et al., 1993).  

 

Western Blot Analysis of SDF-1a and CXCR4 expression in brain : 

 This technique was performed for the determination of SDF-1a and CXCR4 protein 

expression in the ischemic and non ischemic sides of brains of both db/db and db/+ mice 

after MCAO surgery. The mice were sacrificed by decapitation and the brains were 

collected in dry ice 48 hours after surgery. The samples from all the groups were thawed 

and homogenized in 400μl of cold lysis buffer which contained glycerol, HEPES (pH 

7.4), EDTA, NaCl, MgCl2 and protease inhibitor (Roche Diagnostics, 

Indianapolis,USA). The samples were sonicated and centrifuged for 5 minutes at 

14,000g. The supernatants were recovered from each tube and the protein concentrations 

were determined by the Bradford method for protein estimation using Bio Rad reagent 

(Bio Rad Laboratories, Hercules, CA). For gel loading, the final sample volume was 

corrected to 20µg of total protein. To each of the samples, 10µl of loading buffer (40% 

glycerol, 50% Tris-HCL, 10% SDS, bromophenol blue, 0.4% β-mercaptoethanol) was 

added and the samples were boiled for 5 minutes. Then the samples were loaded on 10% 

Tris-Glycine SDS-Page gel (BioRad Laboratories, Hercules, CA). Gels were 

electrophoresed at 100V, 50 mA until the dye front came near the bottom of the gel. The 

proteins were transferred from the gel to 0.2µm PVDF membranes overnight at 10V and 

50mA. The PVDF membranes were blocked with 10 ml of 5% milk in TBS-T buffer for 

1 hour at room temperature. Then primary antibodies were added. Rabbit Anti-CXCR4 

(Ana Spec, San Jose, CA, USA) 1:500 was used as the primary antibody for CXCR4. For 
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SDF-1a, monoclonal mouse anti SDF-1a antibody 1:200 (R&D Systems Inc.,USA) was 

used. β-actin was used as a house keeper. For that, monoclonal anti β-actin(Sigma, Saint 

Louis,MO, USA) was used with a dilution of 1:4000 with both SDF-1a and CXCR4. 

Primary antibodies were diluted in blocking buffer for a total of 10ml/membrane. The 

membranes were probed with primary antibody for 2 days at 4oC. Then the membranes 

were washed with TBST solution for 3 times, 5 mins. each. The membranes were probed 

with secondary antibody for 1 hour at room temperature. The secondary antibodies were 

diluted to 1:40000 (1µl/40 ml) with TBS-T buffer. For SDF-1a, horse radish peroxidase 

linked antibody, anti mouse CXCL12 were used. For CXCR4, anti rabbit CXCR4 were 

used. After probing, the membranes were washed again with TBST and the sample 

proteins were viewed via the chemiluminescence produced by the ECL substrate (Pierce) 

and captured by the Fuji LAS3000 imager. The relative amounts of protein of interest 

(POI) were determined by normalizing to β-actin. 

Normalized Value : (POIdensity- Backgrounddensity)/(Actindensity-Backgrounddensity) 

No values were excluded from the final data calculations unless one of the bands was 

missing. This method of simultaneous probing is a well established one and has been 

described previously (Mouihate et al., 2002). 

 

      Real Time Reverse Transcriptase PCR analysis of SDF-1a and CXCR4 expression 

in brain: 

      This procedure was performed for confirming the expression of m-RNA for SDF-1a and 

CXCR4 in brains of both the db/db and db/con mice as per previous reports (Cook et al., 

2004;Gallagher et al., 2007). The mice were sacrificed by decapitation and the brains 
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were collected in RNA later. The procedure was divided into three parts: (i) Extraction of 

RNA from the respective tissues (ii) Reverse transcription of the RNA to form cDNA  

(iii) Amplification and quantification of cDNA by Real time PCR with SDF-1a and 

CXCR4 primers. 

(i) Extraction of RNA:  

The RNeasy mini kit was obtained from Qiagen Sciences, Maryland, USA. The kit 

contained Buffer RLT, Buffer RPE, 70% ethanol, Buffer RDD and Buffer RW1. The 

buffers were first prepared for use according to the manufacturer’s protocol. For this 1 ml 

of buffer RLT was mixed with 10µl of β-mercaptoethanol. 44 ml of 100% ethanol was 

added to buffer RFE. 70µl of buffer RDD was added to 10µl DNAse. The tissues were 

first homogenized using buffer RLT under a rotor stator.600µl of buffer RLT was added 

to the tubes for brain. The tissues were homogenized. Then they were microcentrifuged at 

max. speed for 5 mins. at room temperature and the supernatant were transferred to a new 

set of tubes.600µl of 70% ethanol was added to the tubes containing the homogenized 

brains. The tubes were gently inverted to mix immediately. Then 700µl of each sample, 

including the pellets if formed, were transferred to the RNeasy mini spin column sitting 

on a 2 ml collection tube. The tubes were centrifuged for 25 secs at 8000 x g.The flow 

through was discarded. 700µl of buffer RW1 (wash buffer) was pipetted into the RNeasy 

column. The tubes were closed gently and centrifuged for 15 minutes at 8000g or 10,000 

rpm at room temperature. The flow through was discarded alongwith the collection tube. 

Then DNase-1 stock solution was made. For that 550µl of RNAse free water was added 

to the lyophilized DNase vial. From this 10µl was added to 70µl of buffer RDD and was 

mixed by gentle inversion. The lyophilized DNase incubation mix (80µl) was pipetted 
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directly into the RNeasy silica-gel membrane and placed for 30min-1hour at room 

temperature. 350µl of buffer RW1 was pipetted into the RNeasy mini column and was 

placed for 1 min. It was centrifuged at 8000g or 10000 rpm for 15 secs and the flow 

through was discarded. 500µl of Buffer RPE (wash buffer) was pipetted into the RNeasy 

column and the tube was closed gently. It was centrifuged at 8000g or 10000 rpm for 15 

secs and the flow through was discarded. 500µl of buffer RPE was again pipetted to the 

RNeasy column. The tubes were closed gently and centrifuged at 8000g or 10000 rpm for 

2 mins. to dry the RNeasy silica gel membrane. The RNeasy column was transferred to a 

new set of 1.5 ml collection tube.35µl of RNase free water were added to the tubes. They 

were kept for 5 mins. and centrifuged at 8000 x g for 2 mins to elute. Nano Drop ND-

1000 spectrophotometer was used to measure the concentration of the RNA in the eluted 

samples. 

 

(ii) Reverse Transcription of  RNA to form cDNA :   

Complementary DNA or cDNA is a double stranded DNA that is derived from mRNA 

obtained from prokaryotes and eukaryotes. It is convenient to act with the cDNA because 

it is not easily degraded by omnipresent RNases. So m-RNA obtained from the tissues 

were reverse transcripted with high capacity cDNA archive kit (Qiagen Life Sciences, 

Maryland, USA). For this technique, the reagents used were 10x Buffer RT, dNTP mix, 

primers for SDF-1a and CXCR4 (50μM), RNase inhibitor (20 unit/μl), omniscript 

reverse transcriptase, template RNA. The master mix was prepared with these reagents as 

per manufacturer’s protocol. Template RNA of brain from both the control and test 
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samples were then added to the respective tubes. The tubes were incubated for 1 hour at 

37 degree centigrade in PCR machine. 

 

(iii) Amplification of cDNA with SDF-1a and CXCR4 primers and quantification by 

real time reverse transcriptase PCR:    

Three groups of tubes, two of which contained cDNA for both control and test samples, 

were diluted 20 fold with RNase-free water. Master mixture was made with Fast SYBR 

Green Master Mix (2X) and both reverse and forward primers for SDF-1a and CXCR4 

respectively in separate groups of tubes as per manufacturer’s protocol. The primer 

sequences used were: for CXCR4 (5’-CTC CAA GGG CCA CCA GAA-3’ and 5’-GGC 

AAA GAA AGC TAG GAT GAG G-3’) (Invitrogen, USA), for SDF-1a (5’-CCA GAG 

CCA ACG TCA AGC AT-3’, 5’-TGT TGA GGA TTT TCA GAT GCT TGA-3’) 

(Invitrogen, USA), and for GAPDH (F- 5’-TGC ACC ACC AAC TGC TTA G-3’ and R- 

5’-GAG GGG CCA TCC ACA GTC TTC TG-3’) (Invitrogen, USA). The cDNA from 

control and test samples were transferred to the respective tubes. The third group of tubes 

contained the PCR master mix with primers for the housekeeper, glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) against which the levels of both SDF-1a and 

CXCR4 were to be determined and standardized. After mixing well by a brief vortex the 

tubes were centrifuged in Beckman Coulter 6R centrifuge for 1 min. at 1000 rpm at a 

temperature of 20 degree centigrade. Then the tubes were subjected to real-time RT PCR 

reaction in a sequence detection system (Applied Biosystems 7500) for 1 hour 23 

minutes. The amplification plot was obtained. The threshold cycle values (Ct) for SDF-

1a, CXCR4 and GAPDH were calculated using a sequence detection software, 7500 
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systems SDS software (Applied Biosystems). The relative expression of m-RNA was 

obtained using the 2 –ΔΔCT method according to a previous report (Livak and Schmittgen, 

2001) .  

Determination of overexpression of SDF-1a in brain after microinjection of AAV-

SDF-1a into brain : 

 To develop the method for overexpression of SDF-1a in brain, microinjection of adeno 

associated virus containing SDF-1a gene was performed according to a previous report 

(Cearley and Wolfe, 2007). The AAV-SDF-1a and AAV-Null vectors were obtained 

from Dr. Yiaolian Tang (Keck Graduate Institute, USA) (Tang et al., 2005).  The vectors 

were packaged into AAV9 virus serotype by University of Penn Vector Center (titer, 1.6x 

1013 GC/ml). The mice were placed on the stereotaxic frame, with the head placed flat, 

for microinjection of AAV-SDF1a or AAV-null into left striatum. An incision was made 

on the back head (around 1 cm). A plastic cannula (Plastics One) was used for guidance 

of injection. A small hole (1 mm diameter), pointing the injection location was drilled 

into the skull for the insertion of a glass micropipette (50 µm). The guide was lowered 

close to the hole. Then, the glass micropipette was lowered through the guide cannula and 

the hole into the striatum (-0.5 mm caudal to bregma, 2.0 mm lateral, and 2.5 mm 

ventral).  The outside part of the glass micropipettes were connected to a picospritzer 

system using a suitable catheter. All injections were 1 µl over 30 seconds and left in place 

for 1 minute to minimize upward flow of viral solution after raising the micropipettes. 

For determining the overexpression of SDF-1a immunohistochemical analysis was 

performed. 14 days after injection of the vector, the mice were injected with 

Ketamine/xylazine mixture (100:8 mg/kg). Mice were perfused transcardially with PBS 
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to flush away the blood and then with 4% paraformaldehyde. The brains were fixed in 

4% paraformaldehyde overnight at 4 degree centigrade. The brains were cryo protected 

with 30% sucrose in PBS for three days. After 3 days brains were sectioned using 

cryostat and sections were collected in PBS. Free floating medial sections (20μm) were 

blocked with 5% normal donkey serum (Vector Lab) in PBS containing 0.3% Triton-X 

100 for 1 hour at room temperature. Sections were then incubated overnight with primary 

antibody for SDF-1a, the monoclonal anti human/mouse SDF-1a (R&D Systems 

Inc.USA) diluted to 1:50 concentration by the blocking buffer. The sections were washed 

with PBS for 3 times 10 mins each and were then incubated for 2 hrs. at room 

temperature with Alexa Fluor - conjugated donkey anti rat IgG (1:200, Invitrogen) 

secondary antibody. After 2 hours the sections were washed in PBS for 30 mins, mounted 

on slides and were coverslipped with fluorescence mounting medium (Vector Lab, H-

1000). Following this, the slides were visualized with a confocal microscope (Leica TCS 

SP2).  

 

Determination of localization of SDF-1a in the glial cells of brain by double 

immunohistochemistry after microinjection : 

Double immunohistochemistry with antibodies for SDF-1a and glial fibrillary acidic 

protein (GFAP), a protein associated with the glial cells, was performed for determining 

the transfection of SDF-1a in the astrocytes of brain of mice injected with AAV-SDF-1a 

according to a previous report with slight modification. Mice were injected with 

ketamine/xylazine mixture (100:8 mg/kg) and were perfused transcardially with PBS to 
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flush away the blood and then with 4% paraformaldehyde. The brains were then fixed in 

4% paraformaldehyde, overnight at 4 degree centigrade. The brains were cryoprotected 

with 30% sucrose in PBS for three days. After 3 days brains were sectioned using 

cryostat and sections were collected in PBS. Free floating medial sections (20 μm) were 

blocked with 5% normal donkey serum (Vector Lab) in PBS containing 0.3% Triton-X 

100, for 1 hour at room temperature. Sections were then incubated overnight with 

primary antibodies for SDF-1a and GFAP, respectively, monoclonal anti human/mouse 

SDF-1a (R&D Systems Inc) and chicken anti GFAP antibody (1:250, Chemicon, USA). 

Following this, the sections were washed with PBS and incubated in secondary 

antibodies, Alexa Fluor 488 donkey anti mouse IgG (1:100, Invitrogen) for SDF-1a and 

Alexa Fluor 594 donkey anti chicken (1:100, Invitrogen) for two hours at room 

temperature. After two hours the sections were washed in PBS for 30 mins, mounted on 

slides and were coverslipped with fluorescence mounting medium (Vector Lab, H-100). 

Following this, the slides were visualized with a confocal microscope (Leica TCS SP2). 

The expression of SDF-1a and GFAP were visible at wave lengths of 488 nm and 594 nm 

respectively.  

  

Statistical analysis: All statistics have been represented as mean ± SE. The data of 

microvascular density and the volume of ischemic damage were analyzed by using paired 

student’s t test. Data of western blot and real time RT PCR were assessed by one way 

ANOVA followed by Fisher LSD post hoc test. Differences between groups have been 

considered significant when p<0.05 for all procedures. 



 

 

 

Results : 

1) Body weight and blood glucose level in both db/+ and db/db mice: 

             Body weight and blood glucose level were determined in both diabetic and the 

control group of mice 24 hours before surgery. The level of plasma glucose was 

determined using an Accu-Check Advantage Blood Glucose Monitor (Roche Diagnostic, 

IN, USA) Table-1 shows the significant increase of both body weight and glucose level 

in the diabetic group compared to the controls. 

TABLE-1:  

db/+ db/dbVariants

B.W. (g) 23.5 ± 0.3 37.5 ± 0.9 *

Blood glucose (mg/dl) 179.7 ± 16.5 524.1 ± 10.2 *
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*: P< 0.0001, compared with  db/+; B.W.: Body weight ; n = 6/group
 

 

 

 

 



 

2) Determination of micro vascular density in the brains of db/+ and db/db mice by 

immunohistochemical analysis: 

The micro vascular density in the frontal cortex region of both diabetic (db/db) and 

control (db/+) mice were determined using confocal microscopy and quantified with 

Image J software (NIH). The density (no. of capillaries/mm2) was found to be reduced in 

the cortex of diabetic mice as compared to the controls (n=4/group, paired t test, Fig 2)  
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Figure-2. (A) Images of the frontal cortex of diabetic (db/db) and  control (db/+) mice. 

Note the reduced vascular density in the diabetic group. (B) The graph shows the 

significant reduction in the number of capillaries per square millimeter in the diabetic 

group. (*p<0.05, n=4/group) 
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3) TTC staining for determination of volume of ischemic damage in brains of db/db 

and db/+ mice : 

         One millimeter thick coronal sections of brains from both db/+ and db/db mice were 

stained with 2,3,5- triphenyltetrazolium chloride (TTC), 48 hours after permanent 

occlusion of middle cerebral artery. Non ischemic areas of both groups have converted 

TTC to a deep formazan compound and thus appear dark red in figure while ischemic 

areas have failed to metabolize TTC and appear white in figure (A) which shows the 

enlarged ischemic damage in the db/db mice compared to the db/+ mice after MCAO 

surgery. Morphometry of ischemic area has been determined with TTC staining and 

expressed as the percentage of total area in db/+ and db/db groups (B). (n=4/group, 

paired t test, Fig 3) 

 

 

 

 

 



 

A B
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Figure-3. (A) TTC stained coronal sections of brain from control (db/+) and (db/db) mice 

subjected to permanent middle cerebral artery occlusion for 48 hrs. (B) Morphometry of 

ischemic area determined with TTC staining and expressed as a percentage of total area 

in both db/db and db/+ mice. Values are mean ± SE.  (p<0.01, n=4/group) 

   

 

4) Expression of SDF-1a protein in the brains of db/+ and db/db mice after   focal 

cerebral ischemia: 

 The expression of the protein SDF-1a was increased in the ischemic side compared to 

the non ischemic side of both the db/+ and db/db mice but the increase was significantly 

more in db/+ mice compared to that of db/db mice in both the sides (n = 6/group, one 

way ANOVA with Fisher LSD post hoc test; Fig. 4)  
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Figure-4. Comparison of SDF-1a expression in the non ischemic and ischemic sides of 

brains of both db/db and db/+ mice, 48 hours after middle cerebral artery occlusion 

surgery. (A) Gel showing the increased expression of SDF-1a in the ischemic sides as 

compared to non ischemic sides of both db/+ and db/db mice. (B) Densiometric analysis 

showing significantly increased SDF-1a expression in both sides of db/+ mice compared 

to db/db mice. (p < 0.05, n = 6/group)  

 

 

5) Expression of CXCR4 protein in the brains of db/+ and db/db mice after focal 

cerebral ischemia: 

 The expression of CXCR4 was increased in the ischemic side compared to non ischemic 

sides of both the db/+ and db/db mice but the increase was significantly more in db/+ 

mice compared to that of db/db mice only in the ischemic hemisphere. In non ischemic 

side the difference of expression of CXCR4 between the two groups, was not significant. 

(n = 6/group, one way ANOVA with Fisher LSD post hoc test; Fig. 5)  
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 Comparison of CXCR4 expression in the ischemic and non ischemic sides of 

 

 determined by Real-Time RT-PCR: 
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Figure-5.

brains of both db/+ and db/db mice, 48 hours after middle cerebral artery occlusion 

surgery. (A) Gel showing the increased expression of CXCR4 in the ischemic side 

compared to non ischemic sides of brains of both db/+ and db/db mice. (B) Densiometric 

analysis showing significantly increased CXCR4 expression in db/+ mice compared to 

db/db mice only in the ischemic side. (p<0.05, n=6/group) 

 

 

6) Expression of mRNA for SDF-1a as

The expression of m-RNA for SDF-1a was increased in the ischemic side com
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more in db/+ mice compared to that of db/db mice in both the sides (n = 6/group, one 

way ANOVA with Fisher LSD post hoc test; Fig. 6)  
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Figure-6. Comparison of m-RNA expression for SDF-1a in the non ischemic and 

ic sides of brains of both db/db and db/+ mice. Graph showing significant increase ischem

in SDF-1a m-RNA expression in both sides of db/+ mice compared to db/db mice. (p < 

0.05, n = 6/group) 
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7) Expression of mRNA for CXCR4 as determined by Real-Time RT-PCR: 

The expression of m-RNA for CXCR4 was increased in the ischemic side compared to 

ificantly 

 

 

 

 

 

 

 

 

 

 

Figure-7. Comparison of expression of m-RNA for CXCR4 in the ischemic and non 

ischemic sides of brains of both db/+ and db/db mice. Graph showing significantly 
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non ischemic sides of both the db/+ and db/db mice but the increase was sign

more in db/+ mice compared to that of db/db mice only in the ischemic side. In non 

ischemic side the difference of expression of CXCR4 between the two groups, was not 

significant (n = 6/group, one way ANOVA with Fisher LSD post hoc test; Fig.7)  
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increased CXCR4 m-RNA expression in db/+ mice compared to db/db mice only in the 

ischemic side. (p < 0.05, n = 6/group) 
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8) Overexpression of SDF-1a in the brain striatum of db/db mice : 

The db/db diabetic mice (n = 6) received microinjection of AAV-SDF-1a in the right 

s the 

 

 

Figure- 8.  Overexpression of SDF-1a in the striatum of mouse brain. (A) Image of left 

striatum ng the expression of SDF-1a after injection of AAV-null. 

 

 

striatum and AAV-null in the left striatum. Immunohistochemical analysis show

successful overexpression of SDF-1a in the part receiving AAV-SDF-1a. (Fig-8). 

A
AAV-null

B
AAV-SDF-1a

 of mouse brain showi

(B) Image of right striatum of mouse brain showing the over expression of SDF-1a after 

injection of AAV-SDF-1a.  
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) Overexpression of SDF-1a in glial cells after microinjection of AAV-SDF-1a : 

    The db/db diabetic mice (n = 6) received microinjection of AAV-SDF-1a in the right 

antibodies for SDF-1a and glial fibrillary acidic protein (GFAP). Confocal microscopy 

 

9

  

striatum and AAV-null in the left striatum. Double immunohistochemistry was done with 

shows overexpression of SDF-1a and GFAP in the right striatum (Fig- 9II) compared to 

the left striatum (Fig- 9I). The merged image (arrow-marked) also shows higher level of 

SDF-1a localizing in the glial cells in the right striatum (Fig- 9II) compared to the left 

striatum (Fig- 9I)   
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Figure- 9. Confocal images of right striatum and left striatum of the brain of db/db mice 

receiving microinjection of AAV-SDF-1a and AAV-null respectively. Note the 

overexpression of SDF-1a and GFAP in the right striatum (Fig- 9 II) compared to the left 

striatum (Figs- 9I). The merged image also shows higher level of SDF-1a loacalizing in 

the glial cells in the right striatum (Fig- 9 II) compared to the left striatum (Fig- 9I). Scale 

bar 100 μm.  
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DISCUSSION  

Cardiovascular complications like congestive heart failure and stroke account for about 

80% of excess deaths in patients suffering from type two diabetes mellitus 

(Kurukulasuriya et al., 2006). Clinical trials have shown the increased incidence and poor 

outcome of ischemic stroke in diabetics (Idris et al., 2006). Angiographs of diabetic 

patients have shown impaired neovascularization in the heart, after myocardial ischemia 

(Abaci et al., 1999). The endothelial progenitor cells (EPCs) which take part in 

neovascularization of the ischemic tissue have been reported to be dysfunctional and 

reduced in number in diabetes (Fadini et al., 2005). The factors responsible for the 

dysfunction of EPCs in diabetes, are however not clear. The EPCs express CXCR4 

receptors on their surface and thus show preferential migration to tissues expressing their 

specific ligand SDF-1a (Li and Chopp, 2009). This together with the earlier reports of the 

upregulation of SDF-1a in the ischemic tissue after injury (Gallagher et al., 2007;Hill et 

al., 2004), suggests the SDF-1a/CXCR4 axis to be a possible pathway for promoting 

mobilization and homing of stem cells to the injured tissue after ischemia. However, most 

of the previous studies have focused on the involvement of this axis in the process of 

peripheral wound healing (Ceradini and Gurtner, 2005;Gallagher et al., 2007).  

 In this study, we have determined the microvascular density and the volume of infarction 

after ischemic stroke in db/db diabetic mice. We have also studied the expression of 

SDF-1a/CXCR4 axis in the ischemic and non ischemic hemispheres of brain of 8 weeks 

old diabetic (db/db) mice both at the levels of protein and mRNA.  
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 We first determined the cerebral microvascular density in the frontal cortex of db/db 

diabetic and the age-matched normal db/+ mice. The endothelial cells of the microvessels 

express CD31 markers on their surface and so we used rat anti CD31 to stain the 

microvessels in the brain. We found that the microvascular density was significantly 

decreased in the brains of db/db mice compared to that in the db/+ mice (Fig- 2). Our data 

showed the reduced microvascular density in the diabetic mice indicating a general 

reduction in tissue vascularization in diabetes. Vascularization is important for tissue 

blood supply from dominated and collateral vasculatures, and also an important step in 

the process of repair after an ischemic damage because the newly formed blood vessels 

supply oxygen and nutrients which are necessary for the regeneration of the lost tissue. 

Diabetes has been shown to be associated with decreased collateral vessel formation in 

response to ischemia (Weihrauch et al., 2004), suggesting impaired neoangiogenesis in 

diabetics after ischemic injury. This impaired angiogenesis can causally link to impaired 

neurogenesis after stroke in diabetics because angiogenic blood vessels secrete factors 

like angiopietin-1 which can stimulate neuroblast migration in the infarct area after stroke 

(Ohab and Carmichael, 2008). Thus impairment of angiogenesis can eventually lead to a 

poor outcome after ischemic stroke in diabetes. 

     Secondly, we determined the severity of ischemic damage in db/db diabetic mice after 

inducing permanent focal cerebral ischemia via middle cerebral artery occlusion surgery. 

We used TTC for staining the brain sections. Our results (Fig- 3) showed the significant 

enlargement in the volume of infarction in the brains of diabetic mice as compared to the 

control mice, indicating a greater severity of ischemic damage in the diabetic group. This 

poor outcome after ischemic stroke in diabetic mice has been supported earlier also by 
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the work of Cakmak et al 2007 who showed the increased infarct volume in 

streptozotocin induced diabetic mice after middle cerebral artery occlusion surgery 

(Cakmak et al., 2007) and Kusaka et al in 2004, whose group reported the infarct size to 

be double in the STZ induced diabetic mice compared to the controls (Kusaka et al., 

2004) 

    In this study we used the focal cerebral ischemic model because it closely resembles 

the human stroke and produces pathological lesions which are heterogeneous and have 

both necrotic core and salvageable penumbra and also normal tissue in both the ipsilateral 

and contralateral hemispheres (Kuraoka et al., 2009). Different methods are available for 

inducing permanent focal cerebral ischemia in mice. The most common methods are 

middle cerebral artery occlusion (MCAO) via intraluminal suture or direct ligation (Xi et 

al., 2004). In our experiment we used the intraluminal suture method to avoid the hassles 

of craniotomy associated with direct ligation. 2,3,5- triphenyl tetrazolium chloride (TTC) 

staining was used as a quantitative method for the comparison of the severity of ischemic 

stroke in diabetic mice and the controls. TTC staining is an established method for the 

detection and quantification of cerebral ischemia in experimental animals (Bederson et 

al., 1986) TTC is a water soluble salt which itself is not a dye but gets reduced by the 

mitochondrial enzymes of normal tissue into a fat soluble red light sensitive compound 

called formazan which turns the normal tissue red, while keeping the infarct tissue 

unstained because of the unavailability of the active mitochondrial enzymes. It is a 

reliable marker to differentiate the ischemic and non ischemic part of a tissue and has 

been shown to be effective up to 3 days after ischemic stroke (Bederson et al., 1986).  
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Earlier reports suggest that revascularization of the injured part following an ischemic 

attack is an important step in the process of recovery. Circulating endothelial progenitor 

cells, derived from the bone marrow, have been shown to mediate endothelial 

regeneration and neovascularization after tissue ischemia (Sobrino et al., 2007). Studies 

suggest that EPCs take part in the cerebral revascularization in adult brain after ischemia 

(Zhang et al., 2002a). Increase of circulatory EPCs in the first week of injury have been 

associated with good functional outcome and reduced infarct size in patients after acute 

ischemic stroke (Sobrino et al., 2007). The expression of the CXCR4 receptor on the 

surface of the EPCs have been shown to be important for the mobilization of these 

progenitors into the blood and their successful homing to the site of injury after 

myocardial ischemia (Zhang et al., 2008). In diabetes, the circulating EPCs show 

considerable dysfunctionality and reduction in number (Fadini et al., 2005). Fadini et al 

in 2006 has shown the ischemia induced mobilization of EPCs to be defective in 

streptozotocin induced diabetic mice (Fadini et al., 2006b). As because the expression of 

CXCR4 receptor is important for the mobilization and homing of EPCs to the ischemic 

site and is correlated with the number of EPCs accumulating to the site of ischemic 

injury, we went ahead to determine the expression of CXCR4 protein in the ischemic and 

non ischemic parts of the brains of diabetic mice and their controls. Our results of 

western blot (Fig- 5) showed a significant decrease in the CXCR4 protein expression on 

the ischemic part of the brains of diabetic mice as compared to the controls. But in the 

non ischemic part of the brains, though the diabetic mice showed a slight decrease in 

CXCR4 protein expression compared to the controls, the difference was not significant. 

To verify the results we got by western blot, we went on to determine the expression of 
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CXCR4 at the level of m-RNA by real time reverse transcriptase PCR. Results (Fig- 7) 

showed that m-RNA for CXCR4 also follows a similar pattern of expression as that of 

the protein. That is, the expression of m-RNA for CXCR4 was found to be significantly 

lowered in the ischemic part of the brains in diabetic mice compared to the controls but in 

the non ischemic part the decrease of CXCR4 m-RNA was not significant. This reassures 

the reduced expression of CXCR4 in the brains of type 2 diabetic mice in response to 

focal cerebral ischemia which also indicates a decreased homing of CXCR4+ EPCs to the 

ischemic brain in diabetes. Our results are in line with the works of Egan et al. who in 

2008 reported the reduced expression of CXCR4 in peripheral blood mononuclear cells 

of diabetic patients (Egan et al., 2008). 

For successful repairing of the ischemic tissue after stroke the circulating CXCR4+ EPCs 

should home to the ischemic region. The work of Capla et al. in 2007 suggested a 

reduced recruitment of the EPCs to the ischemic site in type two diabetic patients when 

compared to normal subjects (Capla et al., 2007).  The CXCR4 receptor expressed on 

EPCs show high affinity for binding to their exclusive ligand SDF-1a (Li and Ransohoff, 

2008). Kollet et al. in 2003 have shown increased homing and engraftment of human 

bone marrow derived progenitor cells in murine liver by the injection of SDF-1a (Kollet 

et al., 2003). The work of Hill et al in 2004 have suggested the upregulation of the 

chemokine SDF-1a in the ischemic penumbra following stroke and its importance in the 

homing of CXCR4+ cells of the bone marrow to the areas of ischemic injury (Hill et al., 

2004). SDF-1a has also been reported to be associated with the migration of neuroblast 

into the periinfarct area of brain (Chen et al., 2003b). SDF-1a, which is thus an important 
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factor for the homing of CXCR4+ cells to the site of injury has been shown to be reduced 

in the peripheral wounds of diabetic mice (Yamaguchi et al., 2003). 

The aforesaid reports provide a good rationale for investigating whether the expression of 

the chemokine SDF-1a gets reduced in the brains of diabetic mice in response to ischemic 

stroke. So we went ahead to measure SDF-1a, both at the levels of protein and m-RNA, 

expressed in the brains of diabetic mice and the controls, forty eight hours after the 

induction of ischemic stroke by MCAO. Our results of western blot (Fig- 4) and real time 

RT PCR (Fig- 6) clearly show the decreased expression of the chemokine, SDF-1a, in the 

brains of the diabetic mice as compared to their controls, both at the protein and m-RNA 

levels. 

The reduced expression of SDF-1a and its cognate receptor CXCR4 may thus indicate an 

intrinsic defect of the SDF-1a/CXCR4 axis in type 2 diabetes which may be responsible 

for the worse outcome of ischemic stroke associated with the patients suffering from this 

disease. In this study we have focused on the expression of SDF-1a and its receptor 

CXCR4 in the brains only. Further studies are required to investigate the expression of 

this axis in the bone marrow of the diabetic mice which may throw light on the reduced 

mobilization of the CXCR4+ EPCs from the hypoxic niche of bone marrow to the 

systemic circulation, seen commonly in diabetics. 

Cell transplantation therapies show promise in the treatment of ischemic stroke. The 

stromal cells from bone marrow are a good choice for these therapies because these cells 

not only differentiate into neuronal and endothelial cells in the ischemic brain 

(Yamaguchi et al., 2003) but also secrete angiogenic, neurogenic and antiapoptotic 
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factors in the hypoxic environment of the infarct area (Sun et al., 2003). Animal models 

like that of Chen et al in 2003 has shown the induction of angiogenesis and the resulting 

functional benefits obtained by the intravenous administration of human bone marrow 

stromal cells in rats (Chen et al., 2001b). The CXCR4+ EPCs which come under the 

family of bone marrow stromal cells  have been reported to improve blood flow recovery 

and vascular density in ischemic hind limb of mice, after transplantation by intracardiac 

injection (Kalka et al., 2000). This coupled with the fact that SDF-1a is upregulated in the 

ischemic tissue after stroke (Hill et al., 2004) indicates a positive role of the SDF-

1a/CXCR4 axis in the repair of ischemic tissue after injury.  

Given the comprehensive reduction of SDF-1a/CXCR4 axis in diabetes as shown by our 

study and also studies done by other groups, strategies increasing the expression level of 

SDF-1a in the brain may offer new avenues for treatment of ischemic stroke in diabetes. 

Reports by Ceradini et al in 2005 and Peled et al in 2000 showed that a constant 

concentration gradient of SDF-1a is a prerequisite for the successful homing of EPCs in 

the hypoxic tissue (Ceradini and Gurtner, 2005;Peled et al., 2000). Physiological 

upregulation of SDF-1a in response to ischemia is however transient (Hill et al., 2004) 

and has been reported to be diminished in diabetic wounds (Gallagher et al., 2007). So 

increasing the level of SDF-1a in the ischemic brain might induce the homing of EPCs 

and improve the impaired healing of ischemic stroke in diabetics. Badillo et al in 2007 

have reported the lentiviral mediated gene transfer of SDF-1a to be beneficial in diabetic 

wound healing. They successfully accomplished the local transfer of SDF-1a gene into 

the peripheral wounds of diabetic mice and found complete epithelialization by two 
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weeks (Badillo et al., 2007). Earlier Tang et al in 2005 has also achieved successful 

mobilization of haematopoietic stem cells into ischemic myocardium by plasmid 

mediated transfer of SDF-1a in mice(Tang et al., 2005).  

So based on the previous reports, we explored the development of a method for Adeno 

associated virus (AAV) mediated delivery of SDF-1a gene in the brains of diabetic mice. 

The vectors, AAV-SDF-1a and AAV-Null, were packaged into AAV9 virus serotype 

since the AAV9 vector in a recent study has been shown to successfully overexpress 

carried gene in ipsilateral striatum, cortex and hippocampus (Cearley and Wolfe, 

2007).The mice received microinjection of AAV-Null into the left and AAV-SDF-1a in 

the right striatum of brain. Subsequent immunohistochemistry (Fig- 8) showed significant 

overexpression of the SDF-1a gene in the right striatum of the mice brain compared to 

the left striatum suggesting the success of the procedure.  

We also determined the localization of the SDF-1a protein in the brain of diabetic mice 

after microinjection. By double immunohistochemistry with antibodies for both SDF-1a 

and glial fibrillary acidic protein (protein associated with glial cells), we were able to 

show clearly the localization of SDF-1a in the glial cells of brain (Fig- 9). Earlier works 

by Buffo et al in 2008 have shown that glial cells can acquire stem cell activity after brain 

injury and takes part in neurogenesis (Buffo et al., 2008). Successful over-expression of 

SDF-1a in the brain after microinjection AAV-SDF-1a and its association with the glial 

cells, as shown in our study, thus indicates a possible use of AAV-SDF-1a for the repair 

of the ischemic brain after stroke. The upcoming results from our laboratory will throw 
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light on the effects of the plasmid mediated delivery of SDF-1a on neurogenesis and 

angiogenesis of the injured brain after ischemic stroke.  
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CONCLUSION  

           These results demonstrate that the SDF-1a/CXCR4 axis is dysfunctional in db/db 

diabetic mice, which is evidenced by the decreased expression at basal and reduced 

upregulation in response to ischemia. The impaired SDF-1a/CXCR4 axis may be 

responsible for the reduced microvascular density in the cortex of db/db mice. These 

abnormalities together may consequently account for the enlarged ischemic damage in 

the db/db diabetic mice and targeting the functional improvement of SDF-1a/CXCR4 

axis can thus offer a new therapeutic avenue for ischemic stroke in diabetes. 
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